isl_solve_lp: use tableaus instead of calling piplib (by default)
[isl.git] / isl_convex_hull.c
blob02a6e34b2f494fe4eb867f5491d2b1c7d3e44e4e
1 #include "isl_lp.h"
2 #include "isl_map.h"
3 #include "isl_map_private.h"
4 #include "isl_mat.h"
5 #include "isl_set.h"
6 #include "isl_seq.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
10 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
12 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
14 isl_int *t;
16 if (i != j) {
17 t = bmap->ineq[i];
18 bmap->ineq[i] = bmap->ineq[j];
19 bmap->ineq[j] = t;
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
29 isl_int *c, isl_int *opt_n, isl_int *opt_d)
31 enum isl_lp_result res;
32 unsigned total;
33 int i, j;
35 if (!bmap)
36 return -1;
38 total = isl_basic_map_total_dim(*bmap);
39 for (i = 0; i < total; ++i) {
40 int sign;
41 if (isl_int_is_zero(c[1+i]))
42 continue;
43 sign = isl_int_sgn(c[1+i]);
44 for (j = 0; j < (*bmap)->n_ineq; ++j)
45 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
46 break;
47 if (j == (*bmap)->n_ineq)
48 break;
50 if (i < total)
51 return 0;
53 res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d);
54 if (res == isl_lp_unbounded)
55 return 0;
56 if (res == isl_lp_error)
57 return -1;
58 if (res == isl_lp_empty) {
59 *bmap = isl_basic_map_set_to_empty(*bmap);
60 return 0;
62 return !isl_int_is_neg(*opt_n);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
66 isl_int *c, isl_int *opt_n, isl_int *opt_d)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map **)bset, c, opt_n, opt_d);
72 /* Compute the convex hull of a basic map, by removing the redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
78 * of a facet.
80 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
82 struct isl_tab *tab;
84 if (!bmap)
85 return NULL;
87 bmap = isl_basic_map_gauss(bmap, NULL);
88 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
89 return bmap;
90 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
91 return bmap;
92 if (bmap->n_ineq <= 1)
93 return bmap;
95 tab = isl_tab_from_basic_map(bmap);
96 tab = isl_tab_detect_equalities(bmap->ctx, tab);
97 tab = isl_tab_detect_redundant(bmap->ctx, tab);
98 bmap = isl_basic_map_update_from_tab(bmap, tab);
99 isl_tab_free(bmap->ctx, tab);
100 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
101 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
102 return bmap;
105 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
107 return (struct isl_basic_set *)
108 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
111 /* Check if the set set is bound in the direction of the affine
112 * constraint c and if so, set the constant term such that the
113 * resulting constraint is a bounding constraint for the set.
115 static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set,
116 isl_int *c, unsigned len)
118 int first;
119 int j;
120 isl_int opt;
121 isl_int opt_denom;
123 isl_int_init(opt);
124 isl_int_init(opt_denom);
125 first = 1;
126 for (j = 0; j < set->n; ++j) {
127 enum isl_lp_result res;
129 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
130 continue;
132 res = isl_solve_lp((struct isl_basic_map*)set->p[j],
133 0, c, ctx->one, &opt, &opt_denom);
134 if (res == isl_lp_unbounded)
135 break;
136 if (res == isl_lp_error)
137 goto error;
138 if (res == isl_lp_empty) {
139 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
140 if (!set->p[j])
141 goto error;
142 continue;
144 if (!isl_int_is_one(opt_denom))
145 isl_seq_scale(c, c, opt_denom, len);
146 if (first || isl_int_is_neg(opt))
147 isl_int_sub(c[0], c[0], opt);
148 first = 0;
150 isl_int_clear(opt);
151 isl_int_clear(opt_denom);
152 return j >= set->n;
153 error:
154 isl_int_clear(opt);
155 isl_int_clear(opt_denom);
156 return -1;
159 /* Check if "c" is a direction that is independent of the previously found "n"
160 * bounds in "dirs".
161 * If so, add it to the list, with the negative of the lower bound
162 * in the constant position, i.e., such that c corresponds to a bounding
163 * hyperplane (but not necessarily a facet).
164 * Assumes set "set" is bounded.
166 static int is_independent_bound(struct isl_ctx *ctx,
167 struct isl_set *set, isl_int *c,
168 struct isl_mat *dirs, int n)
170 int is_bound;
171 int i = 0;
173 isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1);
174 if (n != 0) {
175 int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
176 if (pos < 0)
177 return 0;
178 for (i = 0; i < n; ++i) {
179 int pos_i;
180 pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1);
181 if (pos_i < pos)
182 continue;
183 if (pos_i > pos)
184 break;
185 isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos,
186 dirs->n_col-1, NULL);
187 pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
188 if (pos < 0)
189 return 0;
193 is_bound = uset_is_bound(ctx, set, dirs->row[n], dirs->n_col);
194 if (is_bound != 1)
195 return is_bound;
196 if (i < n) {
197 int k;
198 isl_int *t = dirs->row[n];
199 for (k = n; k > i; --k)
200 dirs->row[k] = dirs->row[k-1];
201 dirs->row[i] = t;
203 return 1;
206 /* Compute and return a maximal set of linearly independent bounds
207 * on the set "set", based on the constraints of the basic sets
208 * in "set".
