isl_basic_map_gauss: add memory management annotations
[isl.git] / isl_convex_hull.c
blob2b9aea7b40a8bcd9e989cc55f8e710d82f1e675c
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_lp_private.h>
16 #include <isl/map.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include <isl/set.h>
20 #include <isl_seq.h>
21 #include <isl_options_private.h>
22 #include "isl_equalities.h"
23 #include "isl_tab.h"
24 #include <isl_sort.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
30 static __isl_give isl_basic_set *uset_convex_hull_wrap_bounded(
31 __isl_take isl_set *set);
33 /* Remove redundant
34 * constraints. If the minimal value along the normal of a constraint
35 * is the same if the constraint is removed, then the constraint is redundant.
37 * Since some constraints may be mutually redundant, sort the constraints
38 * first such that constraints that involve existentially quantified
39 * variables are considered for removal before those that do not.
40 * The sorting is also needed for the use in map_simple_hull.
42 * Note that isl_tab_detect_implicit_equalities may also end up
43 * marking some constraints as redundant. Make sure the constraints
44 * are preserved and undo those marking such that isl_tab_detect_redundant
45 * can consider the constraints in the sorted order.
47 * Alternatively, we could have intersected the basic map with the
48 * corresponding equality and then checked if the dimension was that
49 * of a facet.
51 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
52 __isl_take isl_basic_map *bmap)
54 struct isl_tab *tab;
56 if (!bmap)
57 return NULL;
59 bmap = isl_basic_map_gauss(bmap, NULL);
60 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
61 return bmap;
62 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
63 return bmap;
64 if (bmap->n_ineq <= 1)
65 return bmap;
67 bmap = isl_basic_map_sort_constraints(bmap);
68 tab = isl_tab_from_basic_map(bmap, 0);
69 if (!tab)
70 goto error;
71 tab->preserve = 1;
72 if (isl_tab_detect_implicit_equalities(tab) < 0)
73 goto error;
74 if (isl_tab_restore_redundant(tab) < 0)
75 goto error;
76 tab->preserve = 0;
77 if (isl_tab_detect_redundant(tab) < 0)
78 goto error;
79 bmap = isl_basic_map_update_from_tab(bmap, tab);
80 isl_tab_free(tab);
81 if (!bmap)
82 return NULL;
83 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
84 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
85 return bmap;
86 error:
87 isl_tab_free(tab);
88 isl_basic_map_free(bmap);
89 return NULL;
92 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
93 __isl_take isl_basic_set *bset)
95 return bset_from_bmap(
96 isl_basic_map_remove_redundancies(bset_to_bmap(bset)));
99 /* Remove redundant constraints in each of the basic maps.
101 __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map)
103 return isl_map_inline_foreach_basic_map(map,
104 &isl_basic_map_remove_redundancies);
107 __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set)
109 return isl_map_remove_redundancies(set);
112 /* Check if the set set is bound in the direction of the affine
113 * constraint c and if so, set the constant term such that the
114 * resulting constraint is a bounding constraint for the set.
116 static int uset_is_bound(__isl_keep isl_set *set, isl_int *c, unsigned len)
118 int first;
119 int j;
120 isl_int opt;
121 isl_int opt_denom;
123 isl_int_init(opt);
124 isl_int_init(opt_denom);
125 first = 1;
126 for (j = 0; j < set->n; ++j) {
127 enum isl_lp_result res;
129 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
130 continue;
132 res = isl_basic_set_solve_lp(set->p[j],
133 0, c, set->ctx->one, &opt, &opt_denom, NULL);
134 if (res == isl_lp_unbounded)
135 break;
136 if (res == isl_lp_error)
137 goto error;
138 if (res == isl_lp_empty) {
139 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
140 if (!set->p[j])
141 goto error;
142 continue;
144 if (first || isl_int_is_neg(opt)) {
145 if (!isl_int_is_one(opt_denom))
146 isl_seq_scale(c, c, opt_denom, len);
147 isl_int_sub(c[0], c[0], opt);
149 first = 0;
151 isl_int_clear(opt);
152 isl_int_clear(opt_denom);
153 return j >= set->n;
154 error:
155 isl_int_clear(opt);
156 isl_int_clear(opt_denom);
157 return -1;
160 static struct isl_basic_set *isl_basic_set_add_equality(
161 struct isl_basic_set *bset, isl_int *c)
163 int i;
164 unsigned dim;
166 if (!bset)
167 return NULL;
169 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
170 return bset;
172 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
173 isl_assert(bset->ctx, bset->n_div == 0, goto error);
174 dim = isl_basic_set_n_dim(bset);
175 bset = isl_basic_set_cow(bset);
176 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
177 i = isl_basic_set_alloc_equality(bset);
178 if (i < 0)
179 goto error;
180 isl_seq_cpy(bset->eq[i], c, 1 + dim);
181 return bset;
182 error:
183 isl_basic_set_free(bset);
184 return NULL;
187 static __isl_give isl_set *isl_set_add_basic_set_equality(
188 __isl_take isl_set *set, isl_int *c)
190 int i;
192 set = isl_set_cow(set);
193 if (!set)
194 return NULL;
195 for (i = 0; i < set->n; ++i) {
196 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
197 if (!set->p[i])
198 goto error;
200 return set;
201 error:
202 isl_set_free(set);
203 return NULL;
206 /* Given a union of basic sets, construct the constraints for wrapping
207 * a facet around one of its ridges.
208 * In particular, if each of n the d-dimensional basic sets i in "set"
209 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
210 * and is defined by the constraints
211 * [ 1 ]
212 * A_i [ x ] >= 0
214 * then the resulting set is of dimension n*(1+d) and has as constraints
216 * [ a_i ]
217 * A_i [ x_i ] >= 0
219 * a_i >= 0
221 * \sum_i x_{i,1} = 1
223 static __isl_give isl_basic_set *wrap_constraints(__isl_keep isl_set *set)
225 struct isl_basic_set *lp;
226 unsigned n_eq;
227 unsigned n_ineq;
228 int i, j, k;
229 unsigned dim, lp_dim;
231 if (!set)
232 return NULL;
234 dim = 1 + isl_set_n_dim(set);
235 n_eq = 1;
236 n_ineq = set->n;
237 for (i = 0; i < set->n; ++i) {
238 n_eq += set->p[i]->n_eq;
239 n_ineq += set->p[i]->n_ineq;
241 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
242 lp = isl_basic_set_set_rational(lp);
243 if (!lp)
244 return NULL;
245 lp_dim = isl_basic_set_n_dim(lp);
246 k = isl_basic_set_alloc_equality(lp);
247 isl_int_set_si(lp->eq[k][0], -1);
248 for (i = 0; i < set->n; ++i) {
249 isl_int_set_si(lp->eq[k][1+dim*i], 0);
250 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
251 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
253 for (i = 0; i < set->n; ++i) {
254 k = isl_basic_set_alloc_inequality(lp);
255 isl_seq_clr(lp->ineq[k], 1+lp_dim);
256 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
258 for (j = 0; j < set->p[i]->n_eq; ++j) {
259 k = isl_basic_set_alloc_equality(lp);
260 isl_seq_clr(lp->eq[k], 1+dim*i);
261 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
262 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
265 for (j = 0; j < set->p[i]->n_ineq; ++j) {
266 k = isl_basic_set_alloc_inequality(lp);
267 isl_seq_clr(lp->ineq[k], 1+dim*i);
268 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
269 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
272 return lp;
275 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
276 * of that facet, compute the other facet of the convex hull that contains
277 * the ridge.
279 * We first transform the set such that the facet constraint becomes
281 * x_1 >= 0
283 * I.e., the facet lies in
285 * x_1 = 0
287 * and on that facet, the constraint that defines the ridge is
289 * x_2 >= 0
291 * (This transformation is not strictly needed, all that is needed is
292 * that the ridge contains the origin.)
294 * Since the ridge contains the origin, the cone of the convex hull
295 * will be of the form
297 * x_1 >= 0
298 * x_2 >= a x_1
300 * with this second constraint defining the new facet.
301 * The constant a is obtained by settting x_1 in the cone of the
302 * convex hull to 1 and minimizing x_2.
303 * Now, each element in the cone of the convex hull is the sum
304 * of elements in the cones of the basic sets.
305 * If a_i is the dilation factor of basic set i, then the problem
306 * we need to solve is
308 * min \sum_i x_{i,2}
309 * st
310 * \sum_i x_{i,1} = 1
311 * a_i >= 0
312 * [ a_i ]
313 * A [ x_i ] >= 0
315 * with
316 * [ 1 ]
317 * A_i [ x_i ] >= 0
319 * the constraints of each (transformed) basic set.
320 * If a = n/d, then the constraint defining the new facet (in the transformed
321 * space) is
323 * -n x_1 + d x_2 >= 0
325 * In the original space, we need to take the same combination of the
326 * corresponding constraints "facet" and "ridge".
328 * If a = -infty = "-1/0", then we just return the original facet constraint.
329 * This means that the facet is unbounded, but has a bounded intersection
330 * with the union of sets.
332 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
333 isl_int *facet, isl_int *ridge)
335 int i;
336 isl_ctx *ctx;
337 struct isl_mat *T = NULL;
338 struct isl_basic_set *lp = NULL;
339 struct isl_vec *obj;
340 enum isl_lp_result res;
341 isl_int num, den;
342 unsigned dim;
344 if (!set)
345 return NULL;
346 ctx = set->ctx;
347 set = isl_set_copy(set);
348 set = isl_set_set_rational(set);
350 dim = 1 + isl_set_n_dim(set);
351 T = isl_mat_alloc(ctx, 3, dim);
352 if (!T)
353 goto error;
354 isl_int_set_si(T->row[0][0], 1);
355 isl_seq_clr(T->row[0]+1, dim - 1);
356 isl_seq_cpy(T->row[1], facet, dim);
357 isl_seq_cpy(T->row[2], ridge, dim);
358 T = isl_mat_right_inverse(T);
359 set = isl_set_preimage(set, T);
360 T = NULL;
361 if (!set)
362 goto error;
363 lp = wrap_constraints(set);
364 obj = isl_vec_alloc(ctx, 1 + dim*set->n);
365 if (!obj)
366 goto error;
367 isl_int_set_si(obj->block.data[0], 0);
368 for (i = 0; i < set->n; ++i) {
369 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
370 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
371 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
373 isl_int_init(num);
374 isl_int_init(den);
375 res = isl_basic_set_solve_lp(lp, 0,
376 obj->block.data, ctx->one, &num, &den, NULL);
377 if (res == isl_lp_ok) {
378 isl_int_neg(num, num);
379 isl_seq_combine(facet, num, facet, den, ridge, dim);
380 isl_seq_normalize(ctx, facet, dim);
382 isl_int_clear(num);
383 isl_int_clear(den);
384 isl_vec_free(obj);
385 isl_basic_set_free(lp);
386 isl_set_free(set);
387 if (res == isl_lp_error)
388 return NULL;
389 isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
390 return NULL);
391 return facet;
392 error:
393 isl_basic_set_free(lp);
394 isl_mat_free(T);
395 isl_set_free(set);
396 return NULL;
399 /* Compute the constraint of a facet of "set".
401 * We first compute the intersection with a bounding constraint
402 * that is orthogonal to one of the coordinate axes.
403 * If the affine hull of this intersection has only one equality,
404 * we have found a facet.
405 * Otherwise, we wrap the current bounding constraint around
406 * one of the equalities of the face (one that is not equal to
407 * the current bounding constraint).
408 * This process continues until we have found a facet.
409 * The dimension of the intersection increases by at least
410 * one on each iteration, so termination is guaranteed.
