isl_ast_build_expr.c: decompose check_parallel_or_opposite
[isl.git] / isl_ast_build_expr.c
blob131a77d7214b9767d7338ec633810b7ce0b34d72
1 /*
2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/id.h>
14 #include <isl/space.h>
15 #include <isl/constraint.h>
16 #include <isl/ilp.h>
17 #include <isl/val.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_private.h>
20 #include <isl_ast_build_private.h>
21 #include <isl_sort.h>
23 /* Compute the "opposite" of the (numerator of the) argument of a div
24 * with denominator "d".
26 * In particular, compute
28 * -aff + (d - 1)
30 static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
31 __isl_take isl_val *d)
33 aff = isl_aff_neg(aff);
34 aff = isl_aff_add_constant_val(aff, d);
35 aff = isl_aff_add_constant_si(aff, -1);
37 return aff;
40 /* Internal data structure used inside isl_ast_expr_add_term.
41 * The domain of "build" is used to simplify the expressions.
42 * "build" needs to be set by the caller of isl_ast_expr_add_term.
43 * "ls" is the domain local space of the affine expression
44 * of which a term is being added.
45 * "cst" is the constant term of the expression in which the added term
46 * appears. It may be modified by isl_ast_expr_add_term.
48 * "v" is the coefficient of the term that is being constructed and
49 * is set internally by isl_ast_expr_add_term.
51 struct isl_ast_add_term_data {
52 isl_ast_build *build;
53 isl_local_space *ls;
54 isl_val *cst;
55 isl_val *v;
58 /* Given the numerator "aff" of the argument of an integer division
59 * with denominator "d", check if it can be made non-negative over
60 * data->build->domain by stealing part of the constant term of
61 * the expression in which the integer division appears.
63 * In particular, the outer expression is of the form
65 * v * floor(aff/d) + cst
67 * We already know that "aff" itself may attain negative values.
68 * Here we check if aff + d*floor(cst/v) is non-negative, such
69 * that we could rewrite the expression to
71 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
73 * Note that aff + d*floor(cst/v) can only possibly be non-negative
74 * if data->cst and data->v have the same sign.
75 * Similarly, if floor(cst/v) is zero, then there is no point in
76 * checking again.
78 static isl_bool is_non_neg_after_stealing(__isl_keep isl_aff *aff,
79 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
81 isl_aff *shifted;
82 isl_val *shift;
83 isl_bool is_zero;
84 isl_bool non_neg;
86 if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
87 return isl_bool_false;
89 shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
90 shift = isl_val_floor(shift);
91 is_zero = isl_val_is_zero(shift);
92 if (is_zero < 0 || is_zero) {
93 isl_val_free(shift);
94 return isl_bool_not(is_zero);
96 shift = isl_val_mul(shift, isl_val_copy(d));
97 shifted = isl_aff_copy(aff);
98 shifted = isl_aff_add_constant_val(shifted, shift);
99 non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
100 isl_aff_free(shifted);
102 return non_neg;
105 /* Given the numerator "aff" of the argument of an integer division
106 * with denominator "d", steal part of the constant term of
107 * the expression in which the integer division appears to make it
108 * non-negative over data->build->domain.
110 * In particular, the outer expression is of the form
112 * v * floor(aff/d) + cst
114 * We know that "aff" itself may attain negative values,
115 * but that aff + d*floor(cst/v) is non-negative.
116 * Find the minimal positive value that we need to add to "aff"
117 * to make it positive and adjust data->cst accordingly.
118 * That is, compute the minimal value "m" of "aff" over
119 * data->build->domain and take
121 * s = ceil(-m/d)
123 * such that
125 * aff + d * s >= 0
127 * and rewrite the expression to
129 * v * floor((aff + s*d)/d) + (cst - v*s)
131 static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
132 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
134 isl_set *domain;
135 isl_val *shift, *t;
137 domain = isl_ast_build_get_domain(data->build);
138 shift = isl_set_min_val(domain, aff);
139 isl_set_free(domain);
141 shift = isl_val_neg(shift);
142 shift = isl_val_div(shift, isl_val_copy(d));
143 shift = isl_val_ceil(shift);
145 t = isl_val_copy(shift);
146 t = isl_val_mul(t, isl_val_copy(data->v));
147 data->cst = isl_val_sub(data->cst, t);
149 shift = isl_val_mul(shift, isl_val_copy(d));
150 return isl_aff_add_constant_val(aff, shift);
153 /* Construct an expression representing the binary operation "type"
154 * (some division or modulo) applied to the expressions
155 * constructed from "aff" and "v".
157 static __isl_give isl_ast_expr *div_mod(enum isl_ast_expr_op_type type,
158 __isl_take isl_aff *aff, __isl_take isl_val *v,
159 __isl_keep isl_ast_build *build)
161 isl_ast_expr *expr1, *expr2;
163 expr1 = isl_ast_expr_from_aff(aff, build);
164 expr2 = isl_ast_expr_from_val(v);
165 return isl_ast_expr_alloc_binary(type, expr1, expr2);
168 /* Create an isl_ast_expr evaluating the div at position "pos" in data->ls.
169 * The result is simplified in terms of data->build->domain.
170 * This function may change (the sign of) data->v.
172 * data->ls is known to be non-NULL.
174 * Let the div be of the form floor(e/d).
175 * If the ast_build_prefer_pdiv option is set then we check if "e"
176 * is non-negative, so that we can generate
178 * (pdiv_q, expr(e), expr(d))
180 * instead of
182 * (fdiv_q, expr(e), expr(d))
184 * If the ast_build_prefer_pdiv option is set and
185 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
186 * If so, we can rewrite
188 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
190 * and still use pdiv_q, while changing the sign of data->v.
192 * Otherwise, we check if
194 * e + d*floor(cst/v)
196 * is non-negative and if so, replace floor(e/d) by
198 * floor((e + s*d)/d) - s
200 * with s the minimal shift that makes the argument non-negative.
202 static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
203 int pos)
205 isl_ctx *ctx = isl_local_space_get_ctx(data->ls);
206 isl_aff *aff;
207 isl_val *d;
208 enum isl_ast_expr_op_type type;
210 aff = isl_local_space_get_div(data->ls, pos);
211 d = isl_aff_get_denominator_val(aff);
212 aff = isl_aff_scale_val(aff, isl_val_copy(d));
214 type = isl_ast_expr_op_fdiv_q;
215 if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
216 isl_bool non_neg;
217 non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
218 if (non_neg >= 0 && !non_neg) {
219 isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
220 isl_val_copy(d));
221 non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
222 if (non_neg >= 0 && non_neg) {
223 data->v = isl_val_neg(data->v);
224 isl_aff_free(aff);
225 aff = opp;
226 } else
227 isl_aff_free(opp);
229 if (non_neg >= 0 && !non_neg) {
230 non_neg = is_non_neg_after_stealing(aff, d, data);
231 if (non_neg >= 0 && non_neg)
232 aff = steal_from_cst(aff, d, data);
234 if (non_neg < 0)
235 aff = isl_aff_free(aff);
236 else if (non_neg)
237 type = isl_ast_expr_op_pdiv_q;
240 return div_mod(type, aff, d, data->build);
243 /* Create an isl_ast_expr evaluating the specified dimension of data->ls.
244 * The result is simplified in terms of data->build->domain.
245 * This function may change (the sign of) data->v.
247 * The isl_ast_expr is constructed based on the type of the dimension.
248 * - divs are constructed by var_div
249 * - set variables are constructed from the iterator isl_ids in data->build
250 * - parameters are constructed from the isl_ids in data->ls
252 static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
253 enum isl_dim_type type, int pos)
255 isl_ctx *ctx = isl_local_space_get_ctx(data->ls);
256 isl_id *id;
258 if (type == isl_dim_div)
259 return var_div(data, pos);
261 if (type == isl_dim_set) {
262 id = isl_ast_build_get_iterator_id(data->build, pos);
263 return isl_ast_expr_from_id(id);
266 if (!isl_local_space_has_dim_id(data->ls, type, pos))
267 isl_die(ctx, isl_error_internal, "unnamed dimension",
268 return NULL);
269 id = isl_local_space_get_dim_id(data->ls, type, pos);
270 return isl_ast_expr_from_id(id);
273 /* Does "expr" represent the zero integer?
275 static isl_bool ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
277 if (!expr)
278 return isl_bool_error;
279 if (expr->type != isl_ast_expr_int)
280 return isl_bool_false;
281 return isl_val_is_zero(expr->u.v);
284 /* Create an expression representing the sum of "expr1" and "expr2",
285 * provided neither of the two expressions is identically zero.
287 static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
288 __isl_take isl_ast_expr *expr2)
290 if (!expr1 || !expr2)
291 goto error;
293 if (ast_expr_is_zero(expr1)) {
294 isl_ast_expr_free(expr1);
295 return expr2;
298 if (ast_expr_is_zero(expr2)) {
299 isl_ast_expr_free(expr2);
300 return expr1;
303 return isl_ast_expr_add(expr1, expr2);
304 error:
305 isl_ast_expr_free(expr1);
306 isl_ast_expr_free(expr2);
307 return NULL;
310 /* Subtract expr2 from expr1.
312 * If expr2 is zero, we simply return expr1.
313 * If expr1 is zero, we return
315 * (isl_ast_expr_op_minus, expr2)
317 * Otherwise, we return
319 * (isl_ast_expr_op_sub, expr1, expr2)
321 static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
322 __isl_take isl_ast_expr *expr2)
324 if (!expr1 || !expr2)
325 goto error;
327 if (ast_expr_is_zero(expr2)) {
328 isl_ast_expr_free(expr2);
329 return expr1;
332 if (ast_expr_is_zero(expr1)) {
333 isl_ast_expr_free(expr1);
334 return isl_ast_expr_neg(expr2);
337 return isl_ast_expr_sub(expr1, expr2);
338 error:
339 isl_ast_expr_free(expr1);
340 isl_ast_expr_free(expr2);
341 return NULL;
344 /* Return an isl_ast_expr that represents
346 * v * (aff mod d)
348 * v is assumed to be non-negative.
349 * The result is simplified in terms of build->domain.
351 static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
352 __isl_keep isl_aff *aff, __isl_keep isl_val *d,
353 __isl_keep isl_ast_build *build)
355 isl_ast_expr *expr;
356 isl_ast_expr *c;
358 if (!aff)
359 return NULL;
361 expr = div_mod(isl_ast_expr_op_pdiv_r,
362 isl_aff_copy(aff), isl_val_copy(d), build);
364 if (!isl_val_is_one(v)) {
365 c = isl_ast_expr_from_val(isl_val_copy(v));
366 expr = isl_ast_expr_mul(c, expr);
369 return expr;
372 /* Create an isl_ast_expr that scales "expr" by "v".
374 * If v is 1, we simply return expr.
375 * If v is -1, we return
377 * (isl_ast_expr_op_minus, expr)
379 * Otherwise, we return
381 * (isl_ast_expr_op_mul, expr(v), expr)
383 static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
384 __isl_take isl_val *v)
386 isl_ast_expr *c;
388 if (!expr || !v)
389 goto error;
390 if (isl_val_is_one(v)) {
391 isl_val_free(v);
392 return expr;
395 if (isl_val_is_negone(v)) {
396 isl_val_free(v);
397 expr = isl_ast_expr_neg(expr);
398 } else {
399 c = isl_ast_expr_from_val(v);
400 expr = isl_ast_expr_mul(c, expr);
403 return expr;
404 error:
405 isl_val_free(v);
406 isl_ast_expr_free(expr);
407 return NULL;
410 /* Add an expression for "*v" times the specified dimension of data->ls
411 * to expr.
