isl_convex_hull.c: extend: check hull argument
[isl.git] / isl_tab_pip.c
blob9e0e8d3adaf862af1a8f2e9874ce81c5c26d129c
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_map_private.h"
11 #include "isl_seq.h"
12 #include "isl_tab.h"
13 #include "isl_sample.h"
16 * The implementation of parametric integer linear programming in this file
17 * was inspired by the paper "Parametric Integer Programming" and the
18 * report "Solving systems of affine (in)equalities" by Paul Feautrier
19 * (and others).
21 * The strategy used for obtaining a feasible solution is different
22 * from the one used in isl_tab.c. In particular, in isl_tab.c,
23 * upon finding a constraint that is not yet satisfied, we pivot
24 * in a row that increases the constant term of row holding the
25 * constraint, making sure the sample solution remains feasible
26 * for all the constraints it already satisfied.
27 * Here, we always pivot in the row holding the constraint,
28 * choosing a column that induces the lexicographically smallest
29 * increment to the sample solution.
31 * By starting out from a sample value that is lexicographically
32 * smaller than any integer point in the problem space, the first
33 * feasible integer sample point we find will also be the lexicographically
34 * smallest. If all variables can be assumed to be non-negative,
35 * then the initial sample value may be chosen equal to zero.
36 * However, we will not make this assumption. Instead, we apply
37 * the "big parameter" trick. Any variable x is then not directly
38 * used in the tableau, but instead it its represented by another
39 * variable x' = M + x, where M is an arbitrarily large (positive)
40 * value. x' is therefore always non-negative, whatever the value of x.
41 * Taking as initial smaple value x' = 0 corresponds to x = -M,
42 * which is always smaller than any possible value of x.
44 * The big parameter trick is used in the main tableau and
45 * also in the context tableau if isl_context_lex is used.
46 * In this case, each tableaus has its own big parameter.
47 * Before doing any real work, we check if all the parameters
48 * happen to be non-negative. If so, we drop the column corresponding
49 * to M from the initial context tableau.
50 * If isl_context_gbr is used, then the big parameter trick is only
51 * used in the main tableau.
54 struct isl_context;
55 struct isl_context_op {
56 /* detect nonnegative parameters in context and mark them in tab */
57 struct isl_tab *(*detect_nonnegative_parameters)(
58 struct isl_context *context, struct isl_tab *tab);
59 /* return temporary reference to basic set representation of context */
60 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
61 /* return temporary reference to tableau representation of context */
62 struct isl_tab *(*peek_tab)(struct isl_context *context);
63 /* add equality; check is 1 if eq may not be valid;
64 * update is 1 if we may want to call ineq_sign on context later.
66 void (*add_eq)(struct isl_context *context, isl_int *eq,
67 int check, int update);
68 /* add inequality; check is 1 if ineq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
72 int check, int update);
73 /* check sign of ineq based on previous information.
74 * strict is 1 if saturation should be treated as a positive sign.
76 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
77 isl_int *ineq, int strict);
78 /* check if inequality maintains feasibility */
79 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
80 /* return index of a div that corresponds to "div" */
81 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
82 struct isl_vec *div);
83 /* add div "div" to context and return index and non-negativity */
84 int (*add_div)(struct isl_context *context, struct isl_vec *div,
85 int *nonneg);
86 int (*detect_equalities)(struct isl_context *context,
87 struct isl_tab *tab);
88 /* return row index of "best" split */
89 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
90 /* check if context has already been determined to be empty */
91 int (*is_empty)(struct isl_context *context);
92 /* check if context is still usable */
93 int (*is_ok)(struct isl_context *context);
94 /* save a copy/snapshot of context */
95 void *(*save)(struct isl_context *context);
96 /* restore saved context */
97 void (*restore)(struct isl_context *context, void *);
98 /* invalidate context */
99 void (*invalidate)(struct isl_context *context);
100 /* free context */
101 void (*free)(struct isl_context *context);
104 struct isl_context {
105 struct isl_context_op *op;
108 struct isl_context_lex {
109 struct isl_context context;
110 struct isl_tab *tab;
113 struct isl_partial_sol {
114 int level;
115 struct isl_basic_set *dom;
116 struct isl_mat *M;
118 struct isl_partial_sol *next;
121 struct isl_sol;
122 struct isl_sol_callback {
123 struct isl_tab_callback callback;
124 struct isl_sol *sol;
127 /* isl_sol is an interface for constructing a solution to
128 * a parametric integer linear programming problem.
129 * Every time the algorithm reaches a state where a solution
130 * can be read off from the tableau (including cases where the tableau
131 * is empty), the function "add" is called on the isl_sol passed
132 * to find_solutions_main.
134 * The context tableau is owned by isl_sol and is updated incrementally.
136 * There are currently two implementations of this interface,
137 * isl_sol_map, which simply collects the solutions in an isl_map
138 * and (optionally) the parts of the context where there is no solution
139 * in an isl_set, and
140 * isl_sol_for, which calls a user-defined function for each part of
141 * the solution.
143 struct isl_sol {
144 int error;
145 int rational;
146 int level;
147 int max;
148 int n_out;
149 struct isl_context *context;
150 struct isl_partial_sol *partial;
151 void (*add)(struct isl_sol *sol,
152 struct isl_basic_set *dom, struct isl_mat *M);
153 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
154 void (*free)(struct isl_sol *sol);
155 struct isl_sol_callback dec_level;
158 static void sol_free(struct isl_sol *sol)
160 struct isl_partial_sol *partial, *next;
161 if (!sol)
162 return;
163 for (partial = sol->partial; partial; partial = next) {
164 next = partial->next;
165 isl_basic_set_free(partial->dom);
166 isl_mat_free(partial->M);
167 free(partial);
169 sol->free(sol);
172 /* Push a partial solution represented by a domain and mapping M
173 * onto the stack of partial solutions.
175 static void sol_push_sol(struct isl_sol *sol,
176 struct isl_basic_set *dom, struct isl_mat *M)
178 struct isl_partial_sol *partial;
180 if (sol->error || !dom)
181 goto error;
183 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
184 if (!partial)
185 goto error;
187 partial->level = sol->level;
188 partial->dom = dom;
189 partial->M = M;
190 partial->next = sol->partial;
192 sol->partial = partial;
194 return;
195 error:
196 isl_basic_set_free(dom);
197 sol->error = 1;
200 /* Pop one partial solution from the partial solution stack and
201 * pass it on to sol->add or sol->add_empty.
203 static void sol_pop_one(struct isl_sol *sol)
205 struct isl_partial_sol *partial;
207 partial = sol->partial;
208 sol->partial = partial->next;
210 if (partial->M)
211 sol->add(sol, partial->dom, partial->M);
212 else
213 sol->add_empty(sol, partial->dom);
214 free(partial);
217 /* Return a fresh copy of the domain represented by the context tableau.
219 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
221 struct isl_basic_set *bset;
223 if (sol->error)
224 return NULL;
226 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
227 bset = isl_basic_set_update_from_tab(bset,
228 sol->context->op->peek_tab(sol->context));
230 return bset;
233 /* Check whether two partial solutions have the same mapping, where n_div
234 * is the number of divs that the two partial solutions have in common.
236 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
237 unsigned n_div)
239 int i;
240 unsigned dim;
242 if (!s1->M != !s2->M)
243 return 0;
244 if (!s1->M)
245 return 1;
247 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
249 for (i = 0; i < s1->M->n_row; ++i) {
250 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
251 s1->M->n_col-1-dim-n_div) != -1)
252 return 0;
253 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
254 s2->M->n_col-1-dim-n_div) != -1)
255 return 0;
256 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
257 return 0;
259 return 1;
262 /* Pop all solutions from the partial solution stack that were pushed onto
263 * the stack at levels that are deeper than the current level.
264 * If the two topmost elements on the stack have the same level
265 * and represent the same solution, then their domains are combined.
266 * This combined domain is the same as the current context domain
267 * as sol_pop is called each time we move back to a higher level.
269 static void sol_pop(struct isl_sol *sol)
271 struct isl_partial_sol *partial;
272 unsigned n_div;
274 if (sol->error)
275 return;
277 if (sol->level == 0) {
278 for (partial = sol->partial; partial; partial = sol->partial)
279 sol_pop_one(sol);
280 return;
283 partial = sol->partial;
284 if (!partial)
285 return;
287 if (partial->level <= sol->level)
288 return;
290 if (partial->next && partial->next->level == partial->level) {
291 n_div = isl_basic_set_dim(
292 sol->context->op->peek_basic_set(sol->context),
293 isl_dim_div);
295 if (!same_solution(partial, partial->next, n_div)) {
296 sol_pop_one(sol);
297 sol_pop_one(sol);
298 } else {
299 struct isl_basic_set *bset;
301 bset = sol_domain(sol);
303 isl_basic_set_free(partial->next->dom);
304 partial->next->dom = bset;
305 partial->next->level = sol->level;
307 sol->partial = partial->next;
308 isl_basic_set_free(partial->dom);
309 isl_mat_free(partial->M);
310 free(partial);
312 } else
313 sol_pop_one(sol);
316 static void sol_dec_level(struct isl_sol *sol)
318 if (sol->error)
319 return;
321 sol->level--;
323 sol_pop(sol);
326 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
328 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
330 sol_dec_level(callback->sol);
332 return callback->sol->error ? -1 : 0;
335 /* Move down to next level and push callback onto context tableau
336 * to decrease the level again when it gets rolled back across
337 * the current state. That is, dec_level will be called with
338 * the context tableau in the same state as it is when inc_level
339 * is called.
341 static void sol_inc_level(struct isl_sol *sol)
343 struct isl_tab *tab;
345 if (sol->error)
346 return;
348 sol->level++;
349 tab = sol->context->op->peek_tab(sol->context);
350 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
351 sol->error = 1;
354 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
356 int i;
358 if (isl_int_is_one(m))
359 return;
361 for (i = 0; i < n_row; ++i)
362 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
365 /* Add the solution identified by the tableau and the context tableau.
367 * The layout of the variables is as follows.
368 * tab->n_var is equal to the total number of variables in the input
369 * map (including divs that were copied from the context)
370 * + the number of extra divs constructed
371 * Of these, the first tab->n_param and the last tab->n_div variables
372 * correspond to the variables in the context, i.e.,
373 * tab->n_param + tab->n_div = context_tab->n_var
374 * tab->n_param is equal to the number of parameters and input
375 * dimensions in the input map
376 * tab->n_div is equal to the number of divs in the context
378 * If there is no solution, then call add_empty with a basic set
379 * that corresponds to the context tableau. (If add_empty is NULL,
380 * then do nothing).
382 * If there is a solution, then first construct a matrix that maps
383 * all dimensions of the context to the output variables, i.e.,
384 * the output dimensions in the input map.
385 * The divs in the input map (if any) that do not correspond to any
386 * div in the context do not appear in the solution.
387 * The algorithm will make sure that they have an integer value,
388 * but these values themselves are of no interest.
389 * We have to be careful not to drop or rearrange any divs in the
390 * context because that would change the meaning of the matrix.
392 * To extract the value of the output variables, it should be noted
393 * that we always use a big parameter M in the main tableau and so
394 * the variable stored in this tableau is not an output variable x itself, but
395 * x' = M + x (in case of minimization)
396 * or
397 * x' = M - x (in case of maximization)
398 * If x' appears in a column, then its optimal value is zero,
399 * which means that the optimal value of x is an unbounded number
400 * (-M for minimization and M for maximization).
401 * We currently assume that the output dimensions in the original map
402 * are bounded, so this cannot occur.
403 * Similarly, when x' appears in a row, then the coefficient of M in that
404 * row is necessarily 1.
405 * If the row in the tableau represents
406 * d x' = c + d M + e(y)
407 * then, in case of minimization, the corresponding row in the matrix
408 * will be
409 * a c + a e(y)
410 * with a d = m, the (updated) common denominator of the matrix.
411 * In case of maximization, the row will be
412 * -a c - a e(y)
414 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
416 struct isl_basic_set *bset = NULL;
417 struct isl_mat *mat = NULL;
418 unsigned off;
419 int row, i;
420 isl_int m;
422 if (sol->error || !tab)
423 goto error;
425 if (tab->empty && !sol->add_empty)
426 return;
428 bset = sol_domain(sol);
430 if (tab->empty) {
431 sol_push_sol(sol, bset, NULL);
432 return;
435 off = 2 + tab->M;
437 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
438 1 + tab->n_param + tab->n_div);
439 if (!mat)
440 goto error;
442 isl_int_init(m);
444 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
445 isl_int_set_si(mat->row[0][0], 1);
446 for (row = 0; row < sol->n_out; ++row) {
447 int i = tab->n_param + row;
448 int r, j;
450 isl_seq_clr(mat->row[1 + row], mat->n_col);
451 if (!tab->var[i].is_row) {
452 /* no unbounded */
453 isl_assert(mat->ctx, !tab->M, goto error2);
454 continue;
457 r = tab->var[i].index;
458 /* no unbounded */
459 if (tab->M)
460 isl_assert(mat->ctx, isl_int_eq(tab->mat->row[r][2],
461 tab->mat->row[r][0]),
462 goto error2);
463 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
464 isl_int_divexact(m, tab->mat->row[r][0], m);
465 scale_rows(mat, m, 1 + row);
466 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
467 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
468 for (j = 0; j < tab->n_param; ++j) {
469 int col;
470 if (tab->var[j].is_row)
471 continue;
472 col = tab->var[j].index;
473 isl_int_mul(mat->row[1 + row][1 + j], m,
474 tab->mat->row[r][off + col]);
476 for (j = 0; j < tab->n_div; ++j) {
477 int col;
478 if (tab->var[tab->n_var - tab->n_div+j].is_row)
479 continue;
480 col = tab->var[tab->n_var - tab->n_div+j].index;
481 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
482 tab->mat->row[r][off + col]);
484 if (sol->max)
485 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
486 mat->n_col);
489 isl_int_clear(m);
491 sol_push_sol(sol, bset, mat);
492 return;
493 error2:
494 isl_int_clear(m);
495 error:
496 isl_basic_set_free(bset);
497 isl_mat_free(mat);
498 sol_free(sol);
501 struct isl_sol_map {
502 struct isl_sol sol;
503 struct isl_map *map;
504 struct isl_set *empty;
507 static void sol_map_free(struct isl_sol_map *sol_map)
509 if (sol_map->sol.context)
510 sol_map->sol.context->op->free(sol_map->sol.context);
511 isl_map_free(sol_map->map);
512 isl_set_free(sol_map->empty);
513 free(sol_map);
516 static void sol_map_free_wrap(struct isl_sol *sol)
518 sol_map_free((struct isl_sol_map *)sol);
521 /* This function is called for parts of the context where there is
522 * no solution, with "bset" corresponding to the context tableau.
