add isl_ast_expr_print_macros
[isl.git] / isl_transitive_closure.c
blob7ef84d487166567221559ba79b234877e6a2d118
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl/map.h>
14 #include <isl_seq.h>
15 #include <isl_space_private.h>
16 #include <isl_lp_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_options_private.h>
21 #include <isl_tarjan.h>
23 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
25 isl_map *map2;
26 int closed;
28 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
29 closed = isl_map_is_subset(map2, map);
30 isl_map_free(map2);
32 return closed;
35 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
37 isl_union_map *umap2;
38 int closed;
40 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
41 isl_union_map_copy(umap));
42 closed = isl_union_map_is_subset(umap2, umap);
43 isl_union_map_free(umap2);
45 return closed;
48 /* Given a map that represents a path with the length of the path
49 * encoded as the difference between the last output coordindate
50 * and the last input coordinate, set this length to either
51 * exactly "length" (if "exactly" is set) or at least "length"
52 * (if "exactly" is not set).
54 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
55 int exactly, int length)
57 isl_space *dim;
58 struct isl_basic_map *bmap;
59 unsigned d;
60 unsigned nparam;
61 int k;
62 isl_int *c;
64 if (!map)
65 return NULL;
67 dim = isl_map_get_space(map);
68 d = isl_space_dim(dim, isl_dim_in);
69 nparam = isl_space_dim(dim, isl_dim_param);
70 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
71 if (exactly) {
72 k = isl_basic_map_alloc_equality(bmap);
73 if (k < 0)
74 goto error;
75 c = bmap->eq[k];
76 } else {
77 k = isl_basic_map_alloc_inequality(bmap);
78 if (k < 0)
79 goto error;
80 c = bmap->ineq[k];
82 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
83 isl_int_set_si(c[0], -length);
84 isl_int_set_si(c[1 + nparam + d - 1], -1);
85 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
87 bmap = isl_basic_map_finalize(bmap);
88 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
90 return map;
91 error:
92 isl_basic_map_free(bmap);
93 isl_map_free(map);
94 return NULL;
97 /* Check whether the overapproximation of the power of "map" is exactly
98 * the power of "map". Let R be "map" and A_k the overapproximation.
99 * The approximation is exact if
101 * A_1 = R
102 * A_k = A_{k-1} \circ R k >= 2
104 * Since A_k is known to be an overapproximation, we only need to check
106 * A_1 \subset R
107 * A_k \subset A_{k-1} \circ R k >= 2
109 * In practice, "app" has an extra input and output coordinate
110 * to encode the length of the path. So, we first need to add
111 * this coordinate to "map" and set the length of the path to
112 * one.
114 static int check_power_exactness(__isl_take isl_map *map,
115 __isl_take isl_map *app)
117 int exact;
118 isl_map *app_1;
119 isl_map *app_2;
121 map = isl_map_add_dims(map, isl_dim_in, 1);
122 map = isl_map_add_dims(map, isl_dim_out, 1);
123 map = set_path_length(map, 1, 1);
125 app_1 = set_path_length(isl_map_copy(app), 1, 1);
127 exact = isl_map_is_subset(app_1, map);
128 isl_map_free(app_1);
130 if (!exact || exact < 0) {
131 isl_map_free(app);
132 isl_map_free(map);
133 return exact;
136 app_1 = set_path_length(isl_map_copy(app), 0, 1);
137 app_2 = set_path_length(app, 0, 2);
138 app_1 = isl_map_apply_range(map, app_1);
140 exact = isl_map_is_subset(app_2, app_1);
142 isl_map_free(app_1);
143 isl_map_free(app_2);
145 return exact;
148 /* Check whether the overapproximation of the power of "map" is exactly
149 * the power of "map", possibly after projecting out the power (if "project"
150 * is set).
152 * If "project" is set and if "steps" can only result in acyclic paths,
153 * then we check
155 * A = R \cup (A \circ R)
157 * where A is the overapproximation with the power projected out, i.e.,
158 * an overapproximation of the transitive closure.
159 * More specifically, since A is known to be an overapproximation, we check
161 * A \subset R \cup (A \circ R)
163 * Otherwise, we check if the power is exact.
165 * Note that "app" has an extra input and output coordinate to encode
166 * the length of the part. If we are only interested in the transitive
167 * closure, then we can simply project out these coordinates first.
169 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
170 int project)
172 isl_map *test;
173 int exact;
174 unsigned d;
176 if (!project)
177 return check_power_exactness(map, app);
179 d = isl_map_dim(map, isl_dim_in);
180 app = set_path_length(app, 0, 1);
181 app = isl_map_project_out(app, isl_dim_in, d, 1);
182 app = isl_map_project_out(app, isl_dim_out, d, 1);
184 app = isl_map_reset_space(app, isl_map_get_space(map));
186 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
187 test = isl_map_union(test, isl_map_copy(map));
189 exact = isl_map_is_subset(app, test);
191 isl_map_free(app);
192 isl_map_free(test);
194 isl_map_free(map);
196 return exact;
200 * The transitive closure implementation is based on the paper
201 * "Computing the Transitive Closure of a Union of Affine Integer
202 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
203 * Albert Cohen.
206 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
207 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
208 * that maps an element x to any element that can be reached
209 * by taking a non-negative number of steps along any of
210 * the extended offsets v'_i = [v_i 1].
211 * That is, construct
213 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
215 * For any element in this relation, the number of steps taken
216 * is equal to the difference in the final coordinates.
218 static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim,
219 __isl_keep isl_mat *steps)
221 int i, j, k;
222 struct isl_basic_map *path = NULL;
223 unsigned d;
224 unsigned n;
225 unsigned nparam;
227 if (!dim || !steps)
228 goto error;
230 d = isl_space_dim(dim, isl_dim_in);
231 n = steps->n_row;
232 nparam = isl_space_dim(dim, isl_dim_param);
234 path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n);
236 for (i = 0; i < n; ++i) {
237 k = isl_basic_map_alloc_div(path);
238 if (k < 0)
239 goto error;
240 isl_assert(steps->ctx, i == k, goto error);
241 isl_int_set_si(path->div[k][0], 0);
244 for (i = 0; i < d; ++i) {
245 k = isl_basic_map_alloc_equality(path);
246 if (k < 0)
247 goto error;
248 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
249 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
250 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
251 if (i == d - 1)
252 for (j = 0; j < n; ++j)
253 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
254 else
255 for (j = 0; j < n; ++j)
256 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
257 steps->row[j][i]);
260 for (i = 0; i < n; ++i) {
261 k = isl_basic_map_alloc_inequality(path);
262 if (k < 0)
263 goto error;
264 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
265 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
268 isl_space_free(dim);
270 path = isl_basic_map_simplify(path);
271 path = isl_basic_map_finalize(path);
272 return isl_map_from_basic_map(path);
273 error:
274 isl_space_free(dim);
275 isl_basic_map_free(path);
276 return NULL;
279 #define IMPURE 0
280 #define PURE_PARAM 1
281 #define PURE_VAR 2
282 #define MIXED 3
284 /* Check whether the parametric constant term of constraint c is never
285 * positive in "bset".
287 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
288 isl_int *c, int *div_purity)
290 unsigned d;
291 unsigned n_div;
292 unsigned nparam;
293 int i;
294 int k;
295 int empty;
297 n_div = isl_basic_set_dim(bset, isl_dim_div);
298 d = isl_basic_set_dim(bset, isl_dim_set);
299 nparam = isl_basic_set_dim(bset, isl_dim_param);
301 bset = isl_basic_set_copy(bset);
302 bset = isl_basic_set_cow(bset);
303 bset = isl_basic_set_extend_constraints(bset, 0, 1);
304 k = isl_basic_set_alloc_inequality(bset);
305 if (k < 0)
306 goto error;
307 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
308 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
309 for (i = 0; i < n_div; ++i) {
310 if (div_purity[i] != PURE_PARAM)
311 continue;
312 isl_int_set(bset->ineq[k][1 + nparam + d + i],
313 c[1 + nparam + d + i]);
315 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
316 empty = isl_basic_set_is_empty(bset);
317 isl_basic_set_free(bset);
319 return empty;
320 error:
321 isl_basic_set_free(bset);
322 return -1;
325 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
326 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
327 * Return MIXED if only the coefficients of the parameters and the set
328 * variables are non-zero and if moreover the parametric constant
329 * can never attain positive values.
330 * Return IMPURE otherwise.
332 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
333 int eq)
335 unsigned d;
336 unsigned n_div;
337 unsigned nparam;
338 int empty;
339 int i;
340 int p = 0, v = 0;
342 n_div = isl_basic_set_dim(bset, isl_dim_div);
343 d = isl_basic_set_dim(bset, isl_dim_set);
344 nparam = isl_basic_set_dim(bset, isl_dim_param);
346 for (i = 0; i < n_div; ++i) {
347 if (isl_int_is_zero(c[1 + nparam + d + i]))
348 continue;
349 switch (div_purity[i]) {
350 case PURE_PARAM: p = 1; break;
351 case PURE_VAR: v = 1; break;
352 default: return IMPURE;
355 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
356 return PURE_VAR;
357 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
358 return PURE_PARAM;
360 empty = parametric_constant_never_positive(bset, c, div_purity);
361 if (eq && empty >= 0 && !empty) {
362 isl_seq_neg(c, c, 1 + nparam + d + n_div);
363 empty = parametric_constant_never_positive(bset, c, div_purity);
366 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
369 /* Return an array of integers indicating the type of each div in bset.
370 * If the div is (recursively) defined in terms of only the parameters,
371 * then the type is PURE_PARAM.
372 * If the div is (recursively) defined in terms of only the set variables,
373 * then the type is PURE_VAR.
374 * Otherwise, the type is IMPURE.
376 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
378 int i, j;
379 int *div_purity;
380 unsigned d;
381 unsigned n_div;
382 unsigned nparam;
384 if (!bset)
385 return NULL;
387 n_div = isl_basic_set_dim(bset, isl_dim_div);
388 d = isl_basic_set_dim(bset, isl_dim_set);
389 nparam = isl_basic_set_dim(bset, isl_dim_param);
391 div_purity = isl_alloc_array(bset->ctx, int, n_div);
392 if (n_div && !div_purity)
393 return NULL;
395 for (i = 0; i < bset->n_div; ++i) {
396 int p = 0, v = 0;
397 if (isl_int_is_zero(bset->div[i][0])) {
398 div_purity[i] = IMPURE;
399 continue;
401 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
402 p = 1;
403 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
404 v = 1;
405 for (j = 0; j < i; ++j) {
406 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
407 continue;
408 switch (div_purity[j]) {
409 case PURE_PARAM: p = 1; break;
410 case PURE_VAR: v = 1; break;
411 default: p = v = 1; break;
414 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
417 return div_purity;
420 /* Given a path with the as yet unconstrained length at position "pos",
421 * check if setting the length to zero results in only the identity
422 * mapping.
