2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/constraint.h>
15 #include <isl_ast_build_expr.h>
16 #include <isl_ast_private.h>
17 #include <isl_ast_build_private.h>
19 /* Compute the "opposite" of the (numerator of the) argument of a div
20 * with denonimator "d".
22 * In particular, compute
26 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
27 __isl_take isl_val
*d
)
29 aff
= isl_aff_neg(aff
);
30 aff
= isl_aff_add_constant_val(aff
, d
);
31 aff
= isl_aff_add_constant_si(aff
, -1);
36 /* Internal data structure used inside isl_ast_expr_add_term.
37 * The domain of "build" is used to simplify the expressions.
38 * "build" needs to be set by the caller of isl_ast_expr_add_term.
39 * "cst" is the constant term of the expression in which the added term
40 * appears. It may be modified by isl_ast_expr_add_term.
42 * "v" is the coefficient of the term that is being constructed and
43 * is set internally by isl_ast_expr_add_term.
45 struct isl_ast_add_term_data
{
51 /* Given the numerator "aff" of the argument of an integer division
52 * with denominator "d", check if it can be made non-negative over
53 * data->build->domain by stealing part of the constant term of
54 * the expression in which the integer division appears.
56 * In particular, the outer expression is of the form
58 * v * floor(aff/d) + cst
60 * We already know that "aff" itself may attain negative values.
61 * Here we check if aff + d*floor(cst/v) is non-negative, such
62 * that we could rewrite the expression to
64 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
66 * Note that aff + d*floor(cst/v) can only possibly be non-negative
67 * if data->cst and data->v have the same sign.
68 * Similarly, if floor(cst/v) is zero, then there is no point in
71 static int is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
72 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
79 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
82 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
83 shift
= isl_val_floor(shift
);
84 is_zero
= isl_val_is_zero(shift
);
85 if (is_zero
< 0 || is_zero
) {
87 return is_zero
< 0 ? -1 : 0;
89 shift
= isl_val_mul(shift
, isl_val_copy(d
));
90 shifted
= isl_aff_copy(aff
);
91 shifted
= isl_aff_add_constant_val(shifted
, shift
);
92 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
93 isl_aff_free(shifted
);
98 /* Given the numerator "aff' of the argument of an integer division
99 * with denominator "d", steal part of the constant term of
100 * the expression in which the integer division appears to make it
101 * non-negative over data->build->domain.
103 * In particular, the outer expression is of the form
105 * v * floor(aff/d) + cst
107 * We know that "aff" itself may attain negative values,
108 * but that aff + d*floor(cst/v) is non-negative.
109 * Find the minimal positive value that we need to add to "aff"
110 * to make it positive and adjust data->cst accordingly.
111 * That is, compute the minimal value "m" of "aff" over
112 * data->build->domain and take
120 * and rewrite the expression to
122 * v * floor((aff + s*d)/d) + (cst - v*s)
124 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
125 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
130 domain
= isl_ast_build_get_domain(data
->build
);
131 shift
= isl_set_min_val(domain
, aff
);
132 isl_set_free(domain
);
134 shift
= isl_val_neg(shift
);
135 shift
= isl_val_div(shift
, isl_val_copy(d
));
136 shift
= isl_val_ceil(shift
);
138 t
= isl_val_copy(shift
);
139 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
140 data
->cst
= isl_val_sub(data
->cst
, t
);
142 shift
= isl_val_mul(shift
, isl_val_copy(d
));
143 return isl_aff_add_constant_val(aff
, shift
);
146 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
147 * The result is simplified in terms of data->build->domain.
148 * This function may change (the sign of) data->v.
150 * "ls" is known to be non-NULL.
152 * Let the div be of the form floor(e/d).
153 * If the ast_build_prefer_pdiv option is set then we check if "e"
154 * is non-negative, so that we can generate
156 * (pdiv_q, expr(e), expr(d))
160 * (fdiv_q, expr(e), expr(d))
162 * If the ast_build_prefer_pdiv option is set and
163 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
164 * If so, we can rewrite
166 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
168 * and still use pdiv_q, while changing the sign of data->v.
170 * Otherwise, we check if
174 * is non-negative and if so, replace floor(e/d) by
176 * floor((e + s*d)/d) - s
178 * with s the minimal shift that makes the argument non-negative.
180 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
181 __isl_keep isl_local_space
*ls
, int pos
)
183 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
185 isl_ast_expr
*num
, *den
;
187 enum isl_ast_op_type type
;
189 aff
= isl_local_space_get_div(ls
, pos
);
190 d
= isl_aff_get_denominator_val(aff
);
191 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
192 den
= isl_ast_expr_from_val(isl_val_copy(d
));
194 type
= isl_ast_op_fdiv_q
;
195 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
196 int non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
197 if (non_neg
>= 0 && !non_neg
) {
198 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
200 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
201 if (non_neg
>= 0 && non_neg
) {
202 data
->v
= isl_val_neg(data
->v
);
208 if (non_neg
>= 0 && !non_neg
) {
209 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
210 if (non_neg
>= 0 && non_neg
)
211 aff
= steal_from_cst(aff
, d
, data
);
214 aff
= isl_aff_free(aff
);
216 type
= isl_ast_op_pdiv_q
;
220 num
= isl_ast_expr_from_aff(aff
, data
->build
);
221 return isl_ast_expr_alloc_binary(type
, num
, den
);
224 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
225 * The result is simplified in terms of data->build->domain.
226 * This function may change (the sign of) data->v.
228 * The isl_ast_expr is constructed based on the type of the dimension.
