2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 #include "isl_map_private.h"
17 #include <isl/options.h>
19 #include <isl_mat_private.h>
20 #include <isl_local_space_private.h>
21 #include <isl_vec_private.h>
23 #define STATUS_ERROR -1
24 #define STATUS_REDUNDANT 1
25 #define STATUS_VALID 2
26 #define STATUS_SEPARATE 3
28 #define STATUS_ADJ_EQ 5
29 #define STATUS_ADJ_INEQ 6
31 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
33 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
36 case isl_ineq_error
: return STATUS_ERROR
;
37 case isl_ineq_redundant
: return STATUS_VALID
;
38 case isl_ineq_separate
: return STATUS_SEPARATE
;
39 case isl_ineq_cut
: return STATUS_CUT
;
40 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
41 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
45 /* Compute the position of the equalities of basic map "bmap_i"
46 * with respect to the basic map represented by "tab_j".
47 * The resulting array has twice as many entries as the number
48 * of equalities corresponding to the two inequalties to which
49 * each equality corresponds.
51 static int *eq_status_in(__isl_keep isl_basic_map
*bmap_i
,
52 struct isl_tab
*tab_j
)
55 int *eq
= isl_calloc_array(bmap_i
->ctx
, int, 2 * bmap_i
->n_eq
);
61 dim
= isl_basic_map_total_dim(bmap_i
);
62 for (k
= 0; k
< bmap_i
->n_eq
; ++k
) {
63 for (l
= 0; l
< 2; ++l
) {
64 isl_seq_neg(bmap_i
->eq
[k
], bmap_i
->eq
[k
], 1+dim
);
65 eq
[2 * k
+ l
] = status_in(bmap_i
->eq
[k
], tab_j
);
66 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
69 if (eq
[2 * k
] == STATUS_SEPARATE
||
70 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
80 /* Compute the position of the inequalities of basic map "bmap_i"
81 * (also represented by "tab_i", if not NULL) with respect to the basic map
82 * represented by "tab_j".
84 static int *ineq_status_in(__isl_keep isl_basic_map
*bmap_i
,
85 struct isl_tab
*tab_i
, struct isl_tab
*tab_j
)
88 unsigned n_eq
= bmap_i
->n_eq
;
89 int *ineq
= isl_calloc_array(bmap_i
->ctx
, int, bmap_i
->n_ineq
);
94 for (k
= 0; k
< bmap_i
->n_ineq
; ++k
) {
95 if (tab_i
&& isl_tab_is_redundant(tab_i
, n_eq
+ k
)) {
96 ineq
[k
] = STATUS_REDUNDANT
;
99 ineq
[k
] = status_in(bmap_i
->ineq
[k
], tab_j
);
100 if (ineq
[k
] == STATUS_ERROR
)
102 if (ineq
[k
] == STATUS_SEPARATE
)
112 static int any(int *con
, unsigned len
, int status
)
116 for (i
= 0; i
< len
; ++i
)
117 if (con
[i
] == status
)
122 static int count(int *con
, unsigned len
, int status
)
127 for (i
= 0; i
< len
; ++i
)
128 if (con
[i
] == status
)
133 static int all(int *con
, unsigned len
, int status
)
137 for (i
= 0; i
< len
; ++i
) {
138 if (con
[i
] == STATUS_REDUNDANT
)
140 if (con
[i
] != status
)
146 static void drop(struct isl_map
*map
, int i
, struct isl_tab
**tabs
)
148 isl_basic_map_free(map
->p
[i
]);
149 isl_tab_free(tabs
[i
]);
151 if (i
!= map
->n
- 1) {
152 map
->p
[i
] = map
->p
[map
->n
- 1];
153 tabs
[i
] = tabs
[map
->n
- 1];
155 tabs
[map
->n
- 1] = NULL
;
159 /* Replace the pair of basic maps i and j by the basic map bounded
160 * by the valid constraints in both basic maps and the constraints
161 * in extra (if not NULL).
163 static int fuse(struct isl_map
*map
, int i
, int j
,
164 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
,
165 __isl_keep isl_mat
*extra
)
168 struct isl_basic_map
*fused
= NULL
;
169 struct isl_tab
*fused_tab
= NULL
;
170 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
171 unsigned extra_rows
= extra
? extra
->n_row
: 0;
173 fused
= isl_basic_map_alloc_space(isl_space_copy(map
->p
[i
]->dim
),
175 map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
,
176 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
+ extra_rows
);
180 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
181 if (eq_i
&& (eq_i
[2 * k
] != STATUS_VALID
||
182 eq_i
[2 * k
+ 1] != STATUS_VALID
))
184 l
= isl_basic_map_alloc_equality(fused
);
187 isl_seq_cpy(fused
->eq
[l
], map
->p
[i
]->eq
[k
], 1 + total
);
190 for (k
= 0; k
< map
->p
[j
]->n_eq
; ++k
) {
191 if (eq_j
&& (eq_j
[2 * k
] != STATUS_VALID
||
192 eq_j
[2 * k
+ 1] != STATUS_VALID
))
194 l
= isl_basic_map_alloc_equality(fused
);
197 isl_seq_cpy(fused
->eq
[l
], map
->p
[j
]->eq
[k
], 1 + total
);
200 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
201 if (ineq_i
[k
] != STATUS_VALID
)
203 l
= isl_basic_map_alloc_inequality(fused
);
206 isl_seq_cpy(fused
->ineq
[l
], map
->p
[i
]->ineq
[k
], 1 + total
);
209 for (k
= 0; k
< map
->p
[j
]->n_ineq
; ++k
) {
210 if (ineq_j
[k
] != STATUS_VALID
)
212 l
= isl_basic_map_alloc_inequality(fused
);
215 isl_seq_cpy(fused
->ineq
[l
], map
->p
[j
]->ineq
[k
], 1 + total
);
218 for (k
= 0; k
< map
->p
[i
]->n_div
; ++k
) {
219 int l
= isl_basic_map_alloc_div(fused
);
222 isl_seq_cpy(fused
->div
[l
], map
->p
[i
]->div
[k
], 1 + 1 + total
);
225 for (k
= 0; k
< extra_rows
; ++k
) {
226 l
= isl_basic_map_alloc_inequality(fused
);
229 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
232 fused
= isl_basic_map_gauss(fused
, NULL
);
233 ISL_F_SET(fused
, ISL_BASIC_MAP_FINAL
);
234 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) &&
235 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
236 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
238 fused_tab
= isl_tab_from_basic_map(fused
, 0);
239 if (isl_tab_detect_redundant(fused_tab
) < 0)
242 isl_basic_map_free(map
->p
[i
]);
244 isl_tab_free(tabs
[i
]);
250 isl_tab_free(fused_tab
);
251 isl_basic_map_free(fused
);
255 /* Given a pair of basic maps i and j such that all constraints are either
256 * "valid" or "cut", check if the facets corresponding to the "cut"
257 * constraints of i lie entirely within basic map j.