412 * If the dimension is an integer division, then this function
413 * may modify data->cst in order to make the numerator non-negative.
414 * The result is simplified in terms of data->build->domain.
416 * Let e be the expression for the specified dimension,
417 * multiplied by the absolute value of "*v".
418 * If "*v" is negative, we create
420 * (isl_ast_expr_op_sub, expr, e)
422 * except when expr is trivially zero, in which case we create
424 * (isl_ast_expr_op_minus, e)
426 * instead.
428 * If "*v" is positive, we simply create
430 * (isl_ast_expr_op_add, expr, e)
433 static __isl_give isl_ast_expr *isl_ast_expr_add_term(
434 __isl_take isl_ast_expr *expr, enum isl_dim_type type, int pos,
435 __isl_take isl_val *v, struct isl_ast_add_term_data *data)
437 isl_ast_expr *term;
439 if (!expr)
440 return NULL;
442 data->v = v;
443 term = var(data, type, pos);
444 v = data->v;
446 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
447 v = isl_val_neg(v);
448 term = scale(term, v);
449 return ast_expr_sub(expr, term);
450 } else {
451 term = scale(term, v);
452 return ast_expr_add(expr, term);
456 /* Add an expression for "v" to expr.
458 static __isl_give isl_ast_expr *isl_ast_expr_add_int(
459 __isl_take isl_ast_expr *expr, __isl_take isl_val *v)
461 isl_ast_expr *expr_int;
463 if (!expr || !v)
464 goto error;
466 if (isl_val_is_zero(v)) {
467 isl_val_free(v);
468 return expr;
471 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
472 v = isl_val_neg(v);
473 expr_int = isl_ast_expr_from_val(v);
474 return ast_expr_sub(expr, expr_int);
475 } else {
476 expr_int = isl_ast_expr_from_val(v);
477 return ast_expr_add(expr, expr_int);
479 error:
480 isl_ast_expr_free(expr);
481 isl_val_free(v);
482 return NULL;
485 /* Internal data structure used inside extract_modulos.
487 * If any modulo expressions are detected in "aff", then the
488 * expression is removed from "aff" and added to either "pos" or "neg"
489 * depending on the sign of the coefficient of the modulo expression
490 * inside "aff".
492 * "add" is an expression that needs to be added to "aff" at the end of
493 * the computation. It is NULL as long as no modulos have been extracted.
495 * "i" is the position in "aff" of the div under investigation
496 * "v" is the coefficient in "aff" of the div
497 * "div" is the argument of the div, with the denominator removed
498 * "d" is the original denominator of the argument of the div
500 * "nonneg" is an affine expression that is non-negative over "build"
501 * and that can be used to extract a modulo expression from "div".
502 * In particular, if "sign" is 1, then the coefficients of "nonneg"
503 * are equal to those of "div" modulo "d". If "sign" is -1, then
504 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
505 * If "sign" is 0, then no such affine expression has been found (yet).
507 struct isl_extract_mod_data {
508 isl_ast_build *build;
509 isl_aff *aff;
511 isl_ast_expr *pos;
512 isl_ast_expr *neg;
514 isl_aff *add;
516 int i;
517 isl_val *v;
518 isl_val *d;
519 isl_aff *div;
521 isl_aff *nonneg;
522 int sign;
525 /* Does
527 * arg mod data->d
529 * represent (a special case of) a test for some linear expression
530 * being even?
532 * In particular, is it of the form
534 * (lin - 1) mod 2
538 static isl_bool is_even_test(struct isl_extract_mod_data *data,
539 __isl_keep isl_aff *arg)
541 isl_bool res;
542 isl_val *cst;
544 res = isl_val_eq_si(data->d, 2);
545 if (res < 0 || !res)
546 return res;
548 cst = isl_aff_get_constant_val(arg);
549 res = isl_val_eq_si(cst, -1);
550 isl_val_free(cst);
552 return res;
555 /* Given that data->v * div_i in data->aff is equal to
557 * f * (term - (arg mod d))
559 * with data->d * f = data->v and "arg" non-negative on data->build, add
561 * f * term
563 * to data->add and
565 * abs(f) * (arg mod d)
567 * to data->neg or data->pos depending on the sign of -f.
569 * In the special case that "arg mod d" is of the form "(lin - 1) mod 2",
570 * with "lin" some linear expression, first replace
572 * f * (term - ((lin - 1) mod 2))
574 * by
576 * -f * (1 - term - (lin mod 2))
578 * These two are equal because
580 * ((lin - 1) mod 2) + (lin mod 2) = 1
582 * Also, if "lin - 1" is non-negative, then "lin" is non-negative too.
584 static isl_stat extract_term_and_mod(struct isl_extract_mod_data *data,
585 __isl_take isl_aff *term, __isl_take isl_aff *arg)
587 isl_bool even;
588 isl_ast_expr *expr;
589 int s;
591 even = is_even_test(data, arg);
592 if (even < 0) {
593 arg = isl_aff_free(arg);
594 } else if (even) {
595 term = oppose_div_arg(term, isl_val_copy(data->d));
596 data->v = isl_val_neg(data->v);
597 arg = isl_aff_set_constant_si(arg, 0);
600 data->v = isl_val_div(data->v, isl_val_copy(data->d));
601 s = isl_val_sgn(data->v);
602 data->v = isl_val_abs(data->v);
603 expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
604 isl_aff_free(arg);
605 if (s > 0)
606 data->neg = ast_expr_add(data->neg, expr);
607 else
608 data->pos = ast_expr_add(data->pos, expr);
609 data->aff = isl_aff_set_coefficient_si(data->aff,
610 isl_dim_div, data->i, 0);
611 if (s < 0)
612 data->v = isl_val_neg(data->v);
613 term = isl_aff_scale_val(term, isl_val_copy(data->v));
615 if (!data->add)
616 data->add = term;
617 else
618 data->add = isl_aff_add(data->add, term);
619 if (!data->add)
620 return isl_stat_error;
622 return isl_stat_ok;
625 /* Given that data->v * div_i in data->aff is of the form
627 * f * d * floor(div/d)
629 * with div nonnegative on data->build, rewrite it as
631 * f * (div - (div mod d)) = f * div - f * (div mod d)
633 * and add
635 * f * div
637 * to data->add and
639 * abs(f) * (div mod d)
641 * to data->neg or data->pos depending on the sign of -f.
643 static isl_stat extract_mod(struct isl_extract_mod_data *data)
645 return extract_term_and_mod(data, isl_aff_copy(data->div),
646 isl_aff_copy(data->div));
649 /* Given that data->v * div_i in data->aff is of the form
651 * f * d * floor(div/d) (1)
653 * check if div is non-negative on data->build and, if so,
654 * extract the corresponding modulo from data->aff.
655 * If not, then check if
657 * -div + d - 1
659 * is non-negative on data->build. If so, replace (1) by
661 * -f * d * floor((-div + d - 1)/d)
663 * and extract the corresponding modulo from data->aff.
665 * This function may modify data->div.
667 static isl_stat extract_nonneg_mod(struct isl_extract_mod_data *data)
669 isl_bool mod;
671 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
672 if (mod < 0)
673 goto error;
674 if (mod)
675 return extract_mod(data);
677 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
678 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
679 if (mod < 0)
680 goto error;
681 if (mod) {
682 data->v = isl_val_neg(data->v);
683 return extract_mod(data);
686 return isl_stat_ok;
687 error:
688 data->aff = isl_aff_free(data->aff);
689 return isl_stat_error;
692 /* Does "c" have a constant term that is "too large"?
693 * Here, "too large" is fairly arbitrarily set to 1 << 15.
695 static isl_bool has_large_constant_term(__isl_keep isl_constraint *c)
697 isl_val *v;
698 int sign;
700 v = isl_val_abs(isl_constraint_get_constant_val(c));
701 if (!v)
702 return isl_bool_error;
703 sign = isl_val_cmp_si(v, 1 << 15);
704 isl_val_free(v);
705 return isl_bool_ok(sign > 0);
708 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
709 * for use in extracting a modulo expression?
711 * We currently only consider the constant term of the affine expression.
712 * In particular, we prefer the affine expression with the smallest constant
713 * term.
714 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
715 * then we would pick x >= 0
717 * More detailed heuristics could be used if it turns out that there is a need.
719 static isl_bool mod_constraint_is_simpler(struct isl_extract_mod_data *data,
720 __isl_keep isl_constraint *c)
722 isl_val *v1, *v2;
723 isl_bool simpler;
725 if (!data->nonneg)
726 return isl_bool_true;
728 v1 = isl_val_abs(isl_constraint_get_constant_val(c));
729 v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
730 simpler = isl_val_lt(v1, v2);
731 isl_val_free(v1);
732 isl_val_free(v2);
734 return simpler;
737 /* If "c" is "simpler" than data->nonneg,
738 * then replace data->nonneg by the affine expression of "c" and
739 * set data->sign to "sign".
741 static isl_stat replace_if_simpler(struct isl_extract_mod_data *data,
742 __isl_keep isl_constraint *c, int sign)
744 isl_bool simpler;
746 simpler = mod_constraint_is_simpler(data, c);
747 if (simpler < 0 || !simpler)
748 return isl_stat_non_error_bool(simpler);
750 isl_aff_free(data->nonneg);
751 data->nonneg = isl_constraint_get_aff(c);
752 data->sign = sign;
754 return isl_stat_non_null(data->nonneg);
757 /* Internal data structure used inside check_parallel_or_opposite.
759 * "data" is the information passed down from the caller.
760 * "c" is the constraint being inspected.
762 * "n" contains the number of parameters and the number of input dimensions and
763 * is set by the first call to parallel_or_opposite_scan.
764 * "parallel" is set as long as the coefficients of "c" are still potentially
765 * equal to those of data->div modulo data->d.
766 * "opposite" is set as long as the coefficients of "c" are still potentially
767 * opposite to those of data->div modulo data->d.
769 struct isl_parallel_stat {
770 struct isl_extract_mod_data *data;
771 isl_constraint *c;
773 isl_size n[2];
774 isl_bool parallel;
775 isl_bool opposite;
778 /* Should the scan of coefficients be continued?
779 * That is, are the coefficients still (potentially) equal or opposite?
781 static isl_bool parallel_or_opposite_continue(struct isl_parallel_stat *stat)
783 if (stat->parallel < 0 || stat->opposite < 0)
784 return isl_bool_error;
786 return isl_bool_ok(stat->parallel || stat->opposite);
789 /* Is coefficient "i" of type "c_type" of stat->c potentially equal or
790 * opposite to coefficient "i" of type "a_type" of stat->data->div
791 * modulo stat->data->div?
792 * In particular, are they both zero or both non-zero?
794 * Note that while the coefficients of stat->data->div can be reasonably
795 * expected not to involve any coefficients that are multiples of stat->data->d,
796 * "c" may very well involve such coefficients.
