2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_lp_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_options_private.h>
21 #include <isl_tarjan.h>
23 int isl_map_is_transitively_closed(__isl_keep isl_map
*map
)
28 map2
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(map
));
29 closed
= isl_map_is_subset(map2
, map
);
35 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map
*umap
)
40 umap2
= isl_union_map_apply_range(isl_union_map_copy(umap
),
41 isl_union_map_copy(umap
));
42 closed
= isl_union_map_is_subset(umap2
, umap
);
43 isl_union_map_free(umap2
);
48 /* Given a map that represents a path with the length of the path
49 * encoded as the difference between the last output coordindate
50 * and the last input coordinate, set this length to either
51 * exactly "length" (if "exactly" is set) or at least "length"
52 * (if "exactly" is not set).
54 static __isl_give isl_map
*set_path_length(__isl_take isl_map
*map
,
55 int exactly
, int length
)
58 struct isl_basic_map
*bmap
;
68 space
= isl_map_get_space(map
);
69 d
= isl_space_dim(space
, isl_dim_in
);
70 nparam
= isl_space_dim(space
, isl_dim_param
);
71 total
= isl_space_dim(space
, isl_dim_all
);
72 if (d
< 0 || nparam
< 0 || total
< 0)
73 space
= isl_space_free(space
);
74 bmap
= isl_basic_map_alloc_space(space
, 0, 1, 1);
76 k
= isl_basic_map_alloc_equality(bmap
);
81 k
= isl_basic_map_alloc_inequality(bmap
);
86 isl_seq_clr(c
, 1 + total
);
87 isl_int_set_si(c
[0], -length
);
88 isl_int_set_si(c
[1 + nparam
+ d
- 1], -1);
89 isl_int_set_si(c
[1 + nparam
+ d
+ d
- 1], 1);
91 bmap
= isl_basic_map_finalize(bmap
);
92 map
= isl_map_intersect(map
, isl_map_from_basic_map(bmap
));
96 isl_basic_map_free(bmap
);
101 /* Check whether the overapproximation of the power of "map" is exactly
102 * the power of "map". Let R be "map" and A_k the overapproximation.
103 * The approximation is exact if
106 * A_k = A_{k-1} \circ R k >= 2
108 * Since A_k is known to be an overapproximation, we only need to check
111 * A_k \subset A_{k-1} \circ R k >= 2
113 * In practice, "app" has an extra input and output coordinate
114 * to encode the length of the path. So, we first need to add
115 * this coordinate to "map" and set the length of the path to
118 static int check_power_exactness(__isl_take isl_map
*map
,
119 __isl_take isl_map
*app
)
125 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
126 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
127 map
= set_path_length(map
, 1, 1);
129 app_1
= set_path_length(isl_map_copy(app
), 1, 1);
131 exact
= isl_map_is_subset(app_1
, map
);
134 if (!exact
|| exact
< 0) {
140 app_1
= set_path_length(isl_map_copy(app
), 0, 1);
141 app_2
= set_path_length(app
, 0, 2);
142 app_1
= isl_map_apply_range(map
, app_1
);
144 exact
= isl_map_is_subset(app_2
, app_1
);
152 /* Check whether the overapproximation of the power of "map" is exactly
153 * the power of "map", possibly after projecting out the power (if "project"
156 * If "project" is set and if "steps" can only result in acyclic paths,
159 * A = R \cup (A \circ R)
161 * where A is the overapproximation with the power projected out, i.e.,
162 * an overapproximation of the transitive closure.
163 * More specifically, since A is known to be an overapproximation, we check
165 * A \subset R \cup (A \circ R)
167 * Otherwise, we check if the power is exact.
169 * Note that "app" has an extra input and output coordinate to encode
170 * the length of the part. If we are only interested in the transitive
171 * closure, then we can simply project out these coordinates first.
173 static int check_exactness(__isl_take isl_map
*map
, __isl_take isl_map
*app
,
181 return check_power_exactness(map
, app
);
183 d
= isl_map_dim(map
, isl_dim_in
);
185 app
= isl_map_free(app
);
186 app
= set_path_length(app
, 0, 1);
187 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
188 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
190 app
= isl_map_reset_space(app
, isl_map_get_space(map
));
192 test
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(app
));
193 test
= isl_map_union(test
, isl_map_copy(map
));
195 exact
= isl_map_is_subset(app
, test
);
206 * The transitive closure implementation is based on the paper
207 * "Computing the Transitive Closure of a Union of Affine Integer
208 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
212 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
213 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
214 * that maps an element x to any element that can be reached
215 * by taking a non-negative number of steps along any of
216 * the extended offsets v'_i = [v_i 1].
219 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
221 * For any element in this relation, the number of steps taken
222 * is equal to the difference in the final coordinates.
224 static __isl_give isl_map
*path_along_steps(__isl_take isl_space
*space
,
225 __isl_keep isl_mat
*steps
)
228 struct isl_basic_map
*path
= NULL
;
234 d
= isl_space_dim(space
, isl_dim_in
);
235 nparam
= isl_space_dim(space
, isl_dim_param
);
236 if (d
< 0 || nparam
< 0 || !steps
)
241 path
= isl_basic_map_alloc_space(isl_space_copy(space
), n
, d
, n
);
243 for (i
= 0; i
< n
; ++i
) {
244 k
= isl_basic_map_alloc_div(path
);
247 isl_assert(steps
->ctx
, i
== k
, goto error
);
248 isl_int_set_si(path
->div
[k
][0], 0);
251 total
= isl_basic_map_dim(path
, isl_dim_all
);
254 for (i
= 0; i
< d
; ++i
) {
255 k
= isl_basic_map_alloc_equality(path
);
258 isl_seq_clr(path
->eq
[k
], 1 + total
);
259 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
260 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ i
], -1);
262 for (j
= 0; j
< n
; ++j
)
263 isl_int_set_si(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
], 1);
265 for (j
= 0; j
< n
; ++j
)
266 isl_int_set(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
],
270 for (i
= 0; i
< n
; ++i
) {
271 k
= isl_basic_map_alloc_inequality(path
);
274 isl_seq_clr(path
->ineq
[k
], 1 + total
);
275 isl_int_set_si(path
->ineq
[k
][1 + nparam
+ 2 * d
+ i
], 1);
278 isl_space_free(space
);
280 path
= isl_basic_map_simplify(path
);
281 path
= isl_basic_map_finalize(path
);
282 return isl_map_from_basic_map(path
);
284 isl_space_free(space
);
285 isl_basic_map_free(path
);
294 /* Check whether the parametric constant term of constraint c is never
295 * positive in "bset".
297 static isl_bool
parametric_constant_never_positive(
298 __isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
)
308 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
309 d
= isl_basic_set_dim(bset
, isl_dim_set
);
310 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
311 total
= isl_basic_set_dim(bset
, isl_dim_all
);
312 if (n_div
< 0 || d
< 0 || nparam
< 0 || total
< 0)
313 return isl_bool_error
;
315 bset
= isl_basic_set_copy(bset
);
316 bset
= isl_basic_set_cow(bset
);
317 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
318 k
= isl_basic_set_alloc_inequality(bset
);
321 isl_seq_clr(bset
->ineq
[k
], 1 + total
);
322 isl_seq_cpy(bset
->ineq
[k
], c
, 1 + nparam
);
323 for (i
= 0; i
< n_div
; ++i
) {
324 if (div_purity
[i
] != PURE_PARAM
)
326 isl_int_set(bset
->ineq
[k
][1 + nparam
+ d
+ i
],
327 c
[1 + nparam
+ d
+ i
]);
329 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
330 empty
= isl_basic_set_is_empty(bset
);
331 isl_basic_set_free(bset
);
335 isl_basic_set_free(bset
);
336 return isl_bool_error
;
339 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
340 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
341 * Return MIXED if only the coefficients of the parameters and the set
342 * variables are non-zero and if moreover the parametric constant
343 * can never attain positive values.
344 * Return IMPURE otherwise.
346 static int purity(__isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
,
356 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
357 d
= isl_basic_set_dim(bset
, isl_dim_set
);
358 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
359 if (n_div
< 0 || d
< 0 || nparam
< 0)
362 for (i
= 0; i
< n_div
; ++i
) {
363 if (isl_int_is_zero(c
[1 + nparam
+ d
+ i
]))
365 switch (div_purity
[i
]) {
366 case PURE_PARAM
: p
= 1; break;
367 case PURE_VAR
: v
= 1; break;
368 default: return IMPURE
;
371 if (!p
&& isl_seq_first_non_zero(c
+ 1, nparam
) == -1)
373 if (!v
&& isl_seq_first_non_zero(c
+ 1 + nparam
, d
) == -1)
376 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
377 if (eq
&& empty
>= 0 && !empty
) {
378 isl_seq_neg(c
, c
, 1 + nparam
+ d
+ n_div
);
379 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
382 return empty
< 0 ? -1 : empty
? MIXED
: IMPURE
;
385 /* Return an array of integers indicating the type of each div in bset.
386 * If the div is (recursively) defined in terms of only the parameters,
387 * then the type is PURE_PARAM.
388 * If the div is (recursively) defined in terms of only the set variables,
389 * then the type is PURE_VAR.
390 * Otherwise, the type is IMPURE.