210 static struct isl_mat *independent_bounds(struct isl_ctx *ctx,
211 struct isl_set *set)
213 int i, j, n;
214 struct isl_mat *dirs = NULL;
215 unsigned dim = isl_set_n_dim(set);
217 dirs = isl_mat_alloc(ctx, dim, 1+dim);
218 if (!dirs)
219 goto error;
221 n = 0;
222 for (i = 0; n < dim && i < set->n; ++i) {
223 int f;
224 struct isl_basic_set *bset = set->p[i];
226 for (j = 0; n < dim && j < bset->n_eq; ++j) {
227 f = is_independent_bound(ctx, set, bset->eq[j],
228 dirs, n);
229 if (f < 0)
230 goto error;
231 if (f)
232 ++n;
234 for (j = 0; n < dim && j < bset->n_ineq; ++j) {
235 f = is_independent_bound(ctx, set, bset->ineq[j],
236 dirs, n);
237 if (f < 0)
238 goto error;
239 if (f)
240 ++n;
243 dirs->n_row = n;
244 return dirs;
245 error:
246 isl_mat_free(ctx, dirs);
247 return NULL;
250 static struct isl_basic_set *isl_basic_set_set_rational(
251 struct isl_basic_set *bset)
253 if (!bset)
254 return NULL;
256 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
257 return bset;
259 bset = isl_basic_set_cow(bset);
260 if (!bset)
261 return NULL;
263 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
265 return isl_basic_set_finalize(bset);
268 static struct isl_set *isl_set_set_rational(struct isl_set *set)
270 int i;
272 set = isl_set_cow(set);
273 if (!set)
274 return NULL;
275 for (i = 0; i < set->n; ++i) {
276 set->p[i] = isl_basic_set_set_rational(set->p[i]);
277 if (!set->p[i])
278 goto error;
280 return set;
281 error:
282 isl_set_free(set);
283 return NULL;
286 static struct isl_basic_set *isl_basic_set_add_equality(struct isl_ctx *ctx,
287 struct isl_basic_set *bset, isl_int *c)
289 int i;
290 unsigned total;
291 unsigned dim;
293 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
294 return bset;
296 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
297 isl_assert(ctx, bset->n_div == 0, goto error);
298 dim = isl_basic_set_n_dim(bset);
299 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
300 i = isl_basic_set_alloc_equality(bset);
301 if (i < 0)
302 goto error;
303 isl_seq_cpy(bset->eq[i], c, 1 + dim);
304 return bset;
305 error:
306 isl_basic_set_free(bset);
307 return NULL;
310 static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx,
311 struct isl_set *set, isl_int *c)
313 int i;
315 set = isl_set_cow(set);
316 if (!set)
317 return NULL;
318 for (i = 0; i < set->n; ++i) {
319 set->p[i] = isl_basic_set_add_equality(ctx, set->p[i], c);
320 if (!set->p[i])
321 goto error;
323 return set;
324 error:
325 isl_set_free(set);
326 return NULL;
329 /* Given a union of basic sets, construct the constraints for wrapping
330 * a facet around one of its ridges.
331 * In particular, if each of n the d-dimensional basic sets i in "set"
332 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
333 * and is defined by the constraints
334 * [ 1 ]
335 * A_i [ x ] >= 0
337 * then the resulting set is of dimension n*(1+d) and has as contraints
339 * [ a_i ]
340 * A_i [ x_i ] >= 0
342 * a_i >= 0
344 * \sum_i x_{i,1} = 1
346 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
348 struct isl_basic_set *lp;
349 unsigned n_eq;
350 unsigned n_ineq;
351 int i, j, k;
352 unsigned dim, lp_dim;
354 if (!set)
355 return NULL;
357 dim = 1 + isl_set_n_dim(set);
358 n_eq = 1;
359 n_ineq = set->n;
360 for (i = 0; i < set->n; ++i) {
361 n_eq += set->p[i]->n_eq;
362 n_ineq += set->p[i]->n_ineq;
364 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
365 if (!lp)
366 return NULL;
367 lp_dim = isl_basic_set_n_dim(lp);
368 k = isl_basic_set_alloc_equality(lp);
369 isl_int_set_si(lp->eq[k][0], -1);
370 for (i = 0; i < set->n; ++i) {
371 isl_int_set_si(lp->eq[k][1+dim*i], 0);
372 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
373 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
375 for (i = 0; i < set->n; ++i) {
376 k = isl_basic_set_alloc_inequality(lp);
377 isl_seq_clr(lp->ineq[k], 1+lp_dim);
378 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
380 for (j = 0; j < set->p[i]->n_eq; ++j) {
381 k = isl_basic_set_alloc_equality(lp);
382 isl_seq_clr(lp->eq[k], 1+dim*i);
383 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
384 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
387 for (j = 0; j < set->p[i]->n_ineq; ++j) {
388 k = isl_basic_set_alloc_inequality(lp);
389 isl_seq_clr(lp->ineq[k], 1+dim*i);
390 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
391 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
394 return lp;
397 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
398 * of that facet, compute the other facet of the convex hull that contains
399 * the ridge.
401 * We first transform the set such that the facet constraint becomes
403 * x_1 >= 0
405 * I.e., the facet lies in
407 * x_1 = 0
409 * and on that facet, the constraint that defines the ridge is
411 * x_2 >= 0
413 * (This transformation is not strictly needed, all that is needed is
414 * that the ridge contains the origin.)
416 * Since the ridge contains the origin, the cone of the convex hull
417 * will be of the form
419 * x_1 >= 0
420 * x_2 >= a x_1
422 * with this second constraint defining the new facet.
423 * The constant a is obtained by settting x_1 in the cone of the
424 * convex hull to 1 and minimizing x_2.
425 * Now, each element in the cone of the convex hull is the sum
426 * of elements in the cones of the basic sets.
427 * If a_i is the dilation factor of basic set i, then the problem
428 * we need to solve is
430 * min \sum_i x_{i,2}
431 * st
432 * \sum_i x_{i,1} = 1
433 * a_i >= 0
434 * [ a_i ]
435 * A [ x_i ] >= 0
437 * with
438 * [ 1 ]
439 * A_i [ x_i ] >= 0
441 * the constraints of each (transformed) basic set.
442 * If a = n/d, then the constraint defining the new facet (in the transformed
443 * space) is
445 * -n x_1 + d x_2 >= 0
447 * In the original space, we need to take the same combination of the
448 * corresponding constraints "facet" and "ridge".
450 * If a = -infty = "-1/0", then we just return the original facet constraint.
451 * This means that the facet is unbounded, but has a bounded intersection
452 * with the union of sets.
454 static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge)
456 int i;
457 struct isl_mat *T = NULL;
458 struct isl_basic_set *lp = NULL;
459 struct isl_vec *obj;
460 enum isl_lp_result res;
461 isl_int num, den;
462 unsigned dim;
464 set = isl_set_copy(set);
466 dim = 1 + isl_set_n_dim(set);
467 T = isl_mat_alloc(set->ctx, 3, dim);
468 if (!T)
469 goto error;
470 isl_int_set_si(T->row[0][0], 1);
471 isl_seq_clr(T->row[0]+1, dim - 1);
472 isl_seq_cpy(T->row[1], facet, dim);
473 isl_seq_cpy(T->row[2], ridge, dim);
474 T = isl_mat_right_inverse(set->ctx, T);
475 set = isl_set_preimage(set, T);
476 T = NULL;
477 if (!set)
478 goto error;
479 lp = wrap_constraints(set);
480 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
481 if (!obj)
482 goto error;
483 isl_int_set_si(obj->block.data[0], 0);
484 for (i = 0; i < set->n; ++i) {
485 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
486 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
487 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
489 isl_int_init(num);
490 isl_int_init(den);
491 res = isl_solve_lp((struct isl_basic_map *)lp, 0,
492 obj->block.data, set->ctx->one, &num, &den);
493 if (res == isl_lp_ok) {
494 isl_int_neg(num, num);
495 isl_seq_combine(facet, num, facet, den, ridge, dim);
497 isl_int_clear(num);
498 isl_int_clear(den);
499 isl_vec_free(set->ctx, obj);
500 isl_basic_set_free(lp);
501 isl_set_free(set);
502 isl_assert(set->ctx, res == isl_lp_ok || res == isl_lp_unbounded,
503 return NULL);
504 return facet;
505 error:
506 isl_basic_set_free(lp);
507 isl_mat_free(set->ctx, T);
508 isl_set_free(set);
509 return NULL;
512 /* Given a set of d linearly independent bounding constraints of the
513 * convex hull of "set", compute the constraint of a facet of "set".