258 * If so, replace the pair by the basic map consisting of the valid
259 * constraints in both basic maps.
260 * Checking whether the facet lies entirely within basic map j
261 * is performed by checking whether the constraints of basic map j
262 * are valid for the facet. These tests are performed on a rational
263 * tableau to avoid the theoretical possibility that a constraint
264 * that was considered to be a cut constraint for the entire basic map i
265 * happens to be considered to be a valid constraint for the facet,
266 * even though it cuts off the same rational points.
268 * To see that we are not introducing any extra points, call the
269 * two basic maps A and B and the resulting map U and let x
270 * be an element of U \setminus ( A \cup B ).
271 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
272 * violates them. Let X be the intersection of U with the opposites
273 * of these constraints. Then x \in X.
274 * The facet corresponding to c_1 contains the corresponding facet of A.
275 * This facet is entirely contained in B, so c_2 is valid on the facet.
276 * However, since it is also (part of) a facet of X, -c_2 is also valid
277 * on the facet. This means c_2 is saturated on the facet, so c_1 and
278 * c_2 must be opposites of each other, but then x could not violate
281 static int check_facets(struct isl_map
*map
, int i
, int j
,
282 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
285 struct isl_tab_undo
*snap
, *snap2
;
286 unsigned n_eq
= map
->p
[i
]->n_eq
;
288 snap
= isl_tab_snap(tabs
[i
]);
289 if (isl_tab_mark_rational(tabs
[i
]) < 0)
291 snap2
= isl_tab_snap(tabs
[i
]);
293 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
294 if (ineq_i
[k
] != STATUS_CUT
)
296 if (isl_tab_select_facet(tabs
[i
], n_eq
+ k
) < 0)
298 for (l
= 0; l
< map
->p
[j
]->n_ineq
; ++l
) {
300 if (ineq_j
[l
] != STATUS_CUT
)
302 stat
= status_in(map
->p
[j
]->ineq
[l
], tabs
[i
]);
303 if (stat
!= STATUS_VALID
)
306 if (isl_tab_rollback(tabs
[i
], snap2
) < 0)
308 if (l
< map
->p
[j
]->n_ineq
)
312 if (k
< map
->p
[i
]->n_ineq
) {
313 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
317 return fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
320 /* Check if basic map "i" contains the basic map represented
321 * by the tableau "tab".
323 static int contains(struct isl_map
*map
, int i
, int *ineq_i
,
329 dim
= isl_basic_map_total_dim(map
->p
[i
]);
330 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
331 for (l
= 0; l
< 2; ++l
) {
333 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
334 stat
= status_in(map
->p
[i
]->eq
[k
], tab
);
335 if (stat
!= STATUS_VALID
)
340 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
342 if (ineq_i
[k
] == STATUS_REDUNDANT
)
344 stat
= status_in(map
->p
[i
]->ineq
[k
], tab
);
345 if (stat
!= STATUS_VALID
)
351 /* Basic map "i" has an inequality (say "k") that is adjacent
352 * to some inequality of basic map "j". All the other inequalities
354 * Check if basic map "j" forms an extension of basic map "i".
356 * Note that this function is only called if some of the equalities or
357 * inequalities of basic map "j" do cut basic map "i". The function is
358 * correct even if there are no such cut constraints, but in that case
359 * the additional checks performed by this function are overkill.
361 * In particular, we replace constraint k, say f >= 0, by constraint
362 * f <= -1, add the inequalities of "j" that are valid for "i"
363 * and check if the result is a subset of basic map "j".
364 * If so, then we know that this result is exactly equal to basic map "j"
365 * since all its constraints are valid for basic map "j".
366 * By combining the valid constraints of "i" (all equalities and all
367 * inequalities except "k") and the valid constraints of "j" we therefore
368 * obtain a basic map that is equal to their union.
369 * In this case, there is no need to perform a rollback of the tableau
370 * since it is going to be destroyed in fuse().
376 * |_______| _ |_________\
388 static int is_adj_ineq_extension(__isl_keep isl_map
*map
, int i
, int j
,
389 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
392 struct isl_tab_undo
*snap
;
393 unsigned n_eq
= map
->p
[i
]->n_eq
;
394 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
397 if (isl_tab_extend_cons(tabs
[i
], 1 + map
->p
[j
]->n_ineq
) < 0)
400 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
401 if (ineq_i
[k
] == STATUS_ADJ_INEQ
)
403 if (k
>= map
->p
[i
]->n_ineq
)
404 isl_die(isl_map_get_ctx(map
), isl_error_internal
,
405 "ineq_i should have exactly one STATUS_ADJ_INEQ",
408 snap
= isl_tab_snap(tabs
[i
]);
410 if (isl_tab_unrestrict(tabs
[i
], n_eq
+ k
) < 0)
413 isl_seq_neg(map
->p
[i
]->ineq
[k
], map
->p
[i
]->ineq
[k
], 1 + total
);
414 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
415 r
= isl_tab_add_ineq(tabs
[i
], map
->p
[i
]->ineq
[k
]);
416 isl_seq_neg(map
->p
[i
]->ineq
[k
], map
->p
[i
]->ineq
[k
], 1 + total
);
417 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
421 for (k
= 0; k
< map
->p
[j
]->n_ineq
; ++k
) {
422 if (ineq_j
[k
] != STATUS_VALID
)
424 if (isl_tab_add_ineq(tabs
[i
], map
->p
[j
]->ineq
[k
]) < 0)
428 if (contains(map
, j
, ineq_j
, tabs
[i
]))
429 return fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, NULL
);
431 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
438 /* Both basic maps have at least one inequality with and adjacent
439 * (but opposite) inequality in the other basic map.