797 * This means that some cases of equal or opposite constraints can be missed
798 * this way.
800 static isl_bool parallel_or_opposite_feasible(struct isl_parallel_stat *stat,
801 enum isl_dim_type c_type, enum isl_dim_type a_type, int i)
803 isl_bool a, b;
805 a = isl_constraint_involves_dims(stat->c, c_type, i, 1);
806 b = isl_aff_involves_dims(stat->data->div, a_type, i, 1);
807 if (a < 0 || b < 0)
808 return isl_bool_error;
809 if (a != b)
810 stat->parallel = stat->opposite = isl_bool_false;
812 return parallel_or_opposite_continue(stat);
815 /* Is coefficient "i" of type "c_type" of stat->c equal or
816 * opposite to coefficient "i" of type "a_type" of stat->data->div
817 * modulo stat->data->div?
819 static isl_bool is_parallel_or_opposite(struct isl_parallel_stat *stat,
820 enum isl_dim_type c_type, enum isl_dim_type a_type, int i)
822 isl_val *v1, *v2;
824 v1 = isl_constraint_get_coefficient_val(stat->c, c_type, i);
825 v2 = isl_aff_get_coefficient_val(stat->data->div, a_type, i);
826 if (stat->parallel) {
827 v1 = isl_val_sub(v1, isl_val_copy(v2));
828 stat->parallel = isl_val_is_divisible_by(v1, stat->data->d);
829 v1 = isl_val_add(v1, isl_val_copy(v2));
831 if (stat->opposite) {
832 v1 = isl_val_add(v1, isl_val_copy(v2));
833 stat->opposite = isl_val_is_divisible_by(v1, stat->data->d);
835 isl_val_free(v1);
836 isl_val_free(v2);
838 return parallel_or_opposite_continue(stat);
841 /* Scan the coefficients of stat->c to see if they are (potentially)
842 * equal or opposite to those of stat->data->div modulo stat->data->d,
843 * calling "fn" on each coefficient.
844 * IF "init" is set, then this is the first call to this function and
845 * then stat->n is initialized.
847 static isl_bool parallel_or_opposite_scan(struct isl_parallel_stat *stat,
848 isl_bool (*fn)(struct isl_parallel_stat *stat,
849 enum isl_dim_type c_type, enum isl_dim_type a_type, int i),
850 int init)
852 enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
853 enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
854 int i, t;
856 for (t = 0; t < 2; ++t) {
857 if (init) {
858 stat->n[t] = isl_constraint_dim(stat->c, c_type[t]);
859 if (stat->n[t] < 0)
860 return isl_bool_error;
862 for (i = 0; i < stat->n[t]; ++i) {
863 isl_bool ok;
865 ok = fn(stat, c_type[t], a_type[t], i);
866 if (ok < 0 || !ok)
867 return ok;
871 return isl_bool_true;
874 /* Check if the coefficients of "c" are either equal or opposite to those
875 * of data->div modulo data->d. If so, and if "c" is "simpler" than
876 * data->nonneg, then replace data->nonneg by the affine expression of "c"
877 * and set data->sign accordingly.
879 * Both "c" and data->div are assumed not to involve any integer divisions.
881 * Before we start the actual comparison, we first quickly check if
882 * "c" and data->div have the same non-zero coefficients.
883 * If not, then we assume that "c" is not of the desired form.
885 * If the constant term is "too large", then the constraint is rejected.
886 * We do this to avoid picking up constraints that bound a variable
887 * by a very large number, say the largest or smallest possible
888 * variable in the representation of some integer type.
890 static isl_stat check_parallel_or_opposite(struct isl_extract_mod_data *data,
891 __isl_keep isl_constraint *c)
893 struct isl_parallel_stat stat = {
894 .data = data,
895 .c = c,
896 .parallel = isl_bool_true,
897 .opposite = isl_bool_true,
899 isl_bool skip, ok;
901 ok = parallel_or_opposite_scan(&stat,
902 &parallel_or_opposite_feasible, 1);
903 if (ok < 0 || !ok)
904 return isl_stat_non_error_bool(ok);
906 skip = has_large_constant_term(c);
907 if (skip < 0 || skip)
908 return isl_stat_non_error_bool(skip);
910 ok = parallel_or_opposite_scan(&stat, &is_parallel_or_opposite, 0);
911 if (ok < 0 || !ok)
912 return isl_stat_non_error_bool(ok);
914 return replace_if_simpler(data, c, stat.parallel ? 1 : -1);
917 /* Wrapper around check_parallel_or_opposite for use
918 * as a isl_basic_set_foreach_constraint callback.
920 static isl_stat check_parallel_or_opposite_wrap(__isl_take isl_constraint *c,
921 void *user)
923 struct isl_extract_mod_data *data = user;
924 isl_stat res;
926 res = check_parallel_or_opposite(data, c);
927 isl_constraint_free(c);
929 return res;
932 /* Given that data->v * div_i in data->aff is of the form
934 * f * d * floor(div/d) (1)
936 * see if we can find an expression div' that is non-negative over data->build
937 * and that is related to div through
939 * div' = div + d * e
941 * or
943 * div' = -div + d - 1 + d * e
945 * with e some affine expression.
946 * If so, we write (1) as
948 * f * div + f * (div' mod d)
950 * or
952 * -f * (-div + d - 1) - f * (div' mod d)
954 * exploiting (in the second case) the fact that
956 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
959 * We first try to find an appropriate expression for div'
960 * from the constraints of data->build->domain (which is therefore
961 * guaranteed to be non-negative on data->build), where we remove
962 * any integer divisions from the constraints and skip this step
963 * if "div" itself involves any integer divisions.
964 * If we cannot find an appropriate expression this way, then
965 * we pass control to extract_nonneg_mod where check
966 * if div or "-div + d -1" themselves happen to be
967 * non-negative on data->build.
969 * While looking for an appropriate constraint in data->build->domain,
970 * we ignore the constant term, so after finding such a constraint,
971 * we still need to fix up the constant term.
972 * In particular, if a is the constant term of "div"
973 * (or d - 1 - the constant term of "div" if data->sign < 0)
974 * and b is the constant term of the constraint, then we need to find
975 * a non-negative constant c such that
977 * b + c \equiv a mod d
979 * We therefore take
981 * c = (a - b) mod d
983 * and add it to b to obtain the constant term of div'.
984 * If this constant term is "too negative", then we add an appropriate
985 * multiple of d to make it positive.
988 * Note that the above is only a very simple heuristic for finding an
989 * appropriate expression. We could try a bit harder by also considering
990 * sums of constraints that involve disjoint sets of variables or
991 * we could consider arbitrary linear combinations of constraints,
992 * although that could potentially be much more expensive as it involves
993 * the solution of an LP problem.
995 * In particular, if v_i is a column vector representing constraint i,
996 * w represents div and e_i is the i-th unit vector, then we are looking
997 * for a solution of the constraints
999 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
1001 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
1002 * If we are not just interested in a non-negative expression, but
1003 * also in one with a minimal range, then we don't just want
1004 * c = \sum_i lambda_i v_i to be non-negative over the domain,
1005 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
1006 * that we want to minimize and we now also have to take into account
1007 * the constant terms of the constraints.
1008 * Alternatively, we could first compute the dual of the domain
1009 * and plug in the constraints on the coefficients.
1011 static isl_stat try_extract_mod(struct isl_extract_mod_data *data)
1013 isl_basic_set *hull;
1014 isl_val *v1, *v2;
1015 isl_stat r;
1016 isl_size n;
1018 if (!data->build)
1019 goto error;
1021 n = isl_aff_dim(data->div, isl_dim_div);
1022 if (n < 0)
1023 goto error;
1025 if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
1026 return extract_nonneg_mod(data);
1028 hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
1029 hull = isl_basic_set_remove_divs(hull);
1030 data->sign = 0;
1031 data->nonneg = NULL;
1032 r = isl_basic_set_foreach_constraint(hull,
1033 &check_parallel_or_opposite_wrap, data);
1034 isl_basic_set_free(hull);
1036 if (!data->sign || r < 0) {
1037 isl_aff_free(data->nonneg);
1038 if (r < 0)
1039 goto error;
1040 return extract_nonneg_mod(data);
1043 v1 = isl_aff_get_constant_val(data->div);
1044 v2 = isl_aff_get_constant_val(data->nonneg);
1045 if (data->sign < 0) {
1046 v1 = isl_val_neg(v1);
1047 v1 = isl_val_add(v1, isl_val_copy(data->d));
1048 v1 = isl_val_sub_ui(v1, 1);
1050 v1 = isl_val_sub(v1, isl_val_copy(v2));
1051 v1 = isl_val_mod(v1, isl_val_copy(data->d));
1052 v1 = isl_val_add(v1, v2);
1053 v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
1054 v2 = isl_val_ceil(v2);
1055 if (isl_val_is_neg(v2)) {
1056 v2 = isl_val_mul(v2, isl_val_copy(data->d));
1057 v1 = isl_val_sub(v1, isl_val_copy(v2));
1059 data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
1060 isl_val_free(v2);
1062 if (data->sign < 0) {
1063 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
1064 data->v = isl_val_neg(data->v);
1067 return extract_term_and_mod(data,
1068 isl_aff_copy(data->div), data->nonneg);
1069 error:
1070 data->aff = isl_aff_free(data->aff);
1071 return isl_stat_error;
1074 /* Check if "data->aff" involves any (implicit) modulo computations based
1075 * on div "data->i".
1076 * If so, remove them from aff and add expressions corresponding
1077 * to those modulo computations to data->pos and/or data->neg.
1079 * "aff" is assumed to be an integer affine expression.
1081 * In particular, check if (v * div_j) is of the form
1083 * f * m * floor(a / m)
1085 * and, if so, rewrite it as
1087 * f * (a - (a mod m)) = f * a - f * (a mod m)
1089 * and extract out -f * (a mod m).
1090 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
1091 * If f < 0, we add ((-f) * (a mod m)) to *pos.
1093 * Note that in order to represent "a mod m" as
1095 * (isl_ast_expr_op_pdiv_r, a, m)
1097 * we need to make sure that a is non-negative.
1098 * If not, we check if "-a + m - 1" is non-negative.
1099 * If so, we can rewrite
1101 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
1103 * and still extract a modulo.
1105 static int extract_modulo(struct isl_extract_mod_data *data)
1107 data->div = isl_aff_get_div(data->aff, data->i);
1108 data->d = isl_aff_get_denominator_val(data->div);
1109 if (isl_val_is_divisible_by(data->v, data->d)) {
1110 data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
1111 if (try_extract_mod(data) < 0)
1112 data->aff = isl_aff_free(data->aff);
1114 isl_aff_free(data->div);
1115 isl_val_free(data->d);
1116 return 0;
1119 /* Check if "aff" involves any (implicit) modulo computations.
1120 * If so, remove them from aff and add expressions corresponding
1121 * to those modulo computations to *pos and/or *neg.
1122 * We only do this if the option ast_build_prefer_pdiv is set.
1124 * "aff" is assumed to be an integer affine expression.
