2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
25 #include <isl_dim_map.h>
26 #include <isl/map_to_basic_set.h>
28 #include <isl_schedule_private.h>
29 #include <isl_options_private.h>
30 #include <isl_tarjan.h>
31 #include <isl_morph.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
40 isl_edge_validity
= 0,
41 isl_edge_first
= isl_edge_validity
,
44 isl_edge_conditional_validity
,
46 isl_edge_last
= isl_edge_proximity
49 /* The constraints that need to be satisfied by a schedule on "domain".
51 * "validity" constraints map domain elements i to domain elements
52 * that should be scheduled after i. (Hard constraint)
53 * "proximity" constraints map domain elements i to domains elements
54 * that should be scheduled as early as possible after i (or before i).
57 * "condition" and "conditional_validity" constraints map possibly "tagged"
58 * domain elements i -> s to "tagged" domain elements j -> t.
59 * The elements of the "conditional_validity" constraints, but without the
60 * tags (i.e., the elements i -> j) are treated as validity constraints,
61 * except that during the construction of a tilable band,
62 * the elements of the "conditional_validity" constraints may be violated
63 * provided that all adjacent elements of the "condition" constraints
64 * are local within the band.
65 * A dependence is local within a band if domain and range are mapped
66 * to the same schedule point by the band.
68 struct isl_schedule_constraints
{
69 isl_union_set
*domain
;
71 isl_union_map
*constraint
[isl_edge_last
+ 1];
74 __isl_give isl_schedule_constraints
*isl_schedule_constraints_copy(
75 __isl_keep isl_schedule_constraints
*sc
)
78 isl_schedule_constraints
*sc_copy
;
81 ctx
= isl_union_set_get_ctx(sc
->domain
);
82 sc_copy
= isl_calloc_type(ctx
, struct isl_schedule_constraints
);
86 sc_copy
->domain
= isl_union_set_copy(sc
->domain
);
88 return isl_schedule_constraints_free(sc_copy
);
90 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
91 sc_copy
->constraint
[i
] = isl_union_map_copy(sc
->constraint
[i
]);
92 if (!sc_copy
->constraint
[i
])
93 return isl_schedule_constraints_free(sc_copy
);
100 /* Construct an isl_schedule_constraints object for computing a schedule
101 * on "domain". The initial object does not impose any constraints.
103 __isl_give isl_schedule_constraints
*isl_schedule_constraints_on_domain(
104 __isl_take isl_union_set
*domain
)
108 isl_schedule_constraints
*sc
;
109 isl_union_map
*empty
;
110 enum isl_edge_type i
;
115 ctx
= isl_union_set_get_ctx(domain
);
116 sc
= isl_calloc_type(ctx
, struct isl_schedule_constraints
);
120 space
= isl_union_set_get_space(domain
);
122 empty
= isl_union_map_empty(space
);
123 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
124 sc
->constraint
[i
] = isl_union_map_copy(empty
);
125 if (!sc
->constraint
[i
])
126 sc
->domain
= isl_union_set_free(sc
->domain
);
128 isl_union_map_free(empty
);
131 return isl_schedule_constraints_free(sc
);
135 isl_union_set_free(domain
);
139 /* Replace the validity constraints of "sc" by "validity".
141 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_validity(
142 __isl_take isl_schedule_constraints
*sc
,
143 __isl_take isl_union_map
*validity
)
145 if (!sc
|| !validity
)
148 isl_union_map_free(sc
->constraint
[isl_edge_validity
]);
149 sc
->constraint
[isl_edge_validity
] = validity
;
153 isl_schedule_constraints_free(sc
);
154 isl_union_map_free(validity
);
158 /* Replace the coincidence constraints of "sc" by "coincidence".
160 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_coincidence(
161 __isl_take isl_schedule_constraints
*sc
,
162 __isl_take isl_union_map
*coincidence
)
164 if (!sc
|| !coincidence
)
167 isl_union_map_free(sc
->constraint
[isl_edge_coincidence
]);
168 sc
->constraint
[isl_edge_coincidence
] = coincidence
;
172 isl_schedule_constraints_free(sc
);
173 isl_union_map_free(coincidence
);
177 /* Replace the proximity constraints of "sc" by "proximity".
179 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_proximity(
180 __isl_take isl_schedule_constraints
*sc
,
181 __isl_take isl_union_map
*proximity
)
183 if (!sc
|| !proximity
)
186 isl_union_map_free(sc
->constraint
[isl_edge_proximity
]);
187 sc
->constraint
[isl_edge_proximity
] = proximity
;
191 isl_schedule_constraints_free(sc
);
192 isl_union_map_free(proximity
);
196 /* Replace the conditional validity constraints of "sc" by "condition"
199 __isl_give isl_schedule_constraints
*
200 isl_schedule_constraints_set_conditional_validity(
201 __isl_take isl_schedule_constraints
*sc
,
202 __isl_take isl_union_map
*condition
,
203 __isl_take isl_union_map
*validity
)
205 if (!sc
|| !condition
|| !validity
)
208 isl_union_map_free(sc
->constraint
[isl_edge_condition
]);
209 sc
->constraint
[isl_edge_condition
] = condition
;
210 isl_union_map_free(sc
->constraint
[isl_edge_conditional_validity
]);
211 sc
->constraint
[isl_edge_conditional_validity
] = validity
;
215 isl_schedule_constraints_free(sc
);
216 isl_union_map_free(condition
);
217 isl_union_map_free(validity
);
221 __isl_null isl_schedule_constraints
*isl_schedule_constraints_free(
222 __isl_take isl_schedule_constraints
*sc
)
224 enum isl_edge_type i
;
229 isl_union_set_free(sc
->domain
);
230 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
231 isl_union_map_free(sc
->constraint
[i
]);
238 isl_ctx
*isl_schedule_constraints_get_ctx(
239 __isl_keep isl_schedule_constraints
*sc
)
241 return sc
? isl_union_set_get_ctx(sc
->domain
) : NULL
;
244 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints
*sc
)
249 fprintf(stderr
, "domain: ");
250 isl_union_set_dump(sc
->domain
);
251 fprintf(stderr
, "validity: ");
252 isl_union_map_dump(sc
->constraint
[isl_edge_validity
]);
253 fprintf(stderr
, "proximity: ");
254 isl_union_map_dump(sc
->constraint
[isl_edge_proximity
]);
255 fprintf(stderr
, "coincidence: ");
256 isl_union_map_dump(sc
->constraint
[isl_edge_coincidence
]);
257 fprintf(stderr
, "condition: ");
258 isl_union_map_dump(sc
->constraint
[isl_edge_condition
]);
259 fprintf(stderr
, "conditional_validity: ");
260 isl_union_map_dump(sc
->constraint
[isl_edge_conditional_validity
]);
263 /* Align the parameters of the fields of "sc".
265 static __isl_give isl_schedule_constraints
*
266 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints
*sc
)
269 enum isl_edge_type i
;
274 space
= isl_union_set_get_space(sc
->domain
);
275 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
276 space
= isl_space_align_params(space
,
277 isl_union_map_get_space(sc
->constraint
[i
]));
279 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
280 sc
->constraint
[i
] = isl_union_map_align_params(
281 sc
->constraint
[i
], isl_space_copy(space
));
282 if (!sc
->constraint
[i
])
283 space
= isl_space_free(space
);
285 sc
->domain
= isl_union_set_align_params(sc
->domain
, space
);
287 return isl_schedule_constraints_free(sc
);
292 /* Return the total number of isl_maps in the constraints of "sc".
294 static __isl_give
int isl_schedule_constraints_n_map(
295 __isl_keep isl_schedule_constraints
*sc
)
297 enum isl_edge_type i
;
300 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
301 n
+= isl_union_map_n_map(sc
->constraint
[i
]);
306 /* Internal information about a node that is used during the construction
308 * space represents the space in which the domain lives
309 * sched is a matrix representation of the schedule being constructed
310 * for this node; if compressed is set, then this schedule is
311 * defined over the compressed domain space
312 * sched_map is an isl_map representation of the same (partial) schedule
313 * sched_map may be NULL; if compressed is set, then this map
314 * is defined over the uncompressed domain space
315 * rank is the number of linearly independent rows in the linear part
317 * the columns of cmap represent a change of basis for the schedule
318 * coefficients; the first rank columns span the linear part of
320 * cinv is the inverse of cmap.
321 * start is the first variable in the LP problem in the sequences that
322 * represents the schedule coefficients of this node
323 * nvar is the dimension of the domain
324 * nparam is the number of parameters or 0 if we are not constructing
325 * a parametric schedule
327 * If compressed is set, then hull represents the constraints
328 * that were used to derive the compression, while compress and
329 * decompress map the original space to the compressed space and
332 * scc is the index of SCC (or WCC) this node belongs to
334 * band contains the band index for each of the rows of the schedule.
335 * band_id is used to differentiate between separate bands at the same
336 * level within the same parent band, i.e., bands that are separated
337 * by the parent band or bands that are independent of each other.
338 * coincident contains a boolean for each of the rows of the schedule,
339 * indicating whether the corresponding scheduling dimension satisfies
340 * the coincidence constraints in the sense that the corresponding
341 * dependence distances are zero.
343 struct isl_sched_node
{
347 isl_multi_aff
*compress
;
348 isl_multi_aff
*decompress
;
365 static int node_has_space(const void *entry
, const void *val
)
367 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
368 isl_space
*dim
= (isl_space
*)val
;
370 return isl_space_is_equal(node
->space
, dim
);
373 /* An edge in the dependence graph. An edge may be used to
374 * ensure validity of the generated schedule, to minimize the dependence
377 * map is the dependence relation, with i -> j in the map if j depends on i
378 * tagged_condition and tagged_validity contain the union of all tagged
379 * condition or conditional validity dependence relations that
380 * specialize the dependence relation "map"; that is,
381 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
382 * or "tagged_validity", then i -> j is an element of "map".