392 static __isl_give
int *get_div_purity(__isl_keep isl_basic_set
*bset
)
400 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
401 d
= isl_basic_set_dim(bset
, isl_dim_set
);
402 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
403 if (n_div
< 0 || d
< 0 || nparam
< 0)
406 div_purity
= isl_alloc_array(bset
->ctx
, int, n_div
);
407 if (n_div
&& !div_purity
)
410 for (i
= 0; i
< bset
->n_div
; ++i
) {
412 if (isl_int_is_zero(bset
->div
[i
][0])) {
413 div_purity
[i
] = IMPURE
;
416 if (isl_seq_first_non_zero(bset
->div
[i
] + 2, nparam
) != -1)
418 if (isl_seq_first_non_zero(bset
->div
[i
] + 2 + nparam
, d
) != -1)
420 for (j
= 0; j
< i
; ++j
) {
421 if (isl_int_is_zero(bset
->div
[i
][2 + nparam
+ d
+ j
]))
423 switch (div_purity
[j
]) {
424 case PURE_PARAM
: p
= 1; break;
425 case PURE_VAR
: v
= 1; break;
426 default: p
= v
= 1; break;
429 div_purity
[i
] = v
? p
? IMPURE
: PURE_VAR
: PURE_PARAM
;
435 /* Given a path with the as yet unconstrained length at div position "pos",
436 * check if setting the length to zero results in only the identity
439 static isl_bool
empty_path_is_identity(__isl_keep isl_basic_map
*path
,
442 isl_basic_map
*test
= NULL
;
443 isl_basic_map
*id
= NULL
;
446 test
= isl_basic_map_copy(path
);
447 test
= isl_basic_map_fix_si(test
, isl_dim_div
, pos
, 0);
448 id
= isl_basic_map_identity(isl_basic_map_get_space(path
));
449 is_id
= isl_basic_map_is_equal(test
, id
);
450 isl_basic_map_free(test
);
451 isl_basic_map_free(id
);
455 /* If any of the constraints is found to be impure then this function
456 * sets *impurity to 1.
458 * If impurity is NULL then we are dealing with a non-parametric set
459 * and so the constraints are obviously PURE_VAR.
461 static __isl_give isl_basic_map
*add_delta_constraints(
462 __isl_take isl_basic_map
*path
,
463 __isl_keep isl_basic_set
*delta
, unsigned off
, unsigned nparam
,
464 unsigned d
, int *div_purity
, int eq
, int *impurity
)
467 int n
= eq
? delta
->n_eq
: delta
->n_ineq
;
468 isl_int
**delta_c
= eq
? delta
->eq
: delta
->ineq
;
469 isl_size n_div
, total
;
471 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
472 total
= isl_basic_map_dim(path
, isl_dim_all
);
473 if (n_div
< 0 || total
< 0)
474 return isl_basic_map_free(path
);
476 for (i
= 0; i
< n
; ++i
) {
480 p
= purity(delta
, delta_c
[i
], div_purity
, eq
);
483 if (p
!= PURE_VAR
&& p
!= PURE_PARAM
&& !*impurity
)
487 if (eq
&& p
!= MIXED
) {
488 k
= isl_basic_map_alloc_equality(path
);
491 path_c
= path
->eq
[k
];
493 k
= isl_basic_map_alloc_inequality(path
);
496 path_c
= path
->ineq
[k
];
498 isl_seq_clr(path_c
, 1 + total
);
500 isl_seq_cpy(path_c
+ off
,
501 delta_c
[i
] + 1 + nparam
, d
);
502 isl_int_set(path_c
[off
+ d
], delta_c
[i
][0]);
503 } else if (p
== PURE_PARAM
) {
504 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
506 isl_seq_cpy(path_c
+ off
,
507 delta_c
[i
] + 1 + nparam
, d
);
508 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
510 isl_seq_cpy(path_c
+ off
- n_div
,
511 delta_c
[i
] + 1 + nparam
+ d
, n_div
);
516 isl_basic_map_free(path
);
520 /* Given a set of offsets "delta", construct a relation of the
521 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
522 * is an overapproximation of the relations that
523 * maps an element x to any element that can be reached
524 * by taking a non-negative number of steps along any of
525 * the elements in "delta".
526 * That is, construct an approximation of
528 * { [x] -> [y] : exists f \in \delta, k \in Z :
529 * y = x + k [f, 1] and k >= 0 }
531 * For any element in this relation, the number of steps taken
532 * is equal to the difference in the final coordinates.
534 * In particular, let delta be defined as
536 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
537 * C x + C'p + c >= 0 and
538 * D x + D'p + d >= 0 }
540 * where the constraints C x + C'p + c >= 0 are such that the parametric
541 * constant term of each constraint j, "C_j x + C'_j p + c_j",
542 * can never attain positive values, then the relation is constructed as
544 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
545 * A f + k a >= 0 and B p + b >= 0 and
546 * C f + C'p + c >= 0 and k >= 1 }
547 * union { [x] -> [x] }
549 * If the zero-length paths happen to correspond exactly to the identity
550 * mapping, then we return
552 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
553 * A f + k a >= 0 and B p + b >= 0 and
554 * C f + C'p + c >= 0 and k >= 0 }
558 * Existentially quantified variables in \delta are handled by
559 * classifying them as independent of the parameters, purely
560 * parameter dependent and others. Constraints containing
561 * any of the other existentially quantified variables are removed.
562 * This is safe, but leads to an additional overapproximation.
564 * If there are any impure constraints, then we also eliminate
565 * the parameters from \delta, resulting in a set
567 * \delta' = { [x] : E x + e >= 0 }
569 * and add the constraints
573 * to the constructed relation.
575 static __isl_give isl_map
*path_along_delta(__isl_take isl_space
*space
,
576 __isl_take isl_basic_set
*delta
)
578 isl_basic_map
*path
= NULL
;
586 int *div_purity
= NULL
;
589 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
590 d
= isl_basic_set_dim(delta
, isl_dim_set
);
591 nparam
= isl_basic_set_dim(delta
, isl_dim_param
);
592 if (n_div
< 0 || d
< 0 || nparam
< 0)
594 path
= isl_basic_map_alloc_space(isl_space_copy(space
), n_div
+ d
+ 1,
595 d
+ 1 + delta
->n_eq
, delta
->n_eq
+ delta
->n_ineq
+ 1);
596 off
= 1 + nparam
+ 2 * (d
+ 1) + n_div
;
598 for (i
= 0; i
< n_div
+ d
+ 1; ++i
) {
599 k
= isl_basic_map_alloc_div(path
);
602 isl_int_set_si(path
->div
[k
][0], 0);
605 total
= isl_basic_map_dim(path
, isl_dim_all
);
608 for (i
= 0; i
< d
+ 1; ++i
) {
609 k
= isl_basic_map_alloc_equality(path
);
612 isl_seq_clr(path
->eq
[k
], 1 + total
);
613 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
614 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ 1 + i
], -1);
615 isl_int_set_si(path
->eq
[k
][off
+ i
], 1);
618 div_purity
= get_div_purity(delta
);
619 if (n_div
&& !div_purity
)
622 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
623 div_purity
, 1, &impurity
);
624 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
625 div_purity
, 0, &impurity
);
627 isl_space
*space
= isl_basic_set_get_space(delta
);
628 delta
= isl_basic_set_project_out(delta
,
629 isl_dim_param
, 0, nparam
);
630 delta
= isl_basic_set_add_dims(delta
, isl_dim_param
, nparam
);
631 delta
= isl_basic_set_reset_space(delta
, space
);
634 path
= isl_basic_map_extend_constraints(path
, delta
->n_eq
,
636 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
638 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
640 path
= isl_basic_map_gauss(path
, NULL
);
643 is_id
= empty_path_is_identity(path
, n_div
+ d
);
647 k
= isl_basic_map_alloc_inequality(path
);
650 isl_seq_clr(path
->ineq
[k
], 1 + total
);
652 isl_int_set_si(path
->ineq
[k
][0], -1);
653 isl_int_set_si(path
->ineq
[k
][off
+ d
], 1);
656 isl_basic_set_free(delta
);
657 path
= isl_basic_map_finalize(path
);
659 isl_space_free(space
);
660 return isl_map_from_basic_map(path
);
662 return isl_basic_map_union(path
, isl_basic_map_identity(space
));
665 isl_space_free(space
);
666 isl_basic_set_free(delta
);
667 isl_basic_map_free(path
);
671 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
672 * construct a map that equates the parameter to the difference
673 * in the final coordinates and imposes that this difference is positive.
676 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
678 static __isl_give isl_map
*equate_parameter_to_length(
679 __isl_take isl_space
*space
, unsigned param
)
681 struct isl_basic_map
*bmap
;
687 d
= isl_space_dim(space
, isl_dim_in
);
688 nparam
= isl_space_dim(space
, isl_dim_param
);
689 total
= isl_space_dim(space
, isl_dim_all
);
690 if (d
< 0 || nparam
< 0 || total
< 0)
691 space
= isl_space_free(space
);
692 bmap
= isl_basic_map_alloc_space(space
, 0, 1, 1);
693 k
= isl_basic_map_alloc_equality(bmap
);
696 isl_seq_clr(bmap
->eq
[k
], 1 + total
);
697 isl_int_set_si(bmap
->eq
[k
][1 + param
], -1);
698 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
- 1], -1);
699 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
+ d
- 1], 1);
701 k
= isl_basic_map_alloc_inequality(bmap
);
704 isl_seq_clr(bmap
->ineq
[k
], 1 + total
);
705 isl_int_set_si(bmap
->ineq
[k
][1 + param
], 1);
706 isl_int_set_si(bmap
->ineq
[k
][0], -1);
708 bmap
= isl_basic_map_finalize(bmap
);
709 return isl_map_from_basic_map(bmap
);
711 isl_basic_map_free(bmap
);
715 /* Check whether "path" is acyclic, where the last coordinates of domain
716 * and range of path encode the number of steps taken.