1126 * A modulo expression is of the form
1128 * a mod m = a - m * floor(a / m)
1130 * To detect them in aff, we look for terms of the form
1132 * f * m * floor(a / m)
1134 * rewrite them as
1136 * f * (a - (a mod m)) = f * a - f * (a mod m)
1138 * and extract out -f * (a mod m).
1139 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
1140 * If f < 0, we add ((-f) * (a mod m)) to *pos.
1142 static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
1143 __isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
1144 __isl_keep isl_ast_build *build)
1146 struct isl_extract_mod_data data = { build, aff, *pos, *neg };
1147 isl_ctx *ctx;
1148 isl_size n;
1150 if (!aff)
1151 return NULL;
1153 ctx = isl_aff_get_ctx(aff);
1154 if (!isl_options_get_ast_build_prefer_pdiv(ctx))
1155 return aff;
1157 n = isl_aff_dim(data.aff, isl_dim_div);
1158 if (n < 0)
1159 return isl_aff_free(aff);
1160 for (data.i = 0; data.i < n; ++data.i) {
1161 data.v = isl_aff_get_coefficient_val(data.aff,
1162 isl_dim_div, data.i);
1163 if (!data.v)
1164 return isl_aff_free(aff);
1165 if (isl_val_is_zero(data.v) ||
1166 isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
1167 isl_val_free(data.v);
1168 continue;
1170 if (extract_modulo(&data) < 0)
1171 data.aff = isl_aff_free(data.aff);
1172 isl_val_free(data.v);
1173 if (!data.aff)
1174 break;
1177 if (data.add)
1178 data.aff = isl_aff_add(data.aff, data.add);
1180 *pos = data.pos;
1181 *neg = data.neg;
1182 return data.aff;
1185 /* Call "fn" on every non-zero coefficient of "aff",
1186 * passing it in the type of dimension (in terms of the domain),
1187 * the position and the value, as long as "fn" returns isl_bool_true.
1188 * If "reverse" is set, then the coefficients are considered in reverse order
1189 * within each type.
1191 static isl_bool every_non_zero_coefficient(__isl_keep isl_aff *aff,
1192 int reverse,
1193 isl_bool (*fn)(enum isl_dim_type type, int pos, __isl_take isl_val *v,
1194 void *user),
1195 void *user)
1197 int i, j;
1198 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1199 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1200 isl_val *v;
1202 for (i = 0; i < 3; ++i) {
1203 isl_size n;
1205 n = isl_aff_dim(aff, t[i]);
1206 if (n < 0)
1207 return isl_bool_error;
1208 for (j = 0; j < n; ++j) {
1209 isl_bool ok;
1210 int pos;
1212 pos = reverse ? n - 1 - j : j;
1213 v = isl_aff_get_coefficient_val(aff, t[i], pos);
1214 ok = isl_val_is_zero(v);
1215 if (ok >= 0 && !ok)
1216 ok = fn(l[i], pos, v, user);
1217 else
1218 isl_val_free(v);
1219 if (ok < 0 || !ok)
1220 return ok;
1224 return isl_bool_true;
1227 /* Internal data structure for extract_rational.
1229 * "d" is the denominator of the original affine expression.
1230 * "ls" is its domain local space.
1231 * "rat" collects the rational part.
1233 struct isl_ast_extract_rational_data {
1234 isl_val *d;
1235 isl_local_space *ls;
1237 isl_aff *rat;
1240 /* Given a non-zero term in an affine expression equal to "v" times
1241 * the variable of type "type" at position "pos",
1242 * add it to data->rat if "v" is not a multiple of data->d.
1244 static isl_bool add_rational(enum isl_dim_type type, int pos,
1245 __isl_take isl_val *v, void *user)
1247 struct isl_ast_extract_rational_data *data = user;
1248 isl_aff *rat;
1250 if (isl_val_is_divisible_by(v, data->d)) {
1251 isl_val_free(v);
1252 return isl_bool_true;
1254 rat = isl_aff_var_on_domain(isl_local_space_copy(data->ls), type, pos);
1255 rat = isl_aff_scale_val(rat, v);
1256 data->rat = isl_aff_add(data->rat, rat);
1257 return isl_bool_true;
1260 /* Check if aff involves any non-integer coefficients.
1261 * If so, split aff into
1263 * aff = aff1 + (aff2 / d)
1265 * with both aff1 and aff2 having only integer coefficients.
1266 * Return aff1 and add (aff2 / d) to *expr.
1268 static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
1269 __isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
1271 struct isl_ast_extract_rational_data data = { NULL };
1272 isl_ast_expr *rat_expr;
1273 isl_val *v;
1275 if (!aff)
1276 return NULL;
1277 data.d = isl_aff_get_denominator_val(aff);
1278 if (!data.d)
1279 goto error;
1280 if (isl_val_is_one(data.d)) {
1281 isl_val_free(data.d);
1282 return aff;
1285 aff = isl_aff_scale_val(aff, isl_val_copy(data.d));
1287 data.ls = isl_aff_get_domain_local_space(aff);
1288 data.rat = isl_aff_zero_on_domain(isl_local_space_copy(data.ls));
1290 if (every_non_zero_coefficient(aff, 0, &add_rational, &data) < 0)
1291 goto error;
1293 v = isl_aff_get_constant_val(aff);
1294 if (isl_val_is_divisible_by(v, data.d)) {
1295 isl_val_free(v);
1296 } else {
1297 isl_aff *rat_0;
1299 rat_0 = isl_aff_val_on_domain(isl_local_space_copy(data.ls), v);
1300 data.rat = isl_aff_add(data.rat, rat_0);
1303 isl_local_space_free(data.ls);
1305 aff = isl_aff_sub(aff, isl_aff_copy(data.rat));
1306 aff = isl_aff_scale_down_val(aff, isl_val_copy(data.d));
1308 rat_expr = div_mod(isl_ast_expr_op_div, data.rat, data.d, build);
1309 *expr = ast_expr_add(*expr, rat_expr);
1311 return aff;
1312 error:
1313 isl_aff_free(data.rat);
1314 isl_local_space_free(data.ls);
1315 isl_aff_free(aff);
1316 isl_val_free(data.d);
1317 return NULL;
1320 /* Internal data structure for isl_ast_expr_from_aff.
1322 * "term" contains the information for adding a term.
1323 * "expr" collects the results.
1325 struct isl_ast_add_terms_data {
1326 struct isl_ast_add_term_data *term;
1327 isl_ast_expr *expr;
1330 /* Given a non-zero term in an affine expression equal to "v" times
1331 * the variable of type "type" at position "pos",
1332 * add the corresponding AST expression to data->expr.
1334 static isl_bool add_term(enum isl_dim_type type, int pos,
1335 __isl_take isl_val *v, void *user)
1337 struct isl_ast_add_terms_data *data = user;
1339 data->expr =
1340 isl_ast_expr_add_term(data->expr, type, pos, v, data->term);
1342 return isl_bool_true;
1345 /* Add terms to "expr" for each variable in "aff".
1346 * The result is simplified in terms of data->build->domain.
1348 static __isl_give isl_ast_expr *add_terms(__isl_take isl_ast_expr *expr,
1349 __isl_keep isl_aff *aff, struct isl_ast_add_term_data *data)
1351 struct isl_ast_add_terms_data terms_data = { data, expr };
1353 if (every_non_zero_coefficient(aff, 0, &add_term, &terms_data) < 0)
1354 return isl_ast_expr_free(terms_data.expr);
1356 return terms_data.expr;
1359 /* Construct an isl_ast_expr that evaluates the affine expression "aff".
1360 * The result is simplified in terms of build->domain.
1362 * We first extract hidden modulo computations from the affine expression
1363 * and then add terms for each variable with a non-zero coefficient.
1364 * Finally, if the affine expression has a non-trivial denominator,
1365 * we divide the resulting isl_ast_expr by this denominator.
1367 __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
1368 __isl_keep isl_ast_build *build)
1370 isl_ctx *ctx = isl_aff_get_ctx(aff);
1371 isl_ast_expr *expr, *expr_neg;
1372 struct isl_ast_add_term_data term_data;
1374 if (!aff)
1375 return NULL;
1377 expr = isl_ast_expr_alloc_int_si(ctx, 0);
1378 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1380 aff = extract_rational(aff, &expr, build);
1382 aff = extract_modulos(aff, &expr, &expr_neg, build);
1383 expr = ast_expr_sub(expr, expr_neg);
1385 term_data.build = build;
1386 term_data.ls = isl_aff_get_domain_local_space(aff);
1387 term_data.cst = isl_aff_get_constant_val(aff);
1388 expr = add_terms(expr, aff, &term_data);
1390 expr = isl_ast_expr_add_int(expr, term_data.cst);
1391 isl_local_space_free(term_data.ls);
1393 isl_aff_free(aff);
1394 return expr;
1397 /* Internal data structure for coefficients_of_sign.
1399 * "sign" is the sign of the coefficients that should be retained.
1400 * "aff" is the affine expression of which some coefficients are zeroed out.
1402 struct isl_ast_coefficients_of_sign_data {
1403 int sign;
1404 isl_aff *aff;
1407 /* Clear the specified coefficient of data->aff if the value "v"
1408 * does not have the required sign.
1410 static isl_bool clear_opposite_sign(enum isl_dim_type type, int pos,
1411 __isl_take isl_val *v, void *user)
1413 struct isl_ast_coefficients_of_sign_data *data = user;
1415 if (type == isl_dim_set)
1416 type = isl_dim_in;
1417 if (data->sign * isl_val_sgn(v) < 0)
1418 data->aff = isl_aff_set_coefficient_si(data->aff, type, pos, 0);
1419 isl_val_free(v);
1421 return isl_bool_true;
1424 /* Extract the coefficients of "aff" (excluding the constant term)
1425 * that have the given sign.
1427 * Take a copy of "aff" and clear the coefficients that do not have
1428 * the required sign.
1429 * Consider the coefficients in reverse order since clearing
1430 * the coefficient of an integer division in data.aff
1431 * could result in the removal of that integer division from data.aff,
1432 * changing the positions of all subsequent integer divisions of data.aff,
1433 * while those of "aff" remain the same.
1435 static __isl_give isl_aff *coefficients_of_sign(__isl_take isl_aff *aff,
1436 int sign)
1438 struct isl_ast_coefficients_of_sign_data data;
1440 data.sign = sign;
1441 data.aff = isl_aff_copy(aff);
1442 if (every_non_zero_coefficient(aff, 1, &clear_opposite_sign, &data) < 0)
1443 data.aff = isl_aff_free(data.aff);
1444 isl_aff_free(aff);
1446 data.aff = isl_aff_set_constant_si(data.aff, 0);
1448 return data.aff;
1451 /* Should the constant term "v" be considered positive?
1453 * A positive constant will be added to "pos" by the caller,
1454 * while a negative constant will be added to "neg".
1455 * If either "pos" or "neg" is exactly zero, then we prefer
1456 * to add the constant "v" to that side, irrespective of the sign of "v".
1457 * This results in slightly shorter expressions and may reduce the risk
1458 * of overflows.
1460 static isl_bool constant_is_considered_positive(__isl_keep isl_val *v,
1461 __isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
1463 isl_bool zero;
1465 zero = ast_expr_is_zero(pos);
1466 if (zero < 0 || zero)
1467 return zero;
1468 zero = ast_expr_is_zero(neg);
1469 if (zero < 0 || zero)
1470 return isl_bool_not(zero);
1471 return isl_val_is_pos(v);
1474 /* Check if the equality
1476 * aff = 0
1478 * represents a stride constraint on the integer division "pos".