383 * If these fields are NULL, then they represent the empty relation.
384 * src is the source node
385 * dst is the sink node
386 * validity is set if the edge is used to ensure correctness
387 * coincidence is used to enforce zero dependence distances
388 * proximity is set if the edge is used to minimize dependence distances
389 * condition is set if the edge represents a condition
390 * for a conditional validity schedule constraint
391 * local can only be set for condition edges and indicates that
392 * the dependence distance over the edge should be zero
393 * conditional_validity is set if the edge is used to conditionally
396 * For validity edges, start and end mark the sequence of inequality
397 * constraints in the LP problem that encode the validity constraint
398 * corresponding to this edge.
400 struct isl_sched_edge
{
402 isl_union_map
*tagged_condition
;
403 isl_union_map
*tagged_validity
;
405 struct isl_sched_node
*src
;
406 struct isl_sched_node
*dst
;
408 unsigned validity
: 1;
409 unsigned coincidence
: 1;
410 unsigned proximity
: 1;
412 unsigned condition
: 1;
413 unsigned conditional_validity
: 1;
419 /* Internal information about the dependence graph used during
420 * the construction of the schedule.
422 * intra_hmap is a cache, mapping dependence relations to their dual,
423 * for dependences from a node to itself
424 * inter_hmap is a cache, mapping dependence relations to their dual,
425 * for dependences between distinct nodes
426 * if compression is involved then the key for these maps
427 * it the original, uncompressed dependence relation, while
428 * the value is the dual of the compressed dependence relation.
430 * n is the number of nodes
431 * node is the list of nodes
432 * maxvar is the maximal number of variables over all nodes
433 * max_row is the allocated number of rows in the schedule
434 * n_row is the current (maximal) number of linearly independent
435 * rows in the node schedules
436 * n_total_row is the current number of rows in the node schedules
437 * n_band is the current number of completed bands
438 * band_start is the starting row in the node schedules of the current band
439 * root is set if this graph is the original dependence graph,
440 * without any splitting
442 * sorted contains a list of node indices sorted according to the
443 * SCC to which a node belongs
445 * n_edge is the number of edges
446 * edge is the list of edges
447 * max_edge contains the maximal number of edges of each type;
448 * in particular, it contains the number of edges in the inital graph.
449 * edge_table contains pointers into the edge array, hashed on the source
450 * and sink spaces; there is one such table for each type;
451 * a given edge may be referenced from more than one table
452 * if the corresponding relation appears in more than of the
453 * sets of dependences
455 * node_table contains pointers into the node array, hashed on the space
457 * region contains a list of variable sequences that should be non-trivial
459 * lp contains the (I)LP problem used to obtain new schedule rows
461 * src_scc and dst_scc are the source and sink SCCs of an edge with
462 * conflicting constraints
464 * scc represents the number of components
466 struct isl_sched_graph
{
467 isl_map_to_basic_set
*intra_hmap
;
468 isl_map_to_basic_set
*inter_hmap
;
470 struct isl_sched_node
*node
;
484 struct isl_sched_edge
*edge
;
486 int max_edge
[isl_edge_last
+ 1];
487 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
489 struct isl_hash_table
*node_table
;
490 struct isl_region
*region
;
500 /* Initialize node_table based on the list of nodes.
502 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
506 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
507 if (!graph
->node_table
)
510 for (i
= 0; i
< graph
->n
; ++i
) {
511 struct isl_hash_table_entry
*entry
;
514 hash
= isl_space_get_hash(graph
->node
[i
].space
);
515 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
517 graph
->node
[i
].space
, 1);
520 entry
->data
= &graph
->node
[i
];
526 /* Return a pointer to the node that lives within the given space,
527 * or NULL if there is no such node.
529 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
530 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
532 struct isl_hash_table_entry
*entry
;
535 hash
= isl_space_get_hash(dim
);
536 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
537 &node_has_space
, dim
, 0);
539 return entry
? entry
->data
: NULL
;
542 static int edge_has_src_and_dst(const void *entry
, const void *val
)
544 const struct isl_sched_edge
*edge
= entry
;
545 const struct isl_sched_edge
*temp
= val
;
547 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
550 /* Add the given edge to graph->edge_table[type].
552 static int graph_edge_table_add(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
553 enum isl_edge_type type
, struct isl_sched_edge
*edge
)
555 struct isl_hash_table_entry
*entry
;
558 hash
= isl_hash_init();
559 hash
= isl_hash_builtin(hash
, edge
->src
);
560 hash
= isl_hash_builtin(hash
, edge
->dst
);
561 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
562 &edge_has_src_and_dst
, edge
, 1);
570 /* Allocate the edge_tables based on the maximal number of edges of
573 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
577 for (i
= 0; i
<= isl_edge_last
; ++i
) {
578 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
580 if (!graph
->edge_table
[i
])
587 /* If graph->edge_table[type] contains an edge from the given source
588 * to the given destination, then return the hash table entry of this edge.
589 * Otherwise, return NULL.
591 static struct isl_hash_table_entry
*graph_find_edge_entry(
592 struct isl_sched_graph
*graph
,
593 enum isl_edge_type type
,
594 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
596 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
598 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
600 hash
= isl_hash_init();
601 hash
= isl_hash_builtin(hash
, temp
.src
);
602 hash
= isl_hash_builtin(hash
, temp
.dst
);
603 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
604 &edge_has_src_and_dst
, &temp
, 0);
608 /* If graph->edge_table[type] contains an edge from the given source
609 * to the given destination, then return this edge.
610 * Otherwise, return NULL.
612 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
613 enum isl_edge_type type
,
614 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
616 struct isl_hash_table_entry
*entry
;
618 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
625 /* Check whether the dependence graph has an edge of the given type
626 * between the given two nodes.
628 static int graph_has_edge(struct isl_sched_graph
*graph
,
629 enum isl_edge_type type
,
630 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
632 struct isl_sched_edge
*edge
;
635 edge
= graph_find_edge(graph
, type
, src
, dst
);
639 empty
= isl_map_plain_is_empty(edge
->map
);
646 /* Look for any edge with the same src, dst and map fields as "model".
648 * Return the matching edge if one can be found.
649 * Return "model" if no matching edge is found.
650 * Return NULL on error.
652 static struct isl_sched_edge
*graph_find_matching_edge(
653 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
655 enum isl_edge_type i
;
656 struct isl_sched_edge
*edge
;
658 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
661 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
664 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
674 /* Remove the given edge from all the edge_tables that refer to it.
676 static void graph_remove_edge(struct isl_sched_graph
*graph
,
677 struct isl_sched_edge
*edge
)
679 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
680 enum isl_edge_type i
;
682 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
683 struct isl_hash_table_entry
*entry
;
685 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
688 if (entry
->data
!= edge
)
690 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
694 /* Check whether the dependence graph has any edge
695 * between the given two nodes.
697 static int graph_has_any_edge(struct isl_sched_graph
*graph
,
698 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
700 enum isl_edge_type i
;
703 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
704 r
= graph_has_edge(graph
, i
, src
, dst
);
712 /* Check whether the dependence graph has a validity edge
713 * between the given two nodes.
715 * Conditional validity edges are essentially validity edges that
716 * can be ignored if the corresponding condition edges are iteration private.
717 * Here, we are only checking for the presence of validity
718 * edges, so we need to consider the conditional validity edges too.
719 * In particular, this function is used during the detection
720 * of strongly connected components and we cannot ignore
721 * conditional validity edges during this detection.
723 static int graph_has_validity_edge(struct isl_sched_graph
*graph
,
724 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
728 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
732 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
735 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
736 int n_node
, int n_edge
)
741 graph
->n_edge
= n_edge
;
742 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
743 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
744 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
745 graph
->edge
= isl_calloc_array(ctx
,
746 struct isl_sched_edge
, graph
->n_edge
);
748 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
749 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
751 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
755 for(i
= 0; i
< graph
->n
; ++i
)
756 graph
->sorted
[i
] = i
;
761 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
765 isl_map_to_basic_set_free(graph
->intra_hmap
);
766 isl_map_to_basic_set_free(graph
->inter_hmap
);
769 for (i
= 0; i
< graph
->n
; ++i
) {
770 isl_space_free(graph
->node
[i
].space
);
771 isl_set_free(graph
->node
[i
].hull
);
772 isl_multi_aff_free(graph
->node
[i
].compress
);
773 isl_multi_aff_free(graph
->node
[i
].decompress
);
774 isl_mat_free(graph
->node
[i
].sched
);
775 isl_map_free(graph
->node
[i
].sched_map
);
776 isl_mat_free(graph
->node
[i
].cmap
);
777 isl_mat_free(graph
->node
[i
].cinv
);
779 free(graph
->node
[i
].band
);
780 free(graph
->node
[i
].band_id
);
781 free(graph
->node
[i
].coincident
);
787 for (i
= 0; i
< graph
->n_edge
; ++i
) {
788 isl_map_free(graph
->edge
[i
].map
);
789 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
790 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
794 for (i
= 0; i
<= isl_edge_last
; ++i
)
795 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
796 isl_hash_table_free(ctx
, graph
->node_table
);
797 isl_basic_set_free(graph
->lp
);
800 /* For each "set" on which this function is called, increment
801 * graph->n by one and update graph->maxvar.
803 static int init_n_maxvar(__isl_take isl_set
*set
, void *user
)
805 struct isl_sched_graph
*graph
= user
;
806 int nvar
= isl_set_dim(set
, isl_dim_set
);
809 if (nvar
> graph
->maxvar
)
810 graph
->maxvar
= nvar
;
817 /* Add the number of basic maps in "map" to *n.
819 static int add_n_basic_map(__isl_take isl_map
*map
, void *user
)
823 *n
+= isl_map_n_basic_map(map
);
829 /* Compute the number of rows that should be allocated for the schedule.