412 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
414 struct isl_set *slice = NULL;
415 struct isl_basic_set *face = NULL;
416 int i;
417 unsigned dim = isl_set_n_dim(set);
418 int is_bound;
419 isl_mat *bounds = NULL;
421 isl_assert(set->ctx, set->n > 0, goto error);
422 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
423 if (!bounds)
424 return NULL;
426 isl_seq_clr(bounds->row[0], dim);
427 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
428 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
429 if (is_bound < 0)
430 goto error;
431 isl_assert(set->ctx, is_bound, goto error);
432 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
433 bounds->n_row = 1;
435 for (;;) {
436 slice = isl_set_copy(set);
437 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
438 face = isl_set_affine_hull(slice);
439 if (!face)
440 goto error;
441 if (face->n_eq == 1) {
442 isl_basic_set_free(face);
443 break;
445 for (i = 0; i < face->n_eq; ++i)
446 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
447 !isl_seq_is_neg(bounds->row[0],
448 face->eq[i], 1 + dim))
449 break;
450 isl_assert(set->ctx, i < face->n_eq, goto error);
451 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
452 goto error;
453 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
454 isl_basic_set_free(face);
457 return bounds;
458 error:
459 isl_basic_set_free(face);
460 isl_mat_free(bounds);
461 return NULL;
464 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
465 * compute a hyperplane description of the facet, i.e., compute the facets
466 * of the facet.
468 * We compute an affine transformation that transforms the constraint
470 * [ 1 ]
471 * c [ x ] = 0
473 * to the constraint
475 * z_1 = 0
477 * by computing the right inverse U of a matrix that starts with the rows
479 * [ 1 0 ]
480 * [ c ]
482 * Then
483 * [ 1 ] [ 1 ]
484 * [ x ] = U [ z ]
485 * and
486 * [ 1 ] [ 1 ]
487 * [ z ] = Q [ x ]
489 * with Q = U^{-1}
490 * Since z_1 is zero, we can drop this variable as well as the corresponding
491 * column of U to obtain
493 * [ 1 ] [ 1 ]
494 * [ x ] = U' [ z' ]
495 * and
496 * [ 1 ] [ 1 ]
497 * [ z' ] = Q' [ x ]
499 * with Q' equal to Q, but without the corresponding row.
500 * After computing the facets of the facet in the z' space,
501 * we convert them back to the x space through Q.
503 static __isl_give isl_basic_set *compute_facet(__isl_keep isl_set *set,
504 isl_int *c)
506 struct isl_mat *m, *U, *Q;
507 struct isl_basic_set *facet = NULL;
508 struct isl_ctx *ctx;
509 unsigned dim;
511 ctx = set->ctx;
512 set = isl_set_copy(set);
513 dim = isl_set_n_dim(set);
514 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
515 if (!m)
516 goto error;
517 isl_int_set_si(m->row[0][0], 1);
518 isl_seq_clr(m->row[0]+1, dim);
519 isl_seq_cpy(m->row[1], c, 1+dim);
520 U = isl_mat_right_inverse(m);
521 Q = isl_mat_right_inverse(isl_mat_copy(U));
522 U = isl_mat_drop_cols(U, 1, 1);
523 Q = isl_mat_drop_rows(Q, 1, 1);
524 set = isl_set_preimage(set, U);
525 facet = uset_convex_hull_wrap_bounded(set);
526 facet = isl_basic_set_preimage(facet, Q);
527 if (facet && facet->n_eq != 0)
528 isl_die(ctx, isl_error_internal, "unexpected equality",
529 return isl_basic_set_free(facet));
530 return facet;
531 error:
532 isl_basic_set_free(facet);
533 isl_set_free(set);
534 return NULL;
537 /* Given an initial facet constraint, compute the remaining facets.
538 * We do this by running through all facets found so far and computing
539 * the adjacent facets through wrapping, adding those facets that we
540 * hadn't already found before.
542 * For each facet we have found so far, we first compute its facets
543 * in the resulting convex hull. That is, we compute the ridges
544 * of the resulting convex hull contained in the facet.
545 * We also compute the corresponding facet in the current approximation
546 * of the convex hull. There is no need to wrap around the ridges
547 * in this facet since that would result in a facet that is already
548 * present in the current approximation.
550 * This function can still be significantly optimized by checking which of
551 * the facets of the basic sets are also facets of the convex hull and
552 * using all the facets so far to help in constructing the facets of the
553 * facets
554 * and/or
555 * using the technique in section "3.1 Ridge Generation" of
556 * "Extended Convex Hull" by Fukuda et al.
558 static __isl_give isl_basic_set *extend(__isl_take isl_basic_set *hull,
559 __isl_keep isl_set *set)
561 int i, j, f;
562 int k;
563 struct isl_basic_set *facet = NULL;
564 struct isl_basic_set *hull_facet = NULL;
565 unsigned dim;
567 if (!hull)
568 return NULL;
570 isl_assert(set->ctx, set->n > 0, goto error);
572 dim = isl_set_n_dim(set);
574 for (i = 0; i < hull->n_ineq; ++i) {
575 facet = compute_facet(set, hull->ineq[i]);
576 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
577 facet = isl_basic_set_gauss(facet, NULL);
578 facet = isl_basic_set_normalize_constraints(facet);
579 hull_facet = isl_basic_set_copy(hull);
580 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
581 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
582 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
583 if (!facet || !hull_facet)
584 goto error;
585 hull = isl_basic_set_cow(hull);
586 hull = isl_basic_set_extend_space(hull,
587 isl_space_copy(hull->dim), 0, 0, facet->n_ineq);
588 if (!hull)
589 goto error;
590 for (j = 0; j < facet->n_ineq; ++j) {
591 for (f = 0; f < hull_facet->n_ineq; ++f)
592 if (isl_seq_eq(facet->ineq[j],
593 hull_facet->ineq[f], 1 + dim))
594 break;
595 if (f < hull_facet->n_ineq)
596 continue;
597 k = isl_basic_set_alloc_inequality(hull);
598 if (k < 0)
599 goto error;
600 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
601 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
602 goto error;
604 isl_basic_set_free(hull_facet);
605 isl_basic_set_free(facet);
607 hull = isl_basic_set_simplify(hull);
608 hull = isl_basic_set_finalize(hull);
609 return hull;
610 error:
611 isl_basic_set_free(hull_facet);
612 isl_basic_set_free(facet);
613 isl_basic_set_free(hull);
614 return NULL;
617 /* Special case for computing the convex hull of a one dimensional set.
618 * We simply collect the lower and upper bounds of each basic set
619 * and the biggest of those.
621 static __isl_give isl_basic_set *convex_hull_1d(__isl_take isl_set *set)
623 struct isl_mat *c = NULL;
624 isl_int *lower = NULL;
625 isl_int *upper = NULL;
626 int i, j, k;
627 isl_int a, b;
628 struct isl_basic_set *hull;
630 for (i = 0; i < set->n; ++i) {
631 set->p[i] = isl_basic_set_simplify(set->p[i]);
632 if (!set->p[i])
633 goto error;
635 set = isl_set_remove_empty_parts(set);
636 if (!set)
637 goto error;
638 isl_assert(set->ctx, set->n > 0, goto error);
639 c = isl_mat_alloc(set->ctx, 2, 2);
640 if (!c)
641 goto error;
643 if (set->p[0]->n_eq > 0) {
644 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
645 lower = c->row[0];
646 upper = c->row[1];
647 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
648 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
649 isl_seq_neg(upper, set->p[0]->eq[0], 2);
650 } else {
651 isl_seq_neg(lower, set->p[0]->eq[0], 2);
652 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
654 } else {
655 for (j = 0; j < set->p[0]->n_ineq; ++j) {
656 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
657 lower = c->row[0];
658 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
659 } else {
660 upper = c->row[1];
661 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
666 isl_int_init(a);
667 isl_int_init(b);
668 for (i = 0; i < set->n; ++i) {
669 struct isl_basic_set *bset = set->p[i];
670 int has_lower = 0;
671 int has_upper = 0;
673 for (j = 0; j < bset->n_eq; ++j) {
674 has_lower = 1;
675 has_upper = 1;
676 if (lower) {
677 isl_int_mul(a, lower[0], bset->eq[j][1]);
678 isl_int_mul(b, lower[1], bset->eq[j][0]);
679 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
680 isl_seq_cpy(lower, bset->eq[j], 2);
681 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
682 isl_seq_neg(lower, bset->eq[j], 2);
684 if (upper) {
685 isl_int_mul(a, upper[0], bset->eq[j][1]);
686 isl_int_mul(b, upper[1], bset->eq[j][0]);
687 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
688 isl_seq_neg(upper, bset->eq[j], 2);
689 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
690 isl_seq_cpy(upper, bset->eq[j], 2);
693 for (j = 0; j < bset->n_ineq; ++j) {
694 if (isl_int_is_pos(bset->ineq[j][1]))
695 has_lower = 1;
696 if (isl_int_is_neg(bset->ineq[j][1]))
697 has_upper = 1;
698 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
699 isl_int_mul(a, lower[0], bset->ineq[j][1]);
700 isl_int_mul(b, lower[1], bset->ineq[j][0]);
701 if (isl_int_lt(a, b))
702 isl_seq_cpy(lower, bset->ineq[j], 2);
704 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
705 isl_int_mul(a, upper[0], bset->ineq[j][1]);
706 isl_int_mul(b, upper[1], bset->ineq[j][0]);
707 if (isl_int_gt(a, b))
708 isl_seq_cpy(upper, bset->ineq[j], 2);
711 if (!has_lower)
712 lower = NULL;
713 if (!has_upper)
714 upper = NULL;
716 isl_int_clear(a);
717 isl_int_clear(b);
719 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
720 hull = isl_basic_set_set_rational(hull);
721 if (!hull)
722 goto error;
723 if (lower) {
724 k = isl_basic_set_alloc_inequality(hull);
725 isl_seq_cpy(hull->ineq[k], lower, 2);
727 if (upper) {
728 k = isl_basic_set_alloc_inequality(hull);
729 isl_seq_cpy(hull->ineq[k], upper, 2);
731 hull = isl_basic_set_finalize(hull);
732 isl_set_free(set);
733 isl_mat_free(c);
734 return hull;
735 error:
736 isl_set_free(set);
737 isl_mat_free(c);
738 return NULL;
741 static __isl_give isl_basic_set *convex_hull_0d(__isl_take isl_set *set)
743 struct isl_basic_set *convex_hull;
745 if (!set)
746 return NULL;
748 if (isl_set_is_empty(set))
749 convex_hull = isl_basic_set_empty(isl_space_copy(set->dim));
750 else
751 convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
752 isl_set_free(set);
753 return convex_hull;
756 /* Compute the convex hull of a pair of basic sets without any parameters or
757 * integer divisions using Fourier-Motzkin elimination.
758 * The convex hull is the set of all points that can be written as
759 * the sum of points from both basic sets (in homogeneous coordinates).
760 * We set up the constraints in a space with dimensions for each of
761 * the three sets and then project out the dimensions corresponding
762 * to the two original basic sets, retaining only those corresponding
763 * to the convex hull.
765 static __isl_give isl_basic_set *convex_hull_pair_elim(
766 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
768 int i, j, k;
769 struct isl_basic_set *bset[2];
770 struct isl_basic_set *hull = NULL;
771 unsigned dim;
773 if (!bset1 || !bset2)
774 goto error;
776 dim = isl_basic_set_n_dim(bset1);
777 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
778 1 + dim + bset1->n_eq + bset2->n_eq,
779 2 + bset1->n_ineq + bset2->n_ineq);
780 bset[0] = bset1;
781 bset[1] = bset2;
782 for (i = 0; i < 2; ++i) {
783 for (j = 0; j < bset[i]->n_eq; ++j) {
784 k = isl_basic_set_alloc_equality(hull);
785 if (k < 0)
786 goto error;
787 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
788 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
789 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
790 1+dim);
792 for (j = 0; j < bset[i]->n_ineq; ++j) {
793 k = isl_basic_set_alloc_inequality(hull);
794 if (k < 0)
795 goto error;
796 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
797 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
798 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
799 bset[i]->ineq[j], 1+dim);
801 k = isl_basic_set_alloc_inequality(hull);
802 if (k < 0)
803 goto error;
804 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
805 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
807 for (j = 0; j < 1+dim; ++j) {
808 k = isl_basic_set_alloc_equality(hull);
809 if (k < 0)
810 goto error;
811 isl_seq_clr(hull->eq[k], 1+2+3*dim);
812 isl_int_set_si(hull->eq[k][j], -1);
813 isl_int_set_si(hull->eq[k][1+dim+j], 1);
814 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
816 hull = isl_basic_set_set_rational(hull);
817 hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim));
818 hull = isl_basic_set_remove_redundancies(hull);
819 isl_basic_set_free(bset1);
820 isl_basic_set_free(bset2);
821 return hull;
822 error:
823 isl_basic_set_free(bset1);
824 isl_basic_set_free(bset2);
825 isl_basic_set_free(hull);
826 return NULL;
829 /* Is the set bounded for each value of the parameters?