229 * - divs are constructed by var_div
230 * - set variables are constructed from the iterator isl_ids in data->build
231 * - parameters are constructed from the isl_ids in "ls"
233 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
234 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
)
236 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
239 if (type
== isl_dim_div
)
240 return var_div(data
, ls
, pos
);
242 if (type
== isl_dim_set
) {
243 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
244 return isl_ast_expr_from_id(id
);
247 if (!isl_local_space_has_dim_id(ls
, type
, pos
))
248 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
250 id
= isl_local_space_get_dim_id(ls
, type
, pos
);
251 return isl_ast_expr_from_id(id
);
254 /* Does "expr" represent the zero integer?
256 static int ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
260 if (expr
->type
!= isl_ast_expr_int
)
262 return isl_val_is_zero(expr
->u
.v
);
265 /* Create an expression representing the sum of "expr1" and "expr2",
266 * provided neither of the two expressions is identically zero.
268 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
269 __isl_take isl_ast_expr
*expr2
)
271 if (!expr1
|| !expr2
)
274 if (ast_expr_is_zero(expr1
)) {
275 isl_ast_expr_free(expr1
);
279 if (ast_expr_is_zero(expr2
)) {
280 isl_ast_expr_free(expr2
);
284 return isl_ast_expr_add(expr1
, expr2
);
286 isl_ast_expr_free(expr1
);
287 isl_ast_expr_free(expr2
);
291 /* Subtract expr2 from expr1.
293 * If expr2 is zero, we simply return expr1.
294 * If expr1 is zero, we return
296 * (isl_ast_op_minus, expr2)
298 * Otherwise, we return
300 * (isl_ast_op_sub, expr1, expr2)
302 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
303 __isl_take isl_ast_expr
*expr2
)
305 if (!expr1
|| !expr2
)
308 if (ast_expr_is_zero(expr2
)) {
309 isl_ast_expr_free(expr2
);
313 if (ast_expr_is_zero(expr1
)) {
314 isl_ast_expr_free(expr1
);
315 return isl_ast_expr_neg(expr2
);
318 return isl_ast_expr_sub(expr1
, expr2
);
320 isl_ast_expr_free(expr1
);
321 isl_ast_expr_free(expr2
);
325 /* Return an isl_ast_expr that represents
329 * v is assumed to be non-negative.
330 * The result is simplified in terms of build->domain.
332 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
333 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
334 __isl_keep isl_ast_build
*build
)
342 expr
= isl_ast_expr_from_aff(isl_aff_copy(aff
), build
);
344 c
= isl_ast_expr_from_val(isl_val_copy(d
));
345 expr
= isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r
, expr
, c
);
347 if (!isl_val_is_one(v
)) {
348 c
= isl_ast_expr_from_val(isl_val_copy(v
));
349 expr
= isl_ast_expr_mul(c
, expr
);
355 /* Create an isl_ast_expr that scales "expr" by "v".
357 * If v is 1, we simply return expr.
358 * If v is -1, we return
360 * (isl_ast_op_minus, expr)
362 * Otherwise, we return
364 * (isl_ast_op_mul, expr(v), expr)
366 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
367 __isl_take isl_val
*v
)
373 if (isl_val_is_one(v
)) {
378 if (isl_val_is_negone(v
)) {
380 expr
= isl_ast_expr_neg(expr
);
382 c
= isl_ast_expr_from_val(v
);
383 expr
= isl_ast_expr_mul(c
, expr
);
389 isl_ast_expr_free(expr
);
393 /* Add an expression for "*v" times the specified dimension of "ls"
395 * If the dimension is an integer division, then this function
396 * may modify data->cst in order to make the numerator non-negative.
397 * The result is simplified in terms of data->build->domain.
399 * Let e be the expression for the specified dimension,
400 * multiplied by the absolute value of "*v".
401 * If "*v" is negative, we create
403 * (isl_ast_op_sub, expr, e)
405 * except when expr is trivially zero, in which case we create
407 * (isl_ast_op_minus, e)
411 * If "*v" is positive, we simply create
413 * (isl_ast_op_add, expr, e)
416 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
417 __isl_take isl_ast_expr
*expr
,
418 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
,
419 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
427 term
= var(data
, ls
, type
, pos
);
430 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
432 term
= scale(term
, v
);
433 return ast_expr_sub(expr
, term
);
435 term
= scale(term
, v
);
436 return ast_expr_add(expr
, term
);
440 /* Add an expression for "v" to expr.
442 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
443 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
445 isl_ast_expr
*expr_int
;
450 if (isl_val_is_zero(v
)) {
455 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
457 expr_int
= isl_ast_expr_from_val(v
);
458 return ast_expr_sub(expr
, expr_int
);
460 expr_int
= isl_ast_expr_from_val(v
);
461 return ast_expr_add(expr
, expr_int
);
464 isl_ast_expr_free(expr
);
469 /* Internal data structure used inside extract_modulos.
471 * If any modulo expressions are detected in "aff", then the
472 * expression is removed from "aff" and added to either "pos" or "neg"
473 * depending on the sign of the coefficient of the modulo expression
476 * "add" is an expression that needs to be added to "aff" at the end of
477 * the computation. It is NULL as long as no modulos have been extracted.
479 * "i" is the position in "aff" of the div under investigation
480 * "v" is the coefficient in "aff" of the div
481 * "div" is the argument of the div, with the denominator removed
482 * "d" is the original denominator of the argument of the div
484 * "nonneg" is an affine expression that is non-negative over "build"
485 * and that can be used to extract a modulo expression from "div".
486 * In particular, if "sign" is 1, then the coefficients of "nonneg"
487 * are equal to those of "div" modulo "d". If "sign" is -1, then
488 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
489 * If "sign" is 0, then no such affine expression has been found (yet).