830 * The graph can be split at most "n - 1" times, there can be at most
831 * one row for each dimension in the iteration domains plus two rows
832 * for each basic map in the dependences (in particular,
833 * we usually have one row, but it may be split by split_scaled),
834 * and there can be one extra row for ordering the statements.
835 * Note that if we have actually split "n - 1" times, then no ordering
836 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
837 * It is also practically impossible to exhaust both the number of dependences
838 * and the number of variables.
840 static int compute_max_row(struct isl_sched_graph
*graph
,
841 __isl_keep isl_schedule_constraints
*sc
)
843 enum isl_edge_type i
;
848 if (isl_union_set_foreach_set(sc
->domain
, &init_n_maxvar
, graph
) < 0)
851 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
852 if (isl_union_map_foreach_map(sc
->constraint
[i
],
853 &add_n_basic_map
, &n_edge
) < 0)
855 graph
->max_row
= graph
->n
+ 2 * n_edge
+ graph
->maxvar
;
860 /* Does "bset" have any defining equalities for its set variables?
862 static int has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
869 n
= isl_basic_set_dim(bset
, isl_dim_set
);
870 for (i
= 0; i
< n
; ++i
) {
873 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
882 /* Add a new node to the graph representing the given space.
883 * "nvar" is the (possibly compressed) number of variables and
884 * may be smaller than then number of set variables in "space"
885 * if "compressed" is set.
886 * If "compressed" is set, then "hull" represents the constraints
887 * that were used to derive the compression, while "compress" and
888 * "decompress" map the original space to the compressed space and
890 * If "compressed" is not set, then "hull", "compress" and "decompress"
893 static int add_node(struct isl_sched_graph
*graph
, __isl_take isl_space
*space
,
894 int nvar
, int compressed
, __isl_take isl_set
*hull
,
895 __isl_take isl_multi_aff
*compress
,
896 __isl_take isl_multi_aff
*decompress
)
901 int *band
, *band_id
, *coincident
;
906 ctx
= isl_space_get_ctx(space
);
907 nparam
= isl_space_dim(space
, isl_dim_param
);
908 if (!ctx
->opt
->schedule_parametric
)
910 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
911 graph
->node
[graph
->n
].space
= space
;
912 graph
->node
[graph
->n
].nvar
= nvar
;
913 graph
->node
[graph
->n
].nparam
= nparam
;
914 graph
->node
[graph
->n
].sched
= sched
;
915 graph
->node
[graph
->n
].sched_map
= NULL
;
916 band
= isl_alloc_array(ctx
, int, graph
->max_row
);
917 graph
->node
[graph
->n
].band
= band
;
918 band_id
= isl_calloc_array(ctx
, int, graph
->max_row
);
919 graph
->node
[graph
->n
].band_id
= band_id
;
920 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
921 graph
->node
[graph
->n
].coincident
= coincident
;
922 graph
->node
[graph
->n
].compressed
= compressed
;
923 graph
->node
[graph
->n
].hull
= hull
;
924 graph
->node
[graph
->n
].compress
= compress
;
925 graph
->node
[graph
->n
].decompress
= decompress
;
928 if (!space
|| !sched
||
929 (graph
->max_row
&& (!band
|| !band_id
|| !coincident
)))
931 if (compressed
&& (!hull
|| !compress
|| !decompress
))
937 /* Add a new node to the graph representing the given set.
939 * If any of the set variables is defined by an equality, then
940 * we perform variable compression such that we can perform
941 * the scheduling on the compressed domain.
943 static int extract_node(__isl_take isl_set
*set
, void *user
)
951 isl_multi_aff
*compress
, *decompress
;
952 struct isl_sched_graph
*graph
= user
;
954 space
= isl_set_get_space(set
);
955 hull
= isl_set_affine_hull(set
);
956 hull
= isl_basic_set_remove_divs(hull
);
957 nvar
= isl_space_dim(space
, isl_dim_set
);
958 has_equality
= has_any_defining_equality(hull
);
960 if (has_equality
< 0)
963 isl_basic_set_free(hull
);
964 return add_node(graph
, space
, nvar
, 0, NULL
, NULL
, NULL
);
967 morph
= isl_basic_set_variable_compression(hull
, isl_dim_set
);
968 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
969 compress
= isl_morph_get_var_multi_aff(morph
);
970 morph
= isl_morph_inverse(morph
);
971 decompress
= isl_morph_get_var_multi_aff(morph
);
972 isl_morph_free(morph
);
974 hull_set
= isl_set_from_basic_set(hull
);
975 return add_node(graph
, space
, nvar
, 1, hull_set
, compress
, decompress
);
977 isl_basic_set_free(hull
);
978 isl_space_free(space
);
982 struct isl_extract_edge_data
{
983 enum isl_edge_type type
;
984 struct isl_sched_graph
*graph
;
987 /* Merge edge2 into edge1, freeing the contents of edge2.
988 * "type" is the type of the schedule constraint from which edge2 was
990 * Return 0 on success and -1 on failure.
992 * edge1 and edge2 are assumed to have the same value for the map field.
994 static int merge_edge(enum isl_edge_type type
, struct isl_sched_edge
*edge1
,
995 struct isl_sched_edge
*edge2
)
997 edge1
->validity
|= edge2
->validity
;
998 edge1
->coincidence
|= edge2
->coincidence
;
999 edge1
->proximity
|= edge2
->proximity
;
1000 edge1
->condition
|= edge2
->condition
;
1001 edge1
->conditional_validity
|= edge2
->conditional_validity
;
1002 isl_map_free(edge2
->map
);
1004 if (type
== isl_edge_condition
) {
1005 if (!edge1
->tagged_condition
)
1006 edge1
->tagged_condition
= edge2
->tagged_condition
;
1008 edge1
->tagged_condition
=
1009 isl_union_map_union(edge1
->tagged_condition
,
1010 edge2
->tagged_condition
);
1013 if (type
== isl_edge_conditional_validity
) {
1014 if (!edge1
->tagged_validity
)
1015 edge1
->tagged_validity
= edge2
->tagged_validity
;
1017 edge1
->tagged_validity
=
1018 isl_union_map_union(edge1
->tagged_validity
,
1019 edge2
->tagged_validity
);
1022 if (type
== isl_edge_condition
&& !edge1
->tagged_condition
)
1024 if (type
== isl_edge_conditional_validity
&& !edge1
->tagged_validity
)
1030 /* Insert dummy tags in domain and range of "map".
1032 * In particular, if "map" is of the form
1038 * [A -> dummy_tag] -> [B -> dummy_tag]
1040 * where the dummy_tags are identical and equal to any dummy tags
1041 * introduced by any other call to this function.
1043 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1049 isl_set
*domain
, *range
;
1051 ctx
= isl_map_get_ctx(map
);
1053 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1054 space
= isl_space_params(isl_map_get_space(map
));
1055 space
= isl_space_set_from_params(space
);
1056 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1057 space
= isl_space_map_from_set(space
);
1059 domain
= isl_map_wrap(map
);
1060 range
= isl_map_wrap(isl_map_universe(space
));
1061 map
= isl_map_from_domain_and_range(domain
, range
);
1062 map
= isl_map_zip(map
);
1067 /* Given that at least one of "src" or "dst" is compressed, return
1068 * a map between the spaces of these nodes restricted to the affine
1069 * hull that was used in the compression.
1071 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1072 struct isl_sched_node
*dst
)
1076 if (src
->compressed
)
1077 dom
= isl_set_copy(src
->hull
);
1079 dom
= isl_set_universe(isl_space_copy(src
->space
));
1080 if (dst
->compressed
)
1081 ran
= isl_set_copy(dst
->hull
);
1083 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1085 return isl_map_from_domain_and_range(dom
, ran
);
1088 /* Intersect the domains of the nested relations in domain and range
1089 * of "tagged" with "map".
1091 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1092 __isl_keep isl_map
*map
)
1096 tagged
= isl_map_zip(tagged
);
1097 set
= isl_map_wrap(isl_map_copy(map
));
1098 tagged
= isl_map_intersect_domain(tagged
, set
);
1099 tagged
= isl_map_zip(tagged
);
1103 /* Add a new edge to the graph based on the given map
1104 * and add it to data->graph->edge_table[data->type].
1105 * If a dependence relation of a given type happens to be identical
1106 * to one of the dependence relations of a type that was added before,
1107 * then we don't create a new edge, but instead mark the original edge
1108 * as also representing a dependence of the current type.
1110 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1111 * may be specified as "tagged" dependence relations. That is, "map"
1112 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1113 * the dependence on iterations and a and b are tags.
1114 * edge->map is set to the relation containing the elements i -> j,
1115 * while edge->tagged_condition and edge->tagged_validity contain
1116 * the union of all the "map" relations
1117 * for which extract_edge is called that result in the same edge->map.
1119 * If the source or the destination node is compressed, then
1120 * intersect both "map" and "tagged" with the constraints that
1121 * were used to construct the compression.
1122 * This ensures that there are no schedule constraints defined
1123 * outside of these domains, while the scheduler no longer has
1124 * any control over those outside parts.