831 isl_bool isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
833 struct isl_tab *tab;
834 isl_bool bounded;
836 if (!bset)
837 return isl_bool_error;
838 if (isl_basic_set_plain_is_empty(bset))
839 return isl_bool_true;
841 tab = isl_tab_from_recession_cone(bset, 1);
842 bounded = isl_tab_cone_is_bounded(tab);
843 isl_tab_free(tab);
844 return bounded;
847 /* Is the image bounded for each value of the parameters and
848 * the domain variables?
850 isl_bool isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap)
852 unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param);
853 unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in);
854 isl_bool bounded;
856 bmap = isl_basic_map_copy(bmap);
857 bmap = isl_basic_map_cow(bmap);
858 bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam,
859 isl_dim_in, 0, n_in);
860 bounded = isl_basic_set_is_bounded(bset_from_bmap(bmap));
861 isl_basic_map_free(bmap);
863 return bounded;
866 /* Is the set bounded for each value of the parameters?
868 isl_bool isl_set_is_bounded(__isl_keep isl_set *set)
870 int i;
872 if (!set)
873 return isl_bool_error;
875 for (i = 0; i < set->n; ++i) {
876 isl_bool bounded = isl_basic_set_is_bounded(set->p[i]);
877 if (!bounded || bounded < 0)
878 return bounded;
880 return isl_bool_true;
883 /* Compute the lineality space of the convex hull of bset1 and bset2.
885 * We first compute the intersection of the recession cone of bset1
886 * with the negative of the recession cone of bset2 and then compute
887 * the linear hull of the resulting cone.
889 static __isl_give isl_basic_set *induced_lineality_space(
890 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
892 int i, k;
893 struct isl_basic_set *lin = NULL;
894 unsigned dim;
896 if (!bset1 || !bset2)
897 goto error;
899 dim = isl_basic_set_total_dim(bset1);
900 lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset1), 0,
901 bset1->n_eq + bset2->n_eq,
902 bset1->n_ineq + bset2->n_ineq);
903 lin = isl_basic_set_set_rational(lin);
904 if (!lin)
905 goto error;
906 for (i = 0; i < bset1->n_eq; ++i) {
907 k = isl_basic_set_alloc_equality(lin);
908 if (k < 0)
909 goto error;
910 isl_int_set_si(lin->eq[k][0], 0);
911 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
913 for (i = 0; i < bset1->n_ineq; ++i) {
914 k = isl_basic_set_alloc_inequality(lin);
915 if (k < 0)
916 goto error;
917 isl_int_set_si(lin->ineq[k][0], 0);
918 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
920 for (i = 0; i < bset2->n_eq; ++i) {
921 k = isl_basic_set_alloc_equality(lin);
922 if (k < 0)
923 goto error;
924 isl_int_set_si(lin->eq[k][0], 0);
925 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
927 for (i = 0; i < bset2->n_ineq; ++i) {
928 k = isl_basic_set_alloc_inequality(lin);
929 if (k < 0)
930 goto error;
931 isl_int_set_si(lin->ineq[k][0], 0);
932 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
935 isl_basic_set_free(bset1);
936 isl_basic_set_free(bset2);
937 return isl_basic_set_affine_hull(lin);
938 error:
939 isl_basic_set_free(lin);
940 isl_basic_set_free(bset1);
941 isl_basic_set_free(bset2);
942 return NULL;
945 static __isl_give isl_basic_set *uset_convex_hull(__isl_take isl_set *set);
947 /* Given a set and a linear space "lin" of dimension n > 0,
948 * project the linear space from the set, compute the convex hull
949 * and then map the set back to the original space.
951 * Let
953 * M x = 0
955 * describe the linear space. We first compute the Hermite normal
956 * form H = M U of M = H Q, to obtain
958 * H Q x = 0
960 * The last n rows of H will be zero, so the last n variables of x' = Q x
961 * are the one we want to project out. We do this by transforming each
962 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
963 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
964 * we transform the hull back to the original space as A' Q_1 x >= b',
965 * with Q_1 all but the last n rows of Q.
967 static __isl_give isl_basic_set *modulo_lineality(__isl_take isl_set *set,
968 __isl_take isl_basic_set *lin)
970 unsigned total = isl_basic_set_total_dim(lin);
971 unsigned lin_dim;
972 struct isl_basic_set *hull;
973 struct isl_mat *M, *U, *Q;
975 if (!set || !lin)
976 goto error;
977 lin_dim = total - lin->n_eq;
978 M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
979 M = isl_mat_left_hermite(M, 0, &U, &Q);
980 if (!M)
981 goto error;
982 isl_mat_free(M);
983 isl_basic_set_free(lin);
985 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
987 U = isl_mat_lin_to_aff(U);
988 Q = isl_mat_lin_to_aff(Q);
990 set = isl_set_preimage(set, U);
991 set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim);
992 hull = uset_convex_hull(set);
993 hull = isl_basic_set_preimage(hull, Q);
995 return hull;
996 error:
997 isl_basic_set_free(lin);
998 isl_set_free(set);
999 return NULL;
1002 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1003 * set up an LP for solving
1005 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1007 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1008 * The next \alpha{ij} correspond to the equalities and come in pairs.
1009 * The final \alpha{ij} correspond to the inequalities.
1011 static __isl_give isl_basic_set *valid_direction_lp(
1012 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
1014 isl_space *dim;
1015 struct isl_basic_set *lp;
1016 unsigned d;
1017 int n;
1018 int i, j, k;
1020 if (!bset1 || !bset2)
1021 goto error;
1022 d = 1 + isl_basic_set_total_dim(bset1);
1023 n = 2 +
1024 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1025 dim = isl_space_set_alloc(bset1->ctx, 0, n);
1026 lp = isl_basic_set_alloc_space(dim, 0, d, n);
1027 if (!lp)
1028 goto error;
1029 for (i = 0; i < n; ++i) {
1030 k = isl_basic_set_alloc_inequality(lp);
1031 if (k < 0)
1032 goto error;
1033 isl_seq_clr(lp->ineq[k] + 1, n);
1034 isl_int_set_si(lp->ineq[k][0], -1);
1035 isl_int_set_si(lp->ineq[k][1 + i], 1);
1037 for (i = 0; i < d; ++i) {
1038 k = isl_basic_set_alloc_equality(lp);
1039 if (k < 0)
1040 goto error;
1041 n = 0;
1042 isl_int_set_si(lp->eq[k][n], 0); n++;
1043 /* positivity constraint 1 >= 0 */
1044 isl_int_set_si(lp->eq[k][n], i == 0); n++;
1045 for (j = 0; j < bset1->n_eq; ++j) {
1046 isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++;
1047 isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++;
1049 for (j = 0; j < bset1->n_ineq; ++j) {
1050 isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++;
1052 /* positivity constraint 1 >= 0 */
1053 isl_int_set_si(lp->eq[k][n], -(i == 0)); n++;
1054 for (j = 0; j < bset2->n_eq; ++j) {
1055 isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++;
1056 isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++;
1058 for (j = 0; j < bset2->n_ineq; ++j) {
1059 isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++;
1062 lp = isl_basic_set_gauss(lp, NULL);
1063 isl_basic_set_free(bset1);
1064 isl_basic_set_free(bset2);
1065 return lp;
1066 error:
1067 isl_basic_set_free(bset1);
1068 isl_basic_set_free(bset2);
1069 return NULL;
1072 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1073 * for all rays in the homogeneous space of the two cones that correspond
1074 * to the input polyhedra bset1 and bset2.
1076 * We compute s as a vector that satisfies
1078 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1080 * with h_{ij} the normals of the facets of polyhedron i
1081 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1082 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1083 * We first set up an LP with as variables the \alpha{ij}.
1084 * In this formulation, for each polyhedron i,
1085 * the first constraint is the positivity constraint, followed by pairs
1086 * of variables for the equalities, followed by variables for the inequalities.
1087 * We then simply pick a feasible solution and compute s using (*).
1089 * Note that we simply pick any valid direction and make no attempt
1090 * to pick a "good" or even the "best" valid direction.
1092 static __isl_give isl_vec *valid_direction(
1093 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
1095 struct isl_basic_set *lp;
1096 struct isl_tab *tab;
1097 struct isl_vec *sample = NULL;
1098 struct isl_vec *dir;
1099 unsigned d;
1100 int i;
1101 int n;
1103 if (!bset1 || !bset2)
1104 goto error;
1105 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1106 isl_basic_set_copy(bset2));
1107 tab = isl_tab_from_basic_set(lp, 0);
1108 sample = isl_tab_get_sample_value(tab);
1109 isl_tab_free(tab);
1110 isl_basic_set_free(lp);
1111 if (!sample)
1112 goto error;
1113 d = isl_basic_set_total_dim(bset1);
1114 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1115 if (!dir)
1116 goto error;
1117 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1118 n = 1;
1119 /* positivity constraint 1 >= 0 */
1120 isl_int_set(dir->block.data[0], sample->block.data[n]); n++;
1121 for (i = 0; i < bset1->n_eq; ++i) {
1122 isl_int_sub(sample->block.data[n],
1123 sample->block.data[n], sample->block.data[n+1]);
1124 isl_seq_combine(dir->block.data,
1125 bset1->ctx->one, dir->block.data,
1126 sample->block.data[n], bset1->eq[i], 1 + d);
1128 n += 2;
1130 for (i = 0; i < bset1->n_ineq; ++i)
1131 isl_seq_combine(dir->block.data,
1132 bset1->ctx->one, dir->block.data,
1133 sample->block.data[n++], bset1->ineq[i], 1 + d);
1134 isl_vec_free(sample);
1135 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1136 isl_basic_set_free(bset1);
1137 isl_basic_set_free(bset2);
1138 return dir;
1139 error:
1140 isl_vec_free(sample);
1141 isl_basic_set_free(bset1);
1142 isl_basic_set_free(bset2);
1143 return NULL;
1146 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1147 * compute b_i' + A_i' x' >= 0, with
1149 * [ b_i A_i ] [ y' ] [ y' ]
1150 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1152 * In particular, add the "positivity constraint" and then perform
1153 * the mapping.
1155 static __isl_give isl_basic_set *homogeneous_map(__isl_take isl_basic_set *bset,
1156 __isl_take isl_mat *T)
1158 int k;
1160 if (!bset)
1161 goto error;
1162 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1163 k = isl_basic_set_alloc_inequality(bset);
1164 if (k < 0)
1165 goto error;
1166 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1167 isl_int_set_si(bset->ineq[k][0], 1);
1168 bset = isl_basic_set_preimage(bset, T);
1169 return bset;
1170 error:
1171 isl_mat_free(T);
1172 isl_basic_set_free(bset);
1173 return NULL;
1176 /* Compute the convex hull of a pair of basic sets without any parameters or
1177 * integer divisions, where the convex hull is known to be pointed,
1178 * but the basic sets may be unbounded.
1180 * We turn this problem into the computation of a convex hull of a pair
1181 * _bounded_ polyhedra by "changing the direction of the homogeneous
1182 * dimension". This idea is due to Matthias Koeppe.
