2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include "isl_map_private.h"
22 #include <isl_config.h>
24 #include <bset_to_bmap.c>
25 #include <bset_from_bmap.c>
28 * The implementation of tableaus in this file was inspired by Section 8
29 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
30 * prover for program checking".
33 struct isl_tab
*isl_tab_alloc(struct isl_ctx
*ctx
,
34 unsigned n_row
, unsigned n_var
, unsigned M
)
40 tab
= isl_calloc_type(ctx
, struct isl_tab
);
43 tab
->mat
= isl_mat_alloc(ctx
, n_row
, off
+ n_var
);
46 tab
->var
= isl_alloc_array(ctx
, struct isl_tab_var
, n_var
);
47 if (n_var
&& !tab
->var
)
49 tab
->con
= isl_alloc_array(ctx
, struct isl_tab_var
, n_row
);
50 if (n_row
&& !tab
->con
)
52 tab
->col_var
= isl_alloc_array(ctx
, int, n_var
);
53 if (n_var
&& !tab
->col_var
)
55 tab
->row_var
= isl_alloc_array(ctx
, int, n_row
);
56 if (n_row
&& !tab
->row_var
)
58 for (i
= 0; i
< n_var
; ++i
) {
59 tab
->var
[i
].index
= i
;
60 tab
->var
[i
].is_row
= 0;
61 tab
->var
[i
].is_nonneg
= 0;
62 tab
->var
[i
].is_zero
= 0;
63 tab
->var
[i
].is_redundant
= 0;
64 tab
->var
[i
].frozen
= 0;
65 tab
->var
[i
].negated
= 0;
79 tab
->strict_redundant
= 0;
86 tab
->bottom
.type
= isl_tab_undo_bottom
;
87 tab
->bottom
.next
= NULL
;
88 tab
->top
= &tab
->bottom
;
100 isl_ctx
*isl_tab_get_ctx(struct isl_tab
*tab
)
102 return tab
? isl_mat_get_ctx(tab
->mat
) : NULL
;
105 int isl_tab_extend_cons(struct isl_tab
*tab
, unsigned n_new
)
114 if (tab
->max_con
< tab
->n_con
+ n_new
) {
115 struct isl_tab_var
*con
;
117 con
= isl_realloc_array(tab
->mat
->ctx
, tab
->con
,
118 struct isl_tab_var
, tab
->max_con
+ n_new
);
122 tab
->max_con
+= n_new
;
124 if (tab
->mat
->n_row
< tab
->n_row
+ n_new
) {
127 tab
->mat
= isl_mat_extend(tab
->mat
,
128 tab
->n_row
+ n_new
, off
+ tab
->n_col
);
131 row_var
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_var
,
132 int, tab
->mat
->n_row
);
135 tab
->row_var
= row_var
;
137 enum isl_tab_row_sign
*s
;
138 s
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_sign
,
139 enum isl_tab_row_sign
, tab
->mat
->n_row
);
148 /* Make room for at least n_new extra variables.
149 * Return -1 if anything went wrong.
151 int isl_tab_extend_vars(struct isl_tab
*tab
, unsigned n_new
)
153 struct isl_tab_var
*var
;
154 unsigned off
= 2 + tab
->M
;
156 if (tab
->max_var
< tab
->n_var
+ n_new
) {
157 var
= isl_realloc_array(tab
->mat
->ctx
, tab
->var
,
158 struct isl_tab_var
, tab
->n_var
+ n_new
);
162 tab
->max_var
= tab
->n_var
+ n_new
;
165 if (tab
->mat
->n_col
< off
+ tab
->n_col
+ n_new
) {
168 tab
->mat
= isl_mat_extend(tab
->mat
,
169 tab
->mat
->n_row
, off
+ tab
->n_col
+ n_new
);
172 p
= isl_realloc_array(tab
->mat
->ctx
, tab
->col_var
,
173 int, tab
->n_col
+ n_new
);
182 static void free_undo_record(struct isl_tab_undo
*undo
)
184 switch (undo
->type
) {
185 case isl_tab_undo_saved_basis
:
186 free(undo
->u
.col_var
);
193 static void free_undo(struct isl_tab
*tab
)
195 struct isl_tab_undo
*undo
, *next
;
197 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
199 free_undo_record(undo
);
204 void isl_tab_free(struct isl_tab
*tab
)
209 isl_mat_free(tab
->mat
);
210 isl_vec_free(tab
->dual
);
211 isl_basic_map_free(tab
->bmap
);
217 isl_mat_free(tab
->samples
);
218 free(tab
->sample_index
);
219 isl_mat_free(tab
->basis
);
223 struct isl_tab
*isl_tab_dup(struct isl_tab
*tab
)
233 dup
= isl_calloc_type(tab
->mat
->ctx
, struct isl_tab
);
236 dup
->mat
= isl_mat_dup(tab
->mat
);
239 dup
->var
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_var
);
240 if (tab
->max_var
&& !dup
->var
)
242 for (i
= 0; i
< tab
->n_var
; ++i
)
243 dup
->var
[i
] = tab
->var
[i
];
244 dup
->con
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_con
);
245 if (tab
->max_con
&& !dup
->con
)
247 for (i
= 0; i
< tab
->n_con
; ++i
)
248 dup
->con
[i
] = tab
->con
[i
];
249 dup
->col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_col
- off
);
250 if ((tab
->mat
->n_col
- off
) && !dup
->col_var
)
252 for (i
= 0; i
< tab
->n_col
; ++i
)
253 dup
->col_var
[i
] = tab
->col_var
[i
];
254 dup
->row_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_row
);
255 if (tab
->mat
->n_row
&& !dup
->row_var
)
257 for (i
= 0; i
< tab
->n_row
; ++i
)
258 dup
->row_var
[i
] = tab
->row_var
[i
];
260 dup
->row_sign
= isl_alloc_array(tab
->mat
->ctx
, enum isl_tab_row_sign
,
262 if (tab
->mat
->n_row
&& !dup
->row_sign
)
264 for (i
= 0; i
< tab
->n_row
; ++i
)
265 dup
->row_sign
[i
] = tab
->row_sign
[i
];
268 dup
->samples
= isl_mat_dup(tab
->samples
);
271 dup
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int,
272 tab
->samples
->n_row
);
273 if (tab
->samples
->n_row
&& !dup
->sample_index
)
275 dup
->n_sample
= tab
->n_sample
;
276 dup
->n_outside
= tab
->n_outside
;
278 dup
->n_row
= tab
->n_row
;
279 dup
->n_con
= tab
->n_con
;
280 dup
->n_eq
= tab
->n_eq
;
281 dup
->max_con
= tab
->max_con
;
282 dup
->n_col
= tab
->n_col
;
283 dup
->n_var
= tab
->n_var
;
284 dup
->max_var
= tab
->max_var
;
285 dup
->n_param
= tab
->n_param
;
286 dup
->n_div
= tab
->n_div
;
287 dup
->n_dead
= tab
->n_dead
;
288 dup
->n_redundant
= tab
->n_redundant
;
289 dup
->rational
= tab
->rational
;
290 dup
->empty
= tab
->empty
;
291 dup
->strict_redundant
= 0;
295 tab
->cone
= tab
->cone
;
296 dup
->bottom
.type
= isl_tab_undo_bottom
;
297 dup
->bottom
.next
= NULL
;
298 dup
->top
= &dup
->bottom
;
300 dup
->n_zero
= tab
->n_zero
;
301 dup
->n_unbounded
= tab
->n_unbounded
;
302 dup
->basis
= isl_mat_dup(tab
->basis
);
310 /* Construct the coefficient matrix of the product tableau
312 * mat{1,2} is the coefficient matrix of tableau {1,2}
313 * row{1,2} is the number of rows in tableau {1,2}
314 * col{1,2} is the number of columns in tableau {1,2}
315 * off is the offset to the coefficient column (skipping the
316 * denominator, the constant term and the big parameter if any)
317 * r{1,2} is the number of redundant rows in tableau {1,2}
318 * d{1,2} is the number of dead columns in tableau {1,2}
320 * The order of the rows and columns in the result is as explained
321 * in isl_tab_product.
323 static struct isl_mat
*tab_mat_product(struct isl_mat
*mat1
,
324 struct isl_mat
*mat2
, unsigned row1
, unsigned row2
,
325 unsigned col1
, unsigned col2
,
326 unsigned off
, unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
329 struct isl_mat
*prod
;
332 prod
= isl_mat_alloc(mat1
->ctx
, mat1
->n_row
+ mat2
->n_row
,
338 for (i
= 0; i
< r1
; ++i
) {
339 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[i
], off
+ d1
);
340 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
341 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
342 mat1
->row
[i
] + off
+ d1
, col1
- d1
);
343 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
347 for (i
= 0; i
< r2
; ++i
) {
348 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[i
], off
);
349 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
350 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
351 mat2
->row
[i
] + off
, d2
);
352 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
353 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
354 mat2
->row
[i
] + off
+ d2
, col2
- d2
);
358 for (i
= 0; i
< row1
- r1
; ++i
) {
359 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[r1
+ i
], off
+ d1
);
360 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
361 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
362 mat1
->row
[r1
+ i
] + off
+ d1
, col1
- d1
);
363 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
367 for (i
= 0; i
< row2
- r2
; ++i
) {
368 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[r2
+ i
], off
);
369 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
370 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
371 mat2
->row
[r2
+ i
] + off
, d2
);
372 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
373 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
374 mat2
->row
[r2
+ i
] + off
+ d2
, col2
- d2
);
380 /* Update the row or column index of a variable that corresponds
381 * to a variable in the first input tableau.
383 static void update_index1(struct isl_tab_var
*var
,
384 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
386 if (var
->index
== -1)
388 if (var
->is_row
&& var
->index
>= r1
)
390 if (!var
->is_row
&& var
->index
>= d1
)
394 /* Update the row or column index of a variable that corresponds
395 * to a variable in the second input tableau.
397 static void update_index2(struct isl_tab_var
*var
,
398 unsigned row1
, unsigned col1
,
399 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
401 if (var
->index
== -1)
416 /* Create a tableau that represents the Cartesian product of the sets
417 * represented by tableaus tab1 and tab2.
418 * The order of the rows in the product is
419 * - redundant rows of tab1
420 * - redundant rows of tab2
421 * - non-redundant rows of tab1
422 * - non-redundant rows of tab2
423 * The order of the columns is
426 * - coefficient of big parameter, if any
427 * - dead columns of tab1
428 * - dead columns of tab2
429 * - live columns of tab1
430 * - live columns of tab2
431 * The order of the variables and the constraints is a concatenation
432 * of order in the two input tableaus.
434 struct isl_tab
*isl_tab_product(struct isl_tab
*tab1
, struct isl_tab
*tab2
)
437 struct isl_tab
*prod
;
439 unsigned r1
, r2
, d1
, d2
;
444 isl_assert(tab1
->mat
->ctx
, tab1
->M
== tab2
->M
, return NULL
);
445 isl_assert(tab1
->mat
->ctx
, tab1
->rational
== tab2
->rational
, return NULL
);
446 isl_assert(tab1
->mat
->ctx
, tab1
->cone
== tab2
->cone
, return NULL
);
447 isl_assert(tab1
->mat
->ctx
, !tab1
->row_sign
, return NULL
);
448 isl_assert(tab1
->mat
->ctx
, !tab2
->row_sign
, return NULL
);
449 isl_assert(tab1
->mat
->ctx
, tab1
->n_param
== 0, return NULL
);
450 isl_assert(tab1
->mat
->ctx
, tab2
->n_param
== 0, return NULL
);
451 isl_assert(tab1
->mat
->ctx
, tab1
->n_div
== 0, return NULL
);
452 isl_assert(tab1
->mat
->ctx
, tab2
->n_div
== 0, return NULL
);
455 r1
= tab1
->n_redundant
;
456 r2
= tab2
->n_redundant
;
459 prod
= isl_calloc_type(tab1
->mat
->ctx
, struct isl_tab
);
462 prod
->mat
= tab_mat_product(tab1
->mat
, tab2
->mat
,
463 tab1
->n_row
, tab2
->n_row
,
464 tab1
->n_col
, tab2
->n_col
, off
, r1
, r2
, d1
, d2
);
467 prod
->var
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
468 tab1
->max_var
+ tab2
->max_var
);
469 if ((tab1
->max_var
+ tab2
->max_var
) && !prod
->var
)
471 for (i
= 0; i
< tab1
->n_var
; ++i
) {
472 prod
->var
[i
] = tab1
->var
[i
];
473 update_index1(&prod
->var
[i
], r1
, r2
, d1
, d2
);
475 for (i
= 0; i
< tab2
->n_var
; ++i
) {
476 prod
->var
[tab1
->n_var
+ i
] = tab2
->var
[i
];
477 update_index2(&prod
->var
[tab1
->n_var
+ i
],
478 tab1
->n_row
, tab1
->n_col
,
481 prod
->con
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
482 tab1
->max_con
+ tab2
->max_con
);
483 if ((tab1
->max_con
+ tab2
->max_con
) && !prod
->con
)
485 for (i
= 0; i
< tab1
->n_con
; ++i
) {
486 prod
->con
[i
] = tab1
->con
[i
];
487 update_index1(&prod
->con
[i
], r1
, r2
, d1
, d2
);
489 for (i
= 0; i
< tab2
->n_con
; ++i
) {
490 prod
->con
[tab1
->n_con
+ i
] = tab2
->con
[i
];
491 update_index2(&prod
->con
[tab1
->n_con
+ i
],
492 tab1
->n_row
, tab1
->n_col
,
495 prod
->col_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
496 tab1
->n_col
+ tab2
->n_col
);
497 if ((tab1
->n_col
+ tab2
->n_col
) && !prod
->col_var
)
499 for (i
= 0; i
< tab1
->n_col
; ++i
) {
500 int pos
= i
< d1
? i
: i
+ d2
;
501 prod
->col_var
[pos
] = tab1
->col_var
[i
];
503 for (i
= 0; i
< tab2
->n_col
; ++i
) {
504 int pos
= i
< d2
? d1
+ i
: tab1
->n_col
+ i
;
505 int t
= tab2
->col_var
[i
];
510 prod
->col_var
[pos
] = t
;
512 prod
->row_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
513 tab1
->mat
->n_row
+ tab2
->mat
->n_row
);
514 if ((tab1
->mat
->n_row
+ tab2
->mat
->n_row
) && !prod
->row_var
)
516 for (i
= 0; i
< tab1
->n_row
; ++i
) {
517 int pos
= i
< r1
? i
: i
+ r2
;
518 prod
->row_var
[pos
] = tab1
->row_var
[i
];
520 for (i
= 0; i
< tab2
->n_row
; ++i
) {
521 int pos
= i
< r2
? r1
+ i
: tab1
->n_row
+ i
;
522 int t
= tab2
->row_var
[i
];
527 prod
->row_var
[pos
] = t
;
529 prod
->samples
= NULL
;
530 prod
->sample_index
= NULL
;
531 prod
->n_row
= tab1
->n_row
+ tab2
->n_row
;
532 prod
->n_con
= tab1
->n_con
+ tab2
->n_con
;
534 prod
->max_con
= tab1
->max_con
+ tab2
->max_con
;
535 prod
->n_col
= tab1
->n_col
+ tab2
->n_col
;
536 prod
->n_var
= tab1
->n_var
+ tab2
->n_var
;
537 prod
->max_var
= tab1
->max_var
+ tab2
->max_var
;
540 prod
->n_dead
= tab1
->n_dead
+ tab2
->n_dead
;
541 prod
->n_redundant
= tab1
->n_redundant
+ tab2
->n_redundant
;
542 prod
->rational
= tab1
->rational
;
543 prod
->empty
= tab1
->empty
|| tab2
->empty
;
544 prod
->strict_redundant
= tab1
->strict_redundant
|| tab2
->strict_redundant
;
548 prod
->cone
= tab1
->cone
;
549 prod
->bottom
.type
= isl_tab_undo_bottom
;
550 prod
->bottom
.next
= NULL
;
551 prod
->top
= &prod
->bottom
;
554 prod
->n_unbounded
= 0;
563 static struct isl_tab_var
*var_from_index(struct isl_tab
*tab
, int i
)
568 return &tab
->con
[~i
];
571 struct isl_tab_var
*isl_tab_var_from_row(struct isl_tab
*tab
, int i
)
573 return var_from_index(tab
, tab
->row_var
[i
]);
576 static struct isl_tab_var
*var_from_col(struct isl_tab
*tab
, int i
)
578 return var_from_index(tab
, tab
->col_var
[i
]);
581 /* Check if there are any upper bounds on column variable "var",
582 * i.e., non-negative rows where var appears with a negative coefficient.
