2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
15 #include <isl_space_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_options_private.h>
21 int isl_map_is_transitively_closed(__isl_keep isl_map
*map
)
26 map2
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(map
));
27 closed
= isl_map_is_subset(map2
, map
);
33 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map
*umap
)
38 umap2
= isl_union_map_apply_range(isl_union_map_copy(umap
),
39 isl_union_map_copy(umap
));
40 closed
= isl_union_map_is_subset(umap2
, umap
);
41 isl_union_map_free(umap2
);
46 /* Given a map that represents a path with the length of the path
47 * encoded as the difference between the last output coordindate
48 * and the last input coordinate, set this length to either
49 * exactly "length" (if "exactly" is set) or at least "length"
50 * (if "exactly" is not set).
52 static __isl_give isl_map
*set_path_length(__isl_take isl_map
*map
,
53 int exactly
, int length
)
56 struct isl_basic_map
*bmap
;
65 dim
= isl_map_get_space(map
);
66 d
= isl_space_dim(dim
, isl_dim_in
);
67 nparam
= isl_space_dim(dim
, isl_dim_param
);
68 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 1);
70 k
= isl_basic_map_alloc_equality(bmap
);
73 k
= isl_basic_map_alloc_inequality(bmap
);
78 isl_seq_clr(c
, 1 + isl_basic_map_total_dim(bmap
));
79 isl_int_set_si(c
[0], -length
);
80 isl_int_set_si(c
[1 + nparam
+ d
- 1], -1);
81 isl_int_set_si(c
[1 + nparam
+ d
+ d
- 1], 1);
83 bmap
= isl_basic_map_finalize(bmap
);
84 map
= isl_map_intersect(map
, isl_map_from_basic_map(bmap
));
88 isl_basic_map_free(bmap
);
93 /* Check whether the overapproximation of the power of "map" is exactly
94 * the power of "map". Let R be "map" and A_k the overapproximation.
95 * The approximation is exact if
98 * A_k = A_{k-1} \circ R k >= 2
100 * Since A_k is known to be an overapproximation, we only need to check
103 * A_k \subset A_{k-1} \circ R k >= 2
105 * In practice, "app" has an extra input and output coordinate
106 * to encode the length of the path. So, we first need to add
107 * this coordinate to "map" and set the length of the path to
110 static int check_power_exactness(__isl_take isl_map
*map
,
111 __isl_take isl_map
*app
)
117 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
118 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
119 map
= set_path_length(map
, 1, 1);
121 app_1
= set_path_length(isl_map_copy(app
), 1, 1);
123 exact
= isl_map_is_subset(app_1
, map
);
126 if (!exact
|| exact
< 0) {
132 app_1
= set_path_length(isl_map_copy(app
), 0, 1);
133 app_2
= set_path_length(app
, 0, 2);
134 app_1
= isl_map_apply_range(map
, app_1
);
136 exact
= isl_map_is_subset(app_2
, app_1
);
144 /* Check whether the overapproximation of the power of "map" is exactly
145 * the power of "map", possibly after projecting out the power (if "project"
148 * If "project" is set and if "steps" can only result in acyclic paths,
151 * A = R \cup (A \circ R)
153 * where A is the overapproximation with the power projected out, i.e.,
154 * an overapproximation of the transitive closure.
155 * More specifically, since A is known to be an overapproximation, we check
157 * A \subset R \cup (A \circ R)
159 * Otherwise, we check if the power is exact.
161 * Note that "app" has an extra input and output coordinate to encode
162 * the length of the part. If we are only interested in the transitive
163 * closure, then we can simply project out these coordinates first.
165 static int check_exactness(__isl_take isl_map
*map
, __isl_take isl_map
*app
,
173 return check_power_exactness(map
, app
);
175 d
= isl_map_dim(map
, isl_dim_in
);
176 app
= set_path_length(app
, 0, 1);
177 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
178 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
180 app
= isl_map_reset_space(app
, isl_map_get_space(map
));
182 test
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(app
));
183 test
= isl_map_union(test
, isl_map_copy(map
));
185 exact
= isl_map_is_subset(app
, test
);
196 * The transitive closure implementation is based on the paper
197 * "Computing the Transitive Closure of a Union of Affine Integer
198 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
202 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
203 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
204 * that maps an element x to any element that can be reached
205 * by taking a non-negative number of steps along any of
206 * the extended offsets v'_i = [v_i 1].
209 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
211 * For any element in this relation, the number of steps taken
212 * is equal to the difference in the final coordinates.
214 static __isl_give isl_map
*path_along_steps(__isl_take isl_space
*dim
,
215 __isl_keep isl_mat
*steps
)
218 struct isl_basic_map
*path
= NULL
;
226 d
= isl_space_dim(dim
, isl_dim_in
);
228 nparam
= isl_space_dim(dim
, isl_dim_param
);
230 path
= isl_basic_map_alloc_space(isl_space_copy(dim
), n
, d
, n
);
232 for (i
= 0; i
< n
; ++i
) {
233 k
= isl_basic_map_alloc_div(path
);
236 isl_assert(steps
->ctx
, i
== k
, goto error
);
237 isl_int_set_si(path
->div
[k
][0], 0);
240 for (i
= 0; i
< d
; ++i
) {
241 k
= isl_basic_map_alloc_equality(path
);
244 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
245 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
246 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ i
], -1);
248 for (j
= 0; j
< n
; ++j
)
249 isl_int_set_si(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
], 1);
251 for (j
= 0; j
< n
; ++j
)
252 isl_int_set(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
],
256 for (i
= 0; i
< n
; ++i
) {
257 k
= isl_basic_map_alloc_inequality(path
);
260 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
261 isl_int_set_si(path
->ineq
[k
][1 + nparam
+ 2 * d
+ i
], 1);
266 path
= isl_basic_map_simplify(path
);
267 path
= isl_basic_map_finalize(path
);
268 return isl_map_from_basic_map(path
);
271 isl_basic_map_free(path
);
280 /* Check whether the parametric constant term of constraint c is never
281 * positive in "bset".
283 static int parametric_constant_never_positive(__isl_keep isl_basic_set
*bset
,
284 isl_int
*c
, int *div_purity
)
293 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
294 d
= isl_basic_set_dim(bset
, isl_dim_set
);
295 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
297 bset
= isl_basic_set_copy(bset
);
298 bset
= isl_basic_set_cow(bset
);
299 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
300 k
= isl_basic_set_alloc_inequality(bset
);
303 isl_seq_clr(bset
->ineq
[k
], 1 + isl_basic_set_total_dim(bset
));
304 isl_seq_cpy(bset
->ineq
[k
], c
, 1 + nparam
);
305 for (i
= 0; i
< n_div
; ++i
) {
306 if (div_purity
[i
] != PURE_PARAM
)
308 isl_int_set(bset
->ineq
[k
][1 + nparam
+ d
+ i
],
309 c
[1 + nparam
+ d
+ i
]);
311 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
312 empty
= isl_basic_set_is_empty(bset
);
313 isl_basic_set_free(bset
);
317 isl_basic_set_free(bset
);
321 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
322 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
323 * Return MIXED if only the coefficients of the parameters and the set
324 * variables are non-zero and if moreover the parametric constant
325 * can never attain positive values.
326 * Return IMPURE otherwise.
328 * If div_purity is NULL then we are dealing with a non-parametric set
329 * and so the constraint is obviously PURE_VAR.
331 static int purity(__isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
,
344 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
345 d
= isl_basic_set_dim(bset
, isl_dim_set
);
346 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
348 for (i
= 0; i
< n_div
; ++i
) {
349 if (isl_int_is_zero(c
[1 + nparam
+ d
+ i
]))
351 switch (div_purity
[i
]) {
352 case PURE_PARAM
: p
= 1; break;
353 case PURE_VAR
: v
= 1; break;
354 default: return IMPURE
;
357 if (!p
&& isl_seq_first_non_zero(c
+ 1, nparam
) == -1)
359 if (!v
&& isl_seq_first_non_zero(c
+ 1 + nparam
, d
) == -1)
362 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
363 if (eq
&& empty
>= 0 && !empty
) {
364 isl_seq_neg(c
, c
, 1 + nparam
+ d
+ n_div
);
365 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
368 return empty
< 0 ? -1 : empty
? MIXED
: IMPURE
;
371 /* Return an array of integers indicating the type of each div in bset.
372 * If the div is (recursively) defined in terms of only the parameters,
373 * then the type is PURE_PARAM.
374 * If the div is (recursively) defined in terms of only the set variables,
375 * then the type is PURE_VAR.
376 * Otherwise, the type is IMPURE.
378 static __isl_give
int *get_div_purity(__isl_keep isl_basic_set
*bset
)
389 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
390 d
= isl_basic_set_dim(bset
, isl_dim_set
);
391 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
393 div_purity
= isl_alloc_array(bset
->ctx
, int, n_div
);
397 for (i
= 0; i
< bset
->n_div
; ++i
) {
399 if (isl_int_is_zero(bset
->div
[i
][0])) {
400 div_purity
[i
] = IMPURE
;
403 if (isl_seq_first_non_zero(bset
->div
[i
] + 2, nparam
) != -1)
405 if (isl_seq_first_non_zero(bset
->div
[i
] + 2 + nparam
, d
) != -1)
407 for (j
= 0; j
< i
; ++j
) {
408 if (isl_int_is_zero(bset
->div
[i
][2 + nparam
+ d
+ j
]))
410 switch (div_purity
[j
]) {
411 case PURE_PARAM
: p
= 1; break;
412 case PURE_VAR
: v
= 1; break;
413 default: p
= v
= 1; break;
416 div_purity
[i
] = v
? p
? IMPURE
: PURE_VAR
: PURE_PARAM
;
422 /* Given a path with the as yet unconstrained length at position "pos",
423 * check if setting the length to zero results in only the identity
426 static int empty_path_is_identity(__isl_keep isl_basic_map
*path
, unsigned pos
)
428 isl_basic_map
*test
= NULL
;
429 isl_basic_map
*id
= NULL
;
433 test
= isl_basic_map_copy(path
);
434 test
= isl_basic_map_extend_constraints(test
, 1, 0);
435 k
= isl_basic_map_alloc_equality(test
);
438 isl_seq_clr(test
->eq
[k
], 1 + isl_basic_map_total_dim(test
));
439 isl_int_set_si(test
->eq
[k
][pos
], 1);
440 id
= isl_basic_map_identity(isl_basic_map_get_space(path
));
441 is_id
= isl_basic_map_is_equal(test
, id
);
442 isl_basic_map_free(test
);
443 isl_basic_map_free(id
);
446 isl_basic_map_free(test
);
450 /* If any of the constraints is found to be impure then this function
451 * sets *impurity to 1.
