2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_vec_private.h>
26 #include <isl_bernstein.h>
28 struct bernstein_data
{
30 isl_qpolynomial
*poly
;
35 isl_qpolynomial_fold
*fold
;
36 isl_qpolynomial_fold
*fold_tight
;
37 isl_pw_qpolynomial_fold
*pwf
;
38 isl_pw_qpolynomial_fold
*pwf_tight
;
41 static isl_bool
vertex_is_integral(__isl_keep isl_basic_set
*vertex
)
47 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
48 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
49 for (i
= 0; i
< nvar
; ++i
) {
51 if (!isl_int_is_one(vertex
->eq
[r
][1 + nparam
+ i
]) &&
52 !isl_int_is_negone(vertex
->eq
[r
][1 + nparam
+ i
]))
53 return isl_bool_false
;
59 static __isl_give isl_qpolynomial
*vertex_coordinate(
60 __isl_keep isl_basic_set
*vertex
, int i
, __isl_take isl_space
*space
)
68 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
69 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
73 isl_int_set(denom
, vertex
->eq
[r
][1 + nparam
+ i
]);
74 isl_assert(vertex
->ctx
, !isl_int_is_zero(denom
), goto error
);
76 if (isl_int_is_pos(denom
))
77 isl_seq_neg(vertex
->eq
[r
], vertex
->eq
[r
],
78 1 + isl_basic_set_total_dim(vertex
));
80 isl_int_neg(denom
, denom
);
82 v
= isl_qpolynomial_from_affine(space
, vertex
->eq
[r
], denom
);
87 isl_space_free(space
);
92 /* Check whether the bound associated to the selection "k" is tight,
93 * which is the case if we select exactly one vertex (i.e., one of the
94 * exponents in "k" is exactly "d") and if that vertex
95 * is integral for all values of the parameters.
97 static isl_bool
is_tight(int *k
, int n
, int d
, isl_cell
*cell
)
101 for (i
= 0; i
< n
; ++i
) {
106 return isl_bool_false
;
107 v
= cell
->ids
[n
- 1 - i
];
108 return vertex_is_integral(cell
->vertices
->v
[v
].vertex
);
111 return isl_bool_false
;
114 static isl_stat
add_fold(__isl_take isl_qpolynomial
*b
, __isl_keep isl_set
*dom
,
115 int *k
, int n
, int d
, struct bernstein_data
*data
)
117 isl_qpolynomial_fold
*fold
;
120 fold
= isl_qpolynomial_fold_alloc(data
->type
, b
);
122 tight
= isl_bool_false
;
123 if (data
->check_tight
)
124 tight
= is_tight(k
, n
, d
, data
->cell
);
126 return isl_stat_error
;
128 data
->fold_tight
= isl_qpolynomial_fold_fold_on_domain(dom
,
129 data
->fold_tight
, fold
);
131 data
->fold
= isl_qpolynomial_fold_fold_on_domain(dom
,
136 /* Extract the coefficients of the Bernstein base polynomials and store
137 * them in data->fold and data->fold_tight.
139 * In particular, the coefficient of each monomial
140 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
141 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
143 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
144 * multinom[i] contains the partial multinomial coefficient.
