2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
5 * Copyright 2014 INRIA Rocquencourt
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
12 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
14 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
15 * B.P. 105 - 78153 Le Chesnay, France
18 #include "isl_map_private.h"
20 #include <isl/options.h>
22 #include <isl_mat_private.h>
23 #include <isl_local_space_private.h>
24 #include <isl_vec_private.h>
25 #include <isl_aff_private.h>
27 #define STATUS_ERROR -1
28 #define STATUS_REDUNDANT 1
29 #define STATUS_VALID 2
30 #define STATUS_SEPARATE 3
32 #define STATUS_ADJ_EQ 5
33 #define STATUS_ADJ_INEQ 6
35 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
37 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
40 case isl_ineq_error
: return STATUS_ERROR
;
41 case isl_ineq_redundant
: return STATUS_VALID
;
42 case isl_ineq_separate
: return STATUS_SEPARATE
;
43 case isl_ineq_cut
: return STATUS_CUT
;
44 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
45 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
49 /* Compute the position of the equalities of basic map "bmap_i"
50 * with respect to the basic map represented by "tab_j".
51 * The resulting array has twice as many entries as the number
52 * of equalities corresponding to the two inequalties to which
53 * each equality corresponds.
55 static int *eq_status_in(__isl_keep isl_basic_map
*bmap_i
,
56 struct isl_tab
*tab_j
)
59 int *eq
= isl_calloc_array(bmap_i
->ctx
, int, 2 * bmap_i
->n_eq
);
65 dim
= isl_basic_map_total_dim(bmap_i
);
66 for (k
= 0; k
< bmap_i
->n_eq
; ++k
) {
67 for (l
= 0; l
< 2; ++l
) {
68 isl_seq_neg(bmap_i
->eq
[k
], bmap_i
->eq
[k
], 1+dim
);
69 eq
[2 * k
+ l
] = status_in(bmap_i
->eq
[k
], tab_j
);
70 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
73 if (eq
[2 * k
] == STATUS_SEPARATE
||
74 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
84 /* Compute the position of the inequalities of basic map "bmap_i"
85 * (also represented by "tab_i", if not NULL) with respect to the basic map
86 * represented by "tab_j".
88 static int *ineq_status_in(__isl_keep isl_basic_map
*bmap_i
,
89 struct isl_tab
*tab_i
, struct isl_tab
*tab_j
)
92 unsigned n_eq
= bmap_i
->n_eq
;
93 int *ineq
= isl_calloc_array(bmap_i
->ctx
, int, bmap_i
->n_ineq
);
98 for (k
= 0; k
< bmap_i
->n_ineq
; ++k
) {
99 if (tab_i
&& isl_tab_is_redundant(tab_i
, n_eq
+ k
)) {
100 ineq
[k
] = STATUS_REDUNDANT
;
103 ineq
[k
] = status_in(bmap_i
->ineq
[k
], tab_j
);
104 if (ineq
[k
] == STATUS_ERROR
)
106 if (ineq
[k
] == STATUS_SEPARATE
)
116 static int any(int *con
, unsigned len
, int status
)
120 for (i
= 0; i
< len
; ++i
)
121 if (con
[i
] == status
)
126 static int count(int *con
, unsigned len
, int status
)
131 for (i
= 0; i
< len
; ++i
)
132 if (con
[i
] == status
)
137 static int all(int *con
, unsigned len
, int status
)
141 for (i
= 0; i
< len
; ++i
) {
142 if (con
[i
] == STATUS_REDUNDANT
)
144 if (con
[i
] != status
)
150 /* Internal information associated to a basic map in a map
151 * that is to be coalesced by isl_map_coalesce.
153 * "bmap" is the basic map itself (or NULL if "removed" is set)
154 * "tab" is the corresponding tableau (or NULL if "removed" is set)
155 * "hull_hash" identifies the affine space in which "bmap" lives.
156 * "removed" is set if this basic map has been removed from the map
157 * "simplify" is set if this basic map may have some unknown integer
158 * divisions that were not present in the input basic maps. The basic
159 * map should then be simplified such that we may be able to find
160 * a definition among the constraints.
162 * "eq" and "ineq" are only set if we are currently trying to coalesce
163 * this basic map with another basic map, in which case they represent
164 * the position of the inequalities of this basic map with respect to
165 * the other basic map. The number of elements in the "eq" array
166 * is twice the number of equalities in the "bmap", corresponding
167 * to the two inequalities that make up each equality.
169 struct isl_coalesce_info
{
179 /* Compute the hash of the (apparent) affine hull of info->bmap (with
180 * the existentially quantified variables removed) and store it
183 static int coalesce_info_set_hull_hash(struct isl_coalesce_info
*info
)
188 hull
= isl_basic_map_copy(info
->bmap
);
189 hull
= isl_basic_map_plain_affine_hull(hull
);
190 n_div
= isl_basic_map_dim(hull
, isl_dim_div
);
191 hull
= isl_basic_map_drop_constraints_involving_dims(hull
,
192 isl_dim_div
, 0, n_div
);
193 info
->hull_hash
= isl_basic_map_get_hash(hull
);
194 isl_basic_map_free(hull
);
196 return hull
? 0 : -1;
199 /* Free all the allocated memory in an array
200 * of "n" isl_coalesce_info elements.
202 static void clear_coalesce_info(int n
, struct isl_coalesce_info
*info
)
209 for (i
= 0; i
< n
; ++i
) {
210 isl_basic_map_free(info
[i
].bmap
);
211 isl_tab_free(info
[i
].tab
);
217 /* Drop the basic map represented by "info".
218 * That is, clear the memory associated to the entry and
219 * mark it as having been removed.
221 static void drop(struct isl_coalesce_info
*info
)
223 info
->bmap
= isl_basic_map_free(info
->bmap
);
224 isl_tab_free(info
->tab
);
229 /* Exchange the information in "info1" with that in "info2".
231 static void exchange(struct isl_coalesce_info
*info1
,
232 struct isl_coalesce_info
*info2
)
234 struct isl_coalesce_info info
;
241 /* This type represents the kind of change that has been performed
242 * while trying to coalesce two basic maps.
244 * isl_change_none: nothing was changed
245 * isl_change_drop_first: the first basic map was removed
246 * isl_change_drop_second: the second basic map was removed
247 * isl_change_fuse: the two basic maps were replaced by a new basic map.
250 isl_change_error
= -1,
252 isl_change_drop_first
,
253 isl_change_drop_second
,
257 /* Update "change" based on an interchange of the first and the second
258 * basic map. That is, interchange isl_change_drop_first and
259 * isl_change_drop_second.
261 static enum isl_change
invert_change(enum isl_change change
)
264 case isl_change_error
:
265 return isl_change_error
;
266 case isl_change_none
:
267 return isl_change_none
;
268 case isl_change_drop_first
:
269 return isl_change_drop_second
;
270 case isl_change_drop_second
:
271 return isl_change_drop_first
;
272 case isl_change_fuse
:
273 return isl_change_fuse
;
276 return isl_change_error
;
279 /* Add the valid constraints of the basic map represented by "info"
280 * to "bmap". "len" is the size of the constraints.
281 * If only one of the pair of inequalities that make up an equality
282 * is valid, then add that inequality.
284 static __isl_give isl_basic_map
*add_valid_constraints(
285 __isl_take isl_basic_map
*bmap
, struct isl_coalesce_info
*info
,
293 for (k
= 0; k
< info
->bmap
->n_eq
; ++k
) {
294 if (info
->eq
[2 * k
] == STATUS_VALID
&&
295 info
->eq
[2 * k
+ 1] == STATUS_VALID
) {
296 l
= isl_basic_map_alloc_equality(bmap
);
298 return isl_basic_map_free(bmap
);
299 isl_seq_cpy(bmap
->eq
[l
], info
->bmap
->eq
[k
], len
);
300 } else if (info
->eq
[2 * k
] == STATUS_VALID
) {
301 l
= isl_basic_map_alloc_inequality(bmap
);
303 return isl_basic_map_free(bmap
);
304 isl_seq_neg(bmap
->ineq
[l
], info
->bmap
->eq
[k
], len
);
305 } else if (info
->eq
[2 * k
+ 1] == STATUS_VALID
) {
306 l
= isl_basic_map_alloc_inequality(bmap
);
308 return isl_basic_map_free(bmap
);
309 isl_seq_cpy(bmap
->ineq
[l
], info
->bmap
->eq
[k
], len
);
313 for (k
= 0; k
< info
->bmap
->n_ineq
; ++k
) {
314 if (info
->ineq
[k
] != STATUS_VALID
)
316 l
= isl_basic_map_alloc_inequality(bmap
);
318 return isl_basic_map_free(bmap
);
319 isl_seq_cpy(bmap
->ineq
[l
], info
->bmap
->ineq
[k
], len
);
325 /* Is "bmap" defined by a number of (non-redundant) constraints that
326 * is greater than the number of constraints of basic maps i and j combined?
327 * Equalities are counted as two inequalities.
329 static int number_of_constraints_increases(int i
, int j
,
330 struct isl_coalesce_info
*info
,
331 __isl_keep isl_basic_map
*bmap
, struct isl_tab
*tab
)
335 n_old
= 2 * info
[i
].bmap
->n_eq
+ info
[i
].bmap
->n_ineq
;
336 n_old
+= 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
338 n_new
= 2 * bmap
->n_eq
;
339 for (k
= 0; k
< bmap
->n_ineq
; ++k
)
340 if (!isl_tab_is_redundant(tab
, bmap
->n_eq
+ k
))
343 return n_new
> n_old
;
346 /* Replace the pair of basic maps i and j by the basic map bounded
347 * by the valid constraints in both basic maps and the constraints
348 * in extra (if not NULL).
349 * Place the fused basic map in the position that is the smallest of i and j.
351 * If "detect_equalities" is set, then look for equalities encoded
352 * as pairs of inequalities.
353 * If "check_number" is set, then the original basic maps are only
354 * replaced if the total number of constraints does not increase.
355 * While the number of integer divisions in the two basic maps
356 * is assumed to be the same, the actual definitions may be different.
357 * We only copy the definition from one of the basic map if it is
358 * the same as that of the other basic map. Otherwise, we mark
359 * the integer division as unknown and schedule for the basic map
360 * to be simplified in an attempt to recover the integer division definition.