717 * That is, check whether
719 * { d | d = y - x and (x,y) in path }
721 * does not contain any element with positive last coordinate (positive length)
722 * and zero remaining coordinates (cycle).
724 static isl_bool
is_acyclic(__isl_take isl_map
*path
)
729 struct isl_set
*delta
;
731 delta
= isl_map_deltas(path
);
732 dim
= isl_set_dim(delta
, isl_dim_set
);
734 delta
= isl_set_free(delta
);
735 for (i
= 0; i
< dim
; ++i
) {
737 delta
= isl_set_lower_bound_si(delta
, isl_dim_set
, i
, 1);
739 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
742 acyclic
= isl_set_is_empty(delta
);
748 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
749 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
750 * construct a map that is an overapproximation of the map
751 * that takes an element from the space D \times Z to another
752 * element from the same space, such that the first n coordinates of the
753 * difference between them is a sum of differences between images
754 * and pre-images in one of the R_i and such that the last coordinate
755 * is equal to the number of steps taken.
758 * \Delta_i = { y - x | (x, y) in R_i }
760 * then the constructed map is an overapproximation of
762 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
763 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
765 * The elements of the singleton \Delta_i's are collected as the
766 * rows of the steps matrix. For all these \Delta_i's together,
767 * a single path is constructed.
768 * For each of the other \Delta_i's, we compute an overapproximation
769 * of the paths along elements of \Delta_i.
770 * Since each of these paths performs an addition, composition is
771 * symmetric and we can simply compose all resulting paths in any order.
773 static __isl_give isl_map
*construct_extended_path(__isl_take isl_space
*space
,
774 __isl_keep isl_map
*map
, int *project
)
776 struct isl_mat
*steps
= NULL
;
777 struct isl_map
*path
= NULL
;
781 d
= isl_map_dim(map
, isl_dim_in
);
785 path
= isl_map_identity(isl_space_copy(space
));
787 steps
= isl_mat_alloc(map
->ctx
, map
->n
, d
);
792 for (i
= 0; i
< map
->n
; ++i
) {
793 struct isl_basic_set
*delta
;
795 delta
= isl_basic_map_deltas(isl_basic_map_copy(map
->p
[i
]));
797 for (j
= 0; j
< d
; ++j
) {
800 fixed
= isl_basic_set_plain_dim_is_fixed(delta
, j
,
803 isl_basic_set_free(delta
);
812 path
= isl_map_apply_range(path
,
813 path_along_delta(isl_space_copy(space
), delta
));
814 path
= isl_map_coalesce(path
);
816 isl_basic_set_free(delta
);
823 path
= isl_map_apply_range(path
,
824 path_along_steps(isl_space_copy(space
), steps
));
827 if (project
&& *project
) {
828 *project
= is_acyclic(isl_map_copy(path
));
833 isl_space_free(space
);
837 isl_space_free(space
);
843 static isl_bool
isl_set_overlaps(__isl_keep isl_set
*set1
,
844 __isl_keep isl_set
*set2
)
850 return isl_bool_error
;
852 if (!isl_space_tuple_is_equal(set1
->dim
, isl_dim_set
,
853 set2
->dim
, isl_dim_set
))
854 return isl_bool_false
;
856 i
= isl_set_intersect(isl_set_copy(set1
), isl_set_copy(set2
));
857 no_overlap
= isl_set_is_empty(i
);
860 return isl_bool_not(no_overlap
);
863 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
864 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
865 * construct a map that is an overapproximation of the map
866 * that takes an element from the dom R \times Z to an
867 * element from ran R \times Z, such that the first n coordinates of the
868 * difference between them is a sum of differences between images
869 * and pre-images in one of the R_i and such that the last coordinate
870 * is equal to the number of steps taken.
873 * \Delta_i = { y - x | (x, y) in R_i }
875 * then the constructed map is an overapproximation of
877 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
878 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
879 * x in dom R and x + d in ran R and
882 static __isl_give isl_map
*construct_component(__isl_take isl_space
*dim
,
883 __isl_keep isl_map
*map
, int *exact
, int project
)
885 struct isl_set
*domain
= NULL
;
886 struct isl_set
*range
= NULL
;
887 struct isl_map
*app
= NULL
;
888 struct isl_map
*path
= NULL
;
891 domain
= isl_map_domain(isl_map_copy(map
));
892 domain
= isl_set_coalesce(domain
);
893 range
= isl_map_range(isl_map_copy(map
));
894 range
= isl_set_coalesce(range
);
895 overlaps
= isl_set_overlaps(domain
, range
);
896 if (overlaps
< 0 || !overlaps
) {
897 isl_set_free(domain
);
903 map
= isl_map_copy(map
);
904 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
905 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
906 map
= set_path_length(map
, 1, 1);
909 app
= isl_map_from_domain_and_range(domain
, range
);
910 app
= isl_map_add_dims(app
, isl_dim_in
, 1);
911 app
= isl_map_add_dims(app
, isl_dim_out
, 1);
913 path
= construct_extended_path(isl_space_copy(dim
), map
,
914 exact
&& *exact
? &project
: NULL
);
915 app
= isl_map_intersect(app
, path
);
917 if (exact
&& *exact
&&
918 (*exact
= check_exactness(isl_map_copy(map
), isl_map_copy(app
),
923 app
= set_path_length(app
, 0, 1);
931 /* Call construct_component and, if "project" is set, project out
932 * the final coordinates.
934 static __isl_give isl_map
*construct_projected_component(
935 __isl_take isl_space
*space
,
936 __isl_keep isl_map
*map
, int *exact
, int project
)
943 d
= isl_space_dim(space
, isl_dim_in
);
945 app
= construct_component(space
, map
, exact
, project
);
947 app
= isl_map_project_out(app
, isl_dim_in
, d
- 1, 1);
948 app
= isl_map_project_out(app
, isl_dim_out
, d
- 1, 1);
953 /* Compute an extended version, i.e., with path lengths, of
954 * an overapproximation of the transitive closure of "bmap"
955 * with path lengths greater than or equal to zero and with
956 * domain and range equal to "dom".
958 static __isl_give isl_map
*q_closure(__isl_take isl_space
*dim
,
959 __isl_take isl_set
*dom
, __isl_keep isl_basic_map
*bmap
, int *exact
)
966 dom
= isl_set_add_dims(dom
, isl_dim_set
, 1);
967 app
= isl_map_from_domain_and_range(dom
, isl_set_copy(dom
));
968 map
= isl_map_from_basic_map(isl_basic_map_copy(bmap
));
969 path
= construct_extended_path(dim
, map
, &project
);
970 app
= isl_map_intersect(app
, path
);
972 if ((*exact
= check_exactness(map
, isl_map_copy(app
), project
)) < 0)
981 /* Check whether qc has any elements of length at least one
982 * with domain and/or range outside of dom and ran.
984 static isl_bool
has_spurious_elements(__isl_keep isl_map
*qc
,
985 __isl_keep isl_set
*dom
, __isl_keep isl_set
*ran
)
991 d
= isl_map_dim(qc
, isl_dim_in
);
992 if (d
< 0 || !dom
|| !ran
)
993 return isl_bool_error
;
995 qc
= isl_map_copy(qc
);
996 qc
= set_path_length(qc
, 0, 1);
997 qc
= isl_map_project_out(qc
, isl_dim_in
, d
- 1, 1);
998 qc
= isl_map_project_out(qc
, isl_dim_out
, d
- 1, 1);
1000 s
= isl_map_domain(isl_map_copy(qc
));
1001 subset
= isl_set_is_subset(s
, dom
);
1007 return isl_bool_true
;
1010 s
= isl_map_range(qc
);
1011 subset
= isl_set_is_subset(s
, ran
);
1014 return isl_bool_not(subset
);
1017 return isl_bool_error
;
1023 /* For each basic map in "map", except i, check whether it combines
1024 * with the transitive closure that is reflexive on C combines
1025 * to the left and to the right.
1029 * dom map_j \subseteq C
1031 * then right[j] is set to 1. Otherwise, if
1033 * ran map_i \cap dom map_j = \emptyset
1035 * then right[j] is set to 0. Otherwise, composing to the right
1038 * Similar, for composing to the left, we have if
1040 * ran map_j \subseteq C
1042 * then left[j] is set to 1. Otherwise, if
1044 * dom map_i \cap ran map_j = \emptyset
1046 * then left[j] is set to 0. Otherwise, composing to the left
1049 * The return value is or'd with LEFT if composing to the left
1050 * is possible and with RIGHT if composing to the right is possible.