583 * Return 1 if there are no such bounds.
585 static int max_is_manifestly_unbounded(struct isl_tab
*tab
,
586 struct isl_tab_var
*var
)
589 unsigned off
= 2 + tab
->M
;
593 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
594 if (!isl_int_is_neg(tab
->mat
->row
[i
][off
+ var
->index
]))
596 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
602 /* Check if there are any lower bounds on column variable "var",
603 * i.e., non-negative rows where var appears with a positive coefficient.
604 * Return 1 if there are no such bounds.
606 static int min_is_manifestly_unbounded(struct isl_tab
*tab
,
607 struct isl_tab_var
*var
)
610 unsigned off
= 2 + tab
->M
;
614 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
615 if (!isl_int_is_pos(tab
->mat
->row
[i
][off
+ var
->index
]))
617 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
623 static int row_cmp(struct isl_tab
*tab
, int r1
, int r2
, int c
, isl_int
*t
)
625 unsigned off
= 2 + tab
->M
;
629 isl_int_mul(*t
, tab
->mat
->row
[r1
][2], tab
->mat
->row
[r2
][off
+c
]);
630 isl_int_submul(*t
, tab
->mat
->row
[r2
][2], tab
->mat
->row
[r1
][off
+c
]);
635 isl_int_mul(*t
, tab
->mat
->row
[r1
][1], tab
->mat
->row
[r2
][off
+ c
]);
636 isl_int_submul(*t
, tab
->mat
->row
[r2
][1], tab
->mat
->row
[r1
][off
+ c
]);
637 return isl_int_sgn(*t
);
640 /* Given the index of a column "c", return the index of a row
641 * that can be used to pivot the column in, with either an increase
642 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
643 * If "var" is not NULL, then the row returned will be different from
644 * the one associated with "var".
646 * Each row in the tableau is of the form
648 * x_r = a_r0 + \sum_i a_ri x_i
650 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
651 * impose any limit on the increase or decrease in the value of x_c
652 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
653 * for the row with the smallest (most stringent) such bound.
654 * Note that the common denominator of each row drops out of the fraction.
655 * To check if row j has a smaller bound than row r, i.e.,
656 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
657 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
658 * where -sign(a_jc) is equal to "sgn".
660 static int pivot_row(struct isl_tab
*tab
,
661 struct isl_tab_var
*var
, int sgn
, int c
)
665 unsigned off
= 2 + tab
->M
;
669 for (j
= tab
->n_redundant
; j
< tab
->n_row
; ++j
) {
670 if (var
&& j
== var
->index
)
672 if (!isl_tab_var_from_row(tab
, j
)->is_nonneg
)
674 if (sgn
* isl_int_sgn(tab
->mat
->row
[j
][off
+ c
]) >= 0)
680 tsgn
= sgn
* row_cmp(tab
, r
, j
, c
, &t
);
681 if (tsgn
< 0 || (tsgn
== 0 &&
682 tab
->row_var
[j
] < tab
->row_var
[r
]))
689 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
690 * (sgn < 0) the value of row variable var.
691 * If not NULL, then skip_var is a row variable that should be ignored
692 * while looking for a pivot row. It is usually equal to var.
694 * As the given row in the tableau is of the form
696 * x_r = a_r0 + \sum_i a_ri x_i
698 * we need to find a column such that the sign of a_ri is equal to "sgn"
699 * (such that an increase in x_i will have the desired effect) or a
700 * column with a variable that may attain negative values.
701 * If a_ri is positive, then we need to move x_i in the same direction
702 * to obtain the desired effect. Otherwise, x_i has to move in the
703 * opposite direction.
705 static void find_pivot(struct isl_tab
*tab
,
706 struct isl_tab_var
*var
, struct isl_tab_var
*skip_var
,
707 int sgn
, int *row
, int *col
)
714 isl_assert(tab
->mat
->ctx
, var
->is_row
, return);
715 tr
= tab
->mat
->row
[var
->index
] + 2 + tab
->M
;
718 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
719 if (isl_int_is_zero(tr
[j
]))
721 if (isl_int_sgn(tr
[j
]) != sgn
&&
722 var_from_col(tab
, j
)->is_nonneg
)
724 if (c
< 0 || tab
->col_var
[j
] < tab
->col_var
[c
])
730 sgn
*= isl_int_sgn(tr
[c
]);
731 r
= pivot_row(tab
, skip_var
, sgn
, c
);
732 *row
= r
< 0 ? var
->index
: r
;
736 /* Return 1 if row "row" represents an obviously redundant inequality.
738 * - it represents an inequality or a variable
739 * - that is the sum of a non-negative sample value and a positive
740 * combination of zero or more non-negative constraints.
742 int isl_tab_row_is_redundant(struct isl_tab
*tab
, int row
)
745 unsigned off
= 2 + tab
->M
;
747 if (tab
->row_var
[row
] < 0 && !isl_tab_var_from_row(tab
, row
)->is_nonneg
)
750 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
752 if (tab
->strict_redundant
&& isl_int_is_zero(tab
->mat
->row
[row
][1]))
754 if (tab
->M
&& isl_int_is_neg(tab
->mat
->row
[row
][2]))
757 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
758 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ i
]))
760 if (tab
->col_var
[i
] >= 0)
762 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ i
]))
764 if (!var_from_col(tab
, i
)->is_nonneg
)
770 static void swap_rows(struct isl_tab
*tab
, int row1
, int row2
)
773 enum isl_tab_row_sign s
;
775 t
= tab
->row_var
[row1
];
776 tab
->row_var
[row1
] = tab
->row_var
[row2
];
777 tab
->row_var
[row2
] = t
;
778 isl_tab_var_from_row(tab
, row1
)->index
= row1
;
779 isl_tab_var_from_row(tab
, row2
)->index
= row2
;
780 tab
->mat
= isl_mat_swap_rows(tab
->mat
, row1
, row2
);
784 s
= tab
->row_sign
[row1
];
785 tab
->row_sign
[row1
] = tab
->row_sign
[row2
];
786 tab
->row_sign
[row2
] = s
;
789 static int push_union(struct isl_tab
*tab
,
790 enum isl_tab_undo_type type
, union isl_tab_undo_val u
) WARN_UNUSED
;
791 static int push_union(struct isl_tab
*tab
,
792 enum isl_tab_undo_type type
, union isl_tab_undo_val u
)
794 struct isl_tab_undo
*undo
;
801 undo
= isl_alloc_type(tab
->mat
->ctx
, struct isl_tab_undo
);
806 undo
->next
= tab
->top
;
812 int isl_tab_push_var(struct isl_tab
*tab
,
813 enum isl_tab_undo_type type
, struct isl_tab_var
*var
)
815 union isl_tab_undo_val u
;
817 u
.var_index
= tab
->row_var
[var
->index
];
819 u
.var_index
= tab
->col_var
[var
->index
];
820 return push_union(tab
, type
, u
);
823 int isl_tab_push(struct isl_tab
*tab
, enum isl_tab_undo_type type
)
825 union isl_tab_undo_val u
= { 0 };
826 return push_union(tab
, type
, u
);
829 /* Push a record on the undo stack describing the current basic
830 * variables, so that the this state can be restored during rollback.
832 int isl_tab_push_basis(struct isl_tab
*tab
)
835 union isl_tab_undo_val u
;
837 u
.col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
838 if (tab
->n_col
&& !u
.col_var
)
840 for (i
= 0; i
< tab
->n_col
; ++i
)
841 u
.col_var
[i
] = tab
->col_var
[i
];
842 return push_union(tab
, isl_tab_undo_saved_basis
, u
);
845 int isl_tab_push_callback(struct isl_tab
*tab
, struct isl_tab_callback
*callback
)
847 union isl_tab_undo_val u
;
848 u
.callback
= callback
;
849 return push_union(tab
, isl_tab_undo_callback
, u
);
852 struct isl_tab
*isl_tab_init_samples(struct isl_tab
*tab
)
859 tab
->samples
= isl_mat_alloc(tab
->mat
->ctx
, 1, 1 + tab
->n_var
);
862 tab
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int, 1);
863 if (!tab
->sample_index
)
871 int isl_tab_add_sample(struct isl_tab
*tab
, __isl_take isl_vec
*sample
)
876 if (tab
->n_sample
+ 1 > tab
->samples
->n_row
) {
877 int *t
= isl_realloc_array(tab
->mat
->ctx
,
878 tab
->sample_index
, int, tab
->n_sample
+ 1);
881 tab
->sample_index
= t
;
884 tab
->samples
= isl_mat_extend(tab
->samples
,
885 tab
->n_sample
+ 1, tab
->samples
->n_col
);
889 isl_seq_cpy(tab
->samples
->row
[tab
->n_sample
], sample
->el
, sample
->size
);
890 isl_vec_free(sample
);
891 tab
->sample_index
[tab
->n_sample
] = tab
->n_sample
;
896 isl_vec_free(sample
);
900 struct isl_tab
*isl_tab_drop_sample(struct isl_tab
*tab
, int s
)
902 if (s
!= tab
->n_outside
) {
903 int t
= tab
->sample_index
[tab
->n_outside
];
904 tab
->sample_index
[tab
->n_outside
] = tab
->sample_index
[s
];
905 tab
->sample_index
[s
] = t
;
906 isl_mat_swap_rows(tab
->samples
, tab
->n_outside
, s
);
909 if (isl_tab_push(tab
, isl_tab_undo_drop_sample
) < 0) {
917 /* Record the current number of samples so that we can remove newer
918 * samples during a rollback.
920 int isl_tab_save_samples(struct isl_tab
*tab
)
922 union isl_tab_undo_val u
;
928 return push_union(tab
, isl_tab_undo_saved_samples
, u
);
931 /* Mark row with index "row" as being redundant.
932 * If we may need to undo the operation or if the row represents
933 * a variable of the original problem, the row is kept,
934 * but no longer considered when looking for a pivot row.
935 * Otherwise, the row is simply removed.
937 * The row may be interchanged with some other row. If it
938 * is interchanged with a later row, return 1. Otherwise return 0.
939 * If the rows are checked in order in the calling function,
940 * then a return value of 1 means that the row with the given
941 * row number may now contain a different row that hasn't been checked yet.
943 int isl_tab_mark_redundant(struct isl_tab
*tab
, int row
)
945 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, row
);
946 var
->is_redundant
= 1;
947 isl_assert(tab
->mat
->ctx
, row
>= tab
->n_redundant
, return -1);
948 if (tab
->preserve
|| tab
->need_undo
|| tab
->row_var
[row
] >= 0) {
949 if (tab
->row_var
[row
] >= 0 && !var
->is_nonneg
) {
951 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, var
) < 0)
954 if (row
!= tab
->n_redundant
)
955 swap_rows(tab
, row
, tab
->n_redundant
);
957 return isl_tab_push_var(tab
, isl_tab_undo_redundant
, var
);
959 if (row
!= tab
->n_row
- 1)
960 swap_rows(tab
, row
, tab
->n_row
- 1);
961 isl_tab_var_from_row(tab
, tab
->n_row
- 1)->index
= -1;
967 /* Mark "tab" as a rational tableau.
968 * If it wasn't marked as a rational tableau already and if we may
969 * need to undo changes, then arrange for the marking to be undone
972 int isl_tab_mark_rational(struct isl_tab
*tab
)
976 if (!tab
->rational
&& tab
->need_undo
)
977 if (isl_tab_push(tab
, isl_tab_undo_rational
) < 0)
983 isl_stat
isl_tab_mark_empty(struct isl_tab
*tab
)
986 return isl_stat_error
;
987 if (!tab
->empty
&& tab
->need_undo
)
988 if (isl_tab_push(tab
, isl_tab_undo_empty
) < 0)
989 return isl_stat_error
;
994 int isl_tab_freeze_constraint(struct isl_tab
*tab
, int con
)
996 struct isl_tab_var
*var
;
1001 var
= &tab
->con
[con
];
1009 return isl_tab_push_var(tab
, isl_tab_undo_freeze
, var
);
1014 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1015 * the original sign of the pivot element.