424 static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
426 isl_basic_map *test = NULL;
427 isl_basic_map *id = NULL;
428 int k;
429 int is_id;
431 test = isl_basic_map_copy(path);
432 test = isl_basic_map_extend_constraints(test, 1, 0);
433 k = isl_basic_map_alloc_equality(test);
434 if (k < 0)
435 goto error;
436 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
437 isl_int_set_si(test->eq[k][pos], 1);
438 id = isl_basic_map_identity(isl_basic_map_get_space(path));
439 is_id = isl_basic_map_is_equal(test, id);
440 isl_basic_map_free(test);
441 isl_basic_map_free(id);
442 return is_id;
443 error:
444 isl_basic_map_free(test);
445 return -1;
448 /* If any of the constraints is found to be impure then this function
449 * sets *impurity to 1.
451 * If impurity is NULL then we are dealing with a non-parametric set
452 * and so the constraints are obviously PURE_VAR.
454 static __isl_give isl_basic_map *add_delta_constraints(
455 __isl_take isl_basic_map *path,
456 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
457 unsigned d, int *div_purity, int eq, int *impurity)
459 int i, k;
460 int n = eq ? delta->n_eq : delta->n_ineq;
461 isl_int **delta_c = eq ? delta->eq : delta->ineq;
462 unsigned n_div;
464 n_div = isl_basic_set_dim(delta, isl_dim_div);
466 for (i = 0; i < n; ++i) {
467 isl_int *path_c;
468 int p = PURE_VAR;
469 if (impurity)
470 p = purity(delta, delta_c[i], div_purity, eq);
471 if (p < 0)
472 goto error;
473 if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
474 *impurity = 1;
475 if (p == IMPURE)
476 continue;
477 if (eq && p != MIXED) {
478 k = isl_basic_map_alloc_equality(path);
479 if (k < 0)
480 goto error;
481 path_c = path->eq[k];
482 } else {
483 k = isl_basic_map_alloc_inequality(path);
484 if (k < 0)
485 goto error;
486 path_c = path->ineq[k];
488 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
489 if (p == PURE_VAR) {
490 isl_seq_cpy(path_c + off,
491 delta_c[i] + 1 + nparam, d);
492 isl_int_set(path_c[off + d], delta_c[i][0]);
493 } else if (p == PURE_PARAM) {
494 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
495 } else {
496 isl_seq_cpy(path_c + off,
497 delta_c[i] + 1 + nparam, d);
498 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
500 isl_seq_cpy(path_c + off - n_div,
501 delta_c[i] + 1 + nparam + d, n_div);
504 return path;
505 error:
506 isl_basic_map_free(path);
507 return NULL;
510 /* Given a set of offsets "delta", construct a relation of the
511 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
512 * is an overapproximation of the relations that
513 * maps an element x to any element that can be reached
514 * by taking a non-negative number of steps along any of
515 * the elements in "delta".
516 * That is, construct an approximation of
518 * { [x] -> [y] : exists f \in \delta, k \in Z :
519 * y = x + k [f, 1] and k >= 0 }
521 * For any element in this relation, the number of steps taken
522 * is equal to the difference in the final coordinates.
524 * In particular, let delta be defined as
526 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
527 * C x + C'p + c >= 0 and
528 * D x + D'p + d >= 0 }
530 * where the constraints C x + C'p + c >= 0 are such that the parametric
531 * constant term of each constraint j, "C_j x + C'_j p + c_j",
532 * can never attain positive values, then the relation is constructed as
534 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
535 * A f + k a >= 0 and B p + b >= 0 and
536 * C f + C'p + c >= 0 and k >= 1 }
537 * union { [x] -> [x] }
539 * If the zero-length paths happen to correspond exactly to the identity
540 * mapping, then we return
542 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
543 * A f + k a >= 0 and B p + b >= 0 and
544 * C f + C'p + c >= 0 and k >= 0 }
546 * instead.
548 * Existentially quantified variables in \delta are handled by
549 * classifying them as independent of the parameters, purely
550 * parameter dependent and others. Constraints containing
551 * any of the other existentially quantified variables are removed.
552 * This is safe, but leads to an additional overapproximation.
554 * If there are any impure constraints, then we also eliminate
555 * the parameters from \delta, resulting in a set
557 * \delta' = { [x] : E x + e >= 0 }
559 * and add the constraints
561 * E f + k e >= 0
563 * to the constructed relation.
565 static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim,
566 __isl_take isl_basic_set *delta)
568 isl_basic_map *path = NULL;
569 unsigned d;
570 unsigned n_div;
571 unsigned nparam;
572 unsigned off;
573 int i, k;
574 int is_id;
575 int *div_purity = NULL;
576 int impurity = 0;
578 if (!delta)
579 goto error;
580 n_div = isl_basic_set_dim(delta, isl_dim_div);
581 d = isl_basic_set_dim(delta, isl_dim_set);
582 nparam = isl_basic_set_dim(delta, isl_dim_param);
583 path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1,
584 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
585 off = 1 + nparam + 2 * (d + 1) + n_div;
587 for (i = 0; i < n_div + d + 1; ++i) {
588 k = isl_basic_map_alloc_div(path);
589 if (k < 0)
590 goto error;
591 isl_int_set_si(path->div[k][0], 0);
594 for (i = 0; i < d + 1; ++i) {
595 k = isl_basic_map_alloc_equality(path);
596 if (k < 0)
597 goto error;
598 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
599 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
600 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
601 isl_int_set_si(path->eq[k][off + i], 1);
604 div_purity = get_div_purity(delta);
605 if (n_div && !div_purity)
606 goto error;
608 path = add_delta_constraints(path, delta, off, nparam, d,
609 div_purity, 1, &impurity);
610 path = add_delta_constraints(path, delta, off, nparam, d,
611 div_purity, 0, &impurity);
612 if (impurity) {
613 isl_space *dim = isl_basic_set_get_space(delta);
614 delta = isl_basic_set_project_out(delta,
615 isl_dim_param, 0, nparam);
616 delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam);
617 delta = isl_basic_set_reset_space(delta, dim);
618 if (!delta)
619 goto error;
620 path = isl_basic_map_extend_constraints(path, delta->n_eq,
621 delta->n_ineq + 1);
622 path = add_delta_constraints(path, delta, off, nparam, d,
623 NULL, 1, NULL);
624 path = add_delta_constraints(path, delta, off, nparam, d,
625 NULL, 0, NULL);
626 path = isl_basic_map_gauss(path, NULL);
629 is_id = empty_path_is_identity(path, off + d);
630 if (is_id < 0)
631 goto error;
633 k = isl_basic_map_alloc_inequality(path);
634 if (k < 0)
635 goto error;
636 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
637 if (!is_id)
638 isl_int_set_si(path->ineq[k][0], -1);
639 isl_int_set_si(path->ineq[k][off + d], 1);
641 free(div_purity);
642 isl_basic_set_free(delta);
643 path = isl_basic_map_finalize(path);
644 if (is_id) {
645 isl_space_free(dim);
646 return isl_map_from_basic_map(path);
648 return isl_basic_map_union(path, isl_basic_map_identity(dim));
649 error:
650 free(div_purity);
651 isl_space_free(dim);
652 isl_basic_set_free(delta);
653 isl_basic_map_free(path);
654 return NULL;
657 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
658 * construct a map that equates the parameter to the difference
659 * in the final coordinates and imposes that this difference is positive.
660 * That is, construct
662 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
664 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim,
665 unsigned param)
667 struct isl_basic_map *bmap;
668 unsigned d;
669 unsigned nparam;
670 int k;
672 d = isl_space_dim(dim, isl_dim_in);
673 nparam = isl_space_dim(dim, isl_dim_param);
674 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
675 k = isl_basic_map_alloc_equality(bmap);
676 if (k < 0)
677 goto error;
678 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
679 isl_int_set_si(bmap->eq[k][1 + param], -1);
680 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
681 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
683 k = isl_basic_map_alloc_inequality(bmap);
684 if (k < 0)
685 goto error;
686 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
687 isl_int_set_si(bmap->ineq[k][1 + param], 1);
688 isl_int_set_si(bmap->ineq[k][0], -1);
690 bmap = isl_basic_map_finalize(bmap);
691 return isl_map_from_basic_map(bmap);
692 error:
693 isl_basic_map_free(bmap);
694 return NULL;
697 /* Check whether "path" is acyclic, where the last coordinates of domain
698 * and range of path encode the number of steps taken.
699 * That is, check whether
701 * { d | d = y - x and (x,y) in path }
703 * does not contain any element with positive last coordinate (positive length)
704 * and zero remaining coordinates (cycle).
706 static int is_acyclic(__isl_take isl_map *path)
708 int i;
709 int acyclic;
710 unsigned dim;
711 struct isl_set *delta;
713 delta = isl_map_deltas(path);
714 dim = isl_set_dim(delta, isl_dim_set);
715 for (i = 0; i < dim; ++i) {
716 if (i == dim -1)
717 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
718 else
719 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
722 acyclic = isl_set_is_empty(delta);
723 isl_set_free(delta);
725 return acyclic;
728 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
729 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
730 * construct a map that is an overapproximation of the map
731 * that takes an element from the space D \times Z to another
732 * element from the same space, such that the first n coordinates of the
733 * difference between them is a sum of differences between images
734 * and pre-images in one of the R_i and such that the last coordinate
735 * is equal to the number of steps taken.
736 * That is, let
738 * \Delta_i = { y - x | (x, y) in R_i }
740 * then the constructed map is an overapproximation of
742 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
743 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
745 * The elements of the singleton \Delta_i's are collected as the
746 * rows of the steps matrix. For all these \Delta_i's together,
747 * a single path is constructed.
748 * For each of the other \Delta_i's, we compute an overapproximation
749 * of the paths along elements of \Delta_i.
750 * Since each of these paths performs an addition, composition is
751 * symmetric and we can simply compose all resulting paths in any order.