491 struct isl_extract_mod_data
{
492 isl_ast_build
*build
;
509 /* Given that data->v * div_i in data->aff is equal to
511 * f * (term - (arg mod d))
513 * with data->d * f = data->v, add
519 * abs(f) * (arg mod d)
521 * to data->neg or data->pos depending on the sign of -f.
523 static int extract_term_and_mod(struct isl_extract_mod_data
*data
,
524 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
529 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
530 s
= isl_val_sgn(data
->v
);
531 data
->v
= isl_val_abs(data
->v
);
532 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
535 data
->neg
= ast_expr_add(data
->neg
, expr
);
537 data
->pos
= ast_expr_add(data
->pos
, expr
);
538 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
539 isl_dim_div
, data
->i
, 0);
541 data
->v
= isl_val_neg(data
->v
);
542 term
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->v
));
547 data
->add
= isl_aff_add(data
->add
, term
);
554 /* Given that data->v * div_i in data->aff is of the form
556 * f * d * floor(div/d)
558 * with div nonnegative on data->build, rewrite it as
560 * f * (div - (div mod d)) = f * div - f * (div mod d)
568 * abs(f) * (div mod d)
570 * to data->neg or data->pos depending on the sign of -f.
572 static int extract_mod(struct isl_extract_mod_data
*data
)
574 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
575 isl_aff_copy(data
->div
));
578 /* Given that data->v * div_i in data->aff is of the form
580 * f * d * floor(div/d) (1)
582 * check if div is non-negative on data->build and, if so,
583 * extract the corresponding modulo from data->aff.
584 * If not, then check if
588 * is non-negative on data->build. If so, replace (1) by
590 * -f * d * floor((-div + d - 1)/d)
592 * and extract the corresponding modulo from data->aff.
594 * This function may modify data->div.
596 static int extract_nonneg_mod(struct isl_extract_mod_data
*data
)
600 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
604 return extract_mod(data
);
606 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
607 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
611 data
->v
= isl_val_neg(data
->v
);
612 return extract_mod(data
);
617 data
->aff
= isl_aff_free(data
->aff
);
621 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
622 * for use in extracting a modulo expression?
624 * We currently only consider the constant term of the affine expression.
625 * In particular, we prefer the affine expression with the smallest constant
627 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
628 * then we would pick x >= 0
630 * More detailed heuristics could be used if it turns out that there is a need.
632 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
633 __isl_keep isl_constraint
*c
)
641 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
642 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
643 simpler
= isl_val_lt(v1
, v2
);
650 /* Check if the coefficients of "c" are either equal or opposite to those
651 * of data->div modulo data->d. If so, and if "c" is "simpler" than
652 * data->nonneg, then replace data->nonneg by the affine expression of "c"
653 * and set data->sign accordingly.
655 * Both "c" and data->div are assumed not to involve any integer divisions.
657 * Before we start the actual comparison, we first quickly check if
658 * "c" and data->div have the same non-zero coefficients.
659 * If not, then we assume that "c" is not of the desired form.
660 * Note that while the coefficients of data->div can be reasonably expected
661 * not to involve any coefficients that are multiples of d, "c" may
662 * very well involve such coefficients. This means that we may actually
665 static int check_parallel_or_opposite(__isl_take isl_constraint
*c
, void *user
)
667 struct isl_extract_mod_data
*data
= user
;
668 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
669 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
672 int parallel
= 1, opposite
= 1;
674 for (t
= 0; t
< 2; ++t
) {
675 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
676 for (i
= 0; i
< n
[t
]; ++i
) {
679 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
680 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
682 parallel
= opposite
= 0;
686 for (t
= 0; t
< 2; ++t
) {
687 for (i
= 0; i
< n
[t
]; ++i
) {
690 if (!parallel
&& !opposite
)
692 v1
= isl_constraint_get_coefficient_val(c
,
694 v2
= isl_aff_get_coefficient_val(data
->div
,
697 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
698 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
699 v1
= isl_val_add(v1
, isl_val_copy(v2
));
702 v1
= isl_val_add(v1
, isl_val_copy(v2
));
703 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
710 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
711 isl_aff_free(data
->nonneg
);
712 data
->nonneg
= isl_constraint_get_aff(c
);
713 data
->sign
= parallel
? 1 : -1;
716 isl_constraint_free(c
);
718 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
724 /* Given that data->v * div_i in data->aff is of the form
726 * f * d * floor(div/d) (1)
728 * see if we can find an expression div' that is non-negative over data->build
729 * and that is related to div through
735 * div' = -div + d - 1 + d * e
737 * with e some affine expression.
738 * If so, we write (1) as
740 * f * div + f * (div' mod d)
744 * -f * (-div + d - 1) - f * (div' mod d)
746 * exploiting (in the second case) the fact that
748 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
751 * We first try to find an appropriate expression for div'
752 * from the constraints of data->build->domain (which is therefore
753 * guaranteed to be non-negative on data->build), where we remove
754 * any integer divisions from the constraints and skip this step
755 * if "div" itself involves any integer divisions.
756 * If we cannot find an appropriate expression this way, then
757 * we pass control to extract_nonneg_mod where check
758 * if div or "-div + d -1" themselves happen to be
759 * non-negative on data->build.
761 * While looking for an appropriate constraint in data->build->domain,
762 * we ignore the constant term, so after finding such a constraint,
763 * we still need to fix up the constant term.
