2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_space_private.h>
17 #include <isl_aff_private.h>
19 #include <isl/constraint.h>
20 #include <isl/schedule.h>
21 #include <isl_schedule_constraints.h>
22 #include <isl/schedule_node.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <isl/union_set.h>
29 #include <isl_dim_map.h>
30 #include <isl/map_to_basic_set.h>
32 #include <isl_options_private.h>
33 #include <isl_tarjan.h>
34 #include <isl_morph.h>
36 #include <isl_val_private.h>
39 * The scheduling algorithm implemented in this file was inspired by
40 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
41 * Parallelization and Locality Optimization in the Polyhedral Model".
45 /* Internal information about a node that is used during the construction
47 * space represents the space in which the domain lives
48 * sched is a matrix representation of the schedule being constructed
49 * for this node; if compressed is set, then this schedule is
50 * defined over the compressed domain space
51 * sched_map is an isl_map representation of the same (partial) schedule
52 * sched_map may be NULL; if compressed is set, then this map
53 * is defined over the uncompressed domain space
54 * rank is the number of linearly independent rows in the linear part
56 * the columns of cmap represent a change of basis for the schedule
57 * coefficients; the first rank columns span the linear part of
59 * cinv is the inverse of cmap.
60 * ctrans is the transpose of cmap.
61 * start is the first variable in the LP problem in the sequences that
62 * represents the schedule coefficients of this node
63 * nvar is the dimension of the domain
64 * nparam is the number of parameters or 0 if we are not constructing
65 * a parametric schedule
67 * If compressed is set, then hull represents the constraints
68 * that were used to derive the compression, while compress and
69 * decompress map the original space to the compressed space and
72 * scc is the index of SCC (or WCC) this node belongs to
74 * "cluster" is only used inside extract_clusters and identifies
75 * the cluster of SCCs that the node belongs to.
77 * coincident contains a boolean for each of the rows of the schedule,
78 * indicating whether the corresponding scheduling dimension satisfies
79 * the coincidence constraints in the sense that the corresponding
80 * dependence distances are zero.
82 * If the schedule_treat_coalescing option is set, then
83 * "sizes" contains the sizes of the (compressed) instance set
84 * in each direction. If there is no fixed size in a given direction,
85 * then the corresponding size value is set to infinity.
86 * If the schedule_treat_coalescing option or the schedule_max_coefficient
87 * option is set, then "max" contains the maximal values for
88 * schedule coefficients of the (compressed) variables. If no bound
89 * needs to be imposed on a particular variable, then the corresponding
92 struct isl_sched_node
{
96 isl_multi_aff
*compress
;
97 isl_multi_aff
*decompress
;
113 isl_multi_val
*sizes
;
117 static int node_has_space(const void *entry
, const void *val
)
119 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
120 isl_space
*dim
= (isl_space
*)val
;
122 return isl_space_is_equal(node
->space
, dim
);
125 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
127 return node
->scc
== scc
;
130 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
132 return node
->scc
<= scc
;
135 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
137 return node
->scc
>= scc
;
140 /* An edge in the dependence graph. An edge may be used to
141 * ensure validity of the generated schedule, to minimize the dependence
144 * map is the dependence relation, with i -> j in the map if j depends on i
145 * tagged_condition and tagged_validity contain the union of all tagged
146 * condition or conditional validity dependence relations that
147 * specialize the dependence relation "map"; that is,
148 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
149 * or "tagged_validity", then i -> j is an element of "map".
150 * If these fields are NULL, then they represent the empty relation.
151 * src is the source node
152 * dst is the sink node
154 * types is a bit vector containing the types of this edge.
155 * validity is set if the edge is used to ensure correctness
156 * coincidence is used to enforce zero dependence distances
157 * proximity is set if the edge is used to minimize dependence distances
158 * condition is set if the edge represents a condition
159 * for a conditional validity schedule constraint
160 * local can only be set for condition edges and indicates that
161 * the dependence distance over the edge should be zero
162 * conditional_validity is set if the edge is used to conditionally
165 * For validity edges, start and end mark the sequence of inequality
166 * constraints in the LP problem that encode the validity constraint
167 * corresponding to this edge.
169 * During clustering, an edge may be marked "no_merge" if it should
170 * not be used to merge clusters.
171 * The weight is also only used during clustering and it is
172 * an indication of how many schedule dimensions on either side
173 * of the schedule constraints can be aligned.
174 * If the weight is negative, then this means that this edge was postponed
175 * by has_bounded_distances or any_no_merge. The original weight can
176 * be retrieved by adding 1 + graph->max_weight, with "graph"
177 * the graph containing this edge.
179 struct isl_sched_edge
{
181 isl_union_map
*tagged_condition
;
182 isl_union_map
*tagged_validity
;
184 struct isl_sched_node
*src
;
185 struct isl_sched_node
*dst
;
196 /* Is "edge" marked as being of type "type"?
198 static int is_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
200 return ISL_FL_ISSET(edge
->types
, 1 << type
);
203 /* Mark "edge" as being of type "type".
205 static void set_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
207 ISL_FL_SET(edge
->types
, 1 << type
);
210 /* No longer mark "edge" as being of type "type"?
212 static void clear_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
214 ISL_FL_CLR(edge
->types
, 1 << type
);
217 /* Is "edge" marked as a validity edge?
219 static int is_validity(struct isl_sched_edge
*edge
)
221 return is_type(edge
, isl_edge_validity
);
224 /* Mark "edge" as a validity edge.
226 static void set_validity(struct isl_sched_edge
*edge
)
228 set_type(edge
, isl_edge_validity
);
231 /* Is "edge" marked as a proximity edge?
233 static int is_proximity(struct isl_sched_edge
*edge
)
235 return is_type(edge
, isl_edge_proximity
);
238 /* Is "edge" marked as a local edge?
240 static int is_local(struct isl_sched_edge
*edge
)
242 return is_type(edge
, isl_edge_local
);
245 /* Mark "edge" as a local edge.
247 static void set_local(struct isl_sched_edge
*edge
)
249 set_type(edge
, isl_edge_local
);
252 /* No longer mark "edge" as a local edge.
254 static void clear_local(struct isl_sched_edge
*edge
)
256 clear_type(edge
, isl_edge_local
);
259 /* Is "edge" marked as a coincidence edge?
261 static int is_coincidence(struct isl_sched_edge
*edge
)
263 return is_type(edge
, isl_edge_coincidence
);
266 /* Is "edge" marked as a condition edge?
268 static int is_condition(struct isl_sched_edge
*edge
)
270 return is_type(edge
, isl_edge_condition
);
273 /* Is "edge" marked as a conditional validity edge?
275 static int is_conditional_validity(struct isl_sched_edge
*edge
)
277 return is_type(edge
, isl_edge_conditional_validity
);
280 /* Internal information about the dependence graph used during
281 * the construction of the schedule.
283 * intra_hmap is a cache, mapping dependence relations to their dual,
284 * for dependences from a node to itself
285 * inter_hmap is a cache, mapping dependence relations to their dual,
286 * for dependences between distinct nodes
287 * if compression is involved then the key for these maps
288 * is the original, uncompressed dependence relation, while
289 * the value is the dual of the compressed dependence relation.
291 * n is the number of nodes
292 * node is the list of nodes
293 * maxvar is the maximal number of variables over all nodes
294 * max_row is the allocated number of rows in the schedule
295 * n_row is the current (maximal) number of linearly independent
296 * rows in the node schedules
297 * n_total_row is the current number of rows in the node schedules
298 * band_start is the starting row in the node schedules of the current band
299 * root is set if this graph is the original dependence graph,
300 * without any splitting
302 * sorted contains a list of node indices sorted according to the
303 * SCC to which a node belongs
305 * n_edge is the number of edges
306 * edge is the list of edges
307 * max_edge contains the maximal number of edges of each type;
308 * in particular, it contains the number of edges in the inital graph.
309 * edge_table contains pointers into the edge array, hashed on the source
310 * and sink spaces; there is one such table for each type;
311 * a given edge may be referenced from more than one table
312 * if the corresponding relation appears in more than one of the
313 * sets of dependences; however, for each type there is only
314 * a single edge between a given pair of source and sink space
315 * in the entire graph
317 * node_table contains pointers into the node array, hashed on the space
319 * region contains a list of variable sequences that should be non-trivial
321 * lp contains the (I)LP problem used to obtain new schedule rows
323 * src_scc and dst_scc are the source and sink SCCs of an edge with
324 * conflicting constraints
326 * scc represents the number of components
327 * weak is set if the components are weakly connected
329 * max_weight is used during clustering and represents the maximal
330 * weight of the relevant proximity edges.
332 struct isl_sched_graph
{
333 isl_map_to_basic_set
*intra_hmap
;
334 isl_map_to_basic_set
*inter_hmap
;
336 struct isl_sched_node
*node
;
349 struct isl_sched_edge
*edge
;
351 int max_edge
[isl_edge_last
+ 1];
352 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
354 struct isl_hash_table
*node_table
;
355 struct isl_region
*region
;
368 /* Initialize node_table based on the list of nodes.
370 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
374 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
375 if (!graph
->node_table
)
378 for (i
= 0; i
< graph
->n
; ++i
) {
379 struct isl_hash_table_entry
*entry
;
382 hash
= isl_space_get_hash(graph
->node
[i
].space
);
383 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
385 graph
->node
[i
].space
, 1);
388 entry
->data
= &graph
->node
[i
];
394 /* Return a pointer to the node that lives within the given space,
395 * or NULL if there is no such node.
397 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
398 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
400 struct isl_hash_table_entry
*entry
;
403 hash
= isl_space_get_hash(dim
);
404 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
405 &node_has_space
, dim
, 0);
407 return entry
? entry
->data
: NULL
;
410 static int edge_has_src_and_dst(const void *entry
, const void *val
)
412 const struct isl_sched_edge
*edge
= entry
;
413 const struct isl_sched_edge
*temp
= val
;
415 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
418 /* Add the given edge to graph->edge_table[type].
420 static isl_stat
graph_edge_table_add(isl_ctx
*ctx
,
421 struct isl_sched_graph
*graph
, enum isl_edge_type type
,
422 struct isl_sched_edge
*edge
)
424 struct isl_hash_table_entry
*entry
;
427 hash
= isl_hash_init();
428 hash
= isl_hash_builtin(hash
, edge
->src
);
429 hash
= isl_hash_builtin(hash
, edge
->dst
);
430 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
431 &edge_has_src_and_dst
, edge
, 1);
433 return isl_stat_error
;
439 /* Allocate the edge_tables based on the maximal number of edges of
442 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
446 for (i
= 0; i
<= isl_edge_last
; ++i
) {
447 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
449 if (!graph
->edge_table
[i
])
456 /* If graph->edge_table[type] contains an edge from the given source
457 * to the given destination, then return the hash table entry of this edge.
458 * Otherwise, return NULL.
460 static struct isl_hash_table_entry
*graph_find_edge_entry(
461 struct isl_sched_graph
*graph
,
462 enum isl_edge_type type
,
463 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
465 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
467 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
469 hash
= isl_hash_init();
470 hash
= isl_hash_builtin(hash
, temp
.src
);
471 hash
= isl_hash_builtin(hash
, temp
.dst
);
472 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
473 &edge_has_src_and_dst
, &temp
, 0);
477 /* If graph->edge_table[type] contains an edge from the given source
478 * to the given destination, then return this edge.
479 * Otherwise, return NULL.
481 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
482 enum isl_edge_type type
,
483 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
485 struct isl_hash_table_entry
*entry
;
487 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
494 /* Check whether the dependence graph has an edge of the given type
495 * between the given two nodes.
497 static isl_bool
graph_has_edge(struct isl_sched_graph
*graph
,
498 enum isl_edge_type type
,
499 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
501 struct isl_sched_edge
*edge
;
504 edge
= graph_find_edge(graph
, type
, src
, dst
);
508 empty
= isl_map_plain_is_empty(edge
->map
);
510 return isl_bool_error
;
515 /* Look for any edge with the same src, dst and map fields as "model".
517 * Return the matching edge if one can be found.
518 * Return "model" if no matching edge is found.
519 * Return NULL on error.
521 static struct isl_sched_edge
*graph_find_matching_edge(
522 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
524 enum isl_edge_type i
;
525 struct isl_sched_edge
*edge
;
527 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
530 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
533 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
543 /* Remove the given edge from all the edge_tables that refer to it.
545 static void graph_remove_edge(struct isl_sched_graph
*graph
,
546 struct isl_sched_edge
*edge
)
548 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
549 enum isl_edge_type i
;
551 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
552 struct isl_hash_table_entry
*entry
;
554 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
557 if (entry
->data
!= edge
)
559 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
563 /* Check whether the dependence graph has any edge
564 * between the given two nodes.
566 static isl_bool
graph_has_any_edge(struct isl_sched_graph
*graph
,
567 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
569 enum isl_edge_type i
;
572 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
573 r
= graph_has_edge(graph
, i
, src
, dst
);
581 /* Check whether the dependence graph has a validity edge
582 * between the given two nodes.
584 * Conditional validity edges are essentially validity edges that
585 * can be ignored if the corresponding condition edges are iteration private.
586 * Here, we are only checking for the presence of validity
587 * edges, so we need to consider the conditional validity edges too.
588 * In particular, this function is used during the detection
589 * of strongly connected components and we cannot ignore
590 * conditional validity edges during this detection.
592 static isl_bool
graph_has_validity_edge(struct isl_sched_graph
*graph
,
593 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
597 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
601 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
604 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
605 int n_node
, int n_edge
)
610 graph
->n_edge
= n_edge
;
611 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
612 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
613 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
614 graph
->edge
= isl_calloc_array(ctx
,
615 struct isl_sched_edge
, graph
->n_edge
);
617 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
618 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
620 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
624 for(i
= 0; i
< graph
->n
; ++i
)
625 graph
->sorted
[i
] = i
;
630 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
634 isl_map_to_basic_set_free(graph
->intra_hmap
);
635 isl_map_to_basic_set_free(graph
->inter_hmap
);
638 for (i
= 0; i
< graph
->n
; ++i
) {
639 isl_space_free(graph
->node
[i
].space
);
640 isl_set_free(graph
->node
[i
].hull
);
641 isl_multi_aff_free(graph
->node
[i
].compress
);
642 isl_multi_aff_free(graph
->node
[i
].decompress
);
643 isl_mat_free(graph
->node
[i
].sched
);
644 isl_map_free(graph
->node
[i
].sched_map
);
645 isl_mat_free(graph
->node
[i
].cmap
);
646 isl_mat_free(graph
->node
[i
].cinv
);
647 isl_mat_free(graph
->node
[i
].ctrans
);
649 free(graph
->node
[i
].coincident
);
650 isl_multi_val_free(graph
->node
[i
].sizes
);
651 isl_vec_free(graph
->node
[i
].max
);
656 for (i
= 0; i
< graph
->n_edge
; ++i
) {
657 isl_map_free(graph
->edge
[i
].map
);
658 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
659 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
663 for (i
= 0; i
<= isl_edge_last
; ++i
)
664 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
665 isl_hash_table_free(ctx
, graph
->node_table
);
666 isl_basic_set_free(graph
->lp
);
669 /* For each "set" on which this function is called, increment
670 * graph->n by one and update graph->maxvar.
672 static isl_stat
init_n_maxvar(__isl_take isl_set
*set
, void *user
)
674 struct isl_sched_graph
*graph
= user
;
675 int nvar
= isl_set_dim(set
, isl_dim_set
);
678 if (nvar
> graph
->maxvar
)
679 graph
->maxvar
= nvar
;
686 /* Compute the number of rows that should be allocated for the schedule.
687 * In particular, we need one row for each variable or one row
688 * for each basic map in the dependences.
689 * Note that it is practically impossible to exhaust both
690 * the number of dependences and the number of variables.
692 static isl_stat
compute_max_row(struct isl_sched_graph
*graph
,
693 __isl_keep isl_schedule_constraints
*sc
)
697 isl_union_set
*domain
;
701 domain
= isl_schedule_constraints_get_domain(sc
);
702 r
= isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
);
703 isl_union_set_free(domain
);
705 return isl_stat_error
;
706 n_edge
= isl_schedule_constraints_n_basic_map(sc
);
708 return isl_stat_error
;
709 graph
->max_row
= n_edge
+ graph
->maxvar
;
714 /* Does "bset" have any defining equalities for its set variables?
716 static int has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
723 n
= isl_basic_set_dim(bset
, isl_dim_set
);
724 for (i
= 0; i
< n
; ++i
) {
727 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
736 /* Set the entries of node->max to the value of the schedule_max_coefficient
739 static isl_stat
set_max_coefficient(isl_ctx
*ctx
, struct isl_sched_node
*node
)
743 max
= isl_options_get_schedule_max_coefficient(ctx
);
747 node
->max
= isl_vec_alloc(ctx
, node
->nvar
);
748 node
->max
= isl_vec_set_si(node
->max
, max
);
750 return isl_stat_error
;
755 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
756 * option (if set) and half of the minimum of the sizes in the other
757 * dimensions. If the minimum of the sizes is one, half of the size
758 * is zero and this value is reset to one.
759 * If the global minimum is unbounded (i.e., if both
760 * the schedule_max_coefficient is not set and the sizes in the other
761 * dimensions are unbounded), then store a negative value.
762 * If the schedule coefficient is close to the size of the instance set
763 * in another dimension, then the schedule may represent a loop
764 * coalescing transformation (especially if the coefficient
765 * in that other dimension is one). Forcing the coefficient to be
766 * smaller than or equal to half the minimal size should avoid this
769 static isl_stat
compute_max_coefficient(isl_ctx
*ctx
,
770 struct isl_sched_node
*node
)
776 max
= isl_options_get_schedule_max_coefficient(ctx
);
777 v
= isl_vec_alloc(ctx
, node
->nvar
);
779 return isl_stat_error
;
781 for (i
= 0; i
< node
->nvar
; ++i
) {
782 isl_int_set_si(v
->el
[i
], max
);
783 isl_int_mul_si(v
->el
[i
], v
->el
[i
], 2);
786 for (i
= 0; i
< node
->nvar
; ++i
) {
789 size
= isl_multi_val_get_val(node
->sizes
, i
);
792 if (!isl_val_is_int(size
)) {
796 for (j
= 0; j
< node
->nvar
; ++j
) {
799 if (isl_int_is_neg(v
->el
[j
]) ||
800 isl_int_gt(v
->el
[j
], size
->n
))
801 isl_int_set(v
->el
[j
], size
->n
);
806 for (i
= 0; i
< node
->nvar
; ++i
) {
807 isl_int_fdiv_q_ui(v
->el
[i
], v
->el
[i
], 2);
808 if (isl_int_is_zero(v
->el
[i
]))
809 isl_int_set_si(v
->el
[i
], 1);
816 return isl_stat_error
;
819 /* Compute and return the size of "set" in dimension "dim".
820 * The size is taken to be the difference in values for that variable
821 * for fixed values of the other variables.
822 * In particular, the variable is first isolated from the other variables
823 * in the range of a map
825 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
827 * and then duplicated
829 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
831 * The shared variables are then projected out and the maximal value
832 * of i_dim' - i_dim is computed.
834 static __isl_give isl_val
*compute_size(__isl_take isl_set
*set
, int dim
)
841 map
= isl_set_project_onto_map(set
, isl_dim_set
, dim
, 1);
842 map
= isl_map_project_out(map
, isl_dim_in
, dim
, 1);
843 map
= isl_map_range_product(map
, isl_map_copy(map
));
844 map
= isl_set_unwrap(isl_map_range(map
));
845 set
= isl_map_deltas(map
);
846 ls
= isl_local_space_from_space(isl_set_get_space(set
));
847 obj
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
848 v
= isl_set_max_val(set
, obj
);
855 /* Compute the size of the instance set "set" of "node", after compression,
856 * as well as bounds on the corresponding coefficients, if needed.
858 * The sizes are needed when the schedule_treat_coalescing option is set.
859 * The bounds are needed when the schedule_treat_coalescing option or
860 * the schedule_max_coefficient option is set.
862 * If the schedule_treat_coalescing option is not set, then at most
863 * the bounds need to be set and this is done in set_max_coefficient.
864 * Otherwise, compress the domain if needed, compute the size
865 * in each direction and store the results in node->size.
866 * Finally, set the bounds on the coefficients based on the sizes
867 * and the schedule_max_coefficient option in compute_max_coefficient.
869 static isl_stat
compute_sizes_and_max(isl_ctx
*ctx
, struct isl_sched_node
*node
,
870 __isl_take isl_set
*set
)
875 if (!isl_options_get_schedule_treat_coalescing(ctx
)) {
877 return set_max_coefficient(ctx
, node
);
880 if (node
->compressed
)
881 set
= isl_set_preimage_multi_aff(set
,
882 isl_multi_aff_copy(node
->decompress
));
883 mv
= isl_multi_val_zero(isl_set_get_space(set
));
884 n
= isl_set_dim(set
, isl_dim_set
);
885 for (j
= 0; j
< n
; ++j
) {
888 v
= compute_size(isl_set_copy(set
), j
);
889 mv
= isl_multi_val_set_val(mv
, j
, v
);
894 return isl_stat_error
;
895 return compute_max_coefficient(ctx
, node
);
898 /* Add a new node to the graph representing the given instance set.
899 * "nvar" is the (possibly compressed) number of variables and
900 * may be smaller than then number of set variables in "set"
901 * if "compressed" is set.
