isl_schedule_constraints_on_domain: extract out isl_schedule_constraints_alloc
[isl.git] / isl_vertices.c
blob6e74a4fa3688ca069eaeabe452c56a5f899e7e7e
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_map_private.h>
12 #include <isl_aff_private.h>
13 #include <isl/set.h>
14 #include <isl_seq.h>
15 #include <isl_tab.h>
16 #include <isl_space_private.h>
17 #include <isl_morph.h>
18 #include <isl_vertices_private.h>
19 #include <isl_mat_private.h>
20 #include <isl_vec_private.h>
22 #define SELECTED 1
23 #define DESELECTED -1
24 #define UNSELECTED 0
26 static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset,
27 __isl_take isl_vertices *vertices);
29 __isl_give isl_vertices *isl_vertices_copy(__isl_keep isl_vertices *vertices)
31 if (!vertices)
32 return NULL;
34 vertices->ref++;
35 return vertices;
38 void isl_vertices_free(__isl_take isl_vertices *vertices)
40 int i;
42 if (!vertices)
43 return;
45 if (--vertices->ref > 0)
46 return;
48 for (i = 0; i < vertices->n_vertices; ++i) {
49 isl_basic_set_free(vertices->v[i].vertex);
50 isl_basic_set_free(vertices->v[i].dom);
52 free(vertices->v);
54 for (i = 0; i < vertices->n_chambers; ++i) {
55 free(vertices->c[i].vertices);
56 isl_basic_set_free(vertices->c[i].dom);
58 free(vertices->c);
60 isl_basic_set_free(vertices->bset);
61 free(vertices);
64 struct isl_vertex_list {
65 struct isl_vertex v;
66 struct isl_vertex_list *next;
69 static void free_vertex_list(struct isl_vertex_list *list)
71 struct isl_vertex_list *next;
73 for (; list; list = next) {
74 next = list->next;
75 isl_basic_set_free(list->v.vertex);
76 isl_basic_set_free(list->v.dom);
77 free(list);
81 static __isl_give isl_vertices *vertices_from_list(__isl_keep isl_basic_set *bset,
82 int n_vertices, struct isl_vertex_list *list)
84 int i;
85 struct isl_vertex_list *next;
86 isl_vertices *vertices;
88 vertices = isl_calloc_type(bset->ctx, isl_vertices);
89 if (!vertices)
90 goto error;
91 vertices->ref = 1;
92 vertices->bset = isl_basic_set_copy(bset);
93 vertices->v = isl_alloc_array(bset->ctx, struct isl_vertex, n_vertices);
94 if (n_vertices && !vertices->v)
95 goto error;
96 vertices->n_vertices = n_vertices;
98 for (i = 0; list; list = next, i++) {
99 next = list->next;
100 vertices->v[i] = list->v;
101 free(list);
104 return vertices;
105 error:
106 isl_vertices_free(vertices);
107 free_vertex_list(list);
108 return NULL;
111 /* Prepend a vertex to the linked list "list" based on the equalities in "tab".
113 static int add_vertex(struct isl_vertex_list **list,
114 __isl_keep isl_basic_set *bset, struct isl_tab *tab)
116 unsigned nvar;
117 struct isl_vertex_list *v = NULL;
119 if (isl_tab_detect_implicit_equalities(tab) < 0)
120 return -1;
122 nvar = isl_basic_set_dim(bset, isl_dim_set);
124 v = isl_calloc_type(tab->mat->ctx, struct isl_vertex_list);
125 if (!v)
126 goto error;
128 v->v.vertex = isl_basic_set_copy(bset);
129 v->v.vertex = isl_basic_set_cow(v->v.vertex);
130 v->v.vertex = isl_basic_set_update_from_tab(v->v.vertex, tab);
131 v->v.vertex = isl_basic_set_simplify(v->v.vertex);
132 v->v.vertex = isl_basic_set_finalize(v->v.vertex);
133 if (!v->v.vertex)
134 goto error;
135 isl_assert(bset->ctx, v->v.vertex->n_eq >= nvar, goto error);
136 v->v.dom = isl_basic_set_copy(v->v.vertex);
137 v->v.dom = isl_basic_set_params(v->v.dom);
138 if (!v->v.dom)
139 goto error;
141 v->next = *list;
142 *list = v;
144 return 0;
145 error:
146 free_vertex_list(v);
147 return -1;
150 /* Compute the parametric vertices and the chamber decomposition
151 * of an empty parametric polytope.
153 static __isl_give isl_vertices *vertices_empty(__isl_keep isl_basic_set *bset)
155 isl_vertices *vertices;
157 if (!bset)
158 return NULL;
160 vertices = isl_calloc_type(bset->ctx, isl_vertices);
161 if (!vertices)
162 return NULL;
163 vertices->bset = isl_basic_set_copy(bset);
164 vertices->ref = 1;
166 vertices->n_vertices = 0;
167 vertices->n_chambers = 0;
169 return vertices;
172 /* Compute the parametric vertices and the chamber decomposition
173 * of the parametric polytope defined using the same constraints
174 * as "bset" in the 0D case.
175 * There is exactly one 0D vertex and a single chamber containing
176 * the vertex.