1126 static int extract_edge(__isl_take isl_map
*map
, void *user
)
1128 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1129 struct isl_extract_edge_data
*data
= user
;
1130 struct isl_sched_graph
*graph
= data
->graph
;
1131 struct isl_sched_node
*src
, *dst
;
1133 struct isl_sched_edge
*edge
;
1134 isl_map
*tagged
= NULL
;
1136 if (data
->type
== isl_edge_condition
||
1137 data
->type
== isl_edge_conditional_validity
) {
1138 if (isl_map_can_zip(map
)) {
1139 tagged
= isl_map_copy(map
);
1140 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1142 tagged
= insert_dummy_tags(isl_map_copy(map
));
1146 dim
= isl_space_domain(isl_map_get_space(map
));
1147 src
= graph_find_node(ctx
, graph
, dim
);
1148 isl_space_free(dim
);
1149 dim
= isl_space_range(isl_map_get_space(map
));
1150 dst
= graph_find_node(ctx
, graph
, dim
);
1151 isl_space_free(dim
);
1155 isl_map_free(tagged
);
1159 if (src
->compressed
|| dst
->compressed
) {
1161 hull
= extract_hull(src
, dst
);
1163 tagged
= map_intersect_domains(tagged
, hull
);
1164 map
= isl_map_intersect(map
, hull
);
1167 graph
->edge
[graph
->n_edge
].src
= src
;
1168 graph
->edge
[graph
->n_edge
].dst
= dst
;
1169 graph
->edge
[graph
->n_edge
].map
= map
;
1170 graph
->edge
[graph
->n_edge
].validity
= 0;
1171 graph
->edge
[graph
->n_edge
].coincidence
= 0;
1172 graph
->edge
[graph
->n_edge
].proximity
= 0;
1173 graph
->edge
[graph
->n_edge
].condition
= 0;
1174 graph
->edge
[graph
->n_edge
].local
= 0;
1175 graph
->edge
[graph
->n_edge
].conditional_validity
= 0;
1176 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1177 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1178 if (data
->type
== isl_edge_validity
)
1179 graph
->edge
[graph
->n_edge
].validity
= 1;
1180 if (data
->type
== isl_edge_coincidence
)
1181 graph
->edge
[graph
->n_edge
].coincidence
= 1;
1182 if (data
->type
== isl_edge_proximity
)
1183 graph
->edge
[graph
->n_edge
].proximity
= 1;
1184 if (data
->type
== isl_edge_condition
) {
1185 graph
->edge
[graph
->n_edge
].condition
= 1;
1186 graph
->edge
[graph
->n_edge
].tagged_condition
=
1187 isl_union_map_from_map(tagged
);
1189 if (data
->type
== isl_edge_conditional_validity
) {
1190 graph
->edge
[graph
->n_edge
].conditional_validity
= 1;
1191 graph
->edge
[graph
->n_edge
].tagged_validity
=
1192 isl_union_map_from_map(tagged
);
1195 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1200 if (edge
== &graph
->edge
[graph
->n_edge
])
1201 return graph_edge_table_add(ctx
, graph
, data
->type
,
1202 &graph
->edge
[graph
->n_edge
++]);
1204 if (merge_edge(data
->type
, edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1207 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1210 /* Check whether there is any dependence from node[j] to node[i]
1211 * or from node[i] to node[j].
1213 static int node_follows_weak(int i
, int j
, void *user
)
1216 struct isl_sched_graph
*graph
= user
;
1218 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1221 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1224 /* Check whether there is a (conditional) validity dependence from node[j]
1225 * to node[i], forcing node[i] to follow node[j].
1227 static int node_follows_strong(int i
, int j
, void *user
)
1229 struct isl_sched_graph
*graph
= user
;
1231 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1234 /* Use Tarjan's algorithm for computing the strongly connected components
1235 * in the dependence graph (only validity edges).
1236 * If weak is set, we consider the graph to be undirected and
1237 * we effectively compute the (weakly) connected components.
1238 * Additionally, we also consider other edges when weak is set.
1240 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
, int weak
)
1243 struct isl_tarjan_graph
*g
= NULL
;
1245 g
= isl_tarjan_graph_init(ctx
, graph
->n
,
1246 weak
? &node_follows_weak
: &node_follows_strong
, graph
);
1254 while (g
->order
[i
] != -1) {
1255 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1263 isl_tarjan_graph_free(g
);
1268 /* Apply Tarjan's algorithm to detect the strongly connected components
1269 * in the dependence graph.
1271 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1273 return detect_ccs(ctx
, graph
, 0);
1276 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1277 * in the dependence graph.
1279 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1281 return detect_ccs(ctx
, graph
, 1);
1284 static int cmp_scc(const void *a
, const void *b
, void *data
)
1286 struct isl_sched_graph
*graph
= data
;
1290 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1293 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1295 static int sort_sccs(struct isl_sched_graph
*graph
)
1297 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1300 /* Given a dependence relation R from "node" to itself,
1301 * construct the set of coefficients of valid constraints for elements
1302 * in that dependence relation.
1303 * In particular, the result contains tuples of coefficients
1304 * c_0, c_n, c_x such that
1306 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1310 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1312 * We choose here to compute the dual of delta R.
1313 * Alternatively, we could have computed the dual of R, resulting
1314 * in a set of tuples c_0, c_n, c_x, c_y, and then
1315 * plugged in (c_0, c_n, c_x, -c_x).
1317 * If "node" has been compressed, then the dependence relation
1318 * is also compressed before the set of coefficients is computed.
1320 static __isl_give isl_basic_set
*intra_coefficients(
1321 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1322 __isl_take isl_map
*map
)
1326 isl_basic_set
*coef
;
1328 if (isl_map_to_basic_set_has(graph
->intra_hmap
, map
))
1329 return isl_map_to_basic_set_get(graph
->intra_hmap
, map
);
1331 key
= isl_map_copy(map
);
1332 if (node
->compressed
) {
1333 map
= isl_map_preimage_domain_multi_aff(map
,
1334 isl_multi_aff_copy(node
->decompress
));
1335 map
= isl_map_preimage_range_multi_aff(map
,
1336 isl_multi_aff_copy(node
->decompress
));
1338 delta
= isl_set_remove_divs(isl_map_deltas(map
));
1339 coef
= isl_set_coefficients(delta
);
1340 graph
->intra_hmap
= isl_map_to_basic_set_set(graph
->intra_hmap
, key
,
1341 isl_basic_set_copy(coef
));
1346 /* Given a dependence relation R, construct the set of coefficients
1347 * of valid constraints for elements in that dependence relation.
1348 * In particular, the result contains tuples of coefficients
1349 * c_0, c_n, c_x, c_y such that
1351 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1353 * If the source or destination nodes of "edge" have been compressed,
1354 * then the dependence relation is also compressed before
1355 * the set of coefficients is computed.
1357 static __isl_give isl_basic_set
*inter_coefficients(
1358 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1359 __isl_take isl_map
*map
)
1363 isl_basic_set
*coef
;
1365 if (isl_map_to_basic_set_has(graph
->inter_hmap
, map
))
1366 return isl_map_to_basic_set_get(graph
->inter_hmap
, map
);
1368 key
= isl_map_copy(map
);
1369 if (edge
->src
->compressed
)
1370 map
= isl_map_preimage_domain_multi_aff(map
,
1371 isl_multi_aff_copy(edge
->src
->decompress
));
1372 if (edge
->dst
->compressed
)
1373 map
= isl_map_preimage_range_multi_aff(map
,
1374 isl_multi_aff_copy(edge
->dst
->decompress
));
1375 set
= isl_map_wrap(isl_map_remove_divs(map
));
1376 coef
= isl_set_coefficients(set
);
1377 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1378 isl_basic_set_copy(coef
));
1383 /* Add constraints to graph->lp that force validity for the given
1384 * dependence from a node i to itself.
1385 * That is, add constraints that enforce
1387 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1388 * = c_i_x (y - x) >= 0
1390 * for each (x,y) in R.
1391 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1392 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1393 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1394 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1396 * Actually, we do not construct constraints for the c_i_x themselves,
1397 * but for the coefficients of c_i_x written as a linear combination
1398 * of the columns in node->cmap.
1400 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1401 struct isl_sched_edge
*edge
)
1404 isl_map
*map
= isl_map_copy(edge
->map
);
1405 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1407 isl_dim_map
*dim_map
;
1408 isl_basic_set
*coef
;
1409 struct isl_sched_node
*node
= edge
->src
;
1411 coef
= intra_coefficients(graph
, node
, map
);
1413 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1415 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1416 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
1420 total
= isl_basic_set_total_dim(graph
->lp
);
1421 dim_map
= isl_dim_map_alloc(ctx
, total
);
1422 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1423 isl_space_dim(dim
, isl_dim_set
), 1,
1425 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1426 isl_space_dim(dim
, isl_dim_set
), 1,
1428 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1429 coef
->n_eq
, coef
->n_ineq
);
1430 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1432 isl_space_free(dim
);
1436 isl_space_free(dim
);
1440 /* Add constraints to graph->lp that force validity for the given
1441 * dependence from node i to node j.
1442 * That is, add constraints that enforce
1444 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1446 * for each (x,y) in R.
1447 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1448 * of valid constraints for R and then plug in
1449 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1450 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1451 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1452 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1454 * Actually, we do not construct constraints for the c_*_x themselves,
1455 * but for the coefficients of c_*_x written as a linear combination
1456 * of the columns in node->cmap.
1458 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1459 struct isl_sched_edge
*edge
)
1462 isl_map
*map
= isl_map_copy(edge
->map
);
1463 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1465 isl_dim_map
*dim_map
;
1466 isl_basic_set
*coef
;
1467 struct isl_sched_node
*src
= edge
->src
;
1468 struct isl_sched_node
*dst
= edge
->dst
;
1470 coef
= inter_coefficients(graph
, edge
, map
);
1472 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1474 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1475 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1476 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1477 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1478 isl_mat_copy(dst
->cmap
));
1482 total
= isl_basic_set_total_dim(graph
->lp
);
1483 dim_map
= isl_dim_map_alloc(ctx
, total
);
1485 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
1486 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
1487 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
1488 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1489 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1491 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1492 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1495 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
1496 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
1497 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
1498 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1499 isl_space_dim(dim
, isl_dim_set
), 1,
1501 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1502 isl_space_dim(dim
, isl_dim_set
), 1,
1505 edge
->start
= graph
->lp
->n_ineq
;
1506 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1507 coef
->n_eq
, coef
->n_ineq
);
1508 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1512 isl_space_free(dim
);
1513 edge
->end
= graph
->lp
->n_ineq
;
1517 isl_space_free(dim
);
1521 /* Add constraints to graph->lp that bound the dependence distance for the given
1522 * dependence from a node i to itself.