902 * If "compressed" is set, then "hull" represents the constraints
903 * that were used to derive the compression, while "compress" and
904 * "decompress" map the original space to the compressed space and
906 * If "compressed" is not set, then "hull", "compress" and "decompress"
909 * Compute the size of the instance set and bounds on the coefficients,
912 static isl_stat
add_node(struct isl_sched_graph
*graph
,
913 __isl_take isl_set
*set
, int nvar
, int compressed
,
914 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
915 __isl_take isl_multi_aff
*decompress
)
922 struct isl_sched_node
*node
;
925 return isl_stat_error
;
927 ctx
= isl_set_get_ctx(set
);
928 nparam
= isl_set_dim(set
, isl_dim_param
);
929 if (!ctx
->opt
->schedule_parametric
)
931 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
932 node
= &graph
->node
[graph
->n
];
934 space
= isl_set_get_space(set
);
937 node
->nparam
= nparam
;
939 node
->sched_map
= NULL
;
940 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
941 node
->coincident
= coincident
;
942 node
->compressed
= compressed
;
944 node
->compress
= compress
;
945 node
->decompress
= decompress
;
946 if (compute_sizes_and_max(ctx
, node
, set
) < 0)
947 return isl_stat_error
;
949 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
950 return isl_stat_error
;
951 if (compressed
&& (!hull
|| !compress
|| !decompress
))
952 return isl_stat_error
;
957 /* Add a new node to the graph representing the given set.
959 * If any of the set variables is defined by an equality, then
960 * we perform variable compression such that we can perform
961 * the scheduling on the compressed domain.
963 static isl_stat
extract_node(__isl_take isl_set
*set
, void *user
)
970 isl_multi_aff
*compress
, *decompress
;
971 struct isl_sched_graph
*graph
= user
;
973 hull
= isl_set_affine_hull(isl_set_copy(set
));
974 hull
= isl_basic_set_remove_divs(hull
);
975 nvar
= isl_set_dim(set
, isl_dim_set
);
976 has_equality
= has_any_defining_equality(hull
);
978 if (has_equality
< 0)
981 isl_basic_set_free(hull
);
982 return add_node(graph
, set
, nvar
, 0, NULL
, NULL
, NULL
);
985 morph
= isl_basic_set_variable_compression(hull
, isl_dim_set
);
986 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
987 compress
= isl_morph_get_var_multi_aff(morph
);
988 morph
= isl_morph_inverse(morph
);
989 decompress
= isl_morph_get_var_multi_aff(morph
);
990 isl_morph_free(morph
);
992 hull_set
= isl_set_from_basic_set(hull
);
993 return add_node(graph
, set
, nvar
, 1, hull_set
, compress
, decompress
);
995 isl_basic_set_free(hull
);
997 return isl_stat_error
;
1000 struct isl_extract_edge_data
{
1001 enum isl_edge_type type
;
1002 struct isl_sched_graph
*graph
;
1005 /* Merge edge2 into edge1, freeing the contents of edge2.
1006 * Return 0 on success and -1 on failure.
1008 * edge1 and edge2 are assumed to have the same value for the map field.
1010 static int merge_edge(struct isl_sched_edge
*edge1
,
1011 struct isl_sched_edge
*edge2
)
1013 edge1
->types
|= edge2
->types
;
1014 isl_map_free(edge2
->map
);
1016 if (is_condition(edge2
)) {
1017 if (!edge1
->tagged_condition
)
1018 edge1
->tagged_condition
= edge2
->tagged_condition
;
1020 edge1
->tagged_condition
=
1021 isl_union_map_union(edge1
->tagged_condition
,
1022 edge2
->tagged_condition
);
1025 if (is_conditional_validity(edge2
)) {
1026 if (!edge1
->tagged_validity
)
1027 edge1
->tagged_validity
= edge2
->tagged_validity
;
1029 edge1
->tagged_validity
=
1030 isl_union_map_union(edge1
->tagged_validity
,
1031 edge2
->tagged_validity
);
1034 if (is_condition(edge2
) && !edge1
->tagged_condition
)
1036 if (is_conditional_validity(edge2
) && !edge1
->tagged_validity
)
1042 /* Insert dummy tags in domain and range of "map".
1044 * In particular, if "map" is of the form
1050 * [A -> dummy_tag] -> [B -> dummy_tag]
1052 * where the dummy_tags are identical and equal to any dummy tags
1053 * introduced by any other call to this function.
1055 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1061 isl_set
*domain
, *range
;
1063 ctx
= isl_map_get_ctx(map
);
1065 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1066 space
= isl_space_params(isl_map_get_space(map
));
1067 space
= isl_space_set_from_params(space
);
1068 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1069 space
= isl_space_map_from_set(space
);
1071 domain
= isl_map_wrap(map
);
1072 range
= isl_map_wrap(isl_map_universe(space
));
1073 map
= isl_map_from_domain_and_range(domain
, range
);
1074 map
= isl_map_zip(map
);
1079 /* Given that at least one of "src" or "dst" is compressed, return
1080 * a map between the spaces of these nodes restricted to the affine
1081 * hull that was used in the compression.
1083 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1084 struct isl_sched_node
*dst
)
1088 if (src
->compressed
)
1089 dom
= isl_set_copy(src
->hull
);
1091 dom
= isl_set_universe(isl_space_copy(src
->space
));
1092 if (dst
->compressed
)
1093 ran
= isl_set_copy(dst
->hull
);
1095 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1097 return isl_map_from_domain_and_range(dom
, ran
);
1100 /* Intersect the domains of the nested relations in domain and range
1101 * of "tagged" with "map".
1103 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1104 __isl_keep isl_map
*map
)
1108 tagged
= isl_map_zip(tagged
);
1109 set
= isl_map_wrap(isl_map_copy(map
));
1110 tagged
= isl_map_intersect_domain(tagged
, set
);
1111 tagged
= isl_map_zip(tagged
);
1115 /* Return a pointer to the node that lives in the domain space of "map"
1116 * or NULL if there is no such node.
1118 static struct isl_sched_node
*find_domain_node(isl_ctx
*ctx
,
1119 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1121 struct isl_sched_node
*node
;
1124 space
= isl_space_domain(isl_map_get_space(map
));
1125 node
= graph_find_node(ctx
, graph
, space
);
1126 isl_space_free(space
);
1131 /* Return a pointer to the node that lives in the range space of "map"
1132 * or NULL if there is no such node.
1134 static struct isl_sched_node
*find_range_node(isl_ctx
*ctx
,
1135 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1137 struct isl_sched_node
*node
;
1140 space
= isl_space_range(isl_map_get_space(map
));
1141 node
= graph_find_node(ctx
, graph
, space
);
1142 isl_space_free(space
);
1147 /* Add a new edge to the graph based on the given map
1148 * and add it to data->graph->edge_table[data->type].
1149 * If a dependence relation of a given type happens to be identical
1150 * to one of the dependence relations of a type that was added before,
1151 * then we don't create a new edge, but instead mark the original edge
1152 * as also representing a dependence of the current type.
1154 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1155 * may be specified as "tagged" dependence relations. That is, "map"
1156 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1157 * the dependence on iterations and a and b are tags.
1158 * edge->map is set to the relation containing the elements i -> j,
1159 * while edge->tagged_condition and edge->tagged_validity contain
1160 * the union of all the "map" relations
1161 * for which extract_edge is called that result in the same edge->map.
1163 * If the source or the destination node is compressed, then
1164 * intersect both "map" and "tagged" with the constraints that
1165 * were used to construct the compression.
1166 * This ensures that there are no schedule constraints defined
1167 * outside of these domains, while the scheduler no longer has
1168 * any control over those outside parts.
1170 static isl_stat
extract_edge(__isl_take isl_map
*map
, void *user
)
1172 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1173 struct isl_extract_edge_data
*data
= user
;
1174 struct isl_sched_graph
*graph
= data
->graph
;
1175 struct isl_sched_node
*src
, *dst
;
1176 struct isl_sched_edge
*edge
;
1177 isl_map
*tagged
= NULL
;
1179 if (data
->type
== isl_edge_condition
||
1180 data
->type
== isl_edge_conditional_validity
) {
1181 if (isl_map_can_zip(map
)) {
1182 tagged
= isl_map_copy(map
);
1183 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1185 tagged
= insert_dummy_tags(isl_map_copy(map
));
1189 src
= find_domain_node(ctx
, graph
, map
);
1190 dst
= find_range_node(ctx
, graph
, map
);
1194 isl_map_free(tagged
);
1198 if (src
->compressed
|| dst
->compressed
) {
1200 hull
= extract_hull(src
, dst
);
1202 tagged
= map_intersect_domains(tagged
, hull
);
1203 map
= isl_map_intersect(map
, hull
);
1206 graph
->edge
[graph
->n_edge
].src
= src
;
1207 graph
->edge
[graph
->n_edge
].dst
= dst
;
1208 graph
->edge
[graph
->n_edge
].map
= map
;
1209 graph
->edge
[graph
->n_edge
].types
= 0;
1210 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1211 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1212 set_type(&graph
->edge
[graph
->n_edge
], data
->type
);
1213 if (data
->type
== isl_edge_condition
)
1214 graph
->edge
[graph
->n_edge
].tagged_condition
=
1215 isl_union_map_from_map(tagged
);
1216 if (data
->type
== isl_edge_conditional_validity
)
1217 graph
->edge
[graph
->n_edge
].tagged_validity
=
1218 isl_union_map_from_map(tagged
);
1220 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1223 return isl_stat_error
;
1225 if (edge
== &graph
->edge
[graph
->n_edge
])
1226 return graph_edge_table_add(ctx
, graph
, data
->type
,
1227 &graph
->edge
[graph
->n_edge
++]);
1229 if (merge_edge(edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1232 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1235 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1237 * The context is included in the domain before the nodes of
1238 * the graphs are extracted in order to be able to exploit
1239 * any possible additional equalities.
1240 * Note that this intersection is only performed locally here.
1242 static isl_stat
graph_init(struct isl_sched_graph
*graph
,
1243 __isl_keep isl_schedule_constraints
*sc
)
1246 isl_union_set
*domain
;
1248 struct isl_extract_edge_data data
;
1249 enum isl_edge_type i
;
1253 return isl_stat_error
;
1255 ctx
= isl_schedule_constraints_get_ctx(sc
);
1257 domain
= isl_schedule_constraints_get_domain(sc
);
1258 graph
->n
= isl_union_set_n_set(domain
);
1259 isl_union_set_free(domain
);
1261 if (graph_alloc(ctx
, graph
, graph
->n
,
1262 isl_schedule_constraints_n_map(sc
)) < 0)
1263 return isl_stat_error
;
1265 if (compute_max_row(graph
, sc
) < 0)
1266 return isl_stat_error
;
1269 domain
= isl_schedule_constraints_get_domain(sc
);
1270 domain
= isl_union_set_intersect_params(domain
,
1271 isl_schedule_constraints_get_context(sc
));
1272 r
= isl_union_set_foreach_set(domain
, &extract_node
, graph
);
1273 isl_union_set_free(domain
);
1275 return isl_stat_error
;
1276 if (graph_init_table(ctx
, graph
) < 0)
1277 return isl_stat_error
;
1278 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1279 c
= isl_schedule_constraints_get(sc
, i
);
1280 graph
->max_edge
[i
] = isl_union_map_n_map(c
);
1281 isl_union_map_free(c
);
1283 return isl_stat_error
;
1285 if (graph_init_edge_tables(ctx
, graph
) < 0)
1286 return isl_stat_error
;
1289 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1293 c
= isl_schedule_constraints_get(sc
, i
);
1294 r
= isl_union_map_foreach_map(c
, &extract_edge
, &data
);
1295 isl_union_map_free(c
);
1297 return isl_stat_error
;
1303 /* Check whether there is any dependence from node[j] to node[i]
1304 * or from node[i] to node[j].
1306 static isl_bool
node_follows_weak(int i
, int j
, void *user
)
1309 struct isl_sched_graph
*graph
= user
;
1311 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1314 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1317 /* Check whether there is a (conditional) validity dependence from node[j]
1318 * to node[i], forcing node[i] to follow node[j].
1320 static isl_bool
node_follows_strong(int i
, int j
, void *user
)
1322 struct isl_sched_graph
*graph
= user
;
1324 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1327 /* Use Tarjan's algorithm for computing the strongly connected components
1328 * in the dependence graph only considering those edges defined by "follows".
1330 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1331 isl_bool (*follows
)(int i
, int j
, void *user
))
1334 struct isl_tarjan_graph
*g
= NULL
;
1336 g
= isl_tarjan_graph_init(ctx
, graph
->n
, follows
, graph
);
1344 while (g
->order
[i
] != -1) {
1345 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1353 isl_tarjan_graph_free(g
);
1358 /* Apply Tarjan's algorithm to detect the strongly connected components
1359 * in the dependence graph.
1360 * Only consider the (conditional) validity dependences and clear "weak".
1362 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1365 return detect_ccs(ctx
, graph
, &node_follows_strong
);
1368 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1369 * in the dependence graph.
1370 * Consider all dependences and set "weak".
1372 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1375 return detect_ccs(ctx
, graph
, &node_follows_weak
);
1378 static int cmp_scc(const void *a
, const void *b
, void *data
)
1380 struct isl_sched_graph
*graph
= data
;
1384 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1387 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1389 static int sort_sccs(struct isl_sched_graph
*graph
)
1391 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1394 /* Given a dependence relation R from "node" to itself,
1395 * construct the set of coefficients of valid constraints for elements
1396 * in that dependence relation.
1397 * In particular, the result contains tuples of coefficients
1398 * c_0, c_n, c_x such that
1400 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1404 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1406 * We choose here to compute the dual of delta R.
1407 * Alternatively, we could have computed the dual of R, resulting
1408 * in a set of tuples c_0, c_n, c_x, c_y, and then
1409 * plugged in (c_0, c_n, c_x, -c_x).
1411 * If "node" has been compressed, then the dependence relation
1412 * is also compressed before the set of coefficients is computed.
1414 static __isl_give isl_basic_set
*intra_coefficients(
1415 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1416 __isl_take isl_map
*map
)
1420 isl_basic_set
*coef
;
1421 isl_maybe_isl_basic_set m
;
1423 m
= isl_map_to_basic_set_try_get(graph
->intra_hmap
, map
);
1424 if (m
.valid
< 0 || m
.valid
) {
1429 key
= isl_map_copy(map
);
1430 if (node
->compressed
) {
1431 map
= isl_map_preimage_domain_multi_aff(map
,
1432 isl_multi_aff_copy(node
->decompress
));
1433 map
= isl_map_preimage_range_multi_aff(map
,
1434 isl_multi_aff_copy(node
->decompress
));
1436 delta
= isl_set_remove_divs(isl_map_deltas(map
));
1437 coef
= isl_set_coefficients(delta
);
1438 graph
->intra_hmap
= isl_map_to_basic_set_set(graph
->intra_hmap
, key
,
1439 isl_basic_set_copy(coef
));
1444 /* Given a dependence relation R, construct the set of coefficients
1445 * of valid constraints for elements in that dependence relation.
1446 * In particular, the result contains tuples of coefficients
1447 * c_0, c_n, c_x, c_y such that
1449 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1451 * If the source or destination nodes of "edge" have been compressed,
1452 * then the dependence relation is also compressed before
1453 * the set of coefficients is computed.
1455 static __isl_give isl_basic_set
*inter_coefficients(
1456 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1457 __isl_take isl_map
*map
)
1461 isl_basic_set
*coef
;
1462 isl_maybe_isl_basic_set m
;
1464 m
= isl_map_to_basic_set_try_get(graph
->inter_hmap
, map
);
1465 if (m
.valid
< 0 || m
.valid
) {
1470 key
= isl_map_copy(map
);
1471 if (edge
->src
->compressed
)
1472 map
= isl_map_preimage_domain_multi_aff(map
,
1473 isl_multi_aff_copy(edge
->src
->decompress
));
1474 if (edge
->dst
->compressed
)
1475 map
= isl_map_preimage_range_multi_aff(map
,
1476 isl_multi_aff_copy(edge
->dst
->decompress
));
1477 set
= isl_map_wrap(isl_map_remove_divs(map
));
1478 coef
= isl_set_coefficients(set
);
1479 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1480 isl_basic_set_copy(coef
));
1485 /* Return the position of the coefficients of the variables in
1486 * the coefficients constraints "coef".
1488 * The space of "coef" is of the form
1490 * { coefficients[[cst, params] -> S] }
1492 * Return the position of S.
1494 static int coef_var_offset(__isl_keep isl_basic_set
*coef
)
1499 space
= isl_space_unwrap(isl_basic_set_get_space(coef
));
1500 offset
= isl_space_dim(space
, isl_dim_in
);
1501 isl_space_free(space
);
1506 /* Return the offset of the coefficients of the variables of "node"
1509 * Within each node, the coefficients have the following order:
1511 * - c_i_n (if parametric)
1512 * - positive and negative parts of c_i_x
1514 static int node_var_coef_offset(struct isl_sched_node
*node
)
1516 return node
->start
+ 1 + node
->nparam
;
1519 /* Construct an isl_dim_map for mapping constraints on coefficients
1520 * for "node" to the corresponding positions in graph->lp.
1521 * "offset" is the offset of the coefficients for the variables
1522 * in the input constraints.
1523 * "s" is the sign of the mapping.
1525 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1526 * The mapping produced by this function essentially plugs in
1527 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1528 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1529 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1531 * The caller can extend the mapping to also map the other coefficients
1532 * (and therefore not plug in 0).
1534 static __isl_give isl_dim_map
*intra_dim_map(isl_ctx
*ctx
,
1535 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1540 isl_dim_map
*dim_map
;
1542 total
= isl_basic_set_total_dim(graph
->lp
);
1543 pos
= node_var_coef_offset(node
);
1544 dim_map
= isl_dim_map_alloc(ctx
, total
);
1545 isl_dim_map_range(dim_map
, pos
, 2, offset
, 1, node
->nvar
, -s
);
1546 isl_dim_map_range(dim_map
, pos
+ 1, 2, offset
, 1, node
->nvar
, s
);
1551 /* Construct an isl_dim_map for mapping constraints on coefficients
1552 * for "src" (node i) and "dst" (node j) to the corresponding positions
1554 * "offset" is the offset of the coefficients for the variables of "src"
1555 * in the input constraints.
1556 * "s" is the sign of the mapping.
1558 * The input constraints are given in terms of the coefficients
1559 * (c_0, c_n, c_x, c_y).
1560 * The mapping produced by this function essentially plugs in
1561 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1562 * c_j_x^+ - c_j_x^-, -(c_i_x^+ - c_i_x^-)) if s = 1 and
1563 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1564 * - (c_j_x^+ - c_j_x^-), c_i_x^+ - c_i_x^-) if s = -1.
1565 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1567 * The caller can further extend the mapping.
1569 static __isl_give isl_dim_map
*inter_dim_map(isl_ctx
*ctx
,
1570 struct isl_sched_graph
*graph
, struct isl_sched_node
*src
,
1571 struct isl_sched_node
*dst
, int offset
, int s
)
1575 isl_dim_map
*dim_map
;
1577 total
= isl_basic_set_total_dim(graph
->lp
);
1578 dim_map
= isl_dim_map_alloc(ctx
, total
);
1580 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, s
);
1581 isl_dim_map_range(dim_map
, dst
->start
+ 1, 1, 1, 1, dst
->nparam
, s
);
1582 pos
= node_var_coef_offset(dst
);
1583 isl_dim_map_range(dim_map
, pos
, 2, offset
+ src
->nvar
, 1,
1585 isl_dim_map_range(dim_map
, pos
+ 1, 2, offset
+ src
->nvar
, 1,
1588 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -s
);
1589 isl_dim_map_range(dim_map
, src
->start
+ 1, 1, 1, 1, src
->nparam
, -s
);
1590 pos
= node_var_coef_offset(src
);
1591 isl_dim_map_range(dim_map
, pos
, 2, offset
, 1, src
->nvar
, s
);
1592 isl_dim_map_range(dim_map
, pos
+ 1, 2, offset
, 1, src
->nvar
, -s
);
1597 /* Add constraints to graph->lp that force validity for the given
1598 * dependence from a node i to itself.
1599 * That is, add constraints that enforce
1601 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1602 * = c_i_x (y - x) >= 0
1604 * for each (x,y) in R.
1605 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1606 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1607 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1608 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1610 * Actually, we do not construct constraints for the c_i_x themselves,
1611 * but for the coefficients of c_i_x written as a linear combination
1612 * of the columns in node->cmap.
1614 static isl_stat
add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1615 struct isl_sched_edge
*edge
)
1618 isl_map
*map
= isl_map_copy(edge
->map
);
1619 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1620 isl_dim_map
*dim_map
;
1621 isl_basic_set
*coef
;
1622 struct isl_sched_node
*node
= edge
->src
;
1624 coef
= intra_coefficients(graph
, node
, map
);
1626 offset
= coef_var_offset(coef
);
1628 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1629 offset
, isl_mat_copy(node
->cmap
));
1631 return isl_stat_error
;
1633 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
1634 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1635 coef
->n_eq
, coef
->n_ineq
);
1636 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1642 /* Add constraints to graph->lp that force validity for the given
1643 * dependence from node i to node j.
1644 * That is, add constraints that enforce
1646 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1648 * for each (x,y) in R.
1649 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1650 * of valid constraints for R and then plug in
1651 * (c_j_0 - c_i_0, c_j_n - c_i_n, c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1652 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1653 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1655 * Actually, we do not construct constraints for the c_*_x themselves,
1656 * but for the coefficients of c_*_x written as a linear combination
1657 * of the columns in node->cmap.