1052 static int composability(__isl_keep isl_set
*C
, int i
,
1053 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1054 __isl_keep isl_map
*map
)
1060 for (j
= 0; j
< map
->n
&& ok
; ++j
) {
1061 isl_bool overlaps
, subset
;
1067 dom
[j
] = isl_set_from_basic_set(
1068 isl_basic_map_domain(
1069 isl_basic_map_copy(map
->p
[j
])));
1072 overlaps
= isl_set_overlaps(ran
[i
], dom
[j
]);
1078 subset
= isl_set_is_subset(dom
[j
], C
);
1090 ran
[j
] = isl_set_from_basic_set(
1091 isl_basic_map_range(
1092 isl_basic_map_copy(map
->p
[j
])));
1095 overlaps
= isl_set_overlaps(dom
[i
], ran
[j
]);
1101 subset
= isl_set_is_subset(ran
[j
], C
);
1115 static __isl_give isl_map
*anonymize(__isl_take isl_map
*map
)
1117 map
= isl_map_reset(map
, isl_dim_in
);
1118 map
= isl_map_reset(map
, isl_dim_out
);
1122 /* Return a map that is a union of the basic maps in "map", except i,
1123 * composed to left and right with qc based on the entries of "left"
1126 static __isl_give isl_map
*compose(__isl_keep isl_map
*map
, int i
,
1127 __isl_take isl_map
*qc
, int *left
, int *right
)
1132 comp
= isl_map_empty(isl_map_get_space(map
));
1133 for (j
= 0; j
< map
->n
; ++j
) {
1139 map_j
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[j
]));
1140 map_j
= anonymize(map_j
);
1141 if (left
&& left
[j
])
1142 map_j
= isl_map_apply_range(map_j
, isl_map_copy(qc
));
1143 if (right
&& right
[j
])
1144 map_j
= isl_map_apply_range(isl_map_copy(qc
), map_j
);
1145 comp
= isl_map_union(comp
, map_j
);
1148 comp
= isl_map_compute_divs(comp
);
1149 comp
= isl_map_coalesce(comp
);
1156 /* Compute the transitive closure of "map" incrementally by
1163 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1167 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1169 * depending on whether left or right are NULL.
1171 static __isl_give isl_map
*compute_incremental(
1172 __isl_take isl_space
*space
, __isl_keep isl_map
*map
,
1173 int i
, __isl_take isl_map
*qc
, int *left
, int *right
, int *exact
)
1177 isl_map
*rtc
= NULL
;
1181 isl_assert(map
->ctx
, left
|| right
, goto error
);
1183 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
1184 tc
= construct_projected_component(isl_space_copy(space
), map_i
,
1186 isl_map_free(map_i
);
1189 qc
= isl_map_transitive_closure(qc
, exact
);
1192 isl_space_free(space
);
1195 return isl_map_universe(isl_map_get_space(map
));
1198 if (!left
|| !right
)
1199 rtc
= isl_map_union(isl_map_copy(tc
),
1200 isl_map_identity(isl_map_get_space(tc
)));
1202 qc
= isl_map_apply_range(rtc
, qc
);
1204 qc
= isl_map_apply_range(qc
, rtc
);
1205 qc
= isl_map_union(tc
, qc
);
1207 isl_space_free(space
);
1211 isl_space_free(space
);
1216 /* Given a map "map", try to find a basic map such that
1217 * map^+ can be computed as
1219 * map^+ = map_i^+ \cup
1220 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1222 * with C the simple hull of the domain and range of the input map.
1223 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1224 * and by intersecting domain and range with C.
1225 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1226 * Also, we only use the incremental computation if all the transitive
1227 * closures are exact and if the number of basic maps in the union,
1228 * after computing the integer divisions, is smaller than the number
1229 * of basic maps in the input map.
1231 static isl_bool
incremental_on_entire_domain(__isl_keep isl_space
*space
,
1232 __isl_keep isl_map
*map
,
1233 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1234 __isl_give isl_map
**res
)
1242 d
= isl_map_dim(map
, isl_dim_in
);
1244 return isl_bool_error
;
1246 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
1247 isl_map_range(isl_map_copy(map
)));
1248 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1250 return isl_bool_error
;
1253 return isl_bool_false
;
1256 for (i
= 0; i
< map
->n
; ++i
) {
1261 dom
[i
] = isl_set_from_basic_set(isl_basic_map_domain(
1262 isl_basic_map_copy(map
->p
[i
])));
1263 ran
[i
] = isl_set_from_basic_set(isl_basic_map_range(
1264 isl_basic_map_copy(map
->p
[i
])));
1265 qc
= q_closure(isl_space_copy(space
), isl_set_copy(C
),
1266 map
->p
[i
], &exact_i
);
1273 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1280 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1281 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1282 qc
= isl_map_compute_divs(qc
);
1283 for (j
= 0; j
< map
->n
; ++j
)
1284 left
[j
] = right
[j
] = 1;
1285 qc
= compose(map
, i
, qc
, left
, right
);
1288 if (qc
->n
>= map
->n
) {
1292 *res
= compute_incremental(isl_space_copy(space
), map
, i
, qc
,
1293 left
, right
, &exact_i
);
1304 return *res
!= NULL
;
1307 return isl_bool_error
;
1310 /* Try and compute the transitive closure of "map" as
1312 * map^+ = map_i^+ \cup
1313 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1315 * with C either the simple hull of the domain and range of the entire
1316 * map or the simple hull of domain and range of map_i.
1318 static __isl_give isl_map
*incremental_closure(__isl_take isl_space
*space
,
1319 __isl_keep isl_map
*map
, int *exact
, int project
)
1322 isl_set
**dom
= NULL
;
1323 isl_set
**ran
= NULL
;
1328 isl_map
*res
= NULL
;
1331 return construct_projected_component(space
, map
, exact
,
1337 return construct_projected_component(space
, map
, exact
,
1340 d
= isl_map_dim(map
, isl_dim_in
);
1344 dom
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1345 ran
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1346 left
= isl_calloc_array(map
->ctx
, int, map
->n
);
1347 right
= isl_calloc_array(map
->ctx
, int, map
->n
);
1348 if (!ran
|| !dom
|| !left
|| !right
)
1351 if (incremental_on_entire_domain(space
, map
, dom
, ran
, left
, right
,
1355 for (i
= 0; !res
&& i
< map
->n
; ++i
) {
1360 dom
[i
] = isl_set_from_basic_set(
1361 isl_basic_map_domain(
1362 isl_basic_map_copy(map
->p
[i
])));
1366 ran
[i
] = isl_set_from_basic_set(
1367 isl_basic_map_range(
1368 isl_basic_map_copy(map
->p
[i
])));
1371 C
= isl_set_union(isl_set_copy(dom
[i
]),
1372 isl_set_copy(ran
[i
]));
1373 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1380 comp
= composability(C
, i
, dom
, ran
, left
, right
, map
);
1381 if (!comp
|| comp
< 0) {
1387 qc
= q_closure(isl_space_copy(space
), C
, map
->p
[i
], &exact_i
);
1394 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1401 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1402 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1403 qc
= isl_map_compute_divs(qc
);
1404 qc
= compose(map
, i
, qc
, (comp
& LEFT
) ? left
: NULL
,
1405 (comp
& RIGHT
) ? right
: NULL
);
1408 if (qc
->n
>= map
->n
) {
1412 res
= compute_incremental(isl_space_copy(space
), map
, i
, qc
,
1413 (comp
& LEFT
) ? left
: NULL
,
1414 (comp
& RIGHT
) ? right
: NULL
, &exact_i
);
1423 for (i
= 0; i
< map
->n
; ++i
) {
1424 isl_set_free(dom
[i
]);
1425 isl_set_free(ran
[i
]);
1433 isl_space_free(space
);
1437 return construct_projected_component(space
, map
, exact
, project
);
1440 for (i
= 0; i
< map
->n
; ++i
)
1441 isl_set_free(dom
[i
]);
1444 for (i
= 0; i
< map
->n
; ++i
)
1445 isl_set_free(ran
[i
]);
1449 isl_space_free(space
);
1453 /* Given an array of sets "set", add "dom" at position "pos"
1454 * and search for elements at earlier positions that overlap with "dom".
1455 * If any can be found, then merge all of them, together with "dom", into
1456 * a single set and assign the union to the first in the array,
1457 * which becomes the new group leader for all groups involved in the merge.
1458 * During the search, we only consider group leaders, i.e., those with
1459 * group[i] = i, as the other sets have already been combined
1460 * with one of the group leaders.
1462 static int merge(isl_set
**set
, int *group
, __isl_take isl_set
*dom
, int pos
)
1467 set
[pos
] = isl_set_copy(dom
);
1469 for (i
= pos
- 1; i
>= 0; --i
) {
1475 o
= isl_set_overlaps(set
[i
], dom
);
1481 set
[i
] = isl_set_union(set
[i
], set
[group
[pos
]]);
1482 set
[group
[pos
]] = NULL
;
1485 group
[group
[pos
]] = i
;
1496 /* Construct a map [x] -> [x+1], with parameters prescribed by "space".
1498 static __isl_give isl_map
*increment(__isl_take isl_space
*space
)
1501 isl_basic_map
*bmap
;
1504 space
= isl_space_set_from_params(space
);
1505 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
1506 space
= isl_space_map_from_set(space
);
1507 bmap
= isl_basic_map_alloc_space(space
, 0, 1, 0);
1508 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
1509 k
= isl_basic_map_alloc_equality(bmap
);
1510 if (total
< 0 || k
< 0)
1512 isl_seq_clr(bmap
->eq
[k
], 1 + total
);
1513 isl_int_set_si(bmap
->eq
[k
][0], 1);
1514 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_in
)], 1);
1515 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_out
)], -1);
1516 return isl_map_from_basic_map(bmap
);
1518 isl_basic_map_free(bmap
);
1522 /* Replace each entry in the n by n grid of maps by the cross product
1523 * with the relation { [i] -> [i + 1] }.