146 static isl_stat
extract_coefficients(isl_qpolynomial
*poly
,
147 __isl_keep isl_set
*dom
, struct bernstein_data
*data
)
153 isl_qpolynomial
**c
= NULL
;
156 isl_vec
*multinom
= NULL
;
159 return isl_stat_error
;
161 ctx
= isl_qpolynomial_get_ctx(poly
);
162 n
= isl_qpolynomial_dim(poly
, isl_dim_in
);
163 d
= isl_qpolynomial_degree(poly
);
164 isl_assert(ctx
, n
>= 2, return isl_stat_error
);
166 c
= isl_calloc_array(ctx
, isl_qpolynomial
*, n
);
167 k
= isl_alloc_array(ctx
, int, n
);
168 left
= isl_alloc_array(ctx
, int, n
);
169 multinom
= isl_vec_alloc(ctx
, n
);
170 if (!c
|| !k
|| !left
|| !multinom
)
173 isl_int_set_si(multinom
->el
[0], 1);
174 for (k
[0] = d
; k
[0] >= 0; --k
[0]) {
176 isl_qpolynomial_free(c
[0]);
177 c
[0] = isl_qpolynomial_coeff(poly
, isl_dim_in
, n
- 1, k
[0]);
180 isl_int_set(multinom
->el
[1], multinom
->el
[0]);
187 for (j
= 2; j
<= left
[i
- 1]; ++j
)
188 isl_int_divexact_ui(multinom
->el
[i
],
190 b
= isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
191 n
- 1 - i
, left
[i
- 1]);
192 b
= isl_qpolynomial_project_domain_on_params(b
);
193 dim
= isl_qpolynomial_get_domain_space(b
);
194 f
= isl_qpolynomial_rat_cst_on_domain(dim
, ctx
->one
,
196 b
= isl_qpolynomial_mul(b
, f
);
197 k
[n
- 1] = left
[n
- 2];
198 if (add_fold(b
, dom
, k
, n
, d
, data
) < 0)
203 if (k
[i
] >= left
[i
- 1]) {
209 isl_int_divexact_ui(multinom
->el
[i
],
210 multinom
->el
[i
], k
[i
]);
211 isl_qpolynomial_free(c
[i
]);
212 c
[i
] = isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
214 left
[i
] = left
[i
- 1] - k
[i
];
216 isl_int_set(multinom
->el
[i
+ 1], multinom
->el
[i
]);
219 isl_int_mul_ui(multinom
->el
[0], multinom
->el
[0], k
[0]);
222 for (i
= 0; i
< n
; ++i
)
223 isl_qpolynomial_free(c
[i
]);
225 isl_vec_free(multinom
);
231 isl_vec_free(multinom
);
235 for (i
= 0; i
< n
; ++i
)
236 isl_qpolynomial_free(c
[i
]);
238 return isl_stat_error
;
241 /* Perform bernstein expansion on the parametric vertices that are active
244 * data->poly has been homogenized in the calling function.
246 * We plug in the barycentric coordinates for the set variables
248 * \vec x = \sum_i \alpha_i v_i(\vec p)
250 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
251 * Next, we extract the coefficients of the Bernstein base polynomials.
253 static isl_stat
bernstein_coefficients_cell(__isl_take isl_cell
*cell
,
257 struct bernstein_data
*data
= (struct bernstein_data
*)user
;
258 isl_space
*space_param
;
259 isl_space
*space_dst
;
260 isl_qpolynomial
*poly
= data
->poly
;
263 isl_qpolynomial
**subs
;
264 isl_pw_qpolynomial_fold
*pwf
;
271 nvar
= isl_qpolynomial_dim(poly
, isl_dim_in
) - 1;
272 n_vertices
= cell
->n_vertices
;
274 ctx
= isl_qpolynomial_get_ctx(poly
);
275 if (n_vertices
> nvar
+ 1 && ctx
->opt
->bernstein_triangulate
)
276 return isl_cell_foreach_simplex(cell
,
277 &bernstein_coefficients_cell
, user
);
279 subs
= isl_alloc_array(ctx
, isl_qpolynomial
*, 1 + nvar
);
283 space_param
= isl_basic_set_get_space(cell
->dom
);
284 space_dst
= isl_qpolynomial_get_domain_space(poly
);
285 space_dst
= isl_space_add_dims(space_dst
, isl_dim_set
, n_vertices
);
287 for (i
= 0; i
< 1 + nvar
; ++i
)
289 isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst
));
291 for (i
= 0; i
< n_vertices
; ++i
) {
293 c
= isl_qpolynomial_var_on_domain(isl_space_copy(space_dst
),
294 isl_dim_set
, 1 + nvar
+ i
);
295 for (j
= 0; j
< nvar
; ++j
) {
296 int k
= cell
->ids
[i
];
298 v
= vertex_coordinate(cell
->vertices
->v
[k
].vertex
, j
,
299 isl_space_copy(space_param
));
300 v
= isl_qpolynomial_add_dims(v
, isl_dim_in
,
301 1 + nvar
+ n_vertices