523 * Simply add the basic set to the set "empty".
525 static void sol_map_add_empty(struct isl_sol_map *sol,
526 struct isl_basic_set *bset)
528 if (!bset)
529 goto error;
530 isl_assert(bset->ctx, sol->empty, goto error);
532 sol->empty = isl_set_grow(sol->empty, 1);
533 bset = isl_basic_set_simplify(bset);
534 bset = isl_basic_set_finalize(bset);
535 sol->empty = isl_set_add(sol->empty, isl_basic_set_copy(bset));
536 if (!sol->empty)
537 goto error;
538 isl_basic_set_free(bset);
539 return;
540 error:
541 isl_basic_set_free(bset);
542 sol->sol.error = 1;
545 static void sol_map_add_empty_wrap(struct isl_sol *sol,
546 struct isl_basic_set *bset)
548 sol_map_add_empty((struct isl_sol_map *)sol, bset);
551 /* Given a basic map "dom" that represents the context and an affine
552 * matrix "M" that maps the dimensions of the context to the
553 * output variables, construct a basic map with the same parameters
554 * and divs as the context, the dimensions of the context as input
555 * dimensions and a number of output dimensions that is equal to
556 * the number of output dimensions in the input map.
558 * The constraints and divs of the context are simply copied
559 * from "dom". For each row
560 * x = c + e(y)
561 * an equality
562 * c + e(y) - d x = 0
563 * is added, with d the common denominator of M.
565 static void sol_map_add(struct isl_sol_map *sol,
566 struct isl_basic_set *dom, struct isl_mat *M)
568 int i;
569 struct isl_basic_map *bmap = NULL;
570 isl_basic_set *context_bset;
571 unsigned n_eq;
572 unsigned n_ineq;
573 unsigned nparam;
574 unsigned total;
575 unsigned n_div;
576 unsigned n_out;
578 if (sol->sol.error || !dom || !M)
579 goto error;
581 n_out = sol->sol.n_out;
582 n_eq = dom->n_eq + n_out;
583 n_ineq = dom->n_ineq;
584 n_div = dom->n_div;
585 nparam = isl_basic_set_total_dim(dom) - n_div;
586 total = isl_map_dim(sol->map, isl_dim_all);
587 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
588 n_div, n_eq, 2 * n_div + n_ineq);
589 if (!bmap)
590 goto error;
591 if (sol->sol.rational)
592 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
593 for (i = 0; i < dom->n_div; ++i) {
594 int k = isl_basic_map_alloc_div(bmap);
595 if (k < 0)
596 goto error;
597 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
598 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
599 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
600 dom->div[i] + 1 + 1 + nparam, i);
602 for (i = 0; i < dom->n_eq; ++i) {
603 int k = isl_basic_map_alloc_equality(bmap);
604 if (k < 0)
605 goto error;
606 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
607 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
608 isl_seq_cpy(bmap->eq[k] + 1 + total,
609 dom->eq[i] + 1 + nparam, n_div);
611 for (i = 0; i < dom->n_ineq; ++i) {
612 int k = isl_basic_map_alloc_inequality(bmap);
613 if (k < 0)
614 goto error;
615 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
616 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
617 isl_seq_cpy(bmap->ineq[k] + 1 + total,
618 dom->ineq[i] + 1 + nparam, n_div);
620 for (i = 0; i < M->n_row - 1; ++i) {
621 int k = isl_basic_map_alloc_equality(bmap);
622 if (k < 0)
623 goto error;
624 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
625 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
626 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
627 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
628 M->row[1 + i] + 1 + nparam, n_div);
630 bmap = isl_basic_map_simplify(bmap);
631 bmap = isl_basic_map_finalize(bmap);
632 sol->map = isl_map_grow(sol->map, 1);
633 sol->map = isl_map_add(sol->map, bmap);
634 if (!sol->map)
635 goto error;
636 isl_basic_set_free(dom);
637 isl_mat_free(M);
638 return;
639 error:
640 isl_basic_set_free(dom);
641 isl_mat_free(M);
642 isl_basic_map_free(bmap);
643 sol->sol.error = 1;
646 static void sol_map_add_wrap(struct isl_sol *sol,
647 struct isl_basic_set *dom, struct isl_mat *M)
649 sol_map_add((struct isl_sol_map *)sol, dom, M);
653 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
654 * i.e., the constant term and the coefficients of all variables that
655 * appear in the context tableau.
656 * Note that the coefficient of the big parameter M is NOT copied.
657 * The context tableau may not have a big parameter and even when it
658 * does, it is a different big parameter.
660 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
662 int i;
663 unsigned off = 2 + tab->M;
665 isl_int_set(line[0], tab->mat->row[row][1]);
666 for (i = 0; i < tab->n_param; ++i) {
667 if (tab->var[i].is_row)
668 isl_int_set_si(line[1 + i], 0);
669 else {
670 int col = tab->var[i].index;
671 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
674 for (i = 0; i < tab->n_div; ++i) {
675 if (tab->var[tab->n_var - tab->n_div + i].is_row)
676 isl_int_set_si(line[1 + tab->n_param + i], 0);
677 else {
678 int col = tab->var[tab->n_var - tab->n_div + i].index;
679 isl_int_set(line[1 + tab->n_param + i],
680 tab->mat->row[row][off + col]);
685 /* Check if rows "row1" and "row2" have identical "parametric constants",
686 * as explained above.
687 * In this case, we also insist that the coefficients of the big parameter
688 * be the same as the values of the constants will only be the same
689 * if these coefficients are also the same.
691 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
693 int i;
694 unsigned off = 2 + tab->M;
696 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
697 return 0;
699 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
700 tab->mat->row[row2][2]))
701 return 0;
703 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
704 int pos = i < tab->n_param ? i :
705 tab->n_var - tab->n_div + i - tab->n_param;
706 int col;
708 if (tab->var[pos].is_row)
709 continue;
710 col = tab->var[pos].index;
711 if (isl_int_ne(tab->mat->row[row1][off + col],
712 tab->mat->row[row2][off + col]))
713 return 0;
715 return 1;
718 /* Return an inequality that expresses that the "parametric constant"
719 * should be non-negative.
720 * This function is only called when the coefficient of the big parameter
721 * is equal to zero.
723 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
725 struct isl_vec *ineq;
727 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
728 if (!ineq)
729 return NULL;
731 get_row_parameter_line(tab, row, ineq->el);
732 if (ineq)
733 ineq = isl_vec_normalize(ineq);
735 return ineq;
738 /* Return a integer division for use in a parametric cut based on the given row.
739 * In particular, let the parametric constant of the row be
741 * \sum_i a_i y_i
743 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
744 * The div returned is equal to
746 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
748 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
750 struct isl_vec *div;
752 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
753 if (!div)
754 return NULL;
756 isl_int_set(div->el[0], tab->mat->row[row][0]);
757 get_row_parameter_line(tab, row, div->el + 1);
758 div = isl_vec_normalize(div);
759 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
760 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
762 return div;
765 /* Return a integer division for use in transferring an integrality constraint
766 * to the context.
767 * In particular, let the parametric constant of the row be
769 * \sum_i a_i y_i
771 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
772 * The the returned div is equal to
774 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
776 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
778 struct isl_vec *div;
780 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
781 if (!div)
782 return NULL;
784 isl_int_set(div->el[0], tab->mat->row[row][0]);
785 get_row_parameter_line(tab, row, div->el + 1);
786 div = isl_vec_normalize(div);
787 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
789 return div;
792 /* Construct and return an inequality that expresses an upper bound
793 * on the given div.
794 * In particular, if the div is given by
796 * d = floor(e/m)
798 * then the inequality expresses
800 * m d <= e
802 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
804 unsigned total;
805 unsigned div_pos;
806 struct isl_vec *ineq;
808 if (!bset)
809 return NULL;
811 total = isl_basic_set_total_dim(bset);
812 div_pos = 1 + total - bset->n_div + div;
814 ineq = isl_vec_alloc(bset->ctx, 1 + total);
815 if (!ineq)
816 return NULL;
818 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
819 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
820 return ineq;
823 /* Given a row in the tableau and a div that was created
824 * using get_row_split_div and that been constrained to equality, i.e.,
826 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
828 * replace the expression "\sum_i {a_i} y_i" in the row by d,
829 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
830 * The coefficients of the non-parameters in the tableau have been
831 * verified to be integral. We can therefore simply replace coefficient b
832 * by floor(b). For the coefficients of the parameters we have
833 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
834 * floor(b) = b.
836 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
838 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
839 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
841 isl_int_set_si(tab->mat->row[row][0], 1);
843 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
844 int drow = tab->var[tab->n_var - tab->n_div + div].index;
846 isl_assert(tab->mat->ctx,
847 isl_int_is_one(tab->mat->row[drow][0]), goto error);
848 isl_seq_combine(tab->mat->row[row] + 1,
849 tab->mat->ctx->one, tab->mat->row[row] + 1,
850 tab->mat->ctx->one, tab->mat->row[drow] + 1,
851 1 + tab->M + tab->n_col);
852 } else {
853 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
855 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
858 return tab;
859 error:
860 isl_tab_free(tab);
861 return NULL;
864 /* Check if the (parametric) constant of the given row is obviously
865 * negative, meaning that we don't need to consult the context tableau.
866 * If there is a big parameter and its coefficient is non-zero,
867 * then this coefficient determines the outcome.
868 * Otherwise, we check whether the constant is negative and
869 * all non-zero coefficients of parameters are negative and
870 * belong to non-negative parameters.
872 static int is_obviously_neg(struct isl_tab *tab, int row)
874 int i;
875 int col;
876 unsigned off = 2 + tab->M;
878 if (tab->M) {
879 if (isl_int_is_pos(tab->mat->row[row][2]))
880 return 0;
881 if (isl_int_is_neg(tab->mat->row[row][2]))
882 return 1;
885 if (isl_int_is_nonneg(tab->mat->row[row][1]))
886 return 0;
887 for (i = 0; i < tab->n_param; ++i) {
888 /* Eliminated parameter */
889 if (tab->var[i].is_row)
890 continue;
891 col = tab->var[i].index;
892 if (isl_int_is_zero(tab->mat->row[row][off + col]))
893 continue;
894 if (!tab->var[i].is_nonneg)
895 return 0;
896 if (isl_int_is_pos(tab->mat->row[row][off + col]))
897 return 0;
899 for (i = 0; i < tab->n_div; ++i) {
900 if (tab->var[tab->n_var - tab->n_div + i].is_row)
901 continue;
902 col = tab->var[tab->n_var - tab->n_div + i].index;
903 if (isl_int_is_zero(tab->mat->row[row][off + col]))
904 continue;
905 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
906 return 0;
907 if (isl_int_is_pos(tab->mat->row[row][off + col]))
908 return 0;
910 return 1;
913 /* Check if the (parametric) constant of the given row is obviously
914 * non-negative, meaning that we don't need to consult the context tableau.
915 * If there is a big parameter and its coefficient is non-zero,
916 * then this coefficient determines the outcome.
917 * Otherwise, we check whether the constant is non-negative and
918 * all non-zero coefficients of parameters are positive and
919 * belong to non-negative parameters.
921 static int is_obviously_nonneg(struct isl_tab *tab, int row)
923 int i;
924 int col;
925 unsigned off = 2 + tab->M;
927 if (tab->M) {
928 if (isl_int_is_pos(tab->mat->row[row][2]))
929 return 1;
930 if (isl_int_is_neg(tab->mat->row[row][2]))
931 return 0;
934 if (isl_int_is_neg(tab->mat->row[row][1]))
935 return 0;
936 for (i = 0; i < tab->n_param; ++i) {
937 /* Eliminated parameter */
938 if (tab->var[i].is_row)
939 continue;
940 col = tab->var[i].index;
941 if (isl_int_is_zero(tab->mat->row[row][off + col]))
942 continue;
943 if (!tab->var[i].is_nonneg)
944 return 0;
945 if (isl_int_is_neg(tab->mat->row[row][off + col]))
946 return 0;
948 for (i = 0; i < tab->n_div; ++i) {
949 if (tab->var[tab->n_var - tab->n_div + i].is_row)
950 continue;
951 col = tab->var[tab->n_var - tab->n_div + i].index;
952 if (isl_int_is_zero(tab->mat->row[row][off + col]))
953 continue;
954 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
955 return 0;
956 if (isl_int_is_neg(tab->mat->row[row][off + col]))
957 return 0;
959 return 1;
962 /* Given a row r and two columns, return the column that would
963 * lead to the lexicographically smallest increment in the sample
964 * solution when leaving the basis in favor of the row.
965 * Pivoting with column c will increment the sample value by a non-negative
966 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
967 * corresponding to the non-parametric variables.
968 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
969 * with all other entries in this virtual row equal to zero.
970 * If variable v appears in a row, then a_{v,c} is the element in column c
971 * of that row.
973 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
974 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
975 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
976 * increment. Otherwise, it's c2.