753 static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim,
754 __isl_keep isl_map *map, int *project)
756 struct isl_mat *steps = NULL;
757 struct isl_map *path = NULL;
758 unsigned d;
759 int i, j, n;
761 if (!map)
762 goto error;
764 d = isl_map_dim(map, isl_dim_in);
766 path = isl_map_identity(isl_space_copy(dim));
768 steps = isl_mat_alloc(map->ctx, map->n, d);
769 if (!steps)
770 goto error;
772 n = 0;
773 for (i = 0; i < map->n; ++i) {
774 struct isl_basic_set *delta;
776 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
778 for (j = 0; j < d; ++j) {
779 int fixed;
781 fixed = isl_basic_set_plain_dim_is_fixed(delta, j,
782 &steps->row[n][j]);
783 if (fixed < 0) {
784 isl_basic_set_free(delta);
785 goto error;
787 if (!fixed)
788 break;
792 if (j < d) {
793 path = isl_map_apply_range(path,
794 path_along_delta(isl_space_copy(dim), delta));
795 path = isl_map_coalesce(path);
796 } else {
797 isl_basic_set_free(delta);
798 ++n;
802 if (n > 0) {
803 steps->n_row = n;
804 path = isl_map_apply_range(path,
805 path_along_steps(isl_space_copy(dim), steps));
808 if (project && *project) {
809 *project = is_acyclic(isl_map_copy(path));
810 if (*project < 0)
811 goto error;
814 isl_space_free(dim);
815 isl_mat_free(steps);
816 return path;
817 error:
818 isl_space_free(dim);
819 isl_mat_free(steps);
820 isl_map_free(path);
821 return NULL;
824 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
826 isl_set *i;
827 int no_overlap;
829 if (!set1 || !set2)
830 return -1;
832 if (!isl_space_tuple_is_equal(set1->dim, isl_dim_set,
833 set2->dim, isl_dim_set))
834 return 0;
836 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
837 no_overlap = isl_set_is_empty(i);
838 isl_set_free(i);
840 return no_overlap < 0 ? -1 : !no_overlap;
843 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
844 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
845 * construct a map that is an overapproximation of the map
846 * that takes an element from the dom R \times Z to an
847 * element from ran R \times Z, such that the first n coordinates of the
848 * difference between them is a sum of differences between images
849 * and pre-images in one of the R_i and such that the last coordinate
850 * is equal to the number of steps taken.
851 * That is, let
853 * \Delta_i = { y - x | (x, y) in R_i }
855 * then the constructed map is an overapproximation of
857 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
858 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
859 * x in dom R and x + d in ran R and
860 * \sum_i k_i >= 1 }
862 static __isl_give isl_map *construct_component(__isl_take isl_space *dim,
863 __isl_keep isl_map *map, int *exact, int project)
865 struct isl_set *domain = NULL;
866 struct isl_set *range = NULL;
867 struct isl_map *app = NULL;
868 struct isl_map *path = NULL;
869 int overlaps;
871 domain = isl_map_domain(isl_map_copy(map));
872 domain = isl_set_coalesce(domain);
873 range = isl_map_range(isl_map_copy(map));
874 range = isl_set_coalesce(range);
875 overlaps = isl_set_overlaps(domain, range);
876 if (overlaps < 0 || !overlaps) {
877 isl_set_free(domain);
878 isl_set_free(range);
879 isl_space_free(dim);
881 if (overlaps < 0)
882 map = NULL;
883 map = isl_map_copy(map);
884 map = isl_map_add_dims(map, isl_dim_in, 1);
885 map = isl_map_add_dims(map, isl_dim_out, 1);
886 map = set_path_length(map, 1, 1);
887 return map;
889 app = isl_map_from_domain_and_range(domain, range);
890 app = isl_map_add_dims(app, isl_dim_in, 1);
891 app = isl_map_add_dims(app, isl_dim_out, 1);
893 path = construct_extended_path(isl_space_copy(dim), map,
894 exact && *exact ? &project : NULL);
895 app = isl_map_intersect(app, path);
897 if (exact && *exact &&
898 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
899 project)) < 0)
900 goto error;
902 isl_space_free(dim);
903 app = set_path_length(app, 0, 1);
904 return app;
905 error:
906 isl_space_free(dim);
907 isl_map_free(app);
908 return NULL;
911 /* Call construct_component and, if "project" is set, project out
912 * the final coordinates.
914 static __isl_give isl_map *construct_projected_component(
915 __isl_take isl_space *dim,
916 __isl_keep isl_map *map, int *exact, int project)
918 isl_map *app;
919 unsigned d;
921 if (!dim)
922 return NULL;
923 d = isl_space_dim(dim, isl_dim_in);
925 app = construct_component(dim, map, exact, project);
926 if (project) {
927 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
928 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
930 return app;
933 /* Compute an extended version, i.e., with path lengths, of
934 * an overapproximation of the transitive closure of "bmap"
935 * with path lengths greater than or equal to zero and with
936 * domain and range equal to "dom".
938 static __isl_give isl_map *q_closure(__isl_take isl_space *dim,
939 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
941 int project = 1;
942 isl_map *path;
943 isl_map *map;
944 isl_map *app;
946 dom = isl_set_add_dims(dom, isl_dim_set, 1);
947 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
948 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
949 path = construct_extended_path(dim, map, &project);
950 app = isl_map_intersect(app, path);
952 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
953 goto error;
955 return app;
956 error:
957 isl_map_free(app);
958 return NULL;
961 /* Check whether qc has any elements of length at least one
962 * with domain and/or range outside of dom and ran.
964 static int has_spurious_elements(__isl_keep isl_map *qc,
965 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
967 isl_set *s;
968 int subset;
969 unsigned d;
971 if (!qc || !dom || !ran)
972 return -1;
974 d = isl_map_dim(qc, isl_dim_in);
976 qc = isl_map_copy(qc);
977 qc = set_path_length(qc, 0, 1);
978 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
979 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
981 s = isl_map_domain(isl_map_copy(qc));
982 subset = isl_set_is_subset(s, dom);
983 isl_set_free(s);
984 if (subset < 0)
985 goto error;
986 if (!subset) {
987 isl_map_free(qc);
988 return 1;
991 s = isl_map_range(qc);
992 subset = isl_set_is_subset(s, ran);
993 isl_set_free(s);
995 return subset < 0 ? -1 : !subset;
996 error:
997 isl_map_free(qc);
998 return -1;
1001 #define LEFT 2
1002 #define RIGHT 1
1004 /* For each basic map in "map", except i, check whether it combines
1005 * with the transitive closure that is reflexive on C combines
1006 * to the left and to the right.
1008 * In particular, if
1010 * dom map_j \subseteq C
1012 * then right[j] is set to 1. Otherwise, if
1014 * ran map_i \cap dom map_j = \emptyset
1016 * then right[j] is set to 0. Otherwise, composing to the right
1017 * is impossible.
1019 * Similar, for composing to the left, we have if
1021 * ran map_j \subseteq C
1023 * then left[j] is set to 1. Otherwise, if
1025 * dom map_i \cap ran map_j = \emptyset
1027 * then left[j] is set to 0. Otherwise, composing to the left
1028 * is impossible.
1030 * The return value is or'd with LEFT if composing to the left
1031 * is possible and with RIGHT if composing to the right is possible.
1033 static int composability(__isl_keep isl_set *C, int i,
1034 isl_set **dom, isl_set **ran, int *left, int *right,
1035 __isl_keep isl_map *map)
1037 int j;
1038 int ok;
1040 ok = LEFT | RIGHT;
1041 for (j = 0; j < map->n && ok; ++j) {
1042 int overlaps, subset;
1043 if (j == i)
1044 continue;
1046 if (ok & RIGHT) {
1047 if (!dom[j])
1048 dom[j] = isl_set_from_basic_set(
1049 isl_basic_map_domain(
1050 isl_basic_map_copy(map->p[j])));
1051 if (!dom[j])
1052 return -1;
1053 overlaps = isl_set_overlaps(ran[i], dom[j]);
1054 if (overlaps < 0)
1055 return -1;
1056 if (!overlaps)
1057 right[j] = 0;
1058 else {
1059 subset = isl_set_is_subset(dom[j], C);
1060 if (subset < 0)
1061 return -1;
1062 if (subset)
1063 right[j] = 1;
1064 else
1065 ok &= ~RIGHT;
1069 if (ok & LEFT) {
1070 if (!ran[j])
1071 ran[j] = isl_set_from_basic_set(
1072 isl_basic_map_range(
1073 isl_basic_map_copy(map->p[j])));
1074 if (!ran[j])
1075 return -1;
1076 overlaps = isl_set_overlaps(dom[i], ran[j]);
1077 if (overlaps < 0)
1078 return -1;
1079 if (!overlaps)
1080 left[j] = 0;
1081 else {
1082 subset = isl_set_is_subset(ran[j], C);
1083 if (subset < 0)
1084 return -1;
1085 if (subset)
1086 left[j] = 1;
1087 else
1088 ok &= ~LEFT;
1093 return ok;
1096 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1098 map = isl_map_reset(map, isl_dim_in);
1099 map = isl_map_reset(map, isl_dim_out);
1100 return map;
1103 /* Return a map that is a union of the basic maps in "map", except i,
1104 * composed to left and right with qc based on the entries of "left"
1105 * and "right".
1107 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1108 __isl_take isl_map *qc, int *left, int *right)
1110 int j;
1111 isl_map *comp;
1113 comp = isl_map_empty(isl_map_get_space(map));
1114 for (j = 0; j < map->n; ++j) {
1115 isl_map *map_j;
1117 if (j == i)
1118 continue;
1120 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1121 map_j = anonymize(map_j);
1122 if (left && left[j])
1123 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1124 if (right && right[j])
1125 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1126 comp = isl_map_union(comp, map_j);
1129 comp = isl_map_compute_divs(comp);
1130 comp = isl_map_coalesce(comp);
1132 isl_map_free(qc);
1134 return comp;
1137 /* Compute the transitive closure of "map" incrementally by
1138 * computing
1140 * map_i^+ \cup qc^+
1142 * or
1144 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1146 * or
1148 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1150 * depending on whether left or right are NULL.