178 static __isl_give isl_vertices *vertices_0D(__isl_keep isl_basic_set *bset)
180 isl_vertices *vertices;
182 if (!bset)
183 return NULL;
185 vertices = isl_calloc_type(bset->ctx, isl_vertices);
186 if (!vertices)
187 return NULL;
188 vertices->ref = 1;
189 vertices->bset = isl_basic_set_copy(bset);
191 vertices->v = isl_calloc_array(bset->ctx, struct isl_vertex, 1);
192 if (!vertices->v)
193 goto error;
194 vertices->n_vertices = 1;
195 vertices->v[0].vertex = isl_basic_set_copy(bset);
196 vertices->v[0].dom = isl_basic_set_params(isl_basic_set_copy(bset));
197 if (!vertices->v[0].vertex || !vertices->v[0].dom)
198 goto error;
200 vertices->c = isl_calloc_array(bset->ctx, struct isl_chamber, 1);
201 if (!vertices->c)
202 goto error;
203 vertices->n_chambers = 1;
204 vertices->c[0].n_vertices = 1;
205 vertices->c[0].vertices = isl_calloc_array(bset->ctx, int, 1);
206 if (!vertices->c[0].vertices)
207 goto error;
208 vertices->c[0].dom = isl_basic_set_copy(vertices->v[0].dom);
209 if (!vertices->c[0].dom)
210 goto error;
212 return vertices;
213 error:
214 isl_vertices_free(vertices);
215 return NULL;
218 static int isl_mat_rank(__isl_keep isl_mat *mat)
220 int row, col;
221 isl_mat *H;
223 H = isl_mat_left_hermite(isl_mat_copy(mat), 0, NULL, NULL);
224 if (!H)
225 return -1;
227 for (col = 0; col < H->n_col; ++col) {
228 for (row = 0; row < H->n_row; ++row)
229 if (!isl_int_is_zero(H->row[row][col]))
230 break;
231 if (row == H->n_row)
232 break;
235 isl_mat_free(H);
237 return col;
240 /* Is the row pointed to by "f" linearly independent of the "n" first
241 * rows in "facets"?
243 static int is_independent(__isl_keep isl_mat *facets, int n, isl_int *f)
245 int rank;
247 if (isl_seq_first_non_zero(f, facets->n_col) < 0)
248 return 0;
250 isl_seq_cpy(facets->row[n], f, facets->n_col);
251 facets->n_row = n + 1;
252 rank = isl_mat_rank(facets);
253 if (rank < 0)
254 return -1;
256 return rank == n + 1;
259 /* Check whether we can select constraint "level", given the current selection
260 * reflected by facets in "tab", the rows of "facets" and the earlier
261 * "selected" elements of "selection".
263 * If the constraint is (strictly) redundant in the tableau, selecting it would
264 * result in an empty tableau, so it can't be selected.
265 * If the set variable part of the constraint is not linearly indepedent
266 * of the set variable parts of the already selected constraints,
267 * the constraint cannot be selected.
268 * If selecting the constraint results in an empty tableau, the constraint
269 * cannot be selected.
270 * Finally, if selecting the constraint results in some explicitly
271 * deselected constraints turning into equalities, then the corresponding
272 * vertices have already been generated, so the constraint cannot be selected.
274 static int can_select(__isl_keep isl_basic_set *bset, int level,
275 struct isl_tab *tab, __isl_keep isl_mat *facets, int selected,
276 int *selection)
278 int i;
279 int indep;
280 unsigned ovar;
281 struct isl_tab_undo *snap;
283 if (isl_tab_is_redundant(tab, level))
284 return 0;
286 ovar = isl_space_offset(bset->dim, isl_dim_set);
288 indep = is_independent(facets, selected, bset->ineq[level] + 1 + ovar);
289 if (indep < 0)
290 return -1;
291 if (!indep)
292 return 0;
294 snap = isl_tab_snap(tab);
295 if (isl_tab_select_facet(tab, level) < 0)
296 return -1;
298 if (tab->empty) {
299 if (isl_tab_rollback(tab, snap) < 0)
300 return -1;
301 return 0;
304 for (i = 0; i < level; ++i) {
305 int sgn;
307 if (selection[i] != DESELECTED)
308 continue;
310 if (isl_tab_is_equality(tab, i))
311 sgn = 0;
312 else if (isl_tab_is_redundant(tab, i))
313 sgn = 1;
314 else
315 sgn = isl_tab_sign_of_max(tab, i);
316 if (sgn < -1)
317 return -1;
318 if (sgn <= 0) {
319 if (isl_tab_rollback(tab, snap) < 0)
320 return -1;
321 return 0;
325 return 1;
328 /* Compute the parametric vertices and the chamber decomposition
329 * of a parametric polytope that is not full-dimensional.
331 * Simply map the parametric polytope to a lower dimensional space
332 * and map the resulting vertices back.
334 static __isl_give isl_vertices *lower_dim_vertices(
335 __isl_keep isl_basic_set *bset)
337 isl_morph *morph;
338 isl_vertices *vertices;
340 bset = isl_basic_set_copy(bset);
341 morph = isl_basic_set_full_compression(bset);
342 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
344 vertices = isl_basic_set_compute_vertices(bset);
345 isl_basic_set_free(bset);
347 morph = isl_morph_inverse(morph);
349 vertices = isl_morph_vertices(morph, vertices);
351 return vertices;
354 /* Compute the parametric vertices and the chamber decomposition
355 * of the parametric polytope defined using the same constraints
356 * as "bset". "bset" is assumed to have no existentially quantified
357 * variables.
359 * The vertices themselves are computed in a fairly simplistic way.
360 * We simply run through all combinations of d constraints,
361 * with d the number of set variables, and check if those d constraints
362 * define a vertex. To avoid the generation of duplicate vertices,
363 * which we may happen if a vertex is defined by more that d constraints,
364 * we make sure we only generate the vertex for the d constraints with
365 * smallest index.
367 * We set up a tableau and keep track of which facets have been
368 * selected. The tableau is marked strict_redundant so that we can be
369 * sure that any constraint that is marked redundant (and that is not
370 * also marked zero) is not an equality.
371 * If a constraint is marked DESELECTED, it means the constraint was
372 * SELECTED before (in combination with the same selection of earlier
373 * constraints). If such a deselected constraint turns out to be an
374 * equality, then any vertex that may still be found with the current
375 * selection has already been generated when the constraint was selected.
376 * A constraint is marked UNSELECTED when there is no way selecting
377 * the constraint could lead to a vertex (in combination with the current
378 * selection of earlier constraints).
380 * The set variable coefficients of the selected constraints are stored
381 * in the facets matrix.