440 * Check that there are no cut constraints and that there is only
441 * a single pair of adjacent inequalities.
442 * If so, we can replace the pair by a single basic map described
443 * by all but the pair of adjacent inequalities.
444 * Any additional points introduced lie strictly between the two
445 * adjacent hyperplanes and can therefore be integral.
454 * The test for a single pair of adjancent inequalities is important
455 * for avoiding the combination of two basic maps like the following
465 * If there are some cut constraints on one side, then we may
466 * still be able to fuse the two basic maps, but we need to perform
467 * some additional checks in is_adj_ineq_extension.
469 static int check_adj_ineq(struct isl_map
*map
, int i
, int j
,
470 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
472 int count_i
, count_j
;
475 count_i
= count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
);
476 count_j
= count(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
);
478 if (count_i
!= 1 && count_j
!= 1)
481 cut_i
= any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) ||
482 any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
);
483 cut_j
= any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
) ||
484 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_CUT
);
486 if (!cut_i
&& !cut_j
&& count_i
== 1 && count_j
== 1)
487 return fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
489 if (count_i
== 1 && !cut_i
)
490 return is_adj_ineq_extension(map
, i
, j
, tabs
,
491 eq_i
, ineq_i
, eq_j
, ineq_j
);
493 if (count_j
== 1 && !cut_j
)
494 return is_adj_ineq_extension(map
, j
, i
, tabs
,
495 eq_j
, ineq_j
, eq_i
, ineq_i
);
500 /* Basic map "i" has an inequality "k" that is adjacent to some equality
501 * of basic map "j". All the other inequalities are valid for "j".
502 * Check if basic map "j" forms an extension of basic map "i".
504 * In particular, we relax constraint "k", compute the corresponding
505 * facet and check whether it is included in the other basic map.
506 * If so, we know that relaxing the constraint extends the basic
507 * map with exactly the other basic map (we already know that this
508 * other basic map is included in the extension, because there
509 * were no "cut" inequalities in "i") and we can replace the
510 * two basic maps by this extension.
518 static int is_adj_eq_extension(struct isl_map
*map
, int i
, int j
, int k
,
519 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
523 struct isl_tab_undo
*snap
, *snap2
;
524 unsigned n_eq
= map
->p
[i
]->n_eq
;
526 if (isl_tab_is_equality(tabs
[i
], n_eq
+ k
))
529 snap
= isl_tab_snap(tabs
[i
]);
530 if (isl_tab_relax(tabs
[i
], n_eq
+ k
) < 0)
532 snap2
= isl_tab_snap(tabs
[i
]);
533 if (isl_tab_select_facet(tabs
[i
], n_eq
+ k
) < 0)
535 super
= contains(map
, j
, ineq_j
, tabs
[i
]);
537 if (isl_tab_rollback(tabs
[i
], snap2
) < 0)
539 map
->p
[i
] = isl_basic_map_cow(map
->p
[i
]);
542 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
543 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_FINAL
);
547 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
553 /* Data structure that keeps track of the wrapping constraints
554 * and of information to bound the coefficients of those constraints.
556 * bound is set if we want to apply a bound on the coefficients
557 * mat contains the wrapping constraints
558 * max is the bound on the coefficients (if bound is set)
566 /* Update wraps->max to be greater than or equal to the coefficients
567 * in the equalities and inequalities of bmap that can be removed if we end up
570 static void wraps_update_max(struct isl_wraps
*wraps
,
571 __isl_keep isl_basic_map
*bmap
, int *eq
, int *ineq
)
575 unsigned total
= isl_basic_map_total_dim(bmap
);
579 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
580 if (eq
[2 * k
] == STATUS_VALID
&&
581 eq
[2 * k
+ 1] == STATUS_VALID
)
583 isl_seq_abs_max(bmap
->eq
[k
] + 1, total
, &max_k
);
584 if (isl_int_abs_gt(max_k
, wraps
->max
))
585 isl_int_set(wraps
->max
, max_k
);
588 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
589 if (ineq
[k
] == STATUS_VALID
|| ineq
[k
] == STATUS_REDUNDANT
)
591 isl_seq_abs_max(bmap
->ineq
[k
] + 1, total
, &max_k
);
592 if (isl_int_abs_gt(max_k
, wraps
->max
))
593 isl_int_set(wraps
->max
, max_k
);
596 isl_int_clear(max_k
);
599 /* Initialize the isl_wraps data structure.
600 * If we want to bound the coefficients of the wrapping constraints,
601 * we set wraps->max to the largest coefficient
602 * in the equalities and inequalities that can be removed if we end up
605 static void wraps_init(struct isl_wraps
*wraps
, __isl_take isl_mat
*mat
,
606 __isl_keep isl_map
*map
, int i
, int j
,
607 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
615 ctx
= isl_mat_get_ctx(mat
);
616 wraps
->bound
= isl_options_get_coalesce_bounded_wrapping(ctx
);
619 isl_int_init(wraps
->max
);
620 isl_int_set_si(wraps
->max
, 0);
621 wraps_update_max(wraps
, map
->p
[i
], eq_i
, ineq_i
);
622 wraps_update_max(wraps
, map
->p
[j
], eq_j
, ineq_j
);
625 /* Free the contents of the isl_wraps data structure.