1152 static __isl_give isl_map *compute_incremental(
1153 __isl_take isl_space *dim, __isl_keep isl_map *map,
1154 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1156 isl_map *map_i;
1157 isl_map *tc;
1158 isl_map *rtc = NULL;
1160 if (!map)
1161 goto error;
1162 isl_assert(map->ctx, left || right, goto error);
1164 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1165 tc = construct_projected_component(isl_space_copy(dim), map_i,
1166 exact, 1);
1167 isl_map_free(map_i);
1169 if (*exact)
1170 qc = isl_map_transitive_closure(qc, exact);
1172 if (!*exact) {
1173 isl_space_free(dim);
1174 isl_map_free(tc);
1175 isl_map_free(qc);
1176 return isl_map_universe(isl_map_get_space(map));
1179 if (!left || !right)
1180 rtc = isl_map_union(isl_map_copy(tc),
1181 isl_map_identity(isl_map_get_space(tc)));
1182 if (!right)
1183 qc = isl_map_apply_range(rtc, qc);
1184 if (!left)
1185 qc = isl_map_apply_range(qc, rtc);
1186 qc = isl_map_union(tc, qc);
1188 isl_space_free(dim);
1190 return qc;
1191 error:
1192 isl_space_free(dim);
1193 isl_map_free(qc);
1194 return NULL;
1197 /* Given a map "map", try to find a basic map such that
1198 * map^+ can be computed as
1200 * map^+ = map_i^+ \cup
1201 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1203 * with C the simple hull of the domain and range of the input map.
1204 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1205 * and by intersecting domain and range with C.
1206 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1207 * Also, we only use the incremental computation if all the transitive
1208 * closures are exact and if the number of basic maps in the union,
1209 * after computing the integer divisions, is smaller than the number
1210 * of basic maps in the input map.
1212 static int incemental_on_entire_domain(__isl_keep isl_space *dim,
1213 __isl_keep isl_map *map,
1214 isl_set **dom, isl_set **ran, int *left, int *right,
1215 __isl_give isl_map **res)
1217 int i;
1218 isl_set *C;
1219 unsigned d;
1221 *res = NULL;
1223 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1224 isl_map_range(isl_map_copy(map)));
1225 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1226 if (!C)
1227 return -1;
1228 if (C->n != 1) {
1229 isl_set_free(C);
1230 return 0;
1233 d = isl_map_dim(map, isl_dim_in);
1235 for (i = 0; i < map->n; ++i) {
1236 isl_map *qc;
1237 int exact_i, spurious;
1238 int j;
1239 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1240 isl_basic_map_copy(map->p[i])));
1241 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1242 isl_basic_map_copy(map->p[i])));
1243 qc = q_closure(isl_space_copy(dim), isl_set_copy(C),
1244 map->p[i], &exact_i);
1245 if (!qc)
1246 goto error;
1247 if (!exact_i) {
1248 isl_map_free(qc);
1249 continue;
1251 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1252 if (spurious) {
1253 isl_map_free(qc);
1254 if (spurious < 0)
1255 goto error;
1256 continue;
1258 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1259 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1260 qc = isl_map_compute_divs(qc);
1261 for (j = 0; j < map->n; ++j)
1262 left[j] = right[j] = 1;
1263 qc = compose(map, i, qc, left, right);
1264 if (!qc)
1265 goto error;
1266 if (qc->n >= map->n) {
1267 isl_map_free(qc);
1268 continue;
1270 *res = compute_incremental(isl_space_copy(dim), map, i, qc,
1271 left, right, &exact_i);
1272 if (!*res)
1273 goto error;
1274 if (exact_i)
1275 break;
1276 isl_map_free(*res);
1277 *res = NULL;
1280 isl_set_free(C);
1282 return *res != NULL;
1283 error:
1284 isl_set_free(C);
1285 return -1;
1288 /* Try and compute the transitive closure of "map" as
1290 * map^+ = map_i^+ \cup
1291 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1293 * with C either the simple hull of the domain and range of the entire
1294 * map or the simple hull of domain and range of map_i.
1296 static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim,
1297 __isl_keep isl_map *map, int *exact, int project)
1299 int i;
1300 isl_set **dom = NULL;
1301 isl_set **ran = NULL;
1302 int *left = NULL;
1303 int *right = NULL;
1304 isl_set *C;
1305 unsigned d;
1306 isl_map *res = NULL;
1308 if (!project)
1309 return construct_projected_component(dim, map, exact, project);
1311 if (!map)
1312 goto error;
1313 if (map->n <= 1)
1314 return construct_projected_component(dim, map, exact, project);
1316 d = isl_map_dim(map, isl_dim_in);
1318 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1319 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1320 left = isl_calloc_array(map->ctx, int, map->n);
1321 right = isl_calloc_array(map->ctx, int, map->n);
1322 if (!ran || !dom || !left || !right)
1323 goto error;
1325 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1326 goto error;
1328 for (i = 0; !res && i < map->n; ++i) {
1329 isl_map *qc;
1330 int exact_i, spurious, comp;
1331 if (!dom[i])
1332 dom[i] = isl_set_from_basic_set(
1333 isl_basic_map_domain(
1334 isl_basic_map_copy(map->p[i])));
1335 if (!dom[i])
1336 goto error;
1337 if (!ran[i])
1338 ran[i] = isl_set_from_basic_set(
1339 isl_basic_map_range(
1340 isl_basic_map_copy(map->p[i])));
1341 if (!ran[i])
1342 goto error;
1343 C = isl_set_union(isl_set_copy(dom[i]),
1344 isl_set_copy(ran[i]));
1345 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1346 if (!C)
1347 goto error;
1348 if (C->n != 1) {
1349 isl_set_free(C);
1350 continue;
1352 comp = composability(C, i, dom, ran, left, right, map);
1353 if (!comp || comp < 0) {
1354 isl_set_free(C);
1355 if (comp < 0)
1356 goto error;
1357 continue;
1359 qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i);
1360 if (!qc)
1361 goto error;
1362 if (!exact_i) {
1363 isl_map_free(qc);
1364 continue;
1366 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1367 if (spurious) {
1368 isl_map_free(qc);
1369 if (spurious < 0)
1370 goto error;
1371 continue;
1373 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1374 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1375 qc = isl_map_compute_divs(qc);
1376 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1377 (comp & RIGHT) ? right : NULL);
1378 if (!qc)
1379 goto error;
1380 if (qc->n >= map->n) {
1381 isl_map_free(qc);
1382 continue;
1384 res = compute_incremental(isl_space_copy(dim), map, i, qc,
1385 (comp & LEFT) ? left : NULL,
1386 (comp & RIGHT) ? right : NULL, &exact_i);
1387 if (!res)
1388 goto error;
1389 if (exact_i)
1390 break;
1391 isl_map_free(res);
1392 res = NULL;
1395 for (i = 0; i < map->n; ++i) {
1396 isl_set_free(dom[i]);
1397 isl_set_free(ran[i]);
1399 free(dom);
1400 free(ran);
1401 free(left);
1402 free(right);
1404 if (res) {
1405 isl_space_free(dim);
1406 return res;
1409 return construct_projected_component(dim, map, exact, project);
1410 error:
1411 if (dom)
1412 for (i = 0; i < map->n; ++i)
1413 isl_set_free(dom[i]);
1414 free(dom);
1415 if (ran)
1416 for (i = 0; i < map->n; ++i)
1417 isl_set_free(ran[i]);
1418 free(ran);
1419 free(left);
1420 free(right);
1421 isl_space_free(dim);
1422 return NULL;
1425 /* Given an array of sets "set", add "dom" at position "pos"
1426 * and search for elements at earlier positions that overlap with "dom".
1427 * If any can be found, then merge all of them, together with "dom", into
1428 * a single set and assign the union to the first in the array,
1429 * which becomes the new group leader for all groups involved in the merge.
1430 * During the search, we only consider group leaders, i.e., those with
1431 * group[i] = i, as the other sets have already been combined
1432 * with one of the group leaders.
1434 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1436 int i;
1438 group[pos] = pos;
1439 set[pos] = isl_set_copy(dom);
1441 for (i = pos - 1; i >= 0; --i) {
1442 int o;
1444 if (group[i] != i)
1445 continue;
1447 o = isl_set_overlaps(set[i], dom);
1448 if (o < 0)
1449 goto error;
1450 if (!o)
1451 continue;
1453 set[i] = isl_set_union(set[i], set[group[pos]]);
1454 set[group[pos]] = NULL;
1455 if (!set[i])
1456 goto error;
1457 group[group[pos]] = i;
1458 group[pos] = i;
1461 isl_set_free(dom);
1462 return 0;
1463 error:
1464 isl_set_free(dom);
1465 return -1;
1468 /* Replace each entry in the n by n grid of maps by the cross product
1469 * with the relation { [i] -> [i + 1] }.
1471 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1473 int i, j, k;
1474 isl_space *dim;
1475 isl_basic_map *bstep;
1476 isl_map *step;
1477 unsigned nparam;
1479 if (!map)
1480 return -1;
1482 dim = isl_map_get_space(map);
1483 nparam = isl_space_dim(dim, isl_dim_param);
1484 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1485 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1486 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1487 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1488 bstep = isl_basic_map_alloc_space(dim, 0, 1, 0);
1489 k = isl_basic_map_alloc_equality(bstep);
1490 if (k < 0) {
1491 isl_basic_map_free(bstep);
1492 return -1;
1494 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1495 isl_int_set_si(bstep->eq[k][0], 1);
1496 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1497 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1498 bstep = isl_basic_map_finalize(bstep);
1499 step = isl_map_from_basic_map(bstep);
1501 for (i = 0; i < n; ++i)
1502 for (j = 0; j < n; ++j)
1503 grid[i][j] = isl_map_product(grid[i][j],
1504 isl_map_copy(step));
1506 isl_map_free(step);
1508 return 0;
1511 /* The core of the Floyd-Warshall algorithm.
1512 * Updates the given n x x matrix of relations in place.
1514 * The algorithm iterates over all vertices. In each step, the whole
1515 * matrix is updated to include all paths that go to the current vertex,
1516 * possibly stay there a while (including passing through earlier vertices)
1517 * and then come back. At the start of each iteration, the diagonal
1518 * element corresponding to the current vertex is replaced by its
1519 * transitive closure to account for all indirect paths that stay
1520 * in the current vertex.