1525 static isl_stat
add_length(__isl_keep isl_map
*map
, isl_map
***grid
, int n
)
1531 space
= isl_space_params(isl_map_get_space(map
));
1532 step
= increment(space
);
1535 return isl_stat_error
;
1537 for (i
= 0; i
< n
; ++i
)
1538 for (j
= 0; j
< n
; ++j
)
1539 grid
[i
][j
] = isl_map_product(grid
[i
][j
],
1540 isl_map_copy(step
));
1547 /* The core of the Floyd-Warshall algorithm.
1548 * Updates the given n x x matrix of relations in place.
1550 * The algorithm iterates over all vertices. In each step, the whole
1551 * matrix is updated to include all paths that go to the current vertex,
1552 * possibly stay there a while (including passing through earlier vertices)
1553 * and then come back. At the start of each iteration, the diagonal
1554 * element corresponding to the current vertex is replaced by its
1555 * transitive closure to account for all indirect paths that stay
1556 * in the current vertex.
1558 static void floyd_warshall_iterate(isl_map
***grid
, int n
, int *exact
)
1562 for (r
= 0; r
< n
; ++r
) {
1564 grid
[r
][r
] = isl_map_transitive_closure(grid
[r
][r
],
1565 (exact
&& *exact
) ? &r_exact
: NULL
);
1566 if (exact
&& *exact
&& !r_exact
)
1569 for (p
= 0; p
< n
; ++p
)
1570 for (q
= 0; q
< n
; ++q
) {
1572 if (p
== r
&& q
== r
)
1574 loop
= isl_map_apply_range(
1575 isl_map_copy(grid
[p
][r
]),
1576 isl_map_copy(grid
[r
][q
]));
1577 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1578 loop
= isl_map_apply_range(
1579 isl_map_copy(grid
[p
][r
]),
1580 isl_map_apply_range(
1581 isl_map_copy(grid
[r
][r
]),
1582 isl_map_copy(grid
[r
][q
])));
1583 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1584 grid
[p
][q
] = isl_map_coalesce(grid
[p
][q
]);
1589 /* Given a partition of the domains and ranges of the basic maps in "map",
1590 * apply the Floyd-Warshall algorithm with the elements in the partition
1593 * In particular, there are "n" elements in the partition and "group" is
1594 * an array of length 2 * map->n with entries in [0,n-1].
1596 * We first construct a matrix of relations based on the partition information,
1597 * apply Floyd-Warshall on this matrix of relations and then take the
1598 * union of all entries in the matrix as the final result.
1600 * If we are actually computing the power instead of the transitive closure,
1601 * i.e., when "project" is not set, then the result should have the
1602 * path lengths encoded as the difference between an extra pair of
1603 * coordinates. We therefore apply the nested transitive closures
1604 * to relations that include these lengths. In particular, we replace
1605 * the input relation by the cross product with the unit length relation
1606 * { [i] -> [i + 1] }.
1608 static __isl_give isl_map
*floyd_warshall_with_groups(
1609 __isl_take isl_space
*space
, __isl_keep isl_map
*map
,
1610 int *exact
, int project
, int *group
, int n
)
1613 isl_map
***grid
= NULL
;
1621 return incremental_closure(space
, map
, exact
, project
);
1624 grid
= isl_calloc_array(map
->ctx
, isl_map
**, n
);
1627 for (i
= 0; i
< n
; ++i
) {
1628 grid
[i
] = isl_calloc_array(map
->ctx
, isl_map
*, n
);
1631 for (j
= 0; j
< n
; ++j
)
1632 grid
[i
][j
] = isl_map_empty(isl_map_get_space(map
));
1635 for (k
= 0; k
< map
->n
; ++k
) {
1637 j
= group
[2 * k
+ 1];
1638 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
1639 isl_map_from_basic_map(
1640 isl_basic_map_copy(map
->p
[k
])));
1643 if (!project
&& add_length(map
, grid
, n
) < 0)
1646 floyd_warshall_iterate(grid
, n
, exact
);
1648 app
= isl_map_empty(isl_map_get_space(grid
[0][0]));
1650 for (i
= 0; i
< n
; ++i
) {
1651 for (j
= 0; j
< n
; ++j
)
1652 app
= isl_map_union(app
, grid
[i
][j
]);
1658 isl_space_free(space
);
1663 for (i
= 0; i
< n
; ++i
) {
1666 for (j
= 0; j
< n
; ++j
)
1667 isl_map_free(grid
[i
][j
]);
1672 isl_space_free(space
);
1676 /* Partition the domains and ranges of the n basic relations in list
1677 * into disjoint cells.
1679 * To find the partition, we simply consider all of the domains
1680 * and ranges in turn and combine those that overlap.
1681 * "set" contains the partition elements and "group" indicates
1682 * to which partition element a given domain or range belongs.
1683 * The domain of basic map i corresponds to element 2 * i in these arrays,
1684 * while the domain corresponds to element 2 * i + 1.
1685 * During the construction group[k] is either equal to k,
1686 * in which case set[k] contains the union of all the domains and
1687 * ranges in the corresponding group, or is equal to some l < k,
1688 * with l another domain or range in the same group.
1690 static int *setup_groups(isl_ctx
*ctx
, __isl_keep isl_basic_map
**list
, int n
,
1691 isl_set
***set
, int *n_group
)
1697 *set
= isl_calloc_array(ctx
, isl_set
*, 2 * n
);
1698 group
= isl_alloc_array(ctx
, int, 2 * n
);
1700 if (!*set
|| !group
)
1703 for (i
= 0; i
< n
; ++i
) {
1705 dom
= isl_set_from_basic_set(isl_basic_map_domain(
1706 isl_basic_map_copy(list
[i
])));
1707 if (merge(*set
, group
, dom
, 2 * i
) < 0)
1709 dom
= isl_set_from_basic_set(isl_basic_map_range(
1710 isl_basic_map_copy(list
[i
])));
1711 if (merge(*set
, group
, dom
, 2 * i
+ 1) < 0)
1716 for (i
= 0; i
< 2 * n
; ++i
)
1717 if (group
[i
] == i
) {
1719 (*set
)[g
] = (*set
)[i
];
1724 group
[i
] = group
[group
[i
]];
1731 for (i
= 0; i
< 2 * n
; ++i
)
1732 isl_set_free((*set
)[i
]);
1740 /* Check if the domains and ranges of the basic maps in "map" can
1741 * be partitioned, and if so, apply Floyd-Warshall on the elements
1742 * of the partition. Note that we also apply this algorithm
1743 * if we want to compute the power, i.e., when "project" is not set.
1744 * However, the results are unlikely to be exact since the recursive
1745 * calls inside the Floyd-Warshall algorithm typically result in
1746 * non-linear path lengths quite quickly.
1748 static __isl_give isl_map
*floyd_warshall(__isl_take isl_space
*space
,
1749 __isl_keep isl_map
*map
, int *exact
, int project
)
1752 isl_set
**set
= NULL
;
1759 return incremental_closure(space
, map
, exact
, project
);
1761 group
= setup_groups(map
->ctx
, map
->p
, map
->n
, &set
, &n
);
1765 for (i
= 0; i
< 2 * map
->n
; ++i
)
1766 isl_set_free(set
[i
]);
1770 return floyd_warshall_with_groups(space
, map
, exact
, project
, group
, n
);
1772 isl_space_free(space
);
1776 /* Structure for representing the nodes of the graph of which
1777 * strongly connected components are being computed.
1779 * list contains the actual nodes
1780 * check_closed is set if we may have used the fact that
1781 * a pair of basic maps can be interchanged
1783 struct isl_tc_follows_data
{
1784 isl_basic_map
**list
;
1788 /* Check whether in the computation of the transitive closure
1789 * "list[i]" (R_1) should follow (or be part of the same component as)
1792 * That is check whether
1800 * If so, then there is no reason for R_1 to immediately follow R_2
1803 * *check_closed is set if the subset relation holds while
1804 * R_1 \circ R_2 is not empty.
1806 static isl_bool
basic_map_follows(int i
, int j
, void *user
)
1808 struct isl_tc_follows_data
*data
= user
;
1809 struct isl_map
*map12
= NULL
;
1810 struct isl_map
*map21
= NULL
;
1813 if (!isl_space_tuple_is_equal(data
->list
[i
]->dim
, isl_dim_in
,
1814 data
->list
[j
]->dim
, isl_dim_out
))
1815 return isl_bool_false
;
1817 map21
= isl_map_from_basic_map(
1818 isl_basic_map_apply_range(
1819 isl_basic_map_copy(data
->list
[j
]),
1820 isl_basic_map_copy(data
->list
[i
])));
1821 subset
= isl_map_is_empty(map21
);
1825 isl_map_free(map21
);
1826 return isl_bool_false
;
1829 if (!isl_space_tuple_is_equal(data
->list
[i
]->dim
, isl_dim_in
,
1830 data
->list
[i
]->dim
, isl_dim_out
) ||
1831 !isl_space_tuple_is_equal(data
->list
[j
]->dim
, isl_dim_in
,
1832 data
->list
[j
]->dim
, isl_dim_out
)) {
1833 isl_map_free(map21
);
1834 return isl_bool_true
;
1837 map12
= isl_map_from_basic_map(
1838 isl_basic_map_apply_range(
1839 isl_basic_map_copy(data
->list
[i
]),
1840 isl_basic_map_copy(data
->list
[j
])));
1842 subset
= isl_map_is_subset(map21
, map12
);
1844 isl_map_free(map12
);
1845 isl_map_free(map21
);
1848 data
->check_closed
= 1;
1850 return isl_bool_not(subset
);
1852 isl_map_free(map21
);
1853 return isl_bool_error
;
1856 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1857 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1858 * construct a map that is an overapproximation of the map
1859 * that takes an element from the dom R \times Z to an
1860 * element from ran R \times Z, such that the first n coordinates of the
1861 * difference between them is a sum of differences between images
1862 * and pre-images in one of the R_i and such that the last coordinate
1863 * is equal to the number of steps taken.