383 __isl_give isl_vertices *isl_basic_set_compute_vertices(
384 __isl_keep isl_basic_set *bset)
386 struct isl_tab *tab;
387 int level;
388 int init;
389 unsigned nvar;
390 int *selection = NULL;
391 int selected;
392 struct isl_tab_undo **snap = NULL;
393 isl_mat *facets = NULL;
394 struct isl_vertex_list *list = NULL;
395 int n_vertices = 0;
396 isl_vertices *vertices;
398 if (!bset)
399 return NULL;
401 if (isl_basic_set_plain_is_empty(bset))
402 return vertices_empty(bset);
404 if (bset->n_eq != 0)
405 return lower_dim_vertices(bset);
407 isl_assert(bset->ctx, isl_basic_set_dim(bset, isl_dim_div) == 0,
408 return NULL);
410 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
411 return vertices_0D(bset);
413 nvar = isl_basic_set_dim(bset, isl_dim_set);
415 bset = isl_basic_set_copy(bset);
416 bset = isl_basic_set_set_rational(bset);
417 if (!bset)
418 return NULL;
420 tab = isl_tab_from_basic_set(bset, 0);
421 if (!tab)
422 goto error;
423 tab->strict_redundant = 1;
425 if (tab->empty) {
426 vertices = vertices_empty(bset);
427 isl_basic_set_free(bset);
428 isl_tab_free(tab);
429 return vertices;
432 selection = isl_alloc_array(bset->ctx, int, bset->n_ineq);
433 snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, bset->n_ineq);
434 facets = isl_mat_alloc(bset->ctx, nvar, nvar);
435 if ((bset->n_ineq && (!selection || !snap)) || !facets)
436 goto error;
438 level = 0;
439 init = 1;
440 selected = 0;
442 while (level >= 0) {
443 if (level >= bset->n_ineq ||
444 (!init && selection[level] != SELECTED)) {
445 --level;
446 init = 0;
447 continue;
449 if (init) {
450 int ok;
451 snap[level] = isl_tab_snap(tab);
452 ok = can_select(bset, level, tab, facets, selected,
453 selection);
454 if (ok < 0)
455 goto error;
456 if (ok) {
457 selection[level] = SELECTED;
458 selected++;
459 } else
460 selection[level] = UNSELECTED;
461 } else {
462 selection[level] = DESELECTED;
463 selected--;
464 if (isl_tab_rollback(tab, snap[level]) < 0)
465 goto error;
467 if (selected == nvar) {
468 if (tab->n_dead == nvar) {
469 if (add_vertex(&list, bset, tab) < 0)
470 goto error;
471 n_vertices++;
473 init = 0;
474 continue;
476 ++level;
477 init = 1;
480 isl_mat_free(facets);
481 free(selection);
482 free(snap);
484 isl_tab_free(tab);
486 vertices = vertices_from_list(bset, n_vertices, list);
488 vertices = compute_chambers(bset, vertices);
490 return vertices;
491 error:
492 free_vertex_list(list);
493 isl_mat_free(facets);
494 free(selection);
495 free(snap);
496 isl_tab_free(tab);
497 isl_basic_set_free(bset);
498 return NULL;
501 struct isl_chamber_list {
502 struct isl_chamber c;
503 struct isl_chamber_list *next;
506 static void free_chamber_list(struct isl_chamber_list *list)
508 struct isl_chamber_list *next;
510 for (; list; list = next) {
511 next = list->next;
512 isl_basic_set_free(list->c.dom);
513 free(list->c.vertices);
514 free(list);
518 /* Check whether the basic set "bset" is a superset of the basic set described
519 * by "tab", i.e., check whether all constraints of "bset" are redundant.
521 static int bset_covers_tab(__isl_keep isl_basic_set *bset, struct isl_tab *tab)
523 int i;
525 if (!bset || !tab)
526 return -1;
528 for (i = 0; i < bset->n_ineq; ++i) {
529 enum isl_ineq_type type = isl_tab_ineq_type(tab, bset->ineq[i]);
530 switch (type) {
531 case isl_ineq_error: return -1;
532 case isl_ineq_redundant: continue;
533 default: return 0;
537 return 1;
540 static __isl_give isl_vertices *vertices_add_chambers(
541 __isl_take isl_vertices *vertices, int n_chambers,
542 struct isl_chamber_list *list)
544 int i;
545 isl_ctx *ctx;
546 struct isl_chamber_list *next;
548 ctx = isl_vertices_get_ctx(vertices);
549 vertices->c = isl_alloc_array(ctx, struct isl_chamber, n_chambers);
550 if (!vertices->c)
551 goto error;
552 vertices->n_chambers = n_chambers;
554 for (i = 0; list; list = next, i++) {
555 next = list->next;
556 vertices->c[i] = list->c;
557 free(list);
560 return vertices;
561 error:
562 isl_vertices_free(vertices);
563 free_chamber_list(list);
564 return NULL;
567 /* Can "tab" be intersected with "bset" without resulting in
568 * a lower-dimensional set.