978 static int lexmin_col_pair(struct isl_tab *tab,
979 int row, int col1, int col2, isl_int tmp)
981 int i;
982 isl_int *tr;
984 tr = tab->mat->row[row] + 2 + tab->M;
986 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
987 int s1, s2;
988 isl_int *r;
990 if (!tab->var[i].is_row) {
991 if (tab->var[i].index == col1)
992 return col2;
993 if (tab->var[i].index == col2)
994 return col1;
995 continue;
998 if (tab->var[i].index == row)
999 continue;
1001 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1002 s1 = isl_int_sgn(r[col1]);
1003 s2 = isl_int_sgn(r[col2]);
1004 if (s1 == 0 && s2 == 0)
1005 continue;
1006 if (s1 < s2)
1007 return col1;
1008 if (s2 < s1)
1009 return col2;
1011 isl_int_mul(tmp, r[col2], tr[col1]);
1012 isl_int_submul(tmp, r[col1], tr[col2]);
1013 if (isl_int_is_pos(tmp))
1014 return col1;
1015 if (isl_int_is_neg(tmp))
1016 return col2;
1018 return -1;
1021 /* Given a row in the tableau, find and return the column that would
1022 * result in the lexicographically smallest, but positive, increment
1023 * in the sample point.
1024 * If there is no such column, then return tab->n_col.
1025 * If anything goes wrong, return -1.
1027 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1029 int j;
1030 int col = tab->n_col;
1031 isl_int *tr;
1032 isl_int tmp;
1034 tr = tab->mat->row[row] + 2 + tab->M;
1036 isl_int_init(tmp);
1038 for (j = tab->n_dead; j < tab->n_col; ++j) {
1039 if (tab->col_var[j] >= 0 &&
1040 (tab->col_var[j] < tab->n_param ||
1041 tab->col_var[j] >= tab->n_var - tab->n_div))
1042 continue;
1044 if (!isl_int_is_pos(tr[j]))
1045 continue;
1047 if (col == tab->n_col)
1048 col = j;
1049 else
1050 col = lexmin_col_pair(tab, row, col, j, tmp);
1051 isl_assert(tab->mat->ctx, col >= 0, goto error);
1054 isl_int_clear(tmp);
1055 return col;
1056 error:
1057 isl_int_clear(tmp);
1058 return -1;
1061 /* Return the first known violated constraint, i.e., a non-negative
1062 * contraint that currently has an either obviously negative value
1063 * or a previously determined to be negative value.
1065 * If any constraint has a negative coefficient for the big parameter,
1066 * if any, then we return one of these first.
1068 static int first_neg(struct isl_tab *tab)
1070 int row;
1072 if (tab->M)
1073 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1074 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1075 continue;
1076 if (isl_int_is_neg(tab->mat->row[row][2]))
1077 return row;
1079 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1080 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1081 continue;
1082 if (tab->row_sign) {
1083 if (tab->row_sign[row] == 0 &&
1084 is_obviously_neg(tab, row))
1085 tab->row_sign[row] = isl_tab_row_neg;
1086 if (tab->row_sign[row] != isl_tab_row_neg)
1087 continue;
1088 } else if (!is_obviously_neg(tab, row))
1089 continue;
1090 return row;
1092 return -1;
1095 /* Resolve all known or obviously violated constraints through pivoting.
1096 * In particular, as long as we can find any violated constraint, we
1097 * look for a pivoting column that would result in the lexicographicallly
1098 * smallest increment in the sample point. If there is no such column
1099 * then the tableau is infeasible.
1101 static struct isl_tab *restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1102 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
1104 int row, col;
1106 if (!tab)
1107 return NULL;
1108 if (tab->empty)
1109 return tab;
1110 while ((row = first_neg(tab)) != -1) {
1111 col = lexmin_pivot_col(tab, row);
1112 if (col >= tab->n_col) {
1113 if (isl_tab_mark_empty(tab) < 0)
1114 goto error;
1115 return tab;
1117 if (col < 0)
1118 goto error;
1119 if (isl_tab_pivot(tab, row, col) < 0)
1120 goto error;
1122 return tab;
1123 error:
1124 isl_tab_free(tab);
1125 return NULL;
1128 /* Given a row that represents an equality, look for an appropriate
1129 * pivoting column.
1130 * In particular, if there are any non-zero coefficients among
1131 * the non-parameter variables, then we take the last of these
1132 * variables. Eliminating this variable in terms of the other
1133 * variables and/or parameters does not influence the property
1134 * that all column in the initial tableau are lexicographically
1135 * positive. The row corresponding to the eliminated variable
1136 * will only have non-zero entries below the diagonal of the
1137 * initial tableau. That is, we transform
1139 * I I
1140 * 1 into a
1141 * I I
1143 * If there is no such non-parameter variable, then we are dealing with
1144 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1145 * for elimination. This will ensure that the eliminated parameter
1146 * always has an integer value whenever all the other parameters are integral.
1147 * If there is no such parameter then we return -1.
1149 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1151 unsigned off = 2 + tab->M;
1152 int i;
1154 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1155 int col;
1156 if (tab->var[i].is_row)
1157 continue;
1158 col = tab->var[i].index;
1159 if (col <= tab->n_dead)
1160 continue;
1161 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1162 return col;
1164 for (i = tab->n_dead; i < tab->n_col; ++i) {
1165 if (isl_int_is_one(tab->mat->row[row][off + i]))
1166 return i;
1167 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1168 return i;
1170 return -1;
1173 /* Add an equality that is known to be valid to the tableau.
1174 * We first check if we can eliminate a variable or a parameter.
1175 * If not, we add the equality as two inequalities.
1176 * In this case, the equality was a pure parameter equality and there
1177 * is no need to resolve any constraint violations.
1179 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1181 int i;
1182 int r;
1184 if (!tab)
1185 return NULL;
1186 r = isl_tab_add_row(tab, eq);
1187 if (r < 0)
1188 goto error;
1190 r = tab->con[r].index;
1191 i = last_var_col_or_int_par_col(tab, r);
1192 if (i < 0) {
1193 tab->con[r].is_nonneg = 1;
1194 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1195 goto error;
1196 isl_seq_neg(eq, eq, 1 + tab->n_var);
1197 r = isl_tab_add_row(tab, eq);
1198 if (r < 0)
1199 goto error;
1200 tab->con[r].is_nonneg = 1;
1201 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1202 goto error;
1203 } else {
1204 if (isl_tab_pivot(tab, r, i) < 0)
1205 goto error;
1206 if (isl_tab_kill_col(tab, i) < 0)
1207 goto error;
1208 tab->n_eq++;
1210 tab = restore_lexmin(tab);
1213 return tab;
1214 error:
1215 isl_tab_free(tab);
1216 return NULL;
1219 /* Check if the given row is a pure constant.
1221 static int is_constant(struct isl_tab *tab, int row)
1223 unsigned off = 2 + tab->M;
1225 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1226 tab->n_col - tab->n_dead) == -1;
1229 /* Add an equality that may or may not be valid to the tableau.
1230 * If the resulting row is a pure constant, then it must be zero.
1231 * Otherwise, the resulting tableau is empty.
1233 * If the row is not a pure constant, then we add two inequalities,
1234 * each time checking that they can be satisfied.
1235 * In the end we try to use one of the two constraints to eliminate
1236 * a column.
1238 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1239 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1241 int r1, r2;
1242 int row;
1243 struct isl_tab_undo *snap;
1245 if (!tab)
1246 return NULL;
1247 snap = isl_tab_snap(tab);
1248 r1 = isl_tab_add_row(tab, eq);
1249 if (r1 < 0)
1250 goto error;
1251 tab->con[r1].is_nonneg = 1;
1252 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1253 goto error;
1255 row = tab->con[r1].index;
1256 if (is_constant(tab, row)) {
1257 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1258 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1259 if (isl_tab_mark_empty(tab) < 0)
1260 goto error;
1261 return tab;
1263 if (isl_tab_rollback(tab, snap) < 0)
1264 goto error;
1265 return tab;
1268 tab = restore_lexmin(tab);
1269 if (!tab || tab->empty)
1270 return tab;
1272 isl_seq_neg(eq, eq, 1 + tab->n_var);
1274 r2 = isl_tab_add_row(tab, eq);
1275 if (r2 < 0)
1276 goto error;
1277 tab->con[r2].is_nonneg = 1;
1278 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1279 goto error;
1281 tab = restore_lexmin(tab);
1282 if (!tab || tab->empty)
1283 return tab;
1285 if (!tab->con[r1].is_row) {
1286 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1287 goto error;
1288 } else if (!tab->con[r2].is_row) {
1289 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1290 goto error;
1291 } else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
1292 unsigned off = 2 + tab->M;
1293 int i;
1294 int row = tab->con[r1].index;
1295 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
1296 tab->n_col - tab->n_dead);
1297 if (i != -1) {
1298 if (isl_tab_pivot(tab, row, tab->n_dead + i) < 0)
1299 goto error;
1300 if (isl_tab_kill_col(tab, tab->n_dead + i) < 0)
1301 goto error;
1305 if (tab->bmap) {
1306 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1307 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1308 goto error;
1309 isl_seq_neg(eq, eq, 1 + tab->n_var);
1310 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1311 isl_seq_neg(eq, eq, 1 + tab->n_var);
1312 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1313 goto error;
1314 if (!tab->bmap)
1315 goto error;
1318 return tab;
1319 error:
1320 isl_tab_free(tab);
1321 return NULL;
1324 /* Add an inequality to the tableau, resolving violations using
1325 * restore_lexmin.
1327 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1329 int r;
1331 if (!tab)
1332 return NULL;
1333 if (tab->bmap) {
1334 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1335 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1336 goto error;
1337 if (!tab->bmap)
1338 goto error;
1340 r = isl_tab_add_row(tab, ineq);
1341 if (r < 0)
1342 goto error;
1343 tab->con[r].is_nonneg = 1;
1344 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1345 goto error;
1346 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1347 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1348 goto error;
1349 return tab;
1352 tab = restore_lexmin(tab);
1353 if (tab && !tab->empty && tab->con[r].is_row &&
1354 isl_tab_row_is_redundant(tab, tab->con[r].index))
1355 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1356 goto error;
1357 return tab;
1358 error:
1359 isl_tab_free(tab);
1360 return NULL;
1363 /* Check if the coefficients of the parameters are all integral.
1365 static int integer_parameter(struct isl_tab *tab, int row)
1367 int i;
1368 int col;
1369 unsigned off = 2 + tab->M;
1371 for (i = 0; i < tab->n_param; ++i) {
1372 /* Eliminated parameter */
1373 if (tab->var[i].is_row)
1374 continue;
1375 col = tab->var[i].index;
1376 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1377 tab->mat->row[row][0]))
1378 return 0;
1380 for (i = 0; i < tab->n_div; ++i) {
1381 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1382 continue;
1383 col = tab->var[tab->n_var - tab->n_div + i].index;
1384 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1385 tab->mat->row[row][0]))
1386 return 0;
1388 return 1;
1391 /* Check if the coefficients of the non-parameter variables are all integral.
1393 static int integer_variable(struct isl_tab *tab, int row)
1395 int i;
1396 unsigned off = 2 + tab->M;
1398 for (i = tab->n_dead; i < tab->n_col; ++i) {
1399 if (tab->col_var[i] >= 0 &&
1400 (tab->col_var[i] < tab->n_param ||
1401 tab->col_var[i] >= tab->n_var - tab->n_div))
1402 continue;
1403 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1404 tab->mat->row[row][0]))
1405 return 0;
1407 return 1;
1410 /* Check if the constant term is integral.
1412 static int integer_constant(struct isl_tab *tab, int row)
1414 return isl_int_is_divisible_by(tab->mat->row[row][1],
1415 tab->mat->row[row][0]);
1418 #define I_CST 1 << 0
1419 #define I_PAR 1 << 1
1420 #define I_VAR 1 << 2
1422 /* Check for first (non-parameter) variable that is non-integer and
1423 * therefore requires a cut.
1424 * For parametric tableaus, there are three parts in a row,
1425 * the constant, the coefficients of the parameters and the rest.
1426 * For each part, we check whether the coefficients in that part
1427 * are all integral and if so, set the corresponding flag in *f.
1428 * If the constant and the parameter part are integral, then the
1429 * current sample value is integral and no cut is required
1430 * (irrespective of whether the variable part is integral).
1432 static int first_non_integer(struct isl_tab *tab, int *f)
1434 int i;
1436 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1437 int flags = 0;
1438 int row;
1439 if (!tab->var[i].is_row)
1440 continue;
1441 row = tab->var[i].index;
1442 if (integer_constant(tab, row))
1443 ISL_FL_SET(flags, I_CST);
1444 if (integer_parameter(tab, row))
1445 ISL_FL_SET(flags, I_PAR);
1446 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1447 continue;
1448 if (integer_variable(tab, row))
1449 ISL_FL_SET(flags, I_VAR);
1450 *f = flags;
1451 return row;
1453 return -1;
1456 /* Add a (non-parametric) cut to cut away the non-integral sample
1457 * value of the given row.
1459 * If the row is given by
1461 * m r = f + \sum_i a_i y_i
1463 * then the cut is
1465 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1467 * The big parameter, if any, is ignored, since it is assumed to be big
1468 * enough to be divisible by any integer.
1469 * If the tableau is actually a parametric tableau, then this function
1470 * is only called when all coefficients of the parameters are integral.
1471 * The cut therefore has zero coefficients for the parameters.
1473 * The current value is known to be negative, so row_sign, if it
1474 * exists, is set accordingly.
1476 * Return the row of the cut or -1.
1478 static int add_cut(struct isl_tab *tab, int row)
1480 int i;
1481 int r;
1482 isl_int *r_row;
1483 unsigned off = 2 + tab->M;
1485 if (isl_tab_extend_cons(tab, 1) < 0)
1486 return -1;
1487 r = isl_tab_allocate_con(tab);
1488 if (r < 0)
1489 return -1;
1491 r_row = tab->mat->row[tab->con[r].index];
1492 isl_int_set(r_row[0], tab->mat->row[row][0]);
1493 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1494 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1495 isl_int_neg(r_row[1], r_row[1]);
1496 if (tab->M)
1497 isl_int_set_si(r_row[2], 0);
1498 for (i = 0; i < tab->n_col; ++i)
1499 isl_int_fdiv_r(r_row[off + i],
1500 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1502 tab->con[r].is_nonneg = 1;
1503 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1504 return -1;
1505 if (tab->row_sign)
1506 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1508 return tab->con[r].index;
1511 /* Given a non-parametric tableau, add cuts until an integer
1512 * sample point is obtained or until the tableau is determined
1513 * to be integer infeasible.