1016 * We only keep track of row signs during PILP solving and in this case
1017 * we only pivot a row with negative sign (meaning the value is always
1018 * non-positive) using a positive pivot element.
1020 * For each row j, the new value of the parametric constant is equal to
1022 * a_j0 - a_jc a_r0/a_rc
1024 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1025 * a_r0 is the parametric constant of the pivot row and a_jc is the
1026 * pivot column entry of the row j.
1027 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1028 * remains the same if a_jc has the same sign as the row j or if
1029 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1031 static void update_row_sign(struct isl_tab
*tab
, int row
, int col
, int row_sgn
)
1034 struct isl_mat
*mat
= tab
->mat
;
1035 unsigned off
= 2 + tab
->M
;
1040 if (tab
->row_sign
[row
] == 0)
1042 isl_assert(mat
->ctx
, row_sgn
> 0, return);
1043 isl_assert(mat
->ctx
, tab
->row_sign
[row
] == isl_tab_row_neg
, return);
1044 tab
->row_sign
[row
] = isl_tab_row_pos
;
1045 for (i
= 0; i
< tab
->n_row
; ++i
) {
1049 s
= isl_int_sgn(mat
->row
[i
][off
+ col
]);
1052 if (!tab
->row_sign
[i
])
1054 if (s
< 0 && tab
->row_sign
[i
] == isl_tab_row_neg
)
1056 if (s
> 0 && tab
->row_sign
[i
] == isl_tab_row_pos
)
1058 tab
->row_sign
[i
] = isl_tab_row_unknown
;
1062 /* Given a row number "row" and a column number "col", pivot the tableau
1063 * such that the associated variables are interchanged.
1064 * The given row in the tableau expresses
1066 * x_r = a_r0 + \sum_i a_ri x_i
1070 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1072 * Substituting this equality into the other rows
1074 * x_j = a_j0 + \sum_i a_ji x_i
1076 * with a_jc \ne 0, we obtain
1078 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1085 * where i is any other column and j is any other row,
1086 * is therefore transformed into
1088 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1089 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1091 * The transformation is performed along the following steps
1093 * d_r/n_rc n_ri/n_rc
1096 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1099 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1100 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1102 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1103 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1105 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1106 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1108 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1109 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1112 int isl_tab_pivot(struct isl_tab
*tab
, int row
, int col
)
1118 struct isl_mat
*mat
= tab
->mat
;
1119 struct isl_tab_var
*var
;
1120 unsigned off
= 2 + tab
->M
;
1122 ctx
= isl_tab_get_ctx(tab
);
1123 if (isl_ctx_next_operation(ctx
) < 0)
1126 isl_int_swap(mat
->row
[row
][0], mat
->row
[row
][off
+ col
]);
1127 sgn
= isl_int_sgn(mat
->row
[row
][0]);
1129 isl_int_neg(mat
->row
[row
][0], mat
->row
[row
][0]);
1130 isl_int_neg(mat
->row
[row
][off
+ col
], mat
->row
[row
][off
+ col
]);
1132 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1133 if (j
== off
- 1 + col
)
1135 isl_int_neg(mat
->row
[row
][1 + j
], mat
->row
[row
][1 + j
]);
1137 if (!isl_int_is_one(mat
->row
[row
][0]))
1138 isl_seq_normalize(mat
->ctx
, mat
->row
[row
], off
+ tab
->n_col
);
1139 for (i
= 0; i
< tab
->n_row
; ++i
) {
1142 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1144 isl_int_mul(mat
->row
[i
][0], mat
->row
[i
][0], mat
->row
[row
][0]);
1145 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1146 if (j
== off
- 1 + col
)
1148 isl_int_mul(mat
->row
[i
][1 + j
],
1149 mat
->row
[i
][1 + j
], mat
->row
[row
][0]);
1150 isl_int_addmul(mat
->row
[i
][1 + j
],
1151 mat
->row
[i
][off
+ col
], mat
->row
[row
][1 + j
]);
1153 isl_int_mul(mat
->row
[i
][off
+ col
],
1154 mat
->row
[i
][off
+ col
], mat
->row
[row
][off
+ col
]);
1155 if (!isl_int_is_one(mat
->row
[i
][0]))
1156 isl_seq_normalize(mat
->ctx
, mat
->row
[i
], off
+ tab
->n_col
);
1158 t
= tab
->row_var
[row
];
1159 tab
->row_var
[row
] = tab
->col_var
[col
];
1160 tab
->col_var
[col
] = t
;
1161 var
= isl_tab_var_from_row(tab
, row
);
1164 var
= var_from_col(tab
, col
);
1167 update_row_sign(tab
, row
, col
, sgn
);
1170 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1171 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1173 if (!isl_tab_var_from_row(tab
, i
)->frozen
&&
1174 isl_tab_row_is_redundant(tab
, i
)) {
1175 int redo
= isl_tab_mark_redundant(tab
, i
);
1185 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1186 * or down (sgn < 0) to a row. The variable is assumed not to be
1187 * unbounded in the specified direction.
1188 * If sgn = 0, then the variable is unbounded in both directions,
1189 * and we pivot with any row we can find.
1191 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
) WARN_UNUSED
;
1192 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
)
1195 unsigned off
= 2 + tab
->M
;
1201 for (r
= tab
->n_redundant
; r
< tab
->n_row
; ++r
)
1202 if (!isl_int_is_zero(tab
->mat
->row
[r
][off
+var
->index
]))
1204 isl_assert(tab
->mat
->ctx
, r
< tab
->n_row
, return -1);
1206 r
= pivot_row(tab
, NULL
, sign
, var
->index
);
1207 isl_assert(tab
->mat
->ctx
, r
>= 0, return -1);
1210 return isl_tab_pivot(tab
, r
, var
->index
);
1213 /* Check whether all variables that are marked as non-negative
1214 * also have a non-negative sample value. This function is not
1215 * called from the current code but is useful during debugging.
1217 static void check_table(struct isl_tab
*tab
) __attribute__ ((unused
));
1218 static void check_table(struct isl_tab
*tab
)
1224 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1225 struct isl_tab_var
*var
;
1226 var
= isl_tab_var_from_row(tab
, i
);
1227 if (!var
->is_nonneg
)
1230 isl_assert(tab
->mat
->ctx
,
1231 !isl_int_is_neg(tab
->mat
->row
[i
][2]), abort());
1232 if (isl_int_is_pos(tab
->mat
->row
[i
][2]))
1235 isl_assert(tab
->mat
->ctx
, !isl_int_is_neg(tab
->mat
->row
[i
][1]),
1240 /* Return the sign of the maximal value of "var".
1241 * If the sign is not negative, then on return from this function,
1242 * the sample value will also be non-negative.
1244 * If "var" is manifestly unbounded wrt positive values, we are done.
1245 * Otherwise, we pivot the variable up to a row if needed
1246 * Then we continue pivoting down until either
1247 * - no more down pivots can be performed
1248 * - the sample value is positive
1249 * - the variable is pivoted into a manifestly unbounded column
1251 static int sign_of_max(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1255 if (max_is_manifestly_unbounded(tab
, var
))
1257 if (to_row(tab
, var
, 1) < 0)
1259 while (!isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1260 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1262 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1263 if (isl_tab_pivot(tab
, row
, col
) < 0)
1265 if (!var
->is_row
) /* manifestly unbounded */
1271 int isl_tab_sign_of_max(struct isl_tab
*tab
, int con
)
1273 struct isl_tab_var
*var
;
1278 var
= &tab
->con
[con
];
1279 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -2);
1280 isl_assert(tab
->mat
->ctx
, !var
->is_zero
, return -2);
1282 return sign_of_max(tab
, var
);
1285 static int row_is_neg(struct isl_tab
*tab
, int row
)
1288 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1289 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1291 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1293 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1296 static int row_sgn(struct isl_tab
*tab
, int row
)
1299 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1300 if (!isl_int_is_zero(tab
->mat
->row
[row
][2]))
1301 return isl_int_sgn(tab
->mat
->row
[row
][2]);
1303 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1306 /* Perform pivots until the row variable "var" has a non-negative
1307 * sample value or until no more upward pivots can be performed.
1308 * Return the sign of the sample value after the pivots have been
1311 static int restore_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1315 while (row_is_neg(tab
, var
->index
)) {
1316 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1319 if (isl_tab_pivot(tab
, row
, col
) < 0)
1321 if (!var
->is_row
) /* manifestly unbounded */
1324 return row_sgn(tab
, var
->index
);
1327 /* Perform pivots until we are sure that the row variable "var"
1328 * can attain non-negative values. After return from this
1329 * function, "var" is still a row variable, but its sample
1330 * value may not be non-negative, even if the function returns 1.
1332 static int at_least_zero(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1336 while (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1337 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1340 if (row
== var
->index
) /* manifestly unbounded */
1342 if (isl_tab_pivot(tab
, row
, col
) < 0)
1345 return !isl_int_is_neg(tab
->mat
->row
[var
->index
][1]);
1348 /* Return a negative value if "var" can attain negative values.
1349 * Return a non-negative value otherwise.
1351 * If "var" is manifestly unbounded wrt negative values, we are done.
1352 * Otherwise, if var is in a column, we can pivot it down to a row.
1353 * Then we continue pivoting down until either
1354 * - the pivot would result in a manifestly unbounded column
1355 * => we don't perform the pivot, but simply return -1
1356 * - no more down pivots can be performed
1357 * - the sample value is negative
1358 * If the sample value becomes negative and the variable is supposed
1359 * to be nonnegative, then we undo the last pivot.
1360 * However, if the last pivot has made the pivoting variable
1361 * obviously redundant, then it may have moved to another row.
1362 * In that case we look for upward pivots until we reach a non-negative
1365 static int sign_of_min(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1368 struct isl_tab_var
*pivot_var
= NULL
;
1370 if (min_is_manifestly_unbounded(tab
, var
))
1374 row
= pivot_row(tab
, NULL
, -1, col
);
1375 pivot_var
= var_from_col(tab
, col
);
1376 if (isl_tab_pivot(tab
, row
, col
) < 0)
1378 if (var
->is_redundant
)
1380 if (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1381 if (var
->is_nonneg
) {
1382 if (!pivot_var
->is_redundant
&&
1383 pivot_var
->index
== row
) {
1384 if (isl_tab_pivot(tab
, row
, col
) < 0)
1387 if (restore_row(tab
, var
) < -1)
1393 if (var
->is_redundant
)
1395 while (!isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1396 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1397 if (row
== var
->index
)
1400 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1401 pivot_var
= var_from_col(tab
, col
);
1402 if (isl_tab_pivot(tab
, row
, col
) < 0)
1404 if (var
->is_redundant
)
1407 if (pivot_var
&& var
->is_nonneg
) {
1408 /* pivot back to non-negative value */
1409 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
) {
1410 if (isl_tab_pivot(tab
, row
, col
) < 0)
1413 if (restore_row(tab
, var
) < -1)
1419 static int row_at_most_neg_one(struct isl_tab
*tab
, int row
)
1422 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1424 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1427 return isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
1428 isl_int_abs_ge(tab
->mat
->row
[row
][1],
1429 tab
->mat
->row
[row
][0]);
1432 /* Return 1 if "var" can attain values <= -1.
1433 * Return 0 otherwise.
1435 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1436 * then the sample value of "var" is assumed to be non-negative when the
1437 * the function is called. If 1 is returned then the constraint
1438 * is not redundant and the sample value is made non-negative again before
1439 * the function returns.
1441 int isl_tab_min_at_most_neg_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1444 struct isl_tab_var
*pivot_var
;
1446 if (min_is_manifestly_unbounded(tab
, var
))
1450 row
= pivot_row(tab
, NULL
, -1, col
);
1451 pivot_var
= var_from_col(tab
, col
);
1452 if (isl_tab_pivot(tab
, row
, col
) < 0)
1454 if (var
->is_redundant
)
1456 if (row_at_most_neg_one(tab
, var
->index
)) {
1457 if (var
->is_nonneg
) {
1458 if (!pivot_var
->is_redundant
&&
1459 pivot_var
->index
== row
) {
1460 if (isl_tab_pivot(tab
, row
, col
) < 0)
1463 if (restore_row(tab
, var
) < -1)
1469 if (var
->is_redundant
)
1472 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1473 if (row
== var
->index
) {
1474 if (var
->is_nonneg
&& restore_row(tab
, var
) < -1)
1480 pivot_var
= var_from_col(tab
, col
);
1481 if (isl_tab_pivot(tab
, row
, col
) < 0)
1483 if (var
->is_redundant
)
1485 } while (!row_at_most_neg_one(tab
, var
->index
));
1486 if (var
->is_nonneg
) {
1487 /* pivot back to non-negative value */
1488 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
)
1489 if (isl_tab_pivot(tab
, row
, col
) < 0)
1491 if (restore_row(tab
, var
) < -1)
1497 /* Return 1 if "var" can attain values >= 1.
1498 * Return 0 otherwise.
1500 static int at_least_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1505 if (max_is_manifestly_unbounded(tab
, var
))
1507 if (to_row(tab
, var
, 1) < 0)
1509 r
= tab
->mat
->row
[var
->index
];
1510 while (isl_int_lt(r
[1], r
[0])) {
1511 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1513 return isl_int_ge(r
[1], r
[0]);
1514 if (row
== var
->index
) /* manifestly unbounded */
1516 if (isl_tab_pivot(tab
, row
, col
) < 0)
1522 static void swap_cols(struct isl_tab
*tab
, int col1
, int col2
)
1525 unsigned off
= 2 + tab
->M
;
1526 t
= tab
->col_var
[col1
];
1527 tab
->col_var
[col1
] = tab
->col_var
[col2
];
1528 tab
->col_var
[col2
] = t
;
1529 var_from_col(tab
, col1
)->index
= col1
;
1530 var_from_col(tab
, col2
)->index
= col2
;
1531 tab
->mat
= isl_mat_swap_cols(tab
->mat
, off
+ col1
, off
+ col2
);
1534 /* Mark column with index "col" as representing a zero variable.
1535 * If we may need to undo the operation the column is kept,
1536 * but no longer considered.
1537 * Otherwise, the column is simply removed.
1539 * The column may be interchanged with some other column. If it
1540 * is interchanged with a later column, return 1. Otherwise return 0.