1864 * If "project" is set, then these final coordinates are not included,
1865 * i.e., a relation of type Z^n -> Z^n is returned.
1868 * \Delta_i = { y - x | (x, y) in R_i }
1870 * then the constructed map is an overapproximation of
1872 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1873 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1874 * x in dom R and x + d in ran R }
1878 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1879 * d = (\sum_i k_i \delta_i) and
1880 * x in dom R and x + d in ran R }
1882 * if "project" is set.
1884 * We first split the map into strongly connected components, perform
1885 * the above on each component and then join the results in the correct
1886 * order, at each join also taking in the union of both arguments
1887 * to allow for paths that do not go through one of the two arguments.
1889 static __isl_give isl_map
*construct_power_components(
1890 __isl_take isl_space
*space
, __isl_keep isl_map
*map
, int *exact
,
1894 struct isl_map
*path
= NULL
;
1895 struct isl_tc_follows_data data
;
1896 struct isl_tarjan_graph
*g
= NULL
;
1903 return floyd_warshall(space
, map
, exact
, project
);
1906 data
.check_closed
= 0;
1907 g
= isl_tarjan_graph_init(map
->ctx
, map
->n
, &basic_map_follows
, &data
);
1912 if (data
.check_closed
&& !exact
)
1913 exact
= &local_exact
;
1919 path
= isl_map_empty(isl_map_get_space(map
));
1921 path
= isl_map_empty(isl_space_copy(space
));
1922 path
= anonymize(path
);
1924 struct isl_map
*comp
;
1925 isl_map
*path_comp
, *path_comb
;
1926 comp
= isl_map_alloc_space(isl_map_get_space(map
), n
, 0);
1927 while (g
->order
[i
] != -1) {
1928 comp
= isl_map_add_basic_map(comp
,
1929 isl_basic_map_copy(map
->p
[g
->order
[i
]]));
1933 path_comp
= floyd_warshall(isl_space_copy(space
),
1934 comp
, exact
, project
);
1935 path_comp
= anonymize(path_comp
);
1936 path_comb
= isl_map_apply_range(isl_map_copy(path
),
1937 isl_map_copy(path_comp
));
1938 path
= isl_map_union(path
, path_comp
);
1939 path
= isl_map_union(path
, path_comb
);
1945 if (c
> 1 && data
.check_closed
&& !*exact
) {
1948 closed
= isl_map_is_transitively_closed(path
);
1952 isl_tarjan_graph_free(g
);
1954 return floyd_warshall(space
, map
, orig_exact
, project
);
1958 isl_tarjan_graph_free(g
);
1959 isl_space_free(space
);
1963 isl_tarjan_graph_free(g
);
1964 isl_space_free(space
);
1969 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1970 * construct a map that is an overapproximation of the map
1971 * that takes an element from the space D to another
1972 * element from the same space, such that the difference between
1973 * them is a strictly positive sum of differences between images
1974 * and pre-images in one of the R_i.
1975 * The number of differences in the sum is equated to parameter "param".
1978 * \Delta_i = { y - x | (x, y) in R_i }
1980 * then the constructed map is an overapproximation of
1982 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1983 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1986 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1987 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1989 * if "project" is set.
1991 * If "project" is not set, then
1992 * we construct an extended mapping with an extra coordinate
1993 * that indicates the number of steps taken. In particular,
1994 * the difference in the last coordinate is equal to the number
1995 * of steps taken to move from a domain element to the corresponding
1998 static __isl_give isl_map
*construct_power(__isl_keep isl_map
*map
,
1999 int *exact
, int project
)
2001 struct isl_map
*app
= NULL
;
2002 isl_space
*space
= NULL
;
2007 space
= isl_map_get_space(map
);
2009 space
= isl_space_add_dims(space
, isl_dim_in
, 1);
2010 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
2012 app
= construct_power_components(isl_space_copy(space
), map
,
2015 isl_space_free(space
);
2020 /* Compute the positive powers of "map", or an overapproximation.
2021 * If the result is exact, then *exact is set to 1.
2023 * If project is set, then we are actually interested in the transitive
2024 * closure, so we can use a more relaxed exactness check.
2025 * The lengths of the paths are also projected out instead of being
2026 * encoded as the difference between an extra pair of final coordinates.
2028 static __isl_give isl_map
*map_power(__isl_take isl_map
*map
,
2029 int *exact
, int project
)
2031 struct isl_map
*app
= NULL
;
2036 if (isl_map_check_equal_tuples(map
) < 0)
2037 return isl_map_free(map
);
2039 app
= construct_power(map
, exact
, project
);
2045 /* Compute the positive powers of "map", or an overapproximation.
2046 * The result maps the exponent to a nested copy of the corresponding power.
2047 * If the result is exact, then *exact is set to 1.
2048 * map_power constructs an extended relation with the path lengths
2049 * encoded as the difference between the final coordinates.
2050 * In the final step, this difference is equated to an extra parameter
2051 * and made positive. The extra coordinates are subsequently projected out
2052 * and the parameter is turned into the domain of the result.
2054 __isl_give isl_map
*isl_map_power(__isl_take isl_map
*map
, int *exact
)
2056 isl_space
*target_space
;
2062 d
= isl_map_dim(map
, isl_dim_in
);
2063 param
= isl_map_dim(map
, isl_dim_param
);
2064 if (d
< 0 || param
< 0)
2065 return isl_map_free(map
);
2067 map
= isl_map_compute_divs(map
);
2068 map
= isl_map_coalesce(map
);
2070 if (isl_map_plain_is_empty(map
)) {
2071 map
= isl_map_from_range(isl_map_wrap(map
));
2072 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
2073 map
= isl_map_set_dim_name(map
, isl_dim_in
, 0, "k");
2077 target_space
= isl_map_get_space(map
);
2078 target_space
= isl_space_from_range(isl_space_wrap(target_space
));
2079 target_space
= isl_space_add_dims(target_space
, isl_dim_in
, 1);
2080 target_space
= isl_space_set_dim_name(target_space
, isl_dim_in
, 0, "k");
2082 map
= map_power(map
, exact
, 0);
2084 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2085 space
= isl_map_get_space(map
);
2086 diff
= equate_parameter_to_length(space
, param
);
2087 map
= isl_map_intersect(map
, diff
);
2088 map
= isl_map_project_out(map
, isl_dim_in
, d
, 1);
2089 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2090 map
= isl_map_from_range(isl_map_wrap(map
));
2091 map
= isl_map_move_dims(map
, isl_dim_in
, 0, isl_dim_param
, param
, 1);
2093 map
= isl_map_reset_space(map
, target_space
);
2098 /* Compute a relation that maps each element in the range of the input
2099 * relation to the lengths of all paths composed of edges in the input
2100 * relation that end up in the given range element.
2101 * The result may be an overapproximation, in which case *exact is set to 0.
2102 * The resulting relation is very similar to the power relation.
2103 * The difference are that the domain has been projected out, the
2104 * range has become the domain and the exponent is the range instead
2107 __isl_give isl_map
*isl_map_reaching_path_lengths(__isl_take isl_map
*map
,
2115 d
= isl_map_dim(map
, isl_dim_in
);
2116 param
= isl_map_dim(map
, isl_dim_param
);
2117 if (d
< 0 || param
< 0)
2118 return isl_map_free(map
);
2120 map
= isl_map_compute_divs(map
);
2121 map
= isl_map_coalesce(map
);
2123 if (isl_map_plain_is_empty(map
)) {
2126 map
= isl_map_project_out(map
, isl_dim_out
, 0, d
);
2127 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
2131 map
= map_power(map
, exact
, 0);
2133 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2134 space
= isl_map_get_space(map
);
2135 diff
= equate_parameter_to_length(space
, param
);
2136 map
= isl_map_intersect(map
, diff
);
2137 map
= isl_map_project_out(map
, isl_dim_in
, 0, d
+ 1);
2138 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2139 map
= isl_map_reverse(map
);
2140 map
= isl_map_move_dims(map
, isl_dim_out
, 0, isl_dim_param
, param
, 1);
2145 /* Given a map, compute the smallest superset of this map that is of the form
2147 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2149 * (where p ranges over the (non-parametric) dimensions),
2150 * compute the transitive closure of this map, i.e.,
2152 * { i -> j : exists k > 0:
2153 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2155 * and intersect domain and range of this transitive closure with
2156 * the given domain and range.
2158 * If with_id is set, then try to include as much of the identity mapping
2159 * as possible, by computing
2161 * { i -> j : exists k >= 0:
2162 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2164 * instead (i.e., allow k = 0).
2166 * In practice, we compute the difference set
2168 * delta = { j - i | i -> j in map },
2170 * look for stride constraint on the individual dimensions and compute
2171 * (constant) lower and upper bounds for each individual dimension,
2172 * adding a constraint for each bound not equal to infinity.