362 static enum isl_change
fuse(int i
, int j
, struct isl_coalesce_info
*info
,
363 __isl_keep isl_mat
*extra
, int detect_equalities
, int check_number
)
366 struct isl_basic_map
*fused
= NULL
;
367 struct isl_tab
*fused_tab
= NULL
;
368 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
369 unsigned extra_rows
= extra
? extra
->n_row
: 0;
370 unsigned n_eq
, n_ineq
;
373 return fuse(j
, i
, info
, extra
, detect_equalities
, check_number
);
375 n_eq
= info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
;
376 n_ineq
= info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
;
377 fused
= isl_basic_map_alloc_space(isl_space_copy(info
[i
].bmap
->dim
),
378 info
[i
].bmap
->n_div
, n_eq
, n_eq
+ n_ineq
+ extra_rows
);
379 fused
= add_valid_constraints(fused
, &info
[i
], 1 + total
);
380 fused
= add_valid_constraints(fused
, &info
[j
], 1 + total
);
384 for (k
= 0; k
< info
[i
].bmap
->n_div
; ++k
) {
385 int l
= isl_basic_map_alloc_div(fused
);
388 if (isl_seq_eq(info
[i
].bmap
->div
[k
], info
[j
].bmap
->div
[k
],
390 isl_seq_cpy(fused
->div
[l
], info
[i
].bmap
->div
[k
],
393 isl_int_set_si(fused
->div
[l
][0], 0);
394 info
[i
].simplify
= 1;
398 for (k
= 0; k
< extra_rows
; ++k
) {
399 l
= isl_basic_map_alloc_inequality(fused
);
402 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
405 if (detect_equalities
)
406 fused
= isl_basic_map_detect_inequality_pairs(fused
, NULL
);
407 fused
= isl_basic_map_gauss(fused
, NULL
);
408 ISL_F_SET(fused
, ISL_BASIC_MAP_FINAL
);
409 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) &&
410 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
411 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
413 fused_tab
= isl_tab_from_basic_map(fused
, 0);
414 if (isl_tab_detect_redundant(fused_tab
) < 0)
418 number_of_constraints_increases(i
, j
, info
, fused
, fused_tab
)) {
419 isl_tab_free(fused_tab
);
420 isl_basic_map_free(fused
);
421 return isl_change_none
;
424 info
[i
].simplify
|= info
[j
].simplify
;
425 isl_basic_map_free(info
[i
].bmap
);
426 info
[i
].bmap
= fused
;
427 isl_tab_free(info
[i
].tab
);
428 info
[i
].tab
= fused_tab
;
431 return isl_change_fuse
;
433 isl_tab_free(fused_tab
);
434 isl_basic_map_free(fused
);
435 return isl_change_error
;
438 /* Given a pair of basic maps i and j such that all constraints are either
439 * "valid" or "cut", check if the facets corresponding to the "cut"
440 * constraints of i lie entirely within basic map j.
441 * If so, replace the pair by the basic map consisting of the valid
442 * constraints in both basic maps.
443 * Checking whether the facet lies entirely within basic map j
444 * is performed by checking whether the constraints of basic map j
445 * are valid for the facet. These tests are performed on a rational
446 * tableau to avoid the theoretical possibility that a constraint
447 * that was considered to be a cut constraint for the entire basic map i
448 * happens to be considered to be a valid constraint for the facet,
449 * even though it cuts off the same rational points.
451 * To see that we are not introducing any extra points, call the
452 * two basic maps A and B and the resulting map U and let x
453 * be an element of U \setminus ( A \cup B ).
454 * A line connecting x with an element of A \cup B meets a facet F
455 * of either A or B. Assume it is a facet of B and let c_1 be
456 * the corresponding facet constraint. We have c_1(x) < 0 and
457 * so c_1 is a cut constraint. This implies that there is some
458 * (possibly rational) point x' satisfying the constraints of A
459 * and the opposite of c_1 as otherwise c_1 would have been marked
460 * valid for A. The line connecting x and x' meets a facet of A
461 * in a (possibly rational) point that also violates c_1, but this
462 * is impossible since all cut constraints of B are valid for all
464 * In case F is a facet of A rather than B, then we can apply the
465 * above reasoning to find a facet of B separating x from A \cup B first.
467 static enum isl_change
check_facets(int i
, int j
,
468 struct isl_coalesce_info
*info
)
471 struct isl_tab_undo
*snap
, *snap2
;
472 unsigned n_eq
= info
[i
].bmap
->n_eq
;
474 snap
= isl_tab_snap(info
[i
].tab
);
475 if (isl_tab_mark_rational(info
[i
].tab
) < 0)
476 return isl_change_error
;
477 snap2
= isl_tab_snap(info
[i
].tab
);
479 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
480 if (info
[i
].ineq
[k
] != STATUS_CUT
)
482 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ k
) < 0)
483 return isl_change_error
;
484 for (l
= 0; l
< info
[j
].bmap
->n_ineq
; ++l
) {
486 if (info
[j
].ineq
[l
] != STATUS_CUT
)
488 stat
= status_in(info
[j
].bmap
->ineq
[l
], info
[i
].tab
);
490 return isl_change_error
;
491 if (stat
!= STATUS_VALID
)
494 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
495 return isl_change_error
;
496 if (l
< info
[j
].bmap
->n_ineq
)
500 if (k
< info
[i
].bmap
->n_ineq
) {
501 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
502 return isl_change_error
;
503 return isl_change_none
;
505 return fuse(i
, j
, info
, NULL
, 0, 0);
508 /* Check if info->bmap contains the basic map represented
509 * by the tableau "tab".
510 * For each equality, we check both the constraint itself
511 * (as an inequality) and its negation. Make sure the
512 * equality is returned to its original state before returning.
514 static int contains(struct isl_coalesce_info
*info
, struct isl_tab
*tab
)
518 isl_basic_map
*bmap
= info
->bmap
;
520 dim
= isl_basic_map_total_dim(bmap
);
521 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
523 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1 + dim
);
524 stat
= status_in(bmap
->eq
[k
], tab
);
525 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1 + dim
);
528 if (stat
!= STATUS_VALID
)
530 stat
= status_in(bmap
->eq
[k
], tab
);
533 if (stat
!= STATUS_VALID
)
537 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
539 if (info
->ineq
[k
] == STATUS_REDUNDANT
)
541 stat
= status_in(bmap
->ineq
[k
], tab
);
544 if (stat
!= STATUS_VALID
)
550 /* Basic map "i" has an inequality (say "k") that is adjacent
551 * to some inequality of basic map "j". All the other inequalities
553 * Check if basic map "j" forms an extension of basic map "i".
555 * Note that this function is only called if some of the equalities or
556 * inequalities of basic map "j" do cut basic map "i". The function is
557 * correct even if there are no such cut constraints, but in that case
558 * the additional checks performed by this function are overkill.
560 * In particular, we replace constraint k, say f >= 0, by constraint
561 * f <= -1, add the inequalities of "j" that are valid for "i"
562 * and check if the result is a subset of basic map "j".
563 * If so, then we know that this result is exactly equal to basic map "j"
564 * since all its constraints are valid for basic map "j".
565 * By combining the valid constraints of "i" (all equalities and all
566 * inequalities except "k") and the valid constraints of "j" we therefore
567 * obtain a basic map that is equal to their union.
568 * In this case, there is no need to perform a rollback of the tableau
569 * since it is going to be destroyed in fuse().
575 * |_______| _ |_________\
587 static enum isl_change
is_adj_ineq_extension(int i
, int j
,
588 struct isl_coalesce_info
*info
)
591 struct isl_tab_undo
*snap
;
592 unsigned n_eq
= info
[i
].bmap
->n_eq
;
593 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
597 if (isl_tab_extend_cons(info
[i
].tab
, 1 + info
[j
].bmap
->n_ineq
) < 0)
598 return isl_change_error
;
600 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
)
601 if (info
[i
].ineq
[k
] == STATUS_ADJ_INEQ
)
603 if (k
>= info
[i
].bmap
->n_ineq
)
604 isl_die(isl_basic_map_get_ctx(info
[i
].bmap
), isl_error_internal
,
605 "info[i].ineq should have exactly one STATUS_ADJ_INEQ",
606 return isl_change_error
);
608 snap
= isl_tab_snap(info
[i
].tab
);
610 if (isl_tab_unrestrict(info
[i
].tab
, n_eq
+ k
) < 0)
611 return isl_change_error
;
613 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
614 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
615 r
= isl_tab_add_ineq(info
[i
].tab
, info
[i
].bmap
->ineq
[k
]);
616 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
617 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
619 return isl_change_error
;
621 for (k
= 0; k
< info
[j
].bmap
->n_ineq
; ++k
) {
622 if (info
[j
].ineq
[k
] != STATUS_VALID
)
624 if (isl_tab_add_ineq(info
[i
].tab
, info
[j
].bmap
->ineq
[k
]) < 0)
625 return isl_change_error
;
628 super
= contains(&info
[j
], info
[i
].tab
);
630 return isl_change_error
;
632 return fuse(i
, j
, info
, NULL
, 0, 0);
634 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
635 return isl_change_error
;
637 return isl_change_none
;
641 /* Both basic maps have at least one inequality with and adjacent
642 * (but opposite) inequality in the other basic map.
643 * Check that there are no cut constraints and that there is only
644 * a single pair of adjacent inequalities.
645 * If so, we can replace the pair by a single basic map described
646 * by all but the pair of adjacent inequalities.
647 * Any additional points introduced lie strictly between the two
648 * adjacent hyperplanes and can therefore be integral.
657 * The test for a single pair of adjancent inequalities is important
658 * for avoiding the combination of two basic maps like the following
668 * If there are some cut constraints on one side, then we may
669 * still be able to fuse the two basic maps, but we need to perform
670 * some additional checks in is_adj_ineq_extension.
672 static enum isl_change
check_adj_ineq(int i
, int j
,
673 struct isl_coalesce_info
*info
)
675 int count_i
, count_j
;
678 count_i
= count(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
);
679 count_j
= count(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
);
681 if (count_i
!= 1 && count_j
!= 1)
682 return isl_change_none
;
684 cut_i
= any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
) ||
685 any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_CUT
);
686 cut_j
= any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_CUT
) ||
687 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_CUT
);
689 if (!cut_i
&& !cut_j
&& count_i
== 1 && count_j
== 1)
690 return fuse(i
, j
, info
, NULL
, 0, 0);
692 if (count_i
== 1 && !cut_i
)
693 return is_adj_ineq_extension(i
, j
, info
);
695 if (count_j
== 1 && !cut_j
)
696 return is_adj_ineq_extension(j
, i
, info
);
698 return isl_change_none
;
701 /* Basic map "i" has an inequality "k" that is adjacent to some equality
702 * of basic map "j". All the other inequalities are valid for "j".