1659 static isl_stat
add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1660 struct isl_sched_edge
*edge
)
1663 isl_map
*map
= isl_map_copy(edge
->map
);
1664 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1665 isl_dim_map
*dim_map
;
1666 isl_basic_set
*coef
;
1667 struct isl_sched_node
*src
= edge
->src
;
1668 struct isl_sched_node
*dst
= edge
->dst
;
1670 coef
= inter_coefficients(graph
, edge
, map
);
1672 offset
= coef_var_offset(coef
);
1674 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1675 offset
, isl_mat_copy(src
->cmap
));
1676 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1677 offset
+ src
->nvar
, isl_mat_copy(dst
->cmap
));
1679 return isl_stat_error
;
1681 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
1683 edge
->start
= graph
->lp
->n_ineq
;
1684 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1685 coef
->n_eq
, coef
->n_ineq
);
1686 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1689 return isl_stat_error
;
1690 edge
->end
= graph
->lp
->n_ineq
;
1695 /* Add constraints to graph->lp that bound the dependence distance for the given
1696 * dependence from a node i to itself.
1697 * If s = 1, we add the constraint
1699 * c_i_x (y - x) <= m_0 + m_n n
1703 * -c_i_x (y - x) + m_0 + m_n n >= 0
1705 * for each (x,y) in R.
1706 * If s = -1, we add the constraint
1708 * -c_i_x (y - x) <= m_0 + m_n n
1712 * c_i_x (y - x) + m_0 + m_n n >= 0
1714 * for each (x,y) in R.
1715 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1716 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1717 * with each coefficient (except m_0) represented as a pair of non-negative
1720 * Actually, we do not construct constraints for the c_i_x themselves,
1721 * but for the coefficients of c_i_x written as a linear combination
1722 * of the columns in node->cmap.
1725 * If "local" is set, then we add constraints
1727 * c_i_x (y - x) <= 0
1731 * -c_i_x (y - x) <= 0
1733 * instead, forcing the dependence distance to be (less than or) equal to 0.
1734 * That is, we plug in (0, 0, -s * c_i_x),
1735 * Note that dependences marked local are treated as validity constraints
1736 * by add_all_validity_constraints and therefore also have
1737 * their distances bounded by 0 from below.
1739 static isl_stat
add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
1740 struct isl_sched_edge
*edge
, int s
, int local
)
1744 isl_map
*map
= isl_map_copy(edge
->map
);
1745 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1746 isl_dim_map
*dim_map
;
1747 isl_basic_set
*coef
;
1748 struct isl_sched_node
*node
= edge
->src
;
1750 coef
= intra_coefficients(graph
, node
, map
);
1752 offset
= coef_var_offset(coef
);
1754 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1755 offset
, isl_mat_copy(node
->cmap
));
1757 return isl_stat_error
;
1759 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
1760 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, -s
);
1763 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1764 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1765 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1767 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1768 coef
->n_eq
, coef
->n_ineq
);
1769 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1775 /* Add constraints to graph->lp that bound the dependence distance for the given
1776 * dependence from node i to node j.
1777 * If s = 1, we add the constraint
1779 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1784 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1787 * for each (x,y) in R.
1788 * If s = -1, we add the constraint
1790 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1795 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1798 * for each (x,y) in R.
1799 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1800 * of valid constraints for R and then plug in
1801 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1803 * with each coefficient (except m_0, c_*_0 and c_*_n)
1804 * represented as a pair of non-negative coefficients.
1806 * Actually, we do not construct constraints for the c_*_x themselves,
1807 * but for the coefficients of c_*_x written as a linear combination
1808 * of the columns in node->cmap.
1811 * If "local" is set, then we add constraints
1813 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1817 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1819 * instead, forcing the dependence distance to be (less than or) equal to 0.
1820 * That is, we plug in
1821 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1822 * Note that dependences marked local are treated as validity constraints
1823 * by add_all_validity_constraints and therefore also have
1824 * their distances bounded by 0 from below.
1826 static isl_stat
add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
1827 struct isl_sched_edge
*edge
, int s
, int local
)
1831 isl_map
*map
= isl_map_copy(edge
->map
);
1832 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1833 isl_dim_map
*dim_map
;
1834 isl_basic_set
*coef
;
1835 struct isl_sched_node
*src
= edge
->src
;
1836 struct isl_sched_node
*dst
= edge
->dst
;
1838 coef
= inter_coefficients(graph
, edge
, map
);
1840 offset
= coef_var_offset(coef
);
1842 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1843 offset
, isl_mat_copy(src
->cmap
));
1844 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1845 offset
+ src
->nvar
, isl_mat_copy(dst
->cmap
));
1847 return isl_stat_error
;
1849 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
1850 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, -s
);
1853 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1854 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1855 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1858 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1859 coef
->n_eq
, coef
->n_ineq
);
1860 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1866 /* Add all validity constraints to graph->lp.
1868 * An edge that is forced to be local needs to have its dependence
1869 * distances equal to zero. We take care of bounding them by 0 from below
1870 * here. add_all_proximity_constraints takes care of bounding them by 0
1873 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1874 * Otherwise, we ignore them.
1876 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
1877 int use_coincidence
)
1881 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1882 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1885 local
= is_local(edge
) ||
1886 (is_coincidence(edge
) && use_coincidence
);
1887 if (!is_validity(edge
) && !local
)
1889 if (edge
->src
!= edge
->dst
)
1891 if (add_intra_validity_constraints(graph
, edge
) < 0)
1895 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1896 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1899 local
= is_local(edge
) ||
1900 (is_coincidence(edge
) && use_coincidence
);
1901 if (!is_validity(edge
) && !local
)
1903 if (edge
->src
== edge
->dst
)
1905 if (add_inter_validity_constraints(graph
, edge
) < 0)
1912 /* Add constraints to graph->lp that bound the dependence distance
1913 * for all dependence relations.
1914 * If a given proximity dependence is identical to a validity
1915 * dependence, then the dependence distance is already bounded
1916 * from below (by zero), so we only need to bound the distance
1917 * from above. (This includes the case of "local" dependences
1918 * which are treated as validity dependence by add_all_validity_constraints.)
1919 * Otherwise, we need to bound the distance both from above and from below.
1921 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1922 * Otherwise, we ignore them.
1924 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
1925 int use_coincidence
)
1929 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1930 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1933 local
= is_local(edge
) ||
1934 (is_coincidence(edge
) && use_coincidence
);
1935 if (!is_proximity(edge
) && !local
)
1937 if (edge
->src
== edge
->dst
&&
1938 add_intra_proximity_constraints(graph
, edge
, 1, local
) < 0)
1940 if (edge
->src
!= edge
->dst
&&
1941 add_inter_proximity_constraints(graph
, edge
, 1, local
) < 0)
1943 if (is_validity(edge
) || local
)
1945 if (edge
->src
== edge
->dst
&&
1946 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
1948 if (edge
->src
!= edge
->dst
&&
1949 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
1956 /* Compute a basis for the rows in the linear part of the schedule
1957 * and extend this basis to a full basis. The remaining rows
1958 * can then be used to force linear independence from the rows
1961 * In particular, given the schedule rows S, we compute
1966 * with H the Hermite normal form of S. That is, all but the
1967 * first rank columns of H are zero and so each row in S is
1968 * a linear combination of the first rank rows of Q.
1969 * The matrix Q is then transposed because we will write the
1970 * coefficients of the next schedule row as a column vector s
1971 * and express this s as a linear combination s = Q c of the
1973 * Similarly, the matrix U is transposed such that we can
1974 * compute the coefficients c = U s from a schedule row s.
1976 static int node_update_cmap(struct isl_sched_node
*node
)
1979 int n_row
= isl_mat_rows(node
->sched
);
1981 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1982 1 + node
->nparam
, node
->nvar
);
1984 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
1985 isl_mat_free(node
->cmap
);
1986 isl_mat_free(node
->cinv
);
1987 isl_mat_free(node
->ctrans
);
1988 node
->ctrans
= isl_mat_copy(Q
);
1989 node
->cmap
= isl_mat_transpose(Q
);
1990 node
->cinv
= isl_mat_transpose(U
);
1991 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1994 if (!node
->cmap
|| !node
->cinv
|| !node
->ctrans
|| node
->rank
< 0)
1999 /* Is "edge" marked as a validity or a conditional validity edge?
2001 static int is_any_validity(struct isl_sched_edge
*edge
)
2003 return is_validity(edge
) || is_conditional_validity(edge
);
2006 /* How many times should we count the constraints in "edge"?
2008 * If carry is set, then we are counting the number of
2009 * (validity or conditional validity) constraints that will be added
2010 * in setup_carry_lp and we count each edge exactly once.
2012 * Otherwise, we count as follows
2013 * validity -> 1 (>= 0)
2014 * validity+proximity -> 2 (>= 0 and upper bound)
2015 * proximity -> 2 (lower and upper bound)
2016 * local(+any) -> 2 (>= 0 and <= 0)
2018 * If an edge is only marked conditional_validity then it counts
2019 * as zero since it is only checked afterwards.
2021 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2022 * Otherwise, we ignore them.
2024 static int edge_multiplicity(struct isl_sched_edge
*edge
, int carry
,
2025 int use_coincidence
)
2029 if (is_proximity(edge
) || is_local(edge
))
2031 if (use_coincidence
&& is_coincidence(edge
))
2033 if (is_validity(edge
))
2038 /* Count the number of equality and inequality constraints
2039 * that will be added for the given map.
2041 * "use_coincidence" is set if we should take into account coincidence edges.
2043 static int count_map_constraints(struct isl_sched_graph
*graph
,
2044 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
2045 int *n_eq
, int *n_ineq
, int carry
, int use_coincidence
)
2047 isl_basic_set
*coef
;
2048 int f
= edge_multiplicity(edge
, carry
, use_coincidence
);
2055 if (edge
->src
== edge
->dst
)
2056 coef
= intra_coefficients(graph
, edge
->src
, map
);
2058 coef
= inter_coefficients(graph
, edge
, map
);
2061 *n_eq
+= f
* coef
->n_eq
;
2062 *n_ineq
+= f
* coef
->n_ineq
;
2063 isl_basic_set_free(coef
);
2068 /* Count the number of equality and inequality constraints
2069 * that will be added to the main lp problem.
2070 * We count as follows
2071 * validity -> 1 (>= 0)
2072 * validity+proximity -> 2 (>= 0 and upper bound)
2073 * proximity -> 2 (lower and upper bound)
2074 * local(+any) -> 2 (>= 0 and <= 0)
2076 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2077 * Otherwise, we ignore them.
2079 static int count_constraints(struct isl_sched_graph
*graph
,
2080 int *n_eq
, int *n_ineq
, int use_coincidence
)
2084 *n_eq
= *n_ineq
= 0;
2085 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2086 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2087 isl_map
*map
= isl_map_copy(edge
->map
);
2089 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
2090 0, use_coincidence
) < 0)
2097 /* Count the number of constraints that will be added by
2098 * add_bound_constant_constraints to bound the values of the constant terms
2099 * and increment *n_eq and *n_ineq accordingly.
2101 * In practice, add_bound_constant_constraints only adds inequalities.
2103 static isl_stat
count_bound_constant_constraints(isl_ctx
*ctx
,
2104 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2106 if (isl_options_get_schedule_max_constant_term(ctx
) == -1)
2109 *n_ineq
+= graph
->n
;
2114 /* Add constraints to bound the values of the constant terms in the schedule,
2115 * if requested by the user.
2117 * The maximal value of the constant terms is defined by the option
2118 * "schedule_max_constant_term".
2120 * Within each node, the coefficients have the following order:
2122 * - c_i_n (if parametric)
2123 * - positive and negative parts of c_i_x
2125 static isl_stat
add_bound_constant_constraints(isl_ctx
*ctx
,
2126 struct isl_sched_graph
*graph
)
2132 max
= isl_options_get_schedule_max_constant_term(ctx
);
2136 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2138 for (i
= 0; i
< graph
->n
; ++i
) {
2139 struct isl_sched_node
*node
= &graph
->node
[i
];
2140 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2142 return isl_stat_error
;
2143 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2144 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
2145 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2151 /* Count the number of constraints that will be added by
2152 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2155 * In practice, add_bound_coefficient_constraints only adds inequalities.
2157 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2158 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2162 if (isl_options_get_schedule_max_coefficient(ctx
) == -1 &&
2163 !isl_options_get_schedule_treat_coalescing(ctx
))
2166 for (i
= 0; i
< graph
->n
; ++i
)
2167 *n_ineq
+= graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2172 /* Add constraints to graph->lp that bound the values of
2173 * the parameter schedule coefficients of "node" to "max" and
2174 * the variable schedule coefficients to the corresponding entry
2176 * In either case, a negative value means that no bound needs to be imposed.
2178 * For parameter coefficients, this amounts to adding a constraint
2186 * The variables coefficients are, however, not represented directly.
2187 * Instead, the variables coefficients c_x are written as a linear
2188 * combination c_x = cmap c_z of some other coefficients c_z,
2189 * which are in turn encoded as c_z = c_z^+ - c_z^-.
2190 * Let a_j be the elements of row i of node->cmap, then
2192 * -max_i <= c_x_i <= max_i
2196 * -max_i <= \sum_j a_j (c_z_j^+ - c_z_j^-) <= max_i
2200 * -\sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2201 * \sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2203 static isl_stat
node_add_coefficient_constraints(isl_ctx
*ctx
,
2204 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
, int max
)
2210 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2212 for (j
= 0; j
< node
->nparam
; ++j
) {
2218 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2220 return isl_stat_error
;
2221 dim
= 1 + node
->start
+ 1 + j
;
2222 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2223 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2224 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2227 ineq
= isl_vec_alloc(ctx
, 1 + total
);
2228 ineq
= isl_vec_clr(ineq
);
2230 return isl_stat_error
;
2231 for (i
= 0; i
< node
->nvar
; ++i
) {
2232 int pos
= 1 + node_var_coef_offset(node
);
2234 if (isl_int_is_neg(node
->max
->el
[i
]))
2237 for (j
= 0; j
< node
->nvar
; ++j
) {
2238 isl_int_set(ineq
->el
[pos
+ 2 * j
],
2239 node
->cmap
->row
[i
][j
]);
2240 isl_int_neg(ineq
->el
[pos
+ 2 * j
+ 1],
2241 node
->cmap
->row
[i
][j
]);
2243 isl_int_set(ineq
->el
[0], node
->max
->el
[i
]);
2245 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2248 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2250 isl_seq_neg(ineq
->el
+ pos
, ineq
->el
+ pos
, 2 * node
->nvar
);
2251 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2254 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2261 return isl_stat_error
;
2264 /* Add constraints that bound the values of the variable and parameter
2265 * coefficients of the schedule.
2267 * The maximal value of the coefficients is defined by the option
2268 * 'schedule_max_coefficient' and the entries in node->max.
2269 * These latter entries are only set if either the schedule_max_coefficient
2270 * option or the schedule_treat_coalescing option is set.
2272 static isl_stat
add_bound_coefficient_constraints(isl_ctx
*ctx
,
2273 struct isl_sched_graph
*graph
)
2278 max
= isl_options_get_schedule_max_coefficient(ctx
);
2280 if (max
== -1 && !isl_options_get_schedule_treat_coalescing(ctx
))
2283 for (i
= 0; i
< graph
->n
; ++i
) {
2284 struct isl_sched_node
*node
= &graph
->node
[i
];
2286 if (node_add_coefficient_constraints(ctx
, graph
, node
, max
) < 0)
2287 return isl_stat_error
;
2293 /* Add a constraint to graph->lp that equates the value at position
2294 * "sum_pos" to the sum of the "n" values starting at "first".
2296 static isl_stat
add_sum_constraint(struct isl_sched_graph
*graph
,
2297 int sum_pos
, int first
, int n
)
2302 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2304 k
= isl_basic_set_alloc_equality(graph
->lp
);
2306 return isl_stat_error
;
2307 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2308 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2309 for (i
= 0; i
< n
; ++i
)
2310 isl_int_set_si(graph
->lp
->eq
[k
][1 + first
+ i
], 1);
2315 /* Add a constraint to graph->lp that equates the value at position
2316 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2318 * Within each node, the coefficients have the following order:
2320 * - c_i_n (if parametric)
2321 * - positive and negative parts of c_i_x
2323 static isl_stat
add_param_sum_constraint(struct isl_sched_graph
*graph
,
2329 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2331 k
= isl_basic_set_alloc_equality(graph
->lp
);
2333 return isl_stat_error
;
2334 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2335 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2336 for (i
= 0; i
< graph
->n
; ++i
) {
2337 int pos
= 1 + graph
->node
[i
].start
+ 1;
2339 for (j
= 0; j
< graph
->node
[i
].nparam
; ++j
)
2340 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2346 /* Add a constraint to graph->lp that equates the value at position
2347 * "sum_pos" to the sum of the variable coefficients of all nodes.
2349 * Within each node, the coefficients have the following order:
2351 * - c_i_n (if parametric)
2352 * - positive and negative parts of c_i_x
2354 static isl_stat
add_var_sum_constraint(struct isl_sched_graph
*graph
,
2360 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2362 k
= isl_basic_set_alloc_equality(graph
->lp
);
2364 return isl_stat_error
;
2365 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2366 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2367 for (i
= 0; i
< graph
->n
; ++i
) {
2368 struct isl_sched_node
*node
= &graph
->node
[i
];
2369 int pos
= 1 + node_var_coef_offset(node
);
2371 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2372 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2378 /* Construct an ILP problem for finding schedule coefficients
2379 * that result in non-negative, but small dependence distances
2380 * over all dependences.
2381 * In particular, the dependence distances over proximity edges
2382 * are bounded by m_0 + m_n n and we compute schedule coefficients
2383 * with small values (preferably zero) of m_n and m_0.
2385 * All variables of the ILP are non-negative. The actual coefficients
2386 * may be negative, so each coefficient is represented as the difference
2387 * of two non-negative variables. The negative part always appears
2388 * immediately before the positive part.
2389 * Other than that, the variables have the following order
2391 * - sum of positive and negative parts of m_n coefficients
2393 * - sum of all c_n coefficients
2394 * (unconstrained when computing non-parametric schedules)
2395 * - sum of positive and negative parts of all c_x coefficients
2396 * - positive and negative parts of m_n coefficients
2399 * - c_i_n (if parametric)
2400 * - positive and negative parts of c_i_x
2402 * The c_i_x are not represented directly, but through the columns of
2403 * node->cmap. That is, the computed values are for variable t_i_x
2404 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2406 * The constraints are those from the edges plus two or three equalities
2407 * to express the sums.
2409 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2410 * Otherwise, we ignore them.
2412 static isl_stat
setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2413 int use_coincidence
)
2423 parametric
= ctx
->opt
->schedule_parametric
;
2424 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2426 total
= param_pos
+ 2 * nparam
;
2427 for (i
= 0; i
< graph
->n
; ++i
) {
2428 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2429 if (node_update_cmap(node
) < 0)
2430 return isl_stat_error
;
2431 node
->start
= total
;
2432 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
2435 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2436 return isl_stat_error
;
2437 if (count_bound_constant_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2438 return isl_stat_error
;
2439 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2440 return isl_stat_error
;
2442 space
= isl_space_set_alloc(ctx
, 0, total
);
2443 isl_basic_set_free(graph
->lp
);
2444 n_eq
+= 2 + parametric
;
2446 graph
->lp
= isl_basic_set_alloc_space(space
, 0, n_eq
, n_ineq
);
2448 if (add_sum_constraint(graph
, 0, param_pos
, 2 * nparam
) < 0)
2449 return isl_stat_error
;
2450 if (parametric
&& add_param_sum_constraint(graph
, 2) < 0)
2451 return isl_stat_error
;
2452 if (add_var_sum_constraint(graph
, 3) < 0)
2453 return isl_stat_error
;
2454 if (add_bound_constant_constraints(ctx
, graph
) < 0)
2455 return isl_stat_error
;
2456 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2457 return isl_stat_error
;
2458 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2459 return isl_stat_error
;
2460 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2461 return isl_stat_error
;
2466 /* Analyze the conflicting constraint found by
2467 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2468 * constraint of one of the edges between distinct nodes, living, moreover
2469 * in distinct SCCs, then record the source and sink SCC as this may
2470 * be a good place to cut between SCCs.
2472 static int check_conflict(int con
, void *user
)
2475 struct isl_sched_graph
*graph
= user
;
2477 if (graph
->src_scc
>= 0)
2480 con
-= graph
->lp
->n_eq
;
2482 if (con
>= graph
->lp
->n_ineq
)
2485 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2486 if (!is_validity(&graph
->edge
[i
]))
2488 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2490 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2492 if (graph
->edge
[i
].start
> con
)
2494 if (graph
->edge
[i
].end
<= con
)
2496 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2497 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2503 /* Check whether the next schedule row of the given node needs to be
2504 * non-trivial. Lower-dimensional domains may have some trivial rows,
2505 * but as soon as the number of remaining required non-trivial rows
2506 * is as large as the number or remaining rows to be computed,
2507 * all remaining rows need to be non-trivial.
2509 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2511 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2514 /* Solve the ILP problem constructed in setup_lp.
2515 * For each node such that all the remaining rows of its schedule
2516 * need to be non-trivial, we construct a non-triviality region.
2517 * This region imposes that the next row is independent of previous rows.
2518 * In particular the coefficients c_i_x are represented by t_i_x
2519 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2520 * its first columns span the rows of the previously computed part
2521 * of the schedule. The non-triviality region enforces that at least
2522 * one of the remaining components of t_i_x is non-zero, i.e.,
2523 * that the new schedule row depends on at least one of the remaining
2526 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
2532 for (i
= 0; i
< graph
->n
; ++i
) {
2533 struct isl_sched_node
*node
= &graph
->node
[i
];
2534 int skip
= node
->rank
;
2535 graph
->region
[i
].pos
= node_var_coef_offset(node
) + 2 * skip
;
2536 if (needs_row(graph
, node
))
2537 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
2539 graph
->region
[i
].len
= 0;
2541 lp
= isl_basic_set_copy(graph
->lp
);
2542 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2543 graph
->region
, &check_conflict
, graph
);
2547 /* Extract the coefficients for the variables of "node" from "sol".
