2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12 #include "isl_map_private.h"
16 #include "isl_equalities.h"
19 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
21 static void swap_ineq(struct isl_basic_map
*bmap
, unsigned i
, unsigned j
)
27 bmap
->ineq
[i
] = bmap
->ineq
[j
];
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
38 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
40 enum isl_lp_result res
;
47 total
= isl_basic_map_total_dim(*bmap
);
48 for (i
= 0; i
< total
; ++i
) {
50 if (isl_int_is_zero(c
[1+i
]))
52 sign
= isl_int_sgn(c
[1+i
]);
53 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
54 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
56 if (j
== (*bmap
)->n_ineq
)
62 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
64 if (res
== isl_lp_unbounded
)
66 if (res
== isl_lp_error
)
68 if (res
== isl_lp_empty
) {
69 *bmap
= isl_basic_map_set_to_empty(*bmap
);
72 return !isl_int_is_neg(*opt_n
);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
76 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
90 struct isl_basic_map
*isl_basic_map_convex_hull(struct isl_basic_map
*bmap
)
97 bmap
= isl_basic_map_gauss(bmap
, NULL
);
98 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
100 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
102 if (bmap
->n_ineq
<= 1)
105 tab
= isl_tab_from_basic_map(bmap
);
106 if (isl_tab_detect_implicit_equalities(tab
) < 0)
108 if (isl_tab_detect_redundant(tab
) < 0)
110 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
112 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
113 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
117 isl_basic_map_free(bmap
);
121 struct isl_basic_set
*isl_basic_set_convex_hull(struct isl_basic_set
*bset
)
123 return (struct isl_basic_set
*)
124 isl_basic_map_convex_hull((struct isl_basic_map
*)bset
);
127 /* Check if the set set is bound in the direction of the affine
128 * constraint c and if so, set the constant term such that the
129 * resulting constraint is a bounding constraint for the set.
131 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
139 isl_int_init(opt_denom
);
141 for (j
= 0; j
< set
->n
; ++j
) {
142 enum isl_lp_result res
;
144 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
147 res
= isl_basic_set_solve_lp(set
->p
[j
],
148 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
149 if (res
== isl_lp_unbounded
)
151 if (res
== isl_lp_error
)
153 if (res
== isl_lp_empty
) {
154 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
159 if (first
|| isl_int_is_neg(opt
)) {
160 if (!isl_int_is_one(opt_denom
))
161 isl_seq_scale(c
, c
, opt_denom
, len
);
162 isl_int_sub(c
[0], c
[0], opt
);
167 isl_int_clear(opt_denom
);
171 isl_int_clear(opt_denom
);
175 struct isl_basic_set
*isl_basic_set_set_rational(struct isl_basic_set
*bset
)
180 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
183 bset
= isl_basic_set_cow(bset
);
187 ISL_F_SET(bset
, ISL_BASIC_MAP_RATIONAL
);
189 return isl_basic_set_finalize(bset
);
192 static struct isl_set
*isl_set_set_rational(struct isl_set
*set
)
196 set
= isl_set_cow(set
);
199 for (i
= 0; i
< set
->n
; ++i
) {
200 set
->p
[i
] = isl_basic_set_set_rational(set
->p
[i
]);
210 static struct isl_basic_set
*isl_basic_set_add_equality(
211 struct isl_basic_set
*bset
, isl_int
*c
)
216 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
219 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
220 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
221 dim
= isl_basic_set_n_dim(bset
);
222 bset
= isl_basic_set_cow(bset
);
223 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
224 i
= isl_basic_set_alloc_equality(bset
);
227 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
230 isl_basic_set_free(bset
);
234 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
238 set
= isl_set_cow(set
);
241 for (i
= 0; i
< set
->n
; ++i
) {
242 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
252 /* Given a union of basic sets, construct the constraints for wrapping
253 * a facet around one of its ridges.
254 * In particular, if each of n the d-dimensional basic sets i in "set"
255 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
256 * and is defined by the constraints
260 * then the resulting set is of dimension n*(1+d) and has as constraints
269 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
271 struct isl_basic_set
*lp
;
275 unsigned dim
, lp_dim
;
280 dim
= 1 + isl_set_n_dim(set
);
283 for (i
= 0; i
< set
->n
; ++i
) {
284 n_eq
+= set
->p
[i
]->n_eq
;
285 n_ineq
+= set
->p
[i
]->n_ineq
;
287 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
290 lp_dim
= isl_basic_set_n_dim(lp
);
291 k
= isl_basic_set_alloc_equality(lp
);
292 isl_int_set_si(lp
->eq
[k
][0], -1);
293 for (i
= 0; i
< set
->n
; ++i
) {
294 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
295 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
296 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
298 for (i
= 0; i
< set
->n
; ++i
) {
299 k
= isl_basic_set_alloc_inequality(lp
);
300 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
301 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
303 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
304 k
= isl_basic_set_alloc_equality(lp
);
305 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
306 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
307 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
310 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
311 k
= isl_basic_set_alloc_inequality(lp
);
312 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
313 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
314 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
320 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
321 * of that facet, compute the other facet of the convex hull that contains
324 * We first transform the set such that the facet constraint becomes
328 * I.e., the facet lies in
332 * and on that facet, the constraint that defines the ridge is
336 * (This transformation is not strictly needed, all that is needed is
337 * that the ridge contains the origin.)
339 * Since the ridge contains the origin, the cone of the convex hull
340 * will be of the form
345 * with this second constraint defining the new facet.
346 * The constant a is obtained by settting x_1 in the cone of the
347 * convex hull to 1 and minimizing x_2.
348 * Now, each element in the cone of the convex hull is the sum
349 * of elements in the cones of the basic sets.
350 * If a_i is the dilation factor of basic set i, then the problem
351 * we need to solve is
364 * the constraints of each (transformed) basic set.
365 * If a = n/d, then the constraint defining the new facet (in the transformed
368 * -n x_1 + d x_2 >= 0
370 * In the original space, we need to take the same combination of the
371 * corresponding constraints "facet" and "ridge".
373 * If a = -infty = "-1/0", then we just return the original facet constraint.
374 * This means that the facet is unbounded, but has a bounded intersection
375 * with the union of sets.