453 static __isl_give isl_basic_map
*add_delta_constraints(
454 __isl_take isl_basic_map
*path
,
455 __isl_keep isl_basic_set
*delta
, unsigned off
, unsigned nparam
,
456 unsigned d
, int *div_purity
, int eq
, int *impurity
)
459 int n
= eq
? delta
->n_eq
: delta
->n_ineq
;
460 isl_int
**delta_c
= eq
? delta
->eq
: delta
->ineq
;
463 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
465 for (i
= 0; i
< n
; ++i
) {
467 int p
= purity(delta
, delta_c
[i
], div_purity
, eq
);
470 if (p
!= PURE_VAR
&& p
!= PURE_PARAM
&& !*impurity
)
474 if (eq
&& p
!= MIXED
) {
475 k
= isl_basic_map_alloc_equality(path
);
476 path_c
= path
->eq
[k
];
478 k
= isl_basic_map_alloc_inequality(path
);
479 path_c
= path
->ineq
[k
];
483 isl_seq_clr(path_c
, 1 + isl_basic_map_total_dim(path
));
485 isl_seq_cpy(path_c
+ off
,
486 delta_c
[i
] + 1 + nparam
, d
);
487 isl_int_set(path_c
[off
+ d
], delta_c
[i
][0]);
488 } else if (p
== PURE_PARAM
) {
489 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
491 isl_seq_cpy(path_c
+ off
,
492 delta_c
[i
] + 1 + nparam
, d
);
493 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
495 isl_seq_cpy(path_c
+ off
- n_div
,
496 delta_c
[i
] + 1 + nparam
+ d
, n_div
);
501 isl_basic_map_free(path
);
505 /* Given a set of offsets "delta", construct a relation of the
506 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
507 * is an overapproximation of the relations that
508 * maps an element x to any element that can be reached
509 * by taking a non-negative number of steps along any of
510 * the elements in "delta".
511 * That is, construct an approximation of
513 * { [x] -> [y] : exists f \in \delta, k \in Z :
514 * y = x + k [f, 1] and k >= 0 }
516 * For any element in this relation, the number of steps taken
517 * is equal to the difference in the final coordinates.
519 * In particular, let delta be defined as
521 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
522 * C x + C'p + c >= 0 and
523 * D x + D'p + d >= 0 }
525 * where the constraints C x + C'p + c >= 0 are such that the parametric
526 * constant term of each constraint j, "C_j x + C'_j p + c_j",
527 * can never attain positive values, then the relation is constructed as
529 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
530 * A f + k a >= 0 and B p + b >= 0 and
531 * C f + C'p + c >= 0 and k >= 1 }
532 * union { [x] -> [x] }
534 * If the zero-length paths happen to correspond exactly to the identity
535 * mapping, then we return
537 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
538 * A f + k a >= 0 and B p + b >= 0 and
539 * C f + C'p + c >= 0 and k >= 0 }
543 * Existentially quantified variables in \delta are handled by
544 * classifying them as independent of the parameters, purely
545 * parameter dependent and others. Constraints containing
546 * any of the other existentially quantified variables are removed.
547 * This is safe, but leads to an additional overapproximation.
549 * If there are any impure constraints, then we also eliminate
550 * the parameters from \delta, resulting in a set
552 * \delta' = { [x] : E x + e >= 0 }
554 * and add the constraints
558 * to the constructed relation.
560 static __isl_give isl_map
*path_along_delta(__isl_take isl_space
*dim
,
561 __isl_take isl_basic_set
*delta
)
563 isl_basic_map
*path
= NULL
;
570 int *div_purity
= NULL
;
575 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
576 d
= isl_basic_set_dim(delta
, isl_dim_set
);
577 nparam
= isl_basic_set_dim(delta
, isl_dim_param
);
578 path
= isl_basic_map_alloc_space(isl_space_copy(dim
), n_div
+ d
+ 1,
579 d
+ 1 + delta
->n_eq
, delta
->n_eq
+ delta
->n_ineq
+ 1);
580 off
= 1 + nparam
+ 2 * (d
+ 1) + n_div
;
582 for (i
= 0; i
< n_div
+ d
+ 1; ++i
) {
583 k
= isl_basic_map_alloc_div(path
);
586 isl_int_set_si(path
->div
[k
][0], 0);
589 for (i
= 0; i
< d
+ 1; ++i
) {
590 k
= isl_basic_map_alloc_equality(path
);
593 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
594 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
595 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ 1 + i
], -1);
596 isl_int_set_si(path
->eq
[k
][off
+ i
], 1);
599 div_purity
= get_div_purity(delta
);
603 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
604 div_purity
, 1, &impurity
);
605 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
606 div_purity
, 0, &impurity
);
608 isl_space
*dim
= isl_basic_set_get_space(delta
);
609 delta
= isl_basic_set_project_out(delta
,
610 isl_dim_param
, 0, nparam
);
611 delta
= isl_basic_set_add(delta
, isl_dim_param
, nparam
);
612 delta
= isl_basic_set_reset_space(delta
, dim
);
615 path
= isl_basic_map_extend_constraints(path
, delta
->n_eq
,
617 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
619 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
621 path
= isl_basic_map_gauss(path
, NULL
);
624 is_id
= empty_path_is_identity(path
, off
+ d
);
628 k
= isl_basic_map_alloc_inequality(path
);
631 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
633 isl_int_set_si(path
->ineq
[k
][0], -1);
634 isl_int_set_si(path
->ineq
[k
][off
+ d
], 1);
637 isl_basic_set_free(delta
);
638 path
= isl_basic_map_finalize(path
);
641 return isl_map_from_basic_map(path
);
643 return isl_basic_map_union(path
, isl_basic_map_identity(dim
));
647 isl_basic_set_free(delta
);
648 isl_basic_map_free(path
);
652 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
653 * construct a map that equates the parameter to the difference
654 * in the final coordinates and imposes that this difference is positive.
657 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
659 static __isl_give isl_map
*equate_parameter_to_length(__isl_take isl_space
*dim
,
662 struct isl_basic_map
*bmap
;
667 d
= isl_space_dim(dim
, isl_dim_in
);
668 nparam
= isl_space_dim(dim
, isl_dim_param
);
669 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 1);
670 k
= isl_basic_map_alloc_equality(bmap
);
673 isl_seq_clr(bmap
->eq
[k
], 1 + isl_basic_map_total_dim(bmap
));
674 isl_int_set_si(bmap
->eq
[k
][1 + param
], -1);
675 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
- 1], -1);
676 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
+ d
- 1], 1);
678 k
= isl_basic_map_alloc_inequality(bmap
);
681 isl_seq_clr(bmap
->ineq
[k
], 1 + isl_basic_map_total_dim(bmap
));
682 isl_int_set_si(bmap
->ineq
[k
][1 + param
], 1);
683 isl_int_set_si(bmap
->ineq
[k
][0], -1);
685 bmap
= isl_basic_map_finalize(bmap
);
686 return isl_map_from_basic_map(bmap
);
688 isl_basic_map_free(bmap
);
692 /* Check whether "path" is acyclic, where the last coordinates of domain
693 * and range of path encode the number of steps taken.
694 * That is, check whether
696 * { d | d = y - x and (x,y) in path }
698 * does not contain any element with positive last coordinate (positive length)
699 * and zero remaining coordinates (cycle).
701 static int is_acyclic(__isl_take isl_map
*path
)
706 struct isl_set
*delta
;
708 delta
= isl_map_deltas(path
);
709 dim
= isl_set_dim(delta
, isl_dim_set
);
710 for (i
= 0; i
< dim
; ++i
) {
712 delta
= isl_set_lower_bound_si(delta
, isl_dim_set
, i
, 1);
714 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
717 acyclic
= isl_set_is_empty(delta
);
723 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
724 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
725 * construct a map that is an overapproximation of the map
726 * that takes an element from the space D \times Z to another
727 * element from the same space, such that the first n coordinates of the
728 * difference between them is a sum of differences between images
729 * and pre-images in one of the R_i and such that the last coordinate
730 * is equal to the number of steps taken.
733 * \Delta_i = { y - x | (x, y) in R_i }
735 * then the constructed map is an overapproximation of
737 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
738 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
740 * The elements of the singleton \Delta_i's are collected as the
741 * rows of the steps matrix. For all these \Delta_i's together,
742 * a single path is constructed.
743 * For each of the other \Delta_i's, we compute an overapproximation
744 * of the paths along elements of \Delta_i.
745 * Since each of these paths performs an addition, composition is
746 * symmetric and we can simply compose all resulting paths in any order.