703 * Check if basic map "j" forms an extension of basic map "i".
705 * In particular, we relax constraint "k", compute the corresponding
706 * facet and check whether it is included in the other basic map.
707 * If so, we know that relaxing the constraint extends the basic
708 * map with exactly the other basic map (we already know that this
709 * other basic map is included in the extension, because there
710 * were no "cut" inequalities in "i") and we can replace the
711 * two basic maps by this extension.
712 * Each integer division that does not have exactly the same
713 * definition in "i" and "j" is marked unknown and the basic map
714 * is scheduled to be simplified in an attempt to recover
715 * the integer division definition.
716 * Place this extension in the position that is the smallest of i and j.
724 static enum isl_change
is_adj_eq_extension(int i
, int j
, int k
,
725 struct isl_coalesce_info
*info
)
727 int change
= isl_change_none
;
729 struct isl_tab_undo
*snap
, *snap2
;
730 unsigned n_eq
= info
[i
].bmap
->n_eq
;
732 if (isl_tab_is_equality(info
[i
].tab
, n_eq
+ k
))
733 return isl_change_none
;
735 snap
= isl_tab_snap(info
[i
].tab
);
736 if (isl_tab_relax(info
[i
].tab
, n_eq
+ k
) < 0)
737 return isl_change_error
;
738 snap2
= isl_tab_snap(info
[i
].tab
);
739 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ k
) < 0)
740 return isl_change_error
;
741 super
= contains(&info
[j
], info
[i
].tab
);
743 return isl_change_error
;
748 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
749 return isl_change_error
;
750 info
[i
].bmap
= isl_basic_map_cow(info
[i
].bmap
);
752 return isl_change_error
;
753 total
= isl_basic_map_total_dim(info
[i
].bmap
);
754 for (l
= 0; l
< info
[i
].bmap
->n_div
; ++l
)
755 if (!isl_seq_eq(info
[i
].bmap
->div
[l
],
756 info
[j
].bmap
->div
[l
], 1 + 1 + total
)) {
757 isl_int_set_si(info
[i
].bmap
->div
[l
][0], 0);
758 info
[i
].simplify
= 1;
760 isl_int_add_ui(info
[i
].bmap
->ineq
[k
][0],
761 info
[i
].bmap
->ineq
[k
][0], 1);
762 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_FINAL
);
765 exchange(&info
[i
], &info
[j
]);
766 change
= isl_change_fuse
;
768 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
769 return isl_change_error
;
774 /* Data structure that keeps track of the wrapping constraints
775 * and of information to bound the coefficients of those constraints.
777 * bound is set if we want to apply a bound on the coefficients
778 * mat contains the wrapping constraints
779 * max is the bound on the coefficients (if bound is set)
787 /* Update wraps->max to be greater than or equal to the coefficients
788 * in the equalities and inequalities of info->bmap that can be removed
789 * if we end up applying wrapping.
791 static void wraps_update_max(struct isl_wraps
*wraps
,
792 struct isl_coalesce_info
*info
)
796 unsigned total
= isl_basic_map_total_dim(info
->bmap
);
800 for (k
= 0; k
< info
->bmap
->n_eq
; ++k
) {
801 if (info
->eq
[2 * k
] == STATUS_VALID
&&
802 info
->eq
[2 * k
+ 1] == STATUS_VALID
)
804 isl_seq_abs_max(info
->bmap
->eq
[k
] + 1, total
, &max_k
);
805 if (isl_int_abs_gt(max_k
, wraps
->max
))
806 isl_int_set(wraps
->max
, max_k
);
809 for (k
= 0; k
< info
->bmap
->n_ineq
; ++k
) {
810 if (info
->ineq
[k
] == STATUS_VALID
||
811 info
->ineq
[k
] == STATUS_REDUNDANT
)
813 isl_seq_abs_max(info
->bmap
->ineq
[k
] + 1, total
, &max_k
);
814 if (isl_int_abs_gt(max_k
, wraps
->max
))
815 isl_int_set(wraps
->max
, max_k
);
818 isl_int_clear(max_k
);
821 /* Initialize the isl_wraps data structure.
822 * If we want to bound the coefficients of the wrapping constraints,
823 * we set wraps->max to the largest coefficient
824 * in the equalities and inequalities that can be removed if we end up
827 static void wraps_init(struct isl_wraps
*wraps
, __isl_take isl_mat
*mat
,
828 struct isl_coalesce_info
*info
, int i
, int j
)
836 ctx
= isl_mat_get_ctx(mat
);
837 wraps
->bound
= isl_options_get_coalesce_bounded_wrapping(ctx
);
840 isl_int_init(wraps
->max
);
841 isl_int_set_si(wraps
->max
, 0);
842 wraps_update_max(wraps
, &info
[i
]);
843 wraps_update_max(wraps
, &info
[j
]);
846 /* Free the contents of the isl_wraps data structure.
848 static void wraps_free(struct isl_wraps
*wraps
)
850 isl_mat_free(wraps
->mat
);
852 isl_int_clear(wraps
->max
);
855 /* Is the wrapping constraint in row "row" allowed?
857 * If wraps->bound is set, we check that none of the coefficients
858 * is greater than wraps->max.
860 static int allow_wrap(struct isl_wraps
*wraps
, int row
)
867 for (i
= 1; i
< wraps
->mat
->n_col
; ++i
)
868 if (isl_int_abs_gt(wraps
->mat
->row
[row
][i
], wraps
->max
))
874 /* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
875 * to include "set" and add the result in position "w" of "wraps".
876 * "len" is the total number of coefficients in "bound" and "ineq".
877 * Return 1 on success, 0 on failure and -1 on error.
878 * Wrapping can fail if the result of wrapping is equal to "bound"
879 * or if we want to bound the sizes of the coefficients and
880 * the wrapped constraint does not satisfy this bound.
882 static int add_wrap(struct isl_wraps
*wraps
, int w
, isl_int
*bound
,
883 isl_int
*ineq
, unsigned len
, __isl_keep isl_set
*set
, int negate
)
885 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, len
);
887 isl_seq_neg(wraps
->mat
->row
[w
+ 1], ineq
, len
);
888 ineq
= wraps
->mat
->row
[w
+ 1];
890 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], ineq
))
892 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, len
))
894 if (!allow_wrap(wraps
, w
))
899 /* For each constraint in info->bmap that is not redundant (as determined
900 * by info->tab) and that is not a valid constraint for the other basic map,
901 * wrap the constraint around "bound" such that it includes the whole
902 * set "set" and append the resulting constraint to "wraps".
903 * Note that the constraints that are valid for the other basic map
904 * will be added to the combined basic map by default, so there is
905 * no need to wrap them.
906 * The caller wrap_in_facets even relies on this function not wrapping
907 * any constraints that are already valid.
908 * "wraps" is assumed to have been pre-allocated to the appropriate size.
909 * wraps->n_row is the number of actual wrapped constraints that have
911 * If any of the wrapping problems results in a constraint that is
912 * identical to "bound", then this means that "set" is unbounded in such
913 * way that no wrapping is possible. If this happens then wraps->n_row
915 * Similarly, if we want to bound the coefficients of the wrapping
916 * constraints and a newly added wrapping constraint does not
917 * satisfy the bound, then wraps->n_row is also reset to zero.
919 static int add_wraps(struct isl_wraps
*wraps
, struct isl_coalesce_info
*info
,
920 isl_int
*bound
, __isl_keep isl_set
*set
)
925 isl_basic_map
*bmap
= info
->bmap
;
926 unsigned len
= 1 + isl_basic_map_total_dim(bmap
);
928 w
= wraps
->mat
->n_row
;
930 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
931 if (info
->ineq
[l
] == STATUS_VALID
||
932 info
->ineq
[l
] == STATUS_REDUNDANT
)
934 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], len
))
936 if (isl_seq_eq(bound
, bmap
->ineq
[l
], len
))
938 if (isl_tab_is_redundant(info
->tab
, bmap
->n_eq
+ l
))
941 added
= add_wrap(wraps
, w
, bound
, bmap
->ineq
[l
], len
, set
, 0);
948 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
949 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], len
))
951 if (isl_seq_eq(bound
, bmap
->eq
[l
], len
))
954 for (m
= 0; m
< 2; ++m
) {
955 if (info
->eq
[2 * l
+ m
] == STATUS_VALID
)
957 added
= add_wrap(wraps
, w
, bound
, bmap
->eq
[l
], len
,
967 wraps
->mat
->n_row
= w
;
970 wraps
->mat
->n_row
= 0;
974 /* Check if the constraints in "wraps" from "first" until the last
975 * are all valid for the basic set represented by "tab".
976 * If not, wraps->n_row is set to zero.
978 static int check_wraps(__isl_keep isl_mat
*wraps
, int first
,
983 for (i
= first
; i
< wraps
->n_row
; ++i
) {
984 enum isl_ineq_type type
;
985 type
= isl_tab_ineq_type(tab
, wraps
->row
[i
]);
986 if (type
== isl_ineq_error
)
988 if (type
== isl_ineq_redundant
)
997 /* Return a set that corresponds to the non-redundant constraints
998 * (as recorded in tab) of bmap.
1000 * It's important to remove the redundant constraints as some
1001 * of the other constraints may have been modified after the
1002 * constraints were marked redundant.
1003 * In particular, a constraint may have been relaxed.
1004 * Redundant constraints are ignored when a constraint is relaxed
1005 * and should therefore continue to be ignored ever after.
1006 * Otherwise, the relaxation might be thwarted by some of
1007 * these constraints.
1009 * Update the underlying set to ensure that the dimension doesn't change.
1010 * Otherwise the integer divisions could get dropped if the tab
1011 * turns out to be empty.
1013 static __isl_give isl_set
*set_from_updated_bmap(__isl_keep isl_basic_map
*bmap
,
1014 struct isl_tab
*tab
)
1016 isl_basic_set
*bset
;
1018 bmap
= isl_basic_map_copy(bmap
);
1019 bset
= isl_basic_map_underlying_set(bmap
);
1020 bset
= isl_basic_set_cow(bset
);
1021 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1022 return isl_set_from_basic_set(bset
);
1025 /* Wrap the constraints of info->bmap that bound the facet defined
1026 * by inequality "k" around (the opposite of) this inequality to
1027 * include "set". "bound" may be used to store the negated inequality.
1028 * Since the wrapped constraints are not guaranteed to contain the whole
1029 * of info->bmap, we check them in check_wraps.