570 static int can_intersect(struct isl_tab *tab, __isl_keep isl_basic_set *bset)
572 int i;
573 struct isl_tab_undo *snap;
575 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
576 return -1;
578 snap = isl_tab_snap(tab);
580 for (i = 0; i < bset->n_ineq; ++i) {
581 if (isl_tab_ineq_type(tab, bset->ineq[i]) == isl_ineq_redundant)
582 continue;
583 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
584 return -1;
587 if (isl_tab_detect_implicit_equalities(tab) < 0)
588 return -1;
589 if (tab->n_dead) {
590 if (isl_tab_rollback(tab, snap) < 0)
591 return -1;
592 return 0;
595 return 1;
598 static int add_chamber(struct isl_chamber_list **list,
599 __isl_keep isl_vertices *vertices, struct isl_tab *tab, int *selection)
601 int n_frozen;
602 int i, j;
603 int n_vertices = 0;
604 struct isl_tab_undo *snap;
605 struct isl_chamber_list *c = NULL;
607 for (i = 0; i < vertices->n_vertices; ++i)
608 if (selection[i])
609 n_vertices++;
611 snap = isl_tab_snap(tab);
613 for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i)
614 tab->con[i].frozen = 0;
615 n_frozen = i;
617 if (isl_tab_detect_redundant(tab) < 0)
618 return -1;
620 c = isl_calloc_type(tab->mat->ctx, struct isl_chamber_list);
621 if (!c)
622 goto error;
623 c->c.vertices = isl_alloc_array(tab->mat->ctx, int, n_vertices);
624 if (n_vertices && !c->c.vertices)
625 goto error;
626 c->c.dom = isl_basic_set_copy(isl_tab_peek_bset(tab));
627 c->c.dom = isl_basic_set_set_rational(c->c.dom);
628 c->c.dom = isl_basic_set_cow(c->c.dom);
629 c->c.dom = isl_basic_set_update_from_tab(c->c.dom, tab);
630 c->c.dom = isl_basic_set_simplify(c->c.dom);
631 c->c.dom = isl_basic_set_finalize(c->c.dom);
632 if (!c->c.dom)
633 goto error;
635 c->c.n_vertices = n_vertices;
637 for (i = 0, j = 0; i < vertices->n_vertices; ++i)
638 if (selection[i]) {
639 c->c.vertices[j] = i;
640 j++;
643 c->next = *list;
644 *list = c;
646 for (i = 0; i < n_frozen; ++i)
647 tab->con[i].frozen = 1;
649 if (isl_tab_rollback(tab, snap) < 0)
650 return -1;
652 return 0;
653 error:
654 free_chamber_list(c);
655 return -1;
658 struct isl_facet_todo {
659 struct isl_tab *tab; /* A tableau representation of the facet */
660 isl_basic_set *bset; /* A normalized basic set representation */
661 isl_vec *constraint; /* Constraint pointing to the other side */
662 struct isl_facet_todo *next;
665 static void free_todo(struct isl_facet_todo *todo)
667 while (todo) {
668 struct isl_facet_todo *next = todo->next;
670 isl_tab_free(todo->tab);
671 isl_basic_set_free(todo->bset);
672 isl_vec_free(todo->constraint);
673 free(todo);
675 todo = next;
679 static struct isl_facet_todo *create_todo(struct isl_tab *tab, int con)
681 int i;
682 int n_frozen;
683 struct isl_tab_undo *snap;
684 struct isl_facet_todo *todo;
686 snap = isl_tab_snap(tab);
688 for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i)
689 tab->con[i].frozen = 0;
690 n_frozen = i;
692 if (isl_tab_detect_redundant(tab) < 0)
693 return NULL;
695 todo = isl_calloc_type(tab->mat->ctx, struct isl_facet_todo);
696 if (!todo)
697 return NULL;
699 todo->constraint = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
700 if (!todo->constraint)
701 goto error;
702 isl_seq_neg(todo->constraint->el, tab->bmap->ineq[con], 1 + tab->n_var);
703 todo->bset = isl_basic_set_copy(isl_tab_peek_bset(tab));
704 todo->bset = isl_basic_set_set_rational(todo->bset);
705 todo->bset = isl_basic_set_cow(todo->bset);
706 todo->bset = isl_basic_set_update_from_tab(todo->bset, tab);
707 todo->bset = isl_basic_set_simplify(todo->bset);
708 todo->bset = isl_basic_set_sort_constraints(todo->bset);
709 if (!todo->bset)
710 goto error;
711 ISL_F_SET(todo->bset, ISL_BASIC_SET_NORMALIZED);
712 todo->tab = isl_tab_dup(tab);
713 if (!todo->tab)
714 goto error;
716 for (i = 0; i < n_frozen; ++i)
717 tab->con[i].frozen = 1;
719 if (isl_tab_rollback(tab, snap) < 0)
720 goto error;
722 return todo;
723 error:
724 free_todo(todo);
725 return NULL;
728 /* Create todo items for all interior facets of the chamber represented
729 * by "tab" and collect them in "next".
731 static int init_todo(struct isl_facet_todo **next, struct isl_tab *tab)
733 int i;
734 struct isl_tab_undo *snap;
735 struct isl_facet_todo *todo;
737 snap = isl_tab_snap(tab);
739 for (i = 0; i < tab->n_con; ++i) {
740 if (tab->con[i].frozen)
741 continue;
742 if (tab->con[i].is_redundant)
743 continue;
745 if (isl_tab_select_facet(tab, i) < 0)
746 return -1;
748 todo = create_todo(tab, i);
749 if (!todo)
750 return -1;
752 todo->next = *next;
753 *next = todo;
755 if (isl_tab_rollback(tab, snap) < 0)
756 return -1;
759 return 0;
762 /* Does the linked list contain a todo item that is the opposite of "todo".
763 * If so, return 1 and remove the opposite todo item.
765 static int has_opposite(struct isl_facet_todo *todo,
766 struct isl_facet_todo **list)
768 for (; *list; list = &(*list)->next) {
769 int eq;
770 eq = isl_basic_set_plain_is_equal(todo->bset, (*list)->bset);
771 if (eq < 0)
772 return -1;
773 if (!eq)
774 continue;
775 todo = *list;
776 *list = todo->next;
777 todo->next = NULL;
778 free_todo(todo);
779 return 1;
782 return 0;
785 /* Create todo items for all interior facets of the chamber represented
786 * by "tab" and collect them in first->next, taking care to cancel
787 * opposite todo items.