627 static void wraps_free(struct isl_wraps
*wraps
)
629 isl_mat_free(wraps
->mat
);
631 isl_int_clear(wraps
->max
);
634 /* Is the wrapping constraint in row "row" allowed?
636 * If wraps->bound is set, we check that none of the coefficients
637 * is greater than wraps->max.
639 static int allow_wrap(struct isl_wraps
*wraps
, int row
)
646 for (i
= 1; i
< wraps
->mat
->n_col
; ++i
)
647 if (isl_int_abs_gt(wraps
->mat
->row
[row
][i
], wraps
->max
))
653 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
654 * wrap the constraint around "bound" such that it includes the whole
655 * set "set" and append the resulting constraint to "wraps".
656 * "wraps" is assumed to have been pre-allocated to the appropriate size.
657 * wraps->n_row is the number of actual wrapped constraints that have
659 * If any of the wrapping problems results in a constraint that is
660 * identical to "bound", then this means that "set" is unbounded in such
661 * way that no wrapping is possible. If this happens then wraps->n_row
663 * Similarly, if we want to bound the coefficients of the wrapping
664 * constraints and a newly added wrapping constraint does not
665 * satisfy the bound, then wraps->n_row is also reset to zero.
667 static int add_wraps(struct isl_wraps
*wraps
, __isl_keep isl_basic_map
*bmap
,
668 struct isl_tab
*tab
, isl_int
*bound
, __isl_keep isl_set
*set
)
672 unsigned total
= isl_basic_map_total_dim(bmap
);
674 w
= wraps
->mat
->n_row
;
676 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
677 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], 1 + total
))
679 if (isl_seq_eq(bound
, bmap
->ineq
[l
], 1 + total
))
681 if (isl_tab_is_redundant(tab
, bmap
->n_eq
+ l
))
684 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
685 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], bmap
->ineq
[l
]))
687 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
689 if (!allow_wrap(wraps
, w
))
693 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
694 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], 1 + total
))
696 if (isl_seq_eq(bound
, bmap
->eq
[l
], 1 + total
))
699 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
700 isl_seq_neg(wraps
->mat
->row
[w
+ 1], bmap
->eq
[l
], 1 + total
);
701 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
],
702 wraps
->mat
->row
[w
+ 1]))
704 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
706 if (!allow_wrap(wraps
, w
))
710 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
711 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], bmap
->eq
[l
]))
713 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
715 if (!allow_wrap(wraps
, w
))
720 wraps
->mat
->n_row
= w
;
723 wraps
->mat
->n_row
= 0;
727 /* Check if the constraints in "wraps" from "first" until the last
728 * are all valid for the basic set represented by "tab".
729 * If not, wraps->n_row is set to zero.
731 static int check_wraps(__isl_keep isl_mat
*wraps
, int first
,
736 for (i
= first
; i
< wraps
->n_row
; ++i
) {
737 enum isl_ineq_type type
;
738 type
= isl_tab_ineq_type(tab
, wraps
->row
[i
]);
739 if (type
== isl_ineq_error
)
741 if (type
== isl_ineq_redundant
)
750 /* Return a set that corresponds to the non-redundant constraints
751 * (as recorded in tab) of bmap.
753 * It's important to remove the redundant constraints as some
754 * of the other constraints may have been modified after the
755 * constraints were marked redundant.
756 * In particular, a constraint may have been relaxed.
757 * Redundant constraints are ignored when a constraint is relaxed
758 * and should therefore continue to be ignored ever after.
759 * Otherwise, the relaxation might be thwarted by some of
762 static __isl_give isl_set
*set_from_updated_bmap(__isl_keep isl_basic_map
*bmap
,
765 bmap
= isl_basic_map_copy(bmap
);
766 bmap
= isl_basic_map_cow(bmap
);
767 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
768 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap
));
771 /* Given a basic set i with a constraint k that is adjacent to
772 * basic set j, check if we can wrap
773 * both the facet corresponding to k and basic map j
774 * around their ridges to include the other set.
775 * If so, replace the pair of basic sets by their union.
777 * All constraints of i (except k) are assumed to be valid for j.
778 * This means that there is no real need to wrap the ridges of
779 * the faces of basic map i around basic map j but since we do,
780 * we have to check that the resulting wrapping constraints are valid for i.
789 static int can_wrap_in_facet(struct isl_map
*map
, int i
, int j
, int k
,
790 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
793 struct isl_wraps wraps
;
795 struct isl_set
*set_i
= NULL
;
796 struct isl_set
*set_j
= NULL
;
797 struct isl_vec
*bound
= NULL
;
798 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
799 struct isl_tab_undo
*snap
;
802 set_i
= set_from_updated_bmap(map
->p
[i
], tabs
[i
]);
803 set_j
= set_from_updated_bmap(map
->p
[j
], tabs
[j
]);
804 mat
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
805 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
807 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
808 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
809 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
812 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
813 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
815 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
816 wraps
.mat
->n_row
= 1;
818 if (add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
820 if (!wraps
.mat
->n_row
)
823 snap
= isl_tab_snap(tabs
[i
]);
825 if (isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ k
) < 0)
827 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
830 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
832 n
= wraps
.mat
->n_row
;
833 if (add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
836 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
838 if (check_wraps(wraps
.mat
, n
, tabs
[i
]) < 0)
840 if (!wraps
.mat
->n_row
)
843 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
862 /* Set the is_redundant property of the "n" constraints in "cuts",
864 * This is a fairly tricky operation as it bypasses isl_tab.c.
865 * The reason we want to temporarily mark some constraints redundant
866 * is that we want to ignore them in add_wraps.