1030 * If any of the wrapped constraints turn out to be invalid, then
1031 * check_wraps will reset wrap->n_row to zero.
1033 static int add_wraps_around_facet(struct isl_wraps
*wraps
,
1034 struct isl_coalesce_info
*info
, int k
, isl_int
*bound
,
1035 __isl_keep isl_set
*set
)
1037 struct isl_tab_undo
*snap
;
1039 unsigned total
= isl_basic_map_total_dim(info
->bmap
);
1041 snap
= isl_tab_snap(info
->tab
);
1043 if (isl_tab_select_facet(info
->tab
, info
->bmap
->n_eq
+ k
) < 0)
1045 if (isl_tab_detect_redundant(info
->tab
) < 0)
1048 isl_seq_neg(bound
, info
->bmap
->ineq
[k
], 1 + total
);
1050 n
= wraps
->mat
->n_row
;
1051 if (add_wraps(wraps
, info
, bound
, set
) < 0)
1054 if (isl_tab_rollback(info
->tab
, snap
) < 0)
1056 if (check_wraps(wraps
->mat
, n
, info
->tab
) < 0)
1062 /* Given a basic set i with a constraint k that is adjacent to
1063 * basic set j, check if we can wrap
1064 * both the facet corresponding to k (if "wrap_facet" is set) and basic map j
1065 * (always) around their ridges to include the other set.
1066 * If so, replace the pair of basic sets by their union.
1068 * All constraints of i (except k) are assumed to be valid or
1069 * cut constraints for j.
1070 * Wrapping the cut constraints to include basic map j may result
1071 * in constraints that are no longer valid of basic map i
1072 * we have to check that the resulting wrapping constraints are valid for i.
1073 * If "wrap_facet" is not set, then all constraints of i (except k)
1074 * are assumed to be valid for j.
1083 static enum isl_change
can_wrap_in_facet(int i
, int j
, int k
,
1084 struct isl_coalesce_info
*info
, int wrap_facet
)
1086 enum isl_change change
= isl_change_none
;
1087 struct isl_wraps wraps
;
1090 struct isl_set
*set_i
= NULL
;
1091 struct isl_set
*set_j
= NULL
;
1092 struct isl_vec
*bound
= NULL
;
1093 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1095 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1096 set_j
= set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
);
1097 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1098 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
1099 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
1101 wraps_init(&wraps
, mat
, info
, i
, j
);
1102 bound
= isl_vec_alloc(ctx
, 1 + total
);
1103 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
1106 isl_seq_cpy(bound
->el
, info
[i
].bmap
->ineq
[k
], 1 + total
);
1107 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1109 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1110 wraps
.mat
->n_row
= 1;
1112 if (add_wraps(&wraps
, &info
[j
], bound
->el
, set_i
) < 0)
1114 if (!wraps
.mat
->n_row
)
1118 if (add_wraps_around_facet(&wraps
, &info
[i
], k
,
1119 bound
->el
, set_j
) < 0)
1121 if (!wraps
.mat
->n_row
)
1125 change
= fuse(i
, j
, info
, wraps
.mat
, 0, 0);
1130 isl_set_free(set_i
);
1131 isl_set_free(set_j
);
1133 isl_vec_free(bound
);
1138 isl_vec_free(bound
);
1139 isl_set_free(set_i
);
1140 isl_set_free(set_j
);
1141 return isl_change_error
;
1144 /* Given a pair of basic maps i and j such that j sticks out
1145 * of i at n cut constraints, each time by at most one,
1146 * try to compute wrapping constraints and replace the two
1147 * basic maps by a single basic map.
1148 * The other constraints of i are assumed to be valid for j.
1150 * For each cut constraint t(x) >= 0 of i, we add the relaxed version
1151 * t(x) + 1 >= 0, along with wrapping constraints for all constraints
1152 * of basic map j that bound the part of basic map j that sticks out
1153 * of the cut constraint.
1154 * In particular, we first intersect basic map j with t(x) + 1 = 0.
1155 * If the result is empty, then t(x) >= 0 was actually a valid constraint
1156 * (with respect to the integer points), so we add t(x) >= 0 instead.
1157 * Otherwise, we wrap the constraints of basic map j that are not
1158 * redundant in this intersection and that are not already valid
1159 * for basic map i over basic map i.
1160 * Note that it is sufficient to wrap the constraints to include
1161 * basic map i, because we will only wrap the constraints that do
1162 * not include basic map i already. The wrapped constraint will
1163 * therefore be more relaxed compared to the original constraint.
1164 * Since the original constraint is valid for basic map j, so is
1165 * the wrapped constraint.
1167 * If any wrapping fails, i.e., if we cannot wrap to touch
1168 * the union, then we give up.
1169 * Otherwise, the pair of basic maps is replaced by their union.
1171 static enum isl_change
wrap_in_facets(int i
, int j
, int *cuts
, int n
,
1172 struct isl_coalesce_info
*info
)
1174 enum isl_change change
= isl_change_none
;
1175 struct isl_wraps wraps
;
1178 isl_set
*set_i
= NULL
;
1179 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1182 struct isl_tab_undo
*snap
;
1184 if (isl_tab_extend_cons(info
[j
].tab
, 1) < 0)
1187 max_wrap
= 1 + 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
1190 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1191 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1192 mat
= isl_mat_alloc(ctx
, max_wrap
, 1 + total
);
1193 wraps_init(&wraps
, mat
, info
, i
, j
);
1194 if (!set_i
|| !wraps
.mat
)
1197 snap
= isl_tab_snap(info
[j
].tab
);
1199 wraps
.mat
->n_row
= 0;
1201 for (k
= 0; k
< n
; ++k
) {
1202 w
= wraps
.mat
->n_row
++;
1203 isl_seq_cpy(wraps
.mat
->row
[w
],
1204 info
[i
].bmap
->ineq
[cuts
[k
]], 1 + total
);
1205 isl_int_add_ui(wraps
.mat
->row
[w
][0], wraps
.mat
->row
[w
][0], 1);
1206 if (isl_tab_add_eq(info
[j
].tab
, wraps
.mat
->row
[w
]) < 0)
1208 if (isl_tab_detect_redundant(info
[j
].tab
) < 0)
1211 if (info
[j
].tab
->empty
)
1212 isl_int_sub_ui(wraps
.mat
->row
[w
][0],
1213 wraps
.mat
->row
[w
][0], 1);
1214 else if (add_wraps(&wraps
, &info
[j
],
1215 wraps
.mat
->row
[w
], set_i
) < 0)
1218 if (isl_tab_rollback(info
[j
].tab
, snap
) < 0)
1221 if (!wraps
.mat
->n_row
)
1226 change
= fuse(i
, j
, info
, wraps
.mat
, 0, 1);
1229 isl_set_free(set_i
);
1234 isl_set_free(set_i
);
1235 return isl_change_error
;
1238 /* Given two basic sets i and j such that i has no cut equalities,
1239 * check if relaxing all the cut inequalities of i by one turns
1240 * them into valid constraint for j and check if we can wrap in
1241 * the bits that are sticking out.
1242 * If so, replace the pair by their union.
1244 * We first check if all relaxed cut inequalities of i are valid for j
1245 * and then try to wrap in the intersections of the relaxed cut inequalities
1248 * During this wrapping, we consider the points of j that lie at a distance
1249 * of exactly 1 from i. In particular, we ignore the points that lie in
1250 * between this lower-dimensional space and the basic map i.
1251 * We can therefore only apply this to integer maps.
1277 * Wrapping can fail if the result of wrapping one of the facets
1278 * around its edges does not produce any new facet constraint.
1279 * In particular, this happens when we try to wrap in unbounded sets.
1281 * _______________________________________________________________________
1285 * |_| |_________________________________________________________________
1288 * The following is not an acceptable result of coalescing the above two
1289 * sets as it includes extra integer points.
1290 * _______________________________________________________________________
1295 * \______________________________________________________________________
1297 static enum isl_change
can_wrap_in_set(int i
, int j
,
1298 struct isl_coalesce_info
*info
)
1300 enum isl_change change
= isl_change_none
;
1306 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) ||
1307 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
1308 return isl_change_none
;
1310 n
= count(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_CUT
);
1312 return isl_change_none
;
1314 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1315 cuts
= isl_alloc_array(ctx
, int, n
);
1317 return isl_change_error
;
1319 for (k
= 0, m
= 0; m
< n
; ++k
) {
1320 enum isl_ineq_type type
;
1322 if (info
[i
].ineq
[k
] != STATUS_CUT
)
1325 isl_int_add_ui(info
[i
].bmap
->ineq
[k
][0],
1326 info
[i
].bmap
->ineq
[k
][0], 1);
1327 type
= isl_tab_ineq_type(info
[j
].tab
, info
[i
].bmap
->ineq
[k
]);
1328 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0],
1329 info
[i
].bmap
->ineq
[k
][0], 1);
1330 if (type
== isl_ineq_error
)
1332 if (type
!= isl_ineq_redundant
)
1339 change
= wrap_in_facets(i
, j
, cuts
, n
, info
);
1346 return isl_change_error
;
1349 /* Check if either i or j has only cut inequalities that can
1350 * be used to wrap in (a facet of) the other basic set.
1351 * if so, replace the pair by their union.
1353 static enum isl_change
check_wrap(int i
, int j
, struct isl_coalesce_info
*info
)
1355 enum isl_change change
= isl_change_none
;
1357 if (!any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
))
1358 change
= can_wrap_in_set(i
, j
, info
);
1359 if (change
!= isl_change_none
)
1362 if (!any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_CUT
))
1363 change
= can_wrap_in_set(j
, i
, info
);
1367 /* At least one of the basic maps has an equality that is adjacent
1368 * to inequality. Make sure that only one of the basic maps has
1369 * such an equality and that the other basic map has exactly one
1370 * inequality adjacent to an equality.
1371 * We call the basic map that has the inequality "i" and the basic
1372 * map that has the equality "j".