377 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
378 isl_int
*facet
, isl_int
*ridge
)
381 struct isl_mat
*T
= NULL
;
382 struct isl_basic_set
*lp
= NULL
;
384 enum isl_lp_result res
;
388 set
= isl_set_copy(set
);
389 set
= isl_set_set_rational(set
);
391 dim
= 1 + isl_set_n_dim(set
);
392 T
= isl_mat_alloc(set
->ctx
, 3, dim
);
395 isl_int_set_si(T
->row
[0][0], 1);
396 isl_seq_clr(T
->row
[0]+1, dim
- 1);
397 isl_seq_cpy(T
->row
[1], facet
, dim
);
398 isl_seq_cpy(T
->row
[2], ridge
, dim
);
399 T
= isl_mat_right_inverse(T
);
400 set
= isl_set_preimage(set
, T
);
404 lp
= wrap_constraints(set
);
405 obj
= isl_vec_alloc(set
->ctx
, 1 + dim
*set
->n
);
408 isl_int_set_si(obj
->block
.data
[0], 0);
409 for (i
= 0; i
< set
->n
; ++i
) {
410 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
411 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
412 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
416 res
= isl_basic_set_solve_lp(lp
, 0,
417 obj
->block
.data
, set
->ctx
->one
, &num
, &den
, NULL
);
418 if (res
== isl_lp_ok
) {
419 isl_int_neg(num
, num
);
420 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
425 isl_basic_set_free(lp
);
427 isl_assert(set
->ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
431 isl_basic_set_free(lp
);
437 /* Compute the constraint of a facet of "set".
439 * We first compute the intersection with a bounding constraint
440 * that is orthogonal to one of the coordinate axes.
441 * If the affine hull of this intersection has only one equality,
442 * we have found a facet.
443 * Otherwise, we wrap the current bounding constraint around
444 * one of the equalities of the face (one that is not equal to
445 * the current bounding constraint).
446 * This process continues until we have found a facet.
447 * The dimension of the intersection increases by at least
448 * one on each iteration, so termination is guaranteed.
450 static __isl_give isl_mat
*initial_facet_constraint(__isl_keep isl_set
*set
)
452 struct isl_set
*slice
= NULL
;
453 struct isl_basic_set
*face
= NULL
;
455 unsigned dim
= isl_set_n_dim(set
);
459 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
460 bounds
= isl_mat_alloc(set
->ctx
, 1, 1 + dim
);
464 isl_seq_clr(bounds
->row
[0], dim
);
465 isl_int_set_si(bounds
->row
[0][1 + dim
- 1], 1);
466 is_bound
= uset_is_bound(set
, bounds
->row
[0], 1 + dim
);
467 isl_assert(set
->ctx
, is_bound
== 1, goto error
);
468 isl_seq_normalize(set
->ctx
, bounds
->row
[0], 1 + dim
);
472 slice
= isl_set_copy(set
);
473 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
474 face
= isl_set_affine_hull(slice
);
477 if (face
->n_eq
== 1) {
478 isl_basic_set_free(face
);
481 for (i
= 0; i
< face
->n_eq
; ++i
)
482 if (!isl_seq_eq(bounds
->row
[0], face
->eq
[i
], 1 + dim
) &&
483 !isl_seq_is_neg(bounds
->row
[0],
484 face
->eq
[i
], 1 + dim
))
486 isl_assert(set
->ctx
, i
< face
->n_eq
, goto error
);
487 if (!isl_set_wrap_facet(set
, bounds
->row
[0], face
->eq
[i
]))
489 isl_seq_normalize(set
->ctx
, bounds
->row
[0], bounds
->n_col
);
490 isl_basic_set_free(face
);
495 isl_basic_set_free(face
);
496 isl_mat_free(bounds
);
500 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
501 * compute a hyperplane description of the facet, i.e., compute the facets
504 * We compute an affine transformation that transforms the constraint
513 * by computing the right inverse U of a matrix that starts with the rows
526 * Since z_1 is zero, we can drop this variable as well as the corresponding
527 * column of U to obtain
535 * with Q' equal to Q, but without the corresponding row.
536 * After computing the facets of the facet in the z' space,
537 * we convert them back to the x space through Q.
539 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
541 struct isl_mat
*m
, *U
, *Q
;
542 struct isl_basic_set
*facet
= NULL
;
547 set
= isl_set_copy(set
);
548 dim
= isl_set_n_dim(set
);
549 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
552 isl_int_set_si(m
->row
[0][0], 1);
553 isl_seq_clr(m
->row
[0]+1, dim
);
554 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
555 U
= isl_mat_right_inverse(m
);
556 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
557 U
= isl_mat_drop_cols(U
, 1, 1);
558 Q
= isl_mat_drop_rows(Q
, 1, 1);
559 set
= isl_set_preimage(set
, U
);
560 facet
= uset_convex_hull_wrap_bounded(set
);
561 facet
= isl_basic_set_preimage(facet
, Q
);
562 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
565 isl_basic_set_free(facet
);
570 /* Given an initial facet constraint, compute the remaining facets.
571 * We do this by running through all facets found so far and computing
572 * the adjacent facets through wrapping, adding those facets that we
573 * hadn't already found before.
575 * For each facet we have found so far, we first compute its facets
576 * in the resulting convex hull. That is, we compute the ridges
577 * of the resulting convex hull contained in the facet.
578 * We also compute the corresponding facet in the current approximation
579 * of the convex hull. There is no need to wrap around the ridges
580 * in this facet since that would result in a facet that is already
581 * present in the current approximation.
583 * This function can still be significantly optimized by checking which of
584 * the facets of the basic sets are also facets of the convex hull and
585 * using all the facets so far to help in constructing the facets of the
588 * using the technique in section "3.1 Ridge Generation" of
589 * "Extended Convex Hull" by Fukuda et al.