2549 * Within each node, the coefficients have the following order:
2551 * - c_i_n (if parametric)
2552 * - positive and negative parts of c_i_x
2554 * The c_i_x^- appear before their c_i_x^+ counterpart.
2556 * Return c_i_x = c_i_x^+ - c_i_x^-
2558 static __isl_give isl_vec
*extract_var_coef(struct isl_sched_node
*node
,
2559 __isl_keep isl_vec
*sol
)
2567 csol
= isl_vec_alloc(isl_vec_get_ctx(sol
), node
->nvar
);
2571 pos
= 1 + node_var_coef_offset(node
);
2572 for (i
= 0; i
< node
->nvar
; ++i
)
2573 isl_int_sub(csol
->el
[i
],
2574 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
2579 /* Update the schedules of all nodes based on the given solution
2580 * of the LP problem.
2581 * The new row is added to the current band.
2582 * All possibly negative coefficients are encoded as a difference
2583 * of two non-negative variables, so we need to perform the subtraction
2584 * here. Moreover, if use_cmap is set, then the solution does
2585 * not refer to the actual coefficients c_i_x, but instead to variables
2586 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2587 * In this case, we then also need to perform this multiplication
2588 * to obtain the values of c_i_x.
2590 * If coincident is set, then the caller guarantees that the new
2591 * row satisfies the coincidence constraints.
2593 static int update_schedule(struct isl_sched_graph
*graph
,
2594 __isl_take isl_vec
*sol
, int use_cmap
, int coincident
)
2597 isl_vec
*csol
= NULL
;
2602 isl_die(sol
->ctx
, isl_error_internal
,
2603 "no solution found", goto error
);
2604 if (graph
->n_total_row
>= graph
->max_row
)
2605 isl_die(sol
->ctx
, isl_error_internal
,
2606 "too many schedule rows", goto error
);
2608 for (i
= 0; i
< graph
->n
; ++i
) {
2609 struct isl_sched_node
*node
= &graph
->node
[i
];
2610 int pos
= node
->start
;
2611 int row
= isl_mat_rows(node
->sched
);
2614 csol
= extract_var_coef(node
, sol
);
2618 isl_map_free(node
->sched_map
);
2619 node
->sched_map
= NULL
;
2620 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2623 for (j
= 0; j
< 1 + node
->nparam
; ++j
)
2624 node
->sched
= isl_mat_set_element(node
->sched
,
2625 row
, j
, sol
->el
[1 + pos
+ j
]);
2627 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
2631 for (j
= 0; j
< node
->nvar
; ++j
)
2632 node
->sched
= isl_mat_set_element(node
->sched
,
2633 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2634 node
->coincident
[graph
->n_total_row
] = coincident
;
2640 graph
->n_total_row
++;
2649 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2650 * and return this isl_aff.
2652 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
2653 struct isl_sched_node
*node
, int row
)
2661 aff
= isl_aff_zero_on_domain(ls
);
2662 isl_mat_get_element(node
->sched
, row
, 0, &v
);
2663 aff
= isl_aff_set_constant(aff
, v
);
2664 for (j
= 0; j
< node
->nparam
; ++j
) {
2665 isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
);
2666 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
2668 for (j
= 0; j
< node
->nvar
; ++j
) {
2669 isl_mat_get_element(node
->sched
, row
, 1 + node
->nparam
+ j
, &v
);
2670 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
2678 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2679 * and return this multi_aff.
2681 * The result is defined over the uncompressed node domain.
2683 static __isl_give isl_multi_aff
*node_extract_partial_schedule_multi_aff(
2684 struct isl_sched_node
*node
, int first
, int n
)
2688 isl_local_space
*ls
;
2695 nrow
= isl_mat_rows(node
->sched
);
2696 if (node
->compressed
)
2697 space
= isl_multi_aff_get_domain_space(node
->decompress
);
2699 space
= isl_space_copy(node
->space
);
2700 ls
= isl_local_space_from_space(isl_space_copy(space
));
2701 space
= isl_space_from_domain(space
);
2702 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
2703 ma
= isl_multi_aff_zero(space
);
2705 for (i
= first
; i
< first
+ n
; ++i
) {
2706 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
2707 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
2710 isl_local_space_free(ls
);
2712 if (node
->compressed
)
2713 ma
= isl_multi_aff_pullback_multi_aff(ma
,
2714 isl_multi_aff_copy(node
->compress
));
2719 /* Convert node->sched into a multi_aff and return this multi_aff.
2721 * The result is defined over the uncompressed node domain.
2723 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
2724 struct isl_sched_node
*node
)
2728 nrow
= isl_mat_rows(node
->sched
);
2729 return node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
2732 /* Convert node->sched into a map and return this map.
2734 * The result is cached in node->sched_map, which needs to be released
2735 * whenever node->sched is updated.
2736 * It is defined over the uncompressed node domain.
2738 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
2740 if (!node
->sched_map
) {
2743 ma
= node_extract_schedule_multi_aff(node
);
2744 node
->sched_map
= isl_map_from_multi_aff(ma
);
2747 return isl_map_copy(node
->sched_map
);
2750 /* Construct a map that can be used to update a dependence relation
2751 * based on the current schedule.
2752 * That is, construct a map expressing that source and sink
2753 * are executed within the same iteration of the current schedule.
2754 * This map can then be intersected with the dependence relation.
2755 * This is not the most efficient way, but this shouldn't be a critical
2758 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
2759 struct isl_sched_node
*dst
)
2761 isl_map
*src_sched
, *dst_sched
;
2763 src_sched
= node_extract_schedule(src
);
2764 dst_sched
= node_extract_schedule(dst
);
2765 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
2768 /* Intersect the domains of the nested relations in domain and range
2769 * of "umap" with "map".
2771 static __isl_give isl_union_map
*intersect_domains(
2772 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
2774 isl_union_set
*uset
;
2776 umap
= isl_union_map_zip(umap
);
2777 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
2778 umap
= isl_union_map_intersect_domain(umap
, uset
);
2779 umap
= isl_union_map_zip(umap
);
2783 /* Update the dependence relation of the given edge based
2784 * on the current schedule.
2785 * If the dependence is carried completely by the current schedule, then
2786 * it is removed from the edge_tables. It is kept in the list of edges
2787 * as otherwise all edge_tables would have to be recomputed.
2789 static int update_edge(struct isl_sched_graph
*graph
,
2790 struct isl_sched_edge
*edge
)
2795 id
= specializer(edge
->src
, edge
->dst
);
2796 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
2800 if (edge
->tagged_condition
) {
2801 edge
->tagged_condition
=
2802 intersect_domains(edge
->tagged_condition
, id
);
2803 if (!edge
->tagged_condition
)
2806 if (edge
->tagged_validity
) {
2807 edge
->tagged_validity
=
2808 intersect_domains(edge
->tagged_validity
, id
);
2809 if (!edge
->tagged_validity
)
2813 empty
= isl_map_plain_is_empty(edge
->map
);
2817 graph_remove_edge(graph
, edge
);
2826 /* Does the domain of "umap" intersect "uset"?
2828 static int domain_intersects(__isl_keep isl_union_map
*umap
,
2829 __isl_keep isl_union_set
*uset
)
2833 umap
= isl_union_map_copy(umap
);
2834 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
2835 empty
= isl_union_map_is_empty(umap
);
2836 isl_union_map_free(umap
);
2838 return empty
< 0 ? -1 : !empty
;
2841 /* Does the range of "umap" intersect "uset"?
2843 static int range_intersects(__isl_keep isl_union_map
*umap
,
2844 __isl_keep isl_union_set
*uset
)
2848 umap
= isl_union_map_copy(umap
);
2849 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
2850 empty
= isl_union_map_is_empty(umap
);
2851 isl_union_map_free(umap
);
2853 return empty
< 0 ? -1 : !empty
;
2856 /* Are the condition dependences of "edge" local with respect to
2857 * the current schedule?
2859 * That is, are domain and range of the condition dependences mapped
2860 * to the same point?
2862 * In other words, is the condition false?
2864 static int is_condition_false(struct isl_sched_edge
*edge
)
2866 isl_union_map
*umap
;
2867 isl_map
*map
, *sched
, *test
;
2870 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
2871 if (empty
< 0 || empty
)
2874 umap
= isl_union_map_copy(edge
->tagged_condition
);
2875 umap
= isl_union_map_zip(umap
);
2876 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
2877 map
= isl_map_from_union_map(umap
);
2879 sched
= node_extract_schedule(edge
->src
);
2880 map
= isl_map_apply_domain(map
, sched
);
2881 sched
= node_extract_schedule(edge
->dst
);
2882 map
= isl_map_apply_range(map
, sched
);
2884 test
= isl_map_identity(isl_map_get_space(map
));
2885 local
= isl_map_is_subset(map
, test
);
2892 /* For each conditional validity constraint that is adjacent
2893 * to a condition with domain in condition_source or range in condition_sink,
2894 * turn it into an unconditional validity constraint.
2896 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
2897 __isl_take isl_union_set
*condition_source
,
2898 __isl_take isl_union_set
*condition_sink
)
2902 condition_source
= isl_union_set_coalesce(condition_source
);
2903 condition_sink
= isl_union_set_coalesce(condition_sink
);
2905 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2907 isl_union_map
*validity
;
2909 if (!is_conditional_validity(&graph
->edge
[i
]))
2911 if (is_validity(&graph
->edge
[i
]))
2914 validity
= graph
->edge
[i
].tagged_validity
;
2915 adjacent
= domain_intersects(validity
, condition_sink
);
2916 if (adjacent
>= 0 && !adjacent
)
2917 adjacent
= range_intersects(validity
, condition_source
);
2923 set_validity(&graph
->edge
[i
]);
2926 isl_union_set_free(condition_source
);
2927 isl_union_set_free(condition_sink
);
2930 isl_union_set_free(condition_source
);
2931 isl_union_set_free(condition_sink
);
2935 /* Update the dependence relations of all edges based on the current schedule
2936 * and enforce conditional validity constraints that are adjacent
2937 * to satisfied condition constraints.
2939 * First check if any of the condition constraints are satisfied
2940 * (i.e., not local to the outer schedule) and keep track of
2941 * their domain and range.
2942 * Then update all dependence relations (which removes the non-local
2944 * Finally, if any condition constraints turned out to be satisfied,
2945 * then turn all adjacent conditional validity constraints into
2946 * unconditional validity constraints.
2948 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2952 isl_union_set
*source
, *sink
;
2954 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
2955 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
2956 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2958 isl_union_set
*uset
;
2959 isl_union_map
*umap
;
2961 if (!is_condition(&graph
->edge
[i
]))
2963 if (is_local(&graph
->edge
[i
]))
2965 local
= is_condition_false(&graph
->edge
[i
]);
2973 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
2974 uset
= isl_union_map_domain(umap
);
2975 source
= isl_union_set_union(source
, uset
);
2977 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
2978 uset
= isl_union_map_range(umap
);
2979 sink
= isl_union_set_union(sink
, uset
);
2982 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
2983 if (update_edge(graph
, &graph
->edge
[i
]) < 0)
2988 return unconditionalize_adjacent_validity(graph
, source
, sink
);
2990 isl_union_set_free(source
);
2991 isl_union_set_free(sink
);
2994 isl_union_set_free(source
);
2995 isl_union_set_free(sink
);
2999 static void next_band(struct isl_sched_graph
*graph
)
3001 graph
->band_start
= graph
->n_total_row
;
3004 /* Return the union of the universe domains of the nodes in "graph"
3005 * that satisfy "pred".
3007 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
3008 struct isl_sched_graph
*graph
,
3009 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
3015 for (i
= 0; i
< graph
->n
; ++i
)
3016 if (pred(&graph
->node
[i
], data
))
3020 isl_die(ctx
, isl_error_internal
,
3021 "empty component", return NULL
);
3023 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3024 dom
= isl_union_set_from_set(set
);
3026 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
3027 if (!pred(&graph
->node
[i
], data
))
3029 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3030 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
3036 /* Return a list of unions of universe domains, where each element
3037 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3039 static __isl_give isl_union_set_list
*extract_sccs(isl_ctx
*ctx
,
3040 struct isl_sched_graph
*graph
)
3043 isl_union_set_list
*filters
;
3045 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
3046 for (i
= 0; i
< graph
->scc
; ++i
) {
3049 dom
= isl_sched_graph_domain(ctx
, graph
, &node_scc_exactly
, i
);
3050 filters
= isl_union_set_list_add(filters
, dom
);
3056 /* Return a list of two unions of universe domains, one for the SCCs up
3057 * to and including graph->src_scc and another for the other SCCs.
3059 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
3060 struct isl_sched_graph
*graph
)
3063 isl_union_set_list
*filters
;
3065 filters
= isl_union_set_list_alloc(ctx
, 2);
3066 dom
= isl_sched_graph_domain(ctx
, graph
,
3067 &node_scc_at_most
, graph
->src_scc
);
3068 filters
= isl_union_set_list_add(filters
, dom
);
3069 dom
= isl_sched_graph_domain(ctx
, graph
,
3070 &node_scc_at_least
, graph
->src_scc
+ 1);
3071 filters
= isl_union_set_list_add(filters
, dom
);
3076 /* Copy nodes that satisfy node_pred from the src dependence graph
3077 * to the dst dependence graph.
3079 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
3080 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
3085 for (i
= 0; i
< src
->n
; ++i
) {
3088 if (!node_pred(&src
->node
[i
], data
))
3092 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
3093 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
3094 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
3095 dst
->node
[j
].compress
=
3096 isl_multi_aff_copy(src
->node
[i
].compress
);
3097 dst
->node
[j
].decompress
=
3098 isl_multi_aff_copy(src
->node
[i
].decompress
);
3099 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
3100 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
3101 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
3102 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
3103 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
3104 dst
->node
[j
].sizes
= isl_multi_val_copy(src
->node
[i
].sizes
);
3105 dst
->node
[j
].max
= isl_vec_copy(src
->node
[i
].max
);
3108 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
3110 if (dst
->node
[j
].compressed
&&
3111 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
3112 !dst
->node
[j
].decompress
))
3119 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3120 * to the dst dependence graph.
3121 * If the source or destination node of the edge is not in the destination
3122 * graph, then it must be a backward proximity edge and it should simply
3125 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
3126 struct isl_sched_graph
*src
,
3127 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
3130 enum isl_edge_type t
;
3133 for (i
= 0; i
< src
->n_edge
; ++i
) {
3134 struct isl_sched_edge
*edge
= &src
->edge
[i
];
3136 isl_union_map
*tagged_condition
;
3137 isl_union_map
*tagged_validity
;
3138 struct isl_sched_node
*dst_src
, *dst_dst
;
3140 if (!edge_pred(edge
, data
))
3143 if (isl_map_plain_is_empty(edge
->map
))
3146 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
3147 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
3148 if (!dst_src
|| !dst_dst
) {
3149 if (is_validity(edge
) || is_conditional_validity(edge
))
3150 isl_die(ctx
, isl_error_internal
,
3151 "backward (conditional) validity edge",
3156 map
= isl_map_copy(edge
->map
);
3157 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
3158 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
3160 dst
->edge
[dst
->n_edge
].src
= dst_src
;
3161 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
3162 dst
->edge
[dst
->n_edge
].map
= map
;
3163 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
3164 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
3165 dst
->edge
[dst
->n_edge
].types
= edge
->types
;
3168 if (edge
->tagged_condition
&& !tagged_condition
)
3170 if (edge
->tagged_validity
&& !tagged_validity
)
3173 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
3175 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
3177 if (graph_edge_table_add(ctx
, dst
, t
,
3178 &dst
->edge
[dst
->n_edge
- 1]) < 0)
3186 /* Compute the maximal number of variables over all nodes.
3187 * This is the maximal number of linearly independent schedule
3188 * rows that we need to compute.
3189 * Just in case we end up in a part of the dependence graph
3190 * with only lower-dimensional domains, we make sure we will
3191 * compute the required amount of extra linearly independent rows.
3193 static int compute_maxvar(struct isl_sched_graph
*graph
)
3198 for (i
= 0; i
< graph
->n
; ++i
) {
3199 struct isl_sched_node
*node
= &graph
->node
[i
];
3202 if (node_update_cmap(node
) < 0)
3204 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
3205 if (nvar
> graph
->maxvar
)
3206 graph
->maxvar
= nvar
;
3212 /* Extract the subgraph of "graph" that consists of the node satisfying
3213 * "node_pred" and the edges satisfying "edge_pred" and store
3214 * the result in "sub".
3216 static int extract_sub_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3217 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3218 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3219 int data
, struct isl_sched_graph
*sub
)
3221 int i
, n
= 0, n_edge
= 0;
3224 for (i
= 0; i
< graph
->n
; ++i
)
3225 if (node_pred(&graph
->node
[i
], data
))
3227 for (i
= 0; i
< graph
->n_edge
; ++i
)
3228 if (edge_pred(&graph
->edge
[i
], data
))
3230 if (graph_alloc(ctx
, sub
, n
, n_edge
) < 0)
3232 if (copy_nodes(sub
, graph
, node_pred
, data
) < 0)
3234 if (graph_init_table(ctx
, sub
) < 0)
3236 for (t
= 0; t
<= isl_edge_last
; ++t
)
3237 sub
->max_edge
[t
] = graph
->max_edge
[t
];
3238 if (graph_init_edge_tables(ctx
, sub
) < 0)
3240 if (copy_edges(ctx
, sub
, graph
, edge_pred
, data
) < 0)
3242 sub
->n_row
= graph
->n_row
;
3243 sub
->max_row
= graph
->max_row
;
3244 sub
->n_total_row
= graph
->n_total_row
;
3245 sub
->band_start
= graph
->band_start
;
3250 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
3251 struct isl_sched_graph
*graph
);
3252 static __isl_give isl_schedule_node
*compute_schedule_wcc(
3253 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
3255 /* Compute a schedule for a subgraph of "graph". In particular, for
3256 * the graph composed of nodes that satisfy node_pred and edges that
3257 * that satisfy edge_pred.
3258 * If the subgraph is known to consist of a single component, then wcc should
3259 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3260 * Otherwise, we call compute_schedule, which will check whether the subgraph
3263 * The schedule is inserted at "node" and the updated schedule node
3266 static __isl_give isl_schedule_node
*compute_sub_schedule(
3267 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
3268 struct isl_sched_graph
*graph
,
3269 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3270 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3273 struct isl_sched_graph split
= { 0 };
3275 if (extract_sub_graph(ctx
, graph
, node_pred
, edge_pred
, data
,
3280 node
= compute_schedule_wcc(node
, &split
);
3282 node
= compute_schedule(node
, &split
);
3284 graph_free(ctx
, &split
);
3287 graph_free(ctx
, &split
);
3288 return isl_schedule_node_free(node
);
3291 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3293 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3296 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3298 return edge
->dst
->scc
<= scc
;
3301 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3303 return edge
->src
->scc
>= scc
;
3306 /* Reset the current band by dropping all its schedule rows.
3308 static int reset_band(struct isl_sched_graph
*graph
)
3313 drop
= graph
->n_total_row
- graph
->band_start
;
3314 graph
->n_total_row
-= drop
;
3315 graph
->n_row
-= drop
;
3317 for (i
= 0; i
< graph
->n
; ++i
) {
3318 struct isl_sched_node
*node
= &graph
->node
[i
];
3320 isl_map_free(node
->sched_map
);
3321 node
->sched_map
= NULL
;
3323 node
->sched
= isl_mat_drop_rows(node
->sched
,
3324 graph
->band_start
, drop
);
3333 /* Split the current graph into two parts and compute a schedule for each
3334 * part individually. In particular, one part consists of all SCCs up
3335 * to and including graph->src_scc, while the other part contains the other
3336 * SCCs. The split is enforced by a sequence node inserted at position "node"
3337 * in the schedule tree. Return the updated schedule node.
3338 * If either of these two parts consists of a sequence, then it is spliced
3339 * into the sequence containing the two parts.
3341 * The current band is reset. It would be possible to reuse
3342 * the previously computed rows as the first rows in the next
3343 * band, but recomputing them may result in better rows as we are looking
3344 * at a smaller part of the dependence graph.
3346 static __isl_give isl_schedule_node
*compute_split_schedule(
3347 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3351 isl_union_set_list
*filters
;
3356 if (reset_band(graph
) < 0)
3357 return isl_schedule_node_free(node
);
3361 ctx
= isl_schedule_node_get_ctx(node
);
3362 filters
= extract_split(ctx
, graph
);
3363 node
= isl_schedule_node_insert_sequence(node
, filters
);
3364 node
= isl_schedule_node_child(node
, 1);
3365 node
= isl_schedule_node_child(node
, 0);
3367 node
= compute_sub_schedule(node
, ctx
, graph
,
3368 &node_scc_at_least
, &edge_src_scc_at_least
,
3369 graph
->src_scc
+ 1, 0);
3370 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3371 node
= isl_schedule_node_parent(node
);
3372 node
= isl_schedule_node_parent(node
);
3374 node
= isl_schedule_node_sequence_splice_child(node
, 1);
3375 node
= isl_schedule_node_child(node
, 0);
3376 node
= isl_schedule_node_child(node
, 0);
3377 node
= compute_sub_schedule(node
, ctx
, graph
,
3378 &node_scc_at_most
, &edge_dst_scc_at_most
,
3380 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3381 node
= isl_schedule_node_parent(node
);
3382 node
= isl_schedule_node_parent(node
);
3384 node
= isl_schedule_node_sequence_splice_child(node
, 0);
3389 /* Insert a band node at position "node" in the schedule tree corresponding
3390 * to the current band in "graph". Mark the band node permutable
3391 * if "permutable" is set.