748 static __isl_give isl_map
*construct_extended_path(__isl_take isl_space
*dim
,
749 __isl_keep isl_map
*map
, int *project
)
751 struct isl_mat
*steps
= NULL
;
752 struct isl_map
*path
= NULL
;
756 d
= isl_map_dim(map
, isl_dim_in
);
758 path
= isl_map_identity(isl_space_copy(dim
));
760 steps
= isl_mat_alloc(map
->ctx
, map
->n
, d
);
765 for (i
= 0; i
< map
->n
; ++i
) {
766 struct isl_basic_set
*delta
;
768 delta
= isl_basic_map_deltas(isl_basic_map_copy(map
->p
[i
]));
770 for (j
= 0; j
< d
; ++j
) {
773 fixed
= isl_basic_set_plain_dim_is_fixed(delta
, j
,
776 isl_basic_set_free(delta
);
785 path
= isl_map_apply_range(path
,
786 path_along_delta(isl_space_copy(dim
), delta
));
787 path
= isl_map_coalesce(path
);
789 isl_basic_set_free(delta
);
796 path
= isl_map_apply_range(path
,
797 path_along_steps(isl_space_copy(dim
), steps
));
800 if (project
&& *project
) {
801 *project
= is_acyclic(isl_map_copy(path
));
816 static int isl_set_overlaps(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
821 if (!isl_space_tuple_match(set1
->dim
, isl_dim_set
, set2
->dim
, isl_dim_set
))
824 i
= isl_set_intersect(isl_set_copy(set1
), isl_set_copy(set2
));
825 no_overlap
= isl_set_is_empty(i
);
828 return no_overlap
< 0 ? -1 : !no_overlap
;
831 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
832 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
833 * construct a map that is an overapproximation of the map
834 * that takes an element from the dom R \times Z to an
835 * element from ran R \times Z, such that the first n coordinates of the
836 * difference between them is a sum of differences between images
837 * and pre-images in one of the R_i and such that the last coordinate
838 * is equal to the number of steps taken.
841 * \Delta_i = { y - x | (x, y) in R_i }
843 * then the constructed map is an overapproximation of
845 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
846 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
847 * x in dom R and x + d in ran R and
850 static __isl_give isl_map
*construct_component(__isl_take isl_space
*dim
,
851 __isl_keep isl_map
*map
, int *exact
, int project
)
853 struct isl_set
*domain
= NULL
;
854 struct isl_set
*range
= NULL
;
855 struct isl_map
*app
= NULL
;
856 struct isl_map
*path
= NULL
;
858 domain
= isl_map_domain(isl_map_copy(map
));
859 domain
= isl_set_coalesce(domain
);
860 range
= isl_map_range(isl_map_copy(map
));
861 range
= isl_set_coalesce(range
);
862 if (!isl_set_overlaps(domain
, range
)) {
863 isl_set_free(domain
);
867 map
= isl_map_copy(map
);
868 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
869 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
870 map
= set_path_length(map
, 1, 1);
873 app
= isl_map_from_domain_and_range(domain
, range
);
874 app
= isl_map_add_dims(app
, isl_dim_in
, 1);
875 app
= isl_map_add_dims(app
, isl_dim_out
, 1);
877 path
= construct_extended_path(isl_space_copy(dim
), map
,
878 exact
&& *exact
? &project
: NULL
);
879 app
= isl_map_intersect(app
, path
);
881 if (exact
&& *exact
&&
882 (*exact
= check_exactness(isl_map_copy(map
), isl_map_copy(app
),
887 app
= set_path_length(app
, 0, 1);
895 /* Call construct_component and, if "project" is set, project out
896 * the final coordinates.
898 static __isl_give isl_map
*construct_projected_component(
899 __isl_take isl_space
*dim
,
900 __isl_keep isl_map
*map
, int *exact
, int project
)
907 d
= isl_space_dim(dim
, isl_dim_in
);
909 app
= construct_component(dim
, map
, exact
, project
);
911 app
= isl_map_project_out(app
, isl_dim_in
, d
- 1, 1);
912 app
= isl_map_project_out(app
, isl_dim_out
, d
- 1, 1);
917 /* Compute an extended version, i.e., with path lengths, of
918 * an overapproximation of the transitive closure of "bmap"
919 * with path lengths greater than or equal to zero and with
920 * domain and range equal to "dom".
922 static __isl_give isl_map
*q_closure(__isl_take isl_space
*dim
,
923 __isl_take isl_set
*dom
, __isl_keep isl_basic_map
*bmap
, int *exact
)
930 dom
= isl_set_add_dims(dom
, isl_dim_set
, 1);
931 app
= isl_map_from_domain_and_range(dom
, isl_set_copy(dom
));
932 map
= isl_map_from_basic_map(isl_basic_map_copy(bmap
));
933 path
= construct_extended_path(dim
, map
, &project
);
934 app
= isl_map_intersect(app
, path
);
936 if ((*exact
= check_exactness(map
, isl_map_copy(app
), project
)) < 0)
945 /* Check whether qc has any elements of length at least one
946 * with domain and/or range outside of dom and ran.
948 static int has_spurious_elements(__isl_keep isl_map
*qc
,
949 __isl_keep isl_set
*dom
, __isl_keep isl_set
*ran
)
955 if (!qc
|| !dom
|| !ran
)
958 d
= isl_map_dim(qc
, isl_dim_in
);
960 qc
= isl_map_copy(qc
);
961 qc
= set_path_length(qc
, 0, 1);
962 qc
= isl_map_project_out(qc
, isl_dim_in
, d
- 1, 1);
963 qc
= isl_map_project_out(qc
, isl_dim_out
, d
- 1, 1);
965 s
= isl_map_domain(isl_map_copy(qc
));
966 subset
= isl_set_is_subset(s
, dom
);
975 s
= isl_map_range(qc
);
976 subset
= isl_set_is_subset(s
, ran
);
979 return subset
< 0 ? -1 : !subset
;
988 /* For each basic map in "map", except i, check whether it combines
989 * with the transitive closure that is reflexive on C combines
990 * to the left and to the right.
994 * dom map_j \subseteq C
996 * then right[j] is set to 1. Otherwise, if
998 * ran map_i \cap dom map_j = \emptyset
1000 * then right[j] is set to 0. Otherwise, composing to the right
1003 * Similar, for composing to the left, we have if
1005 * ran map_j \subseteq C
1007 * then left[j] is set to 1. Otherwise, if
1009 * dom map_i \cap ran map_j = \emptyset
1011 * then left[j] is set to 0. Otherwise, composing to the left
1014 * The return value is or'd with LEFT if composing to the left
1015 * is possible and with RIGHT if composing to the right is possible.
1017 static int composability(__isl_keep isl_set
*C
, int i
,
1018 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1019 __isl_keep isl_map
*map
)
1025 for (j
= 0; j
< map
->n
&& ok
; ++j
) {
1026 int overlaps
, subset
;
1032 dom
[j
] = isl_set_from_basic_set(
1033 isl_basic_map_domain(
1034 isl_basic_map_copy(map
->p
[j
])));
1037 overlaps
= isl_set_overlaps(ran
[i
], dom
[j
]);
1043 subset
= isl_set_is_subset(dom
[j
], C
);
1055 ran
[j
] = isl_set_from_basic_set(
1056 isl_basic_map_range(
1057 isl_basic_map_copy(map
->p
[j
])));
1060 overlaps
= isl_set_overlaps(dom
[i
], ran
[j
]);
1066 subset
= isl_set_is_subset(ran
[j
], C
);
1080 static __isl_give isl_map
*anonymize(__isl_take isl_map
*map
)
1082 map
= isl_map_reset(map
, isl_dim_in
);
1083 map
= isl_map_reset(map
, isl_dim_out
);
1087 /* Return a map that is a union of the basic maps in "map", except i,
1088 * composed to left and right with qc based on the entries of "left"
1091 static __isl_give isl_map
*compose(__isl_keep isl_map
*map
, int i
,
1092 __isl_take isl_map
*qc
, int *left
, int *right
)
1097 comp
= isl_map_empty(isl_map_get_space(map
));
1098 for (j
= 0; j
< map
->n
; ++j
) {
1104 map_j
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[j
]));
1105 map_j
= anonymize(map_j
);
1106 if (left
&& left
[j
])
1107 map_j
= isl_map_apply_range(map_j
, isl_map_copy(qc
));
1108 if (right
&& right
[j
])
1109 map_j
= isl_map_apply_range(isl_map_copy(qc
), map_j
);
1110 comp
= isl_map_union(comp
, map_j
);
1113 comp
= isl_map_compute_divs(comp
);
1114 comp
= isl_map_coalesce(comp
);
1121 /* Compute the transitive closure of "map" incrementally by
1128 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1132 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1134 * depending on whether left or right are NULL.
1136 static __isl_give isl_map
*compute_incremental(
1137 __isl_take isl_space
*dim
, __isl_keep isl_map
*map
,
1138 int i
, __isl_take isl_map
*qc
, int *left
, int *right
, int *exact
)
1142 isl_map
*rtc
= NULL
;
1146 isl_assert(map
->ctx
, left
|| right
, goto error
);
1148 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
1149 tc
= construct_projected_component(isl_space_copy(dim
), map_i
,
1151 isl_map_free(map_i
);
1154 qc
= isl_map_transitive_closure(qc
, exact
);
1157 isl_space_free(dim
);
1160 return isl_map_universe(isl_map_get_space(map
));
1163 if (!left
|| !right
)
1164 rtc
= isl_map_union(isl_map_copy(tc
),
1165 isl_map_identity(isl_map_get_space(tc
)));
1167 qc
= isl_map_apply_range(rtc
, qc
);
1169 qc
= isl_map_apply_range(qc
, rtc
);
1170 qc
= isl_map_union(tc
, qc
);
1172 isl_space_free(dim
);
1176 isl_space_free(dim
);
1181 /* Given a map "map", try to find a basic map such that
1182 * map^+ can be computed as
1184 * map^+ = map_i^+ \cup
1185 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1187 * with C the simple hull of the domain and range of the input map.