1541 * If the columns are checked in order in the calling function,
1542 * then a return value of 1 means that the column with the given
1543 * column number may now contain a different column that
1544 * hasn't been checked yet.
1546 int isl_tab_kill_col(struct isl_tab
*tab
, int col
)
1548 var_from_col(tab
, col
)->is_zero
= 1;
1549 if (tab
->need_undo
) {
1550 if (isl_tab_push_var(tab
, isl_tab_undo_zero
,
1551 var_from_col(tab
, col
)) < 0)
1553 if (col
!= tab
->n_dead
)
1554 swap_cols(tab
, col
, tab
->n_dead
);
1558 if (col
!= tab
->n_col
- 1)
1559 swap_cols(tab
, col
, tab
->n_col
- 1);
1560 var_from_col(tab
, tab
->n_col
- 1)->index
= -1;
1566 static int row_is_manifestly_non_integral(struct isl_tab
*tab
, int row
)
1568 unsigned off
= 2 + tab
->M
;
1570 if (tab
->M
&& !isl_int_eq(tab
->mat
->row
[row
][2],
1571 tab
->mat
->row
[row
][0]))
1573 if (isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1574 tab
->n_col
- tab
->n_dead
) != -1)
1577 return !isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1578 tab
->mat
->row
[row
][0]);
1581 /* For integer tableaus, check if any of the coordinates are stuck
1582 * at a non-integral value.
1584 static int tab_is_manifestly_empty(struct isl_tab
*tab
)
1593 for (i
= 0; i
< tab
->n_var
; ++i
) {
1594 if (!tab
->var
[i
].is_row
)
1596 if (row_is_manifestly_non_integral(tab
, tab
->var
[i
].index
))
1603 /* Row variable "var" is non-negative and cannot attain any values
1604 * larger than zero. This means that the coefficients of the unrestricted
1605 * column variables are zero and that the coefficients of the non-negative
1606 * column variables are zero or negative.
1607 * Each of the non-negative variables with a negative coefficient can
1608 * then also be written as the negative sum of non-negative variables
1609 * and must therefore also be zero.
1611 * If "temp_var" is set, then "var" is a temporary variable that
1612 * will be removed after this function returns and for which
1613 * no information is recorded on the undo stack.
1614 * Do not add any undo records involving this variable in this case
1615 * since the variable will have been removed before any future undo
1616 * operations. Also avoid marking the variable as redundant,
1617 * since that either adds an undo record or needlessly removes the row
1618 * (the caller will take care of removing the row).
1620 static isl_stat
close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
,
1621 int temp_var
) WARN_UNUSED
;
1622 static isl_stat
close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
,
1626 struct isl_mat
*mat
= tab
->mat
;
1627 unsigned off
= 2 + tab
->M
;
1629 if (!var
->is_nonneg
)
1630 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1631 "expecting non-negative variable",
1632 return isl_stat_error
);
1634 if (!temp_var
&& tab
->need_undo
)
1635 if (isl_tab_push_var(tab
, isl_tab_undo_zero
, var
) < 0)
1636 return isl_stat_error
;
1637 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1639 if (isl_int_is_zero(mat
->row
[var
->index
][off
+ j
]))
1641 if (isl_int_is_pos(mat
->row
[var
->index
][off
+ j
]))
1642 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1643 "row cannot have positive coefficients",
1644 return isl_stat_error
);
1645 recheck
= isl_tab_kill_col(tab
, j
);
1647 return isl_stat_error
;
1651 if (!temp_var
&& isl_tab_mark_redundant(tab
, var
->index
) < 0)
1652 return isl_stat_error
;
1653 if (tab_is_manifestly_empty(tab
) && isl_tab_mark_empty(tab
) < 0)
1654 return isl_stat_error
;
1658 /* Add a constraint to the tableau and allocate a row for it.
1659 * Return the index into the constraint array "con".
1661 * This function assumes that at least one more row and at least
1662 * one more element in the constraint array are available in the tableau.
1664 int isl_tab_allocate_con(struct isl_tab
*tab
)
1668 isl_assert(tab
->mat
->ctx
, tab
->n_row
< tab
->mat
->n_row
, return -1);
1669 isl_assert(tab
->mat
->ctx
, tab
->n_con
< tab
->max_con
, return -1);
1672 tab
->con
[r
].index
= tab
->n_row
;
1673 tab
->con
[r
].is_row
= 1;
1674 tab
->con
[r
].is_nonneg
= 0;
1675 tab
->con
[r
].is_zero
= 0;
1676 tab
->con
[r
].is_redundant
= 0;
1677 tab
->con
[r
].frozen
= 0;
1678 tab
->con
[r
].negated
= 0;
1679 tab
->row_var
[tab
->n_row
] = ~r
;
1683 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
1689 /* Move the entries in tab->var up one position, starting at "first",
1690 * creating room for an extra entry at position "first".
1691 * Since some of the entries of tab->row_var and tab->col_var contain
1692 * indices into this array, they have to be updated accordingly.
1694 static int var_insert_entry(struct isl_tab
*tab
, int first
)
1698 if (tab
->n_var
>= tab
->max_var
)
1699 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1700 "not enough room for new variable", return -1);
1701 if (first
> tab
->n_var
)
1702 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1703 "invalid initial position", return -1);
1705 for (i
= tab
->n_var
- 1; i
>= first
; --i
) {
1706 tab
->var
[i
+ 1] = tab
->var
[i
];
1707 if (tab
->var
[i
+ 1].is_row
)
1708 tab
->row_var
[tab
->var
[i
+ 1].index
]++;
1710 tab
->col_var
[tab
->var
[i
+ 1].index
]++;
1718 /* Drop the entry at position "first" in tab->var, moving all
1719 * subsequent entries down.
1720 * Since some of the entries of tab->row_var and tab->col_var contain
1721 * indices into this array, they have to be updated accordingly.
1723 static int var_drop_entry(struct isl_tab
*tab
, int first
)
1727 if (first
>= tab
->n_var
)
1728 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1729 "invalid initial position", return -1);
1733 for (i
= first
; i
< tab
->n_var
; ++i
) {
1734 tab
->var
[i
] = tab
->var
[i
+ 1];
1735 if (tab
->var
[i
+ 1].is_row
)
1736 tab
->row_var
[tab
->var
[i
].index
]--;
1738 tab
->col_var
[tab
->var
[i
].index
]--;
1744 /* Add a variable to the tableau at position "r" and allocate a column for it.
1745 * Return the index into the variable array "var", i.e., "r",
1748 int isl_tab_insert_var(struct isl_tab
*tab
, int r
)
1751 unsigned off
= 2 + tab
->M
;
1753 isl_assert(tab
->mat
->ctx
, tab
->n_col
< tab
->mat
->n_col
, return -1);
1755 if (var_insert_entry(tab
, r
) < 0)
1758 tab
->var
[r
].index
= tab
->n_col
;
1759 tab
->var
[r
].is_row
= 0;
1760 tab
->var
[r
].is_nonneg
= 0;
1761 tab
->var
[r
].is_zero
= 0;
1762 tab
->var
[r
].is_redundant
= 0;
1763 tab
->var
[r
].frozen
= 0;
1764 tab
->var
[r
].negated
= 0;
1765 tab
->col_var
[tab
->n_col
] = r
;
1767 for (i
= 0; i
< tab
->n_row
; ++i
)
1768 isl_int_set_si(tab
->mat
->row
[i
][off
+ tab
->n_col
], 0);
1771 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->var
[r
]) < 0)
1777 /* Add a variable to the tableau and allocate a column for it.
1778 * Return the index into the variable array "var".
1780 int isl_tab_allocate_var(struct isl_tab
*tab
)
1785 return isl_tab_insert_var(tab
, tab
->n_var
);
1788 /* Add a row to the tableau. The row is given as an affine combination
1789 * of the original variables and needs to be expressed in terms of the
1792 * This function assumes that at least one more row and at least
1793 * one more element in the constraint array are available in the tableau.
1795 * We add each term in turn.
1796 * If r = n/d_r is the current sum and we need to add k x, then
1797 * if x is a column variable, we increase the numerator of
1798 * this column by k d_r
1799 * if x = f/d_x is a row variable, then the new representation of r is
1801 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1802 * --- + --- = ------------------- = -------------------
1803 * d_r d_r d_r d_x/g m
1805 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1807 * If tab->M is set, then, internally, each variable x is represented
1808 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1810 int isl_tab_add_row(struct isl_tab
*tab
, isl_int
*line
)
1816 unsigned off
= 2 + tab
->M
;
1818 r
= isl_tab_allocate_con(tab
);
1824 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1825 isl_int_set_si(row
[0], 1);
1826 isl_int_set(row
[1], line
[0]);
1827 isl_seq_clr(row
+ 2, tab
->M
+ tab
->n_col
);
1828 for (i
= 0; i
< tab
->n_var
; ++i
) {
1829 if (tab
->var
[i
].is_zero
)
1831 if (tab
->var
[i
].is_row
) {
1833 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1834 isl_int_swap(a
, row
[0]);
1835 isl_int_divexact(a
, row
[0], a
);
1837 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1838 isl_int_mul(b
, b
, line
[1 + i
]);
1839 isl_seq_combine(row
+ 1, a
, row
+ 1,
1840 b
, tab
->mat
->row
[tab
->var
[i
].index
] + 1,
1841 1 + tab
->M
+ tab
->n_col
);
1843 isl_int_addmul(row
[off
+ tab
->var
[i
].index
],
1844 line
[1 + i
], row
[0]);
1845 if (tab
->M
&& i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
1846 isl_int_submul(row
[2], line
[1 + i
], row
[0]);
1848 isl_seq_normalize(tab
->mat
->ctx
, row
, off
+ tab
->n_col
);
1853 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_unknown
;
1858 static isl_stat
drop_row(struct isl_tab
*tab
, int row
)
1860 isl_assert(tab
->mat
->ctx
, ~tab
->row_var
[row
] == tab
->n_con
- 1,
1861 return isl_stat_error
);
1862 if (row
!= tab
->n_row
- 1)
1863 swap_rows(tab
, row
, tab
->n_row
- 1);
1869 /* Drop the variable in column "col" along with the column.
1870 * The column is removed first because it may need to be moved
1871 * into the last position and this process requires
1872 * the contents of the col_var array in a state
1873 * before the removal of the variable.
1875 static isl_stat
drop_col(struct isl_tab
*tab
, int col
)
1879 var
= tab
->col_var
[col
];
1880 if (col
!= tab
->n_col
- 1)
1881 swap_cols(tab
, col
, tab
->n_col
- 1);
1883 if (var_drop_entry(tab
, var
) < 0)
1884 return isl_stat_error
;
1888 /* Add inequality "ineq" and check if it conflicts with the
1889 * previously added constraints or if it is obviously redundant.
1891 * This function assumes that at least one more row and at least
1892 * one more element in the constraint array are available in the tableau.
1894 isl_stat
isl_tab_add_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1901 return isl_stat_error
;
1903 struct isl_basic_map
*bmap
= tab
->bmap
;
1905 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
,
1906 return isl_stat_error
);
1907 isl_assert(tab
->mat
->ctx
,
1908 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
,
1909 return isl_stat_error
);
1910 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1911 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1912 return isl_stat_error
;
1914 return isl_stat_error
;
1918 isl_int_set_si(cst
, 0);
1919 isl_int_swap(ineq
[0], cst
);
1921 r
= isl_tab_add_row(tab
, ineq
);
1923 isl_int_swap(ineq
[0], cst
);
1927 return isl_stat_error
;
1928 tab
->con
[r
].is_nonneg
= 1;
1929 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1930 return isl_stat_error
;
1931 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1932 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1933 return isl_stat_error
;
1937 sgn
= restore_row(tab
, &tab
->con
[r
]);
1939 return isl_stat_error
;
1941 return isl_tab_mark_empty(tab
);
1942 if (tab
->con
[r
].is_row
&& isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1943 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1944 return isl_stat_error
;
1948 /* Pivot a non-negative variable down until it reaches the value zero
1949 * and then pivot the variable into a column position.
1951 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1952 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1956 unsigned off
= 2 + tab
->M
;
1961 while (isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1962 find_pivot(tab
, var
, NULL
, -1, &row
, &col
);
1963 isl_assert(tab
->mat
->ctx
, row
!= -1, return -1);
1964 if (isl_tab_pivot(tab
, row
, col
) < 0)
1970 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
)
1971 if (!isl_int_is_zero(tab
->mat
->row
[var
->index
][off
+ i
]))
1974 isl_assert(tab
->mat
->ctx
, i
< tab
->n_col
, return -1);
1975 if (isl_tab_pivot(tab
, var
->index
, i
) < 0)
1981 /* We assume Gaussian elimination has been performed on the equalities.
1982 * The equalities can therefore never conflict.
1983 * Adding the equalities is currently only really useful for a later call
1984 * to isl_tab_ineq_type.
1986 * This function assumes that at least one more row and at least
1987 * one more element in the constraint array are available in the tableau.
1989 static struct isl_tab
*add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1996 r
= isl_tab_add_row(tab
, eq
);
2000 r
= tab
->con
[r
].index
;
2001 i
= isl_seq_first_non_zero(tab
->mat
->row
[r
] + 2 + tab
->M
+ tab
->n_dead
,
2002 tab
->n_col
- tab
->n_dead
);
2003 isl_assert(tab
->mat
->ctx
, i
>= 0, goto error
);
2005 if (isl_tab_pivot(tab
, r
, i
) < 0)
2007 if (isl_tab_kill_col(tab
, i
) < 0)
2017 /* Does the sample value of row "row" of "tab" involve the big parameter,
2020 static int row_is_big(struct isl_tab
*tab
, int row
)
2022 return tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]);
2025 static int row_is_manifestly_zero(struct isl_tab
*tab
, int row
)
2027 unsigned off
= 2 + tab
->M
;
2029 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]))
2031 if (row_is_big(tab
, row
))
2033 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
2034 tab
->n_col
- tab
->n_dead
) == -1;
2037 /* Add an equality that is known to be valid for the given tableau.
2039 * This function assumes that at least one more row and at least
2040 * one more element in the constraint array are available in the tableau.