515 * We first compute the intersection with the first bounding hyperplane
516 * and remove the component corresponding to this hyperplane from
517 * other bounds (in homogeneous space).
518 * We then wrap around one of the remaining bounding constraints
519 * and continue the process until all bounding constraints have been
520 * taken into account.
521 * The resulting linear combination of the bounding constraints will
522 * correspond to a facet of the convex hull.
524 static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx,
525 struct isl_set *set, struct isl_mat *bounds)
527 struct isl_set *slice = NULL;
528 struct isl_basic_set *face = NULL;
529 struct isl_mat *m, *U, *Q;
530 int i;
531 unsigned dim = isl_set_n_dim(set);
533 isl_assert(ctx, set->n > 0, goto error);
534 isl_assert(ctx, bounds->n_row == dim, goto error);
536 while (bounds->n_row > 1) {
537 slice = isl_set_copy(set);
538 slice = isl_set_add_equality(ctx, slice, bounds->row[0]);
539 face = isl_set_affine_hull(slice);
540 if (!face)
541 goto error;
542 if (face->n_eq == 1) {
543 isl_basic_set_free(face);
544 break;
546 m = isl_mat_alloc(ctx, 1 + face->n_eq, 1 + dim);
547 if (!m)
548 goto error;
549 isl_int_set_si(m->row[0][0], 1);
550 isl_seq_clr(m->row[0]+1, dim);
551 for (i = 0; i < face->n_eq; ++i)
552 isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim);
553 U = isl_mat_right_inverse(ctx, m);
554 Q = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, U));
555 U = isl_mat_drop_cols(ctx, U, 1 + face->n_eq,
556 dim - face->n_eq);
557 Q = isl_mat_drop_rows(ctx, Q, 1 + face->n_eq,
558 dim - face->n_eq);
559 U = isl_mat_drop_cols(ctx, U, 0, 1);
560 Q = isl_mat_drop_rows(ctx, Q, 0, 1);
561 bounds = isl_mat_product(ctx, bounds, U);
562 bounds = isl_mat_product(ctx, bounds, Q);
563 while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1],
564 bounds->n_col) == -1) {
565 bounds->n_row--;
566 isl_assert(ctx, bounds->n_row > 1, goto error);
568 if (!wrap_facet(set, bounds->row[0],
569 bounds->row[bounds->n_row-1]))
570 goto error;
571 isl_basic_set_free(face);
572 bounds->n_row--;
574 return bounds;
575 error:
576 isl_basic_set_free(face);
577 isl_mat_free(ctx, bounds);
578 return NULL;
581 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
582 * compute a hyperplane description of the facet, i.e., compute the facets
583 * of the facet.
585 * We compute an affine transformation that transforms the constraint
587 * [ 1 ]
588 * c [ x ] = 0
590 * to the constraint
592 * z_1 = 0
594 * by computing the right inverse U of a matrix that starts with the rows
596 * [ 1 0 ]
597 * [ c ]
599 * Then
600 * [ 1 ] [ 1 ]
601 * [ x ] = U [ z ]
602 * and
603 * [ 1 ] [ 1 ]
604 * [ z ] = Q [ x ]
606 * with Q = U^{-1}
607 * Since z_1 is zero, we can drop this variable as well as the corresponding
608 * column of U to obtain
610 * [ 1 ] [ 1 ]
611 * [ x ] = U' [ z' ]
612 * and
613 * [ 1 ] [ 1 ]
614 * [ z' ] = Q' [ x ]
616 * with Q' equal to Q, but without the corresponding row.
617 * After computing the facets of the facet in the z' space,
618 * we convert them back to the x space through Q.
620 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
622 struct isl_mat *m, *U, *Q;
623 struct isl_basic_set *facet = NULL;
624 struct isl_ctx *ctx;
625 unsigned dim;
627 ctx = set->ctx;
628 set = isl_set_copy(set);
629 dim = isl_set_n_dim(set);
630 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
631 if (!m)
632 goto error;
633 isl_int_set_si(m->row[0][0], 1);
634 isl_seq_clr(m->row[0]+1, dim);
635 isl_seq_cpy(m->row[1], c, 1+dim);
636 U = isl_mat_right_inverse(set->ctx, m);
637 Q = isl_mat_right_inverse(set->ctx, isl_mat_copy(set->ctx, U));
638 U = isl_mat_drop_cols(set->ctx, U, 1, 1);
639 Q = isl_mat_drop_rows(set->ctx, Q, 1, 1);
640 set = isl_set_preimage(set, U);
641 facet = uset_convex_hull_wrap_bounded(set);
642 facet = isl_basic_set_preimage(facet, Q);
643 isl_assert(ctx, facet->n_eq == 0, goto error);
644 return facet;
645 error:
646 isl_basic_set_free(facet);
647 isl_set_free(set);
648 return NULL;
651 /* Given an initial facet constraint, compute the remaining facets.
652 * We do this by running through all facets found so far and computing
653 * the adjacent facets through wrapping, adding those facets that we
654 * hadn't already found before.
656 * For each facet we have found so far, we first compute its facets
657 * in the resulting convex hull. That is, we compute the ridges
658 * of the resulting convex hull contained in the facet.
659 * We also compute the corresponding facet in the current approximation
660 * of the convex hull. There is no need to wrap around the ridges
661 * in this facet since that would result in a facet that is already
662 * present in the current approximation.
664 * This function can still be significantly optimized by checking which of
665 * the facets of the basic sets are also facets of the convex hull and
666 * using all the facets so far to help in constructing the facets of the
667 * facets
668 * and/or
669 * using the technique in section "3.1 Ridge Generation" of
670 * "Extended Convex Hull" by Fukuda et al.