1188 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1189 * and by intersecting domain and range with C.
1190 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1191 * Also, we only use the incremental computation if all the transitive
1192 * closures are exact and if the number of basic maps in the union,
1193 * after computing the integer divisions, is smaller than the number
1194 * of basic maps in the input map.
1196 static int incemental_on_entire_domain(__isl_keep isl_space
*dim
,
1197 __isl_keep isl_map
*map
,
1198 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1199 __isl_give isl_map
**res
)
1207 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
1208 isl_map_range(isl_map_copy(map
)));
1209 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1217 d
= isl_map_dim(map
, isl_dim_in
);
1219 for (i
= 0; i
< map
->n
; ++i
) {
1221 int exact_i
, spurious
;
1223 dom
[i
] = isl_set_from_basic_set(isl_basic_map_domain(
1224 isl_basic_map_copy(map
->p
[i
])));
1225 ran
[i
] = isl_set_from_basic_set(isl_basic_map_range(
1226 isl_basic_map_copy(map
->p
[i
])));
1227 qc
= q_closure(isl_space_copy(dim
), isl_set_copy(C
),
1228 map
->p
[i
], &exact_i
);
1235 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1242 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1243 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1244 qc
= isl_map_compute_divs(qc
);
1245 for (j
= 0; j
< map
->n
; ++j
)
1246 left
[j
] = right
[j
] = 1;
1247 qc
= compose(map
, i
, qc
, left
, right
);
1250 if (qc
->n
>= map
->n
) {
1254 *res
= compute_incremental(isl_space_copy(dim
), map
, i
, qc
,
1255 left
, right
, &exact_i
);
1266 return *res
!= NULL
;
1272 /* Try and compute the transitive closure of "map" as
1274 * map^+ = map_i^+ \cup
1275 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1277 * with C either the simple hull of the domain and range of the entire
1278 * map or the simple hull of domain and range of map_i.
1280 static __isl_give isl_map
*incremental_closure(__isl_take isl_space
*dim
,
1281 __isl_keep isl_map
*map
, int *exact
, int project
)
1284 isl_set
**dom
= NULL
;
1285 isl_set
**ran
= NULL
;
1290 isl_map
*res
= NULL
;
1293 return construct_projected_component(dim
, map
, exact
, project
);
1298 return construct_projected_component(dim
, map
, exact
, project
);
1300 d
= isl_map_dim(map
, isl_dim_in
);
1302 dom
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1303 ran
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1304 left
= isl_calloc_array(map
->ctx
, int, map
->n
);
1305 right
= isl_calloc_array(map
->ctx
, int, map
->n
);
1306 if (!ran
|| !dom
|| !left
|| !right
)
1309 if (incemental_on_entire_domain(dim
, map
, dom
, ran
, left
, right
, &res
) < 0)
1312 for (i
= 0; !res
&& i
< map
->n
; ++i
) {
1314 int exact_i
, spurious
, comp
;
1316 dom
[i
] = isl_set_from_basic_set(
1317 isl_basic_map_domain(
1318 isl_basic_map_copy(map
->p
[i
])));
1322 ran
[i
] = isl_set_from_basic_set(
1323 isl_basic_map_range(
1324 isl_basic_map_copy(map
->p
[i
])));
1327 C
= isl_set_union(isl_set_copy(dom
[i
]),
1328 isl_set_copy(ran
[i
]));
1329 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1336 comp
= composability(C
, i
, dom
, ran
, left
, right
, map
);
1337 if (!comp
|| comp
< 0) {
1343 qc
= q_closure(isl_space_copy(dim
), C
, map
->p
[i
], &exact_i
);
1350 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1357 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1358 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1359 qc
= isl_map_compute_divs(qc
);
1360 qc
= compose(map
, i
, qc
, (comp
& LEFT
) ? left
: NULL
,
1361 (comp
& RIGHT
) ? right
: NULL
);
1364 if (qc
->n
>= map
->n
) {
1368 res
= compute_incremental(isl_space_copy(dim
), map
, i
, qc
,
1369 (comp
& LEFT
) ? left
: NULL
,
1370 (comp
& RIGHT
) ? right
: NULL
, &exact_i
);
1379 for (i
= 0; i
< map
->n
; ++i
) {
1380 isl_set_free(dom
[i
]);
1381 isl_set_free(ran
[i
]);
1389 isl_space_free(dim
);
1393 return construct_projected_component(dim
, map
, exact
, project
);
1396 for (i
= 0; i
< map
->n
; ++i
)
1397 isl_set_free(dom
[i
]);
1400 for (i
= 0; i
< map
->n
; ++i
)
1401 isl_set_free(ran
[i
]);
1405 isl_space_free(dim
);
1409 /* Given an array of sets "set", add "dom" at position "pos"
1410 * and search for elements at earlier positions that overlap with "dom".
1411 * If any can be found, then merge all of them, together with "dom", into
1412 * a single set and assign the union to the first in the array,
1413 * which becomes the new group leader for all groups involved in the merge.
1414 * During the search, we only consider group leaders, i.e., those with
1415 * group[i] = i, as the other sets have already been combined
1416 * with one of the group leaders.
1418 static int merge(isl_set
**set
, int *group
, __isl_take isl_set
*dom
, int pos
)
1423 set
[pos
] = isl_set_copy(dom
);
1425 for (i
= pos
- 1; i
>= 0; --i
) {
1431 o
= isl_set_overlaps(set
[i
], dom
);
1437 set
[i
] = isl_set_union(set
[i
], set
[group
[pos
]]);
1438 set
[group
[pos
]] = NULL
;
1441 group
[group
[pos
]] = i
;
1452 /* Replace each entry in the n by n grid of maps by the cross product
1453 * with the relation { [i] -> [i + 1] }.
1455 static int add_length(__isl_keep isl_map
*map
, isl_map
***grid
, int n
)
1459 isl_basic_map
*bstep
;
1466 dim
= isl_map_get_space(map
);
1467 nparam
= isl_space_dim(dim
, isl_dim_param
);
1468 dim
= isl_space_drop_dims(dim
, isl_dim_in
, 0, isl_space_dim(dim
, isl_dim_in
));
1469 dim
= isl_space_drop_dims(dim
, isl_dim_out
, 0, isl_space_dim(dim
, isl_dim_out
));
1470 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
1471 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
1472 bstep
= isl_basic_map_alloc_space(dim
, 0, 1, 0);
1473 k
= isl_basic_map_alloc_equality(bstep
);
1475 isl_basic_map_free(bstep
);
1478 isl_seq_clr(bstep
->eq
[k
], 1 + isl_basic_map_total_dim(bstep
));
1479 isl_int_set_si(bstep
->eq
[k
][0], 1);
1480 isl_int_set_si(bstep
->eq
[k
][1 + nparam
], 1);
1481 isl_int_set_si(bstep
->eq
[k
][1 + nparam
+ 1], -1);
1482 bstep
= isl_basic_map_finalize(bstep
);
1483 step
= isl_map_from_basic_map(bstep
);
1485 for (i
= 0; i
< n
; ++i
)
1486 for (j
= 0; j
< n
; ++j
)
1487 grid
[i
][j
] = isl_map_product(grid
[i
][j
],
1488 isl_map_copy(step
));
1495 /* The core of the Floyd-Warshall algorithm.
1496 * Updates the given n x x matrix of relations in place.
1498 * The algorithm iterates over all vertices. In each step, the whole
1499 * matrix is updated to include all paths that go to the current vertex,
1500 * possibly stay there a while (including passing through earlier vertices)
1501 * and then come back. At the start of each iteration, the diagonal
1502 * element corresponding to the current vertex is replaced by its
1503 * transitive closure to account for all indirect paths that stay
1504 * in the current vertex.
1506 static void floyd_warshall_iterate(isl_map
***grid
, int n
, int *exact
)
1510 for (r
= 0; r
< n
; ++r
) {
1512 grid
[r
][r
] = isl_map_transitive_closure(grid
[r
][r
],
1513 (exact
&& *exact
) ? &r_exact
: NULL
);
1514 if (exact
&& *exact
&& !r_exact
)
1517 for (p
= 0; p
< n
; ++p
)
1518 for (q
= 0; q
< n
; ++q
) {
1520 if (p
== r
&& q
== r
)
1522 loop
= isl_map_apply_range(
1523 isl_map_copy(grid
[p
][r
]),
1524 isl_map_copy(grid
[r
][q
]));
1525 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1526 loop
= isl_map_apply_range(
1527 isl_map_copy(grid
[p
][r
]),
1528 isl_map_apply_range(
1529 isl_map_copy(grid
[r
][r
]),
1530 isl_map_copy(grid
[r
][q
])));
1531 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1532 grid
[p
][q
] = isl_map_coalesce(grid
[p
][q
]);
1537 /* Given a partition of the domains and ranges of the basic maps in "map",
1538 * apply the Floyd-Warshall algorithm with the elements in the partition
1541 * In particular, there are "n" elements in the partition and "group" is
1542 * an array of length 2 * map->n with entries in [0,n-1].
1544 * We first construct a matrix of relations based on the partition information,
1545 * apply Floyd-Warshall on this matrix of relations and then take the
1546 * union of all entries in the matrix as the final result.
1548 * If we are actually computing the power instead of the transitive closure,
1549 * i.e., when "project" is not set, then the result should have the
1550 * path lengths encoded as the difference between an extra pair of
1551 * coordinates. We therefore apply the nested transitive closures
1552 * to relations that include these lengths. In particular, we replace
1553 * the input relation by the cross product with the unit length relation
1554 * { [i] -> [i + 1] }.