764 * In particular, if a is the constant term of "div"
765 * (or d - 1 - the constant term of "div" if data->sign < 0)
766 * and b is the constant term of the constraint, then we need to find
767 * a non-negative constant c such that
769 * b + c \equiv a mod d
775 * and add it to b to obtain the constant term of div'.
776 * If this constant term is "too negative", then we add an appropriate
777 * multiple of d to make it positive.
780 * Note that the above is a only a very simple heuristic for finding an
781 * appropriate expression. We could try a bit harder by also considering
782 * sums of constraints that involve disjoint sets of variables or
783 * we could consider arbitrary linear combinations of constraints,
784 * although that could potentially be much more expensive as it involves
785 * the solution of an LP problem.
787 * In particular, if v_i is a column vector representing constraint i,
788 * w represents div and e_i is the i-th unit vector, then we are looking
789 * for a solution of the constraints
791 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
793 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
794 * If we are not just interested in a non-negative expression, but
795 * also in one with a minimal range, then we don't just want
796 * c = \sum_i lambda_i v_i to be non-negative over the domain,
797 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
798 * that we want to minimize and we now also have to take into account
799 * the constant terms of the constraints.
800 * Alternatively, we could first compute the dual of the domain
801 * and plug in the constraints on the coefficients.
803 static int try_extract_mod(struct isl_extract_mod_data
*data
)
812 n
= isl_aff_dim(data
->div
, isl_dim_div
);
814 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
815 return extract_nonneg_mod(data
);
817 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
818 hull
= isl_basic_set_remove_divs(hull
);
821 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
823 isl_basic_set_free(hull
);
825 if (!data
->sign
|| r
< 0) {
826 isl_aff_free(data
->nonneg
);
829 return extract_nonneg_mod(data
);
832 v1
= isl_aff_get_constant_val(data
->div
);
833 v2
= isl_aff_get_constant_val(data
->nonneg
);
834 if (data
->sign
< 0) {
835 v1
= isl_val_neg(v1
);
836 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
837 v1
= isl_val_sub_ui(v1
, 1);
839 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
840 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
841 v1
= isl_val_add(v1
, v2
);
842 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
843 v2
= isl_val_ceil(v2
);
844 if (isl_val_is_neg(v2
)) {
845 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
846 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
848 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
851 if (data
->sign
< 0) {
852 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
853 data
->v
= isl_val_neg(data
->v
);
856 return extract_term_and_mod(data
,
857 isl_aff_copy(data
->div
), data
->nonneg
);
859 data
->aff
= isl_aff_free(data
->aff
);
863 /* Check if "data->aff" involves any (implicit) modulo computations based
865 * If so, remove them from aff and add expressions corresponding
866 * to those modulo computations to data->pos and/or data->neg.
868 * "aff" is assumed to be an integer affine expression.
870 * In particular, check if (v * div_j) is of the form
872 * f * m * floor(a / m)
874 * and, if so, rewrite it as
876 * f * (a - (a mod m)) = f * a - f * (a mod m)
878 * and extract out -f * (a mod m).
879 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
880 * If f < 0, we add ((-f) * (a mod m)) to *pos.
882 * Note that in order to represent "a mod m" as
884 * (isl_ast_op_pdiv_r, a, m)
886 * we need to make sure that a is non-negative.
887 * If not, we check if "-a + m - 1" is non-negative.
888 * If so, we can rewrite
890 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
892 * and still extract a modulo.
894 static int extract_modulo(struct isl_extract_mod_data
*data
)
896 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
897 data
->d
= isl_aff_get_denominator_val(data
->div
);
898 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
899 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
900 if (try_extract_mod(data
) < 0)
901 data
->aff
= isl_aff_free(data
->aff
);
903 isl_aff_free(data
->div
);
904 isl_val_free(data
->d
);
908 /* Check if "aff" involves any (implicit) modulo computations.
909 * If so, remove them from aff and add expressions corresponding
910 * to those modulo computations to *pos and/or *neg.
911 * We only do this if the option ast_build_prefer_pdiv is set.
913 * "aff" is assumed to be an integer affine expression.
915 * A modulo expression is of the form
917 * a mod m = a - m * floor(a / m)
919 * To detect them in aff, we look for terms of the form
921 * f * m * floor(a / m)
925 * f * (a - (a mod m)) = f * a - f * (a mod m)
927 * and extract out -f * (a mod m).
928 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
929 * If f < 0, we add ((-f) * (a mod m)) to *pos.
931 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
932 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
933 __isl_keep isl_ast_build
*build
)
935 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
942 ctx
= isl_aff_get_ctx(aff
);
943 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
946 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
947 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
948 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
949 isl_dim_div
, data
.i
);
951 return isl_aff_free(aff
);
952 if (isl_val_is_zero(data
.v
) ||
953 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
954 isl_val_free(data
.v
);
957 if (extract_modulo(&data
) < 0)
958 data
.aff
= isl_aff_free(data
.aff
);
959 isl_val_free(data
.v
);
965 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
972 /* Check if aff involves any non-integer coefficients.
973 * If so, split aff into
975 * aff = aff1 + (aff2 / d)
977 * with both aff1 and aff2 having only integer coefficients.
978 * Return aff1 and add (aff2 / d) to *expr.