672 static struct isl_basic_set *extend(struct isl_basic_set *hull,
673 struct isl_set *set)
675 int i, j, f;
676 int k;
677 struct isl_basic_set *facet = NULL;
678 struct isl_basic_set *hull_facet = NULL;
679 unsigned total;
680 unsigned dim;
682 isl_assert(set->ctx, set->n > 0, goto error);
684 dim = isl_set_n_dim(set);
686 for (i = 0; i < hull->n_ineq; ++i) {
687 facet = compute_facet(set, hull->ineq[i]);
688 facet = isl_basic_set_add_equality(facet->ctx, facet, hull->ineq[i]);
689 facet = isl_basic_set_gauss(facet, NULL);
690 facet = isl_basic_set_normalize_constraints(facet);
691 hull_facet = isl_basic_set_copy(hull);
692 hull_facet = isl_basic_set_add_equality(hull_facet->ctx, hull_facet, hull->ineq[i]);
693 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
694 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
695 if (!facet)
696 goto error;
697 if (facet->n_ineq + hull->n_ineq > hull->c_size)
698 hull = isl_basic_set_extend_dim(hull,
699 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
700 for (j = 0; j < facet->n_ineq; ++j) {
701 for (f = 0; f < hull_facet->n_ineq; ++f)
702 if (isl_seq_eq(facet->ineq[j],
703 hull_facet->ineq[f], 1 + dim))
704 break;
705 if (f < hull_facet->n_ineq)
706 continue;
707 k = isl_basic_set_alloc_inequality(hull);
708 if (k < 0)
709 goto error;
710 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
711 if (!wrap_facet(set, hull->ineq[k], facet->ineq[j]))
712 goto error;
714 isl_basic_set_free(hull_facet);
715 isl_basic_set_free(facet);
717 hull = isl_basic_set_simplify(hull);
718 hull = isl_basic_set_finalize(hull);
719 return hull;
720 error:
721 isl_basic_set_free(hull_facet);
722 isl_basic_set_free(facet);
723 isl_basic_set_free(hull);
724 return NULL;
727 /* Special case for computing the convex hull of a one dimensional set.
728 * We simply collect the lower and upper bounds of each basic set
729 * and the biggest of those.
731 static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx,
732 struct isl_set *set)
734 struct isl_mat *c = NULL;
735 isl_int *lower = NULL;
736 isl_int *upper = NULL;
737 int i, j, k;
738 isl_int a, b;
739 struct isl_basic_set *hull;
741 for (i = 0; i < set->n; ++i) {
742 set->p[i] = isl_basic_set_simplify(set->p[i]);
743 if (!set->p[i])
744 goto error;
746 set = isl_set_remove_empty_parts(set);
747 if (!set)
748 goto error;
749 isl_assert(ctx, set->n > 0, goto error);
750 c = isl_mat_alloc(ctx, 2, 2);
751 if (!c)
752 goto error;
754 if (set->p[0]->n_eq > 0) {
755 isl_assert(ctx, set->p[0]->n_eq == 1, goto error);
756 lower = c->row[0];
757 upper = c->row[1];
758 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
759 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
760 isl_seq_neg(upper, set->p[0]->eq[0], 2);
761 } else {
762 isl_seq_neg(lower, set->p[0]->eq[0], 2);
763 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
765 } else {
766 for (j = 0; j < set->p[0]->n_ineq; ++j) {
767 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
768 lower = c->row[0];
769 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
770 } else {
771 upper = c->row[1];
772 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
777 isl_int_init(a);
778 isl_int_init(b);
779 for (i = 0; i < set->n; ++i) {
780 struct isl_basic_set *bset = set->p[i];
781 int has_lower = 0;
782 int has_upper = 0;
784 for (j = 0; j < bset->n_eq; ++j) {
785 has_lower = 1;
786 has_upper = 1;
787 if (lower) {
788 isl_int_mul(a, lower[0], bset->eq[j][1]);
789 isl_int_mul(b, lower[1], bset->eq[j][0]);
790 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
791 isl_seq_cpy(lower, bset->eq[j], 2);
792 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
793 isl_seq_neg(lower, bset->eq[j], 2);
795 if (upper) {
796 isl_int_mul(a, upper[0], bset->eq[j][1]);
797 isl_int_mul(b, upper[1], bset->eq[j][0]);
798 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
799 isl_seq_neg(upper, bset->eq[j], 2);
800 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
801 isl_seq_cpy(upper, bset->eq[j], 2);
804 for (j = 0; j < bset->n_ineq; ++j) {
805 if (isl_int_is_pos(bset->ineq[j][1]))
806 has_lower = 1;
807 if (isl_int_is_neg(bset->ineq[j][1]))
808 has_upper = 1;
809 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
810 isl_int_mul(a, lower[0], bset->ineq[j][1]);
811 isl_int_mul(b, lower[1], bset->ineq[j][0]);
812 if (isl_int_lt(a, b))
813 isl_seq_cpy(lower, bset->ineq[j], 2);
815 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
816 isl_int_mul(a, upper[0], bset->ineq[j][1]);
817 isl_int_mul(b, upper[1], bset->ineq[j][0]);
818 if (isl_int_gt(a, b))
819 isl_seq_cpy(upper, bset->ineq[j], 2);
822 if (!has_lower)
823 lower = NULL;
824 if (!has_upper)
825 upper = NULL;
827 isl_int_clear(a);
828 isl_int_clear(b);
830 hull = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2);
831 hull = isl_basic_set_set_rational(hull);
832 if (!hull)
833 goto error;
834 if (lower) {
835 k = isl_basic_set_alloc_inequality(hull);
836 isl_seq_cpy(hull->ineq[k], lower, 2);
838 if (upper) {
839 k = isl_basic_set_alloc_inequality(hull);
840 isl_seq_cpy(hull->ineq[k], upper, 2);
842 hull = isl_basic_set_finalize(hull);
843 isl_set_free(set);
844 isl_mat_free(ctx, c);
845 return hull;
846 error:
847 isl_set_free(set);
848 isl_mat_free(ctx, c);
849 return NULL;
852 /* Project out final n dimensions using Fourier-Motzkin */
853 static struct isl_set *set_project_out(struct isl_ctx *ctx,
854 struct isl_set *set, unsigned n)
856 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
859 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
861 struct isl_basic_set *convex_hull;
863 if (!set)
864 return NULL;
866 if (isl_set_is_empty(set))
867 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
868 else
869 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
870 isl_set_free(set);
871 return convex_hull;
874 /* Compute the convex hull of a pair of basic sets without any parameters or
875 * integer divisions using Fourier-Motzkin elimination.