868 * Initially all cut constraints are non-redundant, but the
869 * selection of a facet right before the call to this function
870 * may have made some of them redundant.
871 * Likewise, the same constraints are marked non-redundant
872 * in the second call to this function, before they are officially
873 * made non-redundant again in the subsequent rollback.
875 static void set_is_redundant(struct isl_tab
*tab
, unsigned n_eq
,
876 int *cuts
, int n
, int k
, int v
)
880 for (l
= 0; l
< n
; ++l
) {
883 tab
->con
[n_eq
+ cuts
[l
]].is_redundant
= v
;
887 /* Given a pair of basic maps i and j such that j sticks out
888 * of i at n cut constraints, each time by at most one,
889 * try to compute wrapping constraints and replace the two
890 * basic maps by a single basic map.
891 * The other constraints of i are assumed to be valid for j.
893 * The facets of i corresponding to the cut constraints are
894 * wrapped around their ridges, except those ridges determined
895 * by any of the other cut constraints.
896 * The intersections of cut constraints need to be ignored
897 * as the result of wrapping one cut constraint around another
898 * would result in a constraint cutting the union.
899 * In each case, the facets are wrapped to include the union
900 * of the two basic maps.
902 * The pieces of j that lie at an offset of exactly one from
903 * one of the cut constraints of i are wrapped around their edges.
904 * Here, there is no need to ignore intersections because we
905 * are wrapping around the union of the two basic maps.
907 * If any wrapping fails, i.e., if we cannot wrap to touch
908 * the union, then we give up.
909 * Otherwise, the pair of basic maps is replaced by their union.
911 static int wrap_in_facets(struct isl_map
*map
, int i
, int j
,
912 int *cuts
, int n
, struct isl_tab
**tabs
,
913 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
916 struct isl_wraps wraps
;
919 isl_vec
*bound
= NULL
;
920 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
923 struct isl_tab_undo
*snap_i
, *snap_j
;
925 if (isl_tab_extend_cons(tabs
[j
], 1) < 0)
928 max_wrap
= 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
929 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
;
932 set
= isl_set_union(set_from_updated_bmap(map
->p
[i
], tabs
[i
]),
933 set_from_updated_bmap(map
->p
[j
], tabs
[j
]));
934 mat
= isl_mat_alloc(map
->ctx
, max_wrap
, 1 + total
);
935 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
936 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
937 if (!set
|| !wraps
.mat
|| !bound
)
940 snap_i
= isl_tab_snap(tabs
[i
]);
941 snap_j
= isl_tab_snap(tabs
[j
]);
943 wraps
.mat
->n_row
= 0;
945 for (k
= 0; k
< n
; ++k
) {
946 if (isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ cuts
[k
]) < 0)
948 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
950 set_is_redundant(tabs
[i
], map
->p
[i
]->n_eq
, cuts
, n
, k
, 1);
952 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[cuts
[k
]], 1 + total
);
953 if (!tabs
[i
]->empty
&&
954 add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set
) < 0)
957 set_is_redundant(tabs
[i
], map
->p
[i
]->n_eq
, cuts
, n
, k
, 0);
958 if (isl_tab_rollback(tabs
[i
], snap_i
) < 0)
963 if (!wraps
.mat
->n_row
)
966 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[cuts
[k
]], 1 + total
);
967 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
968 if (isl_tab_add_eq(tabs
[j
], bound
->el
) < 0)
970 if (isl_tab_detect_redundant(tabs
[j
]) < 0)
973 if (!tabs
[j
]->empty
&&
974 add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set
) < 0)
977 if (isl_tab_rollback(tabs
[j
], snap_j
) < 0)
980 if (!wraps
.mat
->n_row
)
985 changed
= fuse(map
, i
, j
, tabs
,
986 eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
1000 /* Given two basic sets i and j such that i has no cut equalities,
1001 * check if relaxing all the cut inequalities of i by one turns
1002 * them into valid constraint for j and check if we can wrap in
1003 * the bits that are sticking out.
1004 * If so, replace the pair by their union.
1006 * We first check if all relaxed cut inequalities of i are valid for j
1007 * and then try to wrap in the intersections of the relaxed cut inequalities
1010 * During this wrapping, we consider the points of j that lie at a distance
1011 * of exactly 1 from i. In particular, we ignore the points that lie in
1012 * between this lower-dimensional space and the basic map i.
1013 * We can therefore only apply this to integer maps.
1039 * Wrapping can fail if the result of wrapping one of the facets
1040 * around its edges does not produce any new facet constraint.
1041 * In particular, this happens when we try to wrap in unbounded sets.
1043 * _______________________________________________________________________
1047 * |_| |_________________________________________________________________
1050 * The following is not an acceptable result of coalescing the above two
1051 * sets as it includes extra integer points.
1052 * _______________________________________________________________________
1057 * \______________________________________________________________________
1059 static int can_wrap_in_set(struct isl_map
*map
, int i
, int j
,
1060 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1067 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) ||
1068 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
1071 n
= count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
);
1075 cuts
= isl_alloc_array(map
->ctx
, int, n
);
1079 for (k
= 0, m
= 0; m
< n
; ++k
) {
1080 enum isl_ineq_type type
;
1082 if (ineq_i
[k
] != STATUS_CUT
)
1085 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
1086 type
= isl_tab_ineq_type(tabs
[j
], map
->p
[i
]->ineq
[k
]);
1087 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
1088 if (type
== isl_ineq_error
)
1090 if (type
!= isl_ineq_redundant
)
1097 changed
= wrap_in_facets(map
, i
, j
, cuts
, n
, tabs
,
1098 eq_i
, ineq_i
, eq_j
, ineq_j
);
1108 /* Check if either i or j has only cut inequalities that can
1109 * be used to wrap in (a facet of) the other basic set.
1110 * if so, replace the pair by their union.