1522 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1524 int r, p, q;
1526 for (r = 0; r < n; ++r) {
1527 int r_exact;
1528 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1529 (exact && *exact) ? &r_exact : NULL);
1530 if (exact && *exact && !r_exact)
1531 *exact = 0;
1533 for (p = 0; p < n; ++p)
1534 for (q = 0; q < n; ++q) {
1535 isl_map *loop;
1536 if (p == r && q == r)
1537 continue;
1538 loop = isl_map_apply_range(
1539 isl_map_copy(grid[p][r]),
1540 isl_map_copy(grid[r][q]));
1541 grid[p][q] = isl_map_union(grid[p][q], loop);
1542 loop = isl_map_apply_range(
1543 isl_map_copy(grid[p][r]),
1544 isl_map_apply_range(
1545 isl_map_copy(grid[r][r]),
1546 isl_map_copy(grid[r][q])));
1547 grid[p][q] = isl_map_union(grid[p][q], loop);
1548 grid[p][q] = isl_map_coalesce(grid[p][q]);
1553 /* Given a partition of the domains and ranges of the basic maps in "map",
1554 * apply the Floyd-Warshall algorithm with the elements in the partition
1555 * as vertices.
1557 * In particular, there are "n" elements in the partition and "group" is
1558 * an array of length 2 * map->n with entries in [0,n-1].
1560 * We first construct a matrix of relations based on the partition information,
1561 * apply Floyd-Warshall on this matrix of relations and then take the
1562 * union of all entries in the matrix as the final result.
1564 * If we are actually computing the power instead of the transitive closure,
1565 * i.e., when "project" is not set, then the result should have the
1566 * path lengths encoded as the difference between an extra pair of
1567 * coordinates. We therefore apply the nested transitive closures
1568 * to relations that include these lengths. In particular, we replace
1569 * the input relation by the cross product with the unit length relation
1570 * { [i] -> [i + 1] }.
1572 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim,
1573 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1575 int i, j, k;
1576 isl_map ***grid = NULL;
1577 isl_map *app;
1579 if (!map)
1580 goto error;
1582 if (n == 1) {
1583 free(group);
1584 return incremental_closure(dim, map, exact, project);
1587 grid = isl_calloc_array(map->ctx, isl_map **, n);
1588 if (!grid)
1589 goto error;
1590 for (i = 0; i < n; ++i) {
1591 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1592 if (!grid[i])
1593 goto error;
1594 for (j = 0; j < n; ++j)
1595 grid[i][j] = isl_map_empty(isl_map_get_space(map));
1598 for (k = 0; k < map->n; ++k) {
1599 i = group[2 * k];
1600 j = group[2 * k + 1];
1601 grid[i][j] = isl_map_union(grid[i][j],
1602 isl_map_from_basic_map(
1603 isl_basic_map_copy(map->p[k])));
1606 if (!project && add_length(map, grid, n) < 0)
1607 goto error;
1609 floyd_warshall_iterate(grid, n, exact);
1611 app = isl_map_empty(isl_map_get_space(grid[0][0]));
1613 for (i = 0; i < n; ++i) {
1614 for (j = 0; j < n; ++j)
1615 app = isl_map_union(app, grid[i][j]);
1616 free(grid[i]);
1618 free(grid);
1620 free(group);
1621 isl_space_free(dim);
1623 return app;
1624 error:
1625 if (grid)
1626 for (i = 0; i < n; ++i) {
1627 if (!grid[i])
1628 continue;
1629 for (j = 0; j < n; ++j)
1630 isl_map_free(grid[i][j]);
1631 free(grid[i]);
1633 free(grid);
1634 free(group);
1635 isl_space_free(dim);
1636 return NULL;
1639 /* Partition the domains and ranges of the n basic relations in list
1640 * into disjoint cells.
1642 * To find the partition, we simply consider all of the domains
1643 * and ranges in turn and combine those that overlap.
1644 * "set" contains the partition elements and "group" indicates
1645 * to which partition element a given domain or range belongs.
1646 * The domain of basic map i corresponds to element 2 * i in these arrays,
1647 * while the domain corresponds to element 2 * i + 1.
1648 * During the construction group[k] is either equal to k,
1649 * in which case set[k] contains the union of all the domains and
1650 * ranges in the corresponding group, or is equal to some l < k,
1651 * with l another domain or range in the same group.
1653 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1654 isl_set ***set, int *n_group)
1656 int i;
1657 int *group = NULL;
1658 int g;
1660 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1661 group = isl_alloc_array(ctx, int, 2 * n);
1663 if (!*set || !group)
1664 goto error;
1666 for (i = 0; i < n; ++i) {
1667 isl_set *dom;
1668 dom = isl_set_from_basic_set(isl_basic_map_domain(
1669 isl_basic_map_copy(list[i])));
1670 if (merge(*set, group, dom, 2 * i) < 0)
1671 goto error;
1672 dom = isl_set_from_basic_set(isl_basic_map_range(
1673 isl_basic_map_copy(list[i])));
1674 if (merge(*set, group, dom, 2 * i + 1) < 0)
1675 goto error;
1678 g = 0;
1679 for (i = 0; i < 2 * n; ++i)
1680 if (group[i] == i) {
1681 if (g != i) {
1682 (*set)[g] = (*set)[i];
1683 (*set)[i] = NULL;
1685 group[i] = g++;
1686 } else
1687 group[i] = group[group[i]];
1689 *n_group = g;
1691 return group;
1692 error:
1693 if (*set) {
1694 for (i = 0; i < 2 * n; ++i)
1695 isl_set_free((*set)[i]);
1696 free(*set);
1697 *set = NULL;
1699 free(group);
1700 return NULL;
1703 /* Check if the domains and ranges of the basic maps in "map" can
1704 * be partitioned, and if so, apply Floyd-Warshall on the elements
1705 * of the partition. Note that we also apply this algorithm
1706 * if we want to compute the power, i.e., when "project" is not set.
1707 * However, the results are unlikely to be exact since the recursive
1708 * calls inside the Floyd-Warshall algorithm typically result in
1709 * non-linear path lengths quite quickly.
1711 static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim,
1712 __isl_keep isl_map *map, int *exact, int project)
1714 int i;
1715 isl_set **set = NULL;
1716 int *group = NULL;
1717 int n;
1719 if (!map)
1720 goto error;
1721 if (map->n <= 1)
1722 return incremental_closure(dim, map, exact, project);
1724 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1725 if (!group)
1726 goto error;
1728 for (i = 0; i < 2 * map->n; ++i)
1729 isl_set_free(set[i]);
1731 free(set);
1733 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1734 error:
1735 isl_space_free(dim);
1736 return NULL;
1739 /* Structure for representing the nodes of the graph of which
1740 * strongly connected components are being computed.
1742 * list contains the actual nodes
1743 * check_closed is set if we may have used the fact that
1744 * a pair of basic maps can be interchanged
1746 struct isl_tc_follows_data {
1747 isl_basic_map **list;
1748 int check_closed;
1751 /* Check whether in the computation of the transitive closure
1752 * "list[i]" (R_1) should follow (or be part of the same component as)
1753 * "list[j]" (R_2).
1755 * That is check whether
1757 * R_1 \circ R_2
1759 * is a subset of
1761 * R_2 \circ R_1
1763 * If so, then there is no reason for R_1 to immediately follow R_2
1764 * in any path.
1766 * *check_closed is set if the subset relation holds while
1767 * R_1 \circ R_2 is not empty.
1769 static isl_bool basic_map_follows(int i, int j, void *user)
1771 struct isl_tc_follows_data *data = user;
1772 struct isl_map *map12 = NULL;
1773 struct isl_map *map21 = NULL;
1774 isl_bool subset;
1776 if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
1777 data->list[j]->dim, isl_dim_out))
1778 return isl_bool_false;
1780 map21 = isl_map_from_basic_map(
1781 isl_basic_map_apply_range(
1782 isl_basic_map_copy(data->list[j]),
1783 isl_basic_map_copy(data->list[i])));
1784 subset = isl_map_is_empty(map21);
1785 if (subset < 0)
1786 goto error;
1787 if (subset) {
1788 isl_map_free(map21);
1789 return isl_bool_false;
1792 if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
1793 data->list[i]->dim, isl_dim_out) ||
1794 !isl_space_tuple_is_equal(data->list[j]->dim, isl_dim_in,
1795 data->list[j]->dim, isl_dim_out)) {
1796 isl_map_free(map21);
1797 return isl_bool_true;
1800 map12 = isl_map_from_basic_map(
1801 isl_basic_map_apply_range(
1802 isl_basic_map_copy(data->list[i]),
1803 isl_basic_map_copy(data->list[j])));
1805 subset = isl_map_is_subset(map21, map12);
1807 isl_map_free(map12);
1808 isl_map_free(map21);
1810 if (subset)
1811 data->check_closed = 1;
1813 return subset < 0 ? isl_bool_error : !subset;
1814 error:
1815 isl_map_free(map21);
1816 return isl_bool_error;
1819 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1820 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1821 * construct a map that is an overapproximation of the map
1822 * that takes an element from the dom R \times Z to an
1823 * element from ran R \times Z, such that the first n coordinates of the
1824 * difference between them is a sum of differences between images
1825 * and pre-images in one of the R_i and such that the last coordinate
1826 * is equal to the number of steps taken.
1827 * If "project" is set, then these final coordinates are not included,
1828 * i.e., a relation of type Z^n -> Z^n is returned.
1829 * That is, let
1831 * \Delta_i = { y - x | (x, y) in R_i }
1833 * then the constructed map is an overapproximation of
1835 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1836 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1837 * x in dom R and x + d in ran R }
1839 * or
1841 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1842 * d = (\sum_i k_i \delta_i) and
1843 * x in dom R and x + d in ran R }
1845 * if "project" is set.
1847 * We first split the map into strongly connected components, perform
1848 * the above on each component and then join the results in the correct
1849 * order, at each join also taking in the union of both arguments
1850 * to allow for paths that do not go through one of the two arguments.
