2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
18 #include <isl_morph.h>
19 #include <isl_factorization.h>
20 #include <isl_vertices_private.h>
21 #include <isl_polynomial_private.h>
22 #include <isl_bernstein.h>
24 struct bernstein_data
{
26 isl_qpolynomial
*poly
;
31 isl_qpolynomial_fold
*fold
;
32 isl_qpolynomial_fold
*fold_tight
;
33 isl_pw_qpolynomial_fold
*pwf
;
34 isl_pw_qpolynomial_fold
*pwf_tight
;
37 static int vertex_is_integral(__isl_keep isl_basic_set
*vertex
)
43 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
44 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
45 for (i
= 0; i
< nvar
; ++i
) {
47 if (!isl_int_is_one(vertex
->eq
[r
][1 + nparam
+ i
]) &&
48 !isl_int_is_negone(vertex
->eq
[r
][1 + nparam
+ i
]))
55 static __isl_give isl_qpolynomial
*vertex_coordinate(
56 __isl_keep isl_basic_set
*vertex
, int i
, __isl_take isl_dim
*dim
)
64 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
65 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
69 isl_int_set(denom
, vertex
->eq
[r
][1 + nparam
+ i
]);
70 isl_assert(vertex
->ctx
, !isl_int_is_zero(denom
), goto error
);
72 if (isl_int_is_pos(denom
))
73 isl_seq_neg(vertex
->eq
[r
], vertex
->eq
[r
],
74 1 + isl_basic_set_total_dim(vertex
));
76 isl_int_neg(denom
, denom
);
78 v
= isl_qpolynomial_from_affine(dim
, vertex
->eq
[r
], denom
);
88 /* Check whether the bound associated to the selection "k" is tight,
89 * which is the case if we select exactly one vertex and if that vertex
90 * is integral for all values of the parameters.
92 static int is_tight(int *k
, int n
, int d
, isl_cell
*cell
)
96 for (i
= 0; i
< n
; ++i
) {
103 v
= cell
->vertices
->c
[cell
->id
].vertices
[n
- 1 - i
];
104 return vertex_is_integral(cell
->vertices
->v
[v
].vertex
);
110 static void add_fold(__isl_take isl_qpolynomial
*b
, __isl_keep isl_set
*dom
,
111 int *k
, int n
, int d
, struct bernstein_data
*data
)
113 isl_qpolynomial_fold
*fold
;
115 fold
= isl_qpolynomial_fold_alloc(data
->type
, b
);
117 if (data
->check_tight
&& is_tight(k
, n
, d
, data
->cell
))
118 data
->fold_tight
= isl_qpolynomial_fold_fold_on_domain(dom
,
119 data
->fold_tight
, fold
);
121 data
->fold
= isl_qpolynomial_fold_fold_on_domain(dom
,
125 /* Extract the coefficients of the Bernstein base polynomials and store
126 * them in data->fold and data->fold_tight.
128 * In particular, the coefficient of each monomial
129 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
130 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
132 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
133 * multinom[i] contains the partial multinomial coefficient.