1184 * Consider the cones in homogeneous space that correspond to the
1185 * input polyhedra. The rays of these cones are also rays of the
1186 * polyhedra if the coordinate that corresponds to the homogeneous
1187 * dimension is zero. That is, if the inner product of the rays
1188 * with the homogeneous direction is zero.
1189 * The cones in the homogeneous space can also be considered to
1190 * correspond to other pairs of polyhedra by chosing a different
1191 * homogeneous direction. To ensure that both of these polyhedra
1192 * are bounded, we need to make sure that all rays of the cones
1193 * correspond to vertices and not to rays.
1194 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1195 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1196 * The vector s is computed in valid_direction.
1198 * Note that we need to consider _all_ rays of the cones and not just
1199 * the rays that correspond to rays in the polyhedra. If we were to
1200 * only consider those rays and turn them into vertices, then we
1201 * may inadvertently turn some vertices into rays.
1203 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1204 * We therefore transform the two polyhedra such that the selected
1205 * direction is mapped onto this standard direction and then proceed
1206 * with the normal computation.
1207 * Let S be a non-singular square matrix with s as its first row,
1208 * then we want to map the polyhedra to the space
1210 * [ y' ] [ y ] [ y ] [ y' ]
1211 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1213 * We take S to be the unimodular completion of s to limit the growth
1214 * of the coefficients in the following computations.
1216 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1217 * We first move to the homogeneous dimension
1219 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1220 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1222 * Then we change directoin
1224 * [ b_i A_i ] [ y' ] [ y' ]
1225 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1227 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1228 * resulting in b' + A' x' >= 0, which we then convert back
1230 * [ y ] [ y ]
1231 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1233 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1235 static __isl_give isl_basic_set *convex_hull_pair_pointed(
1236 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
1238 struct isl_ctx *ctx = NULL;
1239 struct isl_vec *dir = NULL;
1240 struct isl_mat *T = NULL;
1241 struct isl_mat *T2 = NULL;
1242 struct isl_basic_set *hull;
1243 struct isl_set *set;
1245 if (!bset1 || !bset2)
1246 goto error;
1247 ctx = isl_basic_set_get_ctx(bset1);
1248 dir = valid_direction(isl_basic_set_copy(bset1),
1249 isl_basic_set_copy(bset2));
1250 if (!dir)
1251 goto error;
1252 T = isl_mat_alloc(ctx, dir->size, dir->size);
1253 if (!T)
1254 goto error;
1255 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1256 T = isl_mat_unimodular_complete(T, 1);
1257 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1259 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1260 bset2 = homogeneous_map(bset2, T2);
1261 set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
1262 set = isl_set_add_basic_set(set, bset1);
1263 set = isl_set_add_basic_set(set, bset2);
1264 hull = uset_convex_hull(set);
1265 hull = isl_basic_set_preimage(hull, T);
1267 isl_vec_free(dir);
1269 return hull;
1270 error:
1271 isl_vec_free(dir);
1272 isl_basic_set_free(bset1);
1273 isl_basic_set_free(bset2);
1274 return NULL;
1277 static __isl_give isl_basic_set *uset_convex_hull_wrap(__isl_take isl_set *set);
1278 static __isl_give isl_basic_set *modulo_affine_hull(
1279 __isl_take isl_set *set, __isl_take isl_basic_set *affine_hull);
1281 /* Compute the convex hull of a pair of basic sets without any parameters or
1282 * integer divisions.
1284 * This function is called from uset_convex_hull_unbounded, which
1285 * means that the complete convex hull is unbounded. Some pairs
1286 * of basic sets may still be bounded, though.
1287 * They may even lie inside a lower dimensional space, in which
1288 * case they need to be handled inside their affine hull since
1289 * the main algorithm assumes that the result is full-dimensional.
1291 * If the convex hull of the two basic sets would have a non-trivial
1292 * lineality space, we first project out this lineality space.
1294 static __isl_give isl_basic_set *convex_hull_pair(
1295 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
1297 isl_basic_set *lin, *aff;
1298 int bounded1, bounded2;
1300 if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM)
1301 return convex_hull_pair_elim(bset1, bset2);
1303 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1304 isl_basic_set_copy(bset2)));
1305 if (!aff)
1306 goto error;
1307 if (aff->n_eq != 0)
1308 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1309 isl_basic_set_free(aff);
1311 bounded1 = isl_basic_set_is_bounded(bset1);
1312 bounded2 = isl_basic_set_is_bounded(bset2);
1314 if (bounded1 < 0 || bounded2 < 0)
1315 goto error;
1317 if (bounded1 && bounded2)
1318 return uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1320 if (bounded1 || bounded2)
1321 return convex_hull_pair_pointed(bset1, bset2);
1323 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1324 isl_basic_set_copy(bset2));
1325 if (!lin)
1326 goto error;
1327 if (isl_basic_set_plain_is_universe(lin)) {
1328 isl_basic_set_free(bset1);
1329 isl_basic_set_free(bset2);
1330 return lin;
1332 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1333 struct isl_set *set;
1334 set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
1335 set = isl_set_add_basic_set(set, bset1);
1336 set = isl_set_add_basic_set(set, bset2);
1337 return modulo_lineality(set, lin);
1339 isl_basic_set_free(lin);
1341 return convex_hull_pair_pointed(bset1, bset2);
1342 error:
1343 isl_basic_set_free(bset1);
1344 isl_basic_set_free(bset2);
1345 return NULL;
1348 /* Compute the lineality space of a basic set.
1349 * We currently do not allow the basic set to have any divs.
1350 * We basically just drop the constants and turn every inequality
1351 * into an equality.
1353 __isl_give isl_basic_set *isl_basic_set_lineality_space(
1354 __isl_take isl_basic_set *bset)
1356 int i, k;
1357 struct isl_basic_set *lin = NULL;
1358 unsigned dim;
1360 if (!bset)
1361 goto error;
1362 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1363 dim = isl_basic_set_total_dim(bset);
1365 lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, dim, 0);
1366 if (!lin)
1367 goto error;
1368 for (i = 0; i < bset->n_eq; ++i) {
1369 k = isl_basic_set_alloc_equality(lin);
1370 if (k < 0)
1371 goto error;
1372 isl_int_set_si(lin->eq[k][0], 0);
1373 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1375 lin = isl_basic_set_gauss(lin, NULL);
1376 if (!lin)
1377 goto error;
1378 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1379 k = isl_basic_set_alloc_equality(lin);
1380 if (k < 0)
1381 goto error;
1382 isl_int_set_si(lin->eq[k][0], 0);
1383 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1384 lin = isl_basic_set_gauss(lin, NULL);
1385 if (!lin)
1386 goto error;
1388 isl_basic_set_free(bset);
1389 return lin;
1390 error:
1391 isl_basic_set_free(lin);
1392 isl_basic_set_free(bset);
1393 return NULL;
1396 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1397 * "underlying" set "set".
1399 static __isl_give isl_basic_set *uset_combined_lineality_space(
1400 __isl_take isl_set *set)
1402 int i;
1403 struct isl_set *lin = NULL;
1405 if (!set)
1406 return NULL;
1407 if (set->n == 0) {
1408 isl_space *space = isl_set_get_space(set);
1409 isl_set_free(set);
1410 return isl_basic_set_empty(space);
1413 lin = isl_set_alloc_space(isl_set_get_space(set), set->n, 0);
1414 for (i = 0; i < set->n; ++i)
1415 lin = isl_set_add_basic_set(lin,
1416 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1417 isl_set_free(set);
1418 return isl_set_affine_hull(lin);
1421 /* Compute the convex hull of a set without any parameters or
1422 * integer divisions.
1423 * In each step, we combined two basic sets until only one
1424 * basic set is left.
1425 * The input basic sets are assumed not to have a non-trivial
1426 * lineality space. If any of the intermediate results has
1427 * a non-trivial lineality space, it is projected out.
1429 static __isl_give isl_basic_set *uset_convex_hull_unbounded(
1430 __isl_take isl_set *set)
1432 isl_basic_set_list *list;
1434 list = isl_set_get_basic_set_list(set);
1435 isl_set_free(set);
1437 while (list) {
1438 int n;
1439 struct isl_basic_set *t;
1440 isl_basic_set *bset1, *bset2;
1442 n = isl_basic_set_list_n_basic_set(list);
1443 if (n < 2)
1444 isl_die(isl_basic_set_list_get_ctx(list),
1445 isl_error_internal,
1446 "expecting at least two elements", goto error);
1447 bset1 = isl_basic_set_list_get_basic_set(list, n - 1);
1448 bset2 = isl_basic_set_list_get_basic_set(list, n - 2);
1449 bset1 = convex_hull_pair(bset1, bset2);
1450 if (n == 2) {
1451 isl_basic_set_list_free(list);
1452 return bset1;
1454 bset1 = isl_basic_set_underlying_set(bset1);
1455 list = isl_basic_set_list_drop(list, n - 2, 2);
1456 list = isl_basic_set_list_add(list, bset1);
1458 t = isl_basic_set_list_get_basic_set(list, n - 2);
1459 t = isl_basic_set_lineality_space(t);
1460 if (!t)
1461 goto error;
1462 if (isl_basic_set_plain_is_universe(t)) {
1463 isl_basic_set_list_free(list);
1464 return t;
1466 if (t->n_eq < isl_basic_set_total_dim(t)) {
1467 set = isl_basic_set_list_union(list);
1468 return modulo_lineality(set, t);
1470 isl_basic_set_free(t);
1473 return NULL;
1474 error:
1475 isl_basic_set_list_free(list);
1476 return NULL;
1479 /* Compute an initial hull for wrapping containing a single initial
1480 * facet.
1481 * This function assumes that the given set is bounded.
1483 static __isl_give isl_basic_set *initial_hull(__isl_take isl_basic_set *hull,
1484 __isl_keep isl_set *set)
1486 struct isl_mat *bounds = NULL;
1487 unsigned dim;
1488 int k;
1490 if (!hull)
1491 goto error;
1492 bounds = initial_facet_constraint(set);
1493 if (!bounds)
1494 goto error;
1495 k = isl_basic_set_alloc_inequality(hull);
1496 if (k < 0)
1497 goto error;
1498 dim = isl_set_n_dim(set);
1499 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1500 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1501 isl_mat_free(bounds);
1503 return hull;
1504 error:
1505 isl_basic_set_free(hull);
1506 isl_mat_free(bounds);
1507 return NULL;
1510 struct max_constraint {
1511 struct isl_mat *c;
1512 int count;
1513 int ineq;
1516 static int max_constraint_equal(const void *entry, const void *val)
1518 struct max_constraint *a = (struct max_constraint *)entry;
1519 isl_int *b = (isl_int *)val;
1521 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1524 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1525 isl_int *con, unsigned len, int n, int ineq)
1527 struct isl_hash_table_entry *entry;
1528 struct max_constraint *c;
1529 uint32_t c_hash;
1531 c_hash = isl_seq_get_hash(con + 1, len);
1532 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1533 con + 1, 0);
1534 if (!entry)
1535 return;
1536 c = entry->data;
1537 if (c->count < n) {
1538 isl_hash_table_remove(ctx, table, entry);
1539 return;
1541 c->count++;
1542 if (isl_int_gt(c->c->row[0][0], con[0]))
1543 return;
1544 if (isl_int_eq(c->c->row[0][0], con[0])) {
1545 if (ineq)
1546 c->ineq = ineq;
1547 return;
1549 c->c = isl_mat_cow(c->c);
1550 isl_int_set(c->c->row[0][0], con[0]);
1551 c->ineq = ineq;
1554 /* Check whether the constraint hash table "table" constains the constraint
1555 * "con".