2174 static __isl_give isl_map
*box_closure_on_domain(__isl_take isl_map
*map
,
2175 __isl_take isl_set
*dom
, __isl_take isl_set
*ran
, int with_id
)
2184 isl_map
*app
= NULL
;
2185 isl_basic_set
*aff
= NULL
;
2186 isl_basic_map
*bmap
= NULL
;
2187 isl_vec
*obj
= NULL
;
2192 delta
= isl_map_deltas(isl_map_copy(map
));
2194 aff
= isl_set_affine_hull(isl_set_copy(delta
));
2197 dim
= isl_map_get_space(map
);
2198 d
= isl_space_dim(dim
, isl_dim_in
);
2199 nparam
= isl_space_dim(dim
, isl_dim_param
);
2200 total
= isl_space_dim(dim
, isl_dim_all
);
2201 bmap
= isl_basic_map_alloc_space(dim
,
2202 aff
->n_div
+ 1, aff
->n_div
, 2 * d
+ 1);
2203 for (i
= 0; i
< aff
->n_div
+ 1; ++i
) {
2204 k
= isl_basic_map_alloc_div(bmap
);
2207 isl_int_set_si(bmap
->div
[k
][0], 0);
2209 for (i
= 0; i
< aff
->n_eq
; ++i
) {
2210 if (!isl_basic_set_eq_is_stride(aff
, i
))
2212 k
= isl_basic_map_alloc_equality(bmap
);
2215 isl_seq_clr(bmap
->eq
[k
], 1 + nparam
);
2216 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ d
,
2217 aff
->eq
[i
] + 1 + nparam
, d
);
2218 isl_seq_neg(bmap
->eq
[k
] + 1 + nparam
,
2219 aff
->eq
[i
] + 1 + nparam
, d
);
2220 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ 2 * d
,
2221 aff
->eq
[i
] + 1 + nparam
+ d
, aff
->n_div
);
2222 isl_int_set_si(bmap
->eq
[k
][1 + total
+ aff
->n_div
], 0);
2224 obj
= isl_vec_alloc(map
->ctx
, 1 + nparam
+ d
);
2227 isl_seq_clr(obj
->el
, 1 + nparam
+ d
);
2228 for (i
= 0; i
< d
; ++ i
) {
2229 enum isl_lp_result res
;
2231 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 1);
2233 res
= isl_set_solve_lp(delta
, 0, obj
->el
, map
->ctx
->one
, &opt
,
2235 if (res
== isl_lp_error
)
2237 if (res
== isl_lp_ok
) {
2238 k
= isl_basic_map_alloc_inequality(bmap
);
2241 isl_seq_clr(bmap
->ineq
[k
],
2242 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2243 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], -1);
2244 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], 1);
2245 isl_int_neg(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2248 res
= isl_set_solve_lp(delta
, 1, obj
->el
, map
->ctx
->one
, &opt
,
2250 if (res
== isl_lp_error
)
2252 if (res
== isl_lp_ok
) {
2253 k
= isl_basic_map_alloc_inequality(bmap
);
2256 isl_seq_clr(bmap
->ineq
[k
],
2257 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2258 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], 1);
2259 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], -1);
2260 isl_int_set(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2263 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 0);
2265 k
= isl_basic_map_alloc_inequality(bmap
);
2268 isl_seq_clr(bmap
->ineq
[k
],
2269 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2271 isl_int_set_si(bmap
->ineq
[k
][0], -1);
2272 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], 1);
2274 app
= isl_map_from_domain_and_range(dom
, ran
);
2277 isl_basic_set_free(aff
);
2279 bmap
= isl_basic_map_finalize(bmap
);
2280 isl_set_free(delta
);
2283 map
= isl_map_from_basic_map(bmap
);
2284 map
= isl_map_intersect(map
, app
);
2289 isl_basic_map_free(bmap
);
2290 isl_basic_set_free(aff
);
2294 isl_set_free(delta
);
2299 /* Given a map, compute the smallest superset of this map that is of the form
2301 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2303 * (where p ranges over the (non-parametric) dimensions),
2304 * compute the transitive closure of this map, i.e.,
2306 * { i -> j : exists k > 0:
2307 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2309 * and intersect domain and range of this transitive closure with
2310 * domain and range of the original map.
2312 static __isl_give isl_map
*box_closure(__isl_take isl_map
*map
)
2317 domain
= isl_map_domain(isl_map_copy(map
));
2318 domain
= isl_set_coalesce(domain
);
2319 range
= isl_map_range(isl_map_copy(map
));
2320 range
= isl_set_coalesce(range
);
2322 return box_closure_on_domain(map
, domain
, range
, 0);
2325 /* Given a map, compute the smallest superset of this map that is of the form
2327 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2329 * (where p ranges over the (non-parametric) dimensions),
2330 * compute the transitive and partially reflexive closure of this map, i.e.,
2332 * { i -> j : exists k >= 0:
2333 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2335 * and intersect domain and range of this transitive closure with
2338 static __isl_give isl_map
*box_closure_with_identity(__isl_take isl_map
*map
,
2339 __isl_take isl_set
*dom
)
2341 return box_closure_on_domain(map
, dom
, isl_set_copy(dom
), 1);
2344 /* Check whether app is the transitive closure of map.
2345 * In particular, check that app is acyclic and, if so,
2348 * app \subset (map \cup (map \circ app))
2350 static isl_bool
check_exactness_omega(__isl_keep isl_map
*map
,
2351 __isl_keep isl_map
*app
)
2355 isl_bool is_empty
, is_exact
;
2359 delta
= isl_map_deltas(isl_map_copy(app
));
2360 d
= isl_set_dim(delta
, isl_dim_set
);
2362 delta
= isl_set_free(delta
);
2363 for (i
= 0; i
< d
; ++i
)
2364 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
2365 is_empty
= isl_set_is_empty(delta
);
2366 isl_set_free(delta
);
2367 if (is_empty
< 0 || !is_empty
)
2370 test
= isl_map_apply_range(isl_map_copy(app
), isl_map_copy(map
));
2371 test
= isl_map_union(test
, isl_map_copy(map
));
2372 is_exact
= isl_map_is_subset(app
, test
);
2378 /* Check if basic map M_i can be combined with all the other
2379 * basic maps such that
2383 * can be computed as
2385 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2387 * In particular, check if we can compute a compact representation
2390 * M_i^* \circ M_j \circ M_i^*
2393 * Let M_i^? be an extension of M_i^+ that allows paths
2394 * of length zero, i.e., the result of box_closure(., 1).
2395 * The criterion, as proposed by Kelly et al., is that
2396 * id = M_i^? - M_i^+ can be represented as a basic map
2399 * id \circ M_j \circ id = M_j
2403 * If this function returns 1, then tc and qc are set to
2404 * M_i^+ and M_i^?, respectively.
2406 static int can_be_split_off(__isl_keep isl_map
*map
, int i
,
2407 __isl_give isl_map
**tc
, __isl_give isl_map
**qc
)
2409 isl_map
*map_i
, *id
= NULL
;
2416 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
2417 isl_map_range(isl_map_copy(map
)));
2418 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
2422 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
2423 *tc
= box_closure(isl_map_copy(map_i
));
2424 *qc
= box_closure_with_identity(map_i
, C
);
2425 id
= isl_map_subtract(isl_map_copy(*qc
), isl_map_copy(*tc
));
2429 if (id
->n
!= 1 || (*qc
)->n
!= 1)
2432 for (j
= 0; j
< map
->n
; ++j
) {
2433 isl_map
*map_j
, *test
;
2438 map_j
= isl_map_from_basic_map(
2439 isl_basic_map_copy(map
->p
[j
]));
2440 test
= isl_map_apply_range(isl_map_copy(id
),
2441 isl_map_copy(map_j
));
2442 test
= isl_map_apply_range(test
, isl_map_copy(id
));
2443 is_ok
= isl_map_is_equal(test
, map_j
);
2444 isl_map_free(map_j
);
2472 static __isl_give isl_map
*box_closure_with_check(__isl_take isl_map
*map
,
2477 app
= box_closure(isl_map_copy(map
));
2479 isl_bool is_exact
= check_exactness_omega(map
, app
);
2482 app
= isl_map_free(app
);
2491 /* Compute an overapproximation of the transitive closure of "map"
2492 * using a variation of the algorithm from
2493 * "Transitive Closure of Infinite Graphs and its Applications"
2496 * We first check whether we can can split of any basic map M_i and
2503 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2505 * using a recursive call on the remaining map.
2507 * If not, we simply call box_closure on the whole map.
2509 static __isl_give isl_map
*transitive_closure_omega(__isl_take isl_map
*map
,
2519 return box_closure_with_check(map
, exact
);
2521 for (i
= 0; i
< map
->n
; ++i
) {
2524 ok
= can_be_split_off(map
, i
, &tc
, &qc
);
2530 app
= isl_map_alloc_space(isl_map_get_space(map
), map
->n
- 1, 0);
2532 for (j
= 0; j
< map
->n
; ++j
) {
2535 app
= isl_map_add_basic_map(app
,
2536 isl_basic_map_copy(map
->p
[j
]));
2539 app
= isl_map_apply_range(isl_map_copy(qc
), app
);
2540 app
= isl_map_apply_range(app
, qc
);
2542 app
= isl_map_union(tc
, transitive_closure_omega(app
, NULL
));
2543 exact_i
= check_exactness_omega(map
, app
);
2544 if (exact_i
== isl_bool_true
) {
2555 return box_closure_with_check(map
, exact
);
2561 /* Compute the transitive closure of "map", or an overapproximation.