789 static int update_todo(struct isl_facet_todo *first, struct isl_tab *tab)
791 int i;
792 struct isl_tab_undo *snap;
793 struct isl_facet_todo *todo;
795 snap = isl_tab_snap(tab);
797 for (i = 0; i < tab->n_con; ++i) {
798 int drop;
800 if (tab->con[i].frozen)
801 continue;
802 if (tab->con[i].is_redundant)
803 continue;
805 if (isl_tab_select_facet(tab, i) < 0)
806 return -1;
808 todo = create_todo(tab, i);
809 if (!todo)
810 return -1;
812 drop = has_opposite(todo, &first->next);
813 if (drop < 0)
814 return -1;
816 if (drop)
817 free_todo(todo);
818 else {
819 todo->next = first->next;
820 first->next = todo;
823 if (isl_tab_rollback(tab, snap) < 0)
824 return -1;
827 return 0;
830 /* Compute the chamber decomposition of the parametric polytope respresented
831 * by "bset" given the parametric vertices and their activity domains.
833 * We are only interested in full-dimensional chambers.
834 * Each of these chambers is the intersection of the activity domains of
835 * one or more vertices and the union of all chambers is equal to the
836 * projection of the entire parametric polytope onto the parameter space.
838 * We first create an initial chamber by intersecting as many activity
839 * domains as possible without ending up with an empty or lower-dimensional
840 * set. As a minor optimization, we only consider those activity domains
841 * that contain some arbitrary point.
843 * For each of interior facets of the chamber, we construct a todo item,
844 * containing the facet and a constraint containing the other side of the facet,
845 * for constructing the chamber on the other side.
846 * While their are any todo items left, we pick a todo item and
847 * create the required chamber by intersecting all activity domains
848 * that contain the facet and have a full-dimensional intersection with
849 * the other side of the facet. For each of the interior facets, we
850 * again create todo items, taking care to cancel opposite todo items.
852 static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset,
853 __isl_take isl_vertices *vertices)
855 int i;
856 isl_ctx *ctx;
857 isl_vec *sample = NULL;
858 struct isl_tab *tab = NULL;
859 struct isl_tab_undo *snap;
860 int *selection = NULL;
861 int n_chambers = 0;
862 struct isl_chamber_list *list = NULL;
863 struct isl_facet_todo *todo = NULL;
865 if (!bset || !vertices)
866 goto error;
868 ctx = isl_vertices_get_ctx(vertices);
869 selection = isl_alloc_array(ctx, int, vertices->n_vertices);
870 if (vertices->n_vertices && !selection)
871 goto error;
873 bset = isl_basic_set_params(bset);
875 tab = isl_tab_from_basic_set(bset, 1);
876 if (!tab)
877 goto error;
878 for (i = 0; i < bset->n_ineq; ++i)
879 if (isl_tab_freeze_constraint(tab, i) < 0)
880 goto error;
881 isl_basic_set_free(bset);
883 snap = isl_tab_snap(tab);
885 sample = isl_tab_get_sample_value(tab);
887 for (i = 0; i < vertices->n_vertices; ++i) {
888 selection[i] = isl_basic_set_contains(vertices->v[i].dom, sample);
889 if (selection[i] < 0)
890 goto error;
891 if (!selection[i])
892 continue;
893 selection[i] = can_intersect(tab, vertices->v[i].dom);
894 if (selection[i] < 0)
895 goto error;
898 if (isl_tab_detect_redundant(tab) < 0)
899 goto error;
901 if (add_chamber(&list, vertices, tab, selection) < 0)
902 goto error;
903 n_chambers++;
905 if (init_todo(&todo, tab) < 0)
906 goto error;
908 while (todo) {
909 struct isl_facet_todo *next;
911 if (isl_tab_rollback(tab, snap) < 0)
912 goto error;
914 if (isl_tab_add_ineq(tab, todo->constraint->el) < 0)
915 goto error;
916 if (isl_tab_freeze_constraint(tab, tab->n_con - 1) < 0)
917 goto error;
919 for (i = 0; i < vertices->n_vertices; ++i) {
920 selection[i] = bset_covers_tab(vertices->v[i].dom,
921 todo->tab);
922 if (selection[i] < 0)
923 goto error;
924 if (!selection[i])
925 continue;
926 selection[i] = can_intersect(tab, vertices->v[i].dom);
927 if (selection[i] < 0)
928 goto error;
931 if (isl_tab_detect_redundant(tab) < 0)
932 goto error;
934 if (add_chamber(&list, vertices, tab, selection) < 0)
935 goto error;
936 n_chambers++;
938 if (update_todo(todo, tab) < 0)
939 goto error;
941 next = todo->next;
942 todo->next = NULL;
943 free_todo(todo);
944 todo = next;
947 isl_vec_free(sample);
949 isl_tab_free(tab);
950 free(selection);
952 vertices = vertices_add_chambers(vertices, n_chambers, list);
954 for (i = 0; vertices && i < vertices->n_vertices; ++i) {
955 isl_basic_set_free(vertices->v[i].dom);
956 vertices->v[i].dom = NULL;
959 return vertices;
960 error:
961 free_chamber_list(list);
962 free_todo(todo);
963 isl_vec_free(sample);
964 isl_tab_free(tab);
965 free(selection);
966 if (!tab)
967 isl_basic_set_free(bset);
968 isl_vertices_free(vertices);
969 return NULL;
972 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex)
974 return vertex ? isl_vertices_get_ctx(vertex->vertices) : NULL;
977 int isl_vertex_get_id(__isl_keep isl_vertex *vertex)
979 return vertex ? vertex->id : -1;
982 __isl_give isl_basic_set *isl_basic_set_set_integral(__isl_take isl_basic_set *bset)
984 if (!bset)
985 return NULL;
987 if (!ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
988 return bset;
990 bset = isl_basic_set_cow(bset);
991 if (!bset)
992 return NULL;
994 ISL_F_CLR(bset, ISL_BASIC_MAP_RATIONAL);
996 return isl_basic_set_finalize(bset);
999 /* Return the activity domain of the vertex "vertex".