1557 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1558 isl_int *con, unsigned len, int n)
1560 struct isl_hash_table_entry *entry;
1561 struct max_constraint *c;
1562 uint32_t c_hash;
1564 c_hash = isl_seq_get_hash(con + 1, len);
1565 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1566 con + 1, 0);
1567 if (!entry)
1568 return 0;
1569 c = entry->data;
1570 if (c->count < n)
1571 return 0;
1572 return isl_int_eq(c->c->row[0][0], con[0]);
1575 /* Check for inequality constraints of a basic set without equalities
1576 * such that the same or more stringent copies of the constraint appear
1577 * in all of the basic sets. Such constraints are necessarily facet
1578 * constraints of the convex hull.
1580 * If the resulting basic set is by chance identical to one of
1581 * the basic sets in "set", then we know that this basic set contains
1582 * all other basic sets and is therefore the convex hull of set.
1583 * In this case we set *is_hull to 1.
1585 static __isl_give isl_basic_set *common_constraints(
1586 __isl_take isl_basic_set *hull, __isl_keep isl_set *set, int *is_hull)
1588 int i, j, s, n;
1589 int min_constraints;
1590 int best;
1591 struct max_constraint *constraints = NULL;
1592 struct isl_hash_table *table = NULL;
1593 unsigned total;
1595 *is_hull = 0;
1597 for (i = 0; i < set->n; ++i)
1598 if (set->p[i]->n_eq == 0)
1599 break;
1600 if (i >= set->n)
1601 return hull;
1602 min_constraints = set->p[i]->n_ineq;
1603 best = i;
1604 for (i = best + 1; i < set->n; ++i) {
1605 if (set->p[i]->n_eq != 0)
1606 continue;
1607 if (set->p[i]->n_ineq >= min_constraints)
1608 continue;
1609 min_constraints = set->p[i]->n_ineq;
1610 best = i;
1612 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1613 min_constraints);
1614 if (!constraints)
1615 return hull;
1616 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1617 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1618 goto error;
1620 total = isl_space_dim(set->dim, isl_dim_all);
1621 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1622 constraints[i].c = isl_mat_sub_alloc6(hull->ctx,
1623 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1624 if (!constraints[i].c)
1625 goto error;
1626 constraints[i].ineq = 1;
1628 for (i = 0; i < min_constraints; ++i) {
1629 struct isl_hash_table_entry *entry;
1630 uint32_t c_hash;
1631 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1632 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1633 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1634 if (!entry)
1635 goto error;
1636 isl_assert(hull->ctx, !entry->data, goto error);
1637 entry->data = &constraints[i];
1640 n = 0;
1641 for (s = 0; s < set->n; ++s) {
1642 if (s == best)
1643 continue;
1645 for (i = 0; i < set->p[s]->n_eq; ++i) {
1646 isl_int *eq = set->p[s]->eq[i];
1647 for (j = 0; j < 2; ++j) {
1648 isl_seq_neg(eq, eq, 1 + total);
1649 update_constraint(hull->ctx, table,
1650 eq, total, n, 0);
1653 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1654 isl_int *ineq = set->p[s]->ineq[i];
1655 update_constraint(hull->ctx, table, ineq, total, n,
1656 set->p[s]->n_eq == 0);
1658 ++n;
1661 for (i = 0; i < min_constraints; ++i) {
1662 if (constraints[i].count < n)
1663 continue;
1664 if (!constraints[i].ineq)
1665 continue;
1666 j = isl_basic_set_alloc_inequality(hull);
1667 if (j < 0)
1668 goto error;
1669 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1672 for (s = 0; s < set->n; ++s) {
1673 if (set->p[s]->n_eq)
1674 continue;
1675 if (set->p[s]->n_ineq != hull->n_ineq)
1676 continue;
1677 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1678 isl_int *ineq = set->p[s]->ineq[i];
1679 if (!has_constraint(hull->ctx, table, ineq, total, n))
1680 break;
1682 if (i == set->p[s]->n_ineq)
1683 *is_hull = 1;
1686 isl_hash_table_clear(table);
1687 for (i = 0; i < min_constraints; ++i)
1688 isl_mat_free(constraints[i].c);
1689 free(constraints);
1690 free(table);
1691 return hull;
1692 error:
1693 isl_hash_table_clear(table);
1694 free(table);
1695 if (constraints)
1696 for (i = 0; i < min_constraints; ++i)
1697 isl_mat_free(constraints[i].c);
1698 free(constraints);
1699 return hull;
1702 /* Create a template for the convex hull of "set" and fill it up
1703 * obvious facet constraints, if any. If the result happens to
1704 * be the convex hull of "set" then *is_hull is set to 1.
1706 static __isl_give isl_basic_set *proto_hull(__isl_keep isl_set *set,
1707 int *is_hull)
1709 struct isl_basic_set *hull;
1710 unsigned n_ineq;
1711 int i;
1713 n_ineq = 1;
1714 for (i = 0; i < set->n; ++i) {
1715 n_ineq += set->p[i]->n_eq;
1716 n_ineq += set->p[i]->n_ineq;
1718 hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
1719 hull = isl_basic_set_set_rational(hull);
1720 if (!hull)
1721 return NULL;
1722 return common_constraints(hull, set, is_hull);
1725 static __isl_give isl_basic_set *uset_convex_hull_wrap(__isl_take isl_set *set)
1727 struct isl_basic_set *hull;
1728 int is_hull;
1730 hull = proto_hull(set, &is_hull);
1731 if (hull && !is_hull) {
1732 if (hull->n_ineq == 0)
1733 hull = initial_hull(hull, set);
1734 hull = extend(hull, set);
1736 isl_set_free(set);
1738 return hull;
1741 /* Compute the convex hull of a set without any parameters or
1742 * integer divisions. Depending on whether the set is bounded,
1743 * we pass control to the wrapping based convex hull or
1744 * the Fourier-Motzkin elimination based convex hull.
1745 * We also handle a few special cases before checking the boundedness.
1747 static __isl_give isl_basic_set *uset_convex_hull(__isl_take isl_set *set)
1749 isl_bool bounded;
1750 struct isl_basic_set *convex_hull = NULL;
1751 struct isl_basic_set *lin;
1753 if (isl_set_n_dim(set) == 0)
1754 return convex_hull_0d(set);
1756 set = isl_set_coalesce(set);
1757 set = isl_set_set_rational(set);
1759 if (!set)
1760 return NULL;
1761 if (set->n == 1) {
1762 convex_hull = isl_basic_set_copy(set->p[0]);
1763 isl_set_free(set);
1764 return convex_hull;
1766 if (isl_set_n_dim(set) == 1)
1767 return convex_hull_1d(set);
1769 bounded = isl_set_is_bounded(set);
1770 if (bounded < 0)
1771 goto error;
1772 if (bounded && set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP)
1773 return uset_convex_hull_wrap(set);
1775 lin = uset_combined_lineality_space(isl_set_copy(set));
1776 if (!lin)
1777 goto error;
1778 if (isl_basic_set_plain_is_universe(lin)) {
1779 isl_set_free(set);
1780 return lin;
1782 if (lin->n_eq < isl_basic_set_total_dim(lin))
1783 return modulo_lineality(set, lin);
1784 isl_basic_set_free(lin);
1786 return uset_convex_hull_unbounded(set);
1787 error:
1788 isl_set_free(set);
1789 isl_basic_set_free(convex_hull);
1790 return NULL;
1793 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1794 * without parameters or divs and where the convex hull of set is
1795 * known to be full-dimensional.
1797 static __isl_give isl_basic_set *uset_convex_hull_wrap_bounded(
1798 __isl_take isl_set *set)
1800 struct isl_basic_set *convex_hull = NULL;
1802 if (!set)
1803 goto error;
1805 if (isl_set_n_dim(set) == 0) {
1806 convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
1807 isl_set_free(set);
1808 convex_hull = isl_basic_set_set_rational(convex_hull);
1809 return convex_hull;
1812 set = isl_set_set_rational(set);
1813 set = isl_set_coalesce(set);
1814 if (!set)
1815 goto error;
1816 if (set->n == 1) {
1817 convex_hull = isl_basic_set_copy(set->p[0]);
1818 isl_set_free(set);
1819 convex_hull = isl_basic_map_remove_redundancies(convex_hull);
1820 return convex_hull;
1822 if (isl_set_n_dim(set) == 1)
1823 return convex_hull_1d(set);
1825 return uset_convex_hull_wrap(set);
1826 error:
1827 isl_set_free(set);
1828 return NULL;
1831 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1832 * We first remove the equalities (transforming the set), compute the
1833 * convex hull of the transformed set and then add the equalities back
1834 * (after performing the inverse transformation.
1836 static __isl_give isl_basic_set *modulo_affine_hull(
1837 __isl_take isl_set *set, __isl_take isl_basic_set *affine_hull)
1839 struct isl_mat *T;
1840 struct isl_mat *T2;
1841 struct isl_basic_set *dummy;
1842 struct isl_basic_set *convex_hull;
1844 dummy = isl_basic_set_remove_equalities(
1845 isl_basic_set_copy(affine_hull), &T, &T2);
1846 if (!dummy)
1847 goto error;
1848 isl_basic_set_free(dummy);
1849 set = isl_set_preimage(set, T);
1850 convex_hull = uset_convex_hull(set);
1851 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1852 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1853 return convex_hull;
1854 error:
1855 isl_basic_set_free(affine_hull);
1856 isl_set_free(set);
1857 return NULL;
1860 /* Return an empty basic map living in the same space as "map".
1862 static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
1863 __isl_take isl_map *map)
1865 isl_space *space;
1867 space = isl_map_get_space(map);
1868 isl_map_free(map);
1869 return isl_basic_map_empty(space);
1872 /* Compute the convex hull of a map.
1874 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1875 * specifically, the wrapping of facets to obtain new facets.
1877 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1879 struct isl_basic_set *bset;
1880 struct isl_basic_map *model = NULL;
1881 struct isl_basic_set *affine_hull = NULL;
1882 struct isl_basic_map *convex_hull = NULL;
1883 struct isl_set *set = NULL;
1885 map = isl_map_detect_equalities(map);
1886 map = isl_map_align_divs_internal(map);
1887 if (!map)
1888 goto error;
1890 if (map->n == 0)
1891 return replace_map_by_empty_basic_map(map);
1893 model = isl_basic_map_copy(map->p[0]);
1894 set = isl_map_underlying_set(map);
1895 if (!set)
1896 goto error;
1898 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1899 if (!affine_hull)
1900 goto error;
1901 if (affine_hull->n_eq != 0)
1902 bset = modulo_affine_hull(set, affine_hull);
1903 else {
1904 isl_basic_set_free(affine_hull);
1905 bset = uset_convex_hull(set);
1908 convex_hull = isl_basic_map_overlying_set(bset, model);
1909 if (!convex_hull)
1910 return NULL;
1912 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1913 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1914 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1915 return convex_hull;
1916 error:
1917 isl_set_free(set);
1918 isl_basic_map_free(model);
1919 return NULL;
1922 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1924 return bset_from_bmap(isl_map_convex_hull(set_to_map(set)));
1927 __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map)
1929 isl_basic_map *hull;
1931 hull = isl_map_convex_hull(map);
1932 return isl_basic_map_remove_divs(hull);
1935 __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set)
1937 return bset_from_bmap(isl_map_polyhedral_hull(set_to_map(set)));
1940 struct sh_data_entry {
1941 struct isl_hash_table *table;
1942 struct isl_tab *tab;
1945 /* Holds the data needed during the simple hull computation.