980 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
981 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
985 isl_local_space
*ls
= NULL
;
986 isl_ast_expr
*rat_expr
;
988 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
989 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
993 d
= isl_aff_get_denominator_val(aff
);
996 if (isl_val_is_one(d
)) {
1001 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
1003 ls
= isl_aff_get_domain_local_space(aff
);
1004 rat
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1006 for (i
= 0; i
< 3; ++i
) {
1007 n
= isl_aff_dim(aff
, t
[i
]);
1008 for (j
= 0; j
< n
; ++j
) {
1011 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1014 if (isl_val_is_divisible_by(v
, d
)) {
1018 rat_j
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1020 rat_j
= isl_aff_scale_val(rat_j
, v
);
1021 rat
= isl_aff_add(rat
, rat_j
);
1025 v
= isl_aff_get_constant_val(aff
);
1026 if (isl_val_is_divisible_by(v
, d
)) {
1031 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(ls
), v
);
1032 rat
= isl_aff_add(rat
, rat_0
);
1035 isl_local_space_free(ls
);
1037 aff
= isl_aff_sub(aff
, isl_aff_copy(rat
));
1038 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(d
));
1040 rat_expr
= isl_ast_expr_from_aff(rat
, build
);
1041 rat_expr
= isl_ast_expr_div(rat_expr
, isl_ast_expr_from_val(d
));
1042 *expr
= ast_expr_add(*expr
, rat_expr
);
1047 isl_local_space_free(ls
);
1053 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1054 * The result is simplified in terms of build->domain.
1056 * We first extract hidden modulo computations from the affine expression
1057 * and then add terms for each variable with a non-zero coefficient.
1058 * Finally, if the affine expression has a non-trivial denominator,
1059 * we divide the resulting isl_ast_expr by this denominator.
1061 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1062 __isl_keep isl_ast_build
*build
)
1067 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1068 isl_ast_expr
*expr
, *expr_neg
;
1069 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1070 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1071 isl_local_space
*ls
;
1072 struct isl_ast_add_term_data data
;
1077 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1078 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1080 aff
= extract_rational(aff
, &expr
, build
);
1082 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1083 expr
= ast_expr_sub(expr
, expr_neg
);
1085 ls
= isl_aff_get_domain_local_space(aff
);
1088 data
.cst
= isl_aff_get_constant_val(aff
);
1089 for (i
= 0; i
< 3; ++i
) {
1090 n
= isl_aff_dim(aff
, t
[i
]);
1091 for (j
= 0; j
< n
; ++j
) {
1092 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1094 expr
= isl_ast_expr_free(expr
);
1095 if (isl_val_is_zero(v
)) {
1099 expr
= isl_ast_expr_add_term(expr
,
1100 ls
, l
[i
], j
, v
, &data
);
1104 expr
= isl_ast_expr_add_int(expr
, data
.cst
);
1106 isl_local_space_free(ls
);
1111 /* Add terms to "expr" for each variable in "aff" with a coefficient
1112 * with sign equal to "sign".
1113 * The result is simplified in terms of data->build->domain.
1115 static __isl_give isl_ast_expr
*add_signed_terms(__isl_take isl_ast_expr
*expr
,
1116 __isl_keep isl_aff
*aff
, int sign
, struct isl_ast_add_term_data
*data
)
1120 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1121 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1122 isl_local_space
*ls
;
1124 ls
= isl_aff_get_domain_local_space(aff
);
1126 for (i
= 0; i
< 3; ++i
) {
1127 int n
= isl_aff_dim(aff
, t
[i
]);
1128 for (j
= 0; j
< n
; ++j
) {
1129 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1130 if (sign
* isl_val_sgn(v
) <= 0) {
1135 expr
= isl_ast_expr_add_term(expr
,
1136 ls
, l
[i
], j
, v
, data
);
1140 isl_local_space_free(ls
);
1145 /* Should the constant term "v" be considered positive?
1147 * A positive constant will be added to "pos" by the caller,
1148 * while a negative constant will be added to "neg".
1149 * If either "pos" or "neg" is exactly zero, then we prefer
1150 * to add the constant "v" to that side, irrespective of the sign of "v".
1151 * This results in slightly shorter expressions and may reduce the risk
1154 static int constant_is_considered_positive(__isl_keep isl_val
*v
,
1155 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1157 if (ast_expr_is_zero(pos
))
1159 if (ast_expr_is_zero(neg
))
1161 return isl_val_is_pos(v
);
1164 /* Check if the equality
1168 * represents a stride constraint on the integer division "pos".
1170 * In particular, if the integer division "pos" is equal to
1174 * then check if aff is equal to
1180 * If so, the equality is exactly
1184 * Note that in principle we could also accept
1188 * where e and e' differ by a constant.
1190 static int is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1196 div
= isl_aff_get_div(aff
, pos
);
1197 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1198 d
= isl_aff_get_denominator_val(div
);
1199 eq
= isl_val_abs_eq(c
, d
);
1200 if (eq
>= 0 && eq
) {
1201 aff
= isl_aff_copy(aff
);
1202 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1203 div
= isl_aff_scale_val(div
, d
);
1204 if (isl_val_is_pos(c
))
1205 div
= isl_aff_neg(div
);
1206 eq
= isl_aff_plain_is_equal(div
, aff
);
1216 /* Are all coefficients of "aff" (zero or) negative?
1218 static int all_negative_coefficients(__isl_keep isl_aff
*aff
)
1225 n
= isl_aff_dim(aff
, isl_dim_param
);
1226 for (i
= 0; i
< n
; ++i
)
1227 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1230 n
= isl_aff_dim(aff
, isl_dim_in
);
1231 for (i
= 0; i
< n
; ++i
)
1232 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1238 /* Give an equality of the form
1240 * aff = e - d floor(e/d) = 0
1244 * aff = -e + d floor(e/d) = 0
1246 * with the integer division "pos" equal to floor(e/d),
1247 * construct the AST expression
1249 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1251 * If e only has negative coefficients, then construct
1253 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1257 static __isl_give isl_ast_expr
*extract_stride_constraint(
1258 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1262 isl_ast_expr
*expr
, *cst
;
1267 ctx
= isl_aff_get_ctx(aff
);
1269 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1270 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1272 if (all_negative_coefficients(aff
))
1273 aff
= isl_aff_neg(aff
);
1275 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1276 expr
= isl_ast_expr_from_aff(aff
, build
);
1278 expr
= isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r
, expr
, cst
);
1279 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1280 expr
= isl_ast_expr_alloc_binary(isl_ast_op_eq
, expr
, cst
);
1285 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1286 * The result is simplified in terms of build->domain.