1514 * As long as there is any non-integer value in the sample point,
1515 * we add an appropriate cut, if possible and resolve the violated
1516 * cut constraint using restore_lexmin.
1517 * If one of the corresponding rows is equal to an integral
1518 * combination of variables/constraints plus a non-integral constant,
1519 * then there is no way to obtain an integer point an we return
1520 * a tableau that is marked empty.
1522 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1524 int row;
1525 int flags;
1527 if (!tab)
1528 return NULL;
1529 if (tab->empty)
1530 return tab;
1532 while ((row = first_non_integer(tab, &flags)) != -1) {
1533 if (ISL_FL_ISSET(flags, I_VAR)) {
1534 if (isl_tab_mark_empty(tab) < 0)
1535 goto error;
1536 return tab;
1538 row = add_cut(tab, row);
1539 if (row < 0)
1540 goto error;
1541 tab = restore_lexmin(tab);
1542 if (!tab || tab->empty)
1543 break;
1545 return tab;
1546 error:
1547 isl_tab_free(tab);
1548 return NULL;
1551 /* Check whether all the currently active samples also satisfy the inequality
1552 * "ineq" (treated as an equality if eq is set).
1553 * Remove those samples that do not.
1555 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1557 int i;
1558 isl_int v;
1560 if (!tab)
1561 return NULL;
1563 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1564 isl_assert(tab->mat->ctx, tab->samples, goto error);
1565 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1567 isl_int_init(v);
1568 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1569 int sgn;
1570 isl_seq_inner_product(ineq, tab->samples->row[i],
1571 1 + tab->n_var, &v);
1572 sgn = isl_int_sgn(v);
1573 if (eq ? (sgn == 0) : (sgn >= 0))
1574 continue;
1575 tab = isl_tab_drop_sample(tab, i);
1576 if (!tab)
1577 break;
1579 isl_int_clear(v);
1581 return tab;
1582 error:
1583 isl_tab_free(tab);
1584 return NULL;
1587 /* Check whether the sample value of the tableau is finite,
1588 * i.e., either the tableau does not use a big parameter, or
1589 * all values of the variables are equal to the big parameter plus
1590 * some constant. This constant is the actual sample value.
1592 static int sample_is_finite(struct isl_tab *tab)
1594 int i;
1596 if (!tab->M)
1597 return 1;
1599 for (i = 0; i < tab->n_var; ++i) {
1600 int row;
1601 if (!tab->var[i].is_row)
1602 return 0;
1603 row = tab->var[i].index;
1604 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1605 return 0;
1607 return 1;
1610 /* Check if the context tableau of sol has any integer points.
1611 * Leave tab in empty state if no integer point can be found.
1612 * If an integer point can be found and if moreover it is finite,
1613 * then it is added to the list of sample values.
1615 * This function is only called when none of the currently active sample
1616 * values satisfies the most recently added constraint.
1618 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1620 struct isl_tab_undo *snap;
1621 int feasible;
1623 if (!tab)
1624 return NULL;
1626 snap = isl_tab_snap(tab);
1627 if (isl_tab_push_basis(tab) < 0)
1628 goto error;
1630 tab = cut_to_integer_lexmin(tab);
1631 if (!tab)
1632 goto error;
1634 if (!tab->empty && sample_is_finite(tab)) {
1635 struct isl_vec *sample;
1637 sample = isl_tab_get_sample_value(tab);
1639 tab = isl_tab_add_sample(tab, sample);
1642 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1643 goto error;
1645 return tab;
1646 error:
1647 isl_tab_free(tab);
1648 return NULL;
1651 /* Check if any of the currently active sample values satisfies
1652 * the inequality "ineq" (an equality if eq is set).
1654 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1656 int i;
1657 isl_int v;
1659 if (!tab)
1660 return -1;
1662 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1663 isl_assert(tab->mat->ctx, tab->samples, return -1);
1664 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1666 isl_int_init(v);
1667 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1668 int sgn;
1669 isl_seq_inner_product(ineq, tab->samples->row[i],
1670 1 + tab->n_var, &v);
1671 sgn = isl_int_sgn(v);
1672 if (eq ? (sgn == 0) : (sgn >= 0))
1673 break;
1675 isl_int_clear(v);
1677 return i < tab->n_sample;
1680 /* For a div d = floor(f/m), add the constraints
1682 * f - m d >= 0
1683 * -(f-(m-1)) + m d >= 0
1685 * Note that the second constraint is the negation of
1687 * f - m d >= m
1689 static void add_div_constraints(struct isl_context *context, unsigned div)
1691 unsigned total;
1692 unsigned div_pos;
1693 struct isl_vec *ineq;
1694 struct isl_basic_set *bset;
1696 bset = context->op->peek_basic_set(context);
1697 if (!bset)
1698 goto error;
1700 total = isl_basic_set_total_dim(bset);
1701 div_pos = 1 + total - bset->n_div + div;
1703 ineq = ineq_for_div(bset, div);
1704 if (!ineq)
1705 goto error;
1707 context->op->add_ineq(context, ineq->el, 0, 0);
1709 isl_seq_neg(ineq->el, bset->div[div] + 1, 1 + total);
1710 isl_int_set(ineq->el[div_pos], bset->div[div][0]);
1711 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
1712 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1714 context->op->add_ineq(context, ineq->el, 0, 0);
1716 isl_vec_free(ineq);
1718 return;
1719 error:
1720 context->op->invalidate(context);
1723 /* Add a div specifed by "div" to the tableau "tab" and return
1724 * the index of the new div. *nonneg is set to 1 if the div
1725 * is obviously non-negative.
1727 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1728 int *nonneg)
1730 int i;
1731 int r;
1732 int k;
1733 struct isl_mat *samples;
1735 for (i = 0; i < tab->n_var; ++i) {
1736 if (isl_int_is_zero(div->el[2 + i]))
1737 continue;
1738 if (!tab->var[i].is_nonneg)
1739 break;
1741 *nonneg = i == tab->n_var;
1743 if (isl_tab_extend_cons(tab, 3) < 0)
1744 return -1;
1745 if (isl_tab_extend_vars(tab, 1) < 0)
1746 return -1;
1747 r = isl_tab_allocate_var(tab);
1748 if (r < 0)
1749 return -1;
1750 if (*nonneg)
1751 tab->var[r].is_nonneg = 1;
1752 tab->var[r].frozen = 1;
1754 samples = isl_mat_extend(tab->samples,
1755 tab->n_sample, 1 + tab->n_var);
1756 tab->samples = samples;
1757 if (!samples)
1758 return -1;
1759 for (i = tab->n_outside; i < samples->n_row; ++i) {
1760 isl_seq_inner_product(div->el + 1, samples->row[i],
1761 div->size - 1, &samples->row[i][samples->n_col - 1]);
1762 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1763 samples->row[i][samples->n_col - 1], div->el[0]);
1766 tab->bmap = isl_basic_map_extend_dim(tab->bmap,
1767 isl_basic_map_get_dim(tab->bmap), 1, 0, 2);
1768 k = isl_basic_map_alloc_div(tab->bmap);
1769 if (k < 0)
1770 return -1;
1771 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
1772 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
1773 return -1;
1775 return k;
1778 /* Add a div specified by "div" to both the main tableau and
1779 * the context tableau. In case of the main tableau, we only
1780 * need to add an extra div. In the context tableau, we also
1781 * need to express the meaning of the div.
1782 * Return the index of the div or -1 if anything went wrong.
1784 static int add_div(struct isl_tab *tab, struct isl_context *context,
1785 struct isl_vec *div)
1787 int r;
1788 int k;
1789 int nonneg;
1791 k = context->op->add_div(context, div, &nonneg);
1792 if (k < 0)
1793 goto error;
1795 add_div_constraints(context, k);
1796 if (!context->op->is_ok(context))
1797 goto error;
1799 if (isl_tab_extend_vars(tab, 1) < 0)
1800 goto error;
1801 r = isl_tab_allocate_var(tab);
1802 if (r < 0)
1803 goto error;
1804 if (nonneg)
1805 tab->var[r].is_nonneg = 1;
1806 tab->var[r].frozen = 1;
1807 tab->n_div++;
1809 return tab->n_div - 1;
1810 error:
1811 context->op->invalidate(context);
1812 return -1;
1815 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1817 int i;
1818 unsigned total = isl_basic_map_total_dim(tab->bmap);
1820 for (i = 0; i < tab->bmap->n_div; ++i) {
1821 if (isl_int_ne(tab->bmap->div[i][0], denom))
1822 continue;
1823 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, total))
1824 continue;
1825 return i;
1827 return -1;
1830 /* Return the index of a div that corresponds to "div".
1831 * We first check if we already have such a div and if not, we create one.
1833 static int get_div(struct isl_tab *tab, struct isl_context *context,
1834 struct isl_vec *div)
1836 int d;
1837 struct isl_tab *context_tab = context->op->peek_tab(context);
1839 if (!context_tab)
1840 return -1;
1842 d = find_div(context_tab, div->el + 1, div->el[0]);
1843 if (d != -1)
1844 return d;
1846 return add_div(tab, context, div);
1849 /* Add a parametric cut to cut away the non-integral sample value
1850 * of the give row.
1851 * Let a_i be the coefficients of the constant term and the parameters
1852 * and let b_i be the coefficients of the variables or constraints
1853 * in basis of the tableau.
1854 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1856 * The cut is expressed as
1858 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1860 * If q did not already exist in the context tableau, then it is added first.
1861 * If q is in a column of the main tableau then the "+ q" can be accomplished
1862 * by setting the corresponding entry to the denominator of the constraint.
1863 * If q happens to be in a row of the main tableau, then the corresponding
1864 * row needs to be added instead (taking care of the denominators).
1865 * Note that this is very unlikely, but perhaps not entirely impossible.
1867 * The current value of the cut is known to be negative (or at least
1868 * non-positive), so row_sign is set accordingly.
1870 * Return the row of the cut or -1.
1872 static int add_parametric_cut(struct isl_tab *tab, int row,
1873 struct isl_context *context)
1875 struct isl_vec *div;
1876 int d;
1877 int i;
1878 int r;
1879 isl_int *r_row;
1880 int col;
1881 int n;
1882 unsigned off = 2 + tab->M;
1884 if (!context)
1885 return -1;
1887 div = get_row_parameter_div(tab, row);
1888 if (!div)
1889 return -1;
1891 n = tab->n_div;
1892 d = context->op->get_div(context, tab, div);
1893 if (d < 0)
1894 return -1;
1896 if (isl_tab_extend_cons(tab, 1) < 0)
1897 return -1;
1898 r = isl_tab_allocate_con(tab);
1899 if (r < 0)
1900 return -1;
1902 r_row = tab->mat->row[tab->con[r].index];
1903 isl_int_set(r_row[0], tab->mat->row[row][0]);
1904 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1905 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1906 isl_int_neg(r_row[1], r_row[1]);
1907 if (tab->M)
1908 isl_int_set_si(r_row[2], 0);
1909 for (i = 0; i < tab->n_param; ++i) {
1910 if (tab->var[i].is_row)
1911 continue;
1912 col = tab->var[i].index;
1913 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1914 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1915 tab->mat->row[row][0]);
1916 isl_int_neg(r_row[off + col], r_row[off + col]);
1918 for (i = 0; i < tab->n_div; ++i) {
1919 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1920 continue;
1921 col = tab->var[tab->n_var - tab->n_div + i].index;
1922 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1923 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1924 tab->mat->row[row][0]);
1925 isl_int_neg(r_row[off + col], r_row[off + col]);
1927 for (i = 0; i < tab->n_col; ++i) {
1928 if (tab->col_var[i] >= 0 &&
1929 (tab->col_var[i] < tab->n_param ||
1930 tab->col_var[i] >= tab->n_var - tab->n_div))
1931 continue;
1932 isl_int_fdiv_r(r_row[off + i],
1933 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1935 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1936 isl_int gcd;
1937 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1938 isl_int_init(gcd);
1939 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1940 isl_int_divexact(r_row[0], r_row[0], gcd);
1941 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1942 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1943 r_row[0], tab->mat->row[d_row] + 1,
1944 off - 1 + tab->n_col);
1945 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1946 isl_int_clear(gcd);
1947 } else {
1948 col = tab->var[tab->n_var - tab->n_div + d].index;
1949 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1952 tab->con[r].is_nonneg = 1;
1953 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1954 return -1;
1955 if (tab->row_sign)
1956 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1958 isl_vec_free(div);
1960 row = tab->con[r].index;
1962 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1963 return -1;
1965 return row;
1968 /* Construct a tableau for bmap that can be used for computing
1969 * the lexicographic minimum (or maximum) of bmap.
1970 * If not NULL, then dom is the domain where the minimum
1971 * should be computed. In this case, we set up a parametric
1972 * tableau with row signs (initialized to "unknown").
1973 * If M is set, then the tableau will use a big parameter.
1974 * If max is set, then a maximum should be computed instead of a minimum.
1975 * This means that for each variable x, the tableau will contain the variable
1976 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1977 * of the variables in all constraints are negated prior to adding them
1978 * to the tableau.