1523 * If s = 1, we add the constraint
1525 * c_i_x (y - x) <= m_0 + m_n n
1529 * -c_i_x (y - x) + m_0 + m_n n >= 0
1531 * for each (x,y) in R.
1532 * If s = -1, we add the constraint
1534 * -c_i_x (y - x) <= m_0 + m_n n
1538 * c_i_x (y - x) + m_0 + m_n n >= 0
1540 * for each (x,y) in R.
1541 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1542 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1543 * with each coefficient (except m_0) represented as a pair of non-negative
1546 * Actually, we do not construct constraints for the c_i_x themselves,
1547 * but for the coefficients of c_i_x written as a linear combination
1548 * of the columns in node->cmap.
1551 * If "local" is set, then we add constraints
1553 * c_i_x (y - x) <= 0
1557 * -c_i_x (y - x) <= 0
1559 * instead, forcing the dependence distance to be (less than or) equal to 0.
1560 * That is, we plug in (0, 0, -s * c_i_x),
1561 * Note that dependences marked local are treated as validity constraints
1562 * by add_all_validity_constraints and therefore also have
1563 * their distances bounded by 0 from below.
1565 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
1566 struct isl_sched_edge
*edge
, int s
, int local
)
1570 isl_map
*map
= isl_map_copy(edge
->map
);
1571 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1573 isl_dim_map
*dim_map
;
1574 isl_basic_set
*coef
;
1575 struct isl_sched_node
*node
= edge
->src
;
1577 coef
= intra_coefficients(graph
, node
, map
);
1579 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1581 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1582 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
1586 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
1587 total
= isl_basic_set_total_dim(graph
->lp
);
1588 dim_map
= isl_dim_map_alloc(ctx
, total
);
1591 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1592 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1593 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1595 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1596 isl_space_dim(dim
, isl_dim_set
), 1,
1598 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1599 isl_space_dim(dim
, isl_dim_set
), 1,
1601 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1602 coef
->n_eq
, coef
->n_ineq
);
1603 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1605 isl_space_free(dim
);
1609 isl_space_free(dim
);
1613 /* Add constraints to graph->lp that bound the dependence distance for the given
1614 * dependence from node i to node j.
1615 * If s = 1, we add the constraint
1617 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1622 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1625 * for each (x,y) in R.
1626 * If s = -1, we add the constraint
1628 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1633 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1636 * for each (x,y) in R.
1637 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1638 * of valid constraints for R and then plug in
1639 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1641 * with each coefficient (except m_0, c_j_0 and c_i_0)
1642 * represented as a pair of non-negative coefficients.
1644 * Actually, we do not construct constraints for the c_*_x themselves,
1645 * but for the coefficients of c_*_x written as a linear combination
1646 * of the columns in node->cmap.
1649 * If "local" is set, then we add constraints
1651 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1655 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1657 * instead, forcing the dependence distance to be (less than or) equal to 0.
1658 * That is, we plug in
1659 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1660 * Note that dependences marked local are treated as validity constraints
1661 * by add_all_validity_constraints and therefore also have
1662 * their distances bounded by 0 from below.
1664 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
1665 struct isl_sched_edge
*edge
, int s
, int local
)
1669 isl_map
*map
= isl_map_copy(edge
->map
);
1670 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1672 isl_dim_map
*dim_map
;
1673 isl_basic_set
*coef
;
1674 struct isl_sched_node
*src
= edge
->src
;
1675 struct isl_sched_node
*dst
= edge
->dst
;
1677 coef
= inter_coefficients(graph
, edge
, map
);
1679 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1681 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1682 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1683 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1684 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1685 isl_mat_copy(dst
->cmap
));
1689 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
1690 total
= isl_basic_set_total_dim(graph
->lp
);
1691 dim_map
= isl_dim_map_alloc(ctx
, total
);
1694 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1695 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1696 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1699 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
1700 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
1701 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
1702 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1703 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1705 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1706 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1709 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
1710 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
1711 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
1712 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1713 isl_space_dim(dim
, isl_dim_set
), 1,
1715 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1716 isl_space_dim(dim
, isl_dim_set
), 1,
1719 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1720 coef
->n_eq
, coef
->n_ineq
);
1721 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1723 isl_space_free(dim
);
1727 isl_space_free(dim
);
1731 /* Add all validity constraints to graph->lp.
1733 * An edge that is forced to be local needs to have its dependence
1734 * distances equal to zero. We take care of bounding them by 0 from below
1735 * here. add_all_proximity_constraints takes care of bounding them by 0
1738 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1739 * Otherwise, we ignore them.
1741 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
1742 int use_coincidence
)
1746 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1747 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1750 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1751 if (!edge
->validity
&& !local
)
1753 if (edge
->src
!= edge
->dst
)
1755 if (add_intra_validity_constraints(graph
, edge
) < 0)
1759 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1760 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1763 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1764 if (!edge
->validity
&& !local
)
1766 if (edge
->src
== edge
->dst
)
1768 if (add_inter_validity_constraints(graph
, edge
) < 0)
1775 /* Add constraints to graph->lp that bound the dependence distance
1776 * for all dependence relations.
1777 * If a given proximity dependence is identical to a validity
1778 * dependence, then the dependence distance is already bounded
1779 * from below (by zero), so we only need to bound the distance
1780 * from above. (This includes the case of "local" dependences
1781 * which are treated as validity dependence by add_all_validity_constraints.)
1782 * Otherwise, we need to bound the distance both from above and from below.
1784 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1785 * Otherwise, we ignore them.
1787 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
1788 int use_coincidence
)
1792 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1793 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1796 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1797 if (!edge
->proximity
&& !local
)
1799 if (edge
->src
== edge
->dst
&&
1800 add_intra_proximity_constraints(graph
, edge
, 1, local
) < 0)
1802 if (edge
->src
!= edge
->dst
&&
1803 add_inter_proximity_constraints(graph
, edge
, 1, local
) < 0)
1805 if (edge
->validity
|| local
)
1807 if (edge
->src
== edge
->dst
&&
1808 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
1810 if (edge
->src
!= edge
->dst
&&
1811 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
1818 /* Compute a basis for the rows in the linear part of the schedule
1819 * and extend this basis to a full basis. The remaining rows
1820 * can then be used to force linear independence from the rows
1823 * In particular, given the schedule rows S, we compute
1828 * with H the Hermite normal form of S. That is, all but the
1829 * first rank columns of H are zero and so each row in S is
1830 * a linear combination of the first rank rows of Q.
1831 * The matrix Q is then transposed because we will write the
1832 * coefficients of the next schedule row as a column vector s
1833 * and express this s as a linear combination s = Q c of the
1835 * Similarly, the matrix U is transposed such that we can
1836 * compute the coefficients c = U s from a schedule row s.
1838 static int node_update_cmap(struct isl_sched_node
*node
)
1841 int n_row
= isl_mat_rows(node
->sched
);
1843 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1844 1 + node
->nparam
, node
->nvar
);
1846 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
1847 isl_mat_free(node
->cmap
);
1848 isl_mat_free(node
->cinv
);
1849 node
->cmap
= isl_mat_transpose(Q
);
1850 node
->cinv
= isl_mat_transpose(U
);
1851 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1854 if (!node
->cmap
|| !node
->cinv
|| node
->rank
< 0)
1859 /* How many times should we count the constraints in "edge"?
1861 * If carry is set, then we are counting the number of
1862 * (validity or conditional validity) constraints that will be added
1863 * in setup_carry_lp and we count each edge exactly once.
1865 * Otherwise, we count as follows
1866 * validity -> 1 (>= 0)
1867 * validity+proximity -> 2 (>= 0 and upper bound)
1868 * proximity -> 2 (lower and upper bound)
1869 * local(+any) -> 2 (>= 0 and <= 0)
1871 * If an edge is only marked conditional_validity then it counts
1872 * as zero since it is only checked afterwards.
1874 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1875 * Otherwise, we ignore them.
1877 static int edge_multiplicity(struct isl_sched_edge
*edge
, int carry
,
1878 int use_coincidence
)
1880 if (carry
&& !edge
->validity
&& !edge
->conditional_validity
)
1884 if (edge
->proximity
|| edge
->local
)
1886 if (use_coincidence
&& edge
->coincidence
)
1893 /* Count the number of equality and inequality constraints
1894 * that will be added for the given map.
1896 * "use_coincidence" is set if we should take into account coincidence edges.
1898 static int count_map_constraints(struct isl_sched_graph
*graph
,
1899 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
1900 int *n_eq
, int *n_ineq
, int carry
, int use_coincidence
)
1902 isl_basic_set
*coef
;
1903 int f
= edge_multiplicity(edge
, carry
, use_coincidence
);
1910 if (edge
->src
== edge
->dst
)
1911 coef
= intra_coefficients(graph
, edge
->src
, map
);
1913 coef
= inter_coefficients(graph
, edge
, map
);
1916 *n_eq
+= f
* coef
->n_eq
;
1917 *n_ineq
+= f
* coef
->n_ineq
;
1918 isl_basic_set_free(coef
);
1923 /* Count the number of equality and inequality constraints
1924 * that will be added to the main lp problem.
1925 * We count as follows
1926 * validity -> 1 (>= 0)
1927 * validity+proximity -> 2 (>= 0 and upper bound)
1928 * proximity -> 2 (lower and upper bound)
1929 * local(+any) -> 2 (>= 0 and <= 0)
1931 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1932 * Otherwise, we ignore them.