591 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
596 struct isl_basic_set
*facet
= NULL
;
597 struct isl_basic_set
*hull_facet
= NULL
;
603 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
605 dim
= isl_set_n_dim(set
);
607 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
608 facet
= compute_facet(set
, hull
->ineq
[i
]);
609 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
610 facet
= isl_basic_set_gauss(facet
, NULL
);
611 facet
= isl_basic_set_normalize_constraints(facet
);
612 hull_facet
= isl_basic_set_copy(hull
);
613 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
614 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
615 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
618 hull
= isl_basic_set_cow(hull
);
619 hull
= isl_basic_set_extend_dim(hull
,
620 isl_dim_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
621 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
622 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
623 if (isl_seq_eq(facet
->ineq
[j
],
624 hull_facet
->ineq
[f
], 1 + dim
))
626 if (f
< hull_facet
->n_ineq
)
628 k
= isl_basic_set_alloc_inequality(hull
);
631 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
632 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
635 isl_basic_set_free(hull_facet
);
636 isl_basic_set_free(facet
);
638 hull
= isl_basic_set_simplify(hull
);
639 hull
= isl_basic_set_finalize(hull
);
642 isl_basic_set_free(hull_facet
);
643 isl_basic_set_free(facet
);
644 isl_basic_set_free(hull
);
648 /* Special case for computing the convex hull of a one dimensional set.
649 * We simply collect the lower and upper bounds of each basic set
650 * and the biggest of those.
652 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
654 struct isl_mat
*c
= NULL
;
655 isl_int
*lower
= NULL
;
656 isl_int
*upper
= NULL
;
659 struct isl_basic_set
*hull
;
661 for (i
= 0; i
< set
->n
; ++i
) {
662 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
666 set
= isl_set_remove_empty_parts(set
);
669 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
670 c
= isl_mat_alloc(set
->ctx
, 2, 2);
674 if (set
->p
[0]->n_eq
> 0) {
675 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
678 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
679 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
680 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
682 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
683 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
686 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
687 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
689 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
692 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
699 for (i
= 0; i
< set
->n
; ++i
) {
700 struct isl_basic_set
*bset
= set
->p
[i
];
704 for (j
= 0; j
< bset
->n_eq
; ++j
) {
708 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
709 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
710 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
711 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
712 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
713 isl_seq_neg(lower
, bset
->eq
[j
], 2);
716 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
717 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
718 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
719 isl_seq_neg(upper
, bset
->eq
[j
], 2);
720 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
721 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
724 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
725 if (isl_int_is_pos(bset
->ineq
[j
][1]))
727 if (isl_int_is_neg(bset
->ineq
[j
][1]))
729 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
730 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
731 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
732 if (isl_int_lt(a
, b
))
733 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
735 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
736 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
737 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
738 if (isl_int_gt(a
, b
))
739 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
750 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
751 hull
= isl_basic_set_set_rational(hull
);
755 k
= isl_basic_set_alloc_inequality(hull
);
756 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
759 k
= isl_basic_set_alloc_inequality(hull
);
760 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
762 hull
= isl_basic_set_finalize(hull
);
772 /* Project out final n dimensions using Fourier-Motzkin */
773 static struct isl_set
*set_project_out(struct isl_ctx
*ctx
,
774 struct isl_set
*set
, unsigned n
)
776 return isl_set_remove_dims(set
, isl_set_n_dim(set
) - n
, n
);
779 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
781 struct isl_basic_set
*convex_hull
;
786 if (isl_set_is_empty(set
))
787 convex_hull
= isl_basic_set_empty(isl_dim_copy(set
->dim
));
789 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
794 /* Compute the convex hull of a pair of basic sets without any parameters or
795 * integer divisions using Fourier-Motzkin elimination.
796 * The convex hull is the set of all points that can be written as
797 * the sum of points from both basic sets (in homogeneous coordinates).
798 * We set up the constraints in a space with dimensions for each of
799 * the three sets and then project out the dimensions corresponding
800 * to the two original basic sets, retaining only those corresponding
801 * to the convex hull.
803 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
804 struct isl_basic_set
*bset2
)
807 struct isl_basic_set
*bset
[2];
808 struct isl_basic_set
*hull
= NULL
;
811 if (!bset1
|| !bset2
)
814 dim
= isl_basic_set_n_dim(bset1
);
815 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
816 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
817 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
820 for (i
= 0; i
< 2; ++i
) {
821 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
822 k
= isl_basic_set_alloc_equality(hull
);
825 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
826 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
827 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
830 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
831 k
= isl_basic_set_alloc_inequality(hull
);
834 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
835 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
836 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
837 bset
[i
]->ineq
[j
], 1+dim
);
839 k
= isl_basic_set_alloc_inequality(hull
);
842 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
843 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
845 for (j
= 0; j
< 1+dim
; ++j
) {
846 k
= isl_basic_set_alloc_equality(hull
);
849 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
850 isl_int_set_si(hull
->eq
[k
][j
], -1);
851 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
852 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
854 hull
= isl_basic_set_set_rational(hull
);
855 hull
= isl_basic_set_remove_dims(hull
, dim
, 2*(1+dim
));
856 hull
= isl_basic_set_convex_hull(hull
);
857 isl_basic_set_free(bset1
);
858 isl_basic_set_free(bset2
);
861 isl_basic_set_free(bset1
);
862 isl_basic_set_free(bset2
);
863 isl_basic_set_free(hull
);
867 /* Is the set bounded for each value of the parameters?
869 int isl_basic_set_is_bounded(__isl_keep isl_basic_set
*bset
)
876 if (isl_basic_set_fast_is_empty(bset
))
879 tab
= isl_tab_from_recession_cone(bset
, 1);
880 bounded
= isl_tab_cone_is_bounded(tab
);
885 /* Is the set bounded for each value of the parameters?
887 int isl_set_is_bounded(__isl_keep isl_set
*set
)
894 for (i
= 0; i
< set
->n
; ++i
) {
895 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
896 if (!bounded
|| bounded
< 0)
902 /* Compute the lineality space of the convex hull of bset1 and bset2.
904 * We first compute the intersection of the recession cone of bset1
905 * with the negative of the recession cone of bset2 and then compute
906 * the linear hull of the resulting cone.