2042 int isl_tab_add_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
2044 struct isl_tab_var
*var
;
2049 r
= isl_tab_add_row(tab
, eq
);
2055 if (row_is_manifestly_zero(tab
, r
)) {
2057 if (isl_tab_mark_redundant(tab
, r
) < 0)
2062 if (isl_int_is_neg(tab
->mat
->row
[r
][1])) {
2063 isl_seq_neg(tab
->mat
->row
[r
] + 1, tab
->mat
->row
[r
] + 1,
2068 if (to_col(tab
, var
) < 0)
2071 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2077 /* Add a zero row to "tab" and return the corresponding index
2078 * in the constraint array.
2080 * This function assumes that at least one more row and at least
2081 * one more element in the constraint array are available in the tableau.
2083 static int add_zero_row(struct isl_tab
*tab
)
2088 r
= isl_tab_allocate_con(tab
);
2092 row
= tab
->mat
->row
[tab
->con
[r
].index
];
2093 isl_seq_clr(row
+ 1, 1 + tab
->M
+ tab
->n_col
);
2094 isl_int_set_si(row
[0], 1);
2099 /* Add equality "eq" and check if it conflicts with the
2100 * previously added constraints or if it is obviously redundant.
2102 * This function assumes that at least one more row and at least
2103 * one more element in the constraint array are available in the tableau.
2104 * If tab->bmap is set, then two rows are needed instead of one.
2106 int isl_tab_add_eq(struct isl_tab
*tab
, isl_int
*eq
)
2108 struct isl_tab_undo
*snap
= NULL
;
2109 struct isl_tab_var
*var
;
2117 isl_assert(tab
->mat
->ctx
, !tab
->M
, return -1);
2120 snap
= isl_tab_snap(tab
);
2124 isl_int_set_si(cst
, 0);
2125 isl_int_swap(eq
[0], cst
);
2127 r
= isl_tab_add_row(tab
, eq
);
2129 isl_int_swap(eq
[0], cst
);
2137 if (row_is_manifestly_zero(tab
, row
)) {
2139 return isl_tab_rollback(tab
, snap
);
2140 return drop_row(tab
, row
);
2144 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2145 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2147 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2148 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2149 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2150 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2154 if (add_zero_row(tab
) < 0)
2158 sgn
= isl_int_sgn(tab
->mat
->row
[row
][1]);
2161 isl_seq_neg(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
2168 sgn
= sign_of_max(tab
, var
);
2172 if (isl_tab_mark_empty(tab
) < 0)
2179 if (to_col(tab
, var
) < 0)
2182 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2188 /* Construct and return an inequality that expresses an upper bound
2190 * In particular, if the div is given by
2194 * then the inequality expresses
2198 static struct isl_vec
*ineq_for_div(struct isl_basic_map
*bmap
, unsigned div
)
2202 struct isl_vec
*ineq
;
2207 total
= isl_basic_map_total_dim(bmap
);
2208 div_pos
= 1 + total
- bmap
->n_div
+ div
;
2210 ineq
= isl_vec_alloc(bmap
->ctx
, 1 + total
);
2214 isl_seq_cpy(ineq
->el
, bmap
->div
[div
] + 1, 1 + total
);
2215 isl_int_neg(ineq
->el
[div_pos
], bmap
->div
[div
][0]);
2219 /* For a div d = floor(f/m), add the constraints
2222 * -(f-(m-1)) + m d >= 0
2224 * Note that the second constraint is the negation of
2228 * If add_ineq is not NULL, then this function is used
2229 * instead of isl_tab_add_ineq to effectively add the inequalities.
2231 * This function assumes that at least two more rows and at least
2232 * two more elements in the constraint array are available in the tableau.
2234 static isl_stat
add_div_constraints(struct isl_tab
*tab
, unsigned div
,
2235 isl_stat (*add_ineq
)(void *user
, isl_int
*), void *user
)
2239 struct isl_vec
*ineq
;
2241 total
= isl_basic_map_total_dim(tab
->bmap
);
2242 div_pos
= 1 + total
- tab
->bmap
->n_div
+ div
;
2244 ineq
= ineq_for_div(tab
->bmap
, div
);
2249 if (add_ineq(user
, ineq
->el
) < 0)
2252 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2256 isl_seq_neg(ineq
->el
, tab
->bmap
->div
[div
] + 1, 1 + total
);
2257 isl_int_set(ineq
->el
[div_pos
], tab
->bmap
->div
[div
][0]);
2258 isl_int_add(ineq
->el
[0], ineq
->el
[0], ineq
->el
[div_pos
]);
2259 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
2262 if (add_ineq(user
, ineq
->el
) < 0)
2265 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2277 /* Check whether the div described by "div" is obviously non-negative.
2278 * If we are using a big parameter, then we will encode the div
2279 * as div' = M + div, which is always non-negative.
2280 * Otherwise, we check whether div is a non-negative affine combination
2281 * of non-negative variables.
2283 static int div_is_nonneg(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2290 if (isl_int_is_neg(div
->el
[1]))
2293 for (i
= 0; i
< tab
->n_var
; ++i
) {
2294 if (isl_int_is_neg(div
->el
[2 + i
]))
2296 if (isl_int_is_zero(div
->el
[2 + i
]))
2298 if (!tab
->var
[i
].is_nonneg
)
2305 /* Insert an extra div, prescribed by "div", to the tableau and
2306 * the associated bmap (which is assumed to be non-NULL).
2307 * The extra integer division is inserted at (tableau) position "pos".
2308 * Return "pos" or -1 if an error occurred.
2310 * If add_ineq is not NULL, then this function is used instead
2311 * of isl_tab_add_ineq to add the div constraints.
2312 * This complication is needed because the code in isl_tab_pip
2313 * wants to perform some extra processing when an inequality
2314 * is added to the tableau.
2316 int isl_tab_insert_div(struct isl_tab
*tab
, int pos
, __isl_keep isl_vec
*div
,
2317 isl_stat (*add_ineq
)(void *user
, isl_int
*), void *user
)
2326 if (div
->size
!= 1 + 1 + tab
->n_var
)
2327 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2328 "unexpected size", return -1);
2330 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
2331 n_div
= isl_basic_map_dim(tab
->bmap
, isl_dim_div
);
2332 o_div
= tab
->n_var
- n_div
;
2333 if (pos
< o_div
|| pos
> tab
->n_var
)
2334 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2335 "invalid position", return -1);
2337 nonneg
= div_is_nonneg(tab
, div
);
2339 if (isl_tab_extend_cons(tab
, 3) < 0)
2341 if (isl_tab_extend_vars(tab
, 1) < 0)
2343 r
= isl_tab_insert_var(tab
, pos
);
2348 tab
->var
[r
].is_nonneg
= 1;
2350 tab
->bmap
= isl_basic_map_insert_div(tab
->bmap
, pos
- o_div
, div
);
2353 if (isl_tab_push_var(tab
, isl_tab_undo_bmap_div
, &tab
->var
[r
]) < 0)
2356 if (add_div_constraints(tab
, pos
- o_div
, add_ineq
, user
) < 0)
2362 /* Add an extra div, prescribed by "div", to the tableau and
2363 * the associated bmap (which is assumed to be non-NULL).
2365 int isl_tab_add_div(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2369 return isl_tab_insert_div(tab
, tab
->n_var
, div
, NULL
, NULL
);
2372 /* If "track" is set, then we want to keep track of all constraints in tab
2373 * in its bmap field. This field is initialized from a copy of "bmap",
2374 * so we need to make sure that all constraints in "bmap" also appear
2375 * in the constructed tab.
2377 __isl_give
struct isl_tab
*isl_tab_from_basic_map(
2378 __isl_keep isl_basic_map
*bmap
, int track
)
2381 struct isl_tab
*tab
;
2385 tab
= isl_tab_alloc(bmap
->ctx
,
2386 isl_basic_map_total_dim(bmap
) + bmap
->n_ineq
+ 1,
2387 isl_basic_map_total_dim(bmap
), 0);
2390 tab
->preserve
= track
;
2391 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2392 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2393 if (isl_tab_mark_empty(tab
) < 0)
2397 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2398 tab
= add_eq(tab
, bmap
->eq
[i
]);
2402 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2403 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
2409 if (track
&& isl_tab_track_bmap(tab
, isl_basic_map_copy(bmap
)) < 0)
2417 __isl_give
struct isl_tab
*isl_tab_from_basic_set(
2418 __isl_keep isl_basic_set
*bset
, int track
)
2420 return isl_tab_from_basic_map(bset
, track
);
2423 /* Construct a tableau corresponding to the recession cone of "bset".
2425 struct isl_tab
*isl_tab_from_recession_cone(__isl_keep isl_basic_set
*bset
,
2430 struct isl_tab
*tab
;
2431 unsigned offset
= 0;
2436 offset
= isl_basic_set_dim(bset
, isl_dim_param
);
2437 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_eq
+ bset
->n_ineq
,
2438 isl_basic_set_total_dim(bset
) - offset
, 0);
2441 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
2445 isl_int_set_si(cst
, 0);
2446 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2447 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2449 if (isl_tab_add_eq(tab
, bset
->eq
[i
] + offset
) < 0)
2452 tab
= add_eq(tab
, bset
->eq
[i
]);
2453 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2457 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2459 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2460 r
= isl_tab_add_row(tab
, bset
->ineq
[i
] + offset
);
2461 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2464 tab
->con
[r
].is_nonneg
= 1;
2465 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2477 /* Assuming "tab" is the tableau of a cone, check if the cone is
2478 * bounded, i.e., if it is empty or only contains the origin.
2480 isl_bool
isl_tab_cone_is_bounded(struct isl_tab
*tab
)
2485 return isl_bool_error
;
2487 return isl_bool_true
;
2488 if (tab
->n_dead
== tab
->n_col
)
2489 return isl_bool_true
;
2492 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2493 struct isl_tab_var
*var
;
2495 var
= isl_tab_var_from_row(tab
, i
);
2496 if (!var
->is_nonneg
)
2498 sgn
= sign_of_max(tab
, var
);
2500 return isl_bool_error
;
2502 return isl_bool_false
;
2503 if (close_row(tab
, var
, 0) < 0)
2504 return isl_bool_error
;
2507 if (tab
->n_dead
== tab
->n_col
)
2508 return isl_bool_true
;
2509 if (i
== tab
->n_row
)
2510 return isl_bool_false
;
2514 int isl_tab_sample_is_integer(struct isl_tab
*tab
)
2521 for (i
= 0; i
< tab
->n_var
; ++i
) {
2523 if (!tab
->var
[i
].is_row
)
2525 row
= tab
->var
[i
].index
;
2526 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
2527 tab
->mat
->row
[row
][0]))
2533 static struct isl_vec
*extract_integer_sample(struct isl_tab
*tab
)
2536 struct isl_vec
*vec
;
2538 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2542 isl_int_set_si(vec
->block
.data
[0], 1);
2543 for (i
= 0; i
< tab
->n_var
; ++i
) {
2544 if (!tab
->var
[i
].is_row
)
2545 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2547 int row
= tab
->var
[i
].index
;
2548 isl_int_divexact(vec
->block
.data
[1 + i
],
2549 tab
->mat
->row
[row
][1], tab
->mat
->row
[row
][0]);
2556 struct isl_vec
*isl_tab_get_sample_value(struct isl_tab
*tab
)
2559 struct isl_vec
*vec
;
2565 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2571 isl_int_set_si(vec
->block
.data
[0], 1);
2572 for (i
= 0; i
< tab
->n_var
; ++i
) {
2574 if (!tab
->var
[i
].is_row
) {
2575 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2578 row
= tab
->var
[i
].index
;
2579 isl_int_gcd(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2580 isl_int_divexact(m
, tab
->mat
->row
[row
][0], m
);
2581 isl_seq_scale(vec
->block
.data
, vec
->block
.data
, m
, 1 + i
);
2582 isl_int_divexact(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2583 isl_int_mul(vec
->block
.data
[1 + i
], m
, tab
->mat
->row
[row
][1]);
2585 vec
= isl_vec_normalize(vec
);
2591 /* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
2592 * or down (if sgn < 0) to the nearest integer in *v.
2594 static void get_rounded_sample_value(struct isl_tab
*tab
,
2595 struct isl_tab_var
*var
, int sgn
, isl_int
*v
)
2598 isl_int_set_si(*v
, 0);
2600 isl_int_cdiv_q(*v
, tab
->mat
->row
[var
->index
][1],
2601 tab
->mat
->row
[var
->index
][0]);
2603 isl_int_fdiv_q(*v
, tab
->mat
->row
[var
->index
][1],
2604 tab
->mat
->row
[var
->index
][0]);
2607 /* Update "bmap" based on the results of the tableau "tab".
2608 * In particular, implicit equalities are made explicit, redundant constraints
2609 * are removed and if the sample value happens to be integer, it is stored
2610 * in "bmap" (unless "bmap" already had an integer sample).
2612 * The tableau is assumed to have been created from "bmap" using
2613 * isl_tab_from_basic_map.
2615 struct isl_basic_map
*isl_basic_map_update_from_tab(struct isl_basic_map
*bmap
,
2616 struct isl_tab
*tab
)
2628 bmap
= isl_basic_map_set_to_empty(bmap
);
2630 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2631 if (isl_tab_is_equality(tab
, n_eq
+ i
))
2632 isl_basic_map_inequality_to_equality(bmap
, i
);
2633 else if (isl_tab_is_redundant(tab
, n_eq
+ i
))
2634 isl_basic_map_drop_inequality(bmap
, i
);
2636 if (bmap
->n_eq
!= n_eq
)
2637 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2638 if (!tab
->rational
&&
2639 bmap
&& !bmap
->sample
&& isl_tab_sample_is_integer(tab
))
2640 bmap
->sample
= extract_integer_sample(tab
);
2644 struct isl_basic_set
*isl_basic_set_update_from_tab(struct isl_basic_set
*bset
,
2645 struct isl_tab
*tab
)
2647 return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset
),
2651 /* Drop the last constraint added to "tab" in position "r".
2652 * The constraint is expected to have remained in a row.
2654 static isl_stat
drop_last_con_in_row(struct isl_tab
*tab
, int r
)
2656 if (!tab
->con
[r
].is_row
)
2657 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
2658 "row unexpectedly moved to column",
2659 return isl_stat_error
);
2660 if (r
+ 1 != tab
->n_con
)
2661 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
2662 "additional constraints added", return isl_stat_error
);
2663 if (drop_row(tab
, tab
->con
[r
].index
) < 0)
2664 return isl_stat_error
;
2669 /* Given a non-negative variable "var", temporarily add a new non-negative
2670 * variable that is the opposite of "var", ensuring that "var" can only attain
2671 * the value zero. The new variable is removed again before this function
2672 * returns. However, the effect of forcing "var" to be zero remains.