1001 __isl_give isl_basic_set *isl_vertex_get_domain(__isl_keep isl_vertex *vertex)
1003 struct isl_vertex *v;
1005 if (!vertex)
1006 return NULL;
1008 v = &vertex->vertices->v[vertex->id];
1009 if (!v->dom) {
1010 v->dom = isl_basic_set_copy(v->vertex);
1011 v->dom = isl_basic_set_params(v->dom);
1012 v->dom = isl_basic_set_set_integral(v->dom);
1015 return isl_basic_set_copy(v->dom);
1018 /* Return a multiple quasi-affine expression describing the vertex "vertex"
1019 * in terms of the parameters,
1021 __isl_give isl_multi_aff *isl_vertex_get_expr(__isl_keep isl_vertex *vertex)
1023 struct isl_vertex *v;
1024 isl_basic_set *bset;
1026 if (!vertex)
1027 return NULL;
1029 v = &vertex->vertices->v[vertex->id];
1031 bset = isl_basic_set_copy(v->vertex);
1032 return isl_multi_aff_from_basic_set_equalities(bset);
1035 static __isl_give isl_vertex *isl_vertex_alloc(__isl_take isl_vertices *vertices,
1036 int id)
1038 isl_ctx *ctx;
1039 isl_vertex *vertex;
1041 if (!vertices)
1042 return NULL;
1044 ctx = isl_vertices_get_ctx(vertices);
1045 vertex = isl_alloc_type(ctx, isl_vertex);
1046 if (!vertex)
1047 goto error;
1049 vertex->vertices = vertices;
1050 vertex->id = id;
1052 return vertex;
1053 error:
1054 isl_vertices_free(vertices);
1055 return NULL;
1058 void isl_vertex_free(__isl_take isl_vertex *vertex)
1060 if (!vertex)
1061 return;
1062 isl_vertices_free(vertex->vertices);
1063 free(vertex);
1066 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell)
1068 return cell ? cell->dom->ctx : NULL;
1071 __isl_give isl_basic_set *isl_cell_get_domain(__isl_keep isl_cell *cell)
1073 return cell ? isl_basic_set_copy(cell->dom) : NULL;
1076 static __isl_give isl_cell *isl_cell_alloc(__isl_take isl_vertices *vertices,
1077 __isl_take isl_basic_set *dom, int id)
1079 int i;
1080 isl_cell *cell = NULL;
1082 if (!vertices || !dom)
1083 goto error;
1085 cell = isl_calloc_type(dom->ctx, isl_cell);
1086 if (!cell)
1087 goto error;
1089 cell->n_vertices = vertices->c[id].n_vertices;
1090 cell->ids = isl_alloc_array(dom->ctx, int, cell->n_vertices);
1091 if (cell->n_vertices && !cell->ids)
1092 goto error;
1093 for (i = 0; i < cell->n_vertices; ++i)
1094 cell->ids[i] = vertices->c[id].vertices[i];
1095 cell->vertices = vertices;
1096 cell->dom = dom;
1098 return cell;
1099 error:
1100 isl_cell_free(cell);
1101 isl_vertices_free(vertices);
1102 isl_basic_set_free(dom);
1103 return NULL;
1106 void isl_cell_free(__isl_take isl_cell *cell)
1108 if (!cell)
1109 return;
1111 isl_vertices_free(cell->vertices);
1112 free(cell->ids);
1113 isl_basic_set_free(cell->dom);
1114 free(cell);
1117 /* Create a tableau of the cone obtained by first homogenizing the given
1118 * polytope and then making all inequalities strict by setting the
1119 * constant term to -1.
1121 static struct isl_tab *tab_for_shifted_cone(__isl_keep isl_basic_set *bset)
1123 int i;
1124 isl_vec *c = NULL;
1125 struct isl_tab *tab;
1127 if (!bset)
1128 return NULL;
1129 tab = isl_tab_alloc(bset->ctx, bset->n_ineq + 1,
1130 1 + isl_basic_set_total_dim(bset), 0);
1131 if (!tab)
1132 return NULL;
1133 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
1134 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_EMPTY)) {
1135 if (isl_tab_mark_empty(tab) < 0)
1136 goto error;
1137 return tab;
1140 c = isl_vec_alloc(bset->ctx, 1 + 1 + isl_basic_set_total_dim(bset));
1141 if (!c)
1142 goto error;
1144 isl_int_set_si(c->el[0], 0);
1145 for (i = 0; i < bset->n_eq; ++i) {
1146 isl_seq_cpy(c->el + 1, bset->eq[i], c->size - 1);
1147 if (isl_tab_add_eq(tab, c->el) < 0)
1148 goto error;
1151 isl_int_set_si(c->el[0], -1);
1152 for (i = 0; i < bset->n_ineq; ++i) {
1153 isl_seq_cpy(c->el + 1, bset->ineq[i], c->size - 1);
1154 if (isl_tab_add_ineq(tab, c->el) < 0)
1155 goto error;
1156 if (tab->empty) {
1157 isl_vec_free(c);
1158 return tab;
1162 isl_seq_clr(c->el + 1, c->size - 1);
1163 isl_int_set_si(c->el[1], 1);
1164 if (isl_tab_add_ineq(tab, c->el) < 0)
1165 goto error;
1167 isl_vec_free(c);
1168 return tab;
1169 error:
1170 isl_vec_free(c);
1171 isl_tab_free(tab);
1172 return NULL;
1175 /* Compute an interior point of "bset" by selecting an interior
1176 * point in homogeneous space and projecting the point back down.
1178 static __isl_give isl_vec *isl_basic_set_interior_point(
1179 __isl_keep isl_basic_set *bset)
1181 isl_vec *vec;
1182 struct isl_tab *tab;
1184 tab = tab_for_shifted_cone(bset);
1185 vec = isl_tab_get_sample_value(tab);
1186 isl_tab_free(tab);
1187 if (!vec)
1188 return NULL;
1190 isl_seq_cpy(vec->el, vec->el + 1, vec->size - 1);
1191 vec->size--;
1193 return vec;
1196 /* Call "fn" on all chambers of the parametric polytope with the shared
1197 * facets of neighboring chambers only appearing in one of the chambers.
1199 * We pick an interior point from one of the chambers and then make
1200 * all constraints that do not satisfy this point strict.