908 static struct isl_basic_set
*induced_lineality_space(
909 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
912 struct isl_basic_set
*lin
= NULL
;
915 if (!bset1
|| !bset2
)
918 dim
= isl_basic_set_total_dim(bset1
);
919 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1
), 0,
920 bset1
->n_eq
+ bset2
->n_eq
,
921 bset1
->n_ineq
+ bset2
->n_ineq
);
922 lin
= isl_basic_set_set_rational(lin
);
925 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
926 k
= isl_basic_set_alloc_equality(lin
);
929 isl_int_set_si(lin
->eq
[k
][0], 0);
930 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
932 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
933 k
= isl_basic_set_alloc_inequality(lin
);
936 isl_int_set_si(lin
->ineq
[k
][0], 0);
937 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
939 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
940 k
= isl_basic_set_alloc_equality(lin
);
943 isl_int_set_si(lin
->eq
[k
][0], 0);
944 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
946 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
947 k
= isl_basic_set_alloc_inequality(lin
);
950 isl_int_set_si(lin
->ineq
[k
][0], 0);
951 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
954 isl_basic_set_free(bset1
);
955 isl_basic_set_free(bset2
);
956 return isl_basic_set_affine_hull(lin
);
958 isl_basic_set_free(lin
);
959 isl_basic_set_free(bset1
);
960 isl_basic_set_free(bset2
);
964 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
966 /* Given a set and a linear space "lin" of dimension n > 0,
967 * project the linear space from the set, compute the convex hull
968 * and then map the set back to the original space.
974 * describe the linear space. We first compute the Hermite normal
975 * form H = M U of M = H Q, to obtain
979 * The last n rows of H will be zero, so the last n variables of x' = Q x
980 * are the one we want to project out. We do this by transforming each
981 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
982 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
983 * we transform the hull back to the original space as A' Q_1 x >= b',
984 * with Q_1 all but the last n rows of Q.
986 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
987 struct isl_basic_set
*lin
)
989 unsigned total
= isl_basic_set_total_dim(lin
);
991 struct isl_basic_set
*hull
;
992 struct isl_mat
*M
, *U
, *Q
;
996 lin_dim
= total
- lin
->n_eq
;
997 M
= isl_mat_sub_alloc(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
998 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1002 isl_basic_set_free(lin
);
1004 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1006 U
= isl_mat_lin_to_aff(U
);
1007 Q
= isl_mat_lin_to_aff(Q
);
1009 set
= isl_set_preimage(set
, U
);
1010 set
= isl_set_remove_dims(set
, total
- lin_dim
, lin_dim
);
1011 hull
= uset_convex_hull(set
);
1012 hull
= isl_basic_set_preimage(hull
, Q
);
1016 isl_basic_set_free(lin
);
1021 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1022 * set up an LP for solving
1024 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1026 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1027 * The next \alpha{ij} correspond to the equalities and come in pairs.
1028 * The final \alpha{ij} correspond to the inequalities.
1030 static struct isl_basic_set
*valid_direction_lp(
1031 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1033 struct isl_dim
*dim
;
1034 struct isl_basic_set
*lp
;
1039 if (!bset1
|| !bset2
)
1041 d
= 1 + isl_basic_set_total_dim(bset1
);
1043 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1044 dim
= isl_dim_set_alloc(bset1
->ctx
, 0, n
);
1045 lp
= isl_basic_set_alloc_dim(dim
, 0, d
, n
);
1048 for (i
= 0; i
< n
; ++i
) {
1049 k
= isl_basic_set_alloc_inequality(lp
);
1052 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1053 isl_int_set_si(lp
->ineq
[k
][0], -1);
1054 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1056 for (i
= 0; i
< d
; ++i
) {
1057 k
= isl_basic_set_alloc_equality(lp
);
1061 isl_int_set_si(lp
->eq
[k
][n
++], 0);
1062 /* positivity constraint 1 >= 0 */
1063 isl_int_set_si(lp
->eq
[k
][n
++], i
== 0);
1064 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1065 isl_int_set(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1066 isl_int_neg(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1068 for (j
= 0; j
< bset1
->n_ineq
; ++j
)
1069 isl_int_set(lp
->eq
[k
][n
++], bset1
->ineq
[j
][i
]);
1070 /* positivity constraint 1 >= 0 */
1071 isl_int_set_si(lp
->eq
[k
][n
++], -(i
== 0));
1072 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1073 isl_int_neg(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1074 isl_int_set(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1076 for (j
= 0; j
< bset2
->n_ineq
; ++j
)
1077 isl_int_neg(lp
->eq
[k
][n
++], bset2
->ineq
[j
][i
]);
1079 lp
= isl_basic_set_gauss(lp
, NULL
);
1080 isl_basic_set_free(bset1
);
1081 isl_basic_set_free(bset2
);
1084 isl_basic_set_free(bset1
);
1085 isl_basic_set_free(bset2
);
1089 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1090 * for all rays in the homogeneous space of the two cones that correspond
1091 * to the input polyhedra bset1 and bset2.
1093 * We compute s as a vector that satisfies
1095 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1097 * with h_{ij} the normals of the facets of polyhedron i
1098 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1099 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1100 * We first set up an LP with as variables the \alpha{ij}.
1101 * In this formulation, for each polyhedron i,
1102 * the first constraint is the positivity constraint, followed by pairs
1103 * of variables for the equalities, followed by variables for the inequalities.
1104 * We then simply pick a feasible solution and compute s using (*).
1106 * Note that we simply pick any valid direction and make no attempt
1107 * to pick a "good" or even the "best" valid direction.
1109 static struct isl_vec
*valid_direction(
1110 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1112 struct isl_basic_set
*lp
;
1113 struct isl_tab
*tab
;
1114 struct isl_vec
*sample
= NULL
;
1115 struct isl_vec
*dir
;
1120 if (!bset1
|| !bset2
)
1122 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1123 isl_basic_set_copy(bset2
));
1124 tab
= isl_tab_from_basic_set(lp
);
1125 sample
= isl_tab_get_sample_value(tab
);
1127 isl_basic_set_free(lp
);
1130 d
= isl_basic_set_total_dim(bset1
);
1131 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1134 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1136 /* positivity constraint 1 >= 0 */
1137 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
++]);
1138 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1139 isl_int_sub(sample
->block
.data
[n
],
1140 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1141 isl_seq_combine(dir
->block
.data
,
1142 bset1
->ctx
->one
, dir
->block
.data
,
1143 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1147 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1148 isl_seq_combine(dir
->block
.data
,
1149 bset1
->ctx
->one
, dir
->block
.data
,
1150 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1151 isl_vec_free(sample
);
1152 isl_seq_normalize(bset1
->ctx
, dir
->el
, dir
->size
);
1153 isl_basic_set_free(bset1
);
1154 isl_basic_set_free(bset2
);
1157 isl_vec_free(sample
);
1158 isl_basic_set_free(bset1
);
1159 isl_basic_set_free(bset2
);
1163 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1164 * compute b_i' + A_i' x' >= 0, with
1166 * [ b_i A_i ] [ y' ] [ y' ]
1167 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1169 * In particular, add the "positivity constraint" and then perform
1172 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1179 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1180 k
= isl_basic_set_alloc_inequality(bset
);
1183 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1184 isl_int_set_si(bset
->ineq
[k
][0], 1);
1185 bset
= isl_basic_set_preimage(bset
, T
);
1189 isl_basic_set_free(bset
);
1193 /* Compute the convex hull of a pair of basic sets without any parameters or
1194 * integer divisions, where the convex hull is known to be pointed,
1195 * but the basic sets may be unbounded.