1556 static __isl_give isl_map
*floyd_warshall_with_groups(__isl_take isl_space
*dim
,
1557 __isl_keep isl_map
*map
, int *exact
, int project
, int *group
, int n
)
1560 isl_map
***grid
= NULL
;
1568 return incremental_closure(dim
, map
, exact
, project
);
1571 grid
= isl_calloc_array(map
->ctx
, isl_map
**, n
);
1574 for (i
= 0; i
< n
; ++i
) {
1575 grid
[i
] = isl_calloc_array(map
->ctx
, isl_map
*, n
);
1578 for (j
= 0; j
< n
; ++j
)
1579 grid
[i
][j
] = isl_map_empty(isl_map_get_space(map
));
1582 for (k
= 0; k
< map
->n
; ++k
) {
1584 j
= group
[2 * k
+ 1];
1585 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
1586 isl_map_from_basic_map(
1587 isl_basic_map_copy(map
->p
[k
])));
1590 if (!project
&& add_length(map
, grid
, n
) < 0)
1593 floyd_warshall_iterate(grid
, n
, exact
);
1595 app
= isl_map_empty(isl_map_get_space(map
));
1597 for (i
= 0; i
< n
; ++i
) {
1598 for (j
= 0; j
< n
; ++j
)
1599 app
= isl_map_union(app
, grid
[i
][j
]);
1605 isl_space_free(dim
);
1610 for (i
= 0; i
< n
; ++i
) {
1613 for (j
= 0; j
< n
; ++j
)
1614 isl_map_free(grid
[i
][j
]);
1619 isl_space_free(dim
);
1623 /* Partition the domains and ranges of the n basic relations in list
1624 * into disjoint cells.
1626 * To find the partition, we simply consider all of the domains
1627 * and ranges in turn and combine those that overlap.
1628 * "set" contains the partition elements and "group" indicates
1629 * to which partition element a given domain or range belongs.
1630 * The domain of basic map i corresponds to element 2 * i in these arrays,
1631 * while the domain corresponds to element 2 * i + 1.
1632 * During the construction group[k] is either equal to k,
1633 * in which case set[k] contains the union of all the domains and
1634 * ranges in the corresponding group, or is equal to some l < k,
1635 * with l another domain or range in the same group.
1637 static int *setup_groups(isl_ctx
*ctx
, __isl_keep isl_basic_map
**list
, int n
,
1638 isl_set
***set
, int *n_group
)
1644 *set
= isl_calloc_array(ctx
, isl_set
*, 2 * n
);
1645 group
= isl_alloc_array(ctx
, int, 2 * n
);
1647 if (!*set
|| !group
)
1650 for (i
= 0; i
< n
; ++i
) {
1652 dom
= isl_set_from_basic_set(isl_basic_map_domain(
1653 isl_basic_map_copy(list
[i
])));
1654 if (merge(*set
, group
, dom
, 2 * i
) < 0)
1656 dom
= isl_set_from_basic_set(isl_basic_map_range(
1657 isl_basic_map_copy(list
[i
])));
1658 if (merge(*set
, group
, dom
, 2 * i
+ 1) < 0)
1663 for (i
= 0; i
< 2 * n
; ++i
)
1664 if (group
[i
] == i
) {
1666 (*set
)[g
] = (*set
)[i
];
1671 group
[i
] = group
[group
[i
]];
1678 for (i
= 0; i
< 2 * n
; ++i
)
1679 isl_set_free((*set
)[i
]);
1687 /* Check if the domains and ranges of the basic maps in "map" can
1688 * be partitioned, and if so, apply Floyd-Warshall on the elements
1689 * of the partition. Note that we also apply this algorithm
1690 * if we want to compute the power, i.e., when "project" is not set.
1691 * However, the results are unlikely to be exact since the recursive
1692 * calls inside the Floyd-Warshall algorithm typically result in
1693 * non-linear path lengths quite quickly.
1695 static __isl_give isl_map
*floyd_warshall(__isl_take isl_space
*dim
,
1696 __isl_keep isl_map
*map
, int *exact
, int project
)
1699 isl_set
**set
= NULL
;
1706 return incremental_closure(dim
, map
, exact
, project
);
1708 group
= setup_groups(map
->ctx
, map
->p
, map
->n
, &set
, &n
);
1712 for (i
= 0; i
< 2 * map
->n
; ++i
)
1713 isl_set_free(set
[i
]);
1717 return floyd_warshall_with_groups(dim
, map
, exact
, project
, group
, n
);
1719 isl_space_free(dim
);
1723 /* Structure for representing the nodes in the graph being traversed
1724 * using Tarjan's algorithm.
1725 * index represents the order in which nodes are visited.
1726 * min_index is the index of the root of a (sub)component.
1727 * on_stack indicates whether the node is currently on the stack.
1729 struct basic_map_sort_node
{
1734 /* Structure for representing the graph being traversed
1735 * using Tarjan's algorithm.
1736 * len is the number of nodes
1737 * node is an array of nodes
1738 * stack contains the nodes on the path from the root to the current node
1739 * sp is the stack pointer
1740 * index is the index of the last node visited
1741 * order contains the elements of the components separated by -1
1742 * op represents the current position in order
1744 * check_closed is set if we may have used the fact that
1745 * a pair of basic maps can be interchanged
1747 struct basic_map_sort
{
1749 struct basic_map_sort_node
*node
;
1758 static void basic_map_sort_free(struct basic_map_sort
*s
)
1768 static struct basic_map_sort
*basic_map_sort_alloc(struct isl_ctx
*ctx
, int len
)
1770 struct basic_map_sort
*s
;
1773 s
= isl_calloc_type(ctx
, struct basic_map_sort
);
1777 s
->node
= isl_alloc_array(ctx
, struct basic_map_sort_node
, len
);
1780 for (i
= 0; i
< len
; ++i
)
1781 s
->node
[i
].index
= -1;
1782 s
->stack
= isl_alloc_array(ctx
, int, len
);
1785 s
->order
= isl_alloc_array(ctx
, int, 2 * len
);
1793 s
->check_closed
= 0;
1797 basic_map_sort_free(s
);
1801 /* Check whether in the computation of the transitive closure
1802 * "bmap1" (R_1) should follow (or be part of the same component as)
1805 * That is check whether
1813 * If so, then there is no reason for R_1 to immediately follow R_2
1816 * *check_closed is set if the subset relation holds while
1817 * R_1 \circ R_2 is not empty.
1819 static int basic_map_follows(__isl_keep isl_basic_map
*bmap1
,
1820 __isl_keep isl_basic_map
*bmap2
, int *check_closed
)
1822 struct isl_map
*map12
= NULL
;
1823 struct isl_map
*map21
= NULL
;
1826 if (!isl_space_tuple_match(bmap1
->dim
, isl_dim_in
, bmap2
->dim
, isl_dim_out
))
1829 map21
= isl_map_from_basic_map(
1830 isl_basic_map_apply_range(
1831 isl_basic_map_copy(bmap2
),
1832 isl_basic_map_copy(bmap1
)));
1833 subset
= isl_map_is_empty(map21
);
1837 isl_map_free(map21
);
1841 if (!isl_space_tuple_match(bmap1
->dim
, isl_dim_in
, bmap1
->dim
, isl_dim_out
) ||
1842 !isl_space_tuple_match(bmap2
->dim
, isl_dim_in
, bmap2
->dim
, isl_dim_out
)) {
1843 isl_map_free(map21
);
1847 map12
= isl_map_from_basic_map(
1848 isl_basic_map_apply_range(
1849 isl_basic_map_copy(bmap1
),
1850 isl_basic_map_copy(bmap2
)));
1852 subset
= isl_map_is_subset(map21
, map12
);
1854 isl_map_free(map12
);
1855 isl_map_free(map21
);
1860 return subset
< 0 ? -1 : !subset
;
1862 isl_map_free(map21
);
1866 /* Perform Tarjan's algorithm for computing the strongly connected components
1867 * in the graph with the disjuncts of "map" as vertices and with an
1868 * edge between any pair of disjuncts such that the first has
1869 * to be applied after the second.
1871 static int power_components_tarjan(struct basic_map_sort
*s
,
1872 __isl_keep isl_basic_map
**list
, int i
)
1876 s
->node
[i
].index
= s
->index
;
1877 s
->node
[i
].min_index
= s
->index
;
1878 s
->node
[i
].on_stack
= 1;
1880 s
->stack
[s
->sp
++] = i
;
1882 for (j
= s
->len
- 1; j
>= 0; --j
) {
1887 if (s
->node
[j
].index
>= 0 &&
1888 (!s
->node
[j
].on_stack
||
1889 s
->node
[j
].index
> s
->node
[i
].min_index
))
1892 f
= basic_map_follows(list
[i
], list
[j
], &s
->check_closed
);
1898 if (s
->node
[j
].index
< 0) {
1899 power_components_tarjan(s
, list
, j
);
1900 if (s
->node
[j
].min_index
< s
->node
[i
].min_index
)
1901 s
->node
[i
].min_index
= s
->node
[j
].min_index
;
1902 } else if (s
->node
[j
].index
< s
->node
[i
].min_index
)
1903 s
->node
[i
].min_index
= s
->node
[j
].index
;
1906 if (s
->node
[i
].index
!= s
->node
[i
].min_index
)
1910 j
= s
->stack
[--s
->sp
];
1911 s
->node
[j
].on_stack
= 0;
1912 s
->order
[s
->op
++] = j
;
1914 s
->order
[s
->op
++] = -1;
1919 /* Decompose the "len" basic relations in "list" into strongly connected
1922 static struct basic_map_sort
*basic_map_sort_init(isl_ctx
*ctx
, int len
,
1923 __isl_keep isl_basic_map
**list
)
1926 struct basic_map_sort
*s
= NULL
;
1928 s
= basic_map_sort_alloc(ctx
, len
);
1931 for (i
= len
- 1; i
>= 0; --i
) {
1932 if (s
->node
[i
].index
>= 0)
1934 if (power_components_tarjan(s
, list
, i
) < 0)
1940 basic_map_sort_free(s
);
1944 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1945 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1946 * construct a map that is an overapproximation of the map
1947 * that takes an element from the dom R \times Z to an
1948 * element from ran R \times Z, such that the first n coordinates of the
1949 * difference between them is a sum of differences between images
1950 * and pre-images in one of the R_i and such that the last coordinate
1951 * is equal to the number of steps taken.