135 static void extract_coefficients(isl_qpolynomial
*poly
,
136 __isl_keep isl_set
*dom
, struct bernstein_data
*data
)
142 isl_qpolynomial
**c
= NULL
;
145 isl_vec
*multinom
= NULL
;
150 ctx
= isl_qpolynomial_get_ctx(poly
);
151 n
= isl_qpolynomial_dim(poly
, isl_dim_set
);
152 d
= isl_qpolynomial_degree(poly
);
153 isl_assert(ctx
, n
>= 2, return);
155 c
= isl_calloc_array(ctx
, isl_qpolynomial
*, n
);
156 k
= isl_alloc_array(ctx
, int, n
);
157 left
= isl_alloc_array(ctx
, int, n
);
158 multinom
= isl_vec_alloc(ctx
, n
);
159 if (!c
|| !k
|| !left
|| !multinom
)
162 isl_int_set_si(multinom
->el
[0], 1);
163 for (k
[0] = d
; k
[0] >= 0; --k
[0]) {
165 isl_qpolynomial_free(c
[0]);
166 c
[0] = isl_qpolynomial_coeff(poly
, isl_dim_set
, n
- 1, k
[0]);
169 isl_int_set(multinom
->el
[1], multinom
->el
[0]);
176 for (j
= 2; j
<= left
[i
- 1]; ++j
)
177 isl_int_divexact_ui(multinom
->el
[i
],
179 b
= isl_qpolynomial_coeff(c
[i
- 1], isl_dim_set
,
180 n
- 1 - i
, left
[i
- 1]);
181 b
= isl_qpolynomial_drop_dims(b
, isl_dim_set
,
183 dim
= isl_qpolynomial_get_dim(b
);
184 f
= isl_qpolynomial_rat_cst(dim
, ctx
->one
,
186 b
= isl_qpolynomial_mul(b
, f
);
187 k
[n
- 1] = left
[n
- 2];
188 add_fold(b
, dom
, k
, n
, d
, data
);
192 if (k
[i
] >= left
[i
- 1]) {
198 isl_int_divexact_ui(multinom
->el
[i
],
199 multinom
->el
[i
], k
[i
]);
200 isl_qpolynomial_free(c
[i
]);
201 c
[i
] = isl_qpolynomial_coeff(c
[i
- 1], isl_dim_set
,
203 left
[i
] = left
[i
- 1] - k
[i
];
205 isl_int_set(multinom
->el
[i
+ 1], multinom
->el
[i
]);
208 isl_int_mul_ui(multinom
->el
[0], multinom
->el
[0], k
[0]);
211 for (i
= 0; i
< n
; ++i
)
212 isl_qpolynomial_free(c
[i
]);
214 isl_vec_free(multinom
);
220 isl_vec_free(multinom
);
224 for (i
= 0; i
< n
; ++i
)
225 isl_qpolynomial_free(c
[i
]);
230 /* Perform bernstein expansion on the parametric vertices that are active
233 * data->poly has been homogenized in the calling function.
235 * We plug in the barycentric coordinates for the set variables
237 * \vec x = \sum_i \alpha_i v_i(\vec p)
239 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
240 * Next, we extract the coefficients of the Bernstein base polynomials.
242 static int bernstein_coefficients_cell(__isl_take isl_cell
*cell
, void *user
)
245 struct bernstein_data
*data
= (struct bernstein_data
*)user
;
248 isl_qpolynomial
*poly
= data
->poly
;
251 isl_qpolynomial
**subs
;
252 isl_pw_qpolynomial_fold
*pwf
;
255 nvar
= isl_qpolynomial_dim(poly
, isl_dim_set
) - 1;
256 n_vertices
= cell
->vertices
->c
[cell
->id
].n_vertices
;
258 subs
= isl_alloc_array(data
->poly
->dim
->ctx
, isl_qpolynomial
*,
263 dim_param
= isl_basic_set_get_dim(cell
->dom
);
264 dim_dst
= isl_qpolynomial_get_dim(poly
);
265 dim_dst
= isl_dim_add(dim_dst
, isl_dim_set
, n_vertices
);
267 for (i
= 0; i
< 1 + nvar
; ++i
)
268 subs
[i
] = isl_qpolynomial_zero(isl_dim_copy(dim_dst
));
270 for (i
= 0; i
< n_vertices
; ++i
) {
272 c
= isl_qpolynomial_var(isl_dim_copy(dim_dst
), isl_dim_set
,
274 for (j
= 0; j
< nvar
; ++j
) {
275 int k
= cell
->vertices
->c
[cell
->id
].vertices
[i
];
277 v
= vertex_coordinate(cell
->vertices
->v
[k
].vertex
, j
,
278 isl_dim_copy(dim_param
));
279 v
= isl_qpolynomial_add_dims(v
, isl_dim_set
,