1934 static int count_constraints(struct isl_sched_graph
*graph
,
1935 int *n_eq
, int *n_ineq
, int use_coincidence
)
1939 *n_eq
= *n_ineq
= 0;
1940 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1941 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1942 isl_map
*map
= isl_map_copy(edge
->map
);
1944 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
1945 0, use_coincidence
) < 0)
1952 /* Count the number of constraints that will be added by
1953 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1956 * In practice, add_bound_coefficient_constraints only adds inequalities.
1958 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
1959 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
1963 if (ctx
->opt
->schedule_max_coefficient
== -1)
1966 for (i
= 0; i
< graph
->n
; ++i
)
1967 *n_ineq
+= 2 * graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
1972 /* Add constraints that bound the values of the variable and parameter
1973 * coefficients of the schedule.
1975 * The maximal value of the coefficients is defined by the option
1976 * 'schedule_max_coefficient'.
1978 static int add_bound_coefficient_constraints(isl_ctx
*ctx
,
1979 struct isl_sched_graph
*graph
)
1982 int max_coefficient
;
1985 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1987 if (max_coefficient
== -1)
1990 total
= isl_basic_set_total_dim(graph
->lp
);
1992 for (i
= 0; i
< graph
->n
; ++i
) {
1993 struct isl_sched_node
*node
= &graph
->node
[i
];
1994 for (j
= 0; j
< 2 * node
->nparam
+ 2 * node
->nvar
; ++j
) {
1996 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1999 dim
= 1 + node
->start
+ 1 + j
;
2000 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2001 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2002 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_coefficient
);
2009 /* Construct an ILP problem for finding schedule coefficients
2010 * that result in non-negative, but small dependence distances
2011 * over all dependences.
2012 * In particular, the dependence distances over proximity edges
2013 * are bounded by m_0 + m_n n and we compute schedule coefficients
2014 * with small values (preferably zero) of m_n and m_0.
2016 * All variables of the ILP are non-negative. The actual coefficients
2017 * may be negative, so each coefficient is represented as the difference
2018 * of two non-negative variables. The negative part always appears
2019 * immediately before the positive part.
2020 * Other than that, the variables have the following order
2022 * - sum of positive and negative parts of m_n coefficients
2024 * - sum of positive and negative parts of all c_n coefficients
2025 * (unconstrained when computing non-parametric schedules)
2026 * - sum of positive and negative parts of all c_x coefficients
2027 * - positive and negative parts of m_n coefficients
2030 * - positive and negative parts of c_i_n (if parametric)
2031 * - positive and negative parts of c_i_x
2033 * The c_i_x are not represented directly, but through the columns of
2034 * node->cmap. That is, the computed values are for variable t_i_x
2035 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2037 * The constraints are those from the edges plus two or three equalities
2038 * to express the sums.
2040 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2041 * Otherwise, we ignore them.
2043 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2044 int use_coincidence
)
2054 int max_constant_term
;
2056 max_constant_term
= ctx
->opt
->schedule_max_constant_term
;
2058 parametric
= ctx
->opt
->schedule_parametric
;
2059 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2061 total
= param_pos
+ 2 * nparam
;
2062 for (i
= 0; i
< graph
->n
; ++i
) {
2063 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2064 if (node_update_cmap(node
) < 0)
2066 node
->start
= total
;
2067 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2070 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2072 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2075 dim
= isl_space_set_alloc(ctx
, 0, total
);
2076 isl_basic_set_free(graph
->lp
);
2077 n_eq
+= 2 + parametric
;
2078 if (max_constant_term
!= -1)
2081 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2083 k
= isl_basic_set_alloc_equality(graph
->lp
);
2086 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2087 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
2088 for (i
= 0; i
< 2 * nparam
; ++i
)
2089 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
2092 k
= isl_basic_set_alloc_equality(graph
->lp
);
2095 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2096 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2097 for (i
= 0; i
< graph
->n
; ++i
) {
2098 int pos
= 1 + graph
->node
[i
].start
+ 1;
2100 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2101 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2105 k
= isl_basic_set_alloc_equality(graph
->lp
);
2108 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2109 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
2110 for (i
= 0; i
< graph
->n
; ++i
) {
2111 struct isl_sched_node
*node
= &graph
->node
[i
];
2112 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2114 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2115 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2118 if (max_constant_term
!= -1)
2119 for (i
= 0; i
< graph
->n
; ++i
) {
2120 struct isl_sched_node
*node
= &graph
->node
[i
];
2121 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2124 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2125 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
2126 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_constant_term
);
2129 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2131 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2133 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2139 /* Analyze the conflicting constraint found by
2140 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2141 * constraint of one of the edges between distinct nodes, living, moreover
2142 * in distinct SCCs, then record the source and sink SCC as this may
2143 * be a good place to cut between SCCs.
2145 static int check_conflict(int con
, void *user
)
2148 struct isl_sched_graph
*graph
= user
;
2150 if (graph
->src_scc
>= 0)
2153 con
-= graph
->lp
->n_eq
;
2155 if (con
>= graph
->lp
->n_ineq
)
2158 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2159 if (!graph
->edge
[i
].validity
)
2161 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2163 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2165 if (graph
->edge
[i
].start
> con
)
2167 if (graph
->edge
[i
].end
<= con
)
2169 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2170 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2176 /* Check whether the next schedule row of the given node needs to be
2177 * non-trivial. Lower-dimensional domains may have some trivial rows,
2178 * but as soon as the number of remaining required non-trivial rows
2179 * is as large as the number or remaining rows to be computed,
2180 * all remaining rows need to be non-trivial.
2182 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2184 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2187 /* Solve the ILP problem constructed in setup_lp.
2188 * For each node such that all the remaining rows of its schedule
2189 * need to be non-trivial, we construct a non-triviality region.
2190 * This region imposes that the next row is independent of previous rows.
2191 * In particular the coefficients c_i_x are represented by t_i_x
2192 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2193 * its first columns span the rows of the previously computed part
2194 * of the schedule. The non-triviality region enforces that at least
2195 * one of the remaining components of t_i_x is non-zero, i.e.,
2196 * that the new schedule row depends on at least one of the remaining
2199 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
2205 for (i
= 0; i
< graph
->n
; ++i
) {
2206 struct isl_sched_node
*node
= &graph
->node
[i
];
2207 int skip
= node
->rank
;
2208 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
2209 if (needs_row(graph
, node
))
2210 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
2212 graph
->region
[i
].len
= 0;
2214 lp
= isl_basic_set_copy(graph
->lp
);
2215 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2216 graph
->region
, &check_conflict
, graph
);
2220 /* Update the schedules of all nodes based on the given solution
2221 * of the LP problem.
2222 * The new row is added to the current band.
2223 * All possibly negative coefficients are encoded as a difference
2224 * of two non-negative variables, so we need to perform the subtraction
2225 * here. Moreover, if use_cmap is set, then the solution does
2226 * not refer to the actual coefficients c_i_x, but instead to variables
2227 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2228 * In this case, we then also need to perform this multiplication
2229 * to obtain the values of c_i_x.
2231 * If coincident is set, then the caller guarantees that the new
2232 * row satisfies the coincidence constraints.
2234 static int update_schedule(struct isl_sched_graph
*graph
,
2235 __isl_take isl_vec
*sol
, int use_cmap
, int coincident
)
2238 isl_vec
*csol
= NULL
;
2243 isl_die(sol
->ctx
, isl_error_internal
,
2244 "no solution found", goto error
);
2245 if (graph
->n_total_row
>= graph
->max_row
)
2246 isl_die(sol
->ctx
, isl_error_internal
,
2247 "too many schedule rows", goto error
);
2249 for (i
= 0; i
< graph
->n
; ++i
) {
2250 struct isl_sched_node
*node
= &graph
->node
[i
];
2251 int pos
= node
->start
;
2252 int row
= isl_mat_rows(node
->sched
);
2255 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
2259 isl_map_free(node
->sched_map
);
2260 node
->sched_map
= NULL
;
2261 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2264 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
2266 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
2267 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
2268 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
2269 sol
->el
[1 + pos
+ 1 + 2 * j
]);
2270 for (j
= 0; j
< node
->nparam
; ++j
)
2271 node
->sched
= isl_mat_set_element(node
->sched
,
2272 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
2273 for (j
= 0; j
< node
->nvar
; ++j
)
2274 isl_int_set(csol
->el
[j
],
2275 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
2277 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
2281 for (j
= 0; j
< node
->nvar
; ++j
)
2282 node
->sched
= isl_mat_set_element(node
->sched
,
2283 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2284 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2285 node
->coincident
[graph
->n_total_row
] = coincident
;
2291 graph
->n_total_row
++;
2300 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2301 * and return this isl_aff.
2303 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
2304 struct isl_sched_node
*node
, int row
)
2312 aff
= isl_aff_zero_on_domain(ls
);
2313 isl_mat_get_element(node
->sched
, row
, 0, &v
);
2314 aff
= isl_aff_set_constant(aff
, v
);
2315 for (j
= 0; j
< node
->nparam
; ++j
) {
2316 isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
);
2317 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
2319 for (j
= 0; j
< node
->nvar
; ++j
) {
2320 isl_mat_get_element(node
->sched
, row
, 1 + node
->nparam
+ j
, &v
);
2321 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
2329 /* Convert node->sched into a multi_aff and return this multi_aff.
2331 * The result is defined over the uncompressed node domain.