1946 * In particular,
1947 * n the number of basic sets in the original set
1948 * hull_table a hash table of already computed constraints
1949 * in the simple hull
1950 * p for each basic set,
1951 * table a hash table of the constraints
1952 * tab the tableau corresponding to the basic set
1954 struct sh_data {
1955 struct isl_ctx *ctx;
1956 unsigned n;
1957 struct isl_hash_table *hull_table;
1958 struct sh_data_entry p[1];
1961 static void sh_data_free(struct sh_data *data)
1963 int i;
1965 if (!data)
1966 return;
1967 isl_hash_table_free(data->ctx, data->hull_table);
1968 for (i = 0; i < data->n; ++i) {
1969 isl_hash_table_free(data->ctx, data->p[i].table);
1970 isl_tab_free(data->p[i].tab);
1972 free(data);
1975 struct ineq_cmp_data {
1976 unsigned len;
1977 isl_int *p;
1980 static int has_ineq(const void *entry, const void *val)
1982 isl_int *row = (isl_int *)entry;
1983 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1985 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1986 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1989 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1990 isl_int *ineq, unsigned len)
1992 uint32_t c_hash;
1993 struct ineq_cmp_data v;
1994 struct isl_hash_table_entry *entry;
1996 v.len = len;
1997 v.p = ineq;
1998 c_hash = isl_seq_get_hash(ineq + 1, len);
1999 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
2000 if (!entry)
2001 return - 1;
2002 entry->data = ineq;
2003 return 0;
2006 /* Fill hash table "table" with the constraints of "bset".
2007 * Equalities are added as two inequalities.
2008 * The value in the hash table is a pointer to the (in)equality of "bset".
2010 static int hash_basic_set(struct isl_hash_table *table,
2011 __isl_keep isl_basic_set *bset)
2013 int i, j;
2014 unsigned dim = isl_basic_set_total_dim(bset);
2016 for (i = 0; i < bset->n_eq; ++i) {
2017 for (j = 0; j < 2; ++j) {
2018 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2019 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2020 return -1;
2023 for (i = 0; i < bset->n_ineq; ++i) {
2024 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2025 return -1;
2027 return 0;
2030 static struct sh_data *sh_data_alloc(__isl_keep isl_set *set, unsigned n_ineq)
2032 struct sh_data *data;
2033 int i;
2035 data = isl_calloc(set->ctx, struct sh_data,
2036 sizeof(struct sh_data) +
2037 (set->n - 1) * sizeof(struct sh_data_entry));
2038 if (!data)
2039 return NULL;
2040 data->ctx = set->ctx;
2041 data->n = set->n;
2042 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2043 if (!data->hull_table)
2044 goto error;
2045 for (i = 0; i < set->n; ++i) {
2046 data->p[i].table = isl_hash_table_alloc(set->ctx,
2047 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2048 if (!data->p[i].table)
2049 goto error;
2050 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2051 goto error;
2053 return data;
2054 error:
2055 sh_data_free(data);
2056 return NULL;
2059 /* Check if inequality "ineq" is a bound for basic set "j" or if
2060 * it can be relaxed (by increasing the constant term) to become
2061 * a bound for that basic set. In the latter case, the constant
2062 * term is updated.
2063 * Relaxation of the constant term is only allowed if "shift" is set.
2065 * Return 1 if "ineq" is a bound
2066 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2067 * -1 if some error occurred
2069 static int is_bound(struct sh_data *data, __isl_keep isl_set *set, int j,
2070 isl_int *ineq, int shift)
2072 enum isl_lp_result res;
2073 isl_int opt;
2075 if (!data->p[j].tab) {
2076 data->p[j].tab = isl_tab_from_basic_set(set->p[j], 0);
2077 if (!data->p[j].tab)
2078 return -1;
2081 isl_int_init(opt);
2083 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2084 &opt, NULL, 0);
2085 if (res == isl_lp_ok && isl_int_is_neg(opt)) {
2086 if (shift)
2087 isl_int_sub(ineq[0], ineq[0], opt);
2088 else
2089 res = isl_lp_unbounded;
2092 isl_int_clear(opt);
2094 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2095 res == isl_lp_unbounded ? 0 : -1;
2098 /* Set the constant term of "ineq" to the maximum of those of the constraints
2099 * in the basic sets of "set" following "i" that are parallel to "ineq".
2100 * That is, if any of the basic sets of "set" following "i" have a more
2101 * relaxed copy of "ineq", then replace "ineq" by the most relaxed copy.
2102 * "c_hash" is the hash value of the linear part of "ineq".
2103 * "v" has been set up for use by has_ineq.
2105 * Note that the two inequality constraints corresponding to an equality are
2106 * represented by the same inequality constraint in data->p[j].table
2107 * (but with different hash values). This means the constraint (or at
2108 * least its constant term) may need to be temporarily negated to get
2109 * the actually hashed constraint.
2111 static void set_max_constant_term(struct sh_data *data, __isl_keep isl_set *set,
2112 int i, isl_int *ineq, uint32_t c_hash, struct ineq_cmp_data *v)
2114 int j;
2115 isl_ctx *ctx;
2116 struct isl_hash_table_entry *entry;
2118 ctx = isl_set_get_ctx(set);
2119 for (j = i + 1; j < set->n; ++j) {
2120 int neg;
2121 isl_int *ineq_j;
2123 entry = isl_hash_table_find(ctx, data->p[j].table,
2124 c_hash, &has_ineq, v, 0);
2125 if (!entry)
2126 continue;
2128 ineq_j = entry->data;
2129 neg = isl_seq_is_neg(ineq_j + 1, ineq + 1, v->len);
2130 if (neg)
2131 isl_int_neg(ineq_j[0], ineq_j[0]);
2132 if (isl_int_gt(ineq_j[0], ineq[0]))
2133 isl_int_set(ineq[0], ineq_j[0]);
2134 if (neg)
2135 isl_int_neg(ineq_j[0], ineq_j[0]);
2139 /* Check if inequality "ineq" from basic set "i" is or can be relaxed to
2140 * become a bound on the whole set. If so, add the (relaxed) inequality
2141 * to "hull". Relaxation is only allowed if "shift" is set.
2143 * We first check if "hull" already contains a translate of the inequality.
2144 * If so, we are done.
2145 * Then, we check if any of the previous basic sets contains a translate
2146 * of the inequality. If so, then we have already considered this
2147 * inequality and we are done.
2148 * Otherwise, for each basic set other than "i", we check if the inequality
2149 * is a bound on the basic set, but first replace the constant term
2150 * by the maximal value of any translate of the inequality in any
2151 * of the following basic sets.
2152 * For previous basic sets, we know that they do not contain a translate
2153 * of the inequality, so we directly call is_bound.
2154 * For following basic sets, we first check if a translate of the
2155 * inequality appears in its description. If so, the constant term
2156 * of the inequality has already been updated with respect to this
2157 * translate and the inequality is therefore known to be a bound
2158 * of this basic set.
2160 static __isl_give isl_basic_set *add_bound(__isl_take isl_basic_set *hull,
2161 struct sh_data *data, __isl_keep isl_set *set, int i, isl_int *ineq,
2162 int shift)
2164 uint32_t c_hash;
2165 struct ineq_cmp_data v;
2166 struct isl_hash_table_entry *entry;
2167 int j, k;
2169 if (!hull)
2170 return NULL;
2172 v.len = isl_basic_set_total_dim(hull);
2173 v.p = ineq;
2174 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2176 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2177 has_ineq, &v, 0);
2178 if (entry)
2179 return hull;
2181 for (j = 0; j < i; ++j) {
2182 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2183 c_hash, has_ineq, &v, 0);
2184 if (entry)
2185 break;
2187 if (j < i)
2188 return hull;
2190 k = isl_basic_set_alloc_inequality(hull);
2191 if (k < 0)
2192 goto error;
2193 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2195 set_max_constant_term(data, set, i, hull->ineq[k], c_hash, &v);
2196 for (j = 0; j < i; ++j) {
2197 int bound;
2198 bound = is_bound(data, set, j, hull->ineq[k], shift);
2199 if (bound < 0)
2200 goto error;
2201 if (!bound)
2202 break;
2204 if (j < i) {
2205 isl_basic_set_free_inequality(hull, 1);
2206 return hull;
2209 for (j = i + 1; j < set->n; ++j) {
2210 int bound;
2211 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2212 c_hash, has_ineq, &v, 0);
2213 if (entry)
2214 continue;
2215 bound = is_bound(data, set, j, hull->ineq[k], shift);
2216 if (bound < 0)
2217 goto error;
2218 if (!bound)
2219 break;
2221 if (j < set->n) {
2222 isl_basic_set_free_inequality(hull, 1);
2223 return hull;
2226 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2227 has_ineq, &v, 1);
2228 if (!entry)
2229 goto error;
2230 entry->data = hull->ineq[k];
2232 return hull;
2233 error:
2234 isl_basic_set_free(hull);
2235 return NULL;
2238 /* Check if any inequality from basic set "i" is or can be relaxed to
2239 * become a bound on the whole set. If so, add the (relaxed) inequality
2240 * to "hull". Relaxation is only allowed if "shift" is set.
2242 static __isl_give isl_basic_set *add_bounds(__isl_take isl_basic_set *bset,
2243 struct sh_data *data, __isl_keep isl_set *set, int i, int shift)
2245 int j, k;
2246 unsigned dim = isl_basic_set_total_dim(bset);
2248 for (j = 0; j < set->p[i]->n_eq; ++j) {
2249 for (k = 0; k < 2; ++k) {
2250 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2251 bset = add_bound(bset, data, set, i, set->p[i]->eq[j],
2252 shift);
2255 for (j = 0; j < set->p[i]->n_ineq; ++j)
2256 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j], shift);
2257 return bset;
2260 /* Compute a superset of the convex hull of set that is described
2261 * by only (translates of) the constraints in the constituents of set.
2262 * Translation is only allowed if "shift" is set.
2264 static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set,
2265 int shift)
2267 struct sh_data *data = NULL;
2268 struct isl_basic_set *hull = NULL;
2269 unsigned n_ineq;
2270 int i;
2272 if (!set)
2273 return NULL;
2275 n_ineq = 0;
2276 for (i = 0; i < set->n; ++i) {
2277 if (!set->p[i])
2278 goto error;
2279 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2282 hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
2283 if (!hull)
2284 goto error;
2286 data = sh_data_alloc(set, n_ineq);
2287 if (!data)
2288 goto error;
2290 for (i = 0; i < set->n; ++i)
2291 hull = add_bounds(hull, data, set, i, shift);
2293 sh_data_free(data);
2294 isl_set_free(set);
2296 return hull;
2297 error:
2298 sh_data_free(data);
2299 isl_basic_set_free(hull);
2300 isl_set_free(set);
2301 return NULL;
2304 /* Compute a superset of the convex hull of map that is described
2305 * by only (translates of) the constraints in the constituents of map.
2306 * Handle trivial cases where map is NULL or contains at most one disjunct.
2308 static __isl_give isl_basic_map *map_simple_hull_trivial(
2309 __isl_take isl_map *map)
2311 isl_basic_map *hull;
2313 if (!map)
2314 return NULL;
2315 if (map->n == 0)
2316 return replace_map_by_empty_basic_map(map);
2318 hull = isl_basic_map_copy(map->p[0]);
2319 isl_map_free(map);
2320 return hull;
2323 /* Return a copy of the simple hull cached inside "map".
2324 * "shift" determines whether to return the cached unshifted or shifted
2325 * simple hull.
2327 static __isl_give isl_basic_map *cached_simple_hull(__isl_take isl_map *map,
2328 int shift)
2330 isl_basic_map *hull;
2332 hull = isl_basic_map_copy(map->cached_simple_hull[shift]);
2333 isl_map_free(map);
2335 return hull;
2338 /* Compute a superset of the convex hull of map that is described
2339 * by only (translates of) the constraints in the constituents of map.
2340 * Translation is only allowed if "shift" is set.
2342 * The constraints are sorted while removing redundant constraints
2343 * in order to indicate a preference of which constraints should
2344 * be preserved. In particular, pairs of constraints that are
2345 * sorted together are preferred to either both be preserved
2346 * or both be removed. The sorting is performed inside
2347 * isl_basic_map_remove_redundancies.
2349 * The result of the computation is stored in map->cached_simple_hull[shift]
2350 * such that it can be reused in subsequent calls. The cache is cleared
2351 * whenever the map is modified (in isl_map_cow).
2352 * Note that the results need to be stored in the input map for there
2353 * to be any chance that they may get reused. In particular, they
2354 * are stored in a copy of the input map that is saved before
2355 * the integer division alignment.