1197 * We turn this problem into the computation of a convex hull of a pair
1198 * _bounded_ polyhedra by "changing the direction of the homogeneous
1199 * dimension". This idea is due to Matthias Koeppe.
1201 * Consider the cones in homogeneous space that correspond to the
1202 * input polyhedra. The rays of these cones are also rays of the
1203 * polyhedra if the coordinate that corresponds to the homogeneous
1204 * dimension is zero. That is, if the inner product of the rays
1205 * with the homogeneous direction is zero.
1206 * The cones in the homogeneous space can also be considered to
1207 * correspond to other pairs of polyhedra by chosing a different
1208 * homogeneous direction. To ensure that both of these polyhedra
1209 * are bounded, we need to make sure that all rays of the cones
1210 * correspond to vertices and not to rays.
1211 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1212 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1213 * The vector s is computed in valid_direction.
1215 * Note that we need to consider _all_ rays of the cones and not just
1216 * the rays that correspond to rays in the polyhedra. If we were to
1217 * only consider those rays and turn them into vertices, then we
1218 * may inadvertently turn some vertices into rays.
1220 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1221 * We therefore transform the two polyhedra such that the selected
1222 * direction is mapped onto this standard direction and then proceed
1223 * with the normal computation.
1224 * Let S be a non-singular square matrix with s as its first row,
1225 * then we want to map the polyhedra to the space
1227 * [ y' ] [ y ] [ y ] [ y' ]
1228 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1230 * We take S to be the unimodular completion of s to limit the growth
1231 * of the coefficients in the following computations.
1233 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1234 * We first move to the homogeneous dimension
1236 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1237 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1239 * Then we change directoin
1241 * [ b_i A_i ] [ y' ] [ y' ]
1242 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1244 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1245 * resulting in b' + A' x' >= 0, which we then convert back
1248 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1250 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1252 static struct isl_basic_set
*convex_hull_pair_pointed(
1253 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1255 struct isl_ctx
*ctx
= NULL
;
1256 struct isl_vec
*dir
= NULL
;
1257 struct isl_mat
*T
= NULL
;
1258 struct isl_mat
*T2
= NULL
;
1259 struct isl_basic_set
*hull
;
1260 struct isl_set
*set
;
1262 if (!bset1
|| !bset2
)
1265 dir
= valid_direction(isl_basic_set_copy(bset1
),
1266 isl_basic_set_copy(bset2
));
1269 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1272 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1273 T
= isl_mat_unimodular_complete(T
, 1);
1274 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1276 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1277 bset2
= homogeneous_map(bset2
, T2
);
1278 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1279 set
= isl_set_add_basic_set(set
, bset1
);
1280 set
= isl_set_add_basic_set(set
, bset2
);
1281 hull
= uset_convex_hull(set
);
1282 hull
= isl_basic_set_preimage(hull
, T
);
1289 isl_basic_set_free(bset1
);
1290 isl_basic_set_free(bset2
);
1294 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
);
1295 static struct isl_basic_set
*modulo_affine_hull(
1296 struct isl_set
*set
, struct isl_basic_set
*affine_hull
);
1298 /* Compute the convex hull of a pair of basic sets without any parameters or
1299 * integer divisions.
1301 * This function is called from uset_convex_hull_unbounded, which
1302 * means that the complete convex hull is unbounded. Some pairs
1303 * of basic sets may still be bounded, though.
1304 * They may even lie inside a lower dimensional space, in which
1305 * case they need to be handled inside their affine hull since
1306 * the main algorithm assumes that the result is full-dimensional.
1308 * If the convex hull of the two basic sets would have a non-trivial
1309 * lineality space, we first project out this lineality space.
1311 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1312 struct isl_basic_set
*bset2
)
1314 isl_basic_set
*lin
, *aff
;
1315 int bounded1
, bounded2
;
1317 aff
= isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1
),
1318 isl_basic_set_copy(bset2
)));
1322 return modulo_affine_hull(isl_basic_set_union(bset1
, bset2
), aff
);
1323 isl_basic_set_free(aff
);
1325 bounded1
= isl_basic_set_is_bounded(bset1
);
1326 bounded2
= isl_basic_set_is_bounded(bset2
);
1328 if (bounded1
< 0 || bounded2
< 0)
1331 if (bounded1
&& bounded2
)
1332 uset_convex_hull_wrap(isl_basic_set_union(bset1
, bset2
));
1334 if (bounded1
|| bounded2
)
1335 return convex_hull_pair_pointed(bset1
, bset2
);
1337 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1338 isl_basic_set_copy(bset2
));
1341 if (isl_basic_set_is_universe(lin
)) {
1342 isl_basic_set_free(bset1
);
1343 isl_basic_set_free(bset2
);
1346 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1347 struct isl_set
*set
;
1348 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1349 set
= isl_set_add_basic_set(set
, bset1
);
1350 set
= isl_set_add_basic_set(set
, bset2
);
1351 return modulo_lineality(set
, lin
);
1353 isl_basic_set_free(lin
);
1355 return convex_hull_pair_pointed(bset1
, bset2
);
1357 isl_basic_set_free(bset1
);
1358 isl_basic_set_free(bset2
);
1362 /* Compute the lineality space of a basic set.
1363 * We currently do not allow the basic set to have any divs.