2333 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
2334 struct isl_sched_node
*node
)
2338 isl_local_space
*ls
;
2343 nrow
= isl_mat_rows(node
->sched
);
2344 ncol
= isl_mat_cols(node
->sched
) - 1;
2345 if (node
->compressed
)
2346 space
= isl_multi_aff_get_domain_space(node
->decompress
);
2348 space
= isl_space_copy(node
->space
);
2349 ls
= isl_local_space_from_space(isl_space_copy(space
));
2350 space
= isl_space_from_domain(space
);
2351 space
= isl_space_add_dims(space
, isl_dim_out
, nrow
);
2352 ma
= isl_multi_aff_zero(space
);
2354 for (i
= 0; i
< nrow
; ++i
) {
2355 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
2356 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
2359 isl_local_space_free(ls
);
2361 if (node
->compressed
)
2362 ma
= isl_multi_aff_pullback_multi_aff(ma
,
2363 isl_multi_aff_copy(node
->compress
));
2368 /* Convert node->sched into a map and return this map.
2370 * The result is cached in node->sched_map, which needs to be released
2371 * whenever node->sched is updated.
2372 * It is defined over the uncompressed node domain.
2374 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
2376 if (!node
->sched_map
) {
2379 ma
= node_extract_schedule_multi_aff(node
);
2380 node
->sched_map
= isl_map_from_multi_aff(ma
);
2383 return isl_map_copy(node
->sched_map
);
2386 /* Construct a map that can be used to update a dependence relation
2387 * based on the current schedule.
2388 * That is, construct a map expressing that source and sink
2389 * are executed within the same iteration of the current schedule.
2390 * This map can then be intersected with the dependence relation.
2391 * This is not the most efficient way, but this shouldn't be a critical
2394 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
2395 struct isl_sched_node
*dst
)
2397 isl_map
*src_sched
, *dst_sched
;
2399 src_sched
= node_extract_schedule(src
);
2400 dst_sched
= node_extract_schedule(dst
);
2401 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
2404 /* Intersect the domains of the nested relations in domain and range
2405 * of "umap" with "map".
2407 static __isl_give isl_union_map
*intersect_domains(
2408 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
2410 isl_union_set
*uset
;
2412 umap
= isl_union_map_zip(umap
);
2413 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
2414 umap
= isl_union_map_intersect_domain(umap
, uset
);
2415 umap
= isl_union_map_zip(umap
);
2419 /* Update the dependence relation of the given edge based
2420 * on the current schedule.
2421 * If the dependence is carried completely by the current schedule, then
2422 * it is removed from the edge_tables. It is kept in the list of edges
2423 * as otherwise all edge_tables would have to be recomputed.
2425 static int update_edge(struct isl_sched_graph
*graph
,
2426 struct isl_sched_edge
*edge
)
2430 id
= specializer(edge
->src
, edge
->dst
);
2431 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
2435 if (edge
->tagged_condition
) {
2436 edge
->tagged_condition
=
2437 intersect_domains(edge
->tagged_condition
, id
);
2438 if (!edge
->tagged_condition
)
2441 if (edge
->tagged_validity
) {
2442 edge
->tagged_validity
=
2443 intersect_domains(edge
->tagged_validity
, id
);
2444 if (!edge
->tagged_validity
)
2449 if (isl_map_plain_is_empty(edge
->map
))
2450 graph_remove_edge(graph
, edge
);
2458 /* Update the dependence relations of all edges based on the current schedule.
2460 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2464 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
2465 if (update_edge(graph
, &graph
->edge
[i
]) < 0)
2472 static void next_band(struct isl_sched_graph
*graph
)
2474 graph
->band_start
= graph
->n_total_row
;
2478 /* Topologically sort statements mapped to the same schedule iteration
2479 * and add a row to the schedule corresponding to this order.
2481 static int sort_statements(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2488 if (update_edges(ctx
, graph
) < 0)
2491 if (graph
->n_edge
== 0)
2494 if (detect_sccs(ctx
, graph
) < 0)
2497 if (graph
->n_total_row
>= graph
->max_row
)
2498 isl_die(ctx
, isl_error_internal
,
2499 "too many schedule rows", return -1);
2501 for (i
= 0; i
< graph
->n
; ++i
) {
2502 struct isl_sched_node
*node
= &graph
->node
[i
];
2503 int row
= isl_mat_rows(node
->sched
);
2504 int cols
= isl_mat_cols(node
->sched
);
2506 isl_map_free(node
->sched_map
);
2507 node
->sched_map
= NULL
;
2508 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2511 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2513 for (j
= 1; j
< cols
; ++j
)
2514 node
->sched
= isl_mat_set_element_si(node
->sched
,
2516 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2519 graph
->n_total_row
++;
2525 /* Construct an isl_schedule based on the computed schedule stored
2526 * in graph and with parameters specified by dim.
2528 static __isl_give isl_schedule
*extract_schedule(struct isl_sched_graph
*graph
,
2529 __isl_take isl_space
*dim
)
2533 isl_schedule
*sched
= NULL
;
2538 ctx
= isl_space_get_ctx(dim
);
2539 sched
= isl_calloc(ctx
, struct isl_schedule
,
2540 sizeof(struct isl_schedule
) +
2541 (graph
->n
- 1) * sizeof(struct isl_schedule_node
));
2546 sched
->n
= graph
->n
;
2547 sched
->n_band
= graph
->n_band
;
2548 sched
->n_total_row
= graph
->n_total_row
;
2550 for (i
= 0; i
< sched
->n
; ++i
) {
2552 int *band_end
, *band_id
, *coincident
;
2554 sched
->node
[i
].sched
=
2555 node_extract_schedule_multi_aff(&graph
->node
[i
]);
2556 if (!sched
->node
[i
].sched
)
2559 sched
->node
[i
].n_band
= graph
->n_band
;
2560 if (graph
->n_band
== 0)
2563 band_end
= isl_alloc_array(ctx
, int, graph
->n_band
);
2564 band_id
= isl_alloc_array(ctx
, int, graph
->n_band
);
2565 coincident
= isl_alloc_array(ctx
, int, graph
->n_total_row
);
2566 sched
->node
[i
].band_end
= band_end
;
2567 sched
->node
[i
].band_id
= band_id
;
2568 sched
->node
[i
].coincident
= coincident
;
2569 if (!band_end
|| !band_id
|| !coincident
)
2572 for (r
= 0; r
< graph
->n_total_row
; ++r
)
2573 coincident
[r
] = graph
->node
[i
].coincident
[r
];
2574 for (r
= b
= 0; r
< graph
->n_total_row
; ++r
) {
2575 if (graph
->node
[i
].band
[r
] == b
)
2578 if (graph
->node
[i
].band
[r
] == -1)
2581 if (r
== graph
->n_total_row
)
2583 sched
->node
[i
].n_band
= b
;
2584 for (--b
; b
>= 0; --b
)
2585 band_id
[b
] = graph
->node
[i
].band_id
[b
];
2592 isl_space_free(dim
);
2593 isl_schedule_free(sched
);
2597 /* Copy nodes that satisfy node_pred from the src dependence graph
2598 * to the dst dependence graph.
2600 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
2601 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
2606 for (i
= 0; i
< src
->n
; ++i
) {
2609 if (!node_pred(&src
->node
[i
], data
))
2613 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
2614 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
2615 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
2616 dst
->node
[j
].compress
=
2617 isl_multi_aff_copy(src
->node
[i
].compress
);
2618 dst
->node
[j
].decompress
=
2619 isl_multi_aff_copy(src
->node
[i
].decompress
);
2620 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
2621 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
2622 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
2623 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
2624 dst
->node
[j
].band
= src
->node
[i
].band
;
2625 dst
->node
[j
].band_id
= src
->node
[i
].band_id
;
2626 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
2629 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
2631 if (dst
->node
[j
].compressed
&&
2632 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
2633 !dst
->node
[j
].decompress
))
2640 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2641 * to the dst dependence graph.
2642 * If the source or destination node of the edge is not in the destination
2643 * graph, then it must be a backward proximity edge and it should simply
2646 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
2647 struct isl_sched_graph
*src
,
2648 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
2651 enum isl_edge_type t
;
2654 for (i
= 0; i
< src
->n_edge
; ++i
) {
2655 struct isl_sched_edge
*edge
= &src
->edge
[i
];
2657 isl_union_map
*tagged_condition
;
2658 isl_union_map
*tagged_validity
;
2659 struct isl_sched_node
*dst_src
, *dst_dst
;
2661 if (!edge_pred(edge
, data
))
2664 if (isl_map_plain_is_empty(edge
->map
))
2667 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
2668 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
2669 if (!dst_src
|| !dst_dst
) {
2670 if (edge
->validity
|| edge
->conditional_validity
)
2671 isl_die(ctx
, isl_error_internal
,
2672 "backward (conditional) validity edge",
2677 map
= isl_map_copy(edge
->map
);
2678 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
2679 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
2681 dst
->edge
[dst
->n_edge
].src
= dst_src
;
2682 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
2683 dst
->edge
[dst
->n_edge
].map
= map
;
2684 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
2685 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
2686 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
2687 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
2688 dst
->edge
[dst
->n_edge
].coincidence
= edge
->coincidence
;
2689 dst
->edge
[dst
->n_edge
].condition
= edge
->condition
;
2690 dst
->edge
[dst
->n_edge
].conditional_validity
=
2691 edge
->conditional_validity
;
2694 if (edge
->tagged_condition
&& !tagged_condition
)
2696 if (edge
->tagged_validity
&& !tagged_validity
)
2699 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
2701 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
2703 if (graph_edge_table_add(ctx
, dst
, t
,
2704 &dst
->edge
[dst
->n_edge
- 1]) < 0)
2712 /* Given a "src" dependence graph that contains the nodes from "dst"
2713 * that satisfy node_pred, copy the schedule computed in "src"
2714 * for those nodes back to "dst".