1288 * We first check if the constraint is an equality of the form
1290 * e - d floor(e/d) = 0
1296 * If so, we convert it to
1298 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1300 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1301 * We first extract hidden modulo computations from "a"
1302 * and then collect all the terms with a positive coefficient in cons_pos
1303 * and the terms with a negative coefficient in cons_neg.
1305 * The result is then of the form
1307 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1311 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1313 * However, if the first expression is an integer constant (and the second
1314 * is not), then we swap the two expressions. This ensures that we construct,
1315 * e.g., "i <= 5" rather than "5 >= i".
1317 * Furthermore, is there are no terms with positive coefficients (or no terms
1318 * with negative coefficients), then the constant term is added to "pos"
1319 * (or "neg"), ignoring the sign of the constant term.
1321 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1322 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1326 isl_ast_expr
*expr_pos
;
1327 isl_ast_expr
*expr_neg
;
1331 enum isl_ast_op_type type
;
1332 struct isl_ast_add_term_data data
;
1337 aff
= isl_constraint_get_aff(constraint
);
1338 eq
= isl_constraint_is_equality(constraint
);
1339 isl_constraint_free(constraint
);
1341 n
= isl_aff_dim(aff
, isl_dim_div
);
1343 for (i
= 0; i
< n
; ++i
) {
1345 is_stride
= is_stride_constraint(aff
, i
);
1349 return extract_stride_constraint(aff
, i
, build
);
1352 ctx
= isl_aff_get_ctx(aff
);
1353 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1354 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1356 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1359 data
.cst
= isl_aff_get_constant_val(aff
);
1360 expr_pos
= add_signed_terms(expr_pos
, aff
, 1, &data
);
1361 data
.cst
= isl_val_neg(data
.cst
);
1362 expr_neg
= add_signed_terms(expr_neg
, aff
, -1, &data
);
1363 data
.cst
= isl_val_neg(data
.cst
);
1365 if (constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
)) {
1366 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1368 data
.cst
= isl_val_neg(data
.cst
);
1369 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1372 if (isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
&&
1373 isl_ast_expr_get_type(expr_neg
) != isl_ast_expr_int
) {
1374 type
= eq
? isl_ast_op_eq
: isl_ast_op_le
;
1375 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1377 type
= eq
? isl_ast_op_eq
: isl_ast_op_ge
;
1378 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1388 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1389 * as a callback to isl_constraint_list_sort.
1390 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1391 * apart, then use isl_constraint_plain_cmp instead.
1393 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1394 __isl_keep isl_constraint
*b
, void *user
)
1398 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1401 return isl_constraint_plain_cmp(a
, b
);
1404 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1405 * The result is simplified in terms of build->domain.
1407 * If "bset" is not bounded by any constraint, then we contruct
1408 * the expression "1", i.e., "true".
1410 * Otherwise, we sort the constraints, putting constraints that involve
1411 * integer divisions after those that do not, and construct an "and"
1412 * of the ast expressions of the individual constraints.
1414 * Each constraint is added to the generated constraints of the build
1415 * after it has been converted to an AST expression so that it can be used
1416 * to simplify the following constraints. This may change the truth value
1417 * of subsequent constraints that do not satisfy the earlier constraints,
1418 * but this does not affect the outcome of the conjunction as it is
1419 * only true if all the conjuncts are true (no matter in what order
1420 * they are evaluated). In particular, the constraints that do not
1421 * involve integer divisions may serve to simplify some constraints
1422 * that do involve integer divisions.
1424 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1425 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1429 isl_constraint_list
*list
;
1433 list
= isl_basic_set_get_constraint_list(bset
);
1434 isl_basic_set_free(bset
);
1435 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1438 n
= isl_constraint_list_n_constraint(list
);
1440 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
1441 isl_constraint_list_free(list
);
1442 return isl_ast_expr_alloc_int_si(ctx
, 1);
1445 build
= isl_ast_build_copy(build
);
1447 c
= isl_constraint_list_get_constraint(list
, 0);
1448 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1449 set
= isl_set_from_basic_set(bset
);
1450 res
= isl_ast_expr_from_constraint(c
, build
);
1451 build
= isl_ast_build_restrict_generated(build
, set
);
1453 for (i
= 1; i
< n
; ++i
) {
1456 c
= isl_constraint_list_get_constraint(list
, i
);
1457 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1458 set
= isl_set_from_basic_set(bset
);
1459 expr
= isl_ast_expr_from_constraint(c
, build
);
1460 build
= isl_ast_build_restrict_generated(build
, set
);
1461 res
= isl_ast_expr_and(res
, expr
);
1464 isl_constraint_list_free(list
);
1465 isl_ast_build_free(build
);
1469 struct isl_expr_from_set_data
{
1470 isl_ast_build
*build
;
1475 /* Construct an isl_ast_expr that evaluates the conditions defining "bset"
1476 * and add it to data->res.
1477 * The result is simplified in terms of data->build->domain.