876 * The convex hull is the set of all points that can be written as
877 * the sum of points from both basic sets (in homogeneous coordinates).
878 * We set up the constraints in a space with dimensions for each of
879 * the three sets and then project out the dimensions corresponding
880 * to the two original basic sets, retaining only those corresponding
881 * to the convex hull.
883 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
884 struct isl_basic_set *bset2)
886 int i, j, k;
887 struct isl_basic_set *bset[2];
888 struct isl_basic_set *hull = NULL;
889 unsigned dim;
891 if (!bset1 || !bset2)
892 goto error;
894 dim = isl_basic_set_n_dim(bset1);
895 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
896 1 + dim + bset1->n_eq + bset2->n_eq,
897 2 + bset1->n_ineq + bset2->n_ineq);
898 bset[0] = bset1;
899 bset[1] = bset2;
900 for (i = 0; i < 2; ++i) {
901 for (j = 0; j < bset[i]->n_eq; ++j) {
902 k = isl_basic_set_alloc_equality(hull);
903 if (k < 0)
904 goto error;
905 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
906 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
907 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
908 1+dim);
910 for (j = 0; j < bset[i]->n_ineq; ++j) {
911 k = isl_basic_set_alloc_inequality(hull);
912 if (k < 0)
913 goto error;
914 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
915 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
916 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
917 bset[i]->ineq[j], 1+dim);
919 k = isl_basic_set_alloc_inequality(hull);
920 if (k < 0)
921 goto error;
922 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
923 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
925 for (j = 0; j < 1+dim; ++j) {
926 k = isl_basic_set_alloc_equality(hull);
927 if (k < 0)
928 goto error;
929 isl_seq_clr(hull->eq[k], 1+2+3*dim);
930 isl_int_set_si(hull->eq[k][j], -1);
931 isl_int_set_si(hull->eq[k][1+dim+j], 1);
932 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
934 hull = isl_basic_set_set_rational(hull);
935 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
936 hull = isl_basic_set_convex_hull(hull);
937 isl_basic_set_free(bset1);
938 isl_basic_set_free(bset2);
939 return hull;
940 error:
941 isl_basic_set_free(bset1);
942 isl_basic_set_free(bset2);
943 isl_basic_set_free(hull);
944 return NULL;
947 /* Compute the convex hull of a set without any parameters or
948 * integer divisions using Fourier-Motzkin elimination.
949 * In each step, we combined two basic sets until only one
950 * basic set is left.
952 static struct isl_basic_set *uset_convex_hull_elim(struct isl_set *set)
954 struct isl_basic_set *convex_hull = NULL;
956 convex_hull = isl_set_copy_basic_set(set);
957 set = isl_set_drop_basic_set(set, convex_hull);
958 if (!set)
959 goto error;
960 while (set->n > 0) {
961 struct isl_basic_set *t;
962 t = isl_set_copy_basic_set(set);
963 if (!t)
964 goto error;
965 set = isl_set_drop_basic_set(set, t);
966 if (!set)
967 goto error;
968 convex_hull = convex_hull_pair(convex_hull, t);
970 isl_set_free(set);
971 return convex_hull;
972 error:
973 isl_set_free(set);
974 isl_basic_set_free(convex_hull);
975 return NULL;
978 /* Compute an initial hull for wrapping containing a single initial
979 * facet by first computing bounds on the set and then using these
980 * bounds to construct an initial facet.
981 * This function is a remnant of an older implementation where the
982 * bounds were also used to check whether the set was bounded.
983 * Since this function will now only be called when we know the
984 * set to be bounded, the initial facet should probably be constructed
985 * by simply using the coordinate directions instead.
987 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
988 struct isl_set *set)
990 struct isl_mat *bounds = NULL;
991 unsigned dim;
992 int k;
994 if (!hull)
995 goto error;
996 bounds = independent_bounds(set->ctx, set);
997 if (!bounds)
998 goto error;
999 isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error);
1000 bounds = initial_facet_constraint(set->ctx, set, bounds);
1001 if (!bounds)
1002 goto error;
1003 k = isl_basic_set_alloc_inequality(hull);
1004 if (k < 0)
1005 goto error;
1006 dim = isl_set_n_dim(set);
1007 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1008 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1009 isl_mat_free(set->ctx, bounds);
1011 return hull;
1012 error:
1013 isl_basic_set_free(hull);
1014 isl_mat_free(set->ctx, bounds);
1015 return NULL;
1018 struct max_constraint {
1019 struct isl_mat *c;
1020 int count;
1021 int ineq;
1024 static int max_constraint_equal(const void *entry, const void *val)
1026 struct max_constraint *a = (struct max_constraint *)entry;
1027 isl_int *b = (isl_int *)val;
1029 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1032 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1033 isl_int *con, unsigned len, int n, int ineq)
1035 struct isl_hash_table_entry *entry;
1036 struct max_constraint *c;
1037 uint32_t c_hash;
1039 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1040 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1041 con + 1, 0);
1042 if (!entry)
1043 return;
1044 c = entry->data;
1045 if (c->count < n) {
1046 isl_hash_table_remove(ctx, table, entry);
1047 return;
1049 c->count++;
1050 if (isl_int_gt(c->c->row[0][0], con[0]))
1051 return;
1052 if (isl_int_eq(c->c->row[0][0], con[0])) {
1053 if (ineq)
1054 c->ineq = ineq;
1055 return;
1057 c->c = isl_mat_cow(ctx, c->c);
1058 isl_int_set(c->c->row[0][0], con[0]);
1059 c->ineq = ineq;
1062 /* Check whether the constraint hash table "table" constains the constraint
1063 * "con".
1065 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1066 isl_int *con, unsigned len, int n)
1068 struct isl_hash_table_entry *entry;
1069 struct max_constraint *c;
1070 uint32_t c_hash;
1072 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1073 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1074 con + 1, 0);
1075 if (!entry)
1076 return 0;
1077 c = entry->data;
1078 if (c->count < n)
1079 return 0;
1080 return isl_int_eq(c->c->row[0][0], con[0]);
1083 /* Check for inequality constraints of a basic set without equalities
1084 * such that the same or more stringent copies of the constraint appear
1085 * in all of the basic sets. Such constraints are necessarily facet
1086 * constraints of the convex hull.
1088 * If the resulting basic set is by chance identical to one of
1089 * the basic sets in "set", then we know that this basic set contains
1090 * all other basic sets and is therefore the convex hull of set.
1091 * In this case we set *is_hull to 1.