1364 * We basically just drop the constants and turn every inequality
1367 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1370 struct isl_basic_set
*lin
= NULL
;
1375 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1376 dim
= isl_basic_set_total_dim(bset
);
1378 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
), 0, dim
, 0);
1381 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1382 k
= isl_basic_set_alloc_equality(lin
);
1385 isl_int_set_si(lin
->eq
[k
][0], 0);
1386 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1388 lin
= isl_basic_set_gauss(lin
, NULL
);
1391 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1392 k
= isl_basic_set_alloc_equality(lin
);
1395 isl_int_set_si(lin
->eq
[k
][0], 0);
1396 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1397 lin
= isl_basic_set_gauss(lin
, NULL
);
1401 isl_basic_set_free(bset
);
1404 isl_basic_set_free(lin
);
1405 isl_basic_set_free(bset
);
1409 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1410 * "underlying" set "set".
1412 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1415 struct isl_set
*lin
= NULL
;
1420 struct isl_dim
*dim
= isl_set_get_dim(set
);
1422 return isl_basic_set_empty(dim
);
1425 lin
= isl_set_alloc_dim(isl_set_get_dim(set
), set
->n
, 0);
1426 for (i
= 0; i
< set
->n
; ++i
)
1427 lin
= isl_set_add_basic_set(lin
,
1428 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1430 return isl_set_affine_hull(lin
);
1433 /* Compute the convex hull of a set without any parameters or
1434 * integer divisions.
1435 * In each step, we combined two basic sets until only one
1436 * basic set is left.
1437 * The input basic sets are assumed not to have a non-trivial
1438 * lineality space. If any of the intermediate results has
1439 * a non-trivial lineality space, it is projected out.
1441 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1443 struct isl_basic_set
*convex_hull
= NULL
;
1445 convex_hull
= isl_set_copy_basic_set(set
);
1446 set
= isl_set_drop_basic_set(set
, convex_hull
);
1449 while (set
->n
> 0) {
1450 struct isl_basic_set
*t
;
1451 t
= isl_set_copy_basic_set(set
);
1454 set
= isl_set_drop_basic_set(set
, t
);
1457 convex_hull
= convex_hull_pair(convex_hull
, t
);
1460 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1463 if (isl_basic_set_is_universe(t
)) {
1464 isl_basic_set_free(convex_hull
);
1468 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1469 set
= isl_set_add_basic_set(set
, convex_hull
);
1470 return modulo_lineality(set
, t
);
1472 isl_basic_set_free(t
);
1478 isl_basic_set_free(convex_hull
);
1482 /* Compute an initial hull for wrapping containing a single initial
1484 * This function assumes that the given set is bounded.
1486 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1487 struct isl_set
*set
)
1489 struct isl_mat
*bounds
= NULL
;
1495 bounds
= initial_facet_constraint(set
);
1498 k
= isl_basic_set_alloc_inequality(hull
);
1501 dim
= isl_set_n_dim(set
);
1502 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1503 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1504 isl_mat_free(bounds
);
1508 isl_basic_set_free(hull
);
1509 isl_mat_free(bounds
);
1513 struct max_constraint
{
1519 static int max_constraint_equal(const void *entry
, const void *val
)
1521 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1522 isl_int
*b
= (isl_int
*)val
;
1524 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1527 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1528 isl_int
*con
, unsigned len
, int n
, int ineq
)
1530 struct isl_hash_table_entry
*entry
;
1531 struct max_constraint
*c
;
1534 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1535 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1541 isl_hash_table_remove(ctx
, table
, entry
);
1545 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1547 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1552 c
->c
= isl_mat_cow(c
->c
);
1553 isl_int_set(c
->c
->row
[0][0], con
[0]);
1557 /* Check whether the constraint hash table "table" constains the constraint
1560 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1561 isl_int
*con
, unsigned len
, int n
)
1563 struct isl_hash_table_entry
*entry
;
1564 struct max_constraint
*c
;
1567 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1568 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1575 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1578 /* Check for inequality constraints of a basic set without equalities
1579 * such that the same or more stringent copies of the constraint appear
1580 * in all of the basic sets. Such constraints are necessarily facet
1581 * constraints of the convex hull.
1583 * If the resulting basic set is by chance identical to one of
1584 * the basic sets in "set", then we know that this basic set contains
1585 * all other basic sets and is therefore the convex hull of set.
1586 * In this case we set *is_hull to 1.
1588 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1589 struct isl_set
*set
, int *is_hull
)
1592 int min_constraints
;
1594 struct max_constraint
*constraints
= NULL
;
1595 struct isl_hash_table
*table
= NULL
;
1600 for (i
= 0; i
< set
->n
; ++i
)
1601 if (set
->p
[i
]->n_eq
== 0)
1605 min_constraints
= set
->p
[i
]->n_ineq
;
1607 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1608 if (set
->p
[i
]->n_eq
!= 0)
1610 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1612 min_constraints
= set
->p
[i
]->n_ineq
;
1615 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1619 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1620 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1623 total
= isl_dim_total(set
->dim
);
1624 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1625 constraints
[i
].c
= isl_mat_sub_alloc(hull
->ctx
,
1626 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1627 if (!constraints
[i
].c
)
1629 constraints
[i
].ineq
= 1;
1631 for (i
= 0; i
< min_constraints
; ++i
) {
1632 struct isl_hash_table_entry
*entry
;
1634 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1635 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1636 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1639 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1640 entry
->data
= &constraints
[i
];
1644 for (s
= 0; s
< set
->n
; ++s
) {
1648 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1649 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1650 for (j
= 0; j
< 2; ++j
) {
1651 isl_seq_neg(eq
, eq
, 1 + total
);
1652 update_constraint(hull
->ctx
, table
,
1656 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1657 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1658 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1659 set
->p
[s
]->n_eq
== 0);
1664 for (i
= 0; i
< min_constraints
; ++i
) {
1665 if (constraints
[i
].count
< n
)
1667 if (!constraints
[i
].ineq
)
1669 j
= isl_basic_set_alloc_inequality(hull
);
1672 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1675 for (s
= 0; s
< set
->n
; ++s
) {
1676 if (set
->p
[s
]->n_eq
)
1678 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1680 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1681 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1682 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1685 if (i
== set
->p
[s
]->n_ineq
)
1689 isl_hash_table_clear(table
);
1690 for (i
= 0; i
< min_constraints
; ++i
)
1691 isl_mat_free(constraints
[i
].c
);
1696 isl_hash_table_clear(table
);
1699 for (i
= 0; i
< min_constraints
; ++i
)
1700 isl_mat_free(constraints
[i
].c
);
1705 /* Create a template for the convex hull of "set" and fill it up
1706 * obvious facet constraints, if any. If the result happens to
1707 * be the convex hull of "set" then *is_hull is set to 1.