1112 static int check_wrap(struct isl_map
*map
, int i
, int j
,
1113 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1117 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
))
1118 changed
= can_wrap_in_set(map
, i
, j
, tabs
,
1119 eq_i
, ineq_i
, eq_j
, ineq_j
);
1123 if (!any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1124 changed
= can_wrap_in_set(map
, j
, i
, tabs
,
1125 eq_j
, ineq_j
, eq_i
, ineq_i
);
1129 /* At least one of the basic maps has an equality that is adjacent
1130 * to inequality. Make sure that only one of the basic maps has
1131 * such an equality and that the other basic map has exactly one
1132 * inequality adjacent to an equality.
1133 * We call the basic map that has the inequality "i" and the basic
1134 * map that has the equality "j".
1135 * If "i" has any "cut" (in)equality, then relaxing the inequality
1136 * by one would not result in a basic map that contains the other
1139 static int check_adj_eq(struct isl_map
*map
, int i
, int j
,
1140 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1145 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) &&
1146 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
))
1147 /* ADJ EQ TOO MANY */
1150 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
))
1151 return check_adj_eq(map
, j
, i
, tabs
,
1152 eq_j
, ineq_j
, eq_i
, ineq_i
);
1154 /* j has an equality adjacent to an inequality in i */
1156 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
))
1158 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
))
1161 if (count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) != 1 ||
1162 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
) ||
1163 any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
1164 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
))
1165 /* ADJ EQ TOO MANY */
1168 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
1169 if (ineq_i
[k
] == STATUS_ADJ_EQ
)
1172 changed
= is_adj_eq_extension(map
, i
, j
, k
, tabs
,
1173 eq_i
, ineq_i
, eq_j
, ineq_j
);
1177 if (count(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
) != 1)
1180 changed
= can_wrap_in_facet(map
, i
, j
, k
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1185 /* The two basic maps lie on adjacent hyperplanes. In particular,
1186 * basic map "i" has an equality that lies parallel to basic map "j".
1187 * Check if we can wrap the facets around the parallel hyperplanes
1188 * to include the other set.
1190 * We perform basically the same operations as can_wrap_in_facet,
1191 * except that we don't need to select a facet of one of the sets.
1197 * We only allow one equality of "i" to be adjacent to an equality of "j"
1198 * to avoid coalescing
1200 * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
1201 * x <= 10 and y <= 10;
1202 * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
1203 * y >= 5 and y <= 15 }
1207 * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
1208 * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
1209 * y2 <= 1 + x + y - x2 and y2 >= y and
1210 * y2 >= 1 + x + y - x2 }
1212 static int check_eq_adj_eq(struct isl_map
*map
, int i
, int j
,
1213 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1217 struct isl_wraps wraps
;
1219 struct isl_set
*set_i
= NULL
;
1220 struct isl_set
*set_j
= NULL
;
1221 struct isl_vec
*bound
= NULL
;
1222 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
1224 if (count(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
) != 1)
1227 for (k
= 0; k
< 2 * map
->p
[i
]->n_eq
; ++k
)
1228 if (eq_i
[k
] == STATUS_ADJ_EQ
)
1231 set_i
= set_from_updated_bmap(map
->p
[i
], tabs
[i
]);
1232 set_j
= set_from_updated_bmap(map
->p
[j
], tabs
[j
]);
1233 mat
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
1234 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
1236 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1237 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
1238 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
1242 isl_seq_neg(bound
->el
, map
->p
[i
]->eq
[k
/ 2], 1 + total
);
1244 isl_seq_cpy(bound
->el
, map
->p
[i
]->eq
[k
/ 2], 1 + total
);
1245 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1247 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1248 wraps
.mat
->n_row
= 1;
1250 if (add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
1252 if (!wraps
.mat
->n_row
)
1255 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
1256 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
1258 isl_seq_cpy(wraps
.mat
->row
[wraps
.mat
->n_row
], bound
->el
, 1 + total
);
1261 if (add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
1263 if (!wraps
.mat
->n_row
)
1266 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
1269 error
: changed
= -1;
1274 isl_set_free(set_i
);
1275 isl_set_free(set_j
);
1276 isl_vec_free(bound
);
1281 /* Check if the union of the given pair of basic maps
1282 * can be represented by a single basic map.
1283 * If so, replace the pair by the single basic map and return 1.
1284 * Otherwise, return 0;
1285 * The two basic maps are assumed to live in the same local space.
1287 * We first check the effect of each constraint of one basic map
1288 * on the other basic map.
1289 * The constraint may be
1290 * redundant the constraint is redundant in its own
1291 * basic map and should be ignore and removed
1293 * valid all (integer) points of the other basic map
1294 * satisfy the constraint
1295 * separate no (integer) point of the other basic map
1296 * satisfies the constraint
1297 * cut some but not all points of the other basic map
1298 * satisfy the constraint
1299 * adj_eq the given constraint is adjacent (on the outside)
1300 * to an equality of the other basic map
1301 * adj_ineq the given constraint is adjacent (on the outside)
1302 * to an inequality of the other basic map
1304 * We consider seven cases in which we can replace the pair by a single
1305 * basic map. We ignore all "redundant" constraints.
1307 * 1. all constraints of one basic map are valid
1308 * => the other basic map is a subset and can be removed
1310 * 2. all constraints of both basic maps are either "valid" or "cut"
1311 * and the facets corresponding to the "cut" constraints
1312 * of one of the basic maps lies entirely inside the other basic map
1313 * => the pair can be replaced by a basic map consisting
1314 * of the valid constraints in both basic maps
1316 * 3. there is a single pair of adjacent inequalities
1317 * (all other constraints are "valid")
1318 * => the pair can be replaced by a basic map consisting
1319 * of the valid constraints in both basic maps
1321 * 4. one basic map has a single adjacent inequality, while the other
1322 * constraints are "valid". The other basic map has some
1323 * "cut" constraints, but replacing the adjacent inequality by
1324 * its opposite and adding the valid constraints of the other
1325 * basic map results in a subset of the other basic map
1326 * => the pair can be replaced by a basic map consisting
1327 * of the valid constraints in both basic maps
1329 * 5. there is a single adjacent pair of an inequality and an equality,
1330 * the other constraints of the basic map containing the inequality are
1331 * "valid". Moreover, if the inequality the basic map is relaxed
1332 * and then turned into an equality, then resulting facet lies
1333 * entirely inside the other basic map
1334 * => the pair can be replaced by the basic map containing
1335 * the inequality, with the inequality relaxed.