1093 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1094 struct isl_set *set, int *is_hull)
1096 int i, j, s, n;
1097 int min_constraints;
1098 int best;
1099 struct max_constraint *constraints = NULL;
1100 struct isl_hash_table *table = NULL;
1101 unsigned total;
1103 *is_hull = 0;
1105 for (i = 0; i < set->n; ++i)
1106 if (set->p[i]->n_eq == 0)
1107 break;
1108 if (i >= set->n)
1109 return hull;
1110 min_constraints = set->p[i]->n_ineq;
1111 best = i;
1112 for (i = best + 1; i < set->n; ++i) {
1113 if (set->p[i]->n_eq != 0)
1114 continue;
1115 if (set->p[i]->n_ineq >= min_constraints)
1116 continue;
1117 min_constraints = set->p[i]->n_ineq;
1118 best = i;
1120 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1121 min_constraints);
1122 if (!constraints)
1123 return hull;
1124 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1125 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1126 goto error;
1128 total = isl_dim_total(set->dim);
1129 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1130 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1131 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1132 if (!constraints[i].c)
1133 goto error;
1134 constraints[i].ineq = 1;
1136 for (i = 0; i < min_constraints; ++i) {
1137 struct isl_hash_table_entry *entry;
1138 uint32_t c_hash;
1139 c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total,
1140 isl_hash_init());
1141 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1142 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1143 if (!entry)
1144 goto error;
1145 isl_assert(hull->ctx, !entry->data, goto error);
1146 entry->data = &constraints[i];
1149 n = 0;
1150 for (s = 0; s < set->n; ++s) {
1151 if (s == best)
1152 continue;
1154 for (i = 0; i < set->p[s]->n_eq; ++i) {
1155 isl_int *eq = set->p[s]->eq[i];
1156 for (j = 0; j < 2; ++j) {
1157 isl_seq_neg(eq, eq, 1 + total);
1158 update_constraint(hull->ctx, table,
1159 eq, total, n, 0);
1162 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1163 isl_int *ineq = set->p[s]->ineq[i];
1164 update_constraint(hull->ctx, table, ineq, total, n,
1165 set->p[s]->n_eq == 0);
1167 ++n;
1170 for (i = 0; i < min_constraints; ++i) {
1171 if (constraints[i].count < n)
1172 continue;
1173 if (!constraints[i].ineq)
1174 continue;
1175 j = isl_basic_set_alloc_inequality(hull);
1176 if (j < 0)
1177 goto error;
1178 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1181 for (s = 0; s < set->n; ++s) {
1182 if (set->p[s]->n_eq)
1183 continue;
1184 if (set->p[s]->n_ineq != hull->n_ineq)
1185 continue;
1186 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1187 isl_int *ineq = set->p[s]->ineq[i];
1188 if (!has_constraint(hull->ctx, table, ineq, total, n))
1189 break;
1191 if (i == set->p[s]->n_ineq)
1192 *is_hull = 1;
1195 isl_hash_table_clear(table);
1196 for (i = 0; i < min_constraints; ++i)
1197 isl_mat_free(hull->ctx, constraints[i].c);
1198 free(constraints);
1199 free(table);
1200 return hull;
1201 error:
1202 isl_hash_table_clear(table);
1203 free(table);
1204 if (constraints)
1205 for (i = 0; i < min_constraints; ++i)
1206 isl_mat_free(hull->ctx, constraints[i].c);
1207 free(constraints);
1208 return hull;
1211 /* Create a template for the convex hull of "set" and fill it up
1212 * obvious facet constraints, if any. If the result happens to
1213 * be the convex hull of "set" then *is_hull is set to 1.
1215 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1217 struct isl_basic_set *hull;
1218 unsigned n_ineq;
1219 int i;
1221 n_ineq = 1;
1222 for (i = 0; i < set->n; ++i) {
1223 n_ineq += set->p[i]->n_eq;
1224 n_ineq += set->p[i]->n_ineq;
1226 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1227 hull = isl_basic_set_set_rational(hull);
1228 if (!hull)
1229 return NULL;
1230 return common_constraints(hull, set, is_hull);
1233 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1235 struct isl_basic_set *hull;
1236 int is_hull;
1238 hull = proto_hull(set, &is_hull);
1239 if (hull && !is_hull) {
1240 if (hull->n_ineq == 0)
1241 hull = initial_hull(hull, set);
1242 hull = extend(hull, set);
1244 isl_set_free(set);
1246 return hull;
1249 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
1251 struct isl_tab *tab;
1252 int bounded;
1254 tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset);
1255 bounded = isl_tab_cone_is_bounded(bset->ctx, tab);
1256 isl_tab_free(bset->ctx, tab);
1257 return bounded;
1260 static int isl_set_is_bounded(struct isl_set *set)
1262 int i;
1264 for (i = 0; i < set->n; ++i) {
1265 int bounded = isl_basic_set_is_bounded(set->p[i]);
1266 if (!bounded || bounded < 0)
1267 return bounded;
1269 return 1;
1272 /* Compute the convex hull of a set without any parameters or
1273 * integer divisions. Depending on whether the set is bounded,
1274 * we pass control to the wrapping based convex hull or
1275 * the Fourier-Motzkin elimination based convex hull.
1276 * We also handle a few special cases before checking the boundedness.
1278 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1280 int i;
1281 struct isl_basic_set *convex_hull = NULL;
1283 if (isl_set_n_dim(set) == 0)
1284 return convex_hull_0d(set);
1286 set = isl_set_set_rational(set);
1288 if (!set)
1289 goto error;
1290 set = isl_set_normalize(set);
1291 if (!set)
1292 return NULL;
1293 if (set->n == 1) {
1294 convex_hull = isl_basic_set_copy(set->p[0]);
1295 isl_set_free(set);
1296 return convex_hull;
1298 if (isl_set_n_dim(set) == 1)
1299 return convex_hull_1d(set->ctx, set);
1301 if (!isl_set_is_bounded(set))
1302 return uset_convex_hull_elim(set);
1304 return uset_convex_hull_wrap(set);
1305 error:
1306 isl_set_free(set);
1307 isl_basic_set_free(convex_hull);
1308 return NULL;
1311 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1312 * without parameters or divs and where the convex hull of set is
1313 * known to be full-dimensional.