2673 * If var = n/d is a row variable, then the new variable = -n/d.
2674 * If var is a column variables, then the new variable = -var.
2675 * If the new variable cannot attain non-negative values, then
2676 * the resulting tableau is empty.
2677 * Otherwise, we know the value will be zero and we close the row.
2679 static isl_stat
cut_to_hyperplane(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2684 unsigned off
= 2 + tab
->M
;
2688 if (var
->is_redundant
|| !var
->is_nonneg
)
2689 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2690 "expecting non-redundant non-negative variable",
2691 return isl_stat_error
);
2693 if (isl_tab_extend_cons(tab
, 1) < 0)
2694 return isl_stat_error
;
2697 tab
->con
[r
].index
= tab
->n_row
;
2698 tab
->con
[r
].is_row
= 1;
2699 tab
->con
[r
].is_nonneg
= 0;
2700 tab
->con
[r
].is_zero
= 0;
2701 tab
->con
[r
].is_redundant
= 0;
2702 tab
->con
[r
].frozen
= 0;
2703 tab
->con
[r
].negated
= 0;
2704 tab
->row_var
[tab
->n_row
] = ~r
;
2705 row
= tab
->mat
->row
[tab
->n_row
];
2708 isl_int_set(row
[0], tab
->mat
->row
[var
->index
][0]);
2709 isl_seq_neg(row
+ 1,
2710 tab
->mat
->row
[var
->index
] + 1, 1 + tab
->n_col
);
2712 isl_int_set_si(row
[0], 1);
2713 isl_seq_clr(row
+ 1, 1 + tab
->n_col
);
2714 isl_int_set_si(row
[off
+ var
->index
], -1);
2720 sgn
= sign_of_max(tab
, &tab
->con
[r
]);
2722 return isl_stat_error
;
2724 if (drop_last_con_in_row(tab
, r
) < 0)
2725 return isl_stat_error
;
2726 if (isl_tab_mark_empty(tab
) < 0)
2727 return isl_stat_error
;
2730 tab
->con
[r
].is_nonneg
= 1;
2732 if (close_row(tab
, &tab
->con
[r
], 1) < 0)
2733 return isl_stat_error
;
2734 if (drop_last_con_in_row(tab
, r
) < 0)
2735 return isl_stat_error
;
2740 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2741 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2742 * by r' = r + 1 >= 0.
2743 * If r is a row variable, we simply increase the constant term by one
2744 * (taking into account the denominator).
2745 * If r is a column variable, then we need to modify each row that
2746 * refers to r = r' - 1 by substituting this equality, effectively
2747 * subtracting the coefficient of the column from the constant.
2748 * We should only do this if the minimum is manifestly unbounded,
2749 * however. Otherwise, we may end up with negative sample values
2750 * for non-negative variables.
2751 * So, if r is a column variable with a minimum that is not
2752 * manifestly unbounded, then we need to move it to a row.
2753 * However, the sample value of this row may be negative,
2754 * even after the relaxation, so we need to restore it.
2755 * We therefore prefer to pivot a column up to a row, if possible.
2757 int isl_tab_relax(struct isl_tab
*tab
, int con
)
2759 struct isl_tab_var
*var
;
2764 var
= &tab
->con
[con
];
2766 if (var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_redundant
))
2767 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2768 "cannot relax redundant constraint", return -1);
2769 if (!var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_dead
))
2770 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2771 "cannot relax dead constraint", return -1);
2773 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
2774 if (to_row(tab
, var
, 1) < 0)
2776 if (!var
->is_row
&& !min_is_manifestly_unbounded(tab
, var
))
2777 if (to_row(tab
, var
, -1) < 0)
2781 isl_int_add(tab
->mat
->row
[var
->index
][1],
2782 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
2783 if (restore_row(tab
, var
) < 0)
2787 unsigned off
= 2 + tab
->M
;
2789 for (i
= 0; i
< tab
->n_row
; ++i
) {
2790 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2792 isl_int_sub(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
2793 tab
->mat
->row
[i
][off
+ var
->index
]);
2798 if (isl_tab_push_var(tab
, isl_tab_undo_relax
, var
) < 0)
2804 /* Replace the variable v at position "pos" in the tableau "tab"
2805 * by v' = v + shift.
2807 * If the variable is in a column, then we first check if we can
2808 * simply plug in v = v' - shift. The effect on a row with
2809 * coefficient f/d for variable v is that the constant term c/d
2810 * is replaced by (c - f * shift)/d. If shift is positive and
2811 * f is negative for each row that needs to remain non-negative,
2812 * then this is clearly safe. In other words, if the minimum of v
2813 * is manifestly unbounded, then we can keep v in a column position.
2814 * Otherwise, we can pivot it down to a row.
2815 * Similarly, if shift is negative, we need to check if the maximum
2816 * of is manifestly unbounded.
2818 * If the variable is in a row (from the start or after pivoting),
2819 * then the constant term c/d is replaced by (c + d * shift)/d.
2821 int isl_tab_shift_var(struct isl_tab
*tab
, int pos
, isl_int shift
)
2823 struct isl_tab_var
*var
;
2827 if (isl_int_is_zero(shift
))
2830 var
= &tab
->var
[pos
];
2832 if (isl_int_is_neg(shift
)) {
2833 if (!max_is_manifestly_unbounded(tab
, var
))
2834 if (to_row(tab
, var
, 1) < 0)
2837 if (!min_is_manifestly_unbounded(tab
, var
))
2838 if (to_row(tab
, var
, -1) < 0)
2844 isl_int_addmul(tab
->mat
->row
[var
->index
][1],
2845 shift
, tab
->mat
->row
[var
->index
][0]);
2848 unsigned off
= 2 + tab
->M
;
2850 for (i
= 0; i
< tab
->n_row
; ++i
) {
2851 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2853 isl_int_submul(tab
->mat
->row
[i
][1],
2854 shift
, tab
->mat
->row
[i
][off
+ var
->index
]);
2862 /* Remove the sign constraint from constraint "con".
2864 * If the constraint variable was originally marked non-negative,
2865 * then we make sure we mark it non-negative again during rollback.
2867 int isl_tab_unrestrict(struct isl_tab
*tab
, int con
)
2869 struct isl_tab_var
*var
;
2874 var
= &tab
->con
[con
];
2875 if (!var
->is_nonneg
)
2879 if (isl_tab_push_var(tab
, isl_tab_undo_unrestrict
, var
) < 0)
2885 int isl_tab_select_facet(struct isl_tab
*tab
, int con
)
2890 return cut_to_hyperplane(tab
, &tab
->con
[con
]);
2893 static int may_be_equality(struct isl_tab
*tab
, int row
)
2895 return tab
->rational
? isl_int_is_zero(tab
->mat
->row
[row
][1])
2896 : isl_int_lt(tab
->mat
->row
[row
][1],
2897 tab
->mat
->row
[row
][0]);
2900 /* Return an isl_tab_var that has been marked or NULL if no such
2901 * variable can be found.
2902 * The marked field has only been set for variables that
2903 * appear in non-redundant rows or non-dead columns.
2905 * Pick the last constraint variable that is marked and
2906 * that appears in either a non-redundant row or a non-dead columns.
2907 * Since the returned variable is tested for being a redundant constraint or
2908 * an implicit equality, there is no need to return any tab variable that
2909 * corresponds to a variable.
2911 static struct isl_tab_var
*select_marked(struct isl_tab
*tab
)
2914 struct isl_tab_var
*var
;
2916 for (i
= tab
->n_con
- 1; i
>= 0; --i
) {
2920 if (var
->is_row
&& var
->index
< tab
->n_redundant
)
2922 if (!var
->is_row
&& var
->index
< tab
->n_dead
)
2931 /* Check for (near) equalities among the constraints.
2932 * A constraint is an equality if it is non-negative and if
2933 * its maximal value is either
2934 * - zero (in case of rational tableaus), or
2935 * - strictly less than 1 (in case of integer tableaus)
2937 * We first mark all non-redundant and non-dead variables that
2938 * are not frozen and not obviously not an equality.
2939 * Then we iterate over all marked variables if they can attain
2940 * any values larger than zero or at least one.
2941 * If the maximal value is zero, we mark any column variables
2942 * that appear in the row as being zero and mark the row as being redundant.
2943 * Otherwise, if the maximal value is strictly less than one (and the
2944 * tableau is integer), then we restrict the value to being zero
2945 * by adding an opposite non-negative variable.
2946 * The order in which the variables are considered is not important.
2948 int isl_tab_detect_implicit_equalities(struct isl_tab
*tab
)
2957 if (tab
->n_dead
== tab
->n_col
)
2961 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2962 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2963 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2964 may_be_equality(tab
, i
);
2968 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2969 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2970 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2975 struct isl_tab_var
*var
;
2977 var
= select_marked(tab
);
2982 sgn
= sign_of_max(tab
, var
);
2986 if (close_row(tab
, var
, 0) < 0)
2988 } else if (!tab
->rational
&& !at_least_one(tab
, var
)) {
2989 if (cut_to_hyperplane(tab
, var
) < 0)
2991 return isl_tab_detect_implicit_equalities(tab
);
2993 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2994 var
= isl_tab_var_from_row(tab
, i
);
2997 if (may_be_equality(tab
, i
))
3007 /* Update the element of row_var or col_var that corresponds to
3008 * constraint tab->con[i] to a move from position "old" to position "i".
3010 static int update_con_after_move(struct isl_tab
*tab
, int i
, int old
)
3015 index
= tab
->con
[i
].index
;
3018 p
= tab
->con
[i
].is_row
? tab
->row_var
: tab
->col_var
;
3019 if (p
[index
] != ~old
)
3020 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3021 "broken internal state", return -1);
3027 /* Rotate the "n" constraints starting at "first" to the right,
3028 * putting the last constraint in the position of the first constraint.
3030 static int rotate_constraints(struct isl_tab
*tab
, int first
, int n
)
3033 struct isl_tab_var var
;
3038 last
= first
+ n
- 1;
3039 var
= tab
->con
[last
];
3040 for (i
= last
; i
> first
; --i
) {
3041 tab
->con
[i
] = tab
->con
[i
- 1];
3042 if (update_con_after_move(tab
, i
, i
- 1) < 0)
3045 tab
->con
[first
] = var
;
3046 if (update_con_after_move(tab
, first
, last
) < 0)
3052 /* Make the equalities that are implicit in "bmap" but that have been
3053 * detected in the corresponding "tab" explicit in "bmap" and update
3054 * "tab" to reflect the new order of the constraints.
3056 * In particular, if inequality i is an implicit equality then
3057 * isl_basic_map_inequality_to_equality will move the inequality
3058 * in front of the other equality and it will move the last inequality
3059 * in the position of inequality i.
3060 * In the tableau, the inequalities of "bmap" are stored after the equalities
3061 * and so the original order
3063 * E E E E E A A A I B B B B L
3067 * I E E E E E A A A L B B B B
3069 * where I is the implicit equality, the E are equalities,
3070 * the A inequalities before I, the B inequalities after I and
3071 * L the last inequality.
3072 * We therefore need to rotate to the right two sets of constraints,
3073 * those up to and including I and those after I.
3075 * If "tab" contains any constraints that are not in "bmap" then they
3076 * appear after those in "bmap" and they should be left untouched.
3078 * Note that this function leaves "bmap" in a temporary state
3079 * as it does not call isl_basic_map_gauss. Calling this function
3080 * is the responsibility of the caller.
3082 __isl_give isl_basic_map
*isl_tab_make_equalities_explicit(struct isl_tab
*tab
,
3083 __isl_take isl_basic_map
*bmap
)
3088 return isl_basic_map_free(bmap
);
3092 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
3093 if (!isl_tab_is_equality(tab
, bmap
->n_eq
+ i
))
3095 isl_basic_map_inequality_to_equality(bmap
, i
);
3096 if (rotate_constraints(tab
, 0, tab
->n_eq
+ i
+ 1) < 0)
3097 return isl_basic_map_free(bmap
);
3098 if (rotate_constraints(tab
, tab
->n_eq
+ i
+ 1,
3099 bmap
->n_ineq
- i
) < 0)
3100 return isl_basic_map_free(bmap
);
3107 static int con_is_redundant(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3111 if (tab
->rational
) {
3112 int sgn
= sign_of_min(tab
, var
);
3117 int irred
= isl_tab_min_at_most_neg_one(tab
, var
);
3124 /* Check for (near) redundant constraints.
3125 * A constraint is redundant if it is non-negative and if
3126 * its minimal value (temporarily ignoring the non-negativity) is either
3127 * - zero (in case of rational tableaus), or
3128 * - strictly larger than -1 (in case of integer tableaus)
3130 * We first mark all non-redundant and non-dead variables that
3131 * are not frozen and not obviously negatively unbounded.
3132 * Then we iterate over all marked variables if they can attain
3133 * any values smaller than zero or at most negative one.
3134 * If not, we mark the row as being redundant (assuming it hasn't
3135 * been detected as being obviously redundant in the mean time).
3137 int isl_tab_detect_redundant(struct isl_tab
*tab
)
3146 if (tab
->n_redundant
== tab
->n_row
)
3150 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
3151 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
3152 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
3156 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3157 struct isl_tab_var
*var
= var_from_col(tab
, i
);
3158 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
3159 !min_is_manifestly_unbounded(tab
, var
);
3164 struct isl_tab_var
*var
;
3166 var
= select_marked(tab
);
3171 red
= con_is_redundant(tab
, var
);
3174 if (red
&& !var
->is_redundant
)
3175 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
3177 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3178 var
= var_from_col(tab
, i
);
3181 if (!min_is_manifestly_unbounded(tab
, var
))
3191 int isl_tab_is_equality(struct isl_tab
*tab
, int con
)
3198 if (tab
->con
[con
].is_zero
)
3200 if (tab
->con
[con
].is_redundant
)
3202 if (!tab
->con
[con
].is_row
)
3203 return tab
->con
[con
].index
< tab
->n_dead
;
3205 row
= tab
->con
[con
].index
;
3208 return isl_int_is_zero(tab
->mat
->row
[row
][1]) &&
3209 !row_is_big(tab
, row
) &&
3210 isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3211 tab
->n_col
- tab
->n_dead
) == -1;
3214 /* Return the minimal value of the affine expression "f" with denominator
3215 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3216 * the expression cannot attain arbitrarily small values.