3392 * The partial schedules and the coincidence property are extracted
3393 * from the graph nodes.
3394 * Return the updated schedule node.
3396 static __isl_give isl_schedule_node
*insert_current_band(
3397 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3403 isl_multi_pw_aff
*mpa
;
3404 isl_multi_union_pw_aff
*mupa
;
3410 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3411 "graph should have at least one node",
3412 return isl_schedule_node_free(node
));
3414 start
= graph
->band_start
;
3415 end
= graph
->n_total_row
;
3418 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[0], start
, n
);
3419 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3420 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3422 for (i
= 1; i
< graph
->n
; ++i
) {
3423 isl_multi_union_pw_aff
*mupa_i
;
3425 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[i
],
3427 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3428 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3429 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3431 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3433 for (i
= 0; i
< n
; ++i
)
3434 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3435 graph
->node
[0].coincident
[start
+ i
]);
3436 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3441 /* Update the dependence relations based on the current schedule,
3442 * add the current band to "node" and then continue with the computation
3444 * Return the updated schedule node.
3446 static __isl_give isl_schedule_node
*compute_next_band(
3447 __isl_take isl_schedule_node
*node
,
3448 struct isl_sched_graph
*graph
, int permutable
)
3455 ctx
= isl_schedule_node_get_ctx(node
);
3456 if (update_edges(ctx
, graph
) < 0)
3457 return isl_schedule_node_free(node
);
3458 node
= insert_current_band(node
, graph
, permutable
);
3461 node
= isl_schedule_node_child(node
, 0);
3462 node
= compute_schedule(node
, graph
);
3463 node
= isl_schedule_node_parent(node
);
3468 /* Add constraints to graph->lp that force the dependence "map" (which
3469 * is part of the dependence relation of "edge")
3470 * to be respected and attempt to carry it, where the edge is one from
3471 * a node j to itself. "pos" is the sequence number of the given map.
3472 * That is, add constraints that enforce
3474 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3475 * = c_j_x (y - x) >= e_i
3477 * for each (x,y) in R.
3478 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3479 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3480 * with each coefficient in c_j_x represented as a pair of non-negative
3483 static int add_intra_constraints(struct isl_sched_graph
*graph
,
3484 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3487 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3488 isl_dim_map
*dim_map
;
3489 isl_basic_set
*coef
;
3490 struct isl_sched_node
*node
= edge
->src
;
3492 coef
= intra_coefficients(graph
, node
, map
);
3496 offset
= coef_var_offset(coef
);
3497 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
3498 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3499 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3500 coef
->n_eq
, coef
->n_ineq
);
3501 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3507 /* Add constraints to graph->lp that force the dependence "map" (which
3508 * is part of the dependence relation of "edge")
3509 * to be respected and attempt to carry it, where the edge is one from
3510 * node j to node k. "pos" is the sequence number of the given map.
3511 * That is, add constraints that enforce
3513 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3515 * for each (x,y) in R.
3516 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3517 * of valid constraints for R and then plug in
3518 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3519 * with each coefficient (except e_i, c_*_0 and c_*_n)
3520 * represented as a pair of non-negative coefficients.
3522 static int add_inter_constraints(struct isl_sched_graph
*graph
,
3523 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3526 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3527 isl_dim_map
*dim_map
;
3528 isl_basic_set
*coef
;
3529 struct isl_sched_node
*src
= edge
->src
;
3530 struct isl_sched_node
*dst
= edge
->dst
;
3532 coef
= inter_coefficients(graph
, edge
, map
);
3536 offset
= coef_var_offset(coef
);
3537 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
3538 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3539 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3540 coef
->n_eq
, coef
->n_ineq
);
3541 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3547 /* Add constraints to graph->lp that force all (conditional) validity
3548 * dependences to be respected and attempt to carry them.
3550 static int add_all_constraints(struct isl_sched_graph
*graph
)
3556 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3557 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3559 if (!is_any_validity(edge
))
3562 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3563 isl_basic_map
*bmap
;
3566 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3567 map
= isl_map_from_basic_map(bmap
);
3569 if (edge
->src
== edge
->dst
&&
3570 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
3572 if (edge
->src
!= edge
->dst
&&
3573 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
3582 /* Count the number of equality and inequality constraints
3583 * that will be added to the carry_lp problem.
3584 * We count each edge exactly once.
3586 static int count_all_constraints(struct isl_sched_graph
*graph
,
3587 int *n_eq
, int *n_ineq
)
3591 *n_eq
= *n_ineq
= 0;
3592 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3593 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3595 if (!is_any_validity(edge
))
3598 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3599 isl_basic_map
*bmap
;
3602 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3603 map
= isl_map_from_basic_map(bmap
);
3605 if (count_map_constraints(graph
, edge
, map
,
3606 n_eq
, n_ineq
, 1, 0) < 0)
3614 /* Construct an LP problem for finding schedule coefficients
3615 * such that the schedule carries as many dependences as possible.
3616 * In particular, for each dependence i, we bound the dependence distance
3617 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3618 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3619 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3620 * Note that if the dependence relation is a union of basic maps,
3621 * then we have to consider each basic map individually as it may only
3622 * be possible to carry the dependences expressed by some of those
3623 * basic maps and not all of them.
3624 * Below, we consider each of those basic maps as a separate "edge".
3626 * All variables of the LP are non-negative. The actual coefficients
3627 * may be negative, so each coefficient is represented as the difference
3628 * of two non-negative variables. The negative part always appears
3629 * immediately before the positive part.
3630 * Other than that, the variables have the following order
3632 * - sum of (1 - e_i) over all edges
3633 * - sum of all c_n coefficients
3634 * (unconstrained when computing non-parametric schedules)
3635 * - sum of positive and negative parts of all c_x coefficients
3640 * - c_i_n (if parametric)
3641 * - positive and negative parts of c_i_x
3643 * The constraints are those from the (validity) edges plus three equalities
3644 * to express the sums and n_edge inequalities to express e_i <= 1.
3646 static isl_stat
setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3656 for (i
= 0; i
< graph
->n_edge
; ++i
)
3657 n_edge
+= graph
->edge
[i
].map
->n
;
3660 for (i
= 0; i
< graph
->n
; ++i
) {
3661 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
3662 node
->start
= total
;
3663 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
3666 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
3667 return isl_stat_error
;
3669 dim
= isl_space_set_alloc(ctx
, 0, total
);
3670 isl_basic_set_free(graph
->lp
);
3673 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
3674 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
3676 k
= isl_basic_set_alloc_equality(graph
->lp
);
3678 return isl_stat_error
;
3679 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3680 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
3681 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
3682 for (i
= 0; i
< n_edge
; ++i
)
3683 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
3685 if (add_param_sum_constraint(graph
, 1) < 0)
3686 return isl_stat_error
;
3687 if (add_var_sum_constraint(graph
, 2) < 0)
3688 return isl_stat_error
;
3690 for (i
= 0; i
< n_edge
; ++i
) {
3691 k
= isl_basic_set_alloc_inequality(graph
->lp
);
3693 return isl_stat_error
;
3694 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
3695 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
3696 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
3699 if (add_all_constraints(graph
) < 0)
3700 return isl_stat_error
;
3705 static __isl_give isl_schedule_node
*compute_component_schedule(
3706 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3709 /* Comparison function for sorting the statements based on
3710 * the corresponding value in "r".
3712 static int smaller_value(const void *a
, const void *b
, void *data
)
3718 return isl_int_cmp(r
->el
[*i1
], r
->el
[*i2
]);
3721 /* If the schedule_split_scaled option is set and if the linear
3722 * parts of the scheduling rows for all nodes in the graphs have
3723 * a non-trivial common divisor, then split off the remainder of the
3724 * constant term modulo this common divisor from the linear part.
3725 * Otherwise, insert a band node directly and continue with
3726 * the construction of the schedule.
3728 * If a non-trivial common divisor is found, then
3729 * the linear part is reduced and the remainder is enforced
3730 * by a sequence node with the children placed in the order
3731 * of this remainder.
3732 * In particular, we assign an scc index based on the remainder and
3733 * then rely on compute_component_schedule to insert the sequence and
3734 * to continue the schedule construction on each part.
3736 static __isl_give isl_schedule_node
*split_scaled(
3737 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3750 ctx
= isl_schedule_node_get_ctx(node
);
3751 if (!ctx
->opt
->schedule_split_scaled
)
3752 return compute_next_band(node
, graph
, 0);
3754 return compute_next_band(node
, graph
, 0);
3757 isl_int_init(gcd_i
);
3759 isl_int_set_si(gcd
, 0);
3761 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
3763 for (i
= 0; i
< graph
->n
; ++i
) {
3764 struct isl_sched_node
*node
= &graph
->node
[i
];
3765 int cols
= isl_mat_cols(node
->sched
);
3767 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
3768 isl_int_gcd(gcd
, gcd
, gcd_i
);
3771 isl_int_clear(gcd_i
);
3773 if (isl_int_cmp_si(gcd
, 1) <= 0) {
3775 return compute_next_band(node
, graph
, 0);
3778 r
= isl_vec_alloc(ctx
, graph
->n
);
3779 order
= isl_calloc_array(ctx
, int, graph
->n
);
3783 for (i
= 0; i
< graph
->n
; ++i
) {
3784 struct isl_sched_node
*node
= &graph
->node
[i
];
3787 isl_int_fdiv_r(r
->el
[i
], node
->sched
->row
[row
][0], gcd
);
3788 isl_int_fdiv_q(node
->sched
->row
[row
][0],
3789 node
->sched
->row
[row
][0], gcd
);
3790 isl_int_mul(node
->sched
->row
[row
][0],
3791 node
->sched
->row
[row
][0], gcd
);
3792 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
3797 if (isl_sort(order
, graph
->n
, sizeof(order
[0]), &smaller_value
, r
) < 0)
3801 for (i
= 0; i
< graph
->n
; ++i
) {
3802 if (i
> 0 && isl_int_ne(r
->el
[order
[i
- 1]], r
->el
[order
[i
]]))
3804 graph
->node
[order
[i
]].scc
= scc
;
3813 if (update_edges(ctx
, graph
) < 0)
3814 return isl_schedule_node_free(node
);
3815 node
= insert_current_band(node
, graph
, 0);
3818 node
= isl_schedule_node_child(node
, 0);
3819 node
= compute_component_schedule(node
, graph
, 0);
3820 node
= isl_schedule_node_parent(node
);
3827 return isl_schedule_node_free(node
);
3830 /* Is the schedule row "sol" trivial on node "node"?
3831 * That is, is the solution zero on the dimensions orthogonal to
3832 * the previously found solutions?
3833 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3835 * Each coefficient is represented as the difference between
3836 * two non-negative values in "sol". "sol" has been computed
3837 * in terms of the original iterators (i.e., without use of cmap).
3838 * We construct the schedule row s and write it as a linear
3839 * combination of (linear combinations of) previously computed schedule rows.
3840 * s = Q c or c = U s.
3841 * If the final entries of c are all zero, then the solution is trivial.
3843 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
3850 if (node
->nvar
== node
->rank
)
3853 node_sol
= extract_var_coef(node
, sol
);
3854 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->cinv
), node_sol
);
3858 trivial
= isl_seq_first_non_zero(node_sol
->el
+ node
->rank
,
3859 node
->nvar
- node
->rank
) == -1;
3861 isl_vec_free(node_sol
);
3866 /* Is the schedule row "sol" trivial on any node where it should
3868 * "sol" has been computed in terms of the original iterators
3869 * (i.e., without use of cmap).
3870 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3872 static int is_any_trivial(struct isl_sched_graph
*graph
,
3873 __isl_keep isl_vec
*sol
)
3877 for (i
= 0; i
< graph
->n
; ++i
) {
3878 struct isl_sched_node
*node
= &graph
->node
[i
];
3881 if (!needs_row(graph
, node
))
3883 trivial
= is_trivial(node
, sol
);
3884 if (trivial
< 0 || trivial
)
3891 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
3892 * If so, return the position of the coalesced dimension.
3893 * Otherwise, return node->nvar or -1 on error.
3895 * In particular, look for pairs of coefficients c_i and c_j such that
3896 * |c_j/c_i| >= size_i, i.e., |c_j| >= |c_i * size_i|.
3897 * If any such pair is found, then return i.
3898 * If size_i is infinity, then no check on c_i needs to be performed.
3900 static int find_node_coalescing(struct isl_sched_node
*node
,
3901 __isl_keep isl_vec
*sol
)
3907 if (node
->nvar
<= 1)
3910 csol
= extract_var_coef(node
, sol
);
3914 for (i
= 0; i
< node
->nvar
; ++i
) {
3917 if (isl_int_is_zero(csol
->el
[i
]))
3919 v
= isl_multi_val_get_val(node
->sizes
, i
);
3922 if (!isl_val_is_int(v
)) {
3926 isl_int_mul(max
, v
->n
, csol
->el
[i
]);
3929 for (j
= 0; j
< node
->nvar
; ++j
) {
3932 if (isl_int_abs_ge(csol
->el
[j
], max
))
3948 /* Force the schedule coefficient at position "pos" of "node" to be zero
3950 * The coefficient is encoded as the difference between two non-negative
3951 * variables. Force these two variables to have the same value.
3953 static __isl_give isl_tab_lexmin
*zero_out_node_coef(
3954 __isl_take isl_tab_lexmin
*tl
, struct isl_sched_node
*node
, int pos
)
3960 ctx
= isl_space_get_ctx(node
->space
);
3961 dim
= isl_tab_lexmin_dim(tl
);
3963 return isl_tab_lexmin_free(tl
);
3964 eq
= isl_vec_alloc(ctx
, 1 + dim
);
3965 eq
= isl_vec_clr(eq
);
3967 return isl_tab_lexmin_free(tl
);
3969 pos
= 1 + node_var_coef_offset(node
) + 2 * pos
;
3970 isl_int_set_si(eq
->el
[pos
], 1);
3971 isl_int_set_si(eq
->el
[pos
+ 1], -1);
3972 tl
= isl_tab_lexmin_add_eq(tl
, eq
->el
);
3978 /* Return the lexicographically smallest rational point in the basic set
3979 * from which "tl" was constructed, double checking that this input set
3982 static __isl_give isl_vec
*non_empty_solution(__isl_keep isl_tab_lexmin
*tl
)
3986 sol
= isl_tab_lexmin_get_solution(tl
);
3990 isl_die(isl_vec_get_ctx(sol
), isl_error_internal
,
3991 "error in schedule construction",
3992 return isl_vec_free(sol
));
3996 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
3997 * carry any of the "n_edge" groups of dependences?
3998 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
3999 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4000 * by the edge are carried by the solution.
4001 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4002 * one of those is carried.
4004 * Note that despite the fact that the problem is solved using a rational
4005 * solver, the solution is guaranteed to be integral.
4006 * Specifically, the dependence distance lower bounds e_i (and therefore
4007 * also their sum) are integers. See Lemma 5 of [1].
4009 * Any potential denominator of the sum is cleared by this function.
4010 * The denominator is not relevant for any of the other elements
4013 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4014 * Problem, Part II: Multi-Dimensional Time.
4015 * In Intl. Journal of Parallel Programming, 1992.
4017 static int carries_dependences(__isl_keep isl_vec
*sol
, int n_edge
)
4019 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
4020 isl_int_set_si(sol
->el
[0], 1);
4021 return isl_int_cmp_si(sol
->el
[1], n_edge
) < 0;
4024 /* Return the lexicographically smallest rational point in "lp",
4025 * assuming that all variables are non-negative and performing some
4026 * additional sanity checks.
4027 * In particular, "lp" should not be empty by construction.
4028 * Double check that this is the case.
4029 * Also, check that dependences are carried for at least one of
4030 * the "n_edge" edges.
4032 * If the computed schedule performs loop coalescing on a given node,
4033 * i.e., if it is of the form
4035 * c_i i + c_j j + ...
4037 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4038 * to cut out this solution. Repeat this process until no more loop
4039 * coalescing occurs or until no more dependences can be carried.
4040 * In the latter case, revert to the previously computed solution.
4042 static __isl_give isl_vec
*non_neg_lexmin(struct isl_sched_graph
*graph
,
4043 __isl_take isl_basic_set
*lp
, int n_edge
)
4048 isl_vec
*sol
, *prev
= NULL
;
4049 int treat_coalescing
;
4053 ctx
= isl_basic_set_get_ctx(lp
);
4054 treat_coalescing
= isl_options_get_schedule_treat_coalescing(ctx
);
4055 tl
= isl_tab_lexmin_from_basic_set(lp
);
4058 sol
= non_empty_solution(tl
);
4062 if (!carries_dependences(sol
, n_edge
)) {
4064 isl_die(ctx
, isl_error_unknown
,
4065 "unable to carry dependences",
4071 prev
= isl_vec_free(prev
);
4072 if (!treat_coalescing
)
4074 for (i
= 0; i
< graph
->n
; ++i
) {
4075 struct isl_sched_node
*node
= &graph
->node
[i
];
4077 pos
= find_node_coalescing(node
, sol
);
4080 if (pos
< node
->nvar
)
4085 tl
= zero_out_node_coef(tl
, &graph
->node
[i
], pos
);
4087 } while (i
< graph
->n
);
4089 isl_tab_lexmin_free(tl
);
4093 isl_tab_lexmin_free(tl
);
4099 /* Construct a schedule row for each node such that as many dependences
4100 * as possible are carried and then continue with the next band.
4102 * If the computed schedule row turns out to be trivial on one or
4103 * more nodes where it should not be trivial, then we throw it away
4104 * and try again on each component separately.
4106 * If there is only one component, then we accept the schedule row anyway,
4107 * but we do not consider it as a complete row and therefore do not
4108 * increment graph->n_row. Note that the ranks of the nodes that
4109 * do get a non-trivial schedule part will get updated regardless and
4110 * graph->maxvar is computed based on these ranks. The test for
4111 * whether more schedule rows are required in compute_schedule_wcc
4112 * is therefore not affected.
4114 * Insert a band corresponding to the schedule row at position "node"
4115 * of the schedule tree and continue with the construction of the schedule.
4116 * This insertion and the continued construction is performed by split_scaled
4117 * after optionally checking for non-trivial common divisors.
4119 static __isl_give isl_schedule_node
*carry_dependences(
4120 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4133 for (i
= 0; i
< graph
->n_edge
; ++i
)
4134 n_edge
+= graph
->edge
[i
].map
->n
;
4136 ctx
= isl_schedule_node_get_ctx(node
);
4137 if (setup_carry_lp(ctx
, graph
) < 0)
4138 return isl_schedule_node_free(node
);
4140 lp
= isl_basic_set_copy(graph
->lp
);
4141 sol
= non_neg_lexmin(graph
, lp
, n_edge
);
4143 return isl_schedule_node_free(node
);
4145 trivial
= is_any_trivial(graph
, sol
);
4147 sol
= isl_vec_free(sol
);
4148 } else if (trivial
&& graph
->scc
> 1) {
4150 return compute_component_schedule(node
, graph
, 1);
4153 if (update_schedule(graph
, sol
, 0, 0) < 0)
4154 return isl_schedule_node_free(node
);
4158 return split_scaled(node
, graph
);
4161 /* Topologically sort statements mapped to the same schedule iteration
4162 * and add insert a sequence node in front of "node"
4163 * corresponding to this order.
4164 * If "initialized" is set, then it may be assumed that compute_maxvar
4165 * has been called on the current band. Otherwise, call
4166 * compute_maxvar if and before carry_dependences gets called.
4168 * If it turns out to be impossible to sort the statements apart,
4169 * because different dependences impose different orderings
4170 * on the statements, then we extend the schedule such that
4171 * it carries at least one more dependence.
4173 static __isl_give isl_schedule_node
*sort_statements(
4174 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4178 isl_union_set_list
*filters
;
4183 ctx
= isl_schedule_node_get_ctx(node
);
4185 isl_die(ctx
, isl_error_internal
,
4186 "graph should have at least one node",
4187 return isl_schedule_node_free(node
));
4192 if (update_edges(ctx
, graph
) < 0)
4193 return isl_schedule_node_free(node
);
4195 if (graph
->n_edge
== 0)
4198 if (detect_sccs(ctx
, graph
) < 0)
4199 return isl_schedule_node_free(node
);
4202 if (graph
->scc
< graph
->n
) {
4203 if (!initialized
&& compute_maxvar(graph
) < 0)
4204 return isl_schedule_node_free(node
);
4205 return carry_dependences(node
, graph
);
4208 filters
= extract_sccs(ctx
, graph
);
4209 node
= isl_schedule_node_insert_sequence(node
, filters
);
4214 /* Are there any (non-empty) (conditional) validity edges in the graph?
4216 static int has_validity_edges(struct isl_sched_graph
*graph
)
4220 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4223 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
4228 if (is_any_validity(&graph
->edge
[i
]))
4235 /* Should we apply a Feautrier step?
4236 * That is, did the user request the Feautrier algorithm and are
4237 * there any validity dependences (left)?
4239 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
4241 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
4244 return has_validity_edges(graph
);
4247 /* Compute a schedule for a connected dependence graph using Feautrier's
4248 * multi-dimensional scheduling algorithm and return the updated schedule node.
4250 * The original algorithm is described in [1].
4251 * The main idea is to minimize the number of scheduling dimensions, by
4252 * trying to satisfy as many dependences as possible per scheduling dimension.
4254 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4255 * Problem, Part II: Multi-Dimensional Time.
4256 * In Intl. Journal of Parallel Programming, 1992.
4258 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
4259 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4261 return carry_dependences(node
, graph
);
4264 /* Turn off the "local" bit on all (condition) edges.