1315 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1317 int i;
1318 struct isl_basic_set *convex_hull = NULL;
1320 if (isl_set_n_dim(set) == 0) {
1321 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1322 isl_set_free(set);
1323 convex_hull = isl_basic_set_set_rational(convex_hull);
1324 return convex_hull;
1327 set = isl_set_set_rational(set);
1329 if (!set)
1330 goto error;
1331 set = isl_set_normalize(set);
1332 if (!set)
1333 goto error;
1334 if (set->n == 1) {
1335 convex_hull = isl_basic_set_copy(set->p[0]);
1336 isl_set_free(set);
1337 return convex_hull;
1339 if (isl_set_n_dim(set) == 1)
1340 return convex_hull_1d(set->ctx, set);
1342 return uset_convex_hull_wrap(set);
1343 error:
1344 isl_set_free(set);
1345 return NULL;
1348 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1349 * We first remove the equalities (transforming the set), compute the
1350 * convex hull of the transformed set and then add the equalities back
1351 * (after performing the inverse transformation.
1353 static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx,
1354 struct isl_set *set, struct isl_basic_set *affine_hull)
1356 struct isl_mat *T;
1357 struct isl_mat *T2;
1358 struct isl_basic_set *dummy;
1359 struct isl_basic_set *convex_hull;
1361 dummy = isl_basic_set_remove_equalities(
1362 isl_basic_set_copy(affine_hull), &T, &T2);
1363 if (!dummy)
1364 goto error;
1365 isl_basic_set_free(dummy);
1366 set = isl_set_preimage(set, T);
1367 convex_hull = uset_convex_hull(set);
1368 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1369 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1370 return convex_hull;
1371 error:
1372 isl_basic_set_free(affine_hull);
1373 isl_set_free(set);
1374 return NULL;
1377 /* Compute the convex hull of a map.
1379 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1380 * specifically, the wrapping of facets to obtain new facets.
1382 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1384 struct isl_basic_set *bset;
1385 struct isl_basic_map *model = NULL;
1386 struct isl_basic_set *affine_hull = NULL;
1387 struct isl_basic_map *convex_hull = NULL;
1388 struct isl_set *set = NULL;
1389 struct isl_ctx *ctx;
1391 if (!map)
1392 goto error;
1394 ctx = map->ctx;
1395 if (map->n == 0) {
1396 convex_hull = isl_basic_map_empty_like_map(map);
1397 isl_map_free(map);
1398 return convex_hull;
1401 map = isl_map_align_divs(map);
1402 model = isl_basic_map_copy(map->p[0]);
1403 set = isl_map_underlying_set(map);
1404 if (!set)
1405 goto error;
1407 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1408 if (!affine_hull)
1409 goto error;
1410 if (affine_hull->n_eq != 0)
1411 bset = modulo_affine_hull(ctx, set, affine_hull);
1412 else {
1413 isl_basic_set_free(affine_hull);
1414 bset = uset_convex_hull(set);
1417 convex_hull = isl_basic_map_overlying_set(bset, model);
1419 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1420 return convex_hull;
1421 error:
1422 isl_set_free(set);
1423 isl_basic_map_free(model);
1424 return NULL;
1427 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1429 return (struct isl_basic_set *)
1430 isl_map_convex_hull((struct isl_map *)set);
1433 struct sh_data_entry {
1434 struct isl_hash_table *table;
1435 struct isl_tab *tab;
1438 /* Holds the data needed during the simple hull computation.
1439 * In particular,
1440 * n the number of basic sets in the original set
1441 * hull_table a hash table of already computed constraints
1442 * in the simple hull
1443 * p for each basic set,
1444 * table a hash table of the constraints
1445 * tab the tableau corresponding to the basic set
1447 struct sh_data {
1448 struct isl_ctx *ctx;
1449 unsigned n;
1450 struct isl_hash_table *hull_table;
1451 struct sh_data_entry p[0];
1454 static void sh_data_free(struct sh_data *data)
1456 int i;
1458 if (!data)
1459 return;
1460 isl_hash_table_free(data->ctx, data->hull_table);
1461 for (i = 0; i < data->n; ++i) {
1462 isl_hash_table_free(data->ctx, data->p[i].table);
1463 isl_tab_free(data->ctx, data->p[i].tab);
1465 free(data);
1468 struct ineq_cmp_data {
1469 unsigned len;
1470 isl_int *p;
1473 static int has_ineq(const void *entry, const void *val)
1475 isl_int *row = (isl_int *)entry;
1476 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1478 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1479 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1482 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1483 isl_int *ineq, unsigned len)
1485 uint32_t c_hash;
1486 struct ineq_cmp_data v;
1487 struct isl_hash_table_entry *entry;
1489 v.len = len;
1490 v.p = ineq;
1491 c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init());
1492 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1493 if (!entry)
1494 return - 1;
1495 entry->data = ineq;
1496 return 0;
1499 /* Fill hash table "table" with the constraints of "bset".
1500 * Equalities are added as two inequalities.
1501 * The value in the hash table is a pointer to the (in)equality of "bset".
1503 static int hash_basic_set(struct isl_hash_table *table,
1504 struct isl_basic_set *bset)
1506 int i, j;
1507 unsigned dim = isl_basic_set_total_dim(bset);
1509 for (i = 0; i < bset->n_eq; ++i) {
1510 for (j = 0; j < 2; ++j) {
1511 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
1512 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
1513 return -1;
1516 for (i = 0; i < bset->n_ineq; ++i) {
1517 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
1518 return -1;
1520 return 0;
1523 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
1525 struct sh_data *data;
1526 int i;
1528 data = isl_calloc(set->ctx, struct sh_data,
1529 sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry));
1530 if (!data)
1531 return NULL;
1532 data->ctx = set->ctx;
1533 data->n = set->n;
1534 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
1535 if (!data->hull_table)
1536 goto error;
1537 for (i = 0; i < set->n; ++i) {
1538 data->p[i].table = isl_hash_table_alloc(set->ctx,
1539 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
1540 if (!data->p[i].table)
1541 goto error;
1542 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
1543 goto error;
1545 return data;
1546 error:
1547 sh_data_free(data);
1548 return NULL;
1551 /* Check if inequality "ineq" is a bound for basic set "j" or if
1552 * it can be relaxed (by increasing the constant term) to become
1553 * a bound for that basic set. In the latter case, the constant
1554 * term is updated.