1852 static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim,
1853 __isl_keep isl_map *map, int *exact, int project)
1855 int i, n, c;
1856 struct isl_map *path = NULL;
1857 struct isl_tc_follows_data data;
1858 struct isl_tarjan_graph *g = NULL;
1859 int *orig_exact;
1860 int local_exact;
1862 if (!map)
1863 goto error;
1864 if (map->n <= 1)
1865 return floyd_warshall(dim, map, exact, project);
1867 data.list = map->p;
1868 data.check_closed = 0;
1869 g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data);
1870 if (!g)
1871 goto error;
1873 orig_exact = exact;
1874 if (data.check_closed && !exact)
1875 exact = &local_exact;
1877 c = 0;
1878 i = 0;
1879 n = map->n;
1880 if (project)
1881 path = isl_map_empty(isl_map_get_space(map));
1882 else
1883 path = isl_map_empty(isl_space_copy(dim));
1884 path = anonymize(path);
1885 while (n) {
1886 struct isl_map *comp;
1887 isl_map *path_comp, *path_comb;
1888 comp = isl_map_alloc_space(isl_map_get_space(map), n, 0);
1889 while (g->order[i] != -1) {
1890 comp = isl_map_add_basic_map(comp,
1891 isl_basic_map_copy(map->p[g->order[i]]));
1892 --n;
1893 ++i;
1895 path_comp = floyd_warshall(isl_space_copy(dim),
1896 comp, exact, project);
1897 path_comp = anonymize(path_comp);
1898 path_comb = isl_map_apply_range(isl_map_copy(path),
1899 isl_map_copy(path_comp));
1900 path = isl_map_union(path, path_comp);
1901 path = isl_map_union(path, path_comb);
1902 isl_map_free(comp);
1903 ++i;
1904 ++c;
1907 if (c > 1 && data.check_closed && !*exact) {
1908 int closed;
1910 closed = isl_map_is_transitively_closed(path);
1911 if (closed < 0)
1912 goto error;
1913 if (!closed) {
1914 isl_tarjan_graph_free(g);
1915 isl_map_free(path);
1916 return floyd_warshall(dim, map, orig_exact, project);
1920 isl_tarjan_graph_free(g);
1921 isl_space_free(dim);
1923 return path;
1924 error:
1925 isl_tarjan_graph_free(g);
1926 isl_space_free(dim);
1927 isl_map_free(path);
1928 return NULL;
1931 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1932 * construct a map that is an overapproximation of the map
1933 * that takes an element from the space D to another
1934 * element from the same space, such that the difference between
1935 * them is a strictly positive sum of differences between images
1936 * and pre-images in one of the R_i.
1937 * The number of differences in the sum is equated to parameter "param".
1938 * That is, let
1940 * \Delta_i = { y - x | (x, y) in R_i }
1942 * then the constructed map is an overapproximation of
1944 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1945 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1946 * or
1948 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1949 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1951 * if "project" is set.
1953 * If "project" is not set, then
1954 * we construct an extended mapping with an extra coordinate
1955 * that indicates the number of steps taken. In particular,
1956 * the difference in the last coordinate is equal to the number
1957 * of steps taken to move from a domain element to the corresponding
1958 * image element(s).
1960 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1961 int *exact, int project)
1963 struct isl_map *app = NULL;
1964 isl_space *dim = NULL;
1966 if (!map)
1967 return NULL;
1969 dim = isl_map_get_space(map);
1971 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1972 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1974 app = construct_power_components(isl_space_copy(dim), map,
1975 exact, project);
1977 isl_space_free(dim);
1979 return app;
1982 /* Compute the positive powers of "map", or an overapproximation.
1983 * If the result is exact, then *exact is set to 1.
1985 * If project is set, then we are actually interested in the transitive
1986 * closure, so we can use a more relaxed exactness check.
1987 * The lengths of the paths are also projected out instead of being
1988 * encoded as the difference between an extra pair of final coordinates.
1990 static __isl_give isl_map *map_power(__isl_take isl_map *map,
1991 int *exact, int project)
1993 struct isl_map *app = NULL;
1995 if (exact)
1996 *exact = 1;
1998 if (!map)
1999 return NULL;
2001 isl_assert(map->ctx,
2002 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
2003 goto error);
2005 app = construct_power(map, exact, project);
2007 isl_map_free(map);
2008 return app;
2009 error:
2010 isl_map_free(map);
2011 isl_map_free(app);
2012 return NULL;
2015 /* Compute the positive powers of "map", or an overapproximation.
2016 * The result maps the exponent to a nested copy of the corresponding power.
2017 * If the result is exact, then *exact is set to 1.
2018 * map_power constructs an extended relation with the path lengths
2019 * encoded as the difference between the final coordinates.
2020 * In the final step, this difference is equated to an extra parameter
2021 * and made positive. The extra coordinates are subsequently projected out
2022 * and the parameter is turned into the domain of the result.
2024 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact)
2026 isl_space *target_dim;
2027 isl_space *dim;
2028 isl_map *diff;
2029 unsigned d;
2030 unsigned param;
2032 if (!map)
2033 return NULL;
2035 d = isl_map_dim(map, isl_dim_in);
2036 param = isl_map_dim(map, isl_dim_param);
2038 map = isl_map_compute_divs(map);
2039 map = isl_map_coalesce(map);
2041 if (isl_map_plain_is_empty(map)) {
2042 map = isl_map_from_range(isl_map_wrap(map));
2043 map = isl_map_add_dims(map, isl_dim_in, 1);
2044 map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
2045 return map;
2048 target_dim = isl_map_get_space(map);
2049 target_dim = isl_space_from_range(isl_space_wrap(target_dim));
2050 target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1);
2051 target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k");
2053 map = map_power(map, exact, 0);
2055 map = isl_map_add_dims(map, isl_dim_param, 1);
2056 dim = isl_map_get_space(map);
2057 diff = equate_parameter_to_length(dim, param);
2058 map = isl_map_intersect(map, diff);
2059 map = isl_map_project_out(map, isl_dim_in, d, 1);
2060 map = isl_map_project_out(map, isl_dim_out, d, 1);
2061 map = isl_map_from_range(isl_map_wrap(map));
2062 map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
2064 map = isl_map_reset_space(map, target_dim);
2066 return map;
2069 /* Compute a relation that maps each element in the range of the input
2070 * relation to the lengths of all paths composed of edges in the input
2071 * relation that end up in the given range element.
2072 * The result may be an overapproximation, in which case *exact is set to 0.
2073 * The resulting relation is very similar to the power relation.
2074 * The difference are that the domain has been projected out, the
2075 * range has become the domain and the exponent is the range instead
2076 * of a parameter.
2078 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2079 int *exact)
2081 isl_space *dim;
2082 isl_map *diff;
2083 unsigned d;
2084 unsigned param;
2086 if (!map)
2087 return NULL;
2089 d = isl_map_dim(map, isl_dim_in);
2090 param = isl_map_dim(map, isl_dim_param);
2092 map = isl_map_compute_divs(map);
2093 map = isl_map_coalesce(map);
2095 if (isl_map_plain_is_empty(map)) {
2096 if (exact)
2097 *exact = 1;
2098 map = isl_map_project_out(map, isl_dim_out, 0, d);
2099 map = isl_map_add_dims(map, isl_dim_out, 1);
2100 return map;
2103 map = map_power(map, exact, 0);
2105 map = isl_map_add_dims(map, isl_dim_param, 1);
2106 dim = isl_map_get_space(map);
2107 diff = equate_parameter_to_length(dim, param);
2108 map = isl_map_intersect(map, diff);
2109 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2110 map = isl_map_project_out(map, isl_dim_out, d, 1);
2111 map = isl_map_reverse(map);
2112 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2114 return map;
2117 /* Check whether equality i of bset is a pure stride constraint
2118 * on a single dimensions, i.e., of the form
2120 * v = k e
2122 * with k a constant and e an existentially quantified variable.
2124 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2126 unsigned nparam;
2127 unsigned d;
2128 unsigned n_div;
2129 int pos1;
2130 int pos2;
2132 if (!bset)
2133 return -1;
2135 if (!isl_int_is_zero(bset->eq[i][0]))
2136 return 0;
2138 nparam = isl_basic_set_dim(bset, isl_dim_param);
2139 d = isl_basic_set_dim(bset, isl_dim_set);
2140 n_div = isl_basic_set_dim(bset, isl_dim_div);
2142 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2143 return 0;
2144 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2145 if (pos1 == -1)
2146 return 0;
2147 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2148 d - pos1 - 1) != -1)
2149 return 0;
2151 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2152 if (pos2 == -1)
2153 return 0;
2154 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2155 n_div - pos2 - 1) != -1)
2156 return 0;
2157 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2158 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2159 return 0;
2161 return 1;
2164 /* Given a map, compute the smallest superset of this map that is of the form
2166 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2168 * (where p ranges over the (non-parametric) dimensions),
2169 * compute the transitive closure of this map, i.e.,
2171 * { i -> j : exists k > 0:
2172 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2174 * and intersect domain and range of this transitive closure with
2175 * the given domain and range.
2177 * If with_id is set, then try to include as much of the identity mapping
2178 * as possible, by computing
2180 * { i -> j : exists k >= 0:
2181 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2183 * instead (i.e., allow k = 0).
2185 * In practice, we compute the difference set
2187 * delta = { j - i | i -> j in map },
2189 * look for stride constraint on the individual dimensions and compute
2190 * (constant) lower and upper bounds for each individual dimension,
2191 * adding a constraint for each bound not equal to infinity.