4266 static void clear_local_edges(struct isl_sched_graph
*graph
)
4270 for (i
= 0; i
< graph
->n_edge
; ++i
)
4271 if (is_condition(&graph
->edge
[i
]))
4272 clear_local(&graph
->edge
[i
]);
4275 /* Does "graph" have both condition and conditional validity edges?
4277 static int need_condition_check(struct isl_sched_graph
*graph
)
4280 int any_condition
= 0;
4281 int any_conditional_validity
= 0;
4283 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4284 if (is_condition(&graph
->edge
[i
]))
4286 if (is_conditional_validity(&graph
->edge
[i
]))
4287 any_conditional_validity
= 1;
4290 return any_condition
&& any_conditional_validity
;
4293 /* Does "graph" contain any coincidence edge?
4295 static int has_any_coincidence(struct isl_sched_graph
*graph
)
4299 for (i
= 0; i
< graph
->n_edge
; ++i
)
4300 if (is_coincidence(&graph
->edge
[i
]))
4306 /* Extract the final schedule row as a map with the iteration domain
4307 * of "node" as domain.
4309 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
4311 isl_local_space
*ls
;
4315 row
= isl_mat_rows(node
->sched
) - 1;
4316 ls
= isl_local_space_from_space(isl_space_copy(node
->space
));
4317 aff
= extract_schedule_row(ls
, node
, row
);
4318 return isl_map_from_aff(aff
);
4321 /* Is the conditional validity dependence in the edge with index "edge_index"
4322 * violated by the latest (i.e., final) row of the schedule?
4323 * That is, is i scheduled after j
4324 * for any conditional validity dependence i -> j?
4326 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
4328 isl_map
*src_sched
, *dst_sched
, *map
;
4329 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
4332 src_sched
= final_row(edge
->src
);
4333 dst_sched
= final_row(edge
->dst
);
4334 map
= isl_map_copy(edge
->map
);
4335 map
= isl_map_apply_domain(map
, src_sched
);
4336 map
= isl_map_apply_range(map
, dst_sched
);
4337 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
4338 empty
= isl_map_is_empty(map
);
4347 /* Does "graph" have any satisfied condition edges that
4348 * are adjacent to the conditional validity constraint with
4349 * domain "conditional_source" and range "conditional_sink"?
4351 * A satisfied condition is one that is not local.
4352 * If a condition was forced to be local already (i.e., marked as local)
4353 * then there is no need to check if it is in fact local.
4355 * Additionally, mark all adjacent condition edges found as local.
4357 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
4358 __isl_keep isl_union_set
*conditional_source
,
4359 __isl_keep isl_union_set
*conditional_sink
)
4364 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4365 int adjacent
, local
;
4366 isl_union_map
*condition
;
4368 if (!is_condition(&graph
->edge
[i
]))
4370 if (is_local(&graph
->edge
[i
]))
4373 condition
= graph
->edge
[i
].tagged_condition
;
4374 adjacent
= domain_intersects(condition
, conditional_sink
);
4375 if (adjacent
>= 0 && !adjacent
)
4376 adjacent
= range_intersects(condition
,
4377 conditional_source
);
4383 set_local(&graph
->edge
[i
]);
4385 local
= is_condition_false(&graph
->edge
[i
]);
4395 /* Are there any violated conditional validity dependences with
4396 * adjacent condition dependences that are not local with respect
4397 * to the current schedule?
4398 * That is, is the conditional validity constraint violated?
4400 * Additionally, mark all those adjacent condition dependences as local.
4401 * We also mark those adjacent condition dependences that were not marked
4402 * as local before, but just happened to be local already. This ensures
4403 * that they remain local if the schedule is recomputed.
4405 * We first collect domain and range of all violated conditional validity
4406 * dependences and then check if there are any adjacent non-local
4407 * condition dependences.
4409 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
4410 struct isl_sched_graph
*graph
)
4414 isl_union_set
*source
, *sink
;
4416 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4417 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4418 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4419 isl_union_set
*uset
;
4420 isl_union_map
*umap
;
4423 if (!is_conditional_validity(&graph
->edge
[i
]))
4426 violated
= is_violated(graph
, i
);
4434 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
4435 uset
= isl_union_map_domain(umap
);
4436 source
= isl_union_set_union(source
, uset
);
4437 source
= isl_union_set_coalesce(source
);
4439 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
4440 uset
= isl_union_map_range(umap
);
4441 sink
= isl_union_set_union(sink
, uset
);
4442 sink
= isl_union_set_coalesce(sink
);
4446 any
= has_adjacent_true_conditions(graph
, source
, sink
);
4448 isl_union_set_free(source
);
4449 isl_union_set_free(sink
);
4452 isl_union_set_free(source
);
4453 isl_union_set_free(sink
);
4457 /* Examine the current band (the rows between graph->band_start and
4458 * graph->n_total_row), deciding whether to drop it or add it to "node"
4459 * and then continue with the computation of the next band, if any.
4460 * If "initialized" is set, then it may be assumed that compute_maxvar
4461 * has been called on the current band. Otherwise, call
4462 * compute_maxvar if and before carry_dependences gets called.
4464 * The caller keeps looking for a new row as long as
4465 * graph->n_row < graph->maxvar. If the latest attempt to find
4466 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4468 * - split between SCCs and start over (assuming we found an interesting
4469 * pair of SCCs between which to split)
4470 * - continue with the next band (assuming the current band has at least
4472 * - try to carry as many dependences as possible and continue with the next
4474 * In each case, we first insert a band node in the schedule tree
4475 * if any rows have been computed.
4477 * If the caller managed to complete the schedule, we insert a band node
4478 * (if any schedule rows were computed) and we finish off by topologically
4479 * sorting the statements based on the remaining dependences.
4481 static __isl_give isl_schedule_node
*compute_schedule_finish_band(
4482 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4490 if (graph
->n_row
< graph
->maxvar
) {
4492 int empty
= graph
->n_total_row
== graph
->band_start
;
4494 ctx
= isl_schedule_node_get_ctx(node
);
4495 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
4496 return compute_next_band(node
, graph
, 1);
4497 if (graph
->src_scc
>= 0)
4498 return compute_split_schedule(node
, graph
);
4500 return compute_next_band(node
, graph
, 1);
4501 if (!initialized
&& compute_maxvar(graph
) < 0)
4502 return isl_schedule_node_free(node
);
4503 return carry_dependences(node
, graph
);
4506 insert
= graph
->n_total_row
> graph
->band_start
;
4508 node
= insert_current_band(node
, graph
, 1);
4509 node
= isl_schedule_node_child(node
, 0);
4511 node
= sort_statements(node
, graph
, initialized
);
4513 node
= isl_schedule_node_parent(node
);
4518 /* Construct a band of schedule rows for a connected dependence graph.
4519 * The caller is responsible for determining the strongly connected
4520 * components and calling compute_maxvar first.
4522 * We try to find a sequence of as many schedule rows as possible that result
4523 * in non-negative dependence distances (independent of the previous rows
4524 * in the sequence, i.e., such that the sequence is tilable), with as
4525 * many of the initial rows as possible satisfying the coincidence constraints.
4526 * The computation stops if we can't find any more rows or if we have found
4527 * all the rows we wanted to find.
4529 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4530 * outermost dimension to satisfy the coincidence constraints. If this
4531 * turns out to be impossible, we fall back on the general scheme above
4532 * and try to carry as many dependences as possible.
4534 * If "graph" contains both condition and conditional validity dependences,
4535 * then we need to check that that the conditional schedule constraint
4536 * is satisfied, i.e., there are no violated conditional validity dependences
4537 * that are adjacent to any non-local condition dependences.
4538 * If there are, then we mark all those adjacent condition dependences
4539 * as local and recompute the current band. Those dependences that
4540 * are marked local will then be forced to be local.
4541 * The initial computation is performed with no dependences marked as local.
4542 * If we are lucky, then there will be no violated conditional validity
4543 * dependences adjacent to any non-local condition dependences.
4544 * Otherwise, we mark some additional condition dependences as local and
4545 * recompute. We continue this process until there are no violations left or
4546 * until we are no longer able to compute a schedule.
4547 * Since there are only a finite number of dependences,
4548 * there will only be a finite number of iterations.
4550 static isl_stat
compute_schedule_wcc_band(isl_ctx
*ctx
,
4551 struct isl_sched_graph
*graph
)
4553 int has_coincidence
;
4554 int use_coincidence
;
4555 int force_coincidence
= 0;
4556 int check_conditional
;
4558 if (sort_sccs(graph
) < 0)
4559 return isl_stat_error
;
4561 clear_local_edges(graph
);
4562 check_conditional
= need_condition_check(graph
);
4563 has_coincidence
= has_any_coincidence(graph
);
4565 if (ctx
->opt
->schedule_outer_coincidence
)
4566 force_coincidence
= 1;
4568 use_coincidence
= has_coincidence
;
4569 while (graph
->n_row
< graph
->maxvar
) {
4574 graph
->src_scc
= -1;
4575 graph
->dst_scc
= -1;
4577 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
4578 return isl_stat_error
;
4579 sol
= solve_lp(graph
);
4581 return isl_stat_error
;
4582 if (sol
->size
== 0) {
4583 int empty
= graph
->n_total_row
== graph
->band_start
;
4586 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
4587 use_coincidence
= 0;
4592 coincident
= !has_coincidence
|| use_coincidence
;
4593 if (update_schedule(graph
, sol
, 1, coincident
) < 0)
4594 return isl_stat_error
;
4596 if (!check_conditional
)
4598 violated
= has_violated_conditional_constraint(ctx
, graph
);
4600 return isl_stat_error
;
4603 if (reset_band(graph
) < 0)
4604 return isl_stat_error
;
4605 use_coincidence
= has_coincidence
;
4611 /* Compute a schedule for a connected dependence graph by considering
4612 * the graph as a whole and return the updated schedule node.
4614 * The actual schedule rows of the current band are computed by
4615 * compute_schedule_wcc_band. compute_schedule_finish_band takes
4616 * care of integrating the band into "node" and continuing
4619 static __isl_give isl_schedule_node
*compute_schedule_wcc_whole(
4620 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4627 ctx
= isl_schedule_node_get_ctx(node
);
4628 if (compute_schedule_wcc_band(ctx
, graph
) < 0)
4629 return isl_schedule_node_free(node
);
4631 return compute_schedule_finish_band(node
, graph
, 1);
4634 /* Clustering information used by compute_schedule_wcc_clustering.
4636 * "n" is the number of SCCs in the original dependence graph
4637 * "scc" is an array of "n" elements, each representing an SCC
4638 * of the original dependence graph. All entries in the same cluster
4639 * have the same number of schedule rows.
4640 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
4641 * where each cluster is represented by the index of the first SCC
4642 * in the cluster. Initially, each SCC belongs to a cluster containing
4645 * "scc_in_merge" is used by merge_clusters_along_edge to keep
4646 * track of which SCCs need to be merged.
4648 * "cluster" contains the merged clusters of SCCs after the clustering
4651 * "scc_node" is a temporary data structure used inside copy_partial.
4652 * For each SCC, it keeps track of the number of nodes in the SCC
4653 * that have already been copied.
4655 struct isl_clustering
{
4657 struct isl_sched_graph
*scc
;
4658 struct isl_sched_graph
*cluster
;
4664 /* Initialize the clustering data structure "c" from "graph".
4666 * In particular, allocate memory, extract the SCCs from "graph"
4667 * into c->scc, initialize scc_cluster and construct
4668 * a band of schedule rows for each SCC.
4669 * Within each SCC, there is only one SCC by definition.
4670 * Each SCC initially belongs to a cluster containing only that SCC.
4672 static isl_stat
clustering_init(isl_ctx
*ctx
, struct isl_clustering
*c
,
4673 struct isl_sched_graph
*graph
)
4678 c
->scc
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
4679 c
->cluster
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
4680 c
->scc_cluster
= isl_calloc_array(ctx
, int, c
->n
);
4681 c
->scc_node
= isl_calloc_array(ctx
, int, c
->n
);
4682 c
->scc_in_merge
= isl_calloc_array(ctx
, int, c
->n
);
4683 if (!c
->scc
|| !c
->cluster
||
4684 !c
->scc_cluster
|| !c
->scc_node
|| !c
->scc_in_merge
)
4685 return isl_stat_error
;
4687 for (i
= 0; i
< c
->n
; ++i
) {
4688 if (extract_sub_graph(ctx
, graph
, &node_scc_exactly
,
4689 &edge_scc_exactly
, i
, &c
->scc
[i
]) < 0)
4690 return isl_stat_error
;
4692 if (compute_maxvar(&c
->scc
[i
]) < 0)
4693 return isl_stat_error
;
4694 if (compute_schedule_wcc_band(ctx
, &c
->scc
[i
]) < 0)
4695 return isl_stat_error
;
4696 c
->scc_cluster
[i
] = i
;
4702 /* Free all memory allocated for "c".
4704 static void clustering_free(isl_ctx
*ctx
, struct isl_clustering
*c
)
4709 for (i
= 0; i
< c
->n
; ++i
)
4710 graph_free(ctx
, &c
->scc
[i
]);
4713 for (i
= 0; i
< c
->n
; ++i
)
4714 graph_free(ctx
, &c
->cluster
[i
]);
4716 free(c
->scc_cluster
);
4718 free(c
->scc_in_merge
);
4721 /* Should we refrain from merging the cluster in "graph" with
4722 * any other cluster?
4723 * In particular, is its current schedule band empty and incomplete.
4725 static int bad_cluster(struct isl_sched_graph
*graph
)
4727 return graph
->n_row
< graph
->maxvar
&&
4728 graph
->n_total_row
== graph
->band_start
;
4731 /* Return the index of an edge in "graph" that can be used to merge
4732 * two clusters in "c".
4733 * Return graph->n_edge if no such edge can be found.
4734 * Return -1 on error.
4736 * In particular, return a proximity edge between two clusters
4737 * that is not marked "no_merge" and such that neither of the
4738 * two clusters has an incomplete, empty band.
4740 * If there are multiple such edges, then try and find the most
4741 * appropriate edge to use for merging. In particular, pick the edge
4742 * with the greatest weight. If there are multiple of those,
4743 * then pick one with the shortest distance between
4744 * the two cluster representatives.
4746 static int find_proximity(struct isl_sched_graph
*graph
,
4747 struct isl_clustering
*c
)
4749 int i
, best
= graph
->n_edge
, best_dist
, best_weight
;
4751 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4752 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4755 if (!is_proximity(edge
))
4759 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
4760 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
4762 dist
= c
->scc_cluster
[edge
->dst
->scc
] -
4763 c
->scc_cluster
[edge
->src
->scc
];
4766 weight
= edge
->weight
;
4767 if (best
< graph
->n_edge
) {
4768 if (best_weight
> weight
)
4770 if (best_weight
== weight
&& best_dist
<= dist
)
4775 best_weight
= weight
;
4781 /* Internal data structure used in mark_merge_sccs.
4783 * "graph" is the dependence graph in which a strongly connected
4784 * component is constructed.
4785 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
4786 * "src" and "dst" are the indices of the nodes that are being merged.
4788 struct isl_mark_merge_sccs_data
{
4789 struct isl_sched_graph
*graph
;
4795 /* Check whether the cluster containing node "i" depends on the cluster
4796 * containing node "j". If "i" and "j" belong to the same cluster,
4797 * then they are taken to depend on each other to ensure that
4798 * the resulting strongly connected component consists of complete
4799 * clusters. Furthermore, if "i" and "j" are the two nodes that
4800 * are being merged, then they are taken to depend on each other as well.
4801 * Otherwise, check if there is a (conditional) validity dependence
4802 * from node[j] to node[i], forcing node[i] to follow node[j].
4804 static isl_bool
cluster_follows(int i
, int j
, void *user
)
4806 struct isl_mark_merge_sccs_data
*data
= user
;
4807 struct isl_sched_graph
*graph
= data
->graph
;
4808 int *scc_cluster
= data
->scc_cluster
;
4810 if (data
->src
== i
&& data
->dst
== j
)
4811 return isl_bool_true
;
4812 if (data
->src
== j
&& data
->dst
== i
)
4813 return isl_bool_true
;
4814 if (scc_cluster
[graph
->node
[i
].scc
] == scc_cluster
[graph
->node
[j
].scc
])
4815 return isl_bool_true
;
4817 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
4820 /* Mark all SCCs that belong to either of the two clusters in "c"
4821 * connected by the edge in "graph" with index "edge", or to any
4822 * of the intermediate clusters.
4823 * The marking is recorded in c->scc_in_merge.
4825 * The given edge has been selected for merging two clusters,
4826 * meaning that there is at least a proximity edge between the two nodes.
4827 * However, there may also be (indirect) validity dependences
4828 * between the two nodes. When merging the two clusters, all clusters
4829 * containing one or more of the intermediate nodes along the
4830 * indirect validity dependences need to be merged in as well.
4832 * First collect all such nodes by computing the strongly connected
4833 * component (SCC) containing the two nodes connected by the edge, where
4834 * the two nodes are considered to depend on each other to make
4835 * sure they end up in the same SCC. Similarly, each node is considered
4836 * to depend on every other node in the same cluster to ensure
4837 * that the SCC consists of complete clusters.
4839 * Then the original SCCs that contain any of these nodes are marked
4840 * in c->scc_in_merge.
4842 static isl_stat
mark_merge_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4843 int edge
, struct isl_clustering
*c
)
4845 struct isl_mark_merge_sccs_data data
;
4846 struct isl_tarjan_graph
*g
;
4849 for (i
= 0; i
< c
->n
; ++i
)
4850 c
->scc_in_merge
[i
] = 0;
4853 data
.scc_cluster
= c
->scc_cluster
;
4854 data
.src
= graph
->edge
[edge
].src
- graph
->node
;
4855 data
.dst
= graph
->edge
[edge
].dst
- graph
->node
;
4857 g
= isl_tarjan_graph_component(ctx
, graph
->n
, data
.dst
,
4858 &cluster_follows
, &data
);
4864 isl_die(ctx
, isl_error_internal
,
4865 "expecting at least two nodes in component",
4867 if (g
->order
[--i
] != -1)
4868 isl_die(ctx
, isl_error_internal
,
4869 "expecting end of component marker", goto error
);
4871 for (--i
; i
>= 0 && g
->order
[i
] != -1; --i
) {
4872 int scc
= graph
->node
[g
->order
[i
]].scc
;
4873 c
->scc_in_merge
[scc
] = 1;
4876 isl_tarjan_graph_free(g
);
4879 isl_tarjan_graph_free(g
);
4880 return isl_stat_error
;
4883 /* Construct the identifier "cluster_i".
4885 static __isl_give isl_id
*cluster_id(isl_ctx
*ctx
, int i
)
4889 snprintf(name
, sizeof(name
), "cluster_%d", i
);
4890 return isl_id_alloc(ctx
, name
, NULL
);
4893 /* Construct the space of the cluster with index "i" containing
4894 * the strongly connected component "scc".
4896 * In particular, construct a space called cluster_i with dimension equal
4897 * to the number of schedule rows in the current band of "scc".
4899 static __isl_give isl_space
*cluster_space(struct isl_sched_graph
*scc
, int i
)
4905 nvar
= scc
->n_total_row
- scc
->band_start
;
4906 space
= isl_space_copy(scc
->node
[0].space
);
4907 space
= isl_space_params(space
);
4908 space
= isl_space_set_from_params(space
);
4909 space
= isl_space_add_dims(space
, isl_dim_set
, nvar
);
4910 id
= cluster_id(isl_space_get_ctx(space
), i
);
4911 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
4916 /* Collect the domain of the graph for merging clusters.
4918 * In particular, for each cluster with first SCC "i", construct
4919 * a set in the space called cluster_i with dimension equal
4920 * to the number of schedule rows in the current band of the cluster.
4922 static __isl_give isl_union_set
*collect_domain(isl_ctx
*ctx
,
4923 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
4927 isl_union_set
*domain
;
4929 space
= isl_space_params_alloc(ctx
, 0);
4930 domain
= isl_union_set_empty(space
);
4932 for (i
= 0; i
< graph
->scc
; ++i
) {
4935 if (!c
->scc_in_merge
[i
])
4937 if (c
->scc_cluster
[i
] != i
)
4939 space
= cluster_space(&c
->scc
[i
], i
);
4940 domain
= isl_union_set_add_set(domain
, isl_set_universe(space
));
4946 /* Construct a map from the original instances to the corresponding
4947 * cluster instance in the current bands of the clusters in "c".
4949 static __isl_give isl_union_map
*collect_cluster_map(isl_ctx
*ctx
,
4950 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
4954 isl_union_map
*cluster_map
;
4956 space
= isl_space_params_alloc(ctx
, 0);
4957 cluster_map
= isl_union_map_empty(space
);
4958 for (i
= 0; i
< graph
->scc
; ++i
) {
4962 if (!c
->scc_in_merge
[i
])
4965 id
= cluster_id(ctx
, c
->scc_cluster
[i
]);
4966 start
= c
->scc
[i
].band_start
;
4967 n
= c
->scc
[i
].n_total_row
- start
;
4968 for (j
= 0; j
< c
->scc
[i
].n
; ++j
) {
4971 struct isl_sched_node
*node
= &c
->scc
[i
].node
[j
];
4973 ma
= node_extract_partial_schedule_multi_aff(node
,
4975 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
,
4977 map
= isl_map_from_multi_aff(ma
);
4978 cluster_map
= isl_union_map_add_map(cluster_map
, map
);
4986 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
4987 * that are not isl_edge_condition or isl_edge_conditional_validity.