1373 * If "i" has any "cut" (in)equality, then relaxing the inequality
1374 * by one would not result in a basic map that contains the other
1375 * basic map. However, it may still be possible to wrap in the other
1378 static enum isl_change
check_adj_eq(int i
, int j
,
1379 struct isl_coalesce_info
*info
)
1381 enum isl_change change
= isl_change_none
;
1385 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
) &&
1386 any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_INEQ
))
1387 /* ADJ EQ TOO MANY */
1388 return isl_change_none
;
1390 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
))
1391 return check_adj_eq(j
, i
, info
);
1393 /* j has an equality adjacent to an inequality in i */
1395 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
))
1396 return isl_change_none
;
1397 any_cut
= any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_CUT
);
1398 if (count(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_EQ
) != 1 ||
1399 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_EQ
) ||
1400 any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
) ||
1401 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
))
1402 /* ADJ EQ TOO MANY */
1403 return isl_change_none
;
1405 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
)
1406 if (info
[i
].ineq
[k
] == STATUS_ADJ_EQ
)
1410 change
= is_adj_eq_extension(i
, j
, k
, info
);
1411 if (change
!= isl_change_none
)
1415 change
= can_wrap_in_facet(i
, j
, k
, info
, any_cut
);
1420 /* The two basic maps lie on adjacent hyperplanes. In particular,
1421 * basic map "i" has an equality that lies parallel to basic map "j".
1422 * Check if we can wrap the facets around the parallel hyperplanes
1423 * to include the other set.
1425 * We perform basically the same operations as can_wrap_in_facet,
1426 * except that we don't need to select a facet of one of the sets.
1432 * If there is more than one equality of "i" adjacent to an equality of "j",
1433 * then the result will satisfy one or more equalities that are a linear
1434 * combination of these equalities. These will be encoded as pairs
1435 * of inequalities in the wrapping constraints and need to be made
1438 static enum isl_change
check_eq_adj_eq(int i
, int j
,
1439 struct isl_coalesce_info
*info
)
1442 enum isl_change change
= isl_change_none
;
1443 int detect_equalities
= 0;
1444 struct isl_wraps wraps
;
1447 struct isl_set
*set_i
= NULL
;
1448 struct isl_set
*set_j
= NULL
;
1449 struct isl_vec
*bound
= NULL
;
1450 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1452 if (count(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_EQ
) != 1)
1453 detect_equalities
= 1;
1455 for (k
= 0; k
< 2 * info
[i
].bmap
->n_eq
; ++k
)
1456 if (info
[i
].eq
[k
] == STATUS_ADJ_EQ
)
1459 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1460 set_j
= set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
);
1461 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1462 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
1463 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
1465 wraps_init(&wraps
, mat
, info
, i
, j
);
1466 bound
= isl_vec_alloc(ctx
, 1 + total
);
1467 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
1471 isl_seq_neg(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
1473 isl_seq_cpy(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
1474 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1476 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1477 wraps
.mat
->n_row
= 1;
1479 if (add_wraps(&wraps
, &info
[j
], bound
->el
, set_i
) < 0)
1481 if (!wraps
.mat
->n_row
)
1484 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
1485 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
1487 isl_seq_cpy(wraps
.mat
->row
[wraps
.mat
->n_row
], bound
->el
, 1 + total
);
1490 if (add_wraps(&wraps
, &info
[i
], bound
->el
, set_j
) < 0)
1492 if (!wraps
.mat
->n_row
)
1495 change
= fuse(i
, j
, info
, wraps
.mat
, detect_equalities
, 0);
1498 error
: change
= isl_change_error
;
1503 isl_set_free(set_i
);
1504 isl_set_free(set_j
);
1505 isl_vec_free(bound
);
1510 /* Check if the union of the given pair of basic maps
1511 * can be represented by a single basic map.
1512 * If so, replace the pair by the single basic map and return
1513 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
1514 * Otherwise, return isl_change_none.
1515 * The two basic maps are assumed to live in the same local space.
1517 * We first check the effect of each constraint of one basic map
1518 * on the other basic map.
1519 * The constraint may be
1520 * redundant the constraint is redundant in its own
1521 * basic map and should be ignore and removed
1523 * valid all (integer) points of the other basic map
1524 * satisfy the constraint
1525 * separate no (integer) point of the other basic map
1526 * satisfies the constraint
1527 * cut some but not all points of the other basic map
1528 * satisfy the constraint
1529 * adj_eq the given constraint is adjacent (on the outside)
1530 * to an equality of the other basic map
1531 * adj_ineq the given constraint is adjacent (on the outside)
1532 * to an inequality of the other basic map
1534 * We consider seven cases in which we can replace the pair by a single
1535 * basic map. We ignore all "redundant" constraints.
1537 * 1. all constraints of one basic map are valid
1538 * => the other basic map is a subset and can be removed
1540 * 2. all constraints of both basic maps are either "valid" or "cut"
1541 * and the facets corresponding to the "cut" constraints
1542 * of one of the basic maps lies entirely inside the other basic map
1543 * => the pair can be replaced by a basic map consisting
1544 * of the valid constraints in both basic maps
1546 * 3. there is a single pair of adjacent inequalities
1547 * (all other constraints are "valid")
1548 * => the pair can be replaced by a basic map consisting
1549 * of the valid constraints in both basic maps
1551 * 4. one basic map has a single adjacent inequality, while the other
1552 * constraints are "valid". The other basic map has some
1553 * "cut" constraints, but replacing the adjacent inequality by
1554 * its opposite and adding the valid constraints of the other
1555 * basic map results in a subset of the other basic map
1556 * => the pair can be replaced by a basic map consisting
1557 * of the valid constraints in both basic maps
1559 * 5. there is a single adjacent pair of an inequality and an equality,
1560 * the other constraints of the basic map containing the inequality are
1561 * "valid". Moreover, if the inequality the basic map is relaxed
1562 * and then turned into an equality, then resulting facet lies
1563 * entirely inside the other basic map
1564 * => the pair can be replaced by the basic map containing
1565 * the inequality, with the inequality relaxed.
1567 * 6. there is a single adjacent pair of an inequality and an equality,
1568 * the other constraints of the basic map containing the inequality are
1569 * "valid". Moreover, the facets corresponding to both
1570 * the inequality and the equality can be wrapped around their
1571 * ridges to include the other basic map
1572 * => the pair can be replaced by a basic map consisting
1573 * of the valid constraints in both basic maps together
1574 * with all wrapping constraints
1576 * 7. one of the basic maps extends beyond the other by at most one.
1577 * Moreover, the facets corresponding to the cut constraints and
1578 * the pieces of the other basic map at offset one from these cut
1579 * constraints can be wrapped around their ridges to include
1580 * the union of the two basic maps
1581 * => the pair can be replaced by a basic map consisting
1582 * of the valid constraints in both basic maps together
1583 * with all wrapping constraints
1585 * 8. the two basic maps live in adjacent hyperplanes. In principle
1586 * such sets can always be combined through wrapping, but we impose
1587 * that there is only one such pair, to avoid overeager coalescing.
1589 * Throughout the computation, we maintain a collection of tableaus
1590 * corresponding to the basic maps. When the basic maps are dropped
1591 * or combined, the tableaus are modified accordingly.
1593 static enum isl_change
coalesce_local_pair(int i
, int j
,
1594 struct isl_coalesce_info
*info
)
1596 enum isl_change change
= isl_change_none
;
1598 info
[i
].eq
= info
[i
].ineq
= NULL
;
1599 info
[j
].eq
= info
[j
].ineq
= NULL
;
1601 info
[i
].eq
= eq_status_in(info
[i
].bmap
, info
[j
].tab
);
1602 if (info
[i
].bmap
->n_eq
&& !info
[i
].eq
)
1604 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ERROR
))
1606 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_SEPARATE
))
1609 info
[j
].eq
= eq_status_in(info
[j
].bmap
, info
[i
].tab
);
1610 if (info
[j
].bmap
->n_eq
&& !info
[j
].eq
)
1612 if (any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_ERROR
))
1614 if (any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_SEPARATE
))
1617 info
[i
].ineq
= ineq_status_in(info
[i
].bmap
, info
[i
].tab
, info
[j
].tab
);
1618 if (info
[i
].bmap
->n_ineq
&& !info
[i
].ineq
)
1620 if (any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ERROR
))
1622 if (any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_SEPARATE
))
1625 info
[j
].ineq
= ineq_status_in(info
[j
].bmap
, info
[j
].tab
, info
[i
].tab
);
1626 if (info
[j
].bmap
->n_ineq
&& !info
[j
].ineq
)
1628 if (any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ERROR
))
1630 if (any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_SEPARATE
))
1633 if (all(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_VALID
) &&
1634 all(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_VALID
)) {
1636 change
= isl_change_drop_second
;
1637 } else if (all(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_VALID
) &&
1638 all(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_VALID
)) {
1640 change
= isl_change_drop_first
;
1641 } else if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_EQ
)) {
1642 change
= check_eq_adj_eq(i
, j
, info
);
1643 } else if (any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_EQ
)) {
1644 change
= check_eq_adj_eq(j
, i
, info
);
1645 } else if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
) ||
1646 any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_INEQ
)) {
1647 change
= check_adj_eq(i
, j
, info
);
1648 } else if (any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_EQ
) ||
1649 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_EQ
)) {
1652 } else if (any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
) ||
1653 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
)) {
1654 change
= check_adj_ineq(i
, j
, info
);
1656 if (!any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
) &&
1657 !any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_CUT
))
1658 change
= check_facets(i
, j
, info
);
1659 if (change
== isl_change_none
)
1660 change
= check_wrap(i
, j
, info
);
1674 return isl_change_error
;
1677 /* Shift the integer division at position "div" of the basic map
1678 * represented by "info" by "shift".
1680 * That is, if the integer division has the form
1684 * then replace it by
1686 * floor((f(x) + shift * d)/d) - shift
1688 static int shift_div(struct isl_coalesce_info
*info
, int div
, isl_int shift
)
1692 info
->bmap
= isl_basic_map_shift_div(info
->bmap
, div
, 0, shift
);
1696 total
= isl_basic_map_dim(info
->bmap
, isl_dim_all
);
1697 total
-= isl_basic_map_dim(info
->bmap
, isl_dim_div
);
1698 if (isl_tab_shift_var(info
->tab
, total
+ div
, shift
) < 0)
1704 /* Check if some of the divs in the basic map represented by "info1"
1705 * are shifts of the corresponding divs in the basic map represented
1706 * by "info2". If so, align them with those of "info2".
1707 * Only do this if "info1" and "info2" have the same number
1708 * of integer divisions.
1710 * An integer division is considered to be a shift of another integer
1711 * division if one is equal to the other plus a constant.
1713 * In particular, for each pair of integer divisions, if both are known,
1714 * have identical coefficients (apart from the constant term) and
1715 * if the difference between the constant terms (taking into account
1716 * the denominator) is an integer, then move the difference outside.