1480 * In particular, if the integer division "pos" is equal to
1482 * floor(e/d)
1484 * then check if aff is equal to
1486 * e - d floor(e/d)
1488 * or its opposite.
1490 * If so, the equality is exactly
1492 * e mod d = 0
1494 * Note that in principle we could also accept
1496 * e - d floor(e'/d)
1498 * where e and e' differ by a constant.
1500 static isl_bool is_stride_constraint(__isl_keep isl_aff *aff, int pos)
1502 isl_aff *div;
1503 isl_val *c, *d;
1504 isl_bool eq;
1506 div = isl_aff_get_div(aff, pos);
1507 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1508 d = isl_aff_get_denominator_val(div);
1509 eq = isl_val_abs_eq(c, d);
1510 if (eq >= 0 && eq) {
1511 aff = isl_aff_copy(aff);
1512 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1513 div = isl_aff_scale_val(div, d);
1514 if (isl_val_is_pos(c))
1515 div = isl_aff_neg(div);
1516 eq = isl_aff_plain_is_equal(div, aff);
1517 isl_aff_free(aff);
1518 } else
1519 isl_val_free(d);
1520 isl_val_free(c);
1521 isl_aff_free(div);
1523 return eq;
1526 /* Are all coefficients of "aff" (zero or) negative?
1528 static isl_bool all_negative_coefficients(__isl_keep isl_aff *aff)
1530 int i;
1531 isl_size n;
1533 n = isl_aff_dim(aff, isl_dim_param);
1534 if (n < 0)
1535 return isl_bool_error;
1536 for (i = 0; i < n; ++i)
1537 if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
1538 return isl_bool_false;
1540 n = isl_aff_dim(aff, isl_dim_in);
1541 if (n < 0)
1542 return isl_bool_error;
1543 for (i = 0; i < n; ++i)
1544 if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
1545 return isl_bool_false;
1547 return isl_bool_true;
1550 /* Give an equality of the form
1552 * aff = e - d floor(e/d) = 0
1554 * or
1556 * aff = -e + d floor(e/d) = 0
1558 * with the integer division "pos" equal to floor(e/d),
1559 * construct the AST expression
1561 * (isl_ast_expr_op_eq,
1562 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1564 * If e only has negative coefficients, then construct
1566 * (isl_ast_expr_op_eq,
1567 * (isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
1569 * instead.
1571 static __isl_give isl_ast_expr *extract_stride_constraint(
1572 __isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
1574 isl_bool all_neg;
1575 isl_ctx *ctx;
1576 isl_val *c;
1577 isl_ast_expr *expr, *cst;
1579 if (!aff)
1580 return NULL;
1582 ctx = isl_aff_get_ctx(aff);
1584 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1585 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1587 all_neg = all_negative_coefficients(aff);
1588 if (all_neg < 0)
1589 aff = isl_aff_free(aff);
1590 else if (all_neg)
1591 aff = isl_aff_neg(aff);
1593 cst = isl_ast_expr_from_val(isl_val_abs(c));
1594 expr = isl_ast_expr_from_aff(aff, build);
1596 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r, expr, cst);
1597 cst = isl_ast_expr_alloc_int_si(ctx, 0);
1598 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_eq, expr, cst);
1600 return expr;
1603 /* Construct an isl_ast_expr evaluating
1605 * "expr_pos" == "expr_neg", if "eq" is set, or
1606 * "expr_pos" >= "expr_neg", if "eq" is not set
1608 * However, if "expr_pos" is an integer constant (and "expr_neg" is not),
1609 * then the two expressions are interchanged. This ensures that,
1610 * e.g., "i <= 5" is constructed rather than "5 >= i".
1612 static __isl_give isl_ast_expr *construct_constraint_expr(int eq,
1613 __isl_take isl_ast_expr *expr_pos, __isl_take isl_ast_expr *expr_neg)
1615 isl_ast_expr *expr;
1616 enum isl_ast_expr_op_type type;
1617 int pos_is_cst, neg_is_cst;
1619 pos_is_cst = isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int;
1620 neg_is_cst = isl_ast_expr_get_type(expr_neg) == isl_ast_expr_int;
1621 if (pos_is_cst && !neg_is_cst) {
1622 type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_le;
1623 expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
1624 } else {
1625 type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_ge;
1626 expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
1629 return expr;
1632 /* Construct an isl_ast_expr that evaluates the condition "aff" == 0
1633 * (if "eq" is set) or "aff" >= 0 (otherwise).
1634 * The result is simplified in terms of build->domain.
1636 * We first extract hidden modulo computations from "aff"
1637 * and then collect all the terms with a positive coefficient in cons_pos
1638 * and the terms with a negative coefficient in cons_neg.
1640 * The result is then essentially of the form
1642 * (isl_ast_expr_op_ge, expr(pos), expr(-neg)))
1644 * or
1646 * (isl_ast_expr_op_eq, expr(pos), expr(-neg)))
1648 * However, if there are no terms with positive coefficients (or no terms
1649 * with negative coefficients), then the constant term is added to "pos"
1650 * (or "neg"), ignoring the sign of the constant term.
1652 static __isl_give isl_ast_expr *isl_ast_expr_from_constraint_no_stride(
1653 int eq, __isl_take isl_aff *aff, __isl_keep isl_ast_build *build)
1655 isl_bool cst_is_pos;
1656 isl_ctx *ctx;
1657 isl_ast_expr *expr_pos;
1658 isl_ast_expr *expr_neg;
1659 isl_aff *aff_pos, *aff_neg;
1660 struct isl_ast_add_term_data data;
1662 ctx = isl_aff_get_ctx(aff);
1663 expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
1664 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1666 aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
1668 data.build = build;
1669 data.ls = isl_aff_get_domain_local_space(aff);
1670 data.cst = isl_aff_get_constant_val(aff);
1672 aff_pos = coefficients_of_sign(isl_aff_copy(aff), 1);
1673 aff_neg = isl_aff_neg(coefficients_of_sign(aff, -1));
1675 expr_pos = add_terms(expr_pos, aff_pos, &data);
1676 data.cst = isl_val_neg(data.cst);
1677 expr_neg = add_terms(expr_neg, aff_neg, &data);
1678 data.cst = isl_val_neg(data.cst);
1679 isl_local_space_free(data.ls);
1681 cst_is_pos =
1682 constant_is_considered_positive(data.cst, expr_pos, expr_neg);
1683 if (cst_is_pos < 0)
1684 expr_pos = isl_ast_expr_free(expr_pos);
1686 if (cst_is_pos) {
1687 expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
1688 } else {
1689 data.cst = isl_val_neg(data.cst);
1690 expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
1693 isl_aff_free(aff_pos);
1694 isl_aff_free(aff_neg);
1695 return construct_constraint_expr(eq, expr_pos, expr_neg);
1698 /* Construct an isl_ast_expr that evaluates the condition "constraint".
1699 * The result is simplified in terms of build->domain.
1701 * We first check if the constraint is an equality of the form
1703 * e - d floor(e/d) = 0
1705 * i.e.,
1707 * e mod d = 0
1709 * If so, we convert it to
1711 * (isl_ast_expr_op_eq,
1712 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1714 static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
1715 __isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
1717 int i;
1718 isl_size n;
1719 isl_aff *aff;
1720 isl_bool eq;
1722 aff = isl_constraint_get_aff(constraint);
1723 eq = isl_constraint_is_equality(constraint);
1724 isl_constraint_free(constraint);
1725 if (eq < 0)
1726 goto error;
1728 n = isl_aff_dim(aff, isl_dim_div);
1729 if (n < 0)
1730 aff = isl_aff_free(aff);
1731 if (eq && n > 0)
1732 for (i = 0; i < n; ++i) {
1733 isl_bool is_stride;
1734 is_stride = is_stride_constraint(aff, i);
1735 if (is_stride < 0)
1736 goto error;
1737 if (is_stride)
1738 return extract_stride_constraint(aff, i, build);
1741 return isl_ast_expr_from_constraint_no_stride(eq, aff, build);
1742 error:
1743 isl_aff_free(aff);
1744 return NULL;
1747 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1748 * as a callback to isl_constraint_list_sort.
1749 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1750 * apart, then use isl_constraint_plain_cmp instead.
1752 static int cmp_constraint(__isl_keep isl_constraint *a,
1753 __isl_keep isl_constraint *b, void *user)
1755 int cmp;
1757 cmp = isl_constraint_cmp_last_non_zero(a, b);
1758 if (cmp != 0)
1759 return cmp;
1760 return isl_constraint_plain_cmp(a, b);
1763 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1764 * The result is simplified in terms of build->domain.
1766 * If "bset" is not bounded by any constraint, then we construct
1767 * the expression "1", i.e., "true".
1769 * Otherwise, we sort the constraints, putting constraints that involve
1770 * integer divisions after those that do not, and construct an "and"
1771 * of the ast expressions of the individual constraints.
1773 * Each constraint is added to the generated constraints of the build
1774 * after it has been converted to an AST expression so that it can be used
1775 * to simplify the following constraints. This may change the truth value
1776 * of subsequent constraints that do not satisfy the earlier constraints,
1777 * but this does not affect the outcome of the conjunction as it is
1778 * only true if all the conjuncts are true (no matter in what order
1779 * they are evaluated). In particular, the constraints that do not
1780 * involve integer divisions may serve to simplify some constraints
1781 * that do involve integer divisions.
1783 __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
1784 __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
1786 int i;
1787 isl_size n;
1788 isl_constraint *c;
1789 isl_constraint_list *list;
1790 isl_ast_expr *res;
1791 isl_set *set;
1793 list = isl_basic_set_get_constraint_list(bset);
1794 isl_basic_set_free(bset);
1795 list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
1796 n = isl_constraint_list_n_constraint(list);
1797 if (n < 0)
1798 build = NULL;
1799 if (n == 0) {
1800 isl_ctx *ctx = isl_constraint_list_get_ctx(list);
1801 isl_constraint_list_free(list);
1802 return isl_ast_expr_alloc_int_si(ctx, 1);
1805 build = isl_ast_build_copy(build);
1807 c = isl_constraint_list_get_constraint(list, 0);
1808 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1809 set = isl_set_from_basic_set(bset);
1810 res = isl_ast_expr_from_constraint(c, build);
1811 build = isl_ast_build_restrict_generated(build, set);
1813 for (i = 1; i < n; ++i) {
1814 isl_ast_expr *expr;
1816 c = isl_constraint_list_get_constraint(list, i);
1817 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1818 set = isl_set_from_basic_set(bset);
1819 expr = isl_ast_expr_from_constraint(c, build);
1820 build = isl_ast_build_restrict_generated(build, set);
1821 res = isl_ast_expr_and(res, expr);
1824 isl_constraint_list_free(list);
1825 isl_ast_build_free(build);
1826 return res;
1829 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1830 * The result is simplified in terms of build->domain.
1832 * If "set" is an (obviously) empty set, then return the expression "0".
1834 * If there are multiple disjuncts in the description of the set,
1835 * then subsequent disjuncts are simplified in a context where
1836 * the previous disjuncts have been removed from build->domain.