1479 static int expr_from_set(__isl_take isl_basic_set
*bset
, void *user
)
1481 struct isl_expr_from_set_data
*data
= user
;
1484 expr
= isl_ast_build_expr_from_basic_set(data
->build
, bset
);
1488 data
->res
= isl_ast_expr_or(data
->res
, expr
);
1497 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1498 * The result is simplified in terms of build->domain.
1500 * If "set" is an (obviously) empty set, then return the expression "0".
1502 * "set" lives in the internal schedule space.
1504 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
1505 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1507 struct isl_expr_from_set_data data
= { build
, 1, NULL
};
1509 if (isl_set_foreach_basic_set(set
, &expr_from_set
, &data
) < 0)
1510 data
.res
= isl_ast_expr_free(data
.res
);
1511 else if (data
.first
) {
1512 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1513 data
.res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
1520 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1521 * The result is simplified in terms of build->domain.
1523 * If "set" is an (obviously) empty set, then return the expression "0".
1525 * "set" lives in the external schedule space.
1527 * The internal AST expression generation assumes that there are
1528 * no unknown divs, so make sure an explicit representation is available.
1529 * Since the set comes from the outside, it may have constraints that
1530 * are redundant with respect to the build domain. Remove them first.
1532 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1533 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1535 if (isl_ast_build_need_schedule_map(build
)) {
1537 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1538 set
= isl_set_preimage_multi_aff(set
, ma
);
1541 set
= isl_set_compute_divs(set
);
1542 set
= isl_ast_build_compute_gist(build
, set
);
1543 return isl_ast_build_expr_from_set_internal(build
, set
);
1546 struct isl_from_pw_aff_data
{
1547 isl_ast_build
*build
;
1549 isl_ast_expr
**next
;
1553 /* This function is called during the construction of an isl_ast_expr
1554 * that evaluates an isl_pw_aff.
1555 * Adjust data->next to take into account this piece.
1557 * data->n is the number of pairs of set and aff to go.
1558 * data->dom is the domain of the entire isl_pw_aff.
1560 * If this is the last pair, then data->next is set to evaluate aff
1561 * and the domain is ignored.
1562 * Otherwise, data->next is set to a select operation that selects
1563 * an isl_ast_expr corresponding to "aff" on "set" and to an expression
1564 * that will be filled in by later calls otherwise.
1566 * In both cases, the constraints of "set" are added to the generated
1567 * constraints of the build such that they can be exploited to simplify
1568 * the AST expression constructed from "aff".
1570 static int ast_expr_from_pw_aff(__isl_take isl_set
*set
,
1571 __isl_take isl_aff
*aff
, void *user
)
1573 struct isl_from_pw_aff_data
*data
= user
;
1575 isl_ast_build
*build
;
1577 ctx
= isl_set_get_ctx(set
);
1580 build
= isl_ast_build_copy(data
->build
);
1581 build
= isl_ast_build_restrict_generated(build
, set
);
1582 *data
->next
= isl_ast_expr_from_aff(aff
, build
);
1583 isl_ast_build_free(build
);
1587 isl_ast_expr
*ternary
, *arg
;
1590 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_op_select
, 3);
1591 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
1592 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
1593 ternary
= isl_ast_expr_set_op_arg(ternary
, 0, arg
);
1594 build
= isl_ast_build_copy(data
->build
);
1595 build
= isl_ast_build_restrict_generated(build
, set
);
1596 arg
= isl_ast_expr_from_aff(aff
, build
);
1597 isl_ast_build_free(build
);
1598 ternary
= isl_ast_expr_set_op_arg(ternary
, 1, arg
);
1602 *data
->next
= ternary
;
1603 data
->next
= &ternary
->u
.op
.args
[2];
1609 /* Construct an isl_ast_expr that evaluates "pa".
1610 * The result is simplified in terms of build->domain.
1612 * The domain of "pa" lives in the internal schedule space.
1614 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
1615 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
1617 struct isl_from_pw_aff_data data
;
1618 isl_ast_expr
*res
= NULL
;
1620 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
1621 pa
= isl_pw_aff_coalesce(pa
);
1626 data
.n
= isl_pw_aff_n_piece(pa
);
1628 data
.dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1630 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) < 0)
1631 res
= isl_ast_expr_free(res
);
1633 isl_die(isl_pw_aff_get_ctx(pa
), isl_error_invalid
,
1634 "cannot handle void expression", res
= NULL
);
1636 isl_pw_aff_free(pa
);
1637 isl_set_free(data
.dom
);
1641 /* Construct an isl_ast_expr that evaluates "pa".
1642 * The result is simplified in terms of build->domain.
1644 * The domain of "pa" lives in the external schedule space.
1646 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
1647 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
1651 if (isl_ast_build_need_schedule_map(build
)) {
1653 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1654 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
1656 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
1660 /* Set the ids of the input dimensions of "mpa" to the iterator ids
1663 * The domain of "mpa" is assumed to live in the internal schedule domain.
1665 static __isl_give isl_multi_pw_aff
*set_iterator_names(
1666 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1670 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
1671 for (i
= 0; i
< n
; ++i
) {
1674 id
= isl_ast_build_get_iterator_id(build
, i
);
1675 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
1681 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
1682 * the remaining arguments derived from "mpa".
1683 * That is, construct a call or access expression that calls/accesses "arg0"
1684 * with arguments/indices specified by "mpa".
1686 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
1687 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1688 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
1694 ctx
= isl_ast_build_get_ctx(build
);
1696 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
1697 expr
= isl_ast_expr_alloc_op(ctx
, type
, 1 + n
);
1698 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
1699 for (i
= 0; i
< n
; ++i
) {
1703 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
1704 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
1705 expr
= isl_ast_expr_set_op_arg(expr
, 1 + i
, arg
);
1708 isl_multi_pw_aff_free(mpa
);
1712 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
1713 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1714 __isl_take isl_multi_pw_aff
*mpa
);
1716 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
1717 * The range of "mpa" is assumed to be wrapped relation.