);
302 v
= isl_qpolynomial_mul(v
, isl_qpolynomial_copy(c
));
303 subs
[1 + j
] = isl_qpolynomial_add(subs
[1 + j
], v
);
305 subs
[0] = isl_qpolynomial_add(subs
[0], c
);
307 isl_space_free(space_dst
);
309 poly
= isl_qpolynomial_copy(poly
);
311 poly
= isl_qpolynomial_add_dims(poly
, isl_dim_in
, n_vertices
);
312 poly
= isl_qpolynomial_substitute(poly
, isl_dim_in
, 0, 1 + nvar
, subs
);
313 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_in
, 0, 1 + nvar
);
316 dom
= isl_set_from_basic_set(isl_basic_set_copy(cell
->dom
));
317 data
->fold
= isl_qpolynomial_fold_empty(data
->type
,
318 isl_space_copy(space_param
));
319 data
->fold_tight
= isl_qpolynomial_fold_empty(data
->type
, space_param
);
320 if (extract_coefficients(poly
, dom
, data
) < 0) {
321 data
->fold
= isl_qpolynomial_fold_free(data
->fold
);
322 data
->fold_tight
= isl_qpolynomial_fold_free(data
->fold_tight
);
325 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, isl_set_copy(dom
),
327 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, pwf
);
328 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, data
->fold_tight
);
329 data
->pwf_tight
= isl_pw_qpolynomial_fold_fold(data
->pwf_tight
, pwf
);
331 isl_qpolynomial_free(poly
);
333 for (i
= 0; i
< 1 + nvar
; ++i
)
334 isl_qpolynomial_free(subs
[i
]);
339 return isl_stat_error
;
342 /* Base case of applying bernstein expansion.
344 * We compute the chamber decomposition of the parametric polytope "bset"
345 * and then perform bernstein expansion on the parametric vertices
346 * that are active on each chamber.
348 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_base(
349 __isl_take isl_basic_set
*bset
,
350 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
354 isl_pw_qpolynomial_fold
*pwf
;
355 isl_vertices
*vertices
;
358 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
361 isl_qpolynomial_fold
*fold
;
363 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
364 dom
= isl_set_from_basic_set(bset
);
367 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
368 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
371 if (isl_qpolynomial_is_zero(poly
)) {
373 isl_qpolynomial_fold
*fold
;
374 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
375 dom
= isl_set_from_basic_set(bset
);
376 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
379 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
382 space
= isl_basic_set_get_space(bset
);
383 space
= isl_space_params(space
);
384 space
= isl_space_from_domain(space
);
385 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
386 data
->pwf
= isl_pw_qpolynomial_fold_zero(isl_space_copy(space
),
388 data
->pwf_tight
= isl_pw_qpolynomial_fold_zero(space
, data
->type
);
389 data
->poly
= isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly
));
390 vertices
= isl_basic_set_compute_vertices(bset
);
391 if (isl_vertices_foreach_disjoint_cell(vertices
,
392 &bernstein_coefficients_cell
, data
) < 0)
393 data
->pwf
= isl_pw_qpolynomial_fold_free(data
->pwf
);
394 isl_vertices_free(vertices
);
395 isl_qpolynomial_free(data
->poly
);
397 isl_basic_set_free(bset
);
398 isl_qpolynomial_free(poly
);
400 covers
= isl_pw_qpolynomial_fold_covers(data
->pwf_tight
, data
->pwf
);
408 isl_pw_qpolynomial_fold_free(data
->pwf
);
409 return data
->pwf_tight
;
412 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, data
->pwf_tight
);
416 isl_pw_qpolynomial_fold_free(data
->pwf_tight
);
417 isl_pw_qpolynomial_fold_free(data
->pwf
);
421 /* Apply bernstein expansion recursively by working in on len[i]
422 * set variables at a time, with i ranging from n_group - 1 to 0.