1952 * If "project" is set, then these final coordinates are not included,
1953 * i.e., a relation of type Z^n -> Z^n is returned.
1956 * \Delta_i = { y - x | (x, y) in R_i }
1958 * then the constructed map is an overapproximation of
1960 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1961 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1962 * x in dom R and x + d in ran R }
1966 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1967 * d = (\sum_i k_i \delta_i) and
1968 * x in dom R and x + d in ran R }
1970 * if "project" is set.
1972 * We first split the map into strongly connected components, perform
1973 * the above on each component and then join the results in the correct
1974 * order, at each join also taking in the union of both arguments
1975 * to allow for paths that do not go through one of the two arguments.
1977 static __isl_give isl_map
*construct_power_components(__isl_take isl_space
*dim
,
1978 __isl_keep isl_map
*map
, int *exact
, int project
)
1981 struct isl_map
*path
= NULL
;
1982 struct basic_map_sort
*s
= NULL
;
1989 return floyd_warshall(dim
, map
, exact
, project
);
1991 s
= basic_map_sort_init(map
->ctx
, map
->n
, map
->p
);
1996 if (s
->check_closed
&& !exact
)
1997 exact
= &local_exact
;
2003 path
= isl_map_empty(isl_map_get_space(map
));
2005 path
= isl_map_empty(isl_space_copy(dim
));
2006 path
= anonymize(path
);
2008 struct isl_map
*comp
;
2009 isl_map
*path_comp
, *path_comb
;
2010 comp
= isl_map_alloc_space(isl_map_get_space(map
), n
, 0);
2011 while (s
->order
[i
] != -1) {
2012 comp
= isl_map_add_basic_map(comp
,
2013 isl_basic_map_copy(map
->p
[s
->order
[i
]]));
2017 path_comp
= floyd_warshall(isl_space_copy(dim
),
2018 comp
, exact
, project
);
2019 path_comp
= anonymize(path_comp
);
2020 path_comb
= isl_map_apply_range(isl_map_copy(path
),
2021 isl_map_copy(path_comp
));
2022 path
= isl_map_union(path
, path_comp
);
2023 path
= isl_map_union(path
, path_comb
);
2029 if (c
> 1 && s
->check_closed
&& !*exact
) {
2032 closed
= isl_map_is_transitively_closed(path
);
2036 basic_map_sort_free(s
);
2038 return floyd_warshall(dim
, map
, orig_exact
, project
);
2042 basic_map_sort_free(s
);
2043 isl_space_free(dim
);
2047 basic_map_sort_free(s
);
2048 isl_space_free(dim
);
2053 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
2054 * construct a map that is an overapproximation of the map
2055 * that takes an element from the space D to another
2056 * element from the same space, such that the difference between
2057 * them is a strictly positive sum of differences between images
2058 * and pre-images in one of the R_i.
2059 * The number of differences in the sum is equated to parameter "param".
2062 * \Delta_i = { y - x | (x, y) in R_i }
2064 * then the constructed map is an overapproximation of
2066 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2067 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
2070 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2071 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
2073 * if "project" is set.
2075 * If "project" is not set, then
2076 * we construct an extended mapping with an extra coordinate
2077 * that indicates the number of steps taken. In particular,
2078 * the difference in the last coordinate is equal to the number
2079 * of steps taken to move from a domain element to the corresponding
2082 static __isl_give isl_map
*construct_power(__isl_keep isl_map
*map
,
2083 int *exact
, int project
)
2085 struct isl_map
*app
= NULL
;
2086 isl_space
*dim
= NULL
;
2092 dim
= isl_map_get_space(map
);
2094 d
= isl_space_dim(dim
, isl_dim_in
);
2095 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
2096 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
2098 app
= construct_power_components(isl_space_copy(dim
), map
,
2101 isl_space_free(dim
);
2106 /* Compute the positive powers of "map", or an overapproximation.
2107 * If the result is exact, then *exact is set to 1.
2109 * If project is set, then we are actually interested in the transitive
2110 * closure, so we can use a more relaxed exactness check.
2111 * The lengths of the paths are also projected out instead of being
2112 * encoded as the difference between an extra pair of final coordinates.
2114 static __isl_give isl_map
*map_power(__isl_take isl_map
*map
,
2115 int *exact
, int project
)
2117 struct isl_map
*app
= NULL
;
2125 isl_assert(map
->ctx
,
2126 isl_map_dim(map
, isl_dim_in
) == isl_map_dim(map
, isl_dim_out
),
2129 app
= construct_power(map
, exact
, project
);
2139 /* Compute the positive powers of "map", or an overapproximation.
2140 * The result maps the exponent to a nested copy of the corresponding power.
2141 * If the result is exact, then *exact is set to 1.
2142 * map_power constructs an extended relation with the path lengths
2143 * encoded as the difference between the final coordinates.
2144 * In the final step, this difference is equated to an extra parameter
2145 * and made positive. The extra coordinates are subsequently projected out
2146 * and the parameter is turned into the domain of the result.
2148 __isl_give isl_map
*isl_map_power(__isl_take isl_map
*map
, int *exact
)
2150 isl_space
*target_dim
;
2159 d
= isl_map_dim(map
, isl_dim_in
);
2160 param
= isl_map_dim(map
, isl_dim_param
);
2162 map
= isl_map_compute_divs(map
);
2163 map
= isl_map_coalesce(map
);
2165 if (isl_map_plain_is_empty(map
)) {
2166 map
= isl_map_from_range(isl_map_wrap(map
));
2167 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
2168 map
= isl_map_set_dim_name(map
, isl_dim_in
, 0, "k");
2172 target_dim
= isl_map_get_space(map
);
2173 target_dim
= isl_space_from_range(isl_space_wrap(target_dim
));
2174 target_dim
= isl_space_add_dims(target_dim
, isl_dim_in
, 1);
2175 target_dim
= isl_space_set_dim_name(target_dim
, isl_dim_in
, 0, "k");
2177 map
= map_power(map
, exact
, 0);
2179 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2180 dim
= isl_map_get_space(map
);
2181 diff
= equate_parameter_to_length(dim
, param
);
2182 map
= isl_map_intersect(map
, diff
);
2183 map
= isl_map_project_out(map
, isl_dim_in
, d
, 1);
2184 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2185 map
= isl_map_from_range(isl_map_wrap(map
));
2186 map
= isl_map_move_dims(map
, isl_dim_in
, 0, isl_dim_param
, param
, 1);
2188 map
= isl_map_reset_space(map
, target_dim
);
2193 /* Compute a relation that maps each element in the range of the input
2194 * relation to the lengths of all paths composed of edges in the input
2195 * relation that end up in the given range element.
2196 * The result may be an overapproximation, in which case *exact is set to 0.
2197 * The resulting relation is very similar to the power relation.
2198 * The difference are that the domain has been projected out, the
2199 * range has become the domain and the exponent is the range instead
2202 __isl_give isl_map
*isl_map_reaching_path_lengths(__isl_take isl_map
*map
,
2213 d
= isl_map_dim(map
, isl_dim_in
);
2214 param
= isl_map_dim(map
, isl_dim_param
);
2216 map
= isl_map_compute_divs(map
);
2217 map
= isl_map_coalesce(map
);
2219 if (isl_map_plain_is_empty(map
)) {
2222 map
= isl_map_project_out(map
, isl_dim_out
, 0, d
);
2223 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
2227 map
= map_power(map
, exact
, 0);
2229 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2230 dim
= isl_map_get_space(map
);
2231 diff
= equate_parameter_to_length(dim
, param
);
2232 map
= isl_map_intersect(map
, diff
);
2233 map
= isl_map_project_out(map
, isl_dim_in
, 0, d
+ 1);
2234 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2235 map
= isl_map_reverse(map
);
2236 map
= isl_map_move_dims(map
, isl_dim_out
, 0, isl_dim_param
, param
, 1);
2241 /* Check whether equality i of bset is a pure stride constraint
2242 * on a single dimensions, i.e., of the form
2246 * with k a constant and e an existentially quantified variable.
2248 static int is_eq_stride(__isl_keep isl_basic_set
*bset
, int i
)
2259 if (!isl_int_is_zero(bset
->eq
[i
][0]))
2262 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
2263 d
= isl_basic_set_dim(bset
, isl_dim_set
);
2264 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
2266 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1, nparam
) != -1)
2268 pos1
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
, d
);
2271 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ pos1
+ 1,
2272 d
- pos1
- 1) != -1)
2275 pos2
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
, n_div
);
2278 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
+ pos2
+ 1,
2279 n_div
- pos2
- 1) != -1)
2281 if (!isl_int_is_one(bset
->eq
[i
][1 + nparam
+ pos1
]) &&
2282 !isl_int_is_negone(bset
->eq
[i
][1 + nparam
+ pos1
]))
2288 /* Given a map, compute the smallest superset of this map that is of the form
2290 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2292 * (where p ranges over the (non-parametric) dimensions),
2293 * compute the transitive closure of this map, i.e.,
2295 * { i -> j : exists k > 0:
2296 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2298 * and intersect domain and range of this transitive closure with
2299 * the given domain and range.