1709 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1711 struct isl_basic_set
*hull
;
1716 for (i
= 0; i
< set
->n
; ++i
) {
1717 n_ineq
+= set
->p
[i
]->n_eq
;
1718 n_ineq
+= set
->p
[i
]->n_ineq
;
1720 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
1721 hull
= isl_basic_set_set_rational(hull
);
1724 return common_constraints(hull
, set
, is_hull
);
1727 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1729 struct isl_basic_set
*hull
;
1732 hull
= proto_hull(set
, &is_hull
);
1733 if (hull
&& !is_hull
) {
1734 if (hull
->n_ineq
== 0)
1735 hull
= initial_hull(hull
, set
);
1736 hull
= extend(hull
, set
);
1743 /* Compute the convex hull of a set without any parameters or
1744 * integer divisions. Depending on whether the set is bounded,
1745 * we pass control to the wrapping based convex hull or
1746 * the Fourier-Motzkin elimination based convex hull.
1747 * We also handle a few special cases before checking the boundedness.
1749 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1751 struct isl_basic_set
*convex_hull
= NULL
;
1752 struct isl_basic_set
*lin
;
1754 if (isl_set_n_dim(set
) == 0)
1755 return convex_hull_0d(set
);
1757 set
= isl_set_coalesce(set
);
1758 set
= isl_set_set_rational(set
);
1765 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1769 if (isl_set_n_dim(set
) == 1)
1770 return convex_hull_1d(set
);
1772 if (isl_set_is_bounded(set
))
1773 return uset_convex_hull_wrap(set
);
1775 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1778 if (isl_basic_set_is_universe(lin
)) {
1782 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1783 return modulo_lineality(set
, lin
);
1784 isl_basic_set_free(lin
);
1786 return uset_convex_hull_unbounded(set
);
1789 isl_basic_set_free(convex_hull
);
1793 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1794 * without parameters or divs and where the convex hull of set is
1795 * known to be full-dimensional.
1797 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1799 struct isl_basic_set
*convex_hull
= NULL
;
1801 if (isl_set_n_dim(set
) == 0) {
1802 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
1804 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1808 set
= isl_set_set_rational(set
);
1812 set
= isl_set_coalesce(set
);
1816 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1820 if (isl_set_n_dim(set
) == 1)
1821 return convex_hull_1d(set
);
1823 return uset_convex_hull_wrap(set
);
1829 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1830 * We first remove the equalities (transforming the set), compute the
1831 * convex hull of the transformed set and then add the equalities back
1832 * (after performing the inverse transformation.
1834 static struct isl_basic_set
*modulo_affine_hull(
1835 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1839 struct isl_basic_set
*dummy
;
1840 struct isl_basic_set
*convex_hull
;
1842 dummy
= isl_basic_set_remove_equalities(
1843 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1846 isl_basic_set_free(dummy
);
1847 set
= isl_set_preimage(set
, T
);
1848 convex_hull
= uset_convex_hull(set
);
1849 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1850 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1853 isl_basic_set_free(affine_hull
);
1858 /* Compute the convex hull of a map.
1860 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1861 * specifically, the wrapping of facets to obtain new facets.
1863 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1865 struct isl_basic_set
*bset
;
1866 struct isl_basic_map
*model
= NULL
;
1867 struct isl_basic_set
*affine_hull
= NULL
;
1868 struct isl_basic_map
*convex_hull
= NULL
;
1869 struct isl_set
*set
= NULL
;
1870 struct isl_ctx
*ctx
;
1877 convex_hull
= isl_basic_map_empty_like_map(map
);
1882 map
= isl_map_detect_equalities(map
);
1883 map
= isl_map_align_divs(map
);
1884 model
= isl_basic_map_copy(map
->p
[0]);
1885 set
= isl_map_underlying_set(map
);
1889 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1892 if (affine_hull
->n_eq
!= 0)
1893 bset
= modulo_affine_hull(set
, affine_hull
);
1895 isl_basic_set_free(affine_hull
);
1896 bset
= uset_convex_hull(set
);
1899 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1901 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1902 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1903 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1907 isl_basic_map_free(model
);
1911 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1913 return (struct isl_basic_set
*)
1914 isl_map_convex_hull((struct isl_map
*)set
);
1917 struct sh_data_entry
{
1918 struct isl_hash_table
*table
;
1919 struct isl_tab
*tab
;
1922 /* Holds the data needed during the simple hull computation.
1924 * n the number of basic sets in the original set
1925 * hull_table a hash table of already computed constraints
1926 * in the simple hull
1927 * p for each basic set,
1928 * table a hash table of the constraints
1929 * tab the tableau corresponding to the basic set
1932 struct isl_ctx
*ctx
;
1934 struct isl_hash_table
*hull_table
;
1935 struct sh_data_entry p
[1];
1938 static void sh_data_free(struct sh_data
*data
)
1944 isl_hash_table_free(data
->ctx
, data
->hull_table
);
1945 for (i
= 0; i
< data
->n
; ++i
) {
1946 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
1947 isl_tab_free(data
->p
[i
].tab
);
1952 struct ineq_cmp_data
{
1957 static int has_ineq(const void *entry
, const void *val
)
1959 isl_int
*row
= (isl_int
*)entry
;
1960 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
1962 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
1963 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
1966 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1967 isl_int
*ineq
, unsigned len
)
1970 struct ineq_cmp_data v
;
1971 struct isl_hash_table_entry
*entry
;
1975 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
1976 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
1983 /* Fill hash table "table" with the constraints of "bset".
1984 * Equalities are added as two inequalities.
1985 * The value in the hash table is a pointer to the (in)equality of "bset".