2562 * If the result is exact, then *exact is set to 1.
2563 * Simply use map_power to compute the powers of map, but tell
2564 * it to project out the lengths of the paths instead of equating
2565 * the length to a parameter.
2567 __isl_give isl_map
*isl_map_transitive_closure(__isl_take isl_map
*map
,
2570 isl_space
*target_dim
;
2576 if (map
->ctx
->opt
->closure
== ISL_CLOSURE_BOX
)
2577 return transitive_closure_omega(map
, exact
);
2579 map
= isl_map_compute_divs(map
);
2580 map
= isl_map_coalesce(map
);
2581 closed
= isl_map_is_transitively_closed(map
);
2590 target_dim
= isl_map_get_space(map
);
2591 map
= map_power(map
, exact
, 1);
2592 map
= isl_map_reset_space(map
, target_dim
);
2600 static isl_stat
inc_count(__isl_take isl_map
*map
, void *user
)
2611 static isl_stat
collect_basic_map(__isl_take isl_map
*map
, void *user
)
2614 isl_basic_map
***next
= user
;
2616 for (i
= 0; i
< map
->n
; ++i
) {
2617 **next
= isl_basic_map_copy(map
->p
[i
]);
2627 return isl_stat_error
;
2630 /* Perform Floyd-Warshall on the given list of basic relations.
2631 * The basic relations may live in different dimensions,
2632 * but basic relations that get assigned to the diagonal of the
2633 * grid have domains and ranges of the same dimension and so
2634 * the standard algorithm can be used because the nested transitive
2635 * closures are only applied to diagonal elements and because all
2636 * compositions are peformed on relations with compatible domains and ranges.
2638 static __isl_give isl_union_map
*union_floyd_warshall_on_list(isl_ctx
*ctx
,
2639 __isl_keep isl_basic_map
**list
, int n
, int *exact
)
2644 isl_set
**set
= NULL
;
2645 isl_map
***grid
= NULL
;
2648 group
= setup_groups(ctx
, list
, n
, &set
, &n_group
);
2652 grid
= isl_calloc_array(ctx
, isl_map
**, n_group
);
2655 for (i
= 0; i
< n_group
; ++i
) {
2656 grid
[i
] = isl_calloc_array(ctx
, isl_map
*, n_group
);
2659 for (j
= 0; j
< n_group
; ++j
) {
2660 isl_space
*space1
, *space2
, *space
;
2661 space1
= isl_space_reverse(isl_set_get_space(set
[i
]));
2662 space2
= isl_set_get_space(set
[j
]);
2663 space
= isl_space_join(space1
, space2
);
2664 grid
[i
][j
] = isl_map_empty(space
);
2668 for (k
= 0; k
< n
; ++k
) {
2670 j
= group
[2 * k
+ 1];
2671 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
2672 isl_map_from_basic_map(
2673 isl_basic_map_copy(list
[k
])));
2676 floyd_warshall_iterate(grid
, n_group
, exact
);
2678 app
= isl_union_map_empty(isl_map_get_space(grid
[0][0]));
2680 for (i
= 0; i
< n_group
; ++i
) {
2681 for (j
= 0; j
< n_group
; ++j
)
2682 app
= isl_union_map_add_map(app
, grid
[i
][j
]);
2687 for (i
= 0; i
< 2 * n
; ++i
)
2688 isl_set_free(set
[i
]);
2695 for (i
= 0; i
< n_group
; ++i
) {
2698 for (j
= 0; j
< n_group
; ++j
)
2699 isl_map_free(grid
[i
][j
]);
2704 for (i
= 0; i
< 2 * n
; ++i
)
2705 isl_set_free(set
[i
]);
2712 /* Perform Floyd-Warshall on the given union relation.
2713 * The implementation is very similar to that for non-unions.
2714 * The main difference is that it is applied unconditionally.
2715 * We first extract a list of basic maps from the union map
2716 * and then perform the algorithm on this list.
2718 static __isl_give isl_union_map
*union_floyd_warshall(
2719 __isl_take isl_union_map
*umap
, int *exact
)
2723 isl_basic_map
**list
= NULL
;
2724 isl_basic_map
**next
;
2728 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2731 ctx
= isl_union_map_get_ctx(umap
);
2732 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2737 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2740 res
= union_floyd_warshall_on_list(ctx
, list
, n
, exact
);
2743 for (i
= 0; i
< n
; ++i
)
2744 isl_basic_map_free(list
[i
]);
2748 isl_union_map_free(umap
);
2752 for (i
= 0; i
< n
; ++i
)
2753 isl_basic_map_free(list
[i
]);
2756 isl_union_map_free(umap
);
2760 /* Decompose the give union relation into strongly connected components.
2761 * The implementation is essentially the same as that of
2762 * construct_power_components with the major difference that all
2763 * operations are performed on union maps.
2765 static __isl_give isl_union_map
*union_components(
2766 __isl_take isl_union_map
*umap
, int *exact
)
2771 isl_basic_map
**list
= NULL
;
2772 isl_basic_map
**next
;
2773 isl_union_map
*path
= NULL
;
2774 struct isl_tc_follows_data data
;
2775 struct isl_tarjan_graph
*g
= NULL
;
2780 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2786 return union_floyd_warshall(umap
, exact
);
2788 ctx
= isl_union_map_get_ctx(umap
);
2789 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2794 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2798 data
.check_closed
= 0;
2799 g
= isl_tarjan_graph_init(ctx
, n
, &basic_map_follows
, &data
);
2806 path
= isl_union_map_empty(isl_union_map_get_space(umap
));
2808 isl_union_map
*comp
;
2809 isl_union_map
*path_comp
, *path_comb
;
2810 comp
= isl_union_map_empty(isl_union_map_get_space(umap
));
2811 while (g
->order
[i
] != -1) {
2812 comp
= isl_union_map_add_map(comp
,
2813 isl_map_from_basic_map(
2814 isl_basic_map_copy(list
[g
->order
[i
]])));
2818 path_comp
= union_floyd_warshall(comp
, exact
);
2819 path_comb
= isl_union_map_apply_range(isl_union_map_copy(path
),
2820 isl_union_map_copy(path_comp
));
2821 path
= isl_union_map_union(path
, path_comp
);
2822 path
= isl_union_map_union(path
, path_comb
);
2827 if (c
> 1 && data
.check_closed
&& !*exact
) {
2830 closed
= isl_union_map_is_transitively_closed(path
);
2836 isl_tarjan_graph_free(g
);
2838 for (i
= 0; i
< n
; ++i
)
2839 isl_basic_map_free(list
[i
]);
2843 isl_union_map_free(path
);
2844 return union_floyd_warshall(umap
, exact
);
2847 isl_union_map_free(umap
);
2851 isl_tarjan_graph_free(g
);
2853 for (i
= 0; i
< n
; ++i
)
2854 isl_basic_map_free(list
[i
]);
2857 isl_union_map_free(umap
);
2858 isl_union_map_free(path
);
2862 /* Compute the transitive closure of "umap", or an overapproximation.
2863 * If the result is exact, then *exact is set to 1.
2865 __isl_give isl_union_map
*isl_union_map_transitive_closure(
2866 __isl_take isl_union_map
*umap
, int *exact
)
2876 umap
= isl_union_map_compute_divs(umap
);
2877 umap
= isl_union_map_coalesce(umap
);
2878 closed
= isl_union_map_is_transitively_closed(umap
);
2883 umap
= union_components(umap
, exact
);
2886 isl_union_map_free(umap
);
2890 struct isl_union_power
{
2895 static isl_stat
power(__isl_take isl_map
*map
, void *user
)
2897 struct isl_union_power
*up
= user
;
2899 map
= isl_map_power(map
, up
->exact
);
2900 up
->pow
= isl_union_map_from_map(map
);
2902 return isl_stat_error
;
2905 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2907 static __isl_give isl_union_map
*deltas_map(__isl_take isl_space
*dim
)
2909 isl_basic_map
*bmap
;
2911 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
2912 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
2913 bmap
= isl_basic_map_universe(dim
);
2914 bmap
= isl_basic_map_deltas_map(bmap
);
2916 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
2919 /* Compute the positive powers of "map", or an overapproximation.
2920 * The result maps the exponent to a nested copy of the corresponding power.
2921 * If the result is exact, then *exact is set to 1.
2923 __isl_give isl_union_map
*isl_union_map_power(__isl_take isl_union_map
*umap
,
2930 n
= isl_union_map_n_map(umap
);
2932 return isl_union_map_free(umap
);
2936 struct isl_union_power up
= { NULL
, exact
};
2937 isl_union_map_foreach_map(umap
, &power
, &up
);
2938 isl_union_map_free(umap
);
2941 inc
= isl_union_map_from_map(increment(isl_union_map_get_space(umap
)));
2942 umap
= isl_union_map_product(inc
, umap
);
2943 umap
= isl_union_map_transitive_closure(umap
, exact
);
2944 umap
= isl_union_map_zip(umap
);
2945 dm
= deltas_map(isl_union_map_get_space(umap
));
2946 umap
= isl_union_map_apply_domain(umap
, dm
);
2952 #define TYPE isl_map
2953 #include "isl_power_templ.c"
2956 #define TYPE isl_union_map
2957 #include "isl_power_templ.c"