4989 static __isl_give isl_schedule_constraints
*add_non_conditional_constraints(
4990 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
4991 __isl_take isl_schedule_constraints
*sc
)
4993 enum isl_edge_type t
;
4998 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
4999 if (t
== isl_edge_condition
||
5000 t
== isl_edge_conditional_validity
)
5002 if (!is_type(edge
, t
))
5004 sc
= isl_schedule_constraints_add(sc
, t
,
5005 isl_union_map_copy(umap
));
5011 /* Add schedule constraints of types isl_edge_condition and
5012 * isl_edge_conditional_validity to "sc" by applying "umap" to
5013 * the domains of the wrapped relations in domain and range
5014 * of the corresponding tagged constraints of "edge".
5016 static __isl_give isl_schedule_constraints
*add_conditional_constraints(
5017 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
5018 __isl_take isl_schedule_constraints
*sc
)
5020 enum isl_edge_type t
;
5021 isl_union_map
*tagged
;
5023 for (t
= isl_edge_condition
; t
<= isl_edge_conditional_validity
; ++t
) {
5024 if (!is_type(edge
, t
))
5026 if (t
== isl_edge_condition
)
5027 tagged
= isl_union_map_copy(edge
->tagged_condition
);
5029 tagged
= isl_union_map_copy(edge
->tagged_validity
);
5030 tagged
= isl_union_map_zip(tagged
);
5031 tagged
= isl_union_map_apply_domain(tagged
,
5032 isl_union_map_copy(umap
));
5033 tagged
= isl_union_map_zip(tagged
);
5034 sc
= isl_schedule_constraints_add(sc
, t
, tagged
);
5042 /* Given a mapping "cluster_map" from the original instances to
5043 * the cluster instances, add schedule constraints on the clusters
5044 * to "sc" corresponding to the original constraints represented by "edge".
5046 * For non-tagged dependence constraints, the cluster constraints
5047 * are obtained by applying "cluster_map" to the edge->map.
5049 * For tagged dependence constraints, "cluster_map" needs to be applied
5050 * to the domains of the wrapped relations in domain and range
5051 * of the tagged dependence constraints. Pick out the mappings
5052 * from these domains from "cluster_map" and construct their product.
5053 * This mapping can then be applied to the pair of domains.
5055 static __isl_give isl_schedule_constraints
*collect_edge_constraints(
5056 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*cluster_map
,
5057 __isl_take isl_schedule_constraints
*sc
)
5059 isl_union_map
*umap
;
5061 isl_union_set
*uset
;
5062 isl_union_map
*umap1
, *umap2
;
5067 umap
= isl_union_map_from_map(isl_map_copy(edge
->map
));
5068 umap
= isl_union_map_apply_domain(umap
,
5069 isl_union_map_copy(cluster_map
));
5070 umap
= isl_union_map_apply_range(umap
,
5071 isl_union_map_copy(cluster_map
));
5072 sc
= add_non_conditional_constraints(edge
, umap
, sc
);
5073 isl_union_map_free(umap
);
5075 if (!sc
|| (!is_condition(edge
) && !is_conditional_validity(edge
)))
5078 space
= isl_space_domain(isl_map_get_space(edge
->map
));
5079 uset
= isl_union_set_from_set(isl_set_universe(space
));
5080 umap1
= isl_union_map_copy(cluster_map
);
5081 umap1
= isl_union_map_intersect_domain(umap1
, uset
);
5082 space
= isl_space_range(isl_map_get_space(edge
->map
));
5083 uset
= isl_union_set_from_set(isl_set_universe(space
));
5084 umap2
= isl_union_map_copy(cluster_map
);
5085 umap2
= isl_union_map_intersect_domain(umap2
, uset
);
5086 umap
= isl_union_map_product(umap1
, umap2
);
5088 sc
= add_conditional_constraints(edge
, umap
, sc
);
5090 isl_union_map_free(umap
);
5094 /* Given a mapping "cluster_map" from the original instances to
5095 * the cluster instances, add schedule constraints on the clusters
5096 * to "sc" corresponding to all edges in "graph" between nodes that
5097 * belong to SCCs that are marked for merging in "scc_in_merge".
5099 static __isl_give isl_schedule_constraints
*collect_constraints(
5100 struct isl_sched_graph
*graph
, int *scc_in_merge
,
5101 __isl_keep isl_union_map
*cluster_map
,
5102 __isl_take isl_schedule_constraints
*sc
)
5106 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5107 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5109 if (!scc_in_merge
[edge
->src
->scc
])
5111 if (!scc_in_merge
[edge
->dst
->scc
])
5113 sc
= collect_edge_constraints(edge
, cluster_map
, sc
);
5119 /* Construct a dependence graph for scheduling clusters with respect
5120 * to each other and store the result in "merge_graph".
5121 * In particular, the nodes of the graph correspond to the schedule
5122 * dimensions of the current bands of those clusters that have been
5123 * marked for merging in "c".
5125 * First construct an isl_schedule_constraints object for this domain
5126 * by transforming the edges in "graph" to the domain.
5127 * Then initialize a dependence graph for scheduling from these
5130 static isl_stat
init_merge_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5131 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
5133 isl_union_set
*domain
;
5134 isl_union_map
*cluster_map
;
5135 isl_schedule_constraints
*sc
;
5138 domain
= collect_domain(ctx
, graph
, c
);
5139 sc
= isl_schedule_constraints_on_domain(domain
);
5141 return isl_stat_error
;
5142 cluster_map
= collect_cluster_map(ctx
, graph
, c
);
5143 sc
= collect_constraints(graph
, c
->scc_in_merge
, cluster_map
, sc
);
5144 isl_union_map_free(cluster_map
);
5146 r
= graph_init(merge_graph
, sc
);
5148 isl_schedule_constraints_free(sc
);
5153 /* Compute the maximal number of remaining schedule rows that still need
5154 * to be computed for the nodes that belong to clusters with the maximal
5155 * dimension for the current band (i.e., the band that is to be merged).
5156 * Only clusters that are about to be merged are considered.
5157 * "maxvar" is the maximal dimension for the current band.
5158 * "c" contains information about the clusters.
5160 * Return the maximal number of remaining schedule rows or -1 on error.
5162 static int compute_maxvar_max_slack(int maxvar
, struct isl_clustering
*c
)
5168 for (i
= 0; i
< c
->n
; ++i
) {
5170 struct isl_sched_graph
*scc
;
5172 if (!c
->scc_in_merge
[i
])
5175 nvar
= scc
->n_total_row
- scc
->band_start
;
5178 for (j
= 0; j
< scc
->n
; ++j
) {
5179 struct isl_sched_node
*node
= &scc
->node
[j
];
5182 if (node_update_cmap(node
) < 0)
5184 slack
= node
->nvar
- node
->rank
;
5185 if (slack
> max_slack
)
5193 /* If there are any clusters where the dimension of the current band
5194 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5195 * if there are any nodes in such a cluster where the number
5196 * of remaining schedule rows that still need to be computed
5197 * is greater than "max_slack", then return the smallest current band
5198 * dimension of all these clusters. Otherwise return the original value
5199 * of "maxvar". Return -1 in case of any error.
5200 * Only clusters that are about to be merged are considered.
5201 * "c" contains information about the clusters.
5203 static int limit_maxvar_to_slack(int maxvar
, int max_slack
,
5204 struct isl_clustering
*c
)
5208 for (i
= 0; i
< c
->n
; ++i
) {
5210 struct isl_sched_graph
*scc
;
5212 if (!c
->scc_in_merge
[i
])
5215 nvar
= scc
->n_total_row
- scc
->band_start
;
5218 for (j
= 0; j
< scc
->n
; ++j
) {
5219 struct isl_sched_node
*node
= &scc
->node
[j
];
5222 if (node_update_cmap(node
) < 0)
5224 slack
= node
->nvar
- node
->rank
;
5225 if (slack
> max_slack
) {
5235 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5236 * that still need to be computed. In particular, if there is a node
5237 * in a cluster where the dimension of the current band is smaller
5238 * than merge_graph->maxvar, but the number of remaining schedule rows
5239 * is greater than that of any node in a cluster with the maximal
5240 * dimension for the current band (i.e., merge_graph->maxvar),
5241 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5242 * of those clusters. Without this adjustment, the total number of
5243 * schedule dimensions would be increased, resulting in a skewed view
5244 * of the number of coincident dimensions.
5245 * "c" contains information about the clusters.
5247 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5248 * then there is no point in attempting any merge since it will be rejected
5249 * anyway. Set merge_graph->maxvar to zero in such cases.
5251 static isl_stat
adjust_maxvar_to_slack(isl_ctx
*ctx
,
5252 struct isl_sched_graph
*merge_graph
, struct isl_clustering
*c
)
5254 int max_slack
, maxvar
;
5256 max_slack
= compute_maxvar_max_slack(merge_graph
->maxvar
, c
);
5258 return isl_stat_error
;
5259 maxvar
= limit_maxvar_to_slack(merge_graph
->maxvar
, max_slack
, c
);
5261 return isl_stat_error
;
5263 if (maxvar
< merge_graph
->maxvar
) {
5264 if (isl_options_get_schedule_maximize_band_depth(ctx
))
5265 merge_graph
->maxvar
= 0;
5267 merge_graph
->maxvar
= maxvar
;
5273 /* Return the number of coincident dimensions in the current band of "graph",
5274 * where the nodes of "graph" are assumed to be scheduled by a single band.
5276 static int get_n_coincident(struct isl_sched_graph
*graph
)
5280 for (i
= graph
->band_start
; i
< graph
->n_total_row
; ++i
)
5281 if (!graph
->node
[0].coincident
[i
])
5284 return i
- graph
->band_start
;
5287 /* Should the clusters be merged based on the cluster schedule
5288 * in the current (and only) band of "merge_graph", given that
5289 * coincidence should be maximized?
5291 * If the number of coincident schedule dimensions in the merged band
5292 * would be less than the maximal number of coincident schedule dimensions
5293 * in any of the merged clusters, then the clusters should not be merged.
5295 static isl_bool
ok_to_merge_coincident(struct isl_clustering
*c
,
5296 struct isl_sched_graph
*merge_graph
)
5303 for (i
= 0; i
< c
->n
; ++i
) {
5304 if (!c
->scc_in_merge
[i
])
5306 n_coincident
= get_n_coincident(&c
->scc
[i
]);
5307 if (n_coincident
> max_coincident
)
5308 max_coincident
= n_coincident
;
5311 n_coincident
= get_n_coincident(merge_graph
);
5313 return n_coincident
>= max_coincident
;
5316 /* Return the transformation on "node" expressed by the current (and only)
5317 * band of "merge_graph" applied to the clusters in "c".
5319 * First find the representation of "node" in its SCC in "c" and
5320 * extract the transformation expressed by the current band.
5321 * Then extract the transformation applied by "merge_graph"
5322 * to the cluster to which this SCC belongs.
5323 * Combine the two to obtain the complete transformation on the node.
5325 * Note that the range of the first transformation is an anonymous space,
5326 * while the domain of the second is named "cluster_X". The range
5327 * of the former therefore needs to be adjusted before the two
5330 static __isl_give isl_map
*extract_node_transformation(isl_ctx
*ctx
,
5331 struct isl_sched_node
*node
, struct isl_clustering
*c
,
5332 struct isl_sched_graph
*merge_graph
)
5334 struct isl_sched_node
*scc_node
, *cluster_node
;
5338 isl_multi_aff
*ma
, *ma2
;
5340 scc_node
= graph_find_node(ctx
, &c
->scc
[node
->scc
], node
->space
);
5341 start
= c
->scc
[node
->scc
].band_start
;
5342 n
= c
->scc
[node
->scc
].n_total_row
- start
;
5343 ma
= node_extract_partial_schedule_multi_aff(scc_node
, start
, n
);
5344 space
= cluster_space(&c
->scc
[node
->scc
], c
->scc_cluster
[node
->scc
]);
5345 cluster_node
= graph_find_node(ctx
, merge_graph
, space
);
5346 if (space
&& !cluster_node
)
5347 isl_die(ctx
, isl_error_internal
, "unable to find cluster",
5348 space
= isl_space_free(space
));
5349 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
5350 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, id
);
5351 isl_space_free(space
);
5352 n
= merge_graph
->n_total_row
;
5353 ma2
= node_extract_partial_schedule_multi_aff(cluster_node
, 0, n
);
5354 ma
= isl_multi_aff_pullback_multi_aff(ma2
, ma
);
5356 return isl_map_from_multi_aff(ma
);
5359 /* Give a set of distances "set", are they bounded by a small constant
5360 * in direction "pos"?
5361 * In practice, check if they are bounded by 2 by checking that there
5362 * are no elements with a value greater than or equal to 3 or
5363 * smaller than or equal to -3.
5365 static isl_bool
distance_is_bounded(__isl_keep isl_set
*set
, int pos
)
5371 return isl_bool_error
;
5373 test
= isl_set_copy(set
);
5374 test
= isl_set_lower_bound_si(test
, isl_dim_set
, pos
, 3);
5375 bounded
= isl_set_is_empty(test
);
5378 if (bounded
< 0 || !bounded
)
5381 test
= isl_set_copy(set
);
5382 test
= isl_set_upper_bound_si(test
, isl_dim_set
, pos
, -3);
5383 bounded
= isl_set_is_empty(test
);
5389 /* Does the set "set" have a fixed (but possible parametric) value
5390 * at dimension "pos"?
5392 static isl_bool
has_single_value(__isl_keep isl_set
*set
, int pos
)
5398 return isl_bool_error
;
5399 set
= isl_set_copy(set
);
5400 n
= isl_set_dim(set
, isl_dim_set
);
5401 set
= isl_set_project_out(set
, isl_dim_set
, pos
+ 1, n
- (pos
+ 1));
5402 set
= isl_set_project_out(set
, isl_dim_set
, 0, pos
);
5403 single
= isl_set_is_singleton(set
);
5409 /* Does "map" have a fixed (but possible parametric) value
5410 * at dimension "pos" of either its domain or its range?
5412 static isl_bool
has_singular_src_or_dst(__isl_keep isl_map
*map
, int pos
)
5417 set
= isl_map_domain(isl_map_copy(map
));
5418 single
= has_single_value(set
, pos
);
5421 if (single
< 0 || single
)
5424 set
= isl_map_range(isl_map_copy(map
));
5425 single
= has_single_value(set
, pos
);
5431 /* Does the edge "edge" from "graph" have bounded dependence distances
5432 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5434 * Extract the complete transformations of the source and destination
5435 * nodes of the edge, apply them to the edge constraints and
5436 * compute the differences. Finally, check if these differences are bounded
5437 * in each direction.
5439 * If the dimension of the band is greater than the number of
5440 * dimensions that can be expected to be optimized by the edge
5441 * (based on its weight), then also allow the differences to be unbounded
5442 * in the remaining dimensions, but only if either the source or
5443 * the destination has a fixed value in that direction.
5444 * This allows a statement that produces values that are used by
5445 * several instances of another statement to be merged with that
5447 * However, merging such clusters will introduce an inherently
5448 * large proximity distance inside the merged cluster, meaning
5449 * that proximity distances will no longer be optimized in
5450 * subsequent merges. These merges are therefore only allowed
5451 * after all other possible merges have been tried.
5452 * The first time such a merge is encountered, the weight of the edge
5453 * is replaced by a negative weight. The second time (i.e., after
5454 * all merges over edges with a non-negative weight have been tried),
5455 * the merge is allowed.
5457 static isl_bool
has_bounded_distances(isl_ctx
*ctx
, struct isl_sched_edge
*edge
,
5458 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
5459 struct isl_sched_graph
*merge_graph
)
5466 map
= isl_map_copy(edge
->map
);
5467 t
= extract_node_transformation(ctx
, edge
->src
, c
, merge_graph
);
5468 map
= isl_map_apply_domain(map
, t
);
5469 t
= extract_node_transformation(ctx
, edge
->dst
, c
, merge_graph
);
5470 map
= isl_map_apply_range(map
, t
);
5471 dist
= isl_map_deltas(isl_map_copy(map
));
5473 bounded
= isl_bool_true
;
5474 n
= isl_set_dim(dist
, isl_dim_set
);
5475 n_slack
= n
- edge
->weight
;
5476 if (edge
->weight
< 0)
5477 n_slack
-= graph
->max_weight
+ 1;
5478 for (i
= 0; i
< n
; ++i
) {
5479 isl_bool bounded_i
, singular_i
;
5481 bounded_i
= distance_is_bounded(dist
, i
);
5486 if (edge
->weight
>= 0)
5487 bounded
= isl_bool_false
;
5491 singular_i
= has_singular_src_or_dst(map
, i
);
5496 bounded
= isl_bool_false
;
5499 if (!bounded
&& i
>= n
&& edge
->weight
>= 0)
5500 edge
->weight
-= graph
->max_weight
+ 1;
5508 return isl_bool_error
;
5511 /* Should the clusters be merged based on the cluster schedule
5512 * in the current (and only) band of "merge_graph"?
5513 * "graph" is the original dependence graph, while "c" records
5514 * which SCCs are involved in the latest merge.
5516 * In particular, is there at least one proximity constraint
5517 * that is optimized by the merge?
5519 * A proximity constraint is considered to be optimized
5520 * if the dependence distances are small.
5522 static isl_bool
ok_to_merge_proximity(isl_ctx
*ctx
,
5523 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
5524 struct isl_sched_graph
*merge_graph
)
5528 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5529 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5532 if (!is_proximity(edge
))
5534 if (!c
->scc_in_merge
[edge
->src
->scc
])
5536 if (!c
->scc_in_merge
[edge
->dst
->scc
])
5538 if (c
->scc_cluster
[edge
->dst
->scc
] ==
5539 c
->scc_cluster
[edge
->src
->scc
])
5541 bounded
= has_bounded_distances(ctx
, edge
, graph
, c
,
5543 if (bounded
< 0 || bounded
)
5547 return isl_bool_false
;
5550 /* Should the clusters be merged based on the cluster schedule
5551 * in the current (and only) band of "merge_graph"?
5552 * "graph" is the original dependence graph, while "c" records
5553 * which SCCs are involved in the latest merge.
5555 * If the current band is empty, then the clusters should not be merged.
5557 * If the band depth should be maximized and the merge schedule
5558 * is incomplete (meaning that the dimension of some of the schedule
5559 * bands in the original schedule will be reduced), then the clusters
5560 * should not be merged.
5562 * If the schedule_maximize_coincidence option is set, then check that
5563 * the number of coincident schedule dimensions is not reduced.
5565 * Finally, only allow the merge if at least one proximity
5566 * constraint is optimized.
5568 static isl_bool
ok_to_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5569 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
5571 if (merge_graph
->n_total_row
== merge_graph
->band_start
)
5572 return isl_bool_false
;
5574 if (isl_options_get_schedule_maximize_band_depth(ctx
) &&
5575 merge_graph
->n_total_row
< merge_graph
->maxvar
)
5576 return isl_bool_false
;
5578 if (isl_options_get_schedule_maximize_coincidence(ctx
)) {
5581 ok
= ok_to_merge_coincident(c
, merge_graph
);
5586 return ok_to_merge_proximity(ctx
, graph
, c
, merge_graph
);
5589 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
5590 * of the schedule in "node" and return the result.
5592 * That is, essentially compute
5594 * T * N(first:first+n-1)
5596 * taking into account the constant term and the parameter coefficients
5599 static __isl_give isl_mat
*node_transformation(isl_ctx
*ctx
,
5600 struct isl_sched_node
*t_node
, struct isl_sched_node
*node
,
5605 int n_row
, n_col
, n_param
, n_var
;
5607 n_param
= node
->nparam
;
5609 n_row
= isl_mat_rows(t_node
->sched
);
5610 n_col
= isl_mat_cols(node
->sched
);
5611 t
= isl_mat_alloc(ctx
, n_row
, n_col
);
5614 for (i
= 0; i
< n_row
; ++i
) {
5615 isl_seq_cpy(t
->row
[i
], t_node
->sched
->row
[i
], 1 + n_param
);
5616 isl_seq_clr(t
->row
[i
] + 1 + n_param
, n_var
);
5617 for (j
= 0; j
< n
; ++j
)
5618 isl_seq_addmul(t
->row
[i
],
5619 t_node
->sched
->row
[i
][1 + n_param
+ j
],
5620 node
->sched
->row
[first
+ j
],
5621 1 + n_param
+ n_var
);
5626 /* Apply the cluster schedule in "t_node" to the current band
5627 * schedule of the nodes in "graph".
5629 * In particular, replace the rows starting at band_start
5630 * by the result of applying the cluster schedule in "t_node"
5631 * to the original rows.
5633 * The coincidence of the schedule is determined by the coincidence
5634 * of the cluster schedule.
5636 static isl_stat
transform(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5637 struct isl_sched_node
*t_node
)
5643 start
= graph
->band_start
;
5644 n
= graph
->n_total_row
- start
;
5646 n_new
= isl_mat_rows(t_node
->sched
);
5647 for (i
= 0; i
< graph
->n
; ++i
) {
5648 struct isl_sched_node
*node
= &graph
->node
[i
];
5651 t
= node_transformation(ctx
, t_node
, node
, start
, n
);
5652 node
->sched
= isl_mat_drop_rows(node
->sched
, start
, n
);
5653 node
->sched
= isl_mat_concat(node
->sched
, t
);
5654 node
->sched_map
= isl_map_free(node
->sched_map
);
5656 return isl_stat_error
;
5657 for (j
= 0; j
< n_new
; ++j
)
5658 node
->coincident
[start
+ j
] = t_node
->coincident
[j
];
5660 graph
->n_total_row
-= n
;
5662 graph
->n_total_row
+= n_new
;
5663 graph
->n_row
+= n_new
;
5668 /* Merge the clusters marked for merging in "c" into a single
5669 * cluster using the cluster schedule in the current band of "merge_graph".