2301 * If with_id is set, then try to include as much of the identity mapping
2302 * as possible, by computing
2304 * { i -> j : exists k >= 0:
2305 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2307 * instead (i.e., allow k = 0).
2309 * In practice, we compute the difference set
2311 * delta = { j - i | i -> j in map },
2313 * look for stride constraint on the individual dimensions and compute
2314 * (constant) lower and upper bounds for each individual dimension,
2315 * adding a constraint for each bound not equal to infinity.
2317 static __isl_give isl_map
*box_closure_on_domain(__isl_take isl_map
*map
,
2318 __isl_take isl_set
*dom
, __isl_take isl_set
*ran
, int with_id
)
2327 isl_map
*app
= NULL
;
2328 isl_basic_set
*aff
= NULL
;
2329 isl_basic_map
*bmap
= NULL
;
2330 isl_vec
*obj
= NULL
;
2335 delta
= isl_map_deltas(isl_map_copy(map
));
2337 aff
= isl_set_affine_hull(isl_set_copy(delta
));
2340 dim
= isl_map_get_space(map
);
2341 d
= isl_space_dim(dim
, isl_dim_in
);
2342 nparam
= isl_space_dim(dim
, isl_dim_param
);
2343 total
= isl_space_dim(dim
, isl_dim_all
);
2344 bmap
= isl_basic_map_alloc_space(dim
,
2345 aff
->n_div
+ 1, aff
->n_div
, 2 * d
+ 1);
2346 for (i
= 0; i
< aff
->n_div
+ 1; ++i
) {
2347 k
= isl_basic_map_alloc_div(bmap
);
2350 isl_int_set_si(bmap
->div
[k
][0], 0);
2352 for (i
= 0; i
< aff
->n_eq
; ++i
) {
2353 if (!is_eq_stride(aff
, i
))
2355 k
= isl_basic_map_alloc_equality(bmap
);
2358 isl_seq_clr(bmap
->eq
[k
], 1 + nparam
);
2359 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ d
,
2360 aff
->eq
[i
] + 1 + nparam
, d
);
2361 isl_seq_neg(bmap
->eq
[k
] + 1 + nparam
,
2362 aff
->eq
[i
] + 1 + nparam
, d
);
2363 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ 2 * d
,
2364 aff
->eq
[i
] + 1 + nparam
+ d
, aff
->n_div
);
2365 isl_int_set_si(bmap
->eq
[k
][1 + total
+ aff
->n_div
], 0);
2367 obj
= isl_vec_alloc(map
->ctx
, 1 + nparam
+ d
);
2370 isl_seq_clr(obj
->el
, 1 + nparam
+ d
);
2371 for (i
= 0; i
< d
; ++ i
) {
2372 enum isl_lp_result res
;
2374 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 1);
2376 res
= isl_set_solve_lp(delta
, 0, obj
->el
, map
->ctx
->one
, &opt
,
2378 if (res
== isl_lp_error
)
2380 if (res
== isl_lp_ok
) {
2381 k
= isl_basic_map_alloc_inequality(bmap
);
2384 isl_seq_clr(bmap
->ineq
[k
],
2385 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2386 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], -1);
2387 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], 1);
2388 isl_int_neg(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2391 res
= isl_set_solve_lp(delta
, 1, obj
->el
, map
->ctx
->one
, &opt
,
2393 if (res
== isl_lp_error
)
2395 if (res
== isl_lp_ok
) {
2396 k
= isl_basic_map_alloc_inequality(bmap
);
2399 isl_seq_clr(bmap
->ineq
[k
],
2400 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2401 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], 1);
2402 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], -1);
2403 isl_int_set(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2406 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 0);
2408 k
= isl_basic_map_alloc_inequality(bmap
);
2411 isl_seq_clr(bmap
->ineq
[k
],
2412 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2414 isl_int_set_si(bmap
->ineq
[k
][0], -1);
2415 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], 1);
2417 app
= isl_map_from_domain_and_range(dom
, ran
);
2420 isl_basic_set_free(aff
);
2422 bmap
= isl_basic_map_finalize(bmap
);
2423 isl_set_free(delta
);
2426 map
= isl_map_from_basic_map(bmap
);
2427 map
= isl_map_intersect(map
, app
);
2432 isl_basic_map_free(bmap
);
2433 isl_basic_set_free(aff
);
2437 isl_set_free(delta
);
2442 /* Given a map, compute the smallest superset of this map that is of the form
2444 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2446 * (where p ranges over the (non-parametric) dimensions),
2447 * compute the transitive closure of this map, i.e.,
2449 * { i -> j : exists k > 0:
2450 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2452 * and intersect domain and range of this transitive closure with
2453 * domain and range of the original map.
2455 static __isl_give isl_map
*box_closure(__isl_take isl_map
*map
)
2460 domain
= isl_map_domain(isl_map_copy(map
));
2461 domain
= isl_set_coalesce(domain
);
2462 range
= isl_map_range(isl_map_copy(map
));
2463 range
= isl_set_coalesce(range
);
2465 return box_closure_on_domain(map
, domain
, range
, 0);
2468 /* Given a map, compute the smallest superset of this map that is of the form
2470 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2472 * (where p ranges over the (non-parametric) dimensions),
2473 * compute the transitive and partially reflexive closure of this map, i.e.,
2475 * { i -> j : exists k >= 0:
2476 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2478 * and intersect domain and range of this transitive closure with
2481 static __isl_give isl_map
*box_closure_with_identity(__isl_take isl_map
*map
,
2482 __isl_take isl_set
*dom
)
2484 return box_closure_on_domain(map
, dom
, isl_set_copy(dom
), 1);
2487 /* Check whether app is the transitive closure of map.
2488 * In particular, check that app is acyclic and, if so,
2491 * app \subset (map \cup (map \circ app))
2493 static int check_exactness_omega(__isl_keep isl_map
*map
,
2494 __isl_keep isl_map
*app
)
2498 int is_empty
, is_exact
;
2502 delta
= isl_map_deltas(isl_map_copy(app
));
2503 d
= isl_set_dim(delta
, isl_dim_set
);
2504 for (i
= 0; i
< d
; ++i
)
2505 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
2506 is_empty
= isl_set_is_empty(delta
);
2507 isl_set_free(delta
);
2513 test
= isl_map_apply_range(isl_map_copy(app
), isl_map_copy(map
));
2514 test
= isl_map_union(test
, isl_map_copy(map
));
2515 is_exact
= isl_map_is_subset(app
, test
);
2521 /* Check if basic map M_i can be combined with all the other
2522 * basic maps such that
2526 * can be computed as
2528 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2530 * In particular, check if we can compute a compact representation
2533 * M_i^* \circ M_j \circ M_i^*
2536 * Let M_i^? be an extension of M_i^+ that allows paths
2537 * of length zero, i.e., the result of box_closure(., 1).
2538 * The criterion, as proposed by Kelly et al., is that
2539 * id = M_i^? - M_i^+ can be represented as a basic map
2542 * id \circ M_j \circ id = M_j
2546 * If this function returns 1, then tc and qc are set to
2547 * M_i^+ and M_i^?, respectively.
2549 static int can_be_split_off(__isl_keep isl_map
*map
, int i
,
2550 __isl_give isl_map
**tc
, __isl_give isl_map
**qc
)
2552 isl_map
*map_i
, *id
= NULL
;
2559 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
2560 isl_map_range(isl_map_copy(map
)));
2561 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
2565 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
2566 *tc
= box_closure(isl_map_copy(map_i
));
2567 *qc
= box_closure_with_identity(map_i
, C
);
2568 id
= isl_map_subtract(isl_map_copy(*qc
), isl_map_copy(*tc
));
2572 if (id
->n
!= 1 || (*qc
)->n
!= 1)
2575 for (j
= 0; j
< map
->n
; ++j
) {
2576 isl_map
*map_j
, *test
;
2581 map_j
= isl_map_from_basic_map(
2582 isl_basic_map_copy(map
->p
[j
]));
2583 test
= isl_map_apply_range(isl_map_copy(id
),
2584 isl_map_copy(map_j
));
2585 test
= isl_map_apply_range(test
, isl_map_copy(id
));
2586 is_ok
= isl_map_is_equal(test
, map_j
);
2587 isl_map_free(map_j
);
2615 static __isl_give isl_map
*box_closure_with_check(__isl_take isl_map
*map
,
2620 app
= box_closure(isl_map_copy(map
));
2622 *exact
= check_exactness_omega(map
, app
);
2628 /* Compute an overapproximation of the transitive closure of "map"
2629 * using a variation of the algorithm from
2630 * "Transitive Closure of Infinite Graphs and its Applications"
2633 * We first check whether we can can split of any basic map M_i and
2640 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2642 * using a recursive call on the remaining map.
2644 * If not, we simply call box_closure on the whole map.
2646 static __isl_give isl_map
*transitive_closure_omega(__isl_take isl_map
*map
,
2656 return box_closure_with_check(map
, exact
);
2658 for (i
= 0; i
< map
->n
; ++i
) {
2661 ok
= can_be_split_off(map
, i
, &tc
, &qc
);
2667 app
= isl_map_alloc_space(isl_map_get_space(map
), map
->n
- 1, 0);
2669 for (j
= 0; j
< map
->n
; ++j
) {
2672 app
= isl_map_add_basic_map(app
,
2673 isl_basic_map_copy(map
->p
[j
]));
2676 app
= isl_map_apply_range(isl_map_copy(qc
), app
);
2677 app
= isl_map_apply_range(app
, qc
);
2679 app
= isl_map_union(tc
, transitive_closure_omega(app
, NULL
));
2680 exact_i
= check_exactness_omega(map
, app
);
2692 return box_closure_with_check(map
, exact
);
2698 /* Compute the transitive closure of "map", or an overapproximation.