1202 int isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices *vertices,
1203 int (*fn)(__isl_take isl_cell *cell, void *user), void *user)
1205 int i, j;
1206 isl_vec *vec;
1207 isl_int v;
1208 isl_cell *cell;
1210 if (!vertices)
1211 return -1;
1213 if (vertices->n_chambers == 0)
1214 return 0;
1216 if (vertices->n_chambers == 1) {
1217 isl_basic_set *dom = isl_basic_set_copy(vertices->c[0].dom);
1218 dom = isl_basic_set_set_integral(dom);
1219 cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, 0);
1220 if (!cell)
1221 return -1;
1222 return fn(cell, user);
1225 vec = isl_basic_set_interior_point(vertices->c[0].dom);
1226 if (!vec)
1227 return -1;
1229 isl_int_init(v);
1231 for (i = 0; i < vertices->n_chambers; ++i) {
1232 int r;
1233 isl_basic_set *dom = isl_basic_set_copy(vertices->c[i].dom);
1234 dom = isl_basic_set_cow(dom);
1235 if (!dom)
1236 goto error;
1237 for (j = 0; i && j < dom->n_ineq; ++j) {
1238 isl_seq_inner_product(vec->el, dom->ineq[j], vec->size,
1239 &v);
1240 if (!isl_int_is_neg(v))
1241 continue;
1242 isl_int_sub_ui(dom->ineq[j][0], dom->ineq[j][0], 1);
1244 dom = isl_basic_set_set_integral(dom);
1245 cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, i);
1246 if (!cell)
1247 goto error;
1248 r = fn(cell, user);
1249 if (r < 0)
1250 goto error;
1253 isl_int_clear(v);
1254 isl_vec_free(vec);
1256 return 0;
1257 error:
1258 isl_int_clear(v);
1259 isl_vec_free(vec);
1260 return -1;
1263 isl_stat isl_vertices_foreach_cell(__isl_keep isl_vertices *vertices,
1264 isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user)
1266 int i;
1267 isl_cell *cell;
1269 if (!vertices)
1270 return isl_stat_error;
1272 if (vertices->n_chambers == 0)
1273 return isl_stat_ok;
1275 for (i = 0; i < vertices->n_chambers; ++i) {
1276 isl_stat r;
1277 isl_basic_set *dom = isl_basic_set_copy(vertices->c[i].dom);
1279 cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, i);
1280 if (!cell)
1281 return isl_stat_error;
1283 r = fn(cell, user);
1284 if (r < 0)
1285 return isl_stat_error;
1288 return isl_stat_ok;
1291 isl_stat isl_vertices_foreach_vertex(__isl_keep isl_vertices *vertices,
1292 isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user)
1294 int i;
1295 isl_vertex *vertex;
1297 if (!vertices)
1298 return isl_stat_error;
1300 if (vertices->n_vertices == 0)
1301 return isl_stat_ok;
1303 for (i = 0; i < vertices->n_vertices; ++i) {
1304 isl_stat r;
1306 vertex = isl_vertex_alloc(isl_vertices_copy(vertices), i);
1307 if (!vertex)
1308 return isl_stat_error;
1310 r = fn(vertex, user);
1311 if (r < 0)
1312 return isl_stat_error;
1315 return isl_stat_ok;
1318 isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
1319 isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user)
1321 int i;
1322 isl_vertex *vertex;
1324 if (!cell)
1325 return isl_stat_error;
1327 if (cell->n_vertices == 0)
1328 return isl_stat_ok;
1330 for (i = 0; i < cell->n_vertices; ++i) {
1331 isl_stat r;
1333 vertex = isl_vertex_alloc(isl_vertices_copy(cell->vertices),
1334 cell->ids[i]);
1335 if (!vertex)
1336 return isl_stat_error;
1338 r = fn(vertex, user);
1339 if (r < 0)
1340 return isl_stat_error;
1343 return isl_stat_ok;
1346 isl_ctx *isl_vertices_get_ctx(__isl_keep isl_vertices *vertices)
1348 return vertices ? vertices->bset->ctx : NULL;
1351 int isl_vertices_get_n_vertices(__isl_keep isl_vertices *vertices)
1353 return vertices ? vertices->n_vertices : -1;
1356 __isl_give isl_vertices *isl_morph_vertices(__isl_take isl_morph *morph,
1357 __isl_take isl_vertices *vertices)
1359 int i;
1360 isl_morph *param_morph = NULL;
1362 if (!morph || !vertices)
1363 goto error;
1365 isl_assert(vertices->bset->ctx, vertices->ref == 1, goto error);
1367 param_morph = isl_morph_copy(morph);
1368 param_morph = isl_morph_dom_params(param_morph);
1369 param_morph = isl_morph_ran_params(param_morph);
1371 for (i = 0; i < vertices->n_vertices; ++i) {
1372 vertices->v[i].dom = isl_morph_basic_set(
1373 isl_morph_copy(param_morph), vertices->v[i].dom);
1374 vertices->v[i].vertex = isl_morph_basic_set(
1375 isl_morph_copy(morph), vertices->v[i].vertex);
1376 if (!vertices->v[i].vertex)
1377 goto error;
1380 for (i = 0; i < vertices->n_chambers; ++i) {
1381 vertices->c[i].dom = isl_morph_basic_set(
1382 isl_morph_copy(param_morph), vertices->c[i].dom);
1383 if (!vertices->c[i].dom)
1384 goto error;
1387 isl_morph_free(param_morph);
1388 isl_morph_free(morph);
1389 return vertices;
1390 error:
1391 isl_morph_free(param_morph);
1392 isl_morph_free(morph);
1393 isl_vertices_free(vertices);
1394 return NULL;
1397 /* Construct a simplex isl_cell spanned by the vertices with indices in
1398 * "simplex_ids" and "other_ids" and call "fn" on this isl_cell.