2193 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2194 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2196 int i;
2197 int k;
2198 unsigned d;
2199 unsigned nparam;
2200 unsigned total;
2201 isl_space *dim;
2202 isl_set *delta;
2203 isl_map *app = NULL;
2204 isl_basic_set *aff = NULL;
2205 isl_basic_map *bmap = NULL;
2206 isl_vec *obj = NULL;
2207 isl_int opt;
2209 isl_int_init(opt);
2211 delta = isl_map_deltas(isl_map_copy(map));
2213 aff = isl_set_affine_hull(isl_set_copy(delta));
2214 if (!aff)
2215 goto error;
2216 dim = isl_map_get_space(map);
2217 d = isl_space_dim(dim, isl_dim_in);
2218 nparam = isl_space_dim(dim, isl_dim_param);
2219 total = isl_space_dim(dim, isl_dim_all);
2220 bmap = isl_basic_map_alloc_space(dim,
2221 aff->n_div + 1, aff->n_div, 2 * d + 1);
2222 for (i = 0; i < aff->n_div + 1; ++i) {
2223 k = isl_basic_map_alloc_div(bmap);
2224 if (k < 0)
2225 goto error;
2226 isl_int_set_si(bmap->div[k][0], 0);
2228 for (i = 0; i < aff->n_eq; ++i) {
2229 if (!is_eq_stride(aff, i))
2230 continue;
2231 k = isl_basic_map_alloc_equality(bmap);
2232 if (k < 0)
2233 goto error;
2234 isl_seq_clr(bmap->eq[k], 1 + nparam);
2235 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2236 aff->eq[i] + 1 + nparam, d);
2237 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2238 aff->eq[i] + 1 + nparam, d);
2239 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2240 aff->eq[i] + 1 + nparam + d, aff->n_div);
2241 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2243 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2244 if (!obj)
2245 goto error;
2246 isl_seq_clr(obj->el, 1 + nparam + d);
2247 for (i = 0; i < d; ++ i) {
2248 enum isl_lp_result res;
2250 isl_int_set_si(obj->el[1 + nparam + i], 1);
2252 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2253 NULL, NULL);
2254 if (res == isl_lp_error)
2255 goto error;
2256 if (res == isl_lp_ok) {
2257 k = isl_basic_map_alloc_inequality(bmap);
2258 if (k < 0)
2259 goto error;
2260 isl_seq_clr(bmap->ineq[k],
2261 1 + nparam + 2 * d + bmap->n_div);
2262 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2263 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2264 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2267 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2268 NULL, NULL);
2269 if (res == isl_lp_error)
2270 goto error;
2271 if (res == isl_lp_ok) {
2272 k = isl_basic_map_alloc_inequality(bmap);
2273 if (k < 0)
2274 goto error;
2275 isl_seq_clr(bmap->ineq[k],
2276 1 + nparam + 2 * d + bmap->n_div);
2277 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2278 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2279 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2282 isl_int_set_si(obj->el[1 + nparam + i], 0);
2284 k = isl_basic_map_alloc_inequality(bmap);
2285 if (k < 0)
2286 goto error;
2287 isl_seq_clr(bmap->ineq[k],
2288 1 + nparam + 2 * d + bmap->n_div);
2289 if (!with_id)
2290 isl_int_set_si(bmap->ineq[k][0], -1);
2291 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2293 app = isl_map_from_domain_and_range(dom, ran);
2295 isl_vec_free(obj);
2296 isl_basic_set_free(aff);
2297 isl_map_free(map);
2298 bmap = isl_basic_map_finalize(bmap);
2299 isl_set_free(delta);
2300 isl_int_clear(opt);
2302 map = isl_map_from_basic_map(bmap);
2303 map = isl_map_intersect(map, app);
2305 return map;
2306 error:
2307 isl_vec_free(obj);
2308 isl_basic_map_free(bmap);
2309 isl_basic_set_free(aff);
2310 isl_set_free(dom);
2311 isl_set_free(ran);
2312 isl_map_free(map);
2313 isl_set_free(delta);
2314 isl_int_clear(opt);
2315 return NULL;
2318 /* Given a map, compute the smallest superset of this map that is of the form
2320 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2322 * (where p ranges over the (non-parametric) dimensions),
2323 * compute the transitive closure of this map, i.e.,
2325 * { i -> j : exists k > 0:
2326 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2328 * and intersect domain and range of this transitive closure with
2329 * domain and range of the original map.
2331 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2333 isl_set *domain;
2334 isl_set *range;
2336 domain = isl_map_domain(isl_map_copy(map));
2337 domain = isl_set_coalesce(domain);
2338 range = isl_map_range(isl_map_copy(map));
2339 range = isl_set_coalesce(range);
2341 return box_closure_on_domain(map, domain, range, 0);
2344 /* Given a map, compute the smallest superset of this map that is of the form
2346 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2348 * (where p ranges over the (non-parametric) dimensions),
2349 * compute the transitive and partially reflexive closure of this map, i.e.,
2351 * { i -> j : exists k >= 0:
2352 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2354 * and intersect domain and range of this transitive closure with
2355 * the given domain.
2357 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2358 __isl_take isl_set *dom)
2360 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2363 /* Check whether app is the transitive closure of map.
2364 * In particular, check that app is acyclic and, if so,
2365 * check that
2367 * app \subset (map \cup (map \circ app))
2369 static int check_exactness_omega(__isl_keep isl_map *map,
2370 __isl_keep isl_map *app)
2372 isl_set *delta;
2373 int i;
2374 int is_empty, is_exact;
2375 unsigned d;
2376 isl_map *test;
2378 delta = isl_map_deltas(isl_map_copy(app));
2379 d = isl_set_dim(delta, isl_dim_set);
2380 for (i = 0; i < d; ++i)
2381 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2382 is_empty = isl_set_is_empty(delta);
2383 isl_set_free(delta);
2384 if (is_empty < 0)
2385 return -1;
2386 if (!is_empty)
2387 return 0;
2389 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2390 test = isl_map_union(test, isl_map_copy(map));
2391 is_exact = isl_map_is_subset(app, test);
2392 isl_map_free(test);
2394 return is_exact;
2397 /* Check if basic map M_i can be combined with all the other
2398 * basic maps such that
2400 * (\cup_j M_j)^+
2402 * can be computed as
2404 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2406 * In particular, check if we can compute a compact representation
2407 * of
2409 * M_i^* \circ M_j \circ M_i^*
2411 * for each j != i.
2412 * Let M_i^? be an extension of M_i^+ that allows paths
2413 * of length zero, i.e., the result of box_closure(., 1).
2414 * The criterion, as proposed by Kelly et al., is that
2415 * id = M_i^? - M_i^+ can be represented as a basic map
2416 * and that
2418 * id \circ M_j \circ id = M_j
2420 * for each j != i.
2422 * If this function returns 1, then tc and qc are set to
2423 * M_i^+ and M_i^?, respectively.
2425 static int can_be_split_off(__isl_keep isl_map *map, int i,
2426 __isl_give isl_map **tc, __isl_give isl_map **qc)
2428 isl_map *map_i, *id = NULL;
2429 int j = -1;
2430 isl_set *C;
2432 *tc = NULL;
2433 *qc = NULL;
2435 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2436 isl_map_range(isl_map_copy(map)));
2437 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2438 if (!C)
2439 goto error;
2441 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2442 *tc = box_closure(isl_map_copy(map_i));
2443 *qc = box_closure_with_identity(map_i, C);
2444 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2446 if (!id || !*qc)
2447 goto error;
2448 if (id->n != 1 || (*qc)->n != 1)
2449 goto done;
2451 for (j = 0; j < map->n; ++j) {
2452 isl_map *map_j, *test;
2453 int is_ok;
2455 if (i == j)
2456 continue;
2457 map_j = isl_map_from_basic_map(
2458 isl_basic_map_copy(map->p[j]));
2459 test = isl_map_apply_range(isl_map_copy(id),
2460 isl_map_copy(map_j));
2461 test = isl_map_apply_range(test, isl_map_copy(id));
2462 is_ok = isl_map_is_equal(test, map_j);
2463 isl_map_free(map_j);
2464 isl_map_free(test);
2465 if (is_ok < 0)
2466 goto error;
2467 if (!is_ok)
2468 break;
2471 done:
2472 isl_map_free(id);
2473 if (j == map->n)
2474 return 1;
2476 isl_map_free(*qc);
2477 isl_map_free(*tc);
2478 *qc = NULL;
2479 *tc = NULL;
2481 return 0;
2482 error:
2483 isl_map_free(id);
2484 isl_map_free(*qc);
2485 isl_map_free(*tc);
2486 *qc = NULL;
2487 *tc = NULL;
2488 return -1;
2491 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2492 int *exact)
2494 isl_map *app;
2496 app = box_closure(isl_map_copy(map));
2497 if (exact)
2498 *exact = check_exactness_omega(map, app);
2500 isl_map_free(map);
2501 return app;
2504 /* Compute an overapproximation of the transitive closure of "map"
2505 * using a variation of the algorithm from
2506 * "Transitive Closure of Infinite Graphs and its Applications"
2507 * by Kelly et al.
2509 * We first check whether we can can split of any basic map M_i and
2510 * compute
2512 * (\cup_j M_j)^+
2514 * as
2516 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2518 * using a recursive call on the remaining map.
2520 * If not, we simply call box_closure on the whole map.
2522 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2523 int *exact)
2525 int i, j;
2526 int exact_i;
2527 isl_map *app;
2529 if (!map)
2530 return NULL;
2531 if (map->n == 1)
2532 return box_closure_with_check(map, exact);
2534 for (i = 0; i < map->n; ++i) {
2535 int ok;
2536 isl_map *qc, *tc;
2537 ok = can_be_split_off(map, i, &tc, &qc);
2538 if (ok < 0)
2539 goto error;
2540 if (!ok)
2541 continue;
2543 app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0);
2545 for (j = 0; j < map->n; ++j) {
2546 if (j == i)
2547 continue;
2548 app = isl_map_add_basic_map(app,
2549 isl_basic_map_copy(map->p[j]));
2552 app = isl_map_apply_range(isl_map_copy(qc), app);
2553 app = isl_map_apply_range(app, qc);
2555 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2556 exact_i = check_exactness_omega(map, app);
2557 if (exact_i == 1) {
2558 if (exact)
2559 *exact = exact_i;
2560 isl_map_free(map);
2561 return app;
2563 isl_map_free(app);
2564 if (exact_i < 0)
2565 goto error;
2568 return box_closure_with_check(map, exact);
2569 error:
2570 isl_map_free(map);
2571 return NULL;
2574 /* Compute the transitive closure of "map", or an overapproximation.
2575 * If the result is exact, then *exact is set to 1.
2576 * Simply use map_power to compute the powers of map, but tell
2577 * it to project out the lengths of the paths instead of equating
2578 * the length to a parameter.
2580 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2581 int *exact)
2583 isl_space *target_dim;
2584 int closed;
2586 if (!map)
2587 goto error;
2589 if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2590 return transitive_closure_omega(map, exact);
2592 map = isl_map_compute_divs(map);
2593 map = isl_map_coalesce(map);
2594 closed = isl_map_is_transitively_closed(map);
2595 if (closed < 0)
2596 goto error;
2597 if (closed) {
2598 if (exact)
2599 *exact = 1;
2600 return map;
2603 target_dim = isl_map_get_space(map);
2604 map = map_power(map, exact, 1);
2605 map = isl_map_reset_space(map, target_dim);
2607 return map;
2608 error:
2609 isl_map_free(map);
2610 return NULL;
2613 static isl_stat inc_count(__isl_take isl_map *map, void *user)
2615 int *n = user;
2617 *n += map->n;
2619 isl_map_free(map);
2621 return isl_stat_ok;
2624 static isl_stat collect_basic_map(__isl_take isl_map *map, void *user)
2626 int i;
2627 isl_basic_map ***next = user;
2629 for (i = 0; i < map->n; ++i) {
2630 **next = isl_basic_map_copy(map->p[i]);
2631 if (!**next)
2632 goto error;
2633 (*next)++;
2636 isl_map_free(map);
2637 return isl_stat_ok;
2638 error:
2639 isl_map_free(map);
2640 return isl_stat_error;
2643 /* Perform Floyd-Warshall on the given list of basic relations.