1337 * 6. there is a single adjacent pair of an inequality and an equality,
1338 * the other constraints of the basic map containing the inequality are
1339 * "valid". Moreover, the facets corresponding to both
1340 * the inequality and the equality can be wrapped around their
1341 * ridges to include the other basic map
1342 * => the pair can be replaced by a basic map consisting
1343 * of the valid constraints in both basic maps together
1344 * with all wrapping constraints
1346 * 7. one of the basic maps extends beyond the other by at most one.
1347 * Moreover, the facets corresponding to the cut constraints and
1348 * the pieces of the other basic map at offset one from these cut
1349 * constraints can be wrapped around their ridges to include
1350 * the union of the two basic maps
1351 * => the pair can be replaced by a basic map consisting
1352 * of the valid constraints in both basic maps together
1353 * with all wrapping constraints
1355 * 8. the two basic maps live in adjacent hyperplanes. In principle
1356 * such sets can always be combined through wrapping, but we impose
1357 * that there is only one such pair, to avoid overeager coalescing.
1359 * Throughout the computation, we maintain a collection of tableaus
1360 * corresponding to the basic maps. When the basic maps are dropped
1361 * or combined, the tableaus are modified accordingly.
1363 static int coalesce_local_pair(__isl_keep isl_map
*map
, int i
, int j
,
1364 struct isl_tab
**tabs
)
1372 eq_i
= eq_status_in(map
->p
[i
], tabs
[j
]);
1373 if (map
->p
[i
]->n_eq
&& !eq_i
)
1375 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ERROR
))
1377 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_SEPARATE
))
1380 eq_j
= eq_status_in(map
->p
[j
], tabs
[i
]);
1381 if (map
->p
[j
]->n_eq
&& !eq_j
)
1383 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ERROR
))
1385 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_SEPARATE
))
1388 ineq_i
= ineq_status_in(map
->p
[i
], tabs
[i
], tabs
[j
]);
1389 if (map
->p
[i
]->n_ineq
&& !ineq_i
)
1391 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ERROR
))
1393 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_SEPARATE
))
1396 ineq_j
= ineq_status_in(map
->p
[j
], tabs
[j
], tabs
[i
]);
1397 if (map
->p
[j
]->n_ineq
&& !ineq_j
)
1399 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ERROR
))
1401 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_SEPARATE
))
1404 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
1405 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
1408 } else if (all(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_VALID
) &&
1409 all(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_VALID
)) {
1412 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
)) {
1413 changed
= check_eq_adj_eq(map
, i
, j
, tabs
,
1414 eq_i
, ineq_i
, eq_j
, ineq_j
);
1415 } else if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_EQ
)) {
1416 changed
= check_eq_adj_eq(map
, j
, i
, tabs
,
1417 eq_j
, ineq_j
, eq_i
, ineq_i
);
1418 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) ||
1419 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
)) {
1420 changed
= check_adj_eq(map
, i
, j
, tabs
,
1421 eq_i
, ineq_i
, eq_j
, ineq_j
);
1422 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) ||
1423 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
)) {
1426 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
1427 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
)) {
1428 changed
= check_adj_ineq(map
, i
, j
, tabs
,
1429 eq_i
, ineq_i
, eq_j
, ineq_j
);
1431 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) &&
1432 !any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1433 changed
= check_facets(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
1435 changed
= check_wrap(map
, i
, j
, tabs
,
1436 eq_i
, ineq_i
, eq_j
, ineq_j
);
1453 /* Do the two basic maps live in the same local space, i.e.,
1454 * do they have the same (known) divs?
1455 * If either basic map has any unknown divs, then we can only assume
1456 * that they do not live in the same local space.
1458 static int same_divs(__isl_keep isl_basic_map
*bmap1
,
1459 __isl_keep isl_basic_map
*bmap2
)
1465 if (!bmap1
|| !bmap2
)
1467 if (bmap1
->n_div
!= bmap2
->n_div
)
1470 if (bmap1
->n_div
== 0)
1473 known
= isl_basic_map_divs_known(bmap1
);
1474 if (known
< 0 || !known
)
1476 known
= isl_basic_map_divs_known(bmap2
);
1477 if (known
< 0 || !known
)
1480 total
= isl_basic_map_total_dim(bmap1
);
1481 for (i
= 0; i
< bmap1
->n_div
; ++i
)
1482 if (!isl_seq_eq(bmap1
->div
[i
], bmap2
->div
[i
], 2 + total
))
1488 /* Given two basic maps "i" and "j", where the divs of "i" form a subset
1489 * of those of "j", check if basic map "j" is a subset of basic map "i"
1490 * and, if so, drop basic map "j".
1492 * We first expand the divs of basic map "i" to match those of basic map "j",
1493 * using the divs and expansion computed by the caller.
1494 * Then we check if all constraints of the expanded "i" are valid for "j".