424 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_recursive(
425 __isl_take isl_pw_qpolynomial
*pwqp
,
426 int n_group
, int *len
, struct bernstein_data
*data
, int *tight
)
431 isl_pw_qpolynomial_fold
*pwf
;
436 nparam
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_param
);
437 nvar
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_in
);
439 pwqp
= isl_pw_qpolynomial_move_dims(pwqp
, isl_dim_param
, nparam
,
440 isl_dim_in
, 0, nvar
- len
[n_group
- 1]);
441 pwf
= isl_pw_qpolynomial_bound(pwqp
, data
->type
, tight
);
443 for (i
= n_group
- 2; i
>= 0; --i
) {
444 nparam
= isl_pw_qpolynomial_fold_dim(pwf
, isl_dim_param
);
445 pwf
= isl_pw_qpolynomial_fold_move_dims(pwf
, isl_dim_in
, 0,
446 isl_dim_param
, nparam
- len
[i
], len
[i
]);
447 if (tight
&& !*tight
)
449 pwf
= isl_pw_qpolynomial_fold_bound(pwf
, tight
);
455 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_factors(
456 __isl_take isl_basic_set
*bset
,
457 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
461 isl_pw_qpolynomial
*pwqp
;
462 isl_pw_qpolynomial_fold
*pwf
;
464 f
= isl_basic_set_factorizer(bset
);
467 if (f
->n_group
== 0) {
468 isl_factorizer_free(f
);
469 return bernstein_coefficients_base(bset
, poly
, data
, tight
);
472 set
= isl_set_from_basic_set(bset
);
473 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
474 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, isl_morph_copy(f
->morph
));
476 pwf
= bernstein_coefficients_recursive(pwqp
, f
->n_group
, f
->len
, data
,
479 isl_factorizer_free(f
);
483 isl_basic_set_free(bset
);
484 isl_qpolynomial_free(poly
);
488 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_full_recursive(
489 __isl_take isl_basic_set
*bset
,
490 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
495 isl_pw_qpolynomial_fold
*pwf
;
497 isl_pw_qpolynomial
*pwqp
;
502 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
504 len
= isl_alloc_array(bset
->ctx
, int, nvar
);
508 for (i
= 0; i
< nvar
; ++i
)
511 set
= isl_set_from_basic_set(bset
);
512 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
514 pwf
= bernstein_coefficients_recursive(pwqp
, nvar
, len
, data
, tight
);
520 isl_basic_set_free(bset
);
521 isl_qpolynomial_free(poly
);
525 /* Compute a bound on the polynomial defined over the parametric polytope
526 * using bernstein expansion and store the result
527 * in bound->pwf and bound->pwf_tight.
529 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
530 * the polytope can be factorized and apply bernstein expansion recursively
532 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
533 * bernstein expansion recursively on each dimension.
534 * Otherwise, we apply bernstein expansion on the entire polytope.
536 isl_stat
isl_qpolynomial_bound_on_domain_bernstein(
537 __isl_take isl_basic_set
*bset
, __isl_take isl_qpolynomial
*poly
,
538 struct isl_bound
*bound
)
540 struct bernstein_data data
;
541 isl_pw_qpolynomial_fold
*pwf
;
544 int *tp
= bound
->check_tight
? &tight
: NULL
;
549 data
.type
= bound
->type
;
550 data
.check_tight
= bound
->check_tight
;
552 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
554 if (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_FACTORS
)
555 pwf
= bernstein_coefficients_factors(bset
, poly
, &data
, tp
);
557 (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_INTERVALS
))
558 pwf
= bernstein_coefficients_full_recursive(bset
, poly
, &data
, tp
);
560 pwf
= bernstein_coefficients_base(bset
, poly
, &data
, tp
);
563 bound
->pwf_tight
= isl_pw_qpolynomial_fold_fold(bound
->pwf_tight
, pwf
);
565 bound
->pwf
= isl_pw_qpolynomial_fold_fold(bound
->pwf
, pwf
);
569 isl_basic_set_free(bset
);
570 isl_qpolynomial_free(poly
);
571 return isl_stat_error
;