280 1 + nvar
+ n_vertices
);
281 v
= isl_qpolynomial_mul(v
, isl_qpolynomial_copy(c
));
282 subs
[1 + j
] = isl_qpolynomial_add(subs
[1 + j
], v
);
284 subs
[0] = isl_qpolynomial_add(subs
[0], c
);
286 isl_dim_free(dim_dst
);
288 poly
= isl_qpolynomial_copy(poly
);
290 poly
= isl_qpolynomial_add_dims(poly
, isl_dim_set
, n_vertices
);
291 poly
= isl_qpolynomial_substitute(poly
, isl_dim_set
, 0, 1 + nvar
, subs
);
292 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_set
, 0, 1 + nvar
);
295 dom
= isl_set_from_basic_set(isl_basic_set_copy(cell
->dom
));
296 data
->fold
= isl_qpolynomial_fold_empty(data
->type
, isl_dim_copy(dim_param
));
297 data
->fold_tight
= isl_qpolynomial_fold_empty(data
->type
, dim_param
);
298 extract_coefficients(poly
, dom
, data
);
300 pwf
= isl_pw_qpolynomial_fold_alloc(isl_set_copy(dom
), data
->fold
);
301 data
->pwf
= isl_pw_qpolynomial_fold_add(data
->pwf
, pwf
);
302 pwf
= isl_pw_qpolynomial_fold_alloc(dom
, data
->fold_tight
);
303 data
->pwf_tight
= isl_pw_qpolynomial_fold_add(data
->pwf_tight
, pwf
);
305 isl_qpolynomial_free(poly
);
307 for (i
= 0; i
< 1 + nvar
; ++i
)
308 isl_qpolynomial_free(subs
[i
]);
316 /* Base case of applying bernstein expansion.
318 * We compute the chamber decomposition of the parametric polytope "bset"
319 * and then perform bernstein expansion on the parametric vertices
320 * that are active on each chamber.
322 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_base(
323 __isl_take isl_basic_set
*bset
,
324 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
328 isl_pw_qpolynomial_fold
*pwf
;
329 isl_vertices
*vertices
;
332 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
335 isl_qpolynomial_fold
*fold
;
336 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
337 dom
= isl_set_from_basic_set(bset
);
340 return isl_pw_qpolynomial_fold_alloc(dom
, fold
);
343 if (isl_qpolynomial_is_zero(poly
)) {
345 isl_qpolynomial_fold
*fold
;
346 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
347 dom
= isl_set_from_basic_set(bset
);
348 pwf
= isl_pw_qpolynomial_fold_alloc(dom
, fold
);
351 return isl_pw_qpolynomial_fold_drop_dims(pwf
,
352 isl_dim_set
, 0, nvar
);
355 dim
= isl_basic_set_get_dim(bset
);
356 dim
= isl_dim_drop(dim
, isl_dim_set
, 0, nvar
);
357 data
->pwf
= isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim
));
358 data
->pwf_tight
= isl_pw_qpolynomial_fold_zero(dim
);
359 data
->poly
= isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly
));
360 vertices
= isl_basic_set_compute_vertices(bset
);
361 isl_vertices_foreach_disjoint_cell(vertices
,
362 &bernstein_coefficients_cell
, data
);
363 isl_vertices_free(vertices
);
364 isl_qpolynomial_free(data
->poly
);
366 isl_basic_set_free(bset
);
367 isl_qpolynomial_free(poly
);
369 covers
= isl_pw_qpolynomial_fold_covers(data
->pwf_tight
, data
->pwf
);
377 isl_pw_qpolynomial_fold_free(data
->pwf
);
378 return data
->pwf_tight
;
381 data
->pwf
= isl_pw_qpolynomial_fold_add(data
->pwf
, data
->pwf_tight
);
385 isl_pw_qpolynomial_fold_free(data
->pwf_tight
);
386 isl_pw_qpolynomial_fold_free(data
->pwf
);
390 /* Apply bernstein expansion recursively by working in on len[i]
391 * set variables at a time, with i ranging from n_group - 1 to 0.