1496 static int coalesce_subset(__isl_keep isl_map
*map
, int i
, int j
,
1497 struct isl_tab
**tabs
, __isl_keep isl_mat
*div
, int *exp
)
1499 isl_basic_map
*bmap
;
1504 bmap
= isl_basic_map_copy(map
->p
[i
]);
1505 bmap
= isl_basic_set_expand_divs(bmap
, isl_mat_copy(div
), exp
);
1510 eq_i
= eq_status_in(bmap
, tabs
[j
]);
1511 if (bmap
->n_eq
&& !eq_i
)
1513 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_ERROR
))
1515 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_SEPARATE
))
1518 ineq_i
= ineq_status_in(bmap
, NULL
, tabs
[j
]);
1519 if (bmap
->n_ineq
&& !ineq_i
)
1521 if (any(ineq_i
, bmap
->n_ineq
, STATUS_ERROR
))
1523 if (any(ineq_i
, bmap
->n_ineq
, STATUS_SEPARATE
))
1526 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
1527 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
1533 isl_basic_map_free(bmap
);
1538 isl_basic_map_free(bmap
);
1544 /* Check if the basic map "j" is a subset of basic map "i",
1545 * assuming that "i" has fewer divs that "j".
1546 * If not, then we change the order.
1548 * If the two basic maps have the same number of divs, then
1549 * they must necessarily be different. Otherwise, we would have
1550 * called coalesce_local_pair. We therefore don't try anything
1553 * We first check if the divs of "i" are all known and form a subset
1554 * of those of "j". If so, we pass control over to coalesce_subset.
1556 static int check_coalesce_subset(__isl_keep isl_map
*map
, int i
, int j
,
1557 struct isl_tab
**tabs
)
1560 isl_mat
*div_i
, *div_j
, *div
;
1566 if (map
->p
[i
]->n_div
== map
->p
[j
]->n_div
)
1568 if (map
->p
[j
]->n_div
< map
->p
[i
]->n_div
)
1569 return check_coalesce_subset(map
, j
, i
, tabs
);
1571 known
= isl_basic_map_divs_known(map
->p
[i
]);
1572 if (known
< 0 || !known
)
1575 ctx
= isl_map_get_ctx(map
);
1577 div_i
= isl_basic_map_get_divs(map
->p
[i
]);
1578 div_j
= isl_basic_map_get_divs(map
->p
[j
]);
1580 if (!div_i
|| !div_j
)
1583 exp1
= isl_alloc_array(ctx
, int, div_i
->n_row
);
1584 exp2
= isl_alloc_array(ctx
, int, div_j
->n_row
);
1585 if ((div_i
->n_row
&& !exp1
) || (div_j
->n_row
&& !exp2
))
1588 div
= isl_merge_divs(div_i
, div_j
, exp1
, exp2
);
1592 if (div
->n_row
== div_j
->n_row
)
1593 subset
= coalesce_subset(map
, i
, j
, tabs
, div
, exp1
);
1599 isl_mat_free(div_i
);
1600 isl_mat_free(div_j
);
1607 isl_mat_free(div_i
);
1608 isl_mat_free(div_j
);
1614 /* Check if the union of the given pair of basic maps
1615 * can be represented by a single basic map.
1616 * If so, replace the pair by the single basic map and return 1.
1617 * Otherwise, return 0;
1619 * We first check if the two basic maps live in the same local space.
1620 * If so, we do the complete check. Otherwise, we check if one is
1621 * an obvious subset of the other.
1623 static int coalesce_pair(__isl_keep isl_map
*map
, int i
, int j
,
1624 struct isl_tab
**tabs
)
1628 same
= same_divs(map
->p
[i
], map
->p
[j
]);
1632 return coalesce_local_pair(map
, i
, j
, tabs
);
1634 return check_coalesce_subset(map
, i
, j
, tabs
);
1637 static struct isl_map
*coalesce(struct isl_map
*map
, struct isl_tab
**tabs
)
1641 for (i
= map
->n
- 2; i
>= 0; --i
)
1643 for (j
= i
+ 1; j
< map
->n
; ++j
) {
1645 changed
= coalesce_pair(map
, i
, j
, tabs
);
1657 /* For each pair of basic maps in the map, check if the union of the two
1658 * can be represented by a single basic map.
1659 * If so, replace the pair by the single basic map and start over.
1661 * Since we are constructing the tableaus of the basic maps anyway,
1662 * we exploit them to detect implicit equalities and redundant constraints.
1663 * This also helps the coalescing as it can ignore the redundant constraints.
1664 * In order to avoid confusion, we make all implicit equalities explicit
1665 * in the basic maps. We don't call isl_basic_map_gauss, though,
1666 * as that may affect the number of constraints.
1667 * This means that we have to call isl_basic_map_gauss at the end
1668 * of the computation to ensure that the basic maps are not left
1669 * in an unexpected state.
1671 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
1675 struct isl_tab
**tabs
= NULL
;
1677 map
= isl_map_remove_empty_parts(map
);
1684 map
= isl_map_sort_divs(map
);
1685 map
= isl_map_cow(map
);
1690 tabs
= isl_calloc_array(map
->ctx
, struct isl_tab
*, map
->n
);
1695 for (i
= 0; i
< map
->n
; ++i
) {
1696 tabs
[i
] = isl_tab_from_basic_map(map
->p
[i
], 0);
1699 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
))
1700 if (isl_tab_detect_implicit_equalities(tabs
[i
]) < 0)
1702 map
->p
[i
] = isl_tab_make_equalities_explicit(tabs
[i
],
1706 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
))
1707 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
1710 for (i
= map
->n
- 1; i
>= 0; --i
)
1714 map
= coalesce(map
, tabs
);
1717 for (i
= 0; i
< map
->n
; ++i
) {
1718 map
->p
[i
] = isl_basic_map_update_from_tab(map
->p
[i
],
1720 map
->p
[i
] = isl_basic_map_gauss(map
->p
[i
], NULL
);
1721 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1724 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
);
1725 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
);
1728 for (i
= 0; i
< n
; ++i
)
1729 isl_tab_free(tabs
[i
]);
1736 for (i
= 0; i
< n
; ++i
)
1737 isl_tab_free(tabs
[i
]);
1743 /* For each pair of basic sets in the set, check if the union of the two
1744 * can be represented by a single basic set.
1745 * If so, replace the pair by the single basic set and start over.
1747 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
1749 return (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);