1717 * That is, if one integer division is of the form
1719 * floor((f(x) + c_1)/d)
1721 * while the other is of the form
1723 * floor((f(x) + c_2)/d)
1725 * and n = (c_2 - c_1)/d is an integer, then replace the first
1726 * integer division by
1728 * floor((f(x) + c_1 + n * d)/d) - n = floor((f(x) + c_2)/d) - n
1730 static int harmonize_divs(struct isl_coalesce_info
*info1
,
1731 struct isl_coalesce_info
*info2
)
1736 if (!info1
->bmap
|| !info2
->bmap
)
1739 if (info1
->bmap
->n_div
!= info2
->bmap
->n_div
)
1741 if (info1
->bmap
->n_div
== 0)
1744 total
= isl_basic_map_total_dim(info1
->bmap
);
1745 for (i
= 0; i
< info1
->bmap
->n_div
; ++i
) {
1749 if (isl_int_is_zero(info1
->bmap
->div
[i
][0]) ||
1750 isl_int_is_zero(info2
->bmap
->div
[i
][0]))
1752 if (isl_int_ne(info1
->bmap
->div
[i
][0], info2
->bmap
->div
[i
][0]))
1754 if (isl_int_eq(info1
->bmap
->div
[i
][1], info2
->bmap
->div
[i
][1]))
1756 if (!isl_seq_eq(info1
->bmap
->div
[i
] + 2,
1757 info2
->bmap
->div
[i
] + 2, total
))
1760 isl_int_sub(d
, info2
->bmap
->div
[i
][1], info1
->bmap
->div
[i
][1]);
1761 if (isl_int_is_divisible_by(d
, info1
->bmap
->div
[i
][0])) {
1762 isl_int_divexact(d
, d
, info1
->bmap
->div
[i
][0]);
1763 r
= shift_div(info1
, i
, d
);
1773 /* Do the two basic maps live in the same local space, i.e.,
1774 * do they have the same (known) divs?
1775 * If either basic map has any unknown divs, then we can only assume
1776 * that they do not live in the same local space.
1778 static int same_divs(__isl_keep isl_basic_map
*bmap1
,
1779 __isl_keep isl_basic_map
*bmap2
)
1785 if (!bmap1
|| !bmap2
)
1787 if (bmap1
->n_div
!= bmap2
->n_div
)
1790 if (bmap1
->n_div
== 0)
1793 known
= isl_basic_map_divs_known(bmap1
);
1794 if (known
< 0 || !known
)
1796 known
= isl_basic_map_divs_known(bmap2
);
1797 if (known
< 0 || !known
)
1800 total
= isl_basic_map_total_dim(bmap1
);
1801 for (i
= 0; i
< bmap1
->n_div
; ++i
)
1802 if (!isl_seq_eq(bmap1
->div
[i
], bmap2
->div
[i
], 2 + total
))
1808 /* Does "bmap" contain the basic map represented by the tableau "tab"
1809 * after expanding the divs of "bmap" to match those of "tab"?
1810 * The expansion is performed using the divs "div" and expansion "exp"
1811 * computed by the caller.
1812 * Then we check if all constraints of the expanded "bmap" are valid for "tab".
1814 static int contains_with_expanded_divs(__isl_keep isl_basic_map
*bmap
,
1815 struct isl_tab
*tab
, __isl_keep isl_mat
*div
, int *exp
)
1821 bmap
= isl_basic_map_copy(bmap
);
1822 bmap
= isl_basic_set_expand_divs(bmap
, isl_mat_copy(div
), exp
);
1827 eq_i
= eq_status_in(bmap
, tab
);
1828 if (bmap
->n_eq
&& !eq_i
)
1830 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_ERROR
))
1832 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_SEPARATE
))
1835 ineq_i
= ineq_status_in(bmap
, NULL
, tab
);
1836 if (bmap
->n_ineq
&& !ineq_i
)
1838 if (any(ineq_i
, bmap
->n_ineq
, STATUS_ERROR
))
1840 if (any(ineq_i
, bmap
->n_ineq
, STATUS_SEPARATE
))
1843 if (all(eq_i
, 2 * bmap
->n_eq
, STATUS_VALID
) &&
1844 all(ineq_i
, bmap
->n_ineq
, STATUS_VALID
))
1848 isl_basic_map_free(bmap
);
1853 isl_basic_map_free(bmap
);
1859 /* Does "bmap_i" contain the basic map represented by "info_j"
1860 * after aligning the divs of "bmap_i" to those of "info_j".
1861 * Note that this can only succeed if the number of divs of "bmap_i"
1862 * is smaller than (or equal to) the number of divs of "info_j".
1864 * We first check if the divs of "bmap_i" are all known and form a subset
1865 * of those of "bmap_j". If so, we pass control over to
1866 * contains_with_expanded_divs.
1868 static int contains_after_aligning_divs(__isl_keep isl_basic_map
*bmap_i
,
1869 struct isl_coalesce_info
*info_j
)
1872 isl_mat
*div_i
, *div_j
, *div
;
1878 known
= isl_basic_map_divs_known(bmap_i
);
1879 if (known
< 0 || !known
)
1882 ctx
= isl_basic_map_get_ctx(bmap_i
);
1884 div_i
= isl_basic_map_get_divs(bmap_i
);
1885 div_j
= isl_basic_map_get_divs(info_j
->bmap
);
1887 if (!div_i
|| !div_j
)
1890 exp1
= isl_alloc_array(ctx
, int, div_i
->n_row
);
1891 exp2
= isl_alloc_array(ctx
, int, div_j
->n_row
);
1892 if ((div_i
->n_row
&& !exp1
) || (div_j
->n_row
&& !exp2
))
1895 div
= isl_merge_divs(div_i
, div_j
, exp1
, exp2
);
1899 if (div
->n_row
== div_j
->n_row
)
1900 subset
= contains_with_expanded_divs(bmap_i
,
1901 info_j
->tab
, div
, exp1
);
1907 isl_mat_free(div_i
);
1908 isl_mat_free(div_j
);
1915 isl_mat_free(div_i
);
1916 isl_mat_free(div_j
);
1922 /* Check if the basic map "j" is a subset of basic map "i",
1923 * if "i" has fewer divs that "j".
1924 * If so, remove basic map "j".
1926 * If the two basic maps have the same number of divs, then
1927 * they must necessarily be different. Otherwise, we would have
1928 * called coalesce_local_pair. We therefore don't try anything
1931 static int coalesced_subset(int i
, int j
, struct isl_coalesce_info
*info
)
1935 if (info
[i
].bmap
->n_div
>= info
[j
].bmap
->n_div
)
1938 superset
= contains_after_aligning_divs(info
[i
].bmap
, &info
[j
]);
1947 /* Check if basic map "j" is a subset of basic map "i" after
1948 * exploiting the extra equalities of "j" to simplify the divs of "i".
1949 * If so, remove basic map "j".
1951 * If "j" does not have any equalities or if they are the same
1952 * as those of "i", then we cannot exploit them to simplify the divs.
1953 * Similarly, if there are no divs in "i", then they cannot be simplified.
1954 * If, on the other hand, the affine hulls of "i" and "j" do not intersect,
1955 * then "j" cannot be a subset of "i".
1957 * Otherwise, we intersect "i" with the affine hull of "j" and then
1958 * check if "j" is a subset of the result after aligning the divs.
1959 * If so, then "j" is definitely a subset of "i" and can be removed.
1960 * Note that if after intersection with the affine hull of "j".
1961 * "i" still has more divs than "j", then there is no way we can
1962 * align the divs of "i" to those of "j".
1964 static int coalesced_subset_with_equalities(int i
, int j
,
1965 struct isl_coalesce_info
*info
)
1967 isl_basic_map
*hull_i
, *hull_j
, *bmap_i
;
1968 int equal
, empty
, subset
;
1970 if (info
[j
].bmap
->n_eq
== 0)
1972 if (info
[i
].bmap
->n_div
== 0)
1975 hull_i
= isl_basic_map_copy(info
[i
].bmap
);
1976 hull_i
= isl_basic_map_plain_affine_hull(hull_i
);
1977 hull_j
= isl_basic_map_copy(info
[j
].bmap
);
1978 hull_j
= isl_basic_map_plain_affine_hull(hull_j
);
1980 hull_j
= isl_basic_map_intersect(hull_j
, isl_basic_map_copy(hull_i
));
1981 equal
= isl_basic_map_plain_is_equal(hull_i
, hull_j
);
1982 empty
= isl_basic_map_plain_is_empty(hull_j
);
1983 isl_basic_map_free(hull_i
);
1985 if (equal
< 0 || equal
|| empty
< 0 || empty
) {
1986 isl_basic_map_free(hull_j
);
1987 return equal
< 0 || empty
< 0 ? -1 : 0;
1990 bmap_i
= isl_basic_map_copy(info
[i
].bmap
);
1991 bmap_i
= isl_basic_map_intersect(bmap_i
, hull_j
);
1995 if (bmap_i
->n_div
> info
[j
].bmap
->n_div
) {
1996 isl_basic_map_free(bmap_i
);
2000 subset
= contains_after_aligning_divs(bmap_i
, &info
[j
]);
2002 isl_basic_map_free(bmap_i
);
2012 /* Check if one of the basic maps is a subset of the other and, if so,
2014 * Note that we only perform any test if the number of divs is different
2015 * in the two basic maps. In case the number of divs is the same,
2016 * we have already established that the divs are different
2017 * in the two basic maps.
2018 * In particular, if the number of divs of basic map i is smaller than
2019 * the number of divs of basic map j, then we check if j is a subset of i
2022 static enum isl_change
check_coalesce_subset(int i
, int j
,
2023 struct isl_coalesce_info
*info
)
2027 changed
= coalesced_subset(i
, j
, info
);
2028 if (changed
< 0 || changed
)
2029 return changed
< 0 ? isl_change_error
: isl_change_drop_second
;
2031 changed
= coalesced_subset(j
, i
, info
);
2032 if (changed
< 0 || changed
)
2033 return changed
< 0 ? isl_change_error
: isl_change_drop_first
;
2035 changed
= coalesced_subset_with_equalities(i
, j
, info
);
2036 if (changed
< 0 || changed
)
2037 return changed
< 0 ? isl_change_error
: isl_change_drop_second
;
2039 changed
= coalesced_subset_with_equalities(j
, i
, info
);
2040 if (changed
< 0 || changed
)
2041 return changed
< 0 ? isl_change_error
: isl_change_drop_first
;
2043 return isl_change_none
;
2046 /* Does "bmap" involve any divs that themselves refer to divs?