1980 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
1981 struct isl_basic_set *dom, unsigned M, int max)
1983 int i;
1984 struct isl_tab *tab;
1986 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
1987 isl_basic_map_total_dim(bmap), M);
1988 if (!tab)
1989 return NULL;
1991 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1992 if (dom) {
1993 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
1994 tab->n_div = dom->n_div;
1995 tab->row_sign = isl_calloc_array(bmap->ctx,
1996 enum isl_tab_row_sign, tab->mat->n_row);
1997 if (!tab->row_sign)
1998 goto error;
2000 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2001 if (isl_tab_mark_empty(tab) < 0)
2002 goto error;
2003 return tab;
2006 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2007 tab->var[i].is_nonneg = 1;
2008 tab->var[i].frozen = 1;
2010 for (i = 0; i < bmap->n_eq; ++i) {
2011 if (max)
2012 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2013 bmap->eq[i] + 1 + tab->n_param,
2014 tab->n_var - tab->n_param - tab->n_div);
2015 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2016 if (max)
2017 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2018 bmap->eq[i] + 1 + tab->n_param,
2019 tab->n_var - tab->n_param - tab->n_div);
2020 if (!tab || tab->empty)
2021 return tab;
2023 for (i = 0; i < bmap->n_ineq; ++i) {
2024 if (max)
2025 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2026 bmap->ineq[i] + 1 + tab->n_param,
2027 tab->n_var - tab->n_param - tab->n_div);
2028 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2029 if (max)
2030 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2031 bmap->ineq[i] + 1 + tab->n_param,
2032 tab->n_var - tab->n_param - tab->n_div);
2033 if (!tab || tab->empty)
2034 return tab;
2036 return tab;
2037 error:
2038 isl_tab_free(tab);
2039 return NULL;
2042 /* Given a main tableau where more than one row requires a split,
2043 * determine and return the "best" row to split on.
2045 * Given two rows in the main tableau, if the inequality corresponding
2046 * to the first row is redundant with respect to that of the second row
2047 * in the current tableau, then it is better to split on the second row,
2048 * since in the positive part, both row will be positive.
2049 * (In the negative part a pivot will have to be performed and just about
2050 * anything can happen to the sign of the other row.)
2052 * As a simple heuristic, we therefore select the row that makes the most
2053 * of the other rows redundant.
2055 * Perhaps it would also be useful to look at the number of constraints
2056 * that conflict with any given constraint.
2058 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2060 struct isl_tab_undo *snap;
2061 int split;
2062 int row;
2063 int best = -1;
2064 int best_r;
2066 if (isl_tab_extend_cons(context_tab, 2) < 0)
2067 return -1;
2069 snap = isl_tab_snap(context_tab);
2071 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2072 struct isl_tab_undo *snap2;
2073 struct isl_vec *ineq = NULL;
2074 int r = 0;
2075 int ok;
2077 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2078 continue;
2079 if (tab->row_sign[split] != isl_tab_row_any)
2080 continue;
2082 ineq = get_row_parameter_ineq(tab, split);
2083 if (!ineq)
2084 return -1;
2085 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2086 isl_vec_free(ineq);
2087 if (!ok)
2088 return -1;
2090 snap2 = isl_tab_snap(context_tab);
2092 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2093 struct isl_tab_var *var;
2095 if (row == split)
2096 continue;
2097 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2098 continue;
2099 if (tab->row_sign[row] != isl_tab_row_any)
2100 continue;
2102 ineq = get_row_parameter_ineq(tab, row);
2103 if (!ineq)
2104 return -1;
2105 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2106 isl_vec_free(ineq);
2107 if (!ok)
2108 return -1;
2109 var = &context_tab->con[context_tab->n_con - 1];
2110 if (!context_tab->empty &&
2111 !isl_tab_min_at_most_neg_one(context_tab, var))
2112 r++;
2113 if (isl_tab_rollback(context_tab, snap2) < 0)
2114 return -1;
2116 if (best == -1 || r > best_r) {
2117 best = split;
2118 best_r = r;
2120 if (isl_tab_rollback(context_tab, snap) < 0)
2121 return -1;
2124 return best;
2127 static struct isl_basic_set *context_lex_peek_basic_set(
2128 struct isl_context *context)
2130 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2131 if (!clex->tab)
2132 return NULL;
2133 return isl_tab_peek_bset(clex->tab);
2136 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2138 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2139 return clex->tab;
2142 static void context_lex_extend(struct isl_context *context, int n)
2144 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2145 if (!clex->tab)
2146 return;
2147 if (isl_tab_extend_cons(clex->tab, n) >= 0)
2148 return;
2149 isl_tab_free(clex->tab);
2150 clex->tab = NULL;
2153 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2154 int check, int update)
2156 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2157 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2158 goto error;
2159 clex->tab = add_lexmin_eq(clex->tab, eq);
2160 if (check) {
2161 int v = tab_has_valid_sample(clex->tab, eq, 1);
2162 if (v < 0)
2163 goto error;
2164 if (!v)
2165 clex->tab = check_integer_feasible(clex->tab);
2167 if (update)
2168 clex->tab = check_samples(clex->tab, eq, 1);
2169 return;
2170 error:
2171 isl_tab_free(clex->tab);
2172 clex->tab = NULL;
2175 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2176 int check, int update)
2178 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2179 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2180 goto error;
2181 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2182 if (check) {
2183 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2184 if (v < 0)
2185 goto error;
2186 if (!v)
2187 clex->tab = check_integer_feasible(clex->tab);
2189 if (update)
2190 clex->tab = check_samples(clex->tab, ineq, 0);
2191 return;
2192 error:
2193 isl_tab_free(clex->tab);
2194 clex->tab = NULL;
2197 /* Check which signs can be obtained by "ineq" on all the currently
2198 * active sample values. See row_sign for more information.
2200 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2201 int strict)
2203 int i;
2204 int sgn;
2205 isl_int tmp;
2206 int res = isl_tab_row_unknown;
2208 isl_assert(tab->mat->ctx, tab->samples, return 0);
2209 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return 0);
2211 isl_int_init(tmp);
2212 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2213 isl_seq_inner_product(tab->samples->row[i], ineq,
2214 1 + tab->n_var, &tmp);
2215 sgn = isl_int_sgn(tmp);
2216 if (sgn > 0 || (sgn == 0 && strict)) {
2217 if (res == isl_tab_row_unknown)
2218 res = isl_tab_row_pos;
2219 if (res == isl_tab_row_neg)
2220 res = isl_tab_row_any;
2222 if (sgn < 0) {
2223 if (res == isl_tab_row_unknown)
2224 res = isl_tab_row_neg;
2225 if (res == isl_tab_row_pos)
2226 res = isl_tab_row_any;
2228 if (res == isl_tab_row_any)
2229 break;
2231 isl_int_clear(tmp);
2233 return res;
2236 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2237 isl_int *ineq, int strict)
2239 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2240 return tab_ineq_sign(clex->tab, ineq, strict);
2243 /* Check whether "ineq" can be added to the tableau without rendering
2244 * it infeasible.
2246 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2248 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2249 struct isl_tab_undo *snap;
2250 int feasible;
2252 if (!clex->tab)
2253 return -1;
2255 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2256 return -1;
2258 snap = isl_tab_snap(clex->tab);
2259 if (isl_tab_push_basis(clex->tab) < 0)
2260 return -1;
2261 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2262 clex->tab = check_integer_feasible(clex->tab);
2263 if (!clex->tab)
2264 return -1;
2265 feasible = !clex->tab->empty;
2266 if (isl_tab_rollback(clex->tab, snap) < 0)
2267 return -1;
2269 return feasible;
2272 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2273 struct isl_vec *div)
2275 return get_div(tab, context, div);
2278 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div,
2279 int *nonneg)
2281 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2282 return context_tab_add_div(clex->tab, div, nonneg);
2285 static int context_lex_detect_equalities(struct isl_context *context,
2286 struct isl_tab *tab)
2288 return 0;
2291 static int context_lex_best_split(struct isl_context *context,
2292 struct isl_tab *tab)
2294 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2295 struct isl_tab_undo *snap;
2296 int r;
2298 snap = isl_tab_snap(clex->tab);
2299 if (isl_tab_push_basis(clex->tab) < 0)
2300 return -1;
2301 r = best_split(tab, clex->tab);
2303 if (isl_tab_rollback(clex->tab, snap) < 0)
2304 return -1;
2306 return r;
2309 static int context_lex_is_empty(struct isl_context *context)
2311 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2312 if (!clex->tab)
2313 return -1;
2314 return clex->tab->empty;
2317 static void *context_lex_save(struct isl_context *context)
2319 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2320 struct isl_tab_undo *snap;
2322 snap = isl_tab_snap(clex->tab);
2323 if (isl_tab_push_basis(clex->tab) < 0)
2324 return NULL;
2325 if (isl_tab_save_samples(clex->tab) < 0)
2326 return NULL;
2328 return snap;
2331 static void context_lex_restore(struct isl_context *context, void *save)
2333 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2334 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2335 isl_tab_free(clex->tab);
2336 clex->tab = NULL;
2340 static int context_lex_is_ok(struct isl_context *context)
2342 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2343 return !!clex->tab;
2346 /* For each variable in the context tableau, check if the variable can
2347 * only attain non-negative values. If so, mark the parameter as non-negative
2348 * in the main tableau. This allows for a more direct identification of some
2349 * cases of violated constraints.
2351 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2352 struct isl_tab *context_tab)
2354 int i;
2355 struct isl_tab_undo *snap;
2356 struct isl_vec *ineq = NULL;
2357 struct isl_tab_var *var;
2358 int n;
2360 if (context_tab->n_var == 0)
2361 return tab;
2363 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2364 if (!ineq)
2365 goto error;
2367 if (isl_tab_extend_cons(context_tab, 1) < 0)
2368 goto error;
2370 snap = isl_tab_snap(context_tab);
2372 n = 0;
2373 isl_seq_clr(ineq->el, ineq->size);
2374 for (i = 0; i < context_tab->n_var; ++i) {
2375 isl_int_set_si(ineq->el[1 + i], 1);
2376 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2377 goto error;
2378 var = &context_tab->con[context_tab->n_con - 1];
2379 if (!context_tab->empty &&
2380 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2381 int j = i;
2382 if (i >= tab->n_param)
2383 j = i - tab->n_param + tab->n_var - tab->n_div;
2384 tab->var[j].is_nonneg = 1;
2385 n++;
2387 isl_int_set_si(ineq->el[1 + i], 0);
2388 if (isl_tab_rollback(context_tab, snap) < 0)
2389 goto error;
2392 if (context_tab->M && n == context_tab->n_var) {
2393 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2394 context_tab->M = 0;
2397 isl_vec_free(ineq);
2398 return tab;
2399 error:
2400 isl_vec_free(ineq);
2401 isl_tab_free(tab);
2402 return NULL;
2405 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2406 struct isl_context *context, struct isl_tab *tab)
2408 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2409 struct isl_tab_undo *snap;
2411 snap = isl_tab_snap(clex->tab);
2412 if (isl_tab_push_basis(clex->tab) < 0)
2413 goto error;
2415 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2417 if (isl_tab_rollback(clex->tab, snap) < 0)
2418 goto error;
2420 return tab;
2421 error:
2422 isl_tab_free(tab);
2423 return NULL;
2426 static void context_lex_invalidate(struct isl_context *context)
2428 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2429 isl_tab_free(clex->tab);
2430 clex->tab = NULL;
2433 static void context_lex_free(struct isl_context *context)
2435 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2436 isl_tab_free(clex->tab);
2437 free(clex);
2440 struct isl_context_op isl_context_lex_op = {
2441 context_lex_detect_nonnegative_parameters,
2442 context_lex_peek_basic_set,
2443 context_lex_peek_tab,
2444 context_lex_add_eq,
2445 context_lex_add_ineq,
2446 context_lex_ineq_sign,
2447 context_lex_test_ineq,
2448 context_lex_get_div,
2449 context_lex_add_div,
2450 context_lex_detect_equalities,
2451 context_lex_best_split,
2452 context_lex_is_empty,
2453 context_lex_is_ok,
2454 context_lex_save,
2455 context_lex_restore,
2456 context_lex_invalidate,
2457 context_lex_free,
2460 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2462 struct isl_tab *tab;
2464 bset = isl_basic_set_cow(bset);
2465 if (!bset)
2466 return NULL;
2467 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2468 if (!tab)
2469 goto error;
2470 if (isl_tab_track_bset(tab, bset) < 0)
2471 goto error;
2472 tab = isl_tab_init_samples(tab);
2473 return tab;
2474 error:
2475 isl_basic_set_free(bset);
2476 return NULL;
2479 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2481 struct isl_context_lex *clex;
2483 if (!dom)
2484 return NULL;
2486 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2487 if (!clex)
2488 return NULL;
2490 clex->context.op = &isl_context_lex_op;
2492 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2493 clex->tab = restore_lexmin(clex->tab);
2494 clex->tab = check_integer_feasible(clex->tab);
2495 if (!clex->tab)
2496 goto error;
2498 return &clex->context;
2499 error:
2500 clex->context.op->free(&clex->context);
2501 return NULL;
2504 struct isl_context_gbr {
2505 struct isl_context context;
2506 struct isl_tab *tab;
2507 struct isl_tab *shifted;
2508 struct isl_tab *cone;
2511 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2512 struct isl_context *context, struct isl_tab *tab)
2514 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2515 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2518 static struct isl_basic_set *context_gbr_peek_basic_set(
2519 struct isl_context *context)
2521 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2522 if (!cgbr->tab)
2523 return NULL;
2524 return isl_tab_peek_bset(cgbr->tab);
2527 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2529 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2530 return cgbr->tab;
2533 /* Initialize the "shifted" tableau of the context, which
2534 * contains the constraints of the original tableau shifted
2535 * by the sum of all negative coefficients. This ensures
2536 * that any rational point in the shifted tableau can
2537 * be rounded up to yield an integer point in the original tableau.
2539 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2541 int i, j;
2542 struct isl_vec *cst;
2543 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2544 unsigned dim = isl_basic_set_total_dim(bset);
2546 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2547 if (!cst)
2548 return;
2550 for (i = 0; i < bset->n_ineq; ++i) {
2551 isl_int_set(cst->el[i], bset->ineq[i][0]);
2552 for (j = 0; j < dim; ++j) {
2553 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2554 continue;
2555 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2556 bset->ineq[i][1 + j]);
2560 cgbr->shifted = isl_tab_from_basic_set(bset);
2562 for (i = 0; i < bset->n_ineq; ++i)
2563 isl_int_set(bset->ineq[i][0], cst->el[i]);
2565 isl_vec_free(cst);
2568 /* Check if the shifted tableau is non-empty, and if so
2569 * use the sample point to construct an integer point
2570 * of the context tableau.