3217 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3218 * The return value reflects the nature of the result (empty, unbounded,
3219 * minimal value returned in *opt).
3221 * This function assumes that at least one more row and at least
3222 * one more element in the constraint array are available in the tableau.
3224 enum isl_lp_result
isl_tab_min(struct isl_tab
*tab
,
3225 isl_int
*f
, isl_int denom
, isl_int
*opt
, isl_int
*opt_denom
,
3229 enum isl_lp_result res
= isl_lp_ok
;
3230 struct isl_tab_var
*var
;
3231 struct isl_tab_undo
*snap
;
3234 return isl_lp_error
;
3237 return isl_lp_empty
;
3239 snap
= isl_tab_snap(tab
);
3240 r
= isl_tab_add_row(tab
, f
);
3242 return isl_lp_error
;
3246 find_pivot(tab
, var
, var
, -1, &row
, &col
);
3247 if (row
== var
->index
) {
3248 res
= isl_lp_unbounded
;
3253 if (isl_tab_pivot(tab
, row
, col
) < 0)
3254 return isl_lp_error
;
3256 isl_int_mul(tab
->mat
->row
[var
->index
][0],
3257 tab
->mat
->row
[var
->index
][0], denom
);
3258 if (ISL_FL_ISSET(flags
, ISL_TAB_SAVE_DUAL
)) {
3261 isl_vec_free(tab
->dual
);
3262 tab
->dual
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_con
);
3264 return isl_lp_error
;
3265 isl_int_set(tab
->dual
->el
[0], tab
->mat
->row
[var
->index
][0]);
3266 for (i
= 0; i
< tab
->n_con
; ++i
) {
3268 if (tab
->con
[i
].is_row
) {
3269 isl_int_set_si(tab
->dual
->el
[1 + i
], 0);
3272 pos
= 2 + tab
->M
+ tab
->con
[i
].index
;
3273 if (tab
->con
[i
].negated
)
3274 isl_int_neg(tab
->dual
->el
[1 + i
],
3275 tab
->mat
->row
[var
->index
][pos
]);
3277 isl_int_set(tab
->dual
->el
[1 + i
],
3278 tab
->mat
->row
[var
->index
][pos
]);
3281 if (opt
&& res
== isl_lp_ok
) {
3283 isl_int_set(*opt
, tab
->mat
->row
[var
->index
][1]);
3284 isl_int_set(*opt_denom
, tab
->mat
->row
[var
->index
][0]);
3286 get_rounded_sample_value(tab
, var
, 1, opt
);
3288 if (isl_tab_rollback(tab
, snap
) < 0)
3289 return isl_lp_error
;
3293 /* Is the constraint at position "con" marked as being redundant?
3294 * If it is marked as representing an equality, then it is not
3295 * considered to be redundant.
3296 * Note that isl_tab_mark_redundant marks both the isl_tab_var as
3297 * redundant and moves the corresponding row into the first
3298 * tab->n_redundant positions (or removes the row, assigning it index -1),
3299 * so the final test is actually redundant itself.
3301 int isl_tab_is_redundant(struct isl_tab
*tab
, int con
)
3305 if (con
< 0 || con
>= tab
->n_con
)
3306 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3307 "position out of bounds", return -1);
3308 if (tab
->con
[con
].is_zero
)
3310 if (tab
->con
[con
].is_redundant
)
3312 return tab
->con
[con
].is_row
&& tab
->con
[con
].index
< tab
->n_redundant
;
3315 /* Is variable "var" of "tab" fixed to a constant value by its row
3317 * If so and if "value" is not NULL, then store this constant value
3320 * That is, is it a row variable that only has non-zero coefficients
3323 static isl_bool
is_constant(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3326 unsigned off
= 2 + tab
->M
;
3327 isl_mat
*mat
= tab
->mat
;
3333 return isl_bool_false
;
3335 if (row_is_big(tab
, row
))
3336 return isl_bool_false
;
3337 n
= tab
->n_col
- tab
->n_dead
;
3338 pos
= isl_seq_first_non_zero(mat
->row
[row
] + off
+ tab
->n_dead
, n
);
3340 return isl_bool_false
;
3342 isl_int_divexact(*value
, mat
->row
[row
][1], mat
->row
[row
][0]);
3343 return isl_bool_true
;
3346 /* Has the variable "var' of "tab" reached a value that is greater than
3347 * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
3348 * "tmp" has been initialized by the caller and can be used
3349 * to perform local computations.
3351 * If the sample value involves the big parameter, then any value
3353 * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
3354 * or n/d <= t, i.e., n <= d * t (if sgn < 0).
3356 static int reached(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sgn
,
3357 isl_int target
, isl_int
*tmp
)
3359 if (row_is_big(tab
, var
->index
))
3361 isl_int_mul(*tmp
, tab
->mat
->row
[var
->index
][0], target
);
3363 return isl_int_ge(tab
->mat
->row
[var
->index
][1], *tmp
);
3365 return isl_int_le(tab
->mat
->row
[var
->index
][1], *tmp
);
3368 /* Can variable "var" of "tab" attain the value "target" by
3369 * pivoting up (if sgn > 0) or down (if sgn < 0)?
3370 * If not, then pivot up [down] to the greatest [smallest]
3372 * "tmp" has been initialized by the caller and can be used
3373 * to perform local computations.
3375 * If the variable is manifestly unbounded in the desired direction,
3376 * then it can attain any value.
3377 * Otherwise, it can be moved to a row.
3378 * Continue pivoting until the target is reached.
3379 * If no more pivoting can be performed, the maximal [minimal]
3380 * rational value has been reached and the target cannot be reached.
3381 * If the variable would be pivoted into a manifestly unbounded column,
3382 * then the target can be reached.
3384 static isl_bool
var_reaches(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3385 int sgn
, isl_int target
, isl_int
*tmp
)
3389 if (sgn
< 0 && min_is_manifestly_unbounded(tab
, var
))
3390 return isl_bool_true
;
3391 if (sgn
> 0 && max_is_manifestly_unbounded(tab
, var
))
3392 return isl_bool_true
;
3393 if (to_row(tab
, var
, sgn
) < 0)
3394 return isl_bool_error
;
3395 while (!reached(tab
, var
, sgn
, target
, tmp
)) {
3396 find_pivot(tab
, var
, var
, sgn
, &row
, &col
);
3398 return isl_bool_false
;
3399 if (row
== var
->index
)
3400 return isl_bool_true
;
3401 if (isl_tab_pivot(tab
, row
, col
) < 0)
3402 return isl_bool_error
;
3405 return isl_bool_true
;
3408 /* Check if variable "var" of "tab" can only attain a single (integer)
3409 * value, and, if so, add an equality constraint to fix the variable
3410 * to this single value and store the result in "target".
3411 * "target" and "tmp" have been initialized by the caller.
3413 * Given the current sample value, round it down and check
3414 * whether it is possible to attain a strictly smaller integer value.
3415 * If so, the variable is not restricted to a single integer value.
3416 * Otherwise, the search stops at the smallest rational value.
3417 * Round up this value and check whether it is possible to attain
3418 * a strictly greater integer value.
3419 * If so, the variable is not restricted to a single integer value.
3420 * Otherwise, the search stops at the greatest rational value.
3421 * If rounding down this value yields a value that is different
3422 * from rounding up the smallest rational value, then the variable
3423 * cannot attain any integer value. Mark the tableau empty.
3424 * Otherwise, add an equality constraint that fixes the variable
3425 * to the single integer value found.
3427 static isl_bool
detect_constant_with_tmp(struct isl_tab
*tab
,
3428 struct isl_tab_var
*var
, isl_int
*target
, isl_int
*tmp
)
3435 get_rounded_sample_value(tab
, var
, -1, target
);
3436 isl_int_sub_ui(*target
, *target
, 1);
3437 reached
= var_reaches(tab
, var
, -1, *target
, tmp
);
3438 if (reached
< 0 || reached
)
3439 return isl_bool_not(reached
);
3440 get_rounded_sample_value(tab
, var
, 1, target
);
3441 isl_int_add_ui(*target
, *target
, 1);
3442 reached
= var_reaches(tab
, var
, 1, *target
, tmp
);
3443 if (reached
< 0 || reached
)
3444 return isl_bool_not(reached
);
3445 get_rounded_sample_value(tab
, var
, -1, tmp
);
3446 isl_int_sub_ui(*target
, *target
, 1);
3447 if (isl_int_ne(*target
, *tmp
)) {
3448 if (isl_tab_mark_empty(tab
) < 0)
3449 return isl_bool_error
;
3450 return isl_bool_false
;
3453 if (isl_tab_extend_cons(tab
, 1) < 0)
3454 return isl_bool_error
;
3455 eq
= isl_vec_alloc(isl_tab_get_ctx(tab
), 1 + tab
->n_var
);
3457 return isl_bool_error
;
3458 pos
= var
- tab
->var
;
3459 isl_seq_clr(eq
->el
+ 1, tab
->n_var
);
3460 isl_int_set_si(eq
->el
[1 + pos
], -1);
3461 isl_int_set(eq
->el
[0], *target
);
3462 r
= isl_tab_add_eq(tab
, eq
->el
);
3465 return r
< 0 ? isl_bool_error
: isl_bool_true
;
3468 /* Check if variable "var" of "tab" can only attain a single (integer)
3469 * value, and, if so, add an equality constraint to fix the variable
3470 * to this single value and store the result in "value" (if "value"
3473 * If the current sample value involves the big parameter,
3474 * then the variable cannot have a fixed integer value.
3475 * If the variable is already fixed to a single value by its row, then
3476 * there is no need to add another equality constraint.
3478 * Otherwise, allocate some temporary variables and continue
3479 * with detect_constant_with_tmp.
3481 static isl_bool
get_constant(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3484 isl_int target
, tmp
;
3487 if (var
->is_row
&& row_is_big(tab
, var
->index
))
3488 return isl_bool_false
;
3489 is_cst
= is_constant(tab
, var
, value
);
3490 if (is_cst
< 0 || is_cst
)
3494 isl_int_init(target
);
3497 is_cst
= detect_constant_with_tmp(tab
, var
,
3498 value
? value
: &target
, &tmp
);
3502 isl_int_clear(target
);
3507 /* Check if variable "var" of "tab" can only attain a single (integer)
3508 * value, and, if so, add an equality constraint to fix the variable
3509 * to this single value and store the result in "value" (if "value"
3512 * For rational tableaus, nothing needs to be done.
3514 isl_bool
isl_tab_is_constant(struct isl_tab
*tab
, int var
, isl_int
*value
)
3517 return isl_bool_error
;
3518 if (var
< 0 || var
>= tab
->n_var
)
3519 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3520 "position out of bounds", return isl_bool_error
);
3522 return isl_bool_false
;
3524 return get_constant(tab
, &tab
->var
[var
], value
);
3527 /* Check if any of the variables of "tab" can only attain a single (integer)
3528 * value, and, if so, add equality constraints to fix those variables
3529 * to these single values.
3531 * For rational tableaus, nothing needs to be done.
3533 isl_stat
isl_tab_detect_constants(struct isl_tab
*tab
)
3538 return isl_stat_error
;
3542 for (i
= 0; i
< tab
->n_var
; ++i
) {
3543 if (get_constant(tab
, &tab
->var
[i
], NULL
) < 0)
3544 return isl_stat_error
;
3550 /* Take a snapshot of the tableau that can be restored by a call to
3553 struct isl_tab_undo
*isl_tab_snap(struct isl_tab
*tab
)
3561 /* Does "tab" need to keep track of undo information?
3562 * That is, was a snapshot taken that may need to be restored?
3564 isl_bool
isl_tab_need_undo(struct isl_tab
*tab
)
3567 return isl_bool_error
;
3569 return tab
->need_undo
;
3572 /* Remove all tracking of undo information from "tab", invalidating
3573 * any snapshots that may have been taken of the tableau.
3574 * Since all snapshots have been invalidated, there is also
3575 * no need to start keeping track of undo information again.
3577 void isl_tab_clear_undo(struct isl_tab
*tab
)
3586 /* Undo the operation performed by isl_tab_relax.
3588 static isl_stat
unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3590 static isl_stat
unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3592 unsigned off
= 2 + tab
->M
;
3594 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
3595 if (to_row(tab
, var
, 1) < 0)
3596 return isl_stat_error
;
3599 isl_int_sub(tab
->mat
->row
[var
->index
][1],
3600 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
3601 if (var
->is_nonneg
) {
3602 int sgn
= restore_row(tab
, var
);
3603 isl_assert(tab
->mat
->ctx
, sgn
>= 0,
3604 return isl_stat_error
);
3609 for (i
= 0; i
< tab
->n_row
; ++i
) {
3610 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
3612 isl_int_add(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
3613 tab
->mat
->row
[i
][off
+ var
->index
]);
3621 /* Undo the operation performed by isl_tab_unrestrict.
3623 * In particular, mark the variable as being non-negative and make
3624 * sure the sample value respects this constraint.
3626 static isl_stat
ununrestrict(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3630 if (var
->is_row
&& restore_row(tab
, var
) < -1)
3631 return isl_stat_error
;
3636 /* Unmark the last redundant row in "tab" as being redundant.
3637 * This undoes part of the modifications performed by isl_tab_mark_redundant.
3638 * In particular, remove the redundant mark and make
3639 * sure the sample value respects the constraint again.
3640 * A variable that is marked non-negative by isl_tab_mark_redundant
3641 * is covered by a separate undo record.