2048 static int has_nested_div(__isl_keep isl_basic_map
*bmap
)
2054 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2055 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2058 for (i
= 0; i
< n_div
; ++i
)
2059 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + total
,
2066 /* Return a list of affine expressions, one for each integer division
2067 * in "bmap_i". For each integer division that also appears in "bmap_j",
2068 * the affine expression is set to NaN. The number of NaNs in the list
2069 * is equal to the number of integer divisions in "bmap_j".
2070 * For the other integer divisions of "bmap_i", the corresponding
2071 * element in the list is a purely affine expression equal to the integer
2072 * division in "hull".
2073 * If no such list can be constructed, then the number of elements
2074 * in the returned list is smaller than the number of integer divisions
2077 static __isl_give isl_aff_list
*set_up_substitutions(
2078 __isl_keep isl_basic_map
*bmap_i
, __isl_keep isl_basic_map
*bmap_j
,
2079 __isl_take isl_basic_map
*hull
)
2081 unsigned n_div_i
, n_div_j
, total
;
2083 isl_local_space
*ls
;
2084 isl_basic_set
*wrap_hull
;
2092 ctx
= isl_basic_map_get_ctx(hull
);
2094 n_div_i
= isl_basic_map_dim(bmap_i
, isl_dim_div
);
2095 n_div_j
= isl_basic_map_dim(bmap_j
, isl_dim_div
);
2096 total
= isl_basic_map_total_dim(bmap_i
) - n_div_i
;
2098 ls
= isl_basic_map_get_local_space(bmap_i
);
2099 ls
= isl_local_space_wrap(ls
);
2100 wrap_hull
= isl_basic_map_wrap(hull
);
2102 aff_nan
= isl_aff_nan_on_domain(isl_local_space_copy(ls
));
2103 list
= isl_aff_list_alloc(ctx
, n_div_i
);
2106 for (i
= 0; i
< n_div_i
; ++i
) {
2110 isl_seq_eq(bmap_i
->div
[i
], bmap_j
->div
[j
], 2 + total
)) {
2112 list
= isl_aff_list_add(list
, isl_aff_copy(aff_nan
));
2115 if (n_div_i
- i
<= n_div_j
- j
)
2118 aff
= isl_local_space_get_div(ls
, i
);
2119 aff
= isl_aff_substitute_equalities(aff
,
2120 isl_basic_set_copy(wrap_hull
));
2121 aff
= isl_aff_floor(aff
);
2124 if (isl_aff_dim(aff
, isl_dim_div
) != 0) {
2129 list
= isl_aff_list_add(list
, aff
);
2132 isl_aff_free(aff_nan
);
2133 isl_local_space_free(ls
);
2134 isl_basic_set_free(wrap_hull
);
2138 isl_aff_free(aff_nan
);
2139 isl_local_space_free(ls
);
2140 isl_basic_set_free(wrap_hull
);
2141 isl_aff_list_free(list
);
2145 /* Add variables to "tab" corresponding to the elements in "list"
2146 * that are not set to NaN.
2147 * "dim" is the offset in the variables of "tab" where we should
2148 * start considering the elements in "list".
2149 * When this function returns, the total number of variables in "tab"
2150 * is equal to "dim" plus the number of elements in "list".
2152 static int add_sub_vars(struct isl_tab
*tab
, __isl_keep isl_aff_list
*list
,
2157 n
= isl_aff_list_n_aff(list
);
2158 for (i
= 0; i
< n
; ++i
) {
2162 aff
= isl_aff_list_get_aff(list
, i
);
2163 is_nan
= isl_aff_is_nan(aff
);
2168 if (!is_nan
&& isl_tab_insert_var(tab
, dim
+ i
) < 0)
2175 /* For each element in "list" that is not set to NaN, fix the corresponding
2176 * variable in "tab" to the purely affine expression defined by the element.
2177 * "dim" is the offset in the variables of "tab" where we should
2178 * start considering the elements in "list".
2180 static int add_sub_equalities(struct isl_tab
*tab
,
2181 __isl_keep isl_aff_list
*list
, int dim
)
2188 n
= isl_aff_list_n_aff(list
);
2190 ctx
= isl_tab_get_ctx(tab
);
2191 sub
= isl_vec_alloc(ctx
, 1 + dim
+ n
);
2194 isl_seq_clr(sub
->el
+ 1 + dim
, n
);
2196 for (i
= 0; i
< n
; ++i
) {
2197 aff
= isl_aff_list_get_aff(list
, i
);
2200 if (isl_aff_is_nan(aff
)) {
2204 isl_seq_cpy(sub
->el
, aff
->v
->el
+ 1, 1 + dim
);
2205 isl_int_neg(sub
->el
[1 + dim
+ i
], aff
->v
->el
[0]);
2206 if (isl_tab_add_eq(tab
, sub
->el
) < 0)
2208 isl_int_set_si(sub
->el
[1 + dim
+ i
], 0);
2220 /* Add variables to info->tab corresponding to the elements in "list"
2221 * that are not set to NaN. The value of the added variable
2222 * is fixed to the purely affine expression defined by the element.
2223 * "dim" is the offset in the variables of info->tab where we should
2224 * start considering the elements in "list".
2225 * When this function returns, the total number of variables in info->tab
2226 * is equal to "dim" plus the number of elements in "list".
2227 * Additionally, add the div constraints that have been added info->bmap
2228 * after the tableau was constructed to info->tab. These constraints
2229 * start at position "n_ineq" in info->bmap.
2230 * The constraints need to be added to the tableau before
2231 * the equalities assigning the purely affine expression
2232 * because the position needs to match that in info->bmap.
2233 * They are frozen because the corresponding added equality is a consequence
2234 * of the two div constraints and the other equalities, meaning that
2235 * the div constraints would otherwise get marked as redundant,
2236 * while they are only redundant with respect to the extra equalities
2237 * added to the tableau, which do not appear explicitly in the basic map.
2239 static int add_subs(struct isl_coalesce_info
*info
,
2240 __isl_keep isl_aff_list
*list
, int dim
, int n_ineq
)
2242 int i
, extra_var
, extra_con
;
2244 unsigned n_eq
= info
->bmap
->n_eq
;
2249 n
= isl_aff_list_n_aff(list
);
2250 extra_var
= n
- (info
->tab
->n_var
- dim
);
2251 extra_con
= info
->bmap
->n_ineq
- n_ineq
;
2253 if (isl_tab_extend_vars(info
->tab
, extra_var
) < 0)
2255 if (isl_tab_extend_cons(info
->tab
, extra_con
+ 2 * extra_var
) < 0)
2257 if (add_sub_vars(info
->tab
, list
, dim
) < 0)
2260 for (i
= n_ineq
; i
< info
->bmap
->n_ineq
; ++i
) {
2261 if (isl_tab_add_ineq(info
->tab
, info
->bmap
->ineq
[i
]) < 0)
2263 if (isl_tab_freeze_constraint(info
->tab
, n_eq
+ i
) < 0)
2267 return add_sub_equalities(info
->tab
, list
, dim
);
2270 /* Coalesce basic map "j" into basic map "i" after adding the extra integer
2271 * divisions in "i" but not in "j" to basic map "j", with values
2272 * specified by "list". The total number of elements in "list"
2273 * is equal to the number of integer divisions in "i", while the number
2274 * of NaN elements in the list is equal to the number of integer divisions
2276 * Adding extra integer divisions to "j" through isl_basic_map_align_divs
2277 * also adds the corresponding div constraints. These need to be added
2278 * to the corresponding tableau as well in add_subs to maintain consistency.
2280 * If no coalescing can be performed, then we need to revert basic map "j"
2281 * to its original state. We do the same if basic map "i" gets dropped
2282 * during the coalescing, even though this should not happen in practice
2283 * since we have already checked for "j" being a subset of "i"
2284 * before we reach this stage.
2286 static enum isl_change
coalesce_with_subs(int i
, int j
,
2287 struct isl_coalesce_info
*info
, __isl_keep isl_aff_list
*list
)
2289 isl_basic_map
*bmap_j
;
2290 struct isl_tab_undo
*snap
;
2292 enum isl_change change
;
2295 bmap_j
= isl_basic_map_copy(info
[j
].bmap
);
2296 n_ineq
= info
[j
].bmap
->n_ineq
;
2297 info
[j
].bmap
= isl_basic_map_align_divs(info
[j
].bmap
, info
[i
].bmap
);
2301 snap
= isl_tab_snap(info
[j
].tab
);
2303 dim
= isl_basic_map_dim(bmap_j
, isl_dim_all
);
2304 dim
-= isl_basic_map_dim(bmap_j
, isl_dim_div
);
2305 if (add_subs(&info
[j
], list
, dim
, n_ineq
) < 0)
2308 change
= coalesce_local_pair(i
, j
, info
);
2309 if (change
!= isl_change_none
&& change
!= isl_change_drop_first
) {
2310 isl_basic_map_free(bmap_j
);
2312 isl_basic_map_free(info
[j
].bmap
);
2313 info
[j
].bmap
= bmap_j
;
2315 if (isl_tab_rollback(info
[j
].tab
, snap
) < 0)
2316 return isl_change_error
;
2321 isl_basic_map_free(bmap_j
);
2322 return isl_change_error
;
2325 /* Check if we can coalesce basic map "j" into basic map "i" after copying
2326 * those extra integer divisions in "i" that can be simplified away
2327 * using the extra equalities in "j".
2328 * All divs are assumed to be known and not contain any nested divs.
2330 * We first check if there are any extra equalities in "j" that we
2331 * can exploit. Then we check if every integer division in "i"
2332 * either already appears in "j" or can be simplified using the
2333 * extra equalities to a purely affine expression.
2334 * If these tests succeed, then we try to coalesce the two basic maps
2335 * by introducing extra dimensions in "j" corresponding to
2336 * the extra integer divsisions "i" fixed to the corresponding
2337 * purely affine expression.