1400 static int call_on_simplex(__isl_keep isl_cell *cell,
1401 int *simplex_ids, int n_simplex, int *other_ids, int n_other,
1402 int (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1404 int i;
1405 isl_ctx *ctx;
1406 struct isl_cell *simplex;
1408 ctx = isl_cell_get_ctx(cell);
1410 simplex = isl_calloc_type(ctx, struct isl_cell);
1411 if (!simplex)
1412 return -1;
1413 simplex->vertices = isl_vertices_copy(cell->vertices);
1414 if (!simplex->vertices)
1415 goto error;
1416 simplex->dom = isl_basic_set_copy(cell->dom);
1417 if (!simplex->dom)
1418 goto error;
1419 simplex->n_vertices = n_simplex + n_other;
1420 simplex->ids = isl_alloc_array(ctx, int, simplex->n_vertices);
1421 if (!simplex->ids)
1422 goto error;
1424 for (i = 0; i < n_simplex; ++i)
1425 simplex->ids[i] = simplex_ids[i];
1426 for (i = 0; i < n_other; ++i)
1427 simplex->ids[n_simplex + i] = other_ids[i];
1429 return fn(simplex, user);
1430 error:
1431 isl_cell_free(simplex);
1432 return -1;
1435 /* Check whether the parametric vertex described by "vertex"
1436 * lies on the facet corresponding to constraint "facet" of "bset".
1437 * The isl_vec "v" is a temporary vector than can be used by this function.
1439 * We eliminate the variables from the facet constraint using the
1440 * equalities defining the vertex and check if the result is identical
1441 * to zero.
1443 * It would probably be better to keep track of the constraints defining
1444 * a vertex during the vertex construction so that we could simply look
1445 * it up here.
1447 static int vertex_on_facet(__isl_keep isl_basic_set *vertex,
1448 __isl_keep isl_basic_set *bset, int facet, __isl_keep isl_vec *v)
1450 int i;
1451 isl_int m;
1453 isl_seq_cpy(v->el, bset->ineq[facet], v->size);
1455 isl_int_init(m);
1456 for (i = 0; i < vertex->n_eq; ++i) {
1457 int k = isl_seq_last_non_zero(vertex->eq[i], v->size);
1458 isl_seq_elim(v->el, vertex->eq[i], k, v->size, &m);
1460 isl_int_clear(m);
1462 return isl_seq_first_non_zero(v->el, v->size) == -1;
1465 /* Triangulate the polytope spanned by the vertices with ids
1466 * in "simplex_ids" and "other_ids" and call "fn" on each of
1467 * the resulting simplices.
1468 * If the input polytope is already a simplex, we simply call "fn".
1469 * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids".
1470 * Then we consider each facet of "bset" that does not contain the point
1471 * we just picked, but does contain some of the other points in "other_ids"
1472 * and call ourselves recursively on the polytope spanned by the new
1473 * "simplex_ids" and those points in "other_ids" that lie on the facet.
1475 static int triangulate(__isl_keep isl_cell *cell, __isl_keep isl_vec *v,
1476 int *simplex_ids, int n_simplex, int *other_ids, int n_other,
1477 int (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1479 int i, j, k;
1480 int d, nparam;
1481 int *ids;
1482 isl_ctx *ctx;
1483 isl_basic_set *vertex;
1484 isl_basic_set *bset;
1486 ctx = isl_cell_get_ctx(cell);
1487 d = isl_basic_set_dim(cell->vertices->bset, isl_dim_set);
1488 nparam = isl_basic_set_dim(cell->vertices->bset, isl_dim_param);
1490 if (n_simplex + n_other == d + 1)
1491 return call_on_simplex(cell, simplex_ids, n_simplex,
1492 other_ids, n_other, fn, user);
1494 simplex_ids[n_simplex] = other_ids[0];
1495 vertex = cell->vertices->v[other_ids[0]].vertex;
1496 bset = cell->vertices->bset;
1498 ids = isl_alloc_array(ctx, int, n_other - 1);
1499 for (i = 0; i < bset->n_ineq; ++i) {
1500 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + nparam, d) == -1)
1501 continue;
1502 if (vertex_on_facet(vertex, bset, i, v))
1503 continue;
1505 for (j = 1, k = 0; j < n_other; ++j) {
1506 isl_basic_set *ov;
1507 ov = cell->vertices->v[other_ids[j]].vertex;
1508 if (vertex_on_facet(ov, bset, i, v))
1509 ids[k++] = other_ids[j];
1511 if (k == 0)
1512 continue;
1514 if (triangulate(cell, v, simplex_ids, n_simplex + 1,
1515 ids, k, fn, user) < 0)
1516 goto error;
1518 free(ids);
1520 return 0;
1521 error:
1522 free(ids);
1523 return -1;
1526 /* Triangulate the given cell and call "fn" on each of the resulting
1527 * simplices.
1529 int isl_cell_foreach_simplex(__isl_take isl_cell *cell,
1530 int (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1532 int d, total;
1533 int r;
1534 isl_ctx *ctx;
1535 isl_vec *v = NULL;
1536 int *simplex_ids = NULL;
1538 if (!cell)
1539 return -1;
1541 d = isl_basic_set_dim(cell->vertices->bset, isl_dim_set);
1542 total = isl_basic_set_total_dim(cell->vertices->bset);
1544 if (cell->n_vertices == d + 1)
1545 return fn(cell, user);
1547 ctx = isl_cell_get_ctx(cell);
1548 simplex_ids = isl_alloc_array(ctx, int, d + 1);
1549 if (!simplex_ids)
1550 goto error;
1552 v = isl_vec_alloc(ctx, 1 + total);
1553 if (!v)
1554 goto error;
1556 r = triangulate(cell, v, simplex_ids, 0,
1557 cell->ids, cell->n_vertices, fn, user);
1559 isl_vec_free(v);
1560 free(simplex_ids);
1562 isl_cell_free(cell);
1564 return r;
1565 error:
1566 free(simplex_ids);
1567 isl_vec_free(v);
1568 isl_cell_free(cell);
1569 return -1;