2572 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2574 struct isl_vec *sample;
2576 if (!cgbr->shifted)
2577 gbr_init_shifted(cgbr);
2578 if (!cgbr->shifted)
2579 return NULL;
2580 if (cgbr->shifted->empty)
2581 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2583 sample = isl_tab_get_sample_value(cgbr->shifted);
2584 sample = isl_vec_ceil(sample);
2586 return sample;
2589 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2591 int i;
2593 if (!bset)
2594 return NULL;
2596 for (i = 0; i < bset->n_eq; ++i)
2597 isl_int_set_si(bset->eq[i][0], 0);
2599 for (i = 0; i < bset->n_ineq; ++i)
2600 isl_int_set_si(bset->ineq[i][0], 0);
2602 return bset;
2605 static int use_shifted(struct isl_context_gbr *cgbr)
2607 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2610 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2612 struct isl_basic_set *bset;
2613 struct isl_basic_set *cone;
2615 if (isl_tab_sample_is_integer(cgbr->tab))
2616 return isl_tab_get_sample_value(cgbr->tab);
2618 if (use_shifted(cgbr)) {
2619 struct isl_vec *sample;
2621 sample = gbr_get_shifted_sample(cgbr);
2622 if (!sample || sample->size > 0)
2623 return sample;
2625 isl_vec_free(sample);
2628 if (!cgbr->cone) {
2629 bset = isl_tab_peek_bset(cgbr->tab);
2630 cgbr->cone = isl_tab_from_recession_cone(bset);
2631 if (!cgbr->cone)
2632 return NULL;
2633 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2634 return NULL;
2636 cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone);
2637 if (!cgbr->cone)
2638 return NULL;
2640 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2641 struct isl_vec *sample;
2642 struct isl_tab_undo *snap;
2644 if (cgbr->tab->basis) {
2645 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2646 isl_mat_free(cgbr->tab->basis);
2647 cgbr->tab->basis = NULL;
2648 } else {
2649 cgbr->tab->n_zero = 0;
2650 cgbr->tab->n_unbounded = 0;
2654 snap = isl_tab_snap(cgbr->tab);
2656 sample = isl_tab_sample(cgbr->tab);
2658 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2659 isl_vec_free(sample);
2660 return NULL;
2663 return sample;
2666 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2667 cone = drop_constant_terms(cone);
2668 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2669 cone = isl_basic_set_underlying_set(cone);
2670 cone = isl_basic_set_gauss(cone, NULL);
2672 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2673 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2674 bset = isl_basic_set_underlying_set(bset);
2675 bset = isl_basic_set_gauss(bset, NULL);
2677 return isl_basic_set_sample_with_cone(bset, cone);
2680 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2682 struct isl_vec *sample;
2684 if (!cgbr->tab)
2685 return;
2687 if (cgbr->tab->empty)
2688 return;
2690 sample = gbr_get_sample(cgbr);
2691 if (!sample)
2692 goto error;
2694 if (sample->size == 0) {
2695 isl_vec_free(sample);
2696 if (isl_tab_mark_empty(cgbr->tab) < 0)
2697 goto error;
2698 return;
2701 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2703 return;
2704 error:
2705 isl_tab_free(cgbr->tab);
2706 cgbr->tab = NULL;
2709 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2711 int r;
2713 if (!tab)
2714 return NULL;
2716 if (isl_tab_extend_cons(tab, 2) < 0)
2717 goto error;
2719 tab = isl_tab_add_eq(tab, eq);
2721 return tab;
2722 error:
2723 isl_tab_free(tab);
2724 return NULL;
2727 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2728 int check, int update)
2730 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2732 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2734 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2735 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2736 goto error;
2737 cgbr->cone = isl_tab_add_eq(cgbr->cone, eq);
2740 if (check) {
2741 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2742 if (v < 0)
2743 goto error;
2744 if (!v)
2745 check_gbr_integer_feasible(cgbr);
2747 if (update)
2748 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2749 return;
2750 error:
2751 isl_tab_free(cgbr->tab);
2752 cgbr->tab = NULL;
2755 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2757 if (!cgbr->tab)
2758 return;
2760 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2761 goto error;
2763 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2764 goto error;
2766 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2767 int i;
2768 unsigned dim;
2769 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2771 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2772 goto error;
2774 for (i = 0; i < dim; ++i) {
2775 if (!isl_int_is_neg(ineq[1 + i]))
2776 continue;
2777 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2780 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2781 goto error;
2783 for (i = 0; i < dim; ++i) {
2784 if (!isl_int_is_neg(ineq[1 + i]))
2785 continue;
2786 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2790 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2791 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2792 goto error;
2793 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2794 goto error;
2797 return;
2798 error:
2799 isl_tab_free(cgbr->tab);
2800 cgbr->tab = NULL;
2803 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2804 int check, int update)
2806 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2808 add_gbr_ineq(cgbr, ineq);
2809 if (!cgbr->tab)
2810 return;
2812 if (check) {
2813 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2814 if (v < 0)
2815 goto error;
2816 if (!v)
2817 check_gbr_integer_feasible(cgbr);
2819 if (update)
2820 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2821 return;
2822 error:
2823 isl_tab_free(cgbr->tab);
2824 cgbr->tab = NULL;
2827 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2828 isl_int *ineq, int strict)
2830 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2831 return tab_ineq_sign(cgbr->tab, ineq, strict);
2834 /* Check whether "ineq" can be added to the tableau without rendering
2835 * it infeasible.
2837 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2839 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2840 struct isl_tab_undo *snap;
2841 struct isl_tab_undo *shifted_snap = NULL;
2842 struct isl_tab_undo *cone_snap = NULL;
2843 int feasible;
2845 if (!cgbr->tab)
2846 return -1;
2848 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2849 return -1;
2851 snap = isl_tab_snap(cgbr->tab);
2852 if (cgbr->shifted)
2853 shifted_snap = isl_tab_snap(cgbr->shifted);
2854 if (cgbr->cone)
2855 cone_snap = isl_tab_snap(cgbr->cone);
2856 add_gbr_ineq(cgbr, ineq);
2857 check_gbr_integer_feasible(cgbr);
2858 if (!cgbr->tab)
2859 return -1;
2860 feasible = !cgbr->tab->empty;
2861 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2862 return -1;
2863 if (shifted_snap) {
2864 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2865 return -1;
2866 } else if (cgbr->shifted) {
2867 isl_tab_free(cgbr->shifted);
2868 cgbr->shifted = NULL;
2870 if (cone_snap) {
2871 if (isl_tab_rollback(cgbr->cone, cone_snap))
2872 return -1;
2873 } else if (cgbr->cone) {
2874 isl_tab_free(cgbr->cone);
2875 cgbr->cone = NULL;
2878 return feasible;
2881 /* Return the column of the last of the variables associated to
2882 * a column that has a non-zero coefficient.
2883 * This function is called in a context where only coefficients
2884 * of parameters or divs can be non-zero.
2886 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2888 int i;
2889 int col;
2890 unsigned dim = tab->n_var - tab->n_param - tab->n_div;
2892 if (tab->n_var == 0)
2893 return -1;
2895 for (i = tab->n_var - 1; i >= 0; --i) {
2896 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2897 continue;
2898 if (tab->var[i].is_row)
2899 continue;
2900 col = tab->var[i].index;
2901 if (!isl_int_is_zero(p[col]))
2902 return col;
2905 return -1;
2908 /* Look through all the recently added equalities in the context
2909 * to see if we can propagate any of them to the main tableau.
2911 * The newly added equalities in the context are encoded as pairs
2912 * of inequalities starting at inequality "first".
2914 * We tentatively add each of these equalities to the main tableau
2915 * and if this happens to result in a row with a final coefficient
2916 * that is one or negative one, we use it to kill a column
2917 * in the main tableau. Otherwise, we discard the tentatively
2918 * added row.
2920 static void propagate_equalities(struct isl_context_gbr *cgbr,
2921 struct isl_tab *tab, unsigned first)
2923 int i;
2924 struct isl_vec *eq = NULL;
2926 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2927 if (!eq)
2928 goto error;
2930 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2931 goto error;
2933 isl_seq_clr(eq->el + 1 + tab->n_param,
2934 tab->n_var - tab->n_param - tab->n_div);
2935 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2936 int j;
2937 int r;
2938 struct isl_tab_undo *snap;
2939 snap = isl_tab_snap(tab);
2941 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2942 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2943 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
2944 tab->n_div);
2946 r = isl_tab_add_row(tab, eq->el);
2947 if (r < 0)
2948 goto error;
2949 r = tab->con[r].index;
2950 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
2951 if (j < 0 || j < tab->n_dead ||
2952 !isl_int_is_one(tab->mat->row[r][0]) ||
2953 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
2954 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
2955 if (isl_tab_rollback(tab, snap) < 0)
2956 goto error;
2957 continue;
2959 if (isl_tab_pivot(tab, r, j) < 0)
2960 goto error;
2961 if (isl_tab_kill_col(tab, j) < 0)
2962 goto error;
2964 tab = restore_lexmin(tab);
2967 isl_vec_free(eq);
2969 return;
2970 error:
2971 isl_vec_free(eq);
2972 isl_tab_free(cgbr->tab);
2973 cgbr->tab = NULL;
2976 static int context_gbr_detect_equalities(struct isl_context *context,
2977 struct isl_tab *tab)
2979 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2980 struct isl_ctx *ctx;
2981 int i;
2982 enum isl_lp_result res;
2983 unsigned n_ineq;
2985 ctx = cgbr->tab->mat->ctx;
2987 if (!cgbr->cone) {
2988 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2989 cgbr->cone = isl_tab_from_recession_cone(bset);
2990 if (!cgbr->cone)
2991 goto error;
2992 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2993 goto error;
2995 cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone);
2997 n_ineq = cgbr->tab->bmap->n_ineq;
2998 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
2999 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3000 propagate_equalities(cgbr, tab, n_ineq);
3002 return 0;
3003 error:
3004 isl_tab_free(cgbr->tab);
3005 cgbr->tab = NULL;
3006 return -1;
3009 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3010 struct isl_vec *div)
3012 return get_div(tab, context, div);
3015 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div,
3016 int *nonneg)
3018 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3019 if (cgbr->cone) {
3020 int k;
3022 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3023 return -1;
3024 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3025 return -1;
3026 if (isl_tab_allocate_var(cgbr->cone) <0)
3027 return -1;
3029 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3030 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3031 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3032 if (k < 0)
3033 return -1;
3034 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3035 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3036 return -1;
3038 return context_tab_add_div(cgbr->tab, div, nonneg);
3041 static int context_gbr_best_split(struct isl_context *context,
3042 struct isl_tab *tab)
3044 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3045 struct isl_tab_undo *snap;
3046 int r;
3048 snap = isl_tab_snap(cgbr->tab);
3049 r = best_split(tab, cgbr->tab);
3051 if (isl_tab_rollback(cgbr->tab, snap) < 0)
3052 return -1;
3054 return r;
3057 static int context_gbr_is_empty(struct isl_context *context)
3059 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3060 if (!cgbr->tab)
3061 return -1;
3062 return cgbr->tab->empty;
3065 struct isl_gbr_tab_undo {
3066 struct isl_tab_undo *tab_snap;
3067 struct isl_tab_undo *shifted_snap;
3068 struct isl_tab_undo *cone_snap;
3071 static void *context_gbr_save(struct isl_context *context)
3073 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3074 struct isl_gbr_tab_undo *snap;
3076 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3077 if (!snap)
3078 return NULL;
3080 snap->tab_snap = isl_tab_snap(cgbr->tab);
3081 if (isl_tab_save_samples(cgbr->tab) < 0)
3082 goto error;
3084 if (cgbr->shifted)
3085 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3086 else
3087 snap->shifted_snap = NULL;
3089 if (cgbr->cone)
3090 snap->cone_snap = isl_tab_snap(cgbr->cone);
3091 else
3092 snap->cone_snap = NULL;
3094 return snap;
3095 error:
3096 free(snap);
3097 return NULL;
3100 static void context_gbr_restore(struct isl_context *context, void *save)
3102 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3103 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3104 if (!snap)
3105 goto error;
3106 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3107 isl_tab_free(cgbr->tab);
3108 cgbr->tab = NULL;
3111 if (snap->shifted_snap) {
3112 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3113 goto error;
3114 } else if (cgbr->shifted) {
3115 isl_tab_free(cgbr->shifted);
3116 cgbr->shifted = NULL;
3119 if (snap->cone_snap) {
3120 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3121 goto error;
3122 } else if (cgbr->cone) {
3123 isl_tab_free(cgbr->cone);
3124 cgbr->cone = NULL;
3127 free(snap);
3129 return;
3130 error:
3131 free(snap);
3132 isl_tab_free(cgbr->tab);
3133 cgbr->tab = NULL;
3136 static int context_gbr_is_ok(struct isl_context *context)
3138 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3139 return !!cgbr->tab;
3142 static void context_gbr_invalidate(struct isl_context *context)
3144 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3145 isl_tab_free(cgbr->tab);
3146 cgbr->tab = NULL;
3149 static void context_gbr_free(struct isl_context *context)
3151 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3152 isl_tab_free(cgbr->tab);
3153 isl_tab_free(cgbr->shifted);
3154 isl_tab_free(cgbr->cone);
3155 free(cgbr);
3158 struct isl_context_op isl_context_gbr_op = {
3159 context_gbr_detect_nonnegative_parameters,
3160 context_gbr_peek_basic_set,
3161 context_gbr_peek_tab,
3162 context_gbr_add_eq,
3163 context_gbr_add_ineq,
3164 context_gbr_ineq_sign,
3165 context_gbr_test_ineq,
3166 context_gbr_get_div,
3167 context_gbr_add_div,
3168 context_gbr_detect_equalities,
3169 context_gbr_best_split,
3170 context_gbr_is_empty,
3171 context_gbr_is_ok,
3172 context_gbr_save,
3173 context_gbr_restore,
3174 context_gbr_invalidate,
3175 context_gbr_free,
3178 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3180 struct isl_context_gbr *cgbr;
3182 if (!dom)
3183 return NULL;
3185 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3186 if (!cgbr)
3187 return NULL;
3189 cgbr->context.op = &isl_context_gbr_op;
3191 cgbr->shifted = NULL;
3192 cgbr->cone = NULL;
3193 cgbr->tab = isl_tab_from_basic_set(dom);
3194 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3195 if (!cgbr->tab)
3196 goto error;
3197 if (isl_tab_track_bset(cgbr->tab,
3198 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3199 goto error;
3200 check_gbr_integer_feasible(cgbr);
3202 return &cgbr->context;
3203 error:
3204 cgbr->context.op->free(&cgbr->context);
3205 return NULL;
3208 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3210 if (!dom)
3211 return NULL;
3213 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3214 return isl_context_lex_alloc(dom);
3215 else
3216 return isl_context_gbr_alloc(dom);
3219 /* Construct an isl_sol_map structure for accumulating the solution.