2357 static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map,
2358 int shift)
2360 struct isl_set *set = NULL;
2361 struct isl_basic_map *model = NULL;
2362 struct isl_basic_map *hull;
2363 struct isl_basic_map *affine_hull;
2364 struct isl_basic_set *bset = NULL;
2365 isl_map *input;
2367 if (!map || map->n <= 1)
2368 return map_simple_hull_trivial(map);
2370 if (map->cached_simple_hull[shift])
2371 return cached_simple_hull(map, shift);
2373 map = isl_map_detect_equalities(map);
2374 if (!map || map->n <= 1)
2375 return map_simple_hull_trivial(map);
2376 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2377 input = isl_map_copy(map);
2378 map = isl_map_align_divs_internal(map);
2379 model = map ? isl_basic_map_copy(map->p[0]) : NULL;
2381 set = isl_map_underlying_set(map);
2383 bset = uset_simple_hull(set, shift);
2385 hull = isl_basic_map_overlying_set(bset, model);
2387 hull = isl_basic_map_intersect(hull, affine_hull);
2388 hull = isl_basic_map_remove_redundancies(hull);
2390 if (hull) {
2391 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2392 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2395 hull = isl_basic_map_finalize(hull);
2396 if (input)
2397 input->cached_simple_hull[shift] = isl_basic_map_copy(hull);
2398 isl_map_free(input);
2400 return hull;
2403 /* Compute a superset of the convex hull of map that is described
2404 * by only translates of the constraints in the constituents of map.
2406 __isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map)
2408 return map_simple_hull(map, 1);
2411 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2413 return bset_from_bmap(isl_map_simple_hull(set_to_map(set)));
2416 /* Compute a superset of the convex hull of map that is described
2417 * by only the constraints in the constituents of map.
2419 __isl_give isl_basic_map *isl_map_unshifted_simple_hull(
2420 __isl_take isl_map *map)
2422 return map_simple_hull(map, 0);
2425 __isl_give isl_basic_set *isl_set_unshifted_simple_hull(
2426 __isl_take isl_set *set)
2428 return isl_map_unshifted_simple_hull(set);
2431 /* Drop all inequalities from "bmap1" that do not also appear in "bmap2".
2432 * A constraint that appears with different constant terms
2433 * in "bmap1" and "bmap2" is also kept, with the least restrictive
2434 * (i.e., greatest) constant term.
2435 * "bmap1" and "bmap2" are assumed to have the same (known)
2436 * integer divisions.
2437 * The constraints of both "bmap1" and "bmap2" are assumed
2438 * to have been sorted using isl_basic_map_sort_constraints.
2440 * Run through the inequality constraints of "bmap1" and "bmap2"
2441 * in sorted order.
2442 * Each constraint of "bmap1" without a matching constraint in "bmap2"
2443 * is removed.
2444 * If a match is found, the constraint is kept. If needed, the constant
2445 * term of the constraint is adjusted.
2447 static __isl_give isl_basic_map *select_shared_inequalities(
2448 __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2)
2450 int i1, i2;
2452 bmap1 = isl_basic_map_cow(bmap1);
2453 if (!bmap1 || !bmap2)
2454 return isl_basic_map_free(bmap1);
2456 i1 = bmap1->n_ineq - 1;
2457 i2 = bmap2->n_ineq - 1;
2458 while (bmap1 && i1 >= 0 && i2 >= 0) {
2459 int cmp;
2461 cmp = isl_basic_map_constraint_cmp(bmap1, bmap1->ineq[i1],
2462 bmap2->ineq[i2]);
2463 if (cmp < 0) {
2464 --i2;
2465 continue;
2467 if (cmp > 0) {
2468 if (isl_basic_map_drop_inequality(bmap1, i1) < 0)
2469 bmap1 = isl_basic_map_free(bmap1);
2470 --i1;
2471 continue;
2473 if (isl_int_lt(bmap1->ineq[i1][0], bmap2->ineq[i2][0]))
2474 isl_int_set(bmap1->ineq[i1][0], bmap2->ineq[i2][0]);
2475 --i1;
2476 --i2;
2478 for (; i1 >= 0; --i1)
2479 if (isl_basic_map_drop_inequality(bmap1, i1) < 0)
2480 bmap1 = isl_basic_map_free(bmap1);
2482 return bmap1;
2485 /* Drop all equalities from "bmap1" that do not also appear in "bmap2".
2486 * "bmap1" and "bmap2" are assumed to have the same (known)
2487 * integer divisions.
2489 * Run through the equality constraints of "bmap1" and "bmap2".
2490 * Each constraint of "bmap1" without a matching constraint in "bmap2"
2491 * is removed.
2493 static __isl_give isl_basic_map *select_shared_equalities(
2494 __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2)
2496 int i1, i2;
2497 unsigned total;
2499 bmap1 = isl_basic_map_cow(bmap1);
2500 if (!bmap1 || !bmap2)
2501 return isl_basic_map_free(bmap1);
2503 total = isl_basic_map_total_dim(bmap1);
2505 i1 = bmap1->n_eq - 1;
2506 i2 = bmap2->n_eq - 1;
2507 while (bmap1 && i1 >= 0 && i2 >= 0) {
2508 int last1, last2;
2510 last1 = isl_seq_last_non_zero(bmap1->eq[i1] + 1, total);
2511 last2 = isl_seq_last_non_zero(bmap2->eq[i2] + 1, total);
2512 if (last1 > last2) {
2513 --i2;
2514 continue;
2516 if (last1 < last2) {
2517 if (isl_basic_map_drop_equality(bmap1, i1) < 0)
2518 bmap1 = isl_basic_map_free(bmap1);
2519 --i1;
2520 continue;
2522 if (!isl_seq_eq(bmap1->eq[i1], bmap2->eq[i2], 1 + total)) {
2523 if (isl_basic_map_drop_equality(bmap1, i1) < 0)
2524 bmap1 = isl_basic_map_free(bmap1);
2526 --i1;
2527 --i2;
2529 for (; i1 >= 0; --i1)
2530 if (isl_basic_map_drop_equality(bmap1, i1) < 0)
2531 bmap1 = isl_basic_map_free(bmap1);
2533 return bmap1;
2536 /* Compute a superset of "bmap1" and "bmap2" that is described
2537 * by only the constraints that appear in both "bmap1" and "bmap2".
2539 * First drop constraints that involve unknown integer divisions
2540 * since it is not trivial to check whether two such integer divisions
2541 * in different basic maps are the same.
2542 * Then align the remaining (known) divs and sort the constraints.
2543 * Finally drop all inequalities and equalities from "bmap1" that
2544 * do not also appear in "bmap2".
2546 __isl_give isl_basic_map *isl_basic_map_plain_unshifted_simple_hull(
2547 __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2)
2549 bmap1 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap1);
2550 bmap2 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap2);
2551 bmap2 = isl_basic_map_align_divs(bmap2, bmap1);
2552 bmap1 = isl_basic_map_align_divs(bmap1, bmap2);
2553 bmap1 = isl_basic_map_gauss(bmap1, NULL);
2554 bmap2 = isl_basic_map_gauss(bmap2, NULL);
2555 bmap1 = isl_basic_map_sort_constraints(bmap1);
2556 bmap2 = isl_basic_map_sort_constraints(bmap2);
2558 bmap1 = select_shared_inequalities(bmap1, bmap2);
2559 bmap1 = select_shared_equalities(bmap1, bmap2);
2561 isl_basic_map_free(bmap2);
2562 bmap1 = isl_basic_map_finalize(bmap1);
2563 return bmap1;
2566 /* Compute a superset of the convex hull of "map" that is described
2567 * by only the constraints in the constituents of "map".
2568 * In particular, the result is composed of constraints that appear
2569 * in each of the basic maps of "map"
2571 * Constraints that involve unknown integer divisions are dropped
2572 * since it is not trivial to check whether two such integer divisions
2573 * in different basic maps are the same.
2575 * The hull is initialized from the first basic map and then
2576 * updated with respect to the other basic maps in turn.
2578 __isl_give isl_basic_map *isl_map_plain_unshifted_simple_hull(
2579 __isl_take isl_map *map)
2581 int i;
2582 isl_basic_map *hull;
2584 if (!map)
2585 return NULL;
2586 if (map->n <= 1)
2587 return map_simple_hull_trivial(map);
2588 map = isl_map_drop_constraint_involving_unknown_divs(map);
2589 hull = isl_basic_map_copy(map->p[0]);
2590 for (i = 1; i < map->n; ++i) {
2591 isl_basic_map *bmap_i;
2593 bmap_i = isl_basic_map_copy(map->p[i]);
2594 hull = isl_basic_map_plain_unshifted_simple_hull(hull, bmap_i);
2597 isl_map_free(map);
2598 return hull;
2601 /* Compute a superset of the convex hull of "set" that is described
2602 * by only the constraints in the constituents of "set".
2603 * In particular, the result is composed of constraints that appear
2604 * in each of the basic sets of "set"
2606 __isl_give isl_basic_set *isl_set_plain_unshifted_simple_hull(
2607 __isl_take isl_set *set)
2609 return isl_map_plain_unshifted_simple_hull(set);
2612 /* Check if "ineq" is a bound on "set" and, if so, add it to "hull".
2614 * For each basic set in "set", we first check if the basic set
2615 * contains a translate of "ineq". If this translate is more relaxed,
2616 * then we assume that "ineq" is not a bound on this basic set.
2617 * Otherwise, we know that it is a bound.
2618 * If the basic set does not contain a translate of "ineq", then
2619 * we call is_bound to perform the test.
2621 static __isl_give isl_basic_set *add_bound_from_constraint(
2622 __isl_take isl_basic_set *hull, struct sh_data *data,
2623 __isl_keep isl_set *set, isl_int *ineq)
2625 int i, k;
2626 isl_ctx *ctx;
2627 uint32_t c_hash;
2628 struct ineq_cmp_data v;
2630 if (!hull || !set)
2631 return isl_basic_set_free(hull);
2633 v.len = isl_basic_set_total_dim(hull);
2634 v.p = ineq;
2635 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2637 ctx = isl_basic_set_get_ctx(hull);
2638 for (i = 0; i < set->n; ++i) {
2639 int bound;
2640 struct isl_hash_table_entry *entry;
2642 entry = isl_hash_table_find(ctx, data->p[i].table,
2643 c_hash, &has_ineq, &v, 0);
2644 if (entry) {
2645 isl_int *ineq_i = entry->data;
2646 int neg, more_relaxed;
2648 neg = isl_seq_is_neg(ineq_i + 1, ineq + 1, v.len);
2649 if (neg)
2650 isl_int_neg(ineq_i[0], ineq_i[0]);
2651 more_relaxed = isl_int_gt(ineq_i[0], ineq[0]);
2652 if (neg)
2653 isl_int_neg(ineq_i[0], ineq_i[0]);
2654 if (more_relaxed)
2655 break;
2656 else
2657 continue;
2659 bound = is_bound(data, set, i, ineq, 0);
2660 if (bound < 0)
2661 return isl_basic_set_free(hull);
2662 if (!bound)
2663 break;
2665 if (i < set->n)
2666 return hull;
2668 k = isl_basic_set_alloc_inequality(hull);
2669 if (k < 0)
2670 return isl_basic_set_free(hull);
2671 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2673 return hull;
2676 /* Compute a superset of the convex hull of "set" that is described
2677 * by only some of the "n_ineq" constraints in the list "ineq", where "set"
2678 * has no parameters or integer divisions.
2680 * The inequalities in "ineq" are assumed to have been sorted such
2681 * that constraints with the same linear part appear together and
2682 * that among constraints with the same linear part, those with
2683 * smaller constant term appear first.
2685 * We reuse the same data structure that is used by uset_simple_hull,
2686 * but we do not need the hull table since we will not consider the
2687 * same constraint more than once. We therefore allocate it with zero size.