1837 * In particular, constraints that ensure that there is no overlap
1838 * with these previous disjuncts, can be removed.
1839 * This is mostly useful for disjuncts that are only defined by
1840 * a single constraint (relative to the build domain) as the opposite
1841 * of that single constraint can then be removed from the other disjuncts.
1842 * In order not to increase the number of disjuncts in the build domain
1843 * after subtracting the previous disjuncts of "set", the simple hull
1844 * is computed after taking the difference with each of these disjuncts.
1845 * This means that constraints that prevent overlap with a union
1846 * of multiple previous disjuncts are not removed.
1848 * "set" lives in the internal schedule space.
1850 __isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
1851 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1853 int i;
1854 isl_size n;
1855 isl_basic_set *bset;
1856 isl_basic_set_list *list;
1857 isl_set *domain;
1858 isl_ast_expr *res;
1860 list = isl_set_get_basic_set_list(set);
1861 isl_set_free(set);
1863 n = isl_basic_set_list_n_basic_set(list);
1864 if (n < 0)
1865 build = NULL;
1866 if (n == 0) {
1867 isl_ctx *ctx = isl_ast_build_get_ctx(build);
1868 isl_basic_set_list_free(list);
1869 return isl_ast_expr_from_val(isl_val_zero(ctx));
1872 domain = isl_ast_build_get_domain(build);
1874 bset = isl_basic_set_list_get_basic_set(list, 0);
1875 set = isl_set_from_basic_set(isl_basic_set_copy(bset));
1876 res = isl_ast_build_expr_from_basic_set(build, bset);
1878 for (i = 1; i < n; ++i) {
1879 isl_ast_expr *expr;
1880 isl_set *rest;
1882 rest = isl_set_subtract(isl_set_copy(domain), set);
1883 rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
1884 domain = isl_set_intersect(domain, rest);
1885 bset = isl_basic_set_list_get_basic_set(list, i);
1886 set = isl_set_from_basic_set(isl_basic_set_copy(bset));
1887 bset = isl_basic_set_gist(bset,
1888 isl_set_simple_hull(isl_set_copy(domain)));
1889 expr = isl_ast_build_expr_from_basic_set(build, bset);
1890 res = isl_ast_expr_or(res, expr);
1893 isl_set_free(domain);
1894 isl_set_free(set);
1895 isl_basic_set_list_free(list);
1896 return res;
1899 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1900 * The result is simplified in terms of build->domain.
1902 * If "set" is an (obviously) empty set, then return the expression "0".
1904 * "set" lives in the external schedule space.
1906 * The internal AST expression generation assumes that there are
1907 * no unknown divs, so make sure an explicit representation is available.
1908 * Since the set comes from the outside, it may have constraints that
1909 * are redundant with respect to the build domain. Remove them first.
1911 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
1912 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1914 isl_bool needs_map;
1916 needs_map = isl_ast_build_need_schedule_map(build);
1917 if (needs_map < 0) {
1918 set = isl_set_free(set);
1919 } else if (needs_map) {
1920 isl_multi_aff *ma;
1921 ma = isl_ast_build_get_schedule_map_multi_aff(build);
1922 set = isl_set_preimage_multi_aff(set, ma);
1925 set = isl_set_compute_divs(set);
1926 set = isl_ast_build_compute_gist(build, set);
1927 return isl_ast_build_expr_from_set_internal(build, set);
1930 /* State of data about previous pieces in
1931 * isl_ast_build_expr_from_pw_aff_internal.
1933 * isl_state_none: no data about previous pieces
1934 * isl_state_single: data about a single previous piece
1935 * isl_state_min: data represents minimum of several pieces
1936 * isl_state_max: data represents maximum of several pieces
1938 enum isl_from_pw_aff_state {
1939 isl_state_none,
1940 isl_state_single,
1941 isl_state_min,
1942 isl_state_max
1945 /* Internal date structure representing a single piece in the input of
1946 * isl_ast_build_expr_from_pw_aff_internal.
1948 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1949 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1950 * single previous subpiece.
1951 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1952 * a sequence of several previous subpieces that are equal to the minimum
1953 * of the entries in "aff_list" over the union of "set_list"
1954 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1955 * a sequence of several previous subpieces that are equal to the maximum
1956 * of the entries in "aff_list" over the union of "set_list"
1958 * During the construction of the pieces, "set" is NULL.
1959 * After the construction, "set" is set to the union of the elements
1960 * in "set_list", at which point "set_list" is set to NULL.
1962 struct isl_from_pw_aff_piece {
1963 enum isl_from_pw_aff_state state;
1964 isl_set *set;
1965 isl_set_list *set_list;
1966 isl_aff_list *aff_list;
1969 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1971 * "build" specifies the domain against which the result is simplified.
1972 * "dom" is the domain of the entire isl_pw_aff.
1974 * "n" is the number of pieces constructed already.
1975 * In particular, during the construction of the pieces, "n" points to
1976 * the piece that is being constructed. After the construction of the
1977 * pieces, "n" is set to the total number of pieces.
1978 * "max" is the total number of allocated entries.
1979 * "p" contains the individual pieces.
1981 struct isl_from_pw_aff_data {
1982 isl_ast_build *build;
1983 isl_set *dom;
1985 int n;
1986 int max;
1987 struct isl_from_pw_aff_piece *p;
1990 /* Initialize "data" based on "build" and "pa".
1992 static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
1993 __isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
1995 isl_size n;
1996 isl_ctx *ctx;
1998 ctx = isl_pw_aff_get_ctx(pa);
1999 n = isl_pw_aff_n_piece(pa);
2000 if (n < 0)
2001 return isl_stat_error;
2002 if (n == 0)
2003 isl_die(ctx, isl_error_invalid,
2004 "cannot handle void expression", return isl_stat_error);
2005 data->max = n;
2006 data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
2007 if (!data->p)
2008 return isl_stat_error;
2009 data->build = build;
2010 data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2011 data->n = 0;
2013 return isl_stat_ok;
2016 /* Free all memory allocated for "data".
2018 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
2020 int i;
2022 isl_set_free(data->dom);
2023 if (!data->p)
2024 return;
2026 for (i = 0; i < data->max; ++i) {
2027 isl_set_free(data->p[i].set);
2028 isl_set_list_free(data->p[i].set_list);
2029 isl_aff_list_free(data->p[i].aff_list);
2031 free(data->p);
2034 /* Initialize the current entry of "data" to an unused piece.
2036 static void set_none(struct isl_from_pw_aff_data *data)
2038 data->p[data->n].state = isl_state_none;
2039 data->p[data->n].set_list = NULL;
2040 data->p[data->n].aff_list = NULL;
2043 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
2045 static void set_single(struct isl_from_pw_aff_data *data,
2046 __isl_take isl_set *set, __isl_take isl_aff *aff)
2048 data->p[data->n].state = isl_state_single;
2049 data->p[data->n].set_list = isl_set_list_from_set(set);
2050 data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
2053 /* Extend the current entry of "data" with "set" and "aff"
2054 * as a minimum expression.
2056 static isl_stat extend_min(struct isl_from_pw_aff_data *data,
2057 __isl_take isl_set *set, __isl_take isl_aff *aff)
2059 int n = data->n;
2060 data->p[n].state = isl_state_min;
2061 data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
2062 data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
2064 if (!data->p[n].set_list || !data->p[n].aff_list)
2065 return isl_stat_error;
2066 return isl_stat_ok;
2069 /* Extend the current entry of "data" with "set" and "aff"
2070 * as a maximum expression.
2072 static isl_stat extend_max(struct isl_from_pw_aff_data *data,
2073 __isl_take isl_set *set, __isl_take isl_aff *aff)
2075 int n = data->n;
2076 data->p[n].state = isl_state_max;
2077 data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
2078 data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
2080 if (!data->p[n].set_list || !data->p[n].aff_list)
2081 return isl_stat_error;
2082 return isl_stat_ok;
2085 /* Extend the domain of the current entry of "data", which is assumed
2086 * to contain a single subpiece, with "set". If "replace" is set,
2087 * then also replace the affine function by "aff". Otherwise,
2088 * simply free "aff".
2090 static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
2091 __isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
2093 int n = data->n;
2094 isl_set *set_n;
2096 set_n = isl_set_list_get_set(data->p[n].set_list, 0);
2097 set_n = isl_set_union(set_n, set);
2098 data->p[n].set_list =
2099 isl_set_list_set_set(data->p[n].set_list, 0, set_n);
2101 if (replace)
2102 data->p[n].aff_list =
2103 isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
2104 else
2105 isl_aff_free(aff);
2107 if (!data->p[n].set_list || !data->p[n].aff_list)
2108 return isl_stat_error;
2109 return isl_stat_ok;
2112 /* Construct an isl_ast_expr from "list" within "build".
2113 * If "state" is isl_state_single, then "list" contains a single entry and
2114 * an isl_ast_expr is constructed for that entry.
2115 * Otherwise a min or max expression is constructed from "list"
2116 * depending on "state".
2118 static __isl_give isl_ast_expr *ast_expr_from_aff_list(
2119 __isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
2120 __isl_keep isl_ast_build *build)
2122 int i;
2123 isl_size n;
2124 isl_aff *aff;
2125 isl_ast_expr *expr = NULL;
2126 enum isl_ast_expr_op_type op_type;
2128 if (state == isl_state_single) {
2129 aff = isl_aff_list_get_aff(list, 0);
2130 isl_aff_list_free(list);
2131 return isl_ast_expr_from_aff(aff, build);
2133 n = isl_aff_list_n_aff(list);
2134 if (n < 0)
2135 goto error;
2136 op_type = state == isl_state_min ? isl_ast_expr_op_min
2137 : isl_ast_expr_op_max;
2138 expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
2140 for (i = 0; i < n; ++i) {
2141 isl_ast_expr *expr_i;
2143 aff = isl_aff_list_get_aff(list, i);
2144 expr_i = isl_ast_expr_from_aff(aff, build);
2145 expr = isl_ast_expr_op_add_arg(expr, expr_i);
2148 isl_aff_list_free(list);
2149 return expr;
2150 error:
2151 isl_aff_list_free(list);
2152 isl_ast_expr_free(expr);
2153 return NULL;
2156 /* Extend the list of expressions in "next" to take into account
2157 * the piece at position "pos" in "data", allowing for a further extension
2158 * for the next piece(s).
2159 * In particular, "next" is extended with a select operation that selects
2160 * an isl_ast_expr corresponding to data->aff_list on data->set and
2161 * to an expression that will be filled in by later calls.
2162 * Return a pointer to the arguments of this select operation.
2163 * Afterwards, the state of "data" is set to isl_state_none.
2165 * The constraints of data->set are added to the generated
2166 * constraints of the build such that they can be exploited to simplify
2167 * the AST expression constructed from data->aff_list.