1987 static int hash_basic_set(struct isl_hash_table
*table
,
1988 struct isl_basic_set
*bset
)
1991 unsigned dim
= isl_basic_set_total_dim(bset
);
1993 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1994 for (j
= 0; j
< 2; ++j
) {
1995 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
1996 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2000 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2001 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2007 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2009 struct sh_data
*data
;
2012 data
= isl_calloc(set
->ctx
, struct sh_data
,
2013 sizeof(struct sh_data
) +
2014 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2017 data
->ctx
= set
->ctx
;
2019 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2020 if (!data
->hull_table
)
2022 for (i
= 0; i
< set
->n
; ++i
) {
2023 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2024 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2025 if (!data
->p
[i
].table
)
2027 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2036 /* Check if inequality "ineq" is a bound for basic set "j" or if
2037 * it can be relaxed (by increasing the constant term) to become
2038 * a bound for that basic set. In the latter case, the constant
2040 * Return 1 if "ineq" is a bound
2041 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2042 * -1 if some error occurred
2044 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2047 enum isl_lp_result res
;
2050 if (!data
->p
[j
].tab
) {
2051 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2052 if (!data
->p
[j
].tab
)
2058 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2060 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2061 isl_int_sub(ineq
[0], ineq
[0], opt
);
2065 return (res
== isl_lp_ok
|| res
== isl_lp_empty
) ? 1 :
2066 res
== isl_lp_unbounded
? 0 : -1;
2069 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2070 * become a bound on the whole set. If so, add the (relaxed) inequality
2073 * We first check if "hull" already contains a translate of the inequality.
2074 * If so, we are done.
2075 * Then, we check if any of the previous basic sets contains a translate
2076 * of the inequality. If so, then we have already considered this
2077 * inequality and we are done.
2078 * Otherwise, for each basic set other than "i", we check if the inequality
2079 * is a bound on the basic set.
2080 * For previous basic sets, we know that they do not contain a translate
2081 * of the inequality, so we directly call is_bound.
2082 * For following basic sets, we first check if a translate of the
2083 * inequality appears in its description and if so directly update
2084 * the inequality accordingly.
2086 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2087 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2090 struct ineq_cmp_data v
;
2091 struct isl_hash_table_entry
*entry
;
2097 v
.len
= isl_basic_set_total_dim(hull
);
2099 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2101 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2106 for (j
= 0; j
< i
; ++j
) {
2107 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2108 c_hash
, has_ineq
, &v
, 0);
2115 k
= isl_basic_set_alloc_inequality(hull
);
2116 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2120 for (j
= 0; j
< i
; ++j
) {
2122 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2129 isl_basic_set_free_inequality(hull
, 1);
2133 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2136 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2137 c_hash
, has_ineq
, &v
, 0);
2139 ineq_j
= entry
->data
;
2140 neg
= isl_seq_is_neg(ineq_j
+ 1,
2141 hull
->ineq
[k
] + 1, v
.len
);
2143 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2144 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2145 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2147 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2150 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2157 isl_basic_set_free_inequality(hull
, 1);
2161 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2165 entry
->data
= hull
->ineq
[k
];
2169 isl_basic_set_free(hull
);
2173 /* Check if any inequality from basic set "i" can be relaxed to
2174 * become a bound on the whole set. If so, add the (relaxed) inequality
2177 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2178 struct sh_data
*data
, struct isl_set
*set
, int i
)
2181 unsigned dim
= isl_basic_set_total_dim(bset
);
2183 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2184 for (k
= 0; k
< 2; ++k
) {
2185 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2186 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2189 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2190 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2194 /* Compute a superset of the convex hull of set that is described
2195 * by only translates of the constraints in the constituents of set.
2197 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2199 struct sh_data
*data
= NULL
;
2200 struct isl_basic_set
*hull
= NULL
;
2208 for (i
= 0; i
< set
->n
; ++i
) {
2211 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2214 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
2218 data
= sh_data_alloc(set
, n_ineq
);
2222 for (i
= 0; i
< set
->n
; ++i
)
2223 hull
= add_bounds(hull
, data
, set
, i
);
2231 isl_basic_set_free(hull
);
2236 /* Compute a superset of the convex hull of map that is described
2237 * by only translates of the constraints in the constituents of map.
2239 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2241 struct isl_set
*set
= NULL
;
2242 struct isl_basic_map
*model
= NULL
;
2243 struct isl_basic_map
*hull
;
2244 struct isl_basic_map
*affine_hull
;
2245 struct isl_basic_set
*bset
= NULL
;
2250 hull
= isl_basic_map_empty_like_map(map
);
2255 hull
= isl_basic_map_copy(map
->p
[0]);
2260 map
= isl_map_detect_equalities(map
);
2261 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2262 map
= isl_map_align_divs(map
);
2263 model
= isl_basic_map_copy(map
->p
[0]);
2265 set
= isl_map_underlying_set(map
);
2267 bset
= uset_simple_hull(set
);
2269 hull
= isl_basic_map_overlying_set(bset
, model
);
2271 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2272 hull
= isl_basic_map_convex_hull(hull
);
2273 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2274 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2279 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2281 return (struct isl_basic_set
*)
2282 isl_map_simple_hull((struct isl_map
*)set
);
2285 /* Given a set "set", return parametric bounds on the dimension "dim".
2287 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2289 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2290 set
= isl_set_copy(set
);
2291 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2292 set
= isl_set_eliminate_dims(set
, 0, dim
);
2293 return isl_set_convex_hull(set
);
2296 /* Computes a "simple hull" and then check if each dimension in the
2297 * resulting hull is bounded by a symbolic constant. If not, the
2298 * hull is intersected with the corresponding bounds on the whole set.
2300 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2303 struct isl_basic_set
*hull
;
2304 unsigned nparam
, left
;
2305 int removed_divs
= 0;
2307 hull
= isl_set_simple_hull(isl_set_copy(set
));
2311 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2312 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2313 int lower
= 0, upper
= 0;
2314 struct isl_basic_set
*bounds
;
2316 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2317 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2318 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2320 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2327 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2328 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2330 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2332 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2335 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2346 if (!removed_divs
) {
2347 set
= isl_set_remove_divs(set
);
2352 bounds
= set_bounds(set
, i
);
2353 hull
= isl_basic_set_intersect(hull
, bounds
);