1718 * The domain of this wrapped relation specifies the structure being
1719 * accessed, while the range of this wrapped relation spacifies the
1720 * member of the structure being accessed.
1722 * The domain of "mpa" is assumed to live in the internal schedule domain.
1724 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
1725 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1728 isl_multi_pw_aff
*domain
;
1729 isl_ast_expr
*domain_expr
, *expr
;
1730 enum isl_ast_op_type type
= isl_ast_op_access
;
1732 domain
= isl_multi_pw_aff_copy(mpa
);
1733 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1734 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
1736 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
1737 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
1738 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
1739 "missing field name", goto error
);
1740 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
1741 expr
= isl_ast_expr_from_id(id
);
1742 expr
= isl_ast_expr_alloc_binary(isl_ast_op_member
, domain_expr
, expr
);
1743 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
1745 isl_multi_pw_aff_free(mpa
);
1749 /* Construct an isl_ast_expr of type "type" that calls or accesses
1750 * the element specified by "mpa".
1751 * The first argument is obtained from the output tuple name.
1752 * The remaining arguments are given by the piecewise affine expressions.
1754 * If the range of "mpa" is a mapped relation, then we assume it
1755 * represents an access to a member of a structure.
1757 * The domain of "mpa" is assumed to live in the internal schedule domain.
1759 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
1760 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1761 __isl_take isl_multi_pw_aff
*mpa
)
1770 if (type
== isl_ast_op_access
&&
1771 isl_multi_pw_aff_range_is_wrapping(mpa
))
1772 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
1774 mpa
= set_iterator_names(build
, mpa
);
1778 ctx
= isl_ast_build_get_ctx(build
);
1780 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
1781 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
1783 id
= isl_id_alloc(ctx
, "", NULL
);
1785 expr
= isl_ast_expr_from_id(id
);
1786 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
1788 isl_multi_pw_aff_free(mpa
);
1792 /* Construct an isl_ast_expr of type "type" that calls or accesses
1793 * the element specified by "pma".
1794 * The first argument is obtained from the output tuple name.
1795 * The remaining arguments are given by the piecewise affine expressions.
1797 * The domain of "pma" is assumed to live in the internal schedule domain.
1799 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
1800 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1801 __isl_take isl_pw_multi_aff
*pma
)
1803 isl_multi_pw_aff
*mpa
;
1805 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
1806 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
1809 /* Construct an isl_ast_expr of type "type" that calls or accesses
1810 * the element specified by "mpa".
1811 * The first argument is obtained from the output tuple name.
1812 * The remaining arguments are given by the piecewise affine expressions.
1814 * The domain of "mpa" is assumed to live in the external schedule domain.
1816 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
1817 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1818 __isl_take isl_multi_pw_aff
*mpa
)
1822 isl_space
*space_build
, *space_mpa
;
1824 space_build
= isl_ast_build_get_space(build
, 0);
1825 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
1826 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
1827 space_mpa
, isl_dim_in
);
1828 isl_space_free(space_build
);
1829 isl_space_free(space_mpa
);
1833 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
1834 "spaces don't match", goto error
);
1836 if (isl_ast_build_need_schedule_map(build
)) {
1838 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1839 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
1842 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
1845 isl_multi_pw_aff_free(mpa
);
1849 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
1850 * The name of the function is obtained from the output tuple name.
1851 * The arguments are given by the piecewise affine expressions.
1853 * The domain of "mpa" is assumed to live in the external schedule domain.
1855 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
1856 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1858 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_call
, mpa
);
1861 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
1862 * The name of the array is obtained from the output tuple name.
1863 * The index expressions are given by the piecewise affine expressions.
1865 * The domain of "mpa" is assumed to live in the external schedule domain.
1867 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
1868 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1870 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_access
, mpa
);
1873 /* Construct an isl_ast_expr of type "type" that calls or accesses
1874 * the element specified by "pma".
1875 * The first argument is obtained from the output tuple name.
1876 * The remaining arguments are given by the piecewise affine expressions.
1878 * The domain of "pma" is assumed to live in the external schedule domain.
1880 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
1881 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1882 __isl_take isl_pw_multi_aff
*pma
)
1884 isl_multi_pw_aff
*mpa
;
1886 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
1887 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
1890 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
1891 * The name of the function is obtained from the output tuple name.
1892 * The arguments are given by the piecewise affine expressions.
1894 * The domain of "pma" is assumed to live in the external schedule domain.
1896 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
1897 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
1899 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_call
, pma
);
1902 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
1903 * The name of the array is obtained from the output tuple name.
1904 * The index expressions are given by the piecewise affine expressions.
1906 * The domain of "pma" is assumed to live in the external schedule domain.
1908 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
1909 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
1911 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_access
, pma
);
1914 /* Construct an isl_ast_expr that calls the domain element
1915 * specified by "executed".
1917 * "executed" is assumed to be single-valued, with a domain that lives
1918 * in the internal schedule space.
1920 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
1921 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
1923 isl_pw_multi_aff
*iteration
;
1926 iteration
= isl_pw_multi_aff_from_map(executed
);
1927 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
1928 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
1929 isl_ast_build_get_domain(build
));
1930 expr
= isl_ast_build_from_pw_multi_aff_internal(build
, isl_ast_op_call
,
1932 return isl_ast_node_alloc_user(expr
);