2169 static isl_ast_expr_list **add_intermediate_piece(
2170 struct isl_from_pw_aff_data *data,
2171 int pos, isl_ast_expr_list **next)
2173 isl_ctx *ctx;
2174 isl_ast_build *build;
2175 isl_ast_expr *ternary, *arg;
2176 isl_set *set, *gist;
2178 set = data->p[pos].set;
2179 data->p[pos].set = NULL;
2180 ctx = isl_ast_build_get_ctx(data->build);
2181 ternary = isl_ast_expr_alloc_op(ctx, isl_ast_expr_op_select, 3);
2182 gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
2183 arg = isl_ast_build_expr_from_set_internal(data->build, gist);
2184 ternary = isl_ast_expr_op_add_arg(ternary, arg);
2185 build = isl_ast_build_copy(data->build);
2186 build = isl_ast_build_restrict_generated(build, set);
2187 arg = ast_expr_from_aff_list(data->p[pos].aff_list,
2188 data->p[pos].state, build);
2189 data->p[pos].aff_list = NULL;
2190 isl_ast_build_free(build);
2191 ternary = isl_ast_expr_op_add_arg(ternary, arg);
2192 data->p[pos].state = isl_state_none;
2193 if (!ternary)
2194 return NULL;
2196 *next = isl_ast_expr_list_add(*next, ternary);
2197 return &ternary->u.op.args;
2200 /* Extend the list of expressions in "next" to take into account
2201 * the final piece, located at position "pos" in "data".
2202 * In particular, "next" is extended with an expression
2203 * to evaluate data->aff_list and the domain is ignored.
2204 * Return isl_stat_ok on success and isl_stat_error on failure.
2206 * The constraints of data->set are however added to the generated
2207 * constraints of the build such that they can be exploited to simplify
2208 * the AST expression constructed from data->aff_list.
2210 static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
2211 int pos, isl_ast_expr_list **next)
2213 isl_ast_build *build;
2214 isl_ast_expr *last;
2216 if (data->p[pos].state == isl_state_none)
2217 isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
2218 "cannot handle void expression", return isl_stat_error);
2220 build = isl_ast_build_copy(data->build);
2221 build = isl_ast_build_restrict_generated(build, data->p[pos].set);
2222 data->p[pos].set = NULL;
2223 last = ast_expr_from_aff_list(data->p[pos].aff_list,
2224 data->p[pos].state, build);
2225 *next = isl_ast_expr_list_add(*next, last);
2226 data->p[pos].aff_list = NULL;
2227 isl_ast_build_free(build);
2228 data->p[pos].state = isl_state_none;
2229 if (!*next)
2230 return isl_stat_error;
2232 return isl_stat_ok;
2235 /* Return -1 if the piece "p1" should be sorted before "p2"
2236 * and 1 if it should be sorted after "p2".
2237 * Return 0 if they do not need to be sorted in a specific order.
2239 * Pieces are sorted according to the number of disjuncts
2240 * in their domains.
2242 static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
2244 const struct isl_from_pw_aff_piece *piece1 = p1;
2245 const struct isl_from_pw_aff_piece *piece2 = p2;
2246 isl_size n1, n2;
2248 n1 = isl_set_n_basic_set(piece1->set);
2249 n2 = isl_set_n_basic_set(piece2->set);
2251 return n1 - n2;
2254 /* Construct an isl_ast_expr from the pieces in "data".
2255 * Return the result or NULL on failure.
2257 * When this function is called, data->n points to the current piece.
2258 * If this is an effective piece, then first increment data->n such
2259 * that data->n contains the number of pieces.
2260 * The "set_list" fields are subsequently replaced by the corresponding
2261 * "set" fields, after which the pieces are sorted according to
2262 * the number of disjuncts in these "set" fields.
2264 * Construct intermediate AST expressions for the initial pieces and
2265 * finish off with the final pieces.
2267 * Any piece that is not the very first is added to the list of arguments
2268 * of the previously constructed piece.
2269 * In order not to have to special case the first piece,
2270 * an extra list is created to hold the final result.
2272 static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
2274 int i;
2275 isl_ctx *ctx;
2276 isl_ast_expr_list *res_list;
2277 isl_ast_expr_list **next = &res_list;
2278 isl_ast_expr *res;
2280 if (data->p[data->n].state != isl_state_none)
2281 data->n++;
2282 ctx = isl_ast_build_get_ctx(data->build);
2283 if (data->n == 0)
2284 isl_die(ctx, isl_error_invalid,
2285 "cannot handle void expression", return NULL);
2287 for (i = 0; i < data->n; ++i) {
2288 data->p[i].set = isl_set_list_union(data->p[i].set_list);
2289 if (data->p[i].state != isl_state_single)
2290 data->p[i].set = isl_set_coalesce(data->p[i].set);
2291 data->p[i].set_list = NULL;
2294 if (isl_sort(data->p, data->n, sizeof(data->p[0]),
2295 &sort_pieces_cmp, NULL) < 0)
2296 return NULL;
2298 res_list = isl_ast_expr_list_alloc(ctx, 1);
2299 if (!res_list)
2300 return NULL;
2301 for (i = 0; i + 1 < data->n; ++i) {
2302 next = add_intermediate_piece(data, i, next);
2303 if (!next)
2304 goto error;
2307 if (add_last_piece(data, data->n - 1, next) < 0)
2308 goto error;
2310 res = isl_ast_expr_list_get_at(res_list, 0);
2311 isl_ast_expr_list_free(res_list);
2312 return res;
2313 error:
2314 isl_ast_expr_list_free(res_list);
2315 return NULL;
2318 /* Is the domain of the current entry of "data", which is assumed
2319 * to contain a single subpiece, a subset of "set"?
2321 static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
2322 __isl_keep isl_set *set)
2324 isl_bool subset;
2325 isl_set *set_n;
2327 set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
2328 subset = isl_set_is_subset(set_n, set);
2329 isl_set_free(set_n);
2331 return subset;
2334 /* Is "aff" a rational expression, i.e., does it have a denominator
2335 * different from one?
2337 static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
2339 isl_bool rational;
2340 isl_val *den;
2342 den = isl_aff_get_denominator_val(aff);
2343 rational = isl_bool_not(isl_val_is_one(den));
2344 isl_val_free(den);
2346 return rational;
2349 /* Does "list" consist of a single rational affine expression?
2351 static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
2353 isl_size n;
2354 isl_bool rational;
2355 isl_aff *aff;
2357 n = isl_aff_list_n_aff(list);
2358 if (n < 0)
2359 return isl_bool_error;
2360 if (n != 1)
2361 return isl_bool_false;
2362 aff = isl_aff_list_get_aff(list, 0);
2363 rational = aff_is_rational(aff);
2364 isl_aff_free(aff);
2366 return rational;
2369 /* Can the list of subpieces in the last piece of "data" be extended with
2370 * "set" and "aff" based on "test"?
2371 * In particular, is it the case for each entry (set_i, aff_i) that
2373 * test(aff, aff_i) holds on set_i, and
2374 * test(aff_i, aff) holds on set?
2376 * "test" returns the set of elements where the tests holds, meaning
2377 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2379 * This function is used to detect min/max expressions.
2380 * If the ast_build_detect_min_max option is turned off, then
2381 * do not even try and perform any detection and return false instead.
2383 * Rational affine expressions are not considered for min/max expressions
2384 * since the combined expression will be defined on the union of the domains,
2385 * while a rational expression may only yield integer values
2386 * on its own definition domain.
2388 static isl_bool extends(struct isl_from_pw_aff_data *data,
2389 __isl_keep isl_set *set, __isl_keep isl_aff *aff,
2390 __isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
2391 __isl_take isl_aff *aff2))
2393 int i;
2394 isl_size n;
2395 isl_bool is_rational;
2396 isl_ctx *ctx;
2397 isl_set *dom;
2399 is_rational = aff_is_rational(aff);
2400 if (is_rational >= 0 && !is_rational)
2401 is_rational = is_single_rational_aff(data->p[data->n].aff_list);
2402 if (is_rational < 0 || is_rational)
2403 return isl_bool_not(is_rational);
2405 ctx = isl_ast_build_get_ctx(data->build);
2406 if (!isl_options_get_ast_build_detect_min_max(ctx))
2407 return isl_bool_false;
2409 n = isl_set_list_n_set(data->p[data->n].set_list);
2410 if (n < 0)
2411 return isl_bool_error;
2413 dom = isl_ast_build_get_domain(data->build);
2414 set = isl_set_intersect(dom, isl_set_copy(set));
2416 for (i = 0; i < n ; ++i) {
2417 isl_aff *aff_i;
2418 isl_set *valid;
2419 isl_set *dom, *required;
2420 isl_bool is_valid;
2422 aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
2423 valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
2424 required = isl_set_list_get_set(data->p[data->n].set_list, i);
2425 dom = isl_ast_build_get_domain(data->build);
2426 required = isl_set_intersect(dom, required);
2427 is_valid = isl_set_is_subset(required, valid);
2428 isl_set_free(required);
2429 isl_set_free(valid);
2430 if (is_valid < 0 || !is_valid) {
2431 isl_set_free(set);
2432 return is_valid;
2435 aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
2436 valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
2437 is_valid = isl_set_is_subset(set, valid);
2438 isl_set_free(valid);
2439 if (is_valid < 0 || !is_valid) {
2440 isl_set_free(set);
2441 return is_valid;
2445 isl_set_free(set);
2446 return isl_bool_true;
2449 /* Can the list of pieces in "data" be extended with "set" and "aff"
2450 * to form/preserve a minimum expression?
2451 * In particular, is it the case for each entry (set_i, aff_i) that
2453 * aff >= aff_i on set_i, and
2454 * aff_i >= aff on set?
2456 static isl_bool extends_min(struct isl_from_pw_aff_data *data,
2457 __isl_keep isl_set *set, __isl_keep isl_aff *aff)
2459 return extends(data, set, aff, &isl_aff_ge_basic_set);
2462 /* Can the list of pieces in "data" be extended with "set" and "aff"
2463 * to form/preserve a maximum expression?
2464 * In particular, is it the case for each entry (set_i, aff_i) that
2466 * aff <= aff_i on set_i, and
2467 * aff_i <= aff on set?
2469 static isl_bool extends_max(struct isl_from_pw_aff_data *data,
2470 __isl_keep isl_set *set, __isl_keep isl_aff *aff)
2472 return extends(data, set, aff, &isl_aff_le_basic_set);
2475 /* This function is called during the construction of an isl_ast_expr
2476 * that evaluates an isl_pw_aff.
2477 * If the last piece of "data" contains a single subpiece and
2478 * if its affine function is equal to "aff" on a part of the domain
2479 * that includes either "set" or the domain of that single subpiece,
2480 * then extend the domain of that single subpiece with "set".
2481 * If it was the original domain of the single subpiece where
2482 * the two affine functions are equal, then also replace
2483 * the affine function of the single subpiece by "aff".
2484 * If the last piece of "data" contains either a single subpiece
2485 * or a minimum, then check if this minimum expression can be extended
2486 * with (set, aff).
2487 * If so, extend the sequence and return.
2488 * Perform the same operation for maximum expressions.
2489 * If no such extension can be performed, then move to the next piece
2490 * in "data" (if the current piece contains any data), and then store
2491 * the current subpiece in the current piece of "data" for later handling.