3220 * If track_empty is set, then we also keep track of the parts
3221 * of the context where there is no solution.
3222 * If max is set, then we are solving a maximization, rather than
3223 * a minimization problem, which means that the variables in the
3224 * tableau have value "M - x" rather than "M + x".
3226 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3227 struct isl_basic_set *dom, int track_empty, int max)
3229 struct isl_sol_map *sol_map;
3231 sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map);
3232 if (!sol_map)
3233 goto error;
3235 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3236 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3237 sol_map->sol.dec_level.sol = &sol_map->sol;
3238 sol_map->sol.max = max;
3239 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3240 sol_map->sol.add = &sol_map_add_wrap;
3241 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3242 sol_map->sol.free = &sol_map_free_wrap;
3243 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3244 ISL_MAP_DISJOINT);
3245 if (!sol_map->map)
3246 goto error;
3248 sol_map->sol.context = isl_context_alloc(dom);
3249 if (!sol_map->sol.context)
3250 goto error;
3252 if (track_empty) {
3253 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3254 1, ISL_SET_DISJOINT);
3255 if (!sol_map->empty)
3256 goto error;
3259 isl_basic_set_free(dom);
3260 return sol_map;
3261 error:
3262 isl_basic_set_free(dom);
3263 sol_map_free(sol_map);
3264 return NULL;
3267 /* Check whether all coefficients of (non-parameter) variables
3268 * are non-positive, meaning that no pivots can be performed on the row.
3270 static int is_critical(struct isl_tab *tab, int row)
3272 int j;
3273 unsigned off = 2 + tab->M;
3275 for (j = tab->n_dead; j < tab->n_col; ++j) {
3276 if (tab->col_var[j] >= 0 &&
3277 (tab->col_var[j] < tab->n_param ||
3278 tab->col_var[j] >= tab->n_var - tab->n_div))
3279 continue;
3281 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3282 return 0;
3285 return 1;
3288 /* Check whether the inequality represented by vec is strict over the integers,
3289 * i.e., there are no integer values satisfying the constraint with
3290 * equality. This happens if the gcd of the coefficients is not a divisor
3291 * of the constant term. If so, scale the constraint down by the gcd
3292 * of the coefficients.
3294 static int is_strict(struct isl_vec *vec)
3296 isl_int gcd;
3297 int strict = 0;
3299 isl_int_init(gcd);
3300 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3301 if (!isl_int_is_one(gcd)) {
3302 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3303 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3304 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3306 isl_int_clear(gcd);
3308 return strict;
3311 /* Determine the sign of the given row of the main tableau.
3312 * The result is one of
3313 * isl_tab_row_pos: always non-negative; no pivot needed
3314 * isl_tab_row_neg: always non-positive; pivot
3315 * isl_tab_row_any: can be both positive and negative; split
3317 * We first handle some simple cases
3318 * - the row sign may be known already
3319 * - the row may be obviously non-negative
3320 * - the parametric constant may be equal to that of another row
3321 * for which we know the sign. This sign will be either "pos" or
3322 * "any". If it had been "neg" then we would have pivoted before.
3324 * If none of these cases hold, we check the value of the row for each
3325 * of the currently active samples. Based on the signs of these values
3326 * we make an initial determination of the sign of the row.
3328 * all zero -> unk(nown)
3329 * all non-negative -> pos
3330 * all non-positive -> neg
3331 * both negative and positive -> all
3333 * If we end up with "all", we are done.
3334 * Otherwise, we perform a check for positive and/or negative
3335 * values as follows.
3337 * samples neg unk pos
3338 * <0 ? Y N Y N
3339 * pos any pos
3340 * >0 ? Y N Y N
3341 * any neg any neg
3343 * There is no special sign for "zero", because we can usually treat zero
3344 * as either non-negative or non-positive, whatever works out best.
3345 * However, if the row is "critical", meaning that pivoting is impossible
3346 * then we don't want to limp zero with the non-positive case, because
3347 * then we we would lose the solution for those values of the parameters
3348 * where the value of the row is zero. Instead, we treat 0 as non-negative
3349 * ensuring a split if the row can attain both zero and negative values.
3350 * The same happens when the original constraint was one that could not
3351 * be satisfied with equality by any integer values of the parameters.
3352 * In this case, we normalize the constraint, but then a value of zero
3353 * for the normalized constraint is actually a positive value for the
3354 * original constraint, so again we need to treat zero as non-negative.
3355 * In both these cases, we have the following decision tree instead:
3357 * all non-negative -> pos
3358 * all negative -> neg
3359 * both negative and non-negative -> all
3361 * samples neg pos
3362 * <0 ? Y N
3363 * any pos
3364 * >=0 ? Y N
3365 * any neg
3367 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3368 struct isl_sol *sol, int row)
3370 struct isl_vec *ineq = NULL;
3371 int res = isl_tab_row_unknown;
3372 int critical;
3373 int strict;
3374 int row2;
3376 if (tab->row_sign[row] != isl_tab_row_unknown)
3377 return tab->row_sign[row];
3378 if (is_obviously_nonneg(tab, row))
3379 return isl_tab_row_pos;
3380 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3381 if (tab->row_sign[row2] == isl_tab_row_unknown)
3382 continue;
3383 if (identical_parameter_line(tab, row, row2))
3384 return tab->row_sign[row2];
3387 critical = is_critical(tab, row);
3389 ineq = get_row_parameter_ineq(tab, row);
3390 if (!ineq)
3391 goto error;
3393 strict = is_strict(ineq);
3395 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3396 critical || strict);
3398 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3399 /* test for negative values */
3400 int feasible;
3401 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3402 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3404 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3405 if (feasible < 0)
3406 goto error;
3407 if (!feasible)
3408 res = isl_tab_row_pos;
3409 else
3410 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3411 : isl_tab_row_any;
3412 if (res == isl_tab_row_neg) {
3413 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3414 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3418 if (res == isl_tab_row_neg) {
3419 /* test for positive values */
3420 int feasible;
3421 if (!critical && !strict)
3422 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3424 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3425 if (feasible < 0)
3426 goto error;
3427 if (feasible)
3428 res = isl_tab_row_any;
3431 isl_vec_free(ineq);
3432 return res;
3433 error:
3434 isl_vec_free(ineq);
3435 return 0;
3438 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3440 /* Find solutions for values of the parameters that satisfy the given
3441 * inequality.
3443 * We currently take a snapshot of the context tableau that is reset
3444 * when we return from this function, while we make a copy of the main
3445 * tableau, leaving the original main tableau untouched.
3446 * These are fairly arbitrary choices. Making a copy also of the context
3447 * tableau would obviate the need to undo any changes made to it later,
3448 * while taking a snapshot of the main tableau could reduce memory usage.
3449 * If we were to switch to taking a snapshot of the main tableau,
3450 * we would have to keep in mind that we need to save the row signs
3451 * and that we need to do this before saving the current basis
3452 * such that the basis has been restore before we restore the row signs.
3454 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3456 void *saved;
3458 if (!sol->context)
3459 goto error;
3460 saved = sol->context->op->save(sol->context);
3462 tab = isl_tab_dup(tab);
3463 if (!tab)
3464 goto error;
3466 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3468 find_solutions(sol, tab);
3470 sol->context->op->restore(sol->context, saved);
3471 return;
3472 error:
3473 sol->error = 1;
3476 /* Record the absence of solutions for those values of the parameters
3477 * that do not satisfy the given inequality with equality.
3479 static void no_sol_in_strict(struct isl_sol *sol,
3480 struct isl_tab *tab, struct isl_vec *ineq)
3482 int empty;
3483 void *saved;
3485 if (!sol->context)
3486 goto error;
3487 saved = sol->context->op->save(sol->context);
3489 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3491 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3492 if (!sol->context)
3493 goto error;
3495 empty = tab->empty;
3496 tab->empty = 1;
3497 sol_add(sol, tab);
3498 tab->empty = empty;
3500 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3502 sol->context->op->restore(sol->context, saved);
3503 return;
3504 error:
3505 sol->error = 1;
3508 /* Compute the lexicographic minimum of the set represented by the main
3509 * tableau "tab" within the context "sol->context_tab".
3510 * On entry the sample value of the main tableau is lexicographically
3511 * less than or equal to this lexicographic minimum.
3512 * Pivots are performed until a feasible point is found, which is then
3513 * necessarily equal to the minimum, or until the tableau is found to
3514 * be infeasible. Some pivots may need to be performed for only some
3515 * feasible values of the context tableau. If so, the context tableau
3516 * is split into a part where the pivot is needed and a part where it is not.
3518 * Whenever we enter the main loop, the main tableau is such that no
3519 * "obvious" pivots need to be performed on it, where "obvious" means
3520 * that the given row can be seen to be negative without looking at
3521 * the context tableau. In particular, for non-parametric problems,
3522 * no pivots need to be performed on the main tableau.
3523 * The caller of find_solutions is responsible for making this property
3524 * hold prior to the first iteration of the loop, while restore_lexmin
3525 * is called before every other iteration.
3527 * Inside the main loop, we first examine the signs of the rows of
3528 * the main tableau within the context of the context tableau.
3529 * If we find a row that is always non-positive for all values of
3530 * the parameters satisfying the context tableau and negative for at
3531 * least one value of the parameters, we perform the appropriate pivot
3532 * and start over. An exception is the case where no pivot can be
3533 * performed on the row. In this case, we require that the sign of
3534 * the row is negative for all values of the parameters (rather than just
3535 * non-positive). This special case is handled inside row_sign, which
3536 * will say that the row can have any sign if it determines that it can
3537 * attain both negative and zero values.
3539 * If we can't find a row that always requires a pivot, but we can find
3540 * one or more rows that require a pivot for some values of the parameters
3541 * (i.e., the row can attain both positive and negative signs), then we split
3542 * the context tableau into two parts, one where we force the sign to be
3543 * non-negative and one where we force is to be negative.
3544 * The non-negative part is handled by a recursive call (through find_in_pos).
3545 * Upon returning from this call, we continue with the negative part and
3546 * perform the required pivot.
3548 * If no such rows can be found, all rows are non-negative and we have
3549 * found a (rational) feasible point. If we only wanted a rational point
3550 * then we are done.
3551 * Otherwise, we check if all values of the sample point of the tableau
3552 * are integral for the variables. If so, we have found the minimal
3553 * integral point and we are done.
3554 * If the sample point is not integral, then we need to make a distinction
3555 * based on whether the constant term is non-integral or the coefficients
3556 * of the parameters. Furthermore, in order to decide how to handle
3557 * the non-integrality, we also need to know whether the coefficients
3558 * of the other columns in the tableau are integral. This leads
3559 * to the following table. The first two rows do not correspond
3560 * to a non-integral sample point and are only mentioned for completeness.
3562 * constant parameters other
3564 * int int int |
3565 * int int rat | -> no problem
3567 * rat int int -> fail
3569 * rat int rat -> cut
3571 * int rat rat |
3572 * rat rat rat | -> parametric cut
3574 * int rat int |
3575 * rat rat int | -> split context
3577 * If the parametric constant is completely integral, then there is nothing
3578 * to be done. If the constant term is non-integral, but all the other
3579 * coefficient are integral, then there is nothing that can be done
3580 * and the tableau has no integral solution.
3581 * If, on the other hand, one or more of the other columns have rational
3582 * coeffcients, but the parameter coefficients are all integral, then
3583 * we can perform a regular (non-parametric) cut.
3584 * Finally, if there is any parameter coefficient that is non-integral,
3585 * then we need to involve the context tableau. There are two cases here.
3586 * If at least one other column has a rational coefficient, then we
3587 * can perform a parametric cut in the main tableau by adding a new
3588 * integer division in the context tableau.
3589 * If all other columns have integral coefficients, then we need to
3590 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3591 * is always integral. We do this by introducing an integer division
3592 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3593 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3594 * Since q is expressed in the tableau as
3595 * c + \sum a_i y_i - m q >= 0
3596 * -c - \sum a_i y_i + m q + m - 1 >= 0
3597 * it is sufficient to add the inequality
3598 * -c - \sum a_i y_i + m q >= 0
3599 * In the part of the context where this inequality does not hold, the
3600 * main tableau is marked as being empty.