2339 static enum isl_change
check_coalesce_into_eq(int i
, int j
,
2340 struct isl_coalesce_info
*info
)
2342 unsigned n_div_i
, n_div_j
;
2343 isl_basic_map
*hull_i
, *hull_j
;
2346 enum isl_change change
;
2348 n_div_i
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_div
);
2349 n_div_j
= isl_basic_map_dim(info
[j
].bmap
, isl_dim_div
);
2350 if (n_div_i
<= n_div_j
)
2351 return isl_change_none
;
2352 if (info
[j
].bmap
->n_eq
== 0)
2353 return isl_change_none
;
2355 hull_i
= isl_basic_map_copy(info
[i
].bmap
);
2356 hull_i
= isl_basic_map_plain_affine_hull(hull_i
);
2357 hull_j
= isl_basic_map_copy(info
[j
].bmap
);
2358 hull_j
= isl_basic_map_plain_affine_hull(hull_j
);
2360 hull_j
= isl_basic_map_intersect(hull_j
, isl_basic_map_copy(hull_i
));
2361 equal
= isl_basic_map_plain_is_equal(hull_i
, hull_j
);
2362 empty
= isl_basic_map_plain_is_empty(hull_j
);
2363 isl_basic_map_free(hull_i
);
2365 if (equal
< 0 || empty
< 0)
2367 if (equal
|| empty
) {
2368 isl_basic_map_free(hull_j
);
2369 return isl_change_none
;
2372 list
= set_up_substitutions(info
[i
].bmap
, info
[j
].bmap
, hull_j
);
2374 return isl_change_error
;
2375 if (isl_aff_list_n_aff(list
) < n_div_i
)
2376 change
= isl_change_none
;
2378 change
= coalesce_with_subs(i
, j
, info
, list
);
2380 isl_aff_list_free(list
);
2384 isl_basic_map_free(hull_j
);
2385 return isl_change_error
;
2388 /* Check if we can coalesce basic maps "i" and "j" after copying
2389 * those extra integer divisions in one of the basic maps that can
2390 * be simplified away using the extra equalities in the other basic map.
2391 * We require all divs to be known in both basic maps.
2392 * Furthermore, to simplify the comparison of div expressions,
2393 * we do not allow any nested integer divisions.
2395 static enum isl_change
check_coalesce_eq(int i
, int j
,
2396 struct isl_coalesce_info
*info
)
2399 enum isl_change change
;
2401 known
= isl_basic_map_divs_known(info
[i
].bmap
);
2402 if (known
< 0 || !known
)
2403 return known
< 0 ? isl_change_error
: isl_change_none
;
2404 known
= isl_basic_map_divs_known(info
[j
].bmap
);
2405 if (known
< 0 || !known
)
2406 return known
< 0 ? isl_change_error
: isl_change_none
;
2407 nested
= has_nested_div(info
[i
].bmap
);
2408 if (nested
< 0 || nested
)
2409 return nested
< 0 ? isl_change_error
: isl_change_none
;
2410 nested
= has_nested_div(info
[j
].bmap
);
2411 if (nested
< 0 || nested
)
2412 return nested
< 0 ? isl_change_error
: isl_change_none
;
2414 change
= check_coalesce_into_eq(i
, j
, info
);
2415 if (change
!= isl_change_none
)
2417 change
= check_coalesce_into_eq(j
, i
, info
);
2418 if (change
!= isl_change_none
)
2419 return invert_change(change
);
2421 return isl_change_none
;
2424 /* Check if the union of the given pair of basic maps
2425 * can be represented by a single basic map.
2426 * If so, replace the pair by the single basic map and return
2427 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2428 * Otherwise, return isl_change_none.
2430 * We first check if the two basic maps live in the same local space,
2431 * after aligning the divs that differ by only an integer constant.
2432 * If so, we do the complete check. Otherwise, we check if they have
2433 * the same number of integer divisions and can be coalesced, if one is
2434 * an obvious subset of the other or if the extra integer divisions
2435 * of one basic map can be simplified away using the extra equalities
2436 * of the other basic map.
2438 static enum isl_change
coalesce_pair(int i
, int j
,
2439 struct isl_coalesce_info
*info
)
2442 enum isl_change change
;
2444 if (harmonize_divs(&info
[i
], &info
[j
]) < 0)
2445 return isl_change_error
;
2446 same
= same_divs(info
[i
].bmap
, info
[j
].bmap
);
2448 return isl_change_error
;
2450 return coalesce_local_pair(i
, j
, info
);
2452 if (info
[i
].bmap
->n_div
== info
[j
].bmap
->n_div
) {
2453 change
= coalesce_local_pair(i
, j
, info
);
2454 if (change
!= isl_change_none
)
2458 change
= check_coalesce_subset(i
, j
, info
);
2459 if (change
!= isl_change_none
)
2462 return check_coalesce_eq(i
, j
, info
);
2465 /* Return the maximum of "a" and "b".
2467 static int isl_max(int a
, int b
)
2469 return a
> b
? a
: b
;
2472 /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
2473 * with those in the range [start2, end2[, skipping basic maps
2474 * that have been removed (either before or within this function).
2476 * For each basic map i in the first range, we check if it can be coalesced
2477 * with respect to any previously considered basic map j in the second range.
2478 * If i gets dropped (because it was a subset of some j), then
2479 * we can move on to the next basic map.
2480 * If j gets dropped, we need to continue checking against the other
2481 * previously considered basic maps.
2482 * If the two basic maps got fused, then we recheck the fused basic map
2483 * against the previously considered basic maps, starting at i + 1
2484 * (even if start2 is greater than i + 1).
2486 static int coalesce_range(isl_ctx
*ctx
, struct isl_coalesce_info
*info
,
2487 int start1
, int end1
, int start2
, int end2
)
2491 for (i
= end1
- 1; i
>= start1
; --i
) {
2492 if (info
[i
].removed
)
2494 for (j
= isl_max(i
+ 1, start2
); j
< end2
; ++j
) {
2495 enum isl_change changed
;
2497 if (info
[j
].removed
)
2499 if (info
[i
].removed
)
2500 isl_die(ctx
, isl_error_internal
,
2501 "basic map unexpectedly removed",
2503 changed
= coalesce_pair(i
, j
, info
);
2505 case isl_change_error
:
2507 case isl_change_none
:
2508 case isl_change_drop_second
:
2510 case isl_change_drop_first
:
2513 case isl_change_fuse
:
2523 /* Pairwise coalesce the basic maps described by the "n" elements of "info".
2525 * We consider groups of basic maps that live in the same apparent
2526 * affine hull and we first coalesce within such a group before we
2527 * coalesce the elements in the group with elements of previously
2528 * considered groups. If a fuse happens during the second phase,
2529 * then we also reconsider the elements within the group.
2531 static int coalesce(isl_ctx
*ctx
, int n
, struct isl_coalesce_info
*info
)
2535 for (end
= n
; end
> 0; end
= start
) {
2537 while (start
>= 1 &&
2538 info
[start
- 1].hull_hash
== info
[start
].hull_hash
)
2540 if (coalesce_range(ctx
, info
, start
, end
, start
, end
) < 0)
2542 if (coalesce_range(ctx
, info
, start
, end
, end
, n
) < 0)
2549 /* Update the basic maps in "map" based on the information in "info".
2550 * In particular, remove the basic maps that have been marked removed and
2551 * update the others based on the information in the corresponding tableau.
2552 * Since we detected implicit equalities without calling
2553 * isl_basic_map_gauss, we need to do it now.
2554 * Also call isl_basic_map_simplify if we may have lost the definition
2555 * of one or more integer divisions.
2557 static __isl_give isl_map
*update_basic_maps(__isl_take isl_map
*map
,
2558 int n
, struct isl_coalesce_info
*info
)
2565 for (i
= n
- 1; i
>= 0; --i
) {
2566 if (info
[i
].removed
) {
2567 isl_basic_map_free(map
->p
[i
]);
2568 if (i
!= map
->n
- 1)
2569 map
->p
[i
] = map
->p
[map
->n
- 1];
2574 info
[i
].bmap
= isl_basic_map_update_from_tab(info
[i
].bmap
,
2576 info
[i
].bmap
= isl_basic_map_gauss(info
[i
].bmap
, NULL
);
2577 if (info
[i
].simplify
)
2578 info
[i
].bmap
= isl_basic_map_simplify(info
[i
].bmap
);
2579 info
[i
].bmap
= isl_basic_map_finalize(info
[i
].bmap
);
2581 return isl_map_free(map
);
2582 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
2583 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
2584 isl_basic_map_free(map
->p
[i
]);
2585 map
->p
[i
] = info
[i
].bmap
;
2586 info
[i
].bmap
= NULL
;
2592 /* For each pair of basic maps in the map, check if the union of the two
2593 * can be represented by a single basic map.
2594 * If so, replace the pair by the single basic map and start over.
2596 * We factor out any (hidden) common factor from the constraint
2597 * coefficients to improve the detection of adjacent constraints.
2599 * Since we are constructing the tableaus of the basic maps anyway,
2600 * we exploit them to detect implicit equalities and redundant constraints.
2601 * This also helps the coalescing as it can ignore the redundant constraints.
2602 * In order to avoid confusion, we make all implicit equalities explicit
2603 * in the basic maps. We don't call isl_basic_map_gauss, though,
2604 * as that may affect the number of constraints.
2605 * This means that we have to call isl_basic_map_gauss at the end
2606 * of the computation (in update_basic_maps) to ensure that
2607 * the basic maps are not left in an unexpected state.
2608 * For each basic map, we also compute the hash of the apparent affine hull
2609 * for use in coalesce.
2611 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
2616 struct isl_coalesce_info
*info
= NULL
;
2618 map
= isl_map_remove_empty_parts(map
);
2625 ctx
= isl_map_get_ctx(map
);
2626 map
= isl_map_sort_divs(map
);
2627 map
= isl_map_cow(map
);
2634 info
= isl_calloc_array(map
->ctx
, struct isl_coalesce_info
, n
);
2638 for (i
= 0; i
< map
->n
; ++i
) {
2639 map
->p
[i
] = isl_basic_map_reduce_coefficients(map
->p
[i
]);
2642 info
[i
].bmap
= isl_basic_map_copy(map
->p
[i
]);
2643 info
[i
].tab
= isl_tab_from_basic_map(info
[i
].bmap
, 0);
2646 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
2647 if (isl_tab_detect_implicit_equalities(info
[i
].tab
) < 0)
2649 info
[i
].bmap
= isl_tab_make_equalities_explicit(info
[i
].tab
,
2653 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
2654 if (isl_tab_detect_redundant(info
[i
].tab
) < 0)
2656 if (coalesce_info_set_hull_hash(&info
[i
]) < 0)
2659 for (i
= map
->n
- 1; i
>= 0; --i
)
2660 if (info
[i
].tab
->empty
)
2663 if (coalesce(ctx
, n
, info
) < 0)
2666 map
= update_basic_maps(map
, n
, info
);
2668 clear_coalesce_info(n
, info
);
2672 clear_coalesce_info(n
, info
);
2677 /* For each pair of basic sets in the set, check if the union of the two
2678 * can be represented by a single basic set.
2679 * If so, replace the pair by the single basic set and start over.
2681 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
2683 return (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);