2644 * The basic relations may live in different dimensions,
2645 * but basic relations that get assigned to the diagonal of the
2646 * grid have domains and ranges of the same dimension and so
2647 * the standard algorithm can be used because the nested transitive
2648 * closures are only applied to diagonal elements and because all
2649 * compositions are peformed on relations with compatible domains and ranges.
2651 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2652 __isl_keep isl_basic_map **list, int n, int *exact)
2654 int i, j, k;
2655 int n_group;
2656 int *group = NULL;
2657 isl_set **set = NULL;
2658 isl_map ***grid = NULL;
2659 isl_union_map *app;
2661 group = setup_groups(ctx, list, n, &set, &n_group);
2662 if (!group)
2663 goto error;
2665 grid = isl_calloc_array(ctx, isl_map **, n_group);
2666 if (!grid)
2667 goto error;
2668 for (i = 0; i < n_group; ++i) {
2669 grid[i] = isl_calloc_array(ctx, isl_map *, n_group);
2670 if (!grid[i])
2671 goto error;
2672 for (j = 0; j < n_group; ++j) {
2673 isl_space *dim1, *dim2, *dim;
2674 dim1 = isl_space_reverse(isl_set_get_space(set[i]));
2675 dim2 = isl_set_get_space(set[j]);
2676 dim = isl_space_join(dim1, dim2);
2677 grid[i][j] = isl_map_empty(dim);
2681 for (k = 0; k < n; ++k) {
2682 i = group[2 * k];
2683 j = group[2 * k + 1];
2684 grid[i][j] = isl_map_union(grid[i][j],
2685 isl_map_from_basic_map(
2686 isl_basic_map_copy(list[k])));
2689 floyd_warshall_iterate(grid, n_group, exact);
2691 app = isl_union_map_empty(isl_map_get_space(grid[0][0]));
2693 for (i = 0; i < n_group; ++i) {
2694 for (j = 0; j < n_group; ++j)
2695 app = isl_union_map_add_map(app, grid[i][j]);
2696 free(grid[i]);
2698 free(grid);
2700 for (i = 0; i < 2 * n; ++i)
2701 isl_set_free(set[i]);
2702 free(set);
2704 free(group);
2705 return app;
2706 error:
2707 if (grid)
2708 for (i = 0; i < n_group; ++i) {
2709 if (!grid[i])
2710 continue;
2711 for (j = 0; j < n_group; ++j)
2712 isl_map_free(grid[i][j]);
2713 free(grid[i]);
2715 free(grid);
2716 if (set) {
2717 for (i = 0; i < 2 * n; ++i)
2718 isl_set_free(set[i]);
2719 free(set);
2721 free(group);
2722 return NULL;
2725 /* Perform Floyd-Warshall on the given union relation.
2726 * The implementation is very similar to that for non-unions.
2727 * The main difference is that it is applied unconditionally.
2728 * We first extract a list of basic maps from the union map
2729 * and then perform the algorithm on this list.
2731 static __isl_give isl_union_map *union_floyd_warshall(
2732 __isl_take isl_union_map *umap, int *exact)
2734 int i, n;
2735 isl_ctx *ctx;
2736 isl_basic_map **list = NULL;
2737 isl_basic_map **next;
2738 isl_union_map *res;
2740 n = 0;
2741 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2742 goto error;
2744 ctx = isl_union_map_get_ctx(umap);
2745 list = isl_calloc_array(ctx, isl_basic_map *, n);
2746 if (!list)
2747 goto error;
2749 next = list;
2750 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2751 goto error;
2753 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2755 if (list) {
2756 for (i = 0; i < n; ++i)
2757 isl_basic_map_free(list[i]);
2758 free(list);
2761 isl_union_map_free(umap);
2762 return res;
2763 error:
2764 if (list) {
2765 for (i = 0; i < n; ++i)
2766 isl_basic_map_free(list[i]);
2767 free(list);
2769 isl_union_map_free(umap);
2770 return NULL;
2773 /* Decompose the give union relation into strongly connected components.
2774 * The implementation is essentially the same as that of
2775 * construct_power_components with the major difference that all
2776 * operations are performed on union maps.
2778 static __isl_give isl_union_map *union_components(
2779 __isl_take isl_union_map *umap, int *exact)
2781 int i;
2782 int n;
2783 isl_ctx *ctx;
2784 isl_basic_map **list = NULL;
2785 isl_basic_map **next;
2786 isl_union_map *path = NULL;
2787 struct isl_tc_follows_data data;
2788 struct isl_tarjan_graph *g = NULL;
2789 int c, l;
2790 int recheck = 0;
2792 n = 0;
2793 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2794 goto error;
2796 if (n == 0)
2797 return umap;
2798 if (n <= 1)
2799 return union_floyd_warshall(umap, exact);
2801 ctx = isl_union_map_get_ctx(umap);
2802 list = isl_calloc_array(ctx, isl_basic_map *, n);
2803 if (!list)
2804 goto error;
2806 next = list;
2807 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2808 goto error;
2810 data.list = list;
2811 data.check_closed = 0;
2812 g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data);
2813 if (!g)
2814 goto error;
2816 c = 0;
2817 i = 0;
2818 l = n;
2819 path = isl_union_map_empty(isl_union_map_get_space(umap));
2820 while (l) {
2821 isl_union_map *comp;
2822 isl_union_map *path_comp, *path_comb;
2823 comp = isl_union_map_empty(isl_union_map_get_space(umap));
2824 while (g->order[i] != -1) {
2825 comp = isl_union_map_add_map(comp,
2826 isl_map_from_basic_map(
2827 isl_basic_map_copy(list[g->order[i]])));
2828 --l;
2829 ++i;
2831 path_comp = union_floyd_warshall(comp, exact);
2832 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2833 isl_union_map_copy(path_comp));
2834 path = isl_union_map_union(path, path_comp);
2835 path = isl_union_map_union(path, path_comb);
2836 ++i;
2837 ++c;
2840 if (c > 1 && data.check_closed && !*exact) {
2841 int closed;
2843 closed = isl_union_map_is_transitively_closed(path);
2844 if (closed < 0)
2845 goto error;
2846 recheck = !closed;
2849 isl_tarjan_graph_free(g);
2851 for (i = 0; i < n; ++i)
2852 isl_basic_map_free(list[i]);
2853 free(list);
2855 if (recheck) {
2856 isl_union_map_free(path);
2857 return union_floyd_warshall(umap, exact);
2860 isl_union_map_free(umap);
2862 return path;
2863 error:
2864 isl_tarjan_graph_free(g);
2865 if (list) {
2866 for (i = 0; i < n; ++i)
2867 isl_basic_map_free(list[i]);
2868 free(list);
2870 isl_union_map_free(umap);
2871 isl_union_map_free(path);
2872 return NULL;
2875 /* Compute the transitive closure of "umap", or an overapproximation.
2876 * If the result is exact, then *exact is set to 1.
2878 __isl_give isl_union_map *isl_union_map_transitive_closure(
2879 __isl_take isl_union_map *umap, int *exact)
2881 int closed;
2883 if (!umap)
2884 return NULL;
2886 if (exact)
2887 *exact = 1;
2889 umap = isl_union_map_compute_divs(umap);
2890 umap = isl_union_map_coalesce(umap);
2891 closed = isl_union_map_is_transitively_closed(umap);
2892 if (closed < 0)
2893 goto error;
2894 if (closed)
2895 return umap;
2896 umap = union_components(umap, exact);
2897 return umap;
2898 error:
2899 isl_union_map_free(umap);
2900 return NULL;
2903 struct isl_union_power {
2904 isl_union_map *pow;
2905 int *exact;
2908 static isl_stat power(__isl_take isl_map *map, void *user)
2910 struct isl_union_power *up = user;
2912 map = isl_map_power(map, up->exact);
2913 up->pow = isl_union_map_from_map(map);
2915 return isl_stat_error;
2918 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
2920 static __isl_give isl_union_map *increment(__isl_take isl_space *dim)
2922 int k;
2923 isl_basic_map *bmap;
2925 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2926 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2927 bmap = isl_basic_map_alloc_space(dim, 0, 1, 0);
2928 k = isl_basic_map_alloc_equality(bmap);
2929 if (k < 0)
2930 goto error;
2931 isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap));
2932 isl_int_set_si(bmap->eq[k][0], 1);
2933 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
2934 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
2935 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2936 error:
2937 isl_basic_map_free(bmap);
2938 return NULL;
2941 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2943 static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim)
2945 isl_basic_map *bmap;
2947 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2948 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2949 bmap = isl_basic_map_universe(dim);
2950 bmap = isl_basic_map_deltas_map(bmap);
2952 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2955 /* Compute the positive powers of "map", or an overapproximation.
2956 * The result maps the exponent to a nested copy of the corresponding power.
2957 * If the result is exact, then *exact is set to 1.
2959 __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
2960 int *exact)
2962 int n;
2963 isl_union_map *inc;
2964 isl_union_map *dm;
2966 if (!umap)
2967 return NULL;
2968 n = isl_union_map_n_map(umap);
2969 if (n == 0)
2970 return umap;
2971 if (n == 1) {
2972 struct isl_union_power up = { NULL, exact };
2973 isl_union_map_foreach_map(umap, &power, &up);
2974 isl_union_map_free(umap);
2975 return up.pow;
2977 inc = increment(isl_union_map_get_space(umap));
2978 umap = isl_union_map_product(inc, umap);
2979 umap = isl_union_map_transitive_closure(umap, exact);
2980 umap = isl_union_map_zip(umap);
2981 dm = deltas_map(isl_union_map_get_space(umap));
2982 umap = isl_union_map_apply_domain(umap, dm);
2984 return umap;
2987 #undef TYPE
2988 #define TYPE isl_map
2989 #include "isl_power_templ.c"
2991 #undef TYPE
2992 #define TYPE isl_union_map
2993 #include "isl_power_templ.c"