3602 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3604 struct isl_context *context;
3606 if (!tab || sol->error)
3607 goto error;
3609 context = sol->context;
3611 if (tab->empty)
3612 goto done;
3613 if (context->op->is_empty(context))
3614 goto done;
3616 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
3617 int flags;
3618 int row;
3619 int sgn;
3620 int split = -1;
3621 int n_split = 0;
3623 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3624 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3625 continue;
3626 sgn = row_sign(tab, sol, row);
3627 if (!sgn)
3628 goto error;
3629 tab->row_sign[row] = sgn;
3630 if (sgn == isl_tab_row_any)
3631 n_split++;
3632 if (sgn == isl_tab_row_any && split == -1)
3633 split = row;
3634 if (sgn == isl_tab_row_neg)
3635 break;
3637 if (row < tab->n_row)
3638 continue;
3639 if (split != -1) {
3640 struct isl_vec *ineq;
3641 if (n_split != 1)
3642 split = context->op->best_split(context, tab);
3643 if (split < 0)
3644 goto error;
3645 ineq = get_row_parameter_ineq(tab, split);
3646 if (!ineq)
3647 goto error;
3648 is_strict(ineq);
3649 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3650 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3651 continue;
3652 if (tab->row_sign[row] == isl_tab_row_any)
3653 tab->row_sign[row] = isl_tab_row_unknown;
3655 tab->row_sign[split] = isl_tab_row_pos;
3656 sol_inc_level(sol);
3657 find_in_pos(sol, tab, ineq->el);
3658 tab->row_sign[split] = isl_tab_row_neg;
3659 row = split;
3660 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3661 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3662 context->op->add_ineq(context, ineq->el, 0, 1);
3663 isl_vec_free(ineq);
3664 if (sol->error)
3665 goto error;
3666 continue;
3668 if (tab->rational)
3669 break;
3670 row = first_non_integer(tab, &flags);
3671 if (row < 0)
3672 break;
3673 if (ISL_FL_ISSET(flags, I_PAR)) {
3674 if (ISL_FL_ISSET(flags, I_VAR)) {
3675 if (isl_tab_mark_empty(tab) < 0)
3676 goto error;
3677 break;
3679 row = add_cut(tab, row);
3680 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3681 struct isl_vec *div;
3682 struct isl_vec *ineq;
3683 int d;
3684 div = get_row_split_div(tab, row);
3685 if (!div)
3686 goto error;
3687 d = context->op->get_div(context, tab, div);
3688 isl_vec_free(div);
3689 if (d < 0)
3690 goto error;
3691 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3692 sol_inc_level(sol);
3693 no_sol_in_strict(sol, tab, ineq);
3694 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3695 context->op->add_ineq(context, ineq->el, 1, 1);
3696 isl_vec_free(ineq);
3697 if (sol->error || !context->op->is_ok(context))
3698 goto error;
3699 tab = set_row_cst_to_div(tab, row, d);
3700 } else
3701 row = add_parametric_cut(tab, row, context);
3702 if (row < 0)
3703 goto error;
3705 done:
3706 sol_add(sol, tab);
3707 isl_tab_free(tab);
3708 return;
3709 error:
3710 isl_tab_free(tab);
3711 sol_free(sol);
3714 /* Compute the lexicographic minimum of the set represented by the main
3715 * tableau "tab" within the context "sol->context_tab".
3717 * As a preprocessing step, we first transfer all the purely parametric
3718 * equalities from the main tableau to the context tableau, i.e.,
3719 * parameters that have been pivoted to a row.
3720 * These equalities are ignored by the main algorithm, because the
3721 * corresponding rows may not be marked as being non-negative.
3722 * In parts of the context where the added equality does not hold,
3723 * the main tableau is marked as being empty.
3725 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3727 int row;
3729 sol->level = 0;
3731 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3732 int p;
3733 struct isl_vec *eq;
3735 if (tab->row_var[row] < 0)
3736 continue;
3737 if (tab->row_var[row] >= tab->n_param &&
3738 tab->row_var[row] < tab->n_var - tab->n_div)
3739 continue;
3740 if (tab->row_var[row] < tab->n_param)
3741 p = tab->row_var[row];
3742 else
3743 p = tab->row_var[row]
3744 + tab->n_param - (tab->n_var - tab->n_div);
3746 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3747 get_row_parameter_line(tab, row, eq->el);
3748 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3749 eq = isl_vec_normalize(eq);
3751 sol_inc_level(sol);
3752 no_sol_in_strict(sol, tab, eq);
3754 isl_seq_neg(eq->el, eq->el, eq->size);
3755 sol_inc_level(sol);
3756 no_sol_in_strict(sol, tab, eq);
3757 isl_seq_neg(eq->el, eq->el, eq->size);
3759 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3761 isl_vec_free(eq);
3763 if (isl_tab_mark_redundant(tab, row) < 0)
3764 goto error;
3766 if (sol->context->op->is_empty(sol->context))
3767 break;
3769 row = tab->n_redundant - 1;
3772 find_solutions(sol, tab);
3774 sol->level = 0;
3775 sol_pop(sol);
3777 return;
3778 error:
3779 isl_tab_free(tab);
3780 sol_free(sol);
3783 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3784 struct isl_tab *tab)
3786 find_solutions_main(&sol_map->sol, tab);
3789 /* Check if integer division "div" of "dom" also occurs in "bmap".
3790 * If so, return its position within the divs.
3791 * If not, return -1.
3793 static int find_context_div(struct isl_basic_map *bmap,
3794 struct isl_basic_set *dom, unsigned div)
3796 int i;
3797 unsigned b_dim = isl_dim_total(bmap->dim);
3798 unsigned d_dim = isl_dim_total(dom->dim);
3800 if (isl_int_is_zero(dom->div[div][0]))
3801 return -1;
3802 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3803 return -1;
3805 for (i = 0; i < bmap->n_div; ++i) {
3806 if (isl_int_is_zero(bmap->div[i][0]))
3807 continue;
3808 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3809 (b_dim - d_dim) + bmap->n_div) != -1)
3810 continue;
3811 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3812 return i;
3814 return -1;
3817 /* The correspondence between the variables in the main tableau,
3818 * the context tableau, and the input map and domain is as follows.
3819 * The first n_param and the last n_div variables of the main tableau
3820 * form the variables of the context tableau.
3821 * In the basic map, these n_param variables correspond to the
3822 * parameters and the input dimensions. In the domain, they correspond
3823 * to the parameters and the set dimensions.
3824 * The n_div variables correspond to the integer divisions in the domain.
3825 * To ensure that everything lines up, we may need to copy some of the
3826 * integer divisions of the domain to the map. These have to be placed
3827 * in the same order as those in the context and they have to be placed
3828 * after any other integer divisions that the map may have.
3829 * This function performs the required reordering.
3831 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3832 struct isl_basic_set *dom)
3834 int i;
3835 int common = 0;
3836 int other;
3838 for (i = 0; i < dom->n_div; ++i)
3839 if (find_context_div(bmap, dom, i) != -1)
3840 common++;
3841 other = bmap->n_div - common;
3842 if (dom->n_div - common > 0) {
3843 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3844 dom->n_div - common, 0, 0);
3845 if (!bmap)
3846 return NULL;
3848 for (i = 0; i < dom->n_div; ++i) {
3849 int pos = find_context_div(bmap, dom, i);
3850 if (pos < 0) {
3851 pos = isl_basic_map_alloc_div(bmap);
3852 if (pos < 0)
3853 goto error;
3854 isl_int_set_si(bmap->div[pos][0], 0);
3856 if (pos != other + i)
3857 isl_basic_map_swap_div(bmap, pos, other + i);
3859 return bmap;
3860 error:
3861 isl_basic_map_free(bmap);
3862 return NULL;
3865 /* Compute the lexicographic minimum (or maximum if "max" is set)
3866 * of "bmap" over the domain "dom" and return the result as a map.
3867 * If "empty" is not NULL, then *empty is assigned a set that
3868 * contains those parts of the domain where there is no solution.
3869 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
3870 * then we compute the rational optimum. Otherwise, we compute
3871 * the integral optimum.
3873 * We perform some preprocessing. As the PILP solver does not
3874 * handle implicit equalities very well, we first make sure all
3875 * the equalities are explicitly available.
3876 * We also make sure the divs in the domain are properly order,
3877 * because they will be added one by one in the given order
3878 * during the construction of the solution map.
3880 struct isl_map *isl_tab_basic_map_partial_lexopt(
3881 struct isl_basic_map *bmap, struct isl_basic_set *dom,
3882 struct isl_set **empty, int max)
3884 struct isl_tab *tab;
3885 struct isl_map *result = NULL;
3886 struct isl_sol_map *sol_map = NULL;
3887 struct isl_context *context;
3888 struct isl_basic_map *eq;
3890 if (empty)
3891 *empty = NULL;
3892 if (!bmap || !dom)
3893 goto error;
3895 isl_assert(bmap->ctx,
3896 isl_basic_map_compatible_domain(bmap, dom), goto error);
3898 eq = isl_basic_map_copy(bmap);
3899 eq = isl_basic_map_intersect_domain(eq, isl_basic_set_copy(dom));
3900 eq = isl_basic_map_affine_hull(eq);
3901 bmap = isl_basic_map_intersect(bmap, eq);
3903 if (dom->n_div) {
3904 dom = isl_basic_set_order_divs(dom);
3905 bmap = align_context_divs(bmap, dom);
3907 sol_map = sol_map_init(bmap, dom, !!empty, max);
3908 if (!sol_map)
3909 goto error;
3911 context = sol_map->sol.context;
3912 if (isl_basic_set_fast_is_empty(context->op->peek_basic_set(context)))
3913 /* nothing */;
3914 else if (isl_basic_map_fast_is_empty(bmap))
3915 sol_map_add_empty(sol_map,
3916 isl_basic_set_dup(context->op->peek_basic_set(context)));
3917 else {
3918 tab = tab_for_lexmin(bmap,
3919 context->op->peek_basic_set(context), 1, max);
3920 tab = context->op->detect_nonnegative_parameters(context, tab);
3921 sol_map_find_solutions(sol_map, tab);
3923 if (sol_map->sol.error)
3924 goto error;
3926 result = isl_map_copy(sol_map->map);
3927 if (empty)
3928 *empty = isl_set_copy(sol_map->empty);
3929 sol_free(&sol_map->sol);
3930 isl_basic_map_free(bmap);
3931 return result;
3932 error:
3933 sol_free(&sol_map->sol);
3934 isl_basic_map_free(bmap);
3935 return NULL;
3938 struct isl_sol_for {
3939 struct isl_sol sol;
3940 int (*fn)(__isl_take isl_basic_set *dom,
3941 __isl_take isl_mat *map, void *user);
3942 void *user;
3945 static void sol_for_free(struct isl_sol_for *sol_for)
3947 if (sol_for->sol.context)
3948 sol_for->sol.context->op->free(sol_for->sol.context);
3949 free(sol_for);
3952 static void sol_for_free_wrap(struct isl_sol *sol)
3954 sol_for_free((struct isl_sol_for *)sol);
3957 /* Add the solution identified by the tableau and the context tableau.
3959 * See documentation of sol_add for more details.
3961 * Instead of constructing a basic map, this function calls a user
3962 * defined function with the current context as a basic set and
3963 * an affine matrix reprenting the relation between the input and output.
3964 * The number of rows in this matrix is equal to one plus the number
3965 * of output variables. The number of columns is equal to one plus
3966 * the total dimension of the context, i.e., the number of parameters,
3967 * input variables and divs. Since some of the columns in the matrix
3968 * may refer to the divs, the basic set is not simplified.
3969 * (Simplification may reorder or remove divs.)
3971 static void sol_for_add(struct isl_sol_for *sol,
3972 struct isl_basic_set *dom, struct isl_mat *M)
3974 if (sol->sol.error || !dom || !M)
3975 goto error;
3977 dom = isl_basic_set_simplify(dom);
3978 dom = isl_basic_set_finalize(dom);
3980 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
3981 goto error;
3983 isl_basic_set_free(dom);
3984 isl_mat_free(M);
3985 return;
3986 error:
3987 isl_basic_set_free(dom);
3988 isl_mat_free(M);
3989 sol->sol.error = 1;
3992 static void sol_for_add_wrap(struct isl_sol *sol,
3993 struct isl_basic_set *dom, struct isl_mat *M)
3995 sol_for_add((struct isl_sol_for *)sol, dom, M);
3998 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
3999 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4000 void *user),
4001 void *user)
4003 struct isl_sol_for *sol_for = NULL;
4004 struct isl_dim *dom_dim;
4005 struct isl_basic_set *dom = NULL;
4007 sol_for = isl_calloc_type(bset->ctx, struct isl_sol_for);
4008 if (!sol_for)
4009 goto error;
4011 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
4012 dom = isl_basic_set_universe(dom_dim);
4014 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4015 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4016 sol_for->sol.dec_level.sol = &sol_for->sol;
4017 sol_for->fn = fn;
4018 sol_for->user = user;
4019 sol_for->sol.max = max;
4020 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4021 sol_for->sol.add = &sol_for_add_wrap;
4022 sol_for->sol.add_empty = NULL;
4023 sol_for->sol.free = &sol_for_free_wrap;
4025 sol_for->sol.context = isl_context_alloc(dom);
4026 if (!sol_for->sol.context)
4027 goto error;
4029 isl_basic_set_free(dom);
4030 return sol_for;
4031 error:
4032 isl_basic_set_free(dom);
4033 sol_for_free(sol_for);
4034 return NULL;
4037 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4038 struct isl_tab *tab)
4040 find_solutions_main(&sol_for->sol, tab);
4043 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4044 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4045 void *user),
4046 void *user)
4048 struct isl_sol_for *sol_for = NULL;
4050 bmap = isl_basic_map_copy(bmap);
4051 if (!bmap)
4052 return -1;
4054 bmap = isl_basic_map_detect_equalities(bmap);
4055 sol_for = sol_for_init(bmap, max, fn, user);
4057 if (isl_basic_map_fast_is_empty(bmap))
4058 /* nothing */;
4059 else {
4060 struct isl_tab *tab;
4061 struct isl_context *context = sol_for->sol.context;
4062 tab = tab_for_lexmin(bmap,
4063 context->op->peek_basic_set(context), 1, max);
4064 tab = context->op->detect_nonnegative_parameters(context, tab);
4065 sol_for_find_solutions(sol_for, tab);
4066 if (sol_for->sol.error)
4067 goto error;
4070 sol_free(&sol_for->sol);
4071 isl_basic_map_free(bmap);
4072 return 0;
4073 error:
4074 sol_free(&sol_for->sol);
4075 isl_basic_map_free(bmap);
4076 return -1;
4079 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4080 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4081 void *user),
4082 void *user)
4084 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4087 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4088 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4089 void *user),
4090 void *user)
4092 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);