393 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_recursive(
394 __isl_take isl_pw_qpolynomial
*pwqp
,
395 int n_group
, int *len
, struct bernstein_data
*data
, int *tight
)
400 isl_pw_qpolynomial_fold
*pwf
;
405 nparam
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_param
);
406 nvar
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_set
);
408 pwqp
= isl_pw_qpolynomial_move_dims(pwqp
, isl_dim_param
, nparam
,
409 isl_dim_set
, 0, nvar
- len
[n_group
- 1]);
410 pwf
= isl_pw_qpolynomial_bound(pwqp
, data
->type
, tight
);
412 for (i
= n_group
- 2; i
>= 0; --i
) {
413 nparam
= isl_pw_qpolynomial_fold_dim(pwf
, isl_dim_param
);
414 pwf
= isl_pw_qpolynomial_fold_move_dims(pwf
, isl_dim_set
, 0,
415 isl_dim_param
, nparam
- len
[i
], len
[i
]);
416 if (tight
&& !*tight
)
418 pwf
= isl_pw_qpolynomial_fold_bound(pwf
, tight
);
424 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_factors(
425 __isl_take isl_basic_set
*bset
,
426 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
430 isl_pw_qpolynomial
*pwqp
;
431 isl_pw_qpolynomial_fold
*pwf
;
433 f
= isl_basic_set_factorizer(bset
);
436 if (f
->n_group
== 0) {
437 isl_factorizer_free(f
);
438 return bernstein_coefficients_base(bset
, poly
, data
, tight
);
441 set
= isl_set_from_basic_set(bset
);
442 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
443 pwqp
= isl_pw_qpolynomial_morph(pwqp
, isl_morph_copy(f
->morph
));
445 pwf
= bernstein_coefficients_recursive(pwqp
, f
->n_group
, f
->len
, data
,
448 isl_factorizer_free(f
);
452 isl_basic_set_free(bset
);
453 isl_qpolynomial_free(poly
);
457 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_full_recursive(
458 __isl_take isl_basic_set
*bset
,
459 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
464 isl_pw_qpolynomial_fold
*pwf
;
466 isl_pw_qpolynomial
*pwqp
;
471 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
473 len
= isl_alloc_array(bset
->ctx
, int, nvar
);
477 for (i
= 0; i
< nvar
; ++i
)
480 set
= isl_set_from_basic_set(bset
);
481 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
483 pwf
= bernstein_coefficients_recursive(pwqp
, nvar
, len
, data
, tight
);
489 isl_basic_set_free(bset
);
490 isl_qpolynomial_free(poly
);
494 /* Compute a bound on the polynomial defined over the parametric polytope
495 * using bernstein expansion and store the result
496 * in bound->pwf and bound->pwf_tight.
498 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
499 * the polytope can be factorized and apply bernstein expansion recursively
501 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
502 * bernstein expansion recursively on each dimension.
503 * Otherwise, we apply bernstein expansion on the entire polytope.
505 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set
*bset
,
506 __isl_take isl_qpolynomial
*poly
, struct isl_bound
*bound
)
508 struct bernstein_data data
;
509 isl_pw_qpolynomial_fold
*pwf
;
512 int *tp
= bound
->check_tight
? &tight
: NULL
;
517 data
.type
= bound
->type
;
518 data
.check_tight
= bound
->check_tight
;
520 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
522 if (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_FACTORS
)
523 pwf
= bernstein_coefficients_factors(bset
, poly
, &data
, tp
);
525 (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_INTERVALS
))
526 pwf
= bernstein_coefficients_full_recursive(bset
, poly
, &data
, tp
);
528 pwf
= bernstein_coefficients_base(bset
, poly
, &data
, tp
);
531 bound
->pwf_tight
= isl_pw_qpolynomial_fold_add(bound
->pwf_tight
, pwf
);
533 bound
->pwf
= isl_pw_qpolynomial_fold_add(bound
->pwf
, pwf
);
537 isl_basic_set_free(bset
);
538 isl_qpolynomial_free(poly
);