5670 * The representative SCC for the new cluster is the SCC with
5671 * the smallest index.
5673 * The current band schedule of each SCC in the new cluster is obtained
5674 * by applying the schedule of the corresponding original cluster
5675 * to the original band schedule.
5676 * All SCCs in the new cluster have the same number of schedule rows.
5678 static isl_stat
merge(isl_ctx
*ctx
, struct isl_clustering
*c
,
5679 struct isl_sched_graph
*merge_graph
)
5685 for (i
= 0; i
< c
->n
; ++i
) {
5686 struct isl_sched_node
*node
;
5688 if (!c
->scc_in_merge
[i
])
5692 space
= cluster_space(&c
->scc
[i
], c
->scc_cluster
[i
]);
5694 return isl_stat_error
;
5695 node
= graph_find_node(ctx
, merge_graph
, space
);
5696 isl_space_free(space
);
5698 isl_die(ctx
, isl_error_internal
,
5699 "unable to find cluster",
5700 return isl_stat_error
);
5701 if (transform(ctx
, &c
->scc
[i
], node
) < 0)
5702 return isl_stat_error
;
5703 c
->scc_cluster
[i
] = cluster
;
5709 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
5710 * by scheduling the current cluster bands with respect to each other.
5712 * Construct a dependence graph with a space for each cluster and
5713 * with the coordinates of each space corresponding to the schedule
5714 * dimensions of the current band of that cluster.
5715 * Construct a cluster schedule in this cluster dependence graph and
5716 * apply it to the current cluster bands if it is applicable
5717 * according to ok_to_merge.
5719 * If the number of remaining schedule dimensions in a cluster
5720 * with a non-maximal current schedule dimension is greater than
5721 * the number of remaining schedule dimensions in clusters
5722 * with a maximal current schedule dimension, then restrict
5723 * the number of rows to be computed in the cluster schedule
5724 * to the minimal such non-maximal current schedule dimension.
5725 * Do this by adjusting merge_graph.maxvar.
5727 * Return isl_bool_true if the clusters have effectively been merged
5728 * into a single cluster.
5730 * Note that since the standard scheduling algorithm minimizes the maximal
5731 * distance over proximity constraints, the proximity constraints between
5732 * the merged clusters may not be optimized any further than what is
5733 * sufficient to bring the distances within the limits of the internal
5734 * proximity constraints inside the individual clusters.
5735 * It may therefore make sense to perform an additional translation step
5736 * to bring the clusters closer to each other, while maintaining
5737 * the linear part of the merging schedule found using the standard
5738 * scheduling algorithm.
5740 static isl_bool
try_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5741 struct isl_clustering
*c
)
5743 struct isl_sched_graph merge_graph
= { 0 };
5746 if (init_merge_graph(ctx
, graph
, c
, &merge_graph
) < 0)
5749 if (compute_maxvar(&merge_graph
) < 0)
5751 if (adjust_maxvar_to_slack(ctx
, &merge_graph
,c
) < 0)
5753 if (compute_schedule_wcc_band(ctx
, &merge_graph
) < 0)
5755 merged
= ok_to_merge(ctx
, graph
, c
, &merge_graph
);
5756 if (merged
&& merge(ctx
, c
, &merge_graph
) < 0)
5759 graph_free(ctx
, &merge_graph
);
5762 graph_free(ctx
, &merge_graph
);
5763 return isl_bool_error
;
5766 /* Is there any edge marked "no_merge" between two SCCs that are
5767 * about to be merged (i.e., that are set in "scc_in_merge")?
5768 * "merge_edge" is the proximity edge along which the clusters of SCCs
5769 * are going to be merged.
5771 * If there is any edge between two SCCs with a negative weight,
5772 * while the weight of "merge_edge" is non-negative, then this
5773 * means that the edge was postponed. "merge_edge" should then
5774 * also be postponed since merging along the edge with negative weight should
5775 * be postponed until all edges with non-negative weight have been tried.
5776 * Replace the weight of "merge_edge" by a negative weight as well and
5777 * tell the caller not to attempt a merge.
5779 static int any_no_merge(struct isl_sched_graph
*graph
, int *scc_in_merge
,
5780 struct isl_sched_edge
*merge_edge
)
5784 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5785 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5787 if (!scc_in_merge
[edge
->src
->scc
])
5789 if (!scc_in_merge
[edge
->dst
->scc
])
5793 if (merge_edge
->weight
>= 0 && edge
->weight
< 0) {
5794 merge_edge
->weight
-= graph
->max_weight
+ 1;
5802 /* Merge the two clusters in "c" connected by the edge in "graph"
5803 * with index "edge" into a single cluster.
5804 * If it turns out to be impossible to merge these two clusters,
5805 * then mark the edge as "no_merge" such that it will not be
5808 * First mark all SCCs that need to be merged. This includes the SCCs
5809 * in the two clusters, but it may also include the SCCs
5810 * of intermediate clusters.
5811 * If there is already a no_merge edge between any pair of such SCCs,
5812 * then simply mark the current edge as no_merge as well.
5813 * Likewise, if any of those edges was postponed by has_bounded_distances,
5814 * then postpone the current edge as well.
5815 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
5816 * if the clusters did not end up getting merged, unless the non-merge
5817 * is due to the fact that the edge was postponed. This postponement
5818 * can be recognized by a change in weight (from non-negative to negative).
5820 static isl_stat
merge_clusters_along_edge(isl_ctx
*ctx
,
5821 struct isl_sched_graph
*graph
, int edge
, struct isl_clustering
*c
)
5824 int edge_weight
= graph
->edge
[edge
].weight
;
5826 if (mark_merge_sccs(ctx
, graph
, edge
, c
) < 0)
5827 return isl_stat_error
;
5829 if (any_no_merge(graph
, c
->scc_in_merge
, &graph
->edge
[edge
]))
5830 merged
= isl_bool_false
;
5832 merged
= try_merge(ctx
, graph
, c
);
5834 return isl_stat_error
;
5835 if (!merged
&& edge_weight
== graph
->edge
[edge
].weight
)
5836 graph
->edge
[edge
].no_merge
= 1;
5841 /* Does "node" belong to the cluster identified by "cluster"?
5843 static int node_cluster_exactly(struct isl_sched_node
*node
, int cluster
)
5845 return node
->cluster
== cluster
;
5848 /* Does "edge" connect two nodes belonging to the cluster
5849 * identified by "cluster"?
5851 static int edge_cluster_exactly(struct isl_sched_edge
*edge
, int cluster
)
5853 return edge
->src
->cluster
== cluster
&& edge
->dst
->cluster
== cluster
;
5856 /* Swap the schedule of "node1" and "node2".
5857 * Both nodes have been derived from the same node in a common parent graph.
5858 * Since the "coincident" field is shared with that node
5859 * in the parent graph, there is no need to also swap this field.
5861 static void swap_sched(struct isl_sched_node
*node1
,
5862 struct isl_sched_node
*node2
)
5867 sched
= node1
->sched
;
5868 node1
->sched
= node2
->sched
;
5869 node2
->sched
= sched
;
5871 sched_map
= node1
->sched_map
;
5872 node1
->sched_map
= node2
->sched_map
;
5873 node2
->sched_map
= sched_map
;
5876 /* Copy the current band schedule from the SCCs that form the cluster
5877 * with index "pos" to the actual cluster at position "pos".
5878 * By construction, the index of the first SCC that belongs to the cluster
5881 * The order of the nodes inside both the SCCs and the cluster
5882 * is assumed to be same as the order in the original "graph".
5884 * Since the SCC graphs will no longer be used after this function,
5885 * the schedules are actually swapped rather than copied.
5887 static isl_stat
copy_partial(struct isl_sched_graph
*graph
,
5888 struct isl_clustering
*c
, int pos
)
5892 c
->cluster
[pos
].n_total_row
= c
->scc
[pos
].n_total_row
;
5893 c
->cluster
[pos
].n_row
= c
->scc
[pos
].n_row
;
5894 c
->cluster
[pos
].maxvar
= c
->scc
[pos
].maxvar
;
5896 for (i
= 0; i
< graph
->n
; ++i
) {
5900 if (graph
->node
[i
].cluster
!= pos
)
5902 s
= graph
->node
[i
].scc
;
5903 k
= c
->scc_node
[s
]++;
5904 swap_sched(&c
->cluster
[pos
].node
[j
], &c
->scc
[s
].node
[k
]);
5905 if (c
->scc
[s
].maxvar
> c
->cluster
[pos
].maxvar
)
5906 c
->cluster
[pos
].maxvar
= c
->scc
[s
].maxvar
;
5913 /* Is there a (conditional) validity dependence from node[j] to node[i],
5914 * forcing node[i] to follow node[j] or do the nodes belong to the same
5917 static isl_bool
node_follows_strong_or_same_cluster(int i
, int j
, void *user
)
5919 struct isl_sched_graph
*graph
= user
;
5921 if (graph
->node
[i
].cluster
== graph
->node
[j
].cluster
)
5922 return isl_bool_true
;
5923 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
5926 /* Extract the merged clusters of SCCs in "graph", sort them, and
5927 * store them in c->clusters. Update c->scc_cluster accordingly.
5929 * First keep track of the cluster containing the SCC to which a node
5930 * belongs in the node itself.
5931 * Then extract the clusters into c->clusters, copying the current
5932 * band schedule from the SCCs that belong to the cluster.
5933 * Do this only once per cluster.
5935 * Finally, topologically sort the clusters and update c->scc_cluster
5936 * to match the new scc numbering. While the SCCs were originally
5937 * sorted already, some SCCs that depend on some other SCCs may
5938 * have been merged with SCCs that appear before these other SCCs.
5939 * A reordering may therefore be required.
5941 static isl_stat
extract_clusters(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5942 struct isl_clustering
*c
)
5946 for (i
= 0; i
< graph
->n
; ++i
)
5947 graph
->node
[i
].cluster
= c
->scc_cluster
[graph
->node
[i
].scc
];
5949 for (i
= 0; i
< graph
->scc
; ++i
) {
5950 if (c
->scc_cluster
[i
] != i
)
5952 if (extract_sub_graph(ctx
, graph
, &node_cluster_exactly
,
5953 &edge_cluster_exactly
, i
, &c
->cluster
[i
]) < 0)
5954 return isl_stat_error
;
5955 c
->cluster
[i
].src_scc
= -1;
5956 c
->cluster
[i
].dst_scc
= -1;
5957 if (copy_partial(graph
, c
, i
) < 0)
5958 return isl_stat_error
;
5961 if (detect_ccs(ctx
, graph
, &node_follows_strong_or_same_cluster
) < 0)
5962 return isl_stat_error
;
5963 for (i
= 0; i
< graph
->n
; ++i
)
5964 c
->scc_cluster
[graph
->node
[i
].scc
] = graph
->node
[i
].cluster
;
5969 /* Compute weights on the proximity edges of "graph" that can
5970 * be used by find_proximity to find the most appropriate
5971 * proximity edge to use to merge two clusters in "c".
5972 * The weights are also used by has_bounded_distances to determine
5973 * whether the merge should be allowed.
5974 * Store the maximum of the computed weights in graph->max_weight.
5976 * The computed weight is a measure for the number of remaining schedule
5977 * dimensions that can still be completely aligned.
5978 * In particular, compute the number of equalities between
5979 * input dimensions and output dimensions in the proximity constraints.
5980 * The directions that are already handled by outer schedule bands
5981 * are projected out prior to determining this number.
5983 * Edges that will never be considered by find_proximity are ignored.
5985 static isl_stat
compute_weights(struct isl_sched_graph
*graph
,
5986 struct isl_clustering
*c
)
5990 graph
->max_weight
= 0;
5992 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5993 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5994 struct isl_sched_node
*src
= edge
->src
;
5995 struct isl_sched_node
*dst
= edge
->dst
;
5996 isl_basic_map
*hull
;
5999 if (!is_proximity(edge
))
6001 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
6002 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
6004 if (c
->scc_cluster
[edge
->dst
->scc
] ==
6005 c
->scc_cluster
[edge
->src
->scc
])
6008 hull
= isl_map_affine_hull(isl_map_copy(edge
->map
));
6009 hull
= isl_basic_map_transform_dims(hull
, isl_dim_in
, 0,
6010 isl_mat_copy(src
->ctrans
));
6011 hull
= isl_basic_map_transform_dims(hull
, isl_dim_out
, 0,
6012 isl_mat_copy(dst
->ctrans
));
6013 hull
= isl_basic_map_project_out(hull
,
6014 isl_dim_in
, 0, src
->rank
);
6015 hull
= isl_basic_map_project_out(hull
,
6016 isl_dim_out
, 0, dst
->rank
);
6017 hull
= isl_basic_map_remove_divs(hull
);
6018 n_in
= isl_basic_map_dim(hull
, isl_dim_in
);
6019 n_out
= isl_basic_map_dim(hull
, isl_dim_out
);
6020 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
6021 isl_dim_in
, 0, n_in
);
6022 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
6023 isl_dim_out
, 0, n_out
);
6025 return isl_stat_error
;
6026 edge
->weight
= hull
->n_eq
;
6027 isl_basic_map_free(hull
);
6029 if (edge
->weight
> graph
->max_weight
)
6030 graph
->max_weight
= edge
->weight
;
6036 /* Call compute_schedule_finish_band on each of the clusters in "c"
6037 * in their topological order. This order is determined by the scc
6038 * fields of the nodes in "graph".
6039 * Combine the results in a sequence expressing the topological order.
6041 * If there is only one cluster left, then there is no need to introduce
6042 * a sequence node. Also, in this case, the cluster necessarily contains
6043 * the SCC at position 0 in the original graph and is therefore also
6044 * stored in the first cluster of "c".
6046 static __isl_give isl_schedule_node
*finish_bands_clustering(
6047 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
6048 struct isl_clustering
*c
)
6052 isl_union_set_list
*filters
;
6054 if (graph
->scc
== 1)
6055 return compute_schedule_finish_band(node
, &c
->cluster
[0], 0);
6057 ctx
= isl_schedule_node_get_ctx(node
);
6059 filters
= extract_sccs(ctx
, graph
);
6060 node
= isl_schedule_node_insert_sequence(node
, filters
);
6062 for (i
= 0; i
< graph
->scc
; ++i
) {
6063 int j
= c
->scc_cluster
[i
];
6064 node
= isl_schedule_node_child(node
, i
);
6065 node
= isl_schedule_node_child(node
, 0);
6066 node
= compute_schedule_finish_band(node
, &c
->cluster
[j
], 0);
6067 node
= isl_schedule_node_parent(node
);
6068 node
= isl_schedule_node_parent(node
);
6074 /* Compute a schedule for a connected dependence graph by first considering
6075 * each strongly connected component (SCC) in the graph separately and then
6076 * incrementally combining them into clusters.
6077 * Return the updated schedule node.
6079 * Initially, each cluster consists of a single SCC, each with its
6080 * own band schedule. The algorithm then tries to merge pairs
6081 * of clusters along a proximity edge until no more suitable
6082 * proximity edges can be found. During this merging, the schedule
6083 * is maintained in the individual SCCs.
6084 * After the merging is completed, the full resulting clusters
6085 * are extracted and in finish_bands_clustering,
6086 * compute_schedule_finish_band is called on each of them to integrate
6087 * the band into "node" and to continue the computation.
6089 * compute_weights initializes the weights that are used by find_proximity.
6091 static __isl_give isl_schedule_node
*compute_schedule_wcc_clustering(
6092 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
6095 struct isl_clustering c
;
6098 ctx
= isl_schedule_node_get_ctx(node
);
6100 if (clustering_init(ctx
, &c
, graph
) < 0)
6103 if (compute_weights(graph
, &c
) < 0)
6107 i
= find_proximity(graph
, &c
);
6110 if (i
>= graph
->n_edge
)
6112 if (merge_clusters_along_edge(ctx
, graph
, i
, &c
) < 0)
6116 if (extract_clusters(ctx
, graph
, &c
) < 0)
6119 node
= finish_bands_clustering(node
, graph
, &c
);
6121 clustering_free(ctx
, &c
);
6124 clustering_free(ctx
, &c
);
6125 return isl_schedule_node_free(node
);
6128 /* Compute a schedule for a connected dependence graph and return
6129 * the updated schedule node.
6131 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6132 * as many validity dependences as possible. When all validity dependences
6133 * are satisfied we extend the schedule to a full-dimensional schedule.
6135 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6136 * depending on whether the user has selected the option to try and
6137 * compute a schedule for the entire (weakly connected) component first.
6138 * If there is only a single strongly connected component (SCC), then
6139 * there is no point in trying to combine SCCs
6140 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6141 * is called instead.
6143 static __isl_give isl_schedule_node
*compute_schedule_wcc(
6144 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
6151 ctx
= isl_schedule_node_get_ctx(node
);
6152 if (detect_sccs(ctx
, graph
) < 0)
6153 return isl_schedule_node_free(node
);
6155 if (compute_maxvar(graph
) < 0)
6156 return isl_schedule_node_free(node
);
6158 if (need_feautrier_step(ctx
, graph
))
6159 return compute_schedule_wcc_feautrier(node
, graph
);
6161 if (graph
->scc
<= 1 || isl_options_get_schedule_whole_component(ctx
))
6162 return compute_schedule_wcc_whole(node
, graph
);
6164 return compute_schedule_wcc_clustering(node
, graph
);
6167 /* Compute a schedule for each group of nodes identified by node->scc
6168 * separately and then combine them in a sequence node (or as set node
6169 * if graph->weak is set) inserted at position "node" of the schedule tree.
6170 * Return the updated schedule node.
6172 * If "wcc" is set then each of the groups belongs to a single
6173 * weakly connected component in the dependence graph so that
6174 * there is no need for compute_sub_schedule to look for weakly
6175 * connected components.
6177 static __isl_give isl_schedule_node
*compute_component_schedule(
6178 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
6183 isl_union_set_list
*filters
;
6187 ctx
= isl_schedule_node_get_ctx(node
);
6189 filters
= extract_sccs(ctx
, graph
);
6191 node
= isl_schedule_node_insert_set(node
, filters
);
6193 node
= isl_schedule_node_insert_sequence(node
, filters
);
6195 for (component
= 0; component
< graph
->scc
; ++component
) {
6196 node
= isl_schedule_node_child(node
, component
);
6197 node
= isl_schedule_node_child(node
, 0);
6198 node
= compute_sub_schedule(node
, ctx
, graph
,
6200 &edge_scc_exactly
, component
, wcc
);
6201 node
= isl_schedule_node_parent(node
);
6202 node
= isl_schedule_node_parent(node
);
6208 /* Compute a schedule for the given dependence graph and insert it at "node".
6209 * Return the updated schedule node.
6211 * We first check if the graph is connected (through validity and conditional
6212 * validity dependences) and, if not, compute a schedule
6213 * for each component separately.
6214 * If the schedule_serialize_sccs option is set, then we check for strongly
6215 * connected components instead and compute a separate schedule for
6216 * each such strongly connected component.
6218 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
6219 struct isl_sched_graph
*graph
)
6226 ctx
= isl_schedule_node_get_ctx(node
);
6227 if (isl_options_get_schedule_serialize_sccs(ctx
)) {
6228 if (detect_sccs(ctx
, graph
) < 0)
6229 return isl_schedule_node_free(node
);
6231 if (detect_wccs(ctx
, graph
) < 0)
6232 return isl_schedule_node_free(node
);
6236 return compute_component_schedule(node
, graph
, 1);
6238 return compute_schedule_wcc(node
, graph
);
6241 /* Compute a schedule on sc->domain that respects the given schedule
6244 * In particular, the schedule respects all the validity dependences.
6245 * If the default isl scheduling algorithm is used, it tries to minimize
6246 * the dependence distances over the proximity dependences.
6247 * If Feautrier's scheduling algorithm is used, the proximity dependence
6248 * distances are only minimized during the extension to a full-dimensional
6251 * If there are any condition and conditional validity dependences,
6252 * then the conditional validity dependences may be violated inside
6253 * a tilable band, provided they have no adjacent non-local
6254 * condition dependences.
6256 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
6257 __isl_take isl_schedule_constraints
*sc
)
6259 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
6260 struct isl_sched_graph graph
= { 0 };
6261 isl_schedule
*sched
;
6262 isl_schedule_node
*node
;
6263 isl_union_set
*domain
;
6265 sc
= isl_schedule_constraints_align_params(sc
);
6267 domain
= isl_schedule_constraints_get_domain(sc
);
6268 if (isl_union_set_n_set(domain
) == 0) {
6269 isl_schedule_constraints_free(sc
);
6270 return isl_schedule_from_domain(domain
);
6273 if (graph_init(&graph
, sc
) < 0)
6274 domain
= isl_union_set_free(domain
);
6276 node
= isl_schedule_node_from_domain(domain
);
6277 node
= isl_schedule_node_child(node
, 0);
6279 node
= compute_schedule(node
, &graph
);
6280 sched
= isl_schedule_node_get_schedule(node
);
6281 isl_schedule_node_free(node
);
6283 graph_free(ctx
, &graph
);
6284 isl_schedule_constraints_free(sc
);
6289 /* Compute a schedule for the given union of domains that respects
6290 * all the validity dependences and minimizes
6291 * the dependence distances over the proximity dependences.
6293 * This function is kept for backward compatibility.
6295 __isl_give isl_schedule
*isl_union_set_compute_schedule(
6296 __isl_take isl_union_set
*domain
,
6297 __isl_take isl_union_map
*validity
,
6298 __isl_take isl_union_map
*proximity
)
6300 isl_schedule_constraints
*sc
;
6302 sc
= isl_schedule_constraints_on_domain(domain
);
6303 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
6304 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
6306 return isl_schedule_constraints_compute_schedule(sc
);