3643 static isl_stat
restore_last_redundant(struct isl_tab
*tab
)
3645 struct isl_tab_var
*var
;
3647 if (tab
->n_redundant
< 1)
3648 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3649 "no redundant rows", return isl_stat_error
);
3651 var
= isl_tab_var_from_row(tab
, tab
->n_redundant
- 1);
3652 var
->is_redundant
= 0;
3654 restore_row(tab
, var
);
3659 static isl_stat
perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3661 static isl_stat
perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3663 struct isl_tab_var
*var
= var_from_index(tab
, undo
->u
.var_index
);
3664 switch (undo
->type
) {
3665 case isl_tab_undo_nonneg
:
3668 case isl_tab_undo_redundant
:
3669 if (!var
->is_row
|| var
->index
!= tab
->n_redundant
- 1)
3670 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3671 "not undoing last redundant row", return -1);
3672 return restore_last_redundant(tab
);
3673 case isl_tab_undo_freeze
:
3676 case isl_tab_undo_zero
:
3681 case isl_tab_undo_allocate
:
3682 if (undo
->u
.var_index
>= 0) {
3683 isl_assert(tab
->mat
->ctx
, !var
->is_row
,
3684 return isl_stat_error
);
3685 return drop_col(tab
, var
->index
);
3688 if (!max_is_manifestly_unbounded(tab
, var
)) {
3689 if (to_row(tab
, var
, 1) < 0)
3690 return isl_stat_error
;
3691 } else if (!min_is_manifestly_unbounded(tab
, var
)) {
3692 if (to_row(tab
, var
, -1) < 0)
3693 return isl_stat_error
;
3695 if (to_row(tab
, var
, 0) < 0)
3696 return isl_stat_error
;
3698 return drop_row(tab
, var
->index
);
3699 case isl_tab_undo_relax
:
3700 return unrelax(tab
, var
);
3701 case isl_tab_undo_unrestrict
:
3702 return ununrestrict(tab
, var
);
3704 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3705 "perform_undo_var called on invalid undo record",
3706 return isl_stat_error
);
3712 /* Restore all rows that have been marked redundant by isl_tab_mark_redundant
3713 * and that have been preserved in the tableau.
3714 * Note that isl_tab_mark_redundant may also have marked some variables
3715 * as being non-negative before marking them redundant. These need
3716 * to be removed as well as otherwise some constraints could end up
3717 * getting marked redundant with respect to the variable.
3719 isl_stat
isl_tab_restore_redundant(struct isl_tab
*tab
)
3722 return isl_stat_error
;
3725 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3726 "manually restoring redundant constraints "
3727 "interferes with undo history",
3728 return isl_stat_error
);
3730 while (tab
->n_redundant
> 0) {
3731 if (tab
->row_var
[tab
->n_redundant
- 1] >= 0) {
3732 struct isl_tab_var
*var
;
3734 var
= isl_tab_var_from_row(tab
, tab
->n_redundant
- 1);
3737 restore_last_redundant(tab
);
3742 /* Undo the addition of an integer division to the basic map representation
3743 * of "tab" in position "pos".
3745 static isl_stat
drop_bmap_div(struct isl_tab
*tab
, int pos
)
3749 off
= tab
->n_var
- isl_basic_map_dim(tab
->bmap
, isl_dim_div
);
3750 if (isl_basic_map_drop_div(tab
->bmap
, pos
- off
) < 0)
3751 return isl_stat_error
;
3753 tab
->samples
= isl_mat_drop_cols(tab
->samples
, 1 + pos
, 1);
3755 return isl_stat_error
;
3761 /* Restore the tableau to the state where the basic variables
3762 * are those in "col_var".
3763 * We first construct a list of variables that are currently in
3764 * the basis, but shouldn't. Then we iterate over all variables
3765 * that should be in the basis and for each one that is currently
3766 * not in the basis, we exchange it with one of the elements of the
3767 * list constructed before.
3768 * We can always find an appropriate variable to pivot with because
3769 * the current basis is mapped to the old basis by a non-singular
3770 * matrix and so we can never end up with a zero row.
3772 static int restore_basis(struct isl_tab
*tab
, int *col_var
)
3776 int *extra
= NULL
; /* current columns that contain bad stuff */
3777 unsigned off
= 2 + tab
->M
;
3779 extra
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
3780 if (tab
->n_col
&& !extra
)
3782 for (i
= 0; i
< tab
->n_col
; ++i
) {
3783 for (j
= 0; j
< tab
->n_col
; ++j
)
3784 if (tab
->col_var
[i
] == col_var
[j
])
3788 extra
[n_extra
++] = i
;
3790 for (i
= 0; i
< tab
->n_col
&& n_extra
> 0; ++i
) {
3791 struct isl_tab_var
*var
;
3794 for (j
= 0; j
< tab
->n_col
; ++j
)
3795 if (col_var
[i
] == tab
->col_var
[j
])
3799 var
= var_from_index(tab
, col_var
[i
]);
3801 for (j
= 0; j
< n_extra
; ++j
)
3802 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+extra
[j
]]))
3804 isl_assert(tab
->mat
->ctx
, j
< n_extra
, goto error
);
3805 if (isl_tab_pivot(tab
, row
, extra
[j
]) < 0)
3807 extra
[j
] = extra
[--n_extra
];
3817 /* Remove all samples with index n or greater, i.e., those samples
3818 * that were added since we saved this number of samples in
3819 * isl_tab_save_samples.
3821 static void drop_samples_since(struct isl_tab
*tab
, int n
)
3825 for (i
= tab
->n_sample
- 1; i
>= 0 && tab
->n_sample
> n
; --i
) {
3826 if (tab
->sample_index
[i
] < n
)
3829 if (i
!= tab
->n_sample
- 1) {
3830 int t
= tab
->sample_index
[tab
->n_sample
-1];
3831 tab
->sample_index
[tab
->n_sample
-1] = tab
->sample_index
[i
];
3832 tab
->sample_index
[i
] = t
;
3833 isl_mat_swap_rows(tab
->samples
, tab
->n_sample
-1, i
);
3839 static isl_stat
perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3841 static isl_stat
perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3843 switch (undo
->type
) {
3844 case isl_tab_undo_rational
:
3847 case isl_tab_undo_empty
:
3850 case isl_tab_undo_nonneg
:
3851 case isl_tab_undo_redundant
:
3852 case isl_tab_undo_freeze
:
3853 case isl_tab_undo_zero
:
3854 case isl_tab_undo_allocate
:
3855 case isl_tab_undo_relax
:
3856 case isl_tab_undo_unrestrict
:
3857 return perform_undo_var(tab
, undo
);
3858 case isl_tab_undo_bmap_eq
:
3859 return isl_basic_map_free_equality(tab
->bmap
, 1);
3860 case isl_tab_undo_bmap_ineq
:
3861 return isl_basic_map_free_inequality(tab
->bmap
, 1);
3862 case isl_tab_undo_bmap_div
:
3863 return drop_bmap_div(tab
, undo
->u
.var_index
);
3864 case isl_tab_undo_saved_basis
:
3865 if (restore_basis(tab
, undo
->u
.col_var
) < 0)
3866 return isl_stat_error
;
3868 case isl_tab_undo_drop_sample
:
3871 case isl_tab_undo_saved_samples
:
3872 drop_samples_since(tab
, undo
->u
.n
);
3874 case isl_tab_undo_callback
:
3875 return undo
->u
.callback
->run(undo
->u
.callback
);
3877 isl_assert(tab
->mat
->ctx
, 0, return isl_stat_error
);
3882 /* Return the tableau to the state it was in when the snapshot "snap"
3885 int isl_tab_rollback(struct isl_tab
*tab
, struct isl_tab_undo
*snap
)
3887 struct isl_tab_undo
*undo
, *next
;
3893 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
3897 if (perform_undo(tab
, undo
) < 0) {
3903 free_undo_record(undo
);
3912 /* The given row "row" represents an inequality violated by all
3913 * points in the tableau. Check for some special cases of such
3914 * separating constraints.
3915 * In particular, if the row has been reduced to the constant -1,
3916 * then we know the inequality is adjacent (but opposite) to
3917 * an equality in the tableau.
3918 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3919 * of the tableau and c a positive constant, then the inequality
3920 * is adjacent (but opposite) to the inequality r'.
3922 static enum isl_ineq_type
separation_type(struct isl_tab
*tab
, unsigned row
)
3925 unsigned off
= 2 + tab
->M
;
3928 return isl_ineq_separate
;
3930 if (!isl_int_is_one(tab
->mat
->row
[row
][0]))
3931 return isl_ineq_separate
;
3933 pos
= isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3934 tab
->n_col
- tab
->n_dead
);
3936 if (isl_int_is_negone(tab
->mat
->row
[row
][1]))
3937 return isl_ineq_adj_eq
;
3939 return isl_ineq_separate
;
3942 if (!isl_int_eq(tab
->mat
->row
[row
][1],
3943 tab
->mat
->row
[row
][off
+ tab
->n_dead
+ pos
]))
3944 return isl_ineq_separate
;
3946 pos
= isl_seq_first_non_zero(
3947 tab
->mat
->row
[row
] + off
+ tab
->n_dead
+ pos
+ 1,
3948 tab
->n_col
- tab
->n_dead
- pos
- 1);
3950 return pos
== -1 ? isl_ineq_adj_ineq
: isl_ineq_separate
;
3953 /* Check the effect of inequality "ineq" on the tableau "tab".
3955 * isl_ineq_redundant: satisfied by all points in the tableau
3956 * isl_ineq_separate: satisfied by no point in the tableau
3957 * isl_ineq_cut: satisfied by some by not all points
3958 * isl_ineq_adj_eq: adjacent to an equality
3959 * isl_ineq_adj_ineq: adjacent to an inequality.
3961 enum isl_ineq_type
isl_tab_ineq_type(struct isl_tab
*tab
, isl_int
*ineq
)
3963 enum isl_ineq_type type
= isl_ineq_error
;
3964 struct isl_tab_undo
*snap
= NULL
;
3969 return isl_ineq_error
;
3971 if (isl_tab_extend_cons(tab
, 1) < 0)
3972 return isl_ineq_error
;
3974 snap
= isl_tab_snap(tab
);
3976 con
= isl_tab_add_row(tab
, ineq
);
3980 row
= tab
->con
[con
].index
;
3981 if (isl_tab_row_is_redundant(tab
, row
))
3982 type
= isl_ineq_redundant
;
3983 else if (isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
3985 isl_int_abs_ge(tab
->mat
->row
[row
][1],
3986 tab
->mat
->row
[row
][0]))) {
3987 int nonneg
= at_least_zero(tab
, &tab
->con
[con
]);
3991 type
= isl_ineq_cut
;
3993 type
= separation_type(tab
, row
);
3995 int red
= con_is_redundant(tab
, &tab
->con
[con
]);
3999 type
= isl_ineq_cut
;
4001 type
= isl_ineq_redundant
;
4004 if (isl_tab_rollback(tab
, snap
))
4005 return isl_ineq_error
;
4008 return isl_ineq_error
;
4011 isl_stat
isl_tab_track_bmap(struct isl_tab
*tab
, __isl_take isl_basic_map
*bmap
)
4013 bmap
= isl_basic_map_cow(bmap
);
4018 bmap
= isl_basic_map_set_to_empty(bmap
);
4025 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, goto error
);
4026 isl_assert(tab
->mat
->ctx
,
4027 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, goto error
);
4033 isl_basic_map_free(bmap
);
4034 return isl_stat_error
;
4037 isl_stat
isl_tab_track_bset(struct isl_tab
*tab
, __isl_take isl_basic_set
*bset
)
4039 return isl_tab_track_bmap(tab
, bset_to_bmap(bset
));
4042 __isl_keep isl_basic_set
*isl_tab_peek_bset(struct isl_tab
*tab
)
4047 return bset_from_bmap(tab
->bmap
);
4050 static void isl_tab_print_internal(__isl_keep
struct isl_tab
*tab
,
4051 FILE *out
, int indent
)
4057 fprintf(out
, "%*snull tab\n", indent
, "");
4060 fprintf(out
, "%*sn_redundant: %d, n_dead: %d", indent
, "",
4061 tab
->n_redundant
, tab
->n_dead
);
4063 fprintf(out
, ", rational");
4065 fprintf(out
, ", empty");
4067 fprintf(out
, "%*s[", indent
, "");
4068 for (i
= 0; i
< tab
->n_var
; ++i
) {
4070 fprintf(out
, (i
== tab
->n_param
||
4071 i
== tab
->n_var
- tab
->n_div
) ? "; "
4073 fprintf(out
, "%c%d%s", tab
->var
[i
].is_row
? 'r' : 'c',
4075 tab
->var
[i
].is_zero
? " [=0]" :
4076 tab
->var
[i
].is_redundant
? " [R]" : "");
4078 fprintf(out
, "]\n");
4079 fprintf(out
, "%*s[", indent
, "");
4080 for (i
= 0; i
< tab
->n_con
; ++i
) {
4083 fprintf(out
, "%c%d%s", tab
->con
[i
].is_row
? 'r' : 'c',
4085 tab
->con
[i
].is_zero
? " [=0]" :
4086 tab
->con
[i
].is_redundant
? " [R]" : "");
4088 fprintf(out
, "]\n");
4089 fprintf(out
, "%*s[", indent
, "");
4090 for (i
= 0; i
< tab
->n_row
; ++i
) {
4091 const char *sign
= "";
4094 if (tab
->row_sign
) {
4095 if (tab
->row_sign
[i
] == isl_tab_row_unknown
)
4097 else if (tab
->row_sign
[i
] == isl_tab_row_neg
)
4099 else if (tab
->row_sign
[i
] == isl_tab_row_pos
)
4104 fprintf(out
, "r%d: %d%s%s", i
, tab
->row_var
[i
],
4105 isl_tab_var_from_row(tab
, i
)->is_nonneg
? " [>=0]" : "", sign
);
4107 fprintf(out
, "]\n");
4108 fprintf(out
, "%*s[", indent
, "");
4109 for (i
= 0; i
< tab
->n_col
; ++i
) {
4112 fprintf(out
, "c%d: %d%s", i
, tab
->col_var
[i
],
4113 var_from_col(tab
, i
)->is_nonneg
? " [>=0]" : "");
4115 fprintf(out
, "]\n");
4116 r
= tab
->mat
->n_row
;
4117 tab
->mat
->n_row
= tab
->n_row
;
4118 c
= tab
->mat
->n_col
;
4119 tab
->mat
->n_col
= 2 + tab
->M
+ tab
->n_col
;
4120 isl_mat_print_internal(tab
->mat
, out
, indent
);
4121 tab
->mat
->n_row
= r
;
4122 tab
->mat
->n_col
= c
;
4124 isl_basic_map_print_internal(tab
->bmap
, out
, indent
);
4127 void isl_tab_dump(__isl_keep
struct isl_tab
*tab
)
4129 isl_tab_print_internal(tab
, stderr
, 0);