2689 * We run through the constraints and try to add them one by one,
2690 * skipping identical constraints. If we have added a constraint and
2691 * the next constraint is a more relaxed translate, then we skip this
2692 * next constraint as well.
2694 static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_constraints(
2695 __isl_take isl_set *set, int n_ineq, isl_int **ineq)
2697 int i;
2698 int last_added = 0;
2699 struct sh_data *data = NULL;
2700 isl_basic_set *hull = NULL;
2701 unsigned dim;
2703 hull = isl_basic_set_alloc_space(isl_set_get_space(set), 0, 0, n_ineq);
2704 if (!hull)
2705 goto error;
2707 data = sh_data_alloc(set, 0);
2708 if (!data)
2709 goto error;
2711 dim = isl_set_dim(set, isl_dim_set);
2712 for (i = 0; i < n_ineq; ++i) {
2713 int hull_n_ineq = hull->n_ineq;
2714 int parallel;
2716 parallel = i > 0 && isl_seq_eq(ineq[i - 1] + 1, ineq[i] + 1,
2717 dim);
2718 if (parallel &&
2719 (last_added || isl_int_eq(ineq[i - 1][0], ineq[i][0])))
2720 continue;
2721 hull = add_bound_from_constraint(hull, data, set, ineq[i]);
2722 if (!hull)
2723 goto error;
2724 last_added = hull->n_ineq > hull_n_ineq;
2727 sh_data_free(data);
2728 isl_set_free(set);
2729 return hull;
2730 error:
2731 sh_data_free(data);
2732 isl_set_free(set);
2733 isl_basic_set_free(hull);
2734 return NULL;
2737 /* Collect pointers to all the inequalities in the elements of "list"
2738 * in "ineq". For equalities, store both a pointer to the equality and
2739 * a pointer to its opposite, which is first copied to "mat".
2740 * "ineq" and "mat" are assumed to have been preallocated to the right size
2741 * (the number of inequalities + 2 times the number of equalites and
2742 * the number of equalities, respectively).
2744 static __isl_give isl_mat *collect_inequalities(__isl_take isl_mat *mat,
2745 __isl_keep isl_basic_set_list *list, isl_int **ineq)
2747 int i, j, n, n_eq, n_ineq;
2749 if (!mat)
2750 return NULL;
2752 n_eq = 0;
2753 n_ineq = 0;
2754 n = isl_basic_set_list_n_basic_set(list);
2755 for (i = 0; i < n; ++i) {
2756 isl_basic_set *bset;
2757 bset = isl_basic_set_list_get_basic_set(list, i);
2758 if (!bset)
2759 return isl_mat_free(mat);
2760 for (j = 0; j < bset->n_eq; ++j) {
2761 ineq[n_ineq++] = mat->row[n_eq];
2762 ineq[n_ineq++] = bset->eq[j];
2763 isl_seq_neg(mat->row[n_eq++], bset->eq[j], mat->n_col);
2765 for (j = 0; j < bset->n_ineq; ++j)
2766 ineq[n_ineq++] = bset->ineq[j];
2767 isl_basic_set_free(bset);
2770 return mat;
2773 /* Comparison routine for use as an isl_sort callback.
2775 * Constraints with the same linear part are sorted together and
2776 * among constraints with the same linear part, those with smaller
2777 * constant term are sorted first.
2779 static int cmp_ineq(const void *a, const void *b, void *arg)
2781 unsigned dim = *(unsigned *) arg;
2782 isl_int * const *ineq1 = a;
2783 isl_int * const *ineq2 = b;
2784 int cmp;
2786 cmp = isl_seq_cmp((*ineq1) + 1, (*ineq2) + 1, dim);
2787 if (cmp != 0)
2788 return cmp;
2789 return isl_int_cmp((*ineq1)[0], (*ineq2)[0]);
2792 /* Compute a superset of the convex hull of "set" that is described
2793 * by only constraints in the elements of "list", where "set" has
2794 * no parameters or integer divisions.
2796 * We collect all the constraints in those elements and then
2797 * sort the constraints such that constraints with the same linear part
2798 * are sorted together and that those with smaller constant term are
2799 * sorted first.
2801 static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_basic_set_list(
2802 __isl_take isl_set *set, __isl_take isl_basic_set_list *list)
2804 int i, n, n_eq, n_ineq;
2805 unsigned dim;
2806 isl_ctx *ctx;
2807 isl_mat *mat = NULL;
2808 isl_int **ineq = NULL;
2809 isl_basic_set *hull;
2811 if (!set)
2812 goto error;
2813 ctx = isl_set_get_ctx(set);
2815 n_eq = 0;
2816 n_ineq = 0;
2817 n = isl_basic_set_list_n_basic_set(list);
2818 for (i = 0; i < n; ++i) {
2819 isl_basic_set *bset;
2820 bset = isl_basic_set_list_get_basic_set(list, i);
2821 if (!bset)
2822 goto error;
2823 n_eq += bset->n_eq;
2824 n_ineq += 2 * bset->n_eq + bset->n_ineq;
2825 isl_basic_set_free(bset);
2828 ineq = isl_alloc_array(ctx, isl_int *, n_ineq);
2829 if (n_ineq > 0 && !ineq)
2830 goto error;
2832 dim = isl_set_dim(set, isl_dim_set);
2833 mat = isl_mat_alloc(ctx, n_eq, 1 + dim);
2834 mat = collect_inequalities(mat, list, ineq);
2835 if (!mat)
2836 goto error;
2838 if (isl_sort(ineq, n_ineq, sizeof(ineq[0]), &cmp_ineq, &dim) < 0)
2839 goto error;
2841 hull = uset_unshifted_simple_hull_from_constraints(set, n_ineq, ineq);
2843 isl_mat_free(mat);
2844 free(ineq);
2845 isl_basic_set_list_free(list);
2846 return hull;
2847 error:
2848 isl_mat_free(mat);
2849 free(ineq);
2850 isl_set_free(set);
2851 isl_basic_set_list_free(list);
2852 return NULL;
2855 /* Compute a superset of the convex hull of "map" that is described
2856 * by only constraints in the elements of "list".
2858 * If the list is empty, then we can only describe the universe set.
2859 * If the input map is empty, then all constraints are valid, so
2860 * we return the intersection of the elements in "list".
2862 * Otherwise, we align all divs and temporarily treat them
2863 * as regular variables, computing the unshifted simple hull in
2864 * uset_unshifted_simple_hull_from_basic_set_list.
2866 static __isl_give isl_basic_map *map_unshifted_simple_hull_from_basic_map_list(
2867 __isl_take isl_map *map, __isl_take isl_basic_map_list *list)
2869 isl_basic_map *model;
2870 isl_basic_map *hull;
2871 isl_set *set;
2872 isl_basic_set_list *bset_list;
2874 if (!map || !list)
2875 goto error;
2877 if (isl_basic_map_list_n_basic_map(list) == 0) {
2878 isl_space *space;
2880 space = isl_map_get_space(map);
2881 isl_map_free(map);
2882 isl_basic_map_list_free(list);
2883 return isl_basic_map_universe(space);
2885 if (isl_map_plain_is_empty(map)) {
2886 isl_map_free(map);
2887 return isl_basic_map_list_intersect(list);
2890 map = isl_map_align_divs_to_basic_map_list(map, list);
2891 if (!map)
2892 goto error;
2893 list = isl_basic_map_list_align_divs_to_basic_map(list, map->p[0]);
2895 model = isl_basic_map_list_get_basic_map(list, 0);
2897 set = isl_map_underlying_set(map);
2898 bset_list = isl_basic_map_list_underlying_set(list);
2900 hull = uset_unshifted_simple_hull_from_basic_set_list(set, bset_list);
2901 hull = isl_basic_map_overlying_set(hull, model);
2903 return hull;
2904 error:
2905 isl_map_free(map);
2906 isl_basic_map_list_free(list);
2907 return NULL;
2910 /* Return a sequence of the basic maps that make up the maps in "list".
2912 static __isl_give isl_basic_map_list *collect_basic_maps(
2913 __isl_take isl_map_list *list)
2915 int i, n;
2916 isl_ctx *ctx;
2917 isl_basic_map_list *bmap_list;
2919 if (!list)
2920 return NULL;
2921 n = isl_map_list_n_map(list);
2922 ctx = isl_map_list_get_ctx(list);
2923 bmap_list = isl_basic_map_list_alloc(ctx, 0);
2925 for (i = 0; i < n; ++i) {
2926 isl_map *map;
2927 isl_basic_map_list *list_i;
2929 map = isl_map_list_get_map(list, i);
2930 map = isl_map_compute_divs(map);
2931 list_i = isl_map_get_basic_map_list(map);
2932 isl_map_free(map);
2933 bmap_list = isl_basic_map_list_concat(bmap_list, list_i);
2936 isl_map_list_free(list);
2937 return bmap_list;
2940 /* Compute a superset of the convex hull of "map" that is described
2941 * by only constraints in the elements of "list".
2943 * If "map" is the universe, then the convex hull (and therefore
2944 * any superset of the convexhull) is the universe as well.
2946 * Otherwise, we collect all the basic maps in the map list and
2947 * continue with map_unshifted_simple_hull_from_basic_map_list.
2949 __isl_give isl_basic_map *isl_map_unshifted_simple_hull_from_map_list(
2950 __isl_take isl_map *map, __isl_take isl_map_list *list)
2952 isl_basic_map_list *bmap_list;
2953 int is_universe;
2955 is_universe = isl_map_plain_is_universe(map);
2956 if (is_universe < 0)
2957 map = isl_map_free(map);
2958 if (is_universe < 0 || is_universe) {
2959 isl_map_list_free(list);
2960 return isl_map_unshifted_simple_hull(map);
2963 bmap_list = collect_basic_maps(list);
2964 return map_unshifted_simple_hull_from_basic_map_list(map, bmap_list);
2967 /* Compute a superset of the convex hull of "set" that is described
2968 * by only constraints in the elements of "list".
2970 __isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list(
2971 __isl_take isl_set *set, __isl_take isl_set_list *list)
2973 return isl_map_unshifted_simple_hull_from_map_list(set, list);
2976 /* Given a set "set", return parametric bounds on the dimension "dim".
2978 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2980 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2981 set = isl_set_copy(set);
2982 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2983 set = isl_set_eliminate_dims(set, 0, dim);
2984 return isl_set_convex_hull(set);
2987 /* Computes a "simple hull" and then check if each dimension in the
2988 * resulting hull is bounded by a symbolic constant. If not, the
2989 * hull is intersected with the corresponding bounds on the whole set.
2991 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2993 int i, j;
2994 struct isl_basic_set *hull;
2995 unsigned nparam, left;
2996 int removed_divs = 0;
2998 hull = isl_set_simple_hull(isl_set_copy(set));
2999 if (!hull)
3000 goto error;
3002 nparam = isl_basic_set_dim(hull, isl_dim_param);
3003 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
3004 int lower = 0, upper = 0;
3005 struct isl_basic_set *bounds;
3007 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
3008 for (j = 0; j < hull->n_eq; ++j) {
3009 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
3010 continue;
3011 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
3012 left) == -1)
3013 break;
3015 if (j < hull->n_eq)
3016 continue;
3018 for (j = 0; j < hull->n_ineq; ++j) {
3019 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
3020 continue;
3021 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
3022 left) != -1 ||
3023 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
3024 i) != -1)
3025 continue;
3026 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
3027 lower = 1;
3028 else
3029 upper = 1;
3030 if (lower && upper)
3031 break;
3034 if (lower && upper)
3035 continue;
3037 if (!removed_divs) {
3038 set = isl_set_remove_divs(set);
3039 if (!set)
3040 goto error;
3041 removed_divs = 1;
3043 bounds = set_bounds(set, i);
3044 hull = isl_basic_set_intersect(hull, bounds);
3045 if (!hull)
3046 goto error;
3049 isl_set_free(set);
3050 return hull;
3051 error:
3052 isl_set_free(set);
3053 isl_basic_set_free(hull);
3054 return NULL;