2493 static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
2494 __isl_take isl_aff *aff, void *user)
2496 struct isl_from_pw_aff_data *data = user;
2497 isl_bool test;
2498 enum isl_from_pw_aff_state state;
2500 state = data->p[data->n].state;
2501 if (state == isl_state_single) {
2502 isl_aff *aff0;
2503 isl_set *eq;
2504 isl_bool subset1, subset2 = isl_bool_false;
2505 aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
2506 eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
2507 subset1 = isl_set_is_subset(set, eq);
2508 if (subset1 >= 0 && !subset1)
2509 subset2 = single_is_subset(data, eq);
2510 isl_set_free(eq);
2511 if (subset1 < 0 || subset2 < 0)
2512 goto error;
2513 if (subset1)
2514 return extend_domain(data, set, aff, 0);
2515 if (subset2)
2516 return extend_domain(data, set, aff, 1);
2518 if (state == isl_state_single || state == isl_state_min) {
2519 test = extends_min(data, set, aff);
2520 if (test < 0)
2521 goto error;
2522 if (test)
2523 return extend_min(data, set, aff);
2525 if (state == isl_state_single || state == isl_state_max) {
2526 test = extends_max(data, set, aff);
2527 if (test < 0)
2528 goto error;
2529 if (test)
2530 return extend_max(data, set, aff);
2532 if (state != isl_state_none)
2533 data->n++;
2534 set_single(data, set, aff);
2536 return isl_stat_ok;
2537 error:
2538 isl_set_free(set);
2539 isl_aff_free(aff);
2540 return isl_stat_error;
2543 /* Construct an isl_ast_expr that evaluates "pa".
2544 * The result is simplified in terms of build->domain.
2546 * The domain of "pa" lives in the internal schedule space.
2548 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
2549 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
2551 struct isl_from_pw_aff_data data = { NULL };
2552 isl_ast_expr *res = NULL;
2554 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
2555 pa = isl_pw_aff_coalesce(pa);
2556 if (!pa)
2557 return NULL;
2559 if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
2560 goto error;
2561 set_none(&data);
2563 if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
2564 res = build_pieces(&data);
2566 isl_pw_aff_free(pa);
2567 isl_from_pw_aff_data_clear(&data);
2568 return res;
2569 error:
2570 isl_pw_aff_free(pa);
2571 isl_from_pw_aff_data_clear(&data);
2572 return NULL;
2575 /* Construct an isl_ast_expr that evaluates "pa".
2576 * The result is simplified in terms of build->domain.
2578 * The domain of "pa" lives in the external schedule space.
2580 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
2581 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
2583 isl_ast_expr *expr;
2584 isl_bool needs_map;
2586 needs_map = isl_ast_build_need_schedule_map(build);
2587 if (needs_map < 0) {
2588 pa = isl_pw_aff_free(pa);
2589 } else if (needs_map) {
2590 isl_multi_aff *ma;
2591 ma = isl_ast_build_get_schedule_map_multi_aff(build);
2592 pa = isl_pw_aff_pullback_multi_aff(pa, ma);
2594 expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
2595 return expr;
2598 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2599 * of "build".
2601 * The domain of "mpa" is assumed to live in the internal schedule domain.
2603 static __isl_give isl_multi_pw_aff *set_iterator_names(
2604 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2606 int i;
2607 isl_size n;
2609 n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
2610 if (n < 0)
2611 return isl_multi_pw_aff_free(mpa);
2612 for (i = 0; i < n; ++i) {
2613 isl_id *id;
2615 id = isl_ast_build_get_iterator_id(build, i);
2616 mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
2619 return mpa;
2622 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2623 * the remaining arguments derived from "mpa".
2624 * That is, construct a call or access expression that calls/accesses "arg0"
2625 * with arguments/indices specified by "mpa".
2627 static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
2628 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2629 __isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
2631 int i;
2632 isl_size n;
2633 isl_ctx *ctx;
2634 isl_ast_expr *expr;
2636 ctx = isl_ast_build_get_ctx(build);
2638 n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
2639 expr = n >= 0 ? isl_ast_expr_alloc_op(ctx, type, 1 + n) : NULL;
2640 expr = isl_ast_expr_op_add_arg(expr, arg0);
2641 for (i = 0; i < n; ++i) {
2642 isl_pw_aff *pa;
2643 isl_ast_expr *arg;
2645 pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
2646 arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
2647 expr = isl_ast_expr_op_add_arg(expr, arg);
2650 isl_multi_pw_aff_free(mpa);
2651 return expr;
2654 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
2655 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2656 __isl_take isl_multi_pw_aff *mpa);
2658 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2659 * The range of "mpa" is assumed to be wrapped relation.
2660 * The domain of this wrapped relation specifies the structure being
2661 * accessed, while the range of this wrapped relation spacifies the
2662 * member of the structure being accessed.
2664 * The domain of "mpa" is assumed to live in the internal schedule domain.
2666 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
2667 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2669 isl_id *id;
2670 isl_multi_pw_aff *domain;
2671 isl_ast_expr *domain_expr, *expr;
2672 enum isl_ast_expr_op_type type = isl_ast_expr_op_access;
2674 domain = isl_multi_pw_aff_copy(mpa);
2675 domain = isl_multi_pw_aff_range_factor_domain(domain);
2676 domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
2677 type, domain);
2678 mpa = isl_multi_pw_aff_range_factor_range(mpa);
2679 if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
2680 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
2681 "missing field name", goto error);
2682 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
2683 expr = isl_ast_expr_from_id(id);
2684 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_member,
2685 domain_expr, expr);
2686 return isl_ast_build_with_arguments(build, type, expr, mpa);
2687 error:
2688 isl_multi_pw_aff_free(mpa);
2689 return NULL;
2692 /* Construct an isl_ast_expr of type "type" that calls or accesses
2693 * the element specified by "mpa".
2694 * The first argument is obtained from the output tuple name.
2695 * The remaining arguments are given by the piecewise affine expressions.
2697 * If the range of "mpa" is a mapped relation, then we assume it
2698 * represents an access to a member of a structure.
2700 * The domain of "mpa" is assumed to live in the internal schedule domain.
2702 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
2703 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2704 __isl_take isl_multi_pw_aff *mpa)
2706 isl_ctx *ctx;
2707 isl_id *id;
2708 isl_ast_expr *expr;
2710 if (!mpa)
2711 goto error;
2713 if (type == isl_ast_expr_op_access &&
2714 isl_multi_pw_aff_range_is_wrapping(mpa))
2715 return isl_ast_build_from_multi_pw_aff_member(build, mpa);
2717 mpa = set_iterator_names(build, mpa);
2718 if (!build || !mpa)
2719 goto error;
2721 ctx = isl_ast_build_get_ctx(build);
2723 if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
2724 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
2725 else
2726 id = isl_id_alloc(ctx, "", NULL);
2728 expr = isl_ast_expr_from_id(id);
2729 return isl_ast_build_with_arguments(build, type, expr, mpa);
2730 error:
2731 isl_multi_pw_aff_free(mpa);
2732 return NULL;
2735 /* Construct an isl_ast_expr of type "type" that calls or accesses
2736 * the element specified by "pma".
2737 * The first argument is obtained from the output tuple name.
2738 * The remaining arguments are given by the piecewise affine expressions.
2740 * The domain of "pma" is assumed to live in the internal schedule domain.
2742 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
2743 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2744 __isl_take isl_pw_multi_aff *pma)
2746 isl_multi_pw_aff *mpa;
2748 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
2749 return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
2752 /* Construct an isl_ast_expr of type "type" that calls or accesses
2753 * the element specified by "mpa".
2754 * The first argument is obtained from the output tuple name.
2755 * The remaining arguments are given by the piecewise affine expressions.
2757 * The domain of "mpa" is assumed to live in the external schedule domain.
2759 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
2760 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2761 __isl_take isl_multi_pw_aff *mpa)
2763 isl_bool is_domain;
2764 isl_bool needs_map;
2765 isl_ast_expr *expr;
2766 isl_space *space_build, *space_mpa;
2768 space_build = isl_ast_build_get_space(build, 0);
2769 space_mpa = isl_multi_pw_aff_get_space(mpa);
2770 is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
2771 space_mpa, isl_dim_in);
2772 isl_space_free(space_build);
2773 isl_space_free(space_mpa);
2774 if (is_domain < 0)
2775 goto error;
2776 if (!is_domain)
2777 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
2778 "spaces don't match", goto error);
2780 needs_map = isl_ast_build_need_schedule_map(build);
2781 if (needs_map < 0)
2782 goto error;
2783 if (needs_map) {
2784 isl_multi_aff *ma;
2785 ma = isl_ast_build_get_schedule_map_multi_aff(build);
2786 mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
2789 expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
2790 return expr;
2791 error:
2792 isl_multi_pw_aff_free(mpa);
2793 return NULL;
2796 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2797 * The name of the function is obtained from the output tuple name.
2798 * The arguments are given by the piecewise affine expressions.
2800 * The domain of "mpa" is assumed to live in the external schedule domain.
2802 __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
2803 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2805 return isl_ast_build_from_multi_pw_aff(build,
2806 isl_ast_expr_op_call, mpa);
2809 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2810 * The name of the array is obtained from the output tuple name.
2811 * The index expressions are given by the piecewise affine expressions.
2813 * The domain of "mpa" is assumed to live in the external schedule domain.
2815 __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
2816 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2818 return isl_ast_build_from_multi_pw_aff(build,
2819 isl_ast_expr_op_access, mpa);
2822 /* Construct an isl_ast_expr of type "type" that calls or accesses
2823 * the element specified by "pma".
2824 * The first argument is obtained from the output tuple name.
2825 * The remaining arguments are given by the piecewise affine expressions.
2827 * The domain of "pma" is assumed to live in the external schedule domain.
2829 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
2830 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2831 __isl_take isl_pw_multi_aff *pma)
2833 isl_multi_pw_aff *mpa;
2835 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
2836 return isl_ast_build_from_multi_pw_aff(build, type, mpa);
2839 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2840 * The name of the function is obtained from the output tuple name.
2841 * The arguments are given by the piecewise affine expressions.
2843 * The domain of "pma" is assumed to live in the external schedule domain.
2845 __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
2846 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
2848 return isl_ast_build_from_pw_multi_aff(build,
2849 isl_ast_expr_op_call, pma);
2852 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2853 * The name of the array is obtained from the output tuple name.
2854 * The index expressions are given by the piecewise affine expressions.
2856 * The domain of "pma" is assumed to live in the external schedule domain.
2858 __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
2859 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
2861 return isl_ast_build_from_pw_multi_aff(build,
2862 isl_ast_expr_op_access, pma);
2865 /* Construct an isl_ast_expr that calls the domain element
2866 * specified by "executed".
2868 * "executed" is assumed to be single-valued, with a domain that lives
2869 * in the internal schedule space.
2871 __isl_give isl_ast_node *isl_ast_build_call_from_executed(
2872 __isl_keep isl_ast_build *build, __isl_take isl_map *executed)
2874 isl_pw_multi_aff *iteration;
2875 isl_ast_expr *expr;
2877 iteration = isl_pw_multi_aff_from_map(executed);
2878 iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
2879 iteration = isl_pw_multi_aff_intersect_domain(iteration,
2880 isl_ast_build_get_domain(build));
2881 expr = isl_ast_build_from_pw_multi_aff_internal(build,
2882 isl_ast_expr_op_call, iteration);
2883 return isl_ast_node_alloc_user(expr);