1555 * Return 1 if "ineq" is a bound
1556 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
1557 * -1 if some error occurred
1559 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
1560 isl_int *ineq)
1562 enum isl_lp_result res;
1563 isl_int opt;
1565 if (!data->p[j].tab) {
1566 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
1567 if (!data->p[j].tab)
1568 return -1;
1571 isl_int_init(opt);
1573 res = isl_tab_min(data->ctx, data->p[j].tab, ineq, data->ctx->one,
1574 &opt, NULL);
1575 if (res == isl_lp_ok && isl_int_is_neg(opt))
1576 isl_int_sub(ineq[0], ineq[0], opt);
1578 isl_int_clear(opt);
1580 return res == isl_lp_ok ? 1 :
1581 res == isl_lp_unbounded ? 0 : -1;
1584 /* Check if inequality "ineq" from basic set "i" can be relaxed to
1585 * become a bound on the whole set. If so, add the (relaxed) inequality
1586 * to "hull".
1588 * We first check if "hull" already contains a translate of the inequality.
1589 * If so, we are done.
1590 * Then, we check if any of the previous basic sets contains a translate
1591 * of the inequality. If so, then we have already considered this
1592 * inequality and we are done.
1593 * Otherwise, for each basic set other than "i", we check if the inequality
1594 * is a bound on the basic set.
1595 * For previous basic sets, we know that they do not contain a translate
1596 * of the inequality, so we directly call is_bound.
1597 * For following basic sets, we first check if a translate of the
1598 * inequality appears in its description and if so directly update
1599 * the inequality accordingly.
1601 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
1602 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
1604 uint32_t c_hash;
1605 struct ineq_cmp_data v;
1606 struct isl_hash_table_entry *entry;
1607 int j, k;
1609 if (!hull)
1610 return NULL;
1612 v.len = isl_basic_set_total_dim(hull);
1613 v.p = ineq;
1614 c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init());
1616 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
1617 has_ineq, &v, 0);
1618 if (entry)
1619 return hull;
1621 for (j = 0; j < i; ++j) {
1622 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
1623 c_hash, has_ineq, &v, 0);
1624 if (entry)
1625 break;
1627 if (j < i)
1628 return hull;
1630 k = isl_basic_set_alloc_inequality(hull);
1631 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
1632 if (k < 0)
1633 goto error;
1635 for (j = 0; j < i; ++j) {
1636 int bound;
1637 bound = is_bound(data, set, j, hull->ineq[k]);
1638 if (bound < 0)
1639 goto error;
1640 if (!bound)
1641 break;
1643 if (j < i) {
1644 isl_basic_set_free_inequality(hull, 1);
1645 return hull;
1648 for (j = i + 1; j < set->n; ++j) {
1649 int bound, neg;
1650 isl_int *ineq_j;
1651 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
1652 c_hash, has_ineq, &v, 0);
1653 if (entry) {
1654 ineq_j = entry->data;
1655 neg = isl_seq_is_neg(ineq_j + 1,
1656 hull->ineq[k] + 1, v.len);
1657 if (neg)
1658 isl_int_neg(ineq_j[0], ineq_j[0]);
1659 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
1660 isl_int_set(hull->ineq[k][0], ineq_j[0]);
1661 if (neg)
1662 isl_int_neg(ineq_j[0], ineq_j[0]);
1663 continue;
1665 bound = is_bound(data, set, j, hull->ineq[k]);
1666 if (bound < 0)
1667 goto error;
1668 if (!bound)
1669 break;
1671 if (j < set->n) {
1672 isl_basic_set_free_inequality(hull, 1);
1673 return hull;
1676 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
1677 has_ineq, &v, 1);
1678 if (!entry)
1679 goto error;
1680 entry->data = hull->ineq[k];
1682 return hull;
1683 error:
1684 isl_basic_set_free(hull);
1685 return NULL;
1688 /* Check if any inequality from basic set "i" can be relaxed to
1689 * become a bound on the whole set. If so, add the (relaxed) inequality
1690 * to "hull".
1692 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
1693 struct sh_data *data, struct isl_set *set, int i)
1695 int j, k;
1696 unsigned dim = isl_basic_set_total_dim(bset);
1698 for (j = 0; j < set->p[i]->n_eq; ++j) {
1699 for (k = 0; k < 2; ++k) {
1700 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
1701 add_bound(bset, data, set, i, set->p[i]->eq[j]);
1704 for (j = 0; j < set->p[i]->n_ineq; ++j)
1705 add_bound(bset, data, set, i, set->p[i]->ineq[j]);
1706 return bset;
1709 /* Compute a superset of the convex hull of set that is described
1710 * by only translates of the constraints in the constituents of set.
1712 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
1714 struct sh_data *data = NULL;
1715 struct isl_basic_set *hull = NULL;
1716 unsigned n_ineq;
1717 int i, j;
1719 if (!set)
1720 return NULL;
1722 n_ineq = 0;
1723 for (i = 0; i < set->n; ++i) {
1724 if (!set->p[i])
1725 goto error;
1726 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
1729 hull = isl_set_affine_hull(isl_set_copy(set));
1730 if (!hull)
1731 goto error;
1732 hull = isl_basic_set_extend_dim(hull, isl_dim_copy(hull->dim),
1733 0, 0, n_ineq);
1734 if (!hull)
1735 goto error;
1737 data = sh_data_alloc(set, n_ineq);
1738 if (!data)
1739 goto error;
1740 if (hash_basic_set(data->hull_table, hull) < 0)
1741 goto error;
1743 for (i = 0; i < set->n; ++i)
1744 hull = add_bounds(hull, data, set, i);
1746 hull = isl_basic_set_convex_hull(hull);
1748 sh_data_free(data);
1749 isl_set_free(set);
1751 return hull;
1752 error:
1753 sh_data_free(data);
1754 isl_basic_set_free(hull);
1755 isl_set_free(set);
1756 return NULL;
1759 /* Compute a superset of the convex hull of map that is described
1760 * by only translates of the constraints in the constituents of map.
1762 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
1764 struct isl_set *set = NULL;
1765 struct isl_basic_map *model = NULL;
1766 struct isl_basic_map *hull;
1767 struct isl_basic_set *bset = NULL;
1769 if (!map)
1770 return NULL;
1771 if (map->n == 0) {
1772 hull = isl_basic_map_empty_like_map(map);
1773 isl_map_free(map);
1774 return hull;
1776 if (map->n == 1) {
1777 hull = isl_basic_map_copy(map->p[0]);
1778 isl_map_free(map);
1779 return hull;
1782 map = isl_map_align_divs(map);
1783 model = isl_basic_map_copy(map->p[0]);
1785 set = isl_map_underlying_set(map);
1787 bset = uset_simple_hull(set);
1789 hull = isl_basic_map_overlying_set(bset, model);
1791 return hull;
1794 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
1796 return (struct isl_basic_set *)
1797 isl_map_simple_hull((struct isl_map *)set);