2699 * If the result is exact, then *exact is set to 1.
2700 * Simply use map_power to compute the powers of map, but tell
2701 * it to project out the lengths of the paths instead of equating
2702 * the length to a parameter.
2704 __isl_give isl_map
*isl_map_transitive_closure(__isl_take isl_map
*map
,
2707 isl_space
*target_dim
;
2713 if (map
->ctx
->opt
->closure
== ISL_CLOSURE_BOX
)
2714 return transitive_closure_omega(map
, exact
);
2716 map
= isl_map_compute_divs(map
);
2717 map
= isl_map_coalesce(map
);
2718 closed
= isl_map_is_transitively_closed(map
);
2727 target_dim
= isl_map_get_space(map
);
2728 map
= map_power(map
, exact
, 1);
2729 map
= isl_map_reset_space(map
, target_dim
);
2737 static int inc_count(__isl_take isl_map
*map
, void *user
)
2748 static int collect_basic_map(__isl_take isl_map
*map
, void *user
)
2751 isl_basic_map
***next
= user
;
2753 for (i
= 0; i
< map
->n
; ++i
) {
2754 **next
= isl_basic_map_copy(map
->p
[i
]);
2767 /* Perform Floyd-Warshall on the given list of basic relations.
2768 * The basic relations may live in different dimensions,
2769 * but basic relations that get assigned to the diagonal of the
2770 * grid have domains and ranges of the same dimension and so
2771 * the standard algorithm can be used because the nested transitive
2772 * closures are only applied to diagonal elements and because all
2773 * compositions are peformed on relations with compatible domains and ranges.
2775 static __isl_give isl_union_map
*union_floyd_warshall_on_list(isl_ctx
*ctx
,
2776 __isl_keep isl_basic_map
**list
, int n
, int *exact
)
2781 isl_set
**set
= NULL
;
2782 isl_map
***grid
= NULL
;
2785 group
= setup_groups(ctx
, list
, n
, &set
, &n_group
);
2789 grid
= isl_calloc_array(ctx
, isl_map
**, n_group
);
2792 for (i
= 0; i
< n_group
; ++i
) {
2793 grid
[i
] = isl_calloc_array(ctx
, isl_map
*, n_group
);
2796 for (j
= 0; j
< n_group
; ++j
) {
2797 isl_space
*dim1
, *dim2
, *dim
;
2798 dim1
= isl_space_reverse(isl_set_get_space(set
[i
]));
2799 dim2
= isl_set_get_space(set
[j
]);
2800 dim
= isl_space_join(dim1
, dim2
);
2801 grid
[i
][j
] = isl_map_empty(dim
);
2805 for (k
= 0; k
< n
; ++k
) {
2807 j
= group
[2 * k
+ 1];
2808 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
2809 isl_map_from_basic_map(
2810 isl_basic_map_copy(list
[k
])));
2813 floyd_warshall_iterate(grid
, n_group
, exact
);
2815 app
= isl_union_map_empty(isl_map_get_space(grid
[0][0]));
2817 for (i
= 0; i
< n_group
; ++i
) {
2818 for (j
= 0; j
< n_group
; ++j
)
2819 app
= isl_union_map_add_map(app
, grid
[i
][j
]);
2824 for (i
= 0; i
< 2 * n
; ++i
)
2825 isl_set_free(set
[i
]);
2832 for (i
= 0; i
< n_group
; ++i
) {
2835 for (j
= 0; j
< n_group
; ++j
)
2836 isl_map_free(grid
[i
][j
]);
2841 for (i
= 0; i
< 2 * n
; ++i
)
2842 isl_set_free(set
[i
]);
2849 /* Perform Floyd-Warshall on the given union relation.
2850 * The implementation is very similar to that for non-unions.
2851 * The main difference is that it is applied unconditionally.
2852 * We first extract a list of basic maps from the union map
2853 * and then perform the algorithm on this list.
2855 static __isl_give isl_union_map
*union_floyd_warshall(
2856 __isl_take isl_union_map
*umap
, int *exact
)
2860 isl_basic_map
**list
= NULL
;
2861 isl_basic_map
**next
;
2865 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2868 ctx
= isl_union_map_get_ctx(umap
);
2869 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2874 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2877 res
= union_floyd_warshall_on_list(ctx
, list
, n
, exact
);
2880 for (i
= 0; i
< n
; ++i
)
2881 isl_basic_map_free(list
[i
]);
2885 isl_union_map_free(umap
);
2889 for (i
= 0; i
< n
; ++i
)
2890 isl_basic_map_free(list
[i
]);
2893 isl_union_map_free(umap
);
2897 /* Decompose the give union relation into strongly connected components.
2898 * The implementation is essentially the same as that of
2899 * construct_power_components with the major difference that all
2900 * operations are performed on union maps.
2902 static __isl_give isl_union_map
*union_components(
2903 __isl_take isl_union_map
*umap
, int *exact
)
2908 isl_basic_map
**list
;
2909 isl_basic_map
**next
;
2910 isl_union_map
*path
= NULL
;
2911 struct basic_map_sort
*s
= NULL
;
2916 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2920 return union_floyd_warshall(umap
, exact
);
2922 ctx
= isl_union_map_get_ctx(umap
);
2923 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2928 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2931 s
= basic_map_sort_init(ctx
, n
, list
);
2938 path
= isl_union_map_empty(isl_union_map_get_space(umap
));
2940 isl_union_map
*comp
;
2941 isl_union_map
*path_comp
, *path_comb
;
2942 comp
= isl_union_map_empty(isl_union_map_get_space(umap
));
2943 while (s
->order
[i
] != -1) {
2944 comp
= isl_union_map_add_map(comp
,
2945 isl_map_from_basic_map(
2946 isl_basic_map_copy(list
[s
->order
[i
]])));
2950 path_comp
= union_floyd_warshall(comp
, exact
);
2951 path_comb
= isl_union_map_apply_range(isl_union_map_copy(path
),
2952 isl_union_map_copy(path_comp
));
2953 path
= isl_union_map_union(path
, path_comp
);
2954 path
= isl_union_map_union(path
, path_comb
);
2959 if (c
> 1 && s
->check_closed
&& !*exact
) {
2962 closed
= isl_union_map_is_transitively_closed(path
);
2968 basic_map_sort_free(s
);
2970 for (i
= 0; i
< n
; ++i
)
2971 isl_basic_map_free(list
[i
]);
2975 isl_union_map_free(path
);
2976 return union_floyd_warshall(umap
, exact
);
2979 isl_union_map_free(umap
);
2983 basic_map_sort_free(s
);
2985 for (i
= 0; i
< n
; ++i
)
2986 isl_basic_map_free(list
[i
]);
2989 isl_union_map_free(umap
);
2990 isl_union_map_free(path
);
2994 /* Compute the transitive closure of "umap", or an overapproximation.
2995 * If the result is exact, then *exact is set to 1.
2997 __isl_give isl_union_map
*isl_union_map_transitive_closure(
2998 __isl_take isl_union_map
*umap
, int *exact
)
3008 umap
= isl_union_map_compute_divs(umap
);
3009 umap
= isl_union_map_coalesce(umap
);
3010 closed
= isl_union_map_is_transitively_closed(umap
);
3015 umap
= union_components(umap
, exact
);
3018 isl_union_map_free(umap
);
3022 struct isl_union_power
{
3027 static int power(__isl_take isl_map
*map
, void *user
)
3029 struct isl_union_power
*up
= user
;
3031 map
= isl_map_power(map
, up
->exact
);
3032 up
->pow
= isl_union_map_from_map(map
);
3037 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
3039 static __isl_give isl_union_map
*increment(__isl_take isl_space
*dim
)
3042 isl_basic_map
*bmap
;
3044 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
3045 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
3046 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 0);
3047 k
= isl_basic_map_alloc_equality(bmap
);
3050 isl_seq_clr(bmap
->eq
[k
], isl_basic_map_total_dim(bmap
));
3051 isl_int_set_si(bmap
->eq
[k
][0], 1);
3052 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_in
)], 1);
3053 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_out
)], -1);
3054 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
3056 isl_basic_map_free(bmap
);
3060 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
3062 static __isl_give isl_union_map
*deltas_map(__isl_take isl_space
*dim
)
3064 isl_basic_map
*bmap
;
3066 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
3067 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
3068 bmap
= isl_basic_map_universe(dim
);
3069 bmap
= isl_basic_map_deltas_map(bmap
);
3071 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
3074 /* Compute the positive powers of "map", or an overapproximation.
3075 * The result maps the exponent to a nested copy of the corresponding power.
3076 * If the result is exact, then *exact is set to 1.
3078 __isl_give isl_union_map
*isl_union_map_power(__isl_take isl_union_map
*umap
,
3087 n
= isl_union_map_n_map(umap
);
3091 struct isl_union_power up
= { NULL
, exact
};
3092 isl_union_map_foreach_map(umap
, &power
, &up
);
3093 isl_union_map_free(umap
);
3096 inc
= increment(isl_union_map_get_space(umap
));
3097 umap
= isl_union_map_product(inc
, umap
);
3098 umap
= isl_union_map_transitive_closure(umap
, exact
);
3099 umap
= isl_union_map_zip(umap
);
3100 dm
= deltas_map(isl_union_map_get_space(umap
));
3101 umap
= isl_union_map_apply_domain(umap
, dm
);