2716 static int copy_schedule(struct isl_sched_graph
*dst
,
2717 struct isl_sched_graph
*src
,
2718 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
2723 for (i
= 0; i
< dst
->n
; ++i
) {
2724 if (!node_pred(&dst
->node
[i
], data
))
2726 isl_mat_free(dst
->node
[i
].sched
);
2727 isl_map_free(dst
->node
[i
].sched_map
);
2728 dst
->node
[i
].sched
= isl_mat_copy(src
->node
[src
->n
].sched
);
2729 dst
->node
[i
].sched_map
=
2730 isl_map_copy(src
->node
[src
->n
].sched_map
);
2734 dst
->max_row
= src
->max_row
;
2735 dst
->n_total_row
= src
->n_total_row
;
2736 dst
->n_band
= src
->n_band
;
2741 /* Compute the maximal number of variables over all nodes.
2742 * This is the maximal number of linearly independent schedule
2743 * rows that we need to compute.
2744 * Just in case we end up in a part of the dependence graph
2745 * with only lower-dimensional domains, we make sure we will
2746 * compute the required amount of extra linearly independent rows.
2748 static int compute_maxvar(struct isl_sched_graph
*graph
)
2753 for (i
= 0; i
< graph
->n
; ++i
) {
2754 struct isl_sched_node
*node
= &graph
->node
[i
];
2757 if (node_update_cmap(node
) < 0)
2759 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
2760 if (nvar
> graph
->maxvar
)
2761 graph
->maxvar
= nvar
;
2767 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
2768 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
2770 /* Compute a schedule for a subgraph of "graph". In particular, for
2771 * the graph composed of nodes that satisfy node_pred and edges that
2772 * that satisfy edge_pred. The caller should precompute the number
2773 * of nodes and edges that satisfy these predicates and pass them along
2774 * as "n" and "n_edge".
2775 * If the subgraph is known to consist of a single component, then wcc should
2776 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2777 * Otherwise, we call compute_schedule, which will check whether the subgraph
2780 static int compute_sub_schedule(isl_ctx
*ctx
,
2781 struct isl_sched_graph
*graph
, int n
, int n_edge
,
2782 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
2783 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
2786 struct isl_sched_graph split
= { 0 };
2789 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
2791 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
2793 if (graph_init_table(ctx
, &split
) < 0)
2795 for (t
= 0; t
<= isl_edge_last
; ++t
)
2796 split
.max_edge
[t
] = graph
->max_edge
[t
];
2797 if (graph_init_edge_tables(ctx
, &split
) < 0)
2799 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
2801 split
.n_row
= graph
->n_row
;
2802 split
.max_row
= graph
->max_row
;
2803 split
.n_total_row
= graph
->n_total_row
;
2804 split
.n_band
= graph
->n_band
;
2805 split
.band_start
= graph
->band_start
;
2807 if (wcc
&& compute_schedule_wcc(ctx
, &split
) < 0)
2809 if (!wcc
&& compute_schedule(ctx
, &split
) < 0)
2812 copy_schedule(graph
, &split
, node_pred
, data
);
2814 graph_free(ctx
, &split
);
2817 graph_free(ctx
, &split
);
2821 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
2823 return node
->scc
== scc
;
2826 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
2828 return node
->scc
<= scc
;
2831 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
2833 return node
->scc
>= scc
;
2836 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
2838 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
2841 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
2843 return edge
->dst
->scc
<= scc
;
2846 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
2848 return edge
->src
->scc
>= scc
;
2851 /* Pad the schedules of all nodes with zero rows such that in the end
2852 * they all have graph->n_total_row rows.
2853 * The extra rows don't belong to any band, so they get assigned band number -1.
2855 static int pad_schedule(struct isl_sched_graph
*graph
)
2859 for (i
= 0; i
< graph
->n
; ++i
) {
2860 struct isl_sched_node
*node
= &graph
->node
[i
];
2861 int row
= isl_mat_rows(node
->sched
);
2862 if (graph
->n_total_row
> row
) {
2863 isl_map_free(node
->sched_map
);
2864 node
->sched_map
= NULL
;
2866 node
->sched
= isl_mat_add_zero_rows(node
->sched
,
2867 graph
->n_total_row
- row
);
2870 for (j
= row
; j
< graph
->n_total_row
; ++j
)
2877 /* Reset the current band by dropping all its schedule rows.
2879 static int reset_band(struct isl_sched_graph
*graph
)
2884 drop
= graph
->n_total_row
- graph
->band_start
;
2885 graph
->n_total_row
-= drop
;
2886 graph
->n_row
-= drop
;
2888 for (i
= 0; i
< graph
->n
; ++i
) {
2889 struct isl_sched_node
*node
= &graph
->node
[i
];
2891 isl_map_free(node
->sched_map
);
2892 node
->sched_map
= NULL
;
2894 node
->sched
= isl_mat_drop_rows(node
->sched
,
2895 graph
->band_start
, drop
);
2904 /* Split the current graph into two parts and compute a schedule for each
2905 * part individually. In particular, one part consists of all SCCs up
2906 * to and including graph->src_scc, while the other part contains the other
2909 * The split is enforced in the schedule by constant rows with two different
2910 * values (0 and 1). These constant rows replace the previously computed rows
2911 * in the current band.
2912 * It would be possible to reuse them as the first rows in the next
2913 * band, but recomputing them may result in better rows as we are looking
2914 * at a smaller part of the dependence graph.
2916 * Since we do not enforce coincidence, we conservatively mark the
2917 * splitting row as not coincident.
2919 * The band_id of the second group is set to n, where n is the number
2920 * of nodes in the first group. This ensures that the band_ids over
2921 * the two groups remain disjoint, even if either or both of the two
2922 * groups contain independent components.
2924 static int compute_split_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2926 int i
, j
, n
, e1
, e2
;
2927 int n_total_row
, orig_total_row
;
2928 int n_band
, orig_band
;
2930 if (graph
->n_total_row
>= graph
->max_row
)
2931 isl_die(ctx
, isl_error_internal
,
2932 "too many schedule rows", return -1);
2934 if (reset_band(graph
) < 0)
2938 for (i
= 0; i
< graph
->n
; ++i
) {
2939 struct isl_sched_node
*node
= &graph
->node
[i
];
2940 int row
= isl_mat_rows(node
->sched
);
2941 int cols
= isl_mat_cols(node
->sched
);
2942 int before
= node
->scc
<= graph
->src_scc
;
2947 isl_map_free(node
->sched_map
);
2948 node
->sched_map
= NULL
;
2949 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2952 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2954 for (j
= 1; j
< cols
; ++j
)
2955 node
->sched
= isl_mat_set_element_si(node
->sched
,
2957 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2958 node
->coincident
[graph
->n_total_row
] = 0;
2962 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2963 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
2965 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
2969 graph
->n_total_row
++;
2972 for (i
= 0; i
< graph
->n
; ++i
) {
2973 struct isl_sched_node
*node
= &graph
->node
[i
];
2974 if (node
->scc
> graph
->src_scc
)
2975 node
->band_id
[graph
->n_band
] = n
;
2978 orig_total_row
= graph
->n_total_row
;
2979 orig_band
= graph
->n_band
;
2980 if (compute_sub_schedule(ctx
, graph
, n
, e1
,
2981 &node_scc_at_most
, &edge_dst_scc_at_most
,
2982 graph
->src_scc
, 0) < 0)
2984 n_total_row
= graph
->n_total_row
;
2985 graph
->n_total_row
= orig_total_row
;
2986 n_band
= graph
->n_band
;
2987 graph
->n_band
= orig_band
;
2988 if (compute_sub_schedule(ctx
, graph
, graph
->n
- n
, e2
,
2989 &node_scc_at_least
, &edge_src_scc_at_least
,
2990 graph
->src_scc
+ 1, 0) < 0)
2992 if (n_total_row
> graph
->n_total_row
)
2993 graph
->n_total_row
= n_total_row
;
2994 if (n_band
> graph
->n_band
)
2995 graph
->n_band
= n_band
;
2997 return pad_schedule(graph
);
3000 /* Compute the next band of the schedule after updating the dependence
3001 * relations based on the the current schedule.
3003 static int compute_next_band(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3005 if (update_edges(ctx
, graph
) < 0)
3009 return compute_schedule(ctx
, graph
);
3012 /* Add constraints to graph->lp that force the dependence "map" (which
3013 * is part of the dependence relation of "edge")
3014 * to be respected and attempt to carry it, where the edge is one from
3015 * a node j to itself. "pos" is the sequence number of the given map.
3016 * That is, add constraints that enforce
3018 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3019 * = c_j_x (y - x) >= e_i
3021 * for each (x,y) in R.
3022 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3023 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3024 * with each coefficient in c_j_x represented as a pair of non-negative
3027 static int add_intra_constraints(struct isl_sched_graph
*graph
,
3028 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3031 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3033 isl_dim_map
*dim_map
;
3034 isl_basic_set
*coef
;
3035 struct isl_sched_node
*node
= edge
->src
;
3037 coef
= intra_coefficients(graph
, node
, map
);
3041 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
3043 total
= isl_basic_set_total_dim(graph
->lp
);
3044 dim_map
= isl_dim_map_alloc(ctx
, total
);
3045 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3046 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
3047 isl_space_dim(dim
, isl_dim_set
), 1,
3049 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
3050 isl_space_dim(dim
, isl_dim_set
), 1,
3052 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3053 coef
->n_eq
, coef
->n_ineq
);
3054 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3056 isl_space_free(dim
);
3061 /* Add constraints to graph->lp that force the dependence "map" (which
3062 * is part of the dependence relation of "edge")
3063 * to be respected and attempt to carry it, where the edge is one from
3064 * node j to node k. "pos" is the sequence number of the given map.
3065 * That is, add constraints that enforce
3067 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3069 * for each (x,y) in R.
3070 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3071 * of valid constraints for R and then plug in
3072 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3073 * with each coefficient (except e_i, c_k_0 and c_j_0)
3074 * represented as a pair of non-negative coefficients.
3076 static int add_inter_constraints(struct isl_sched_graph
*graph
,
3077 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3080 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3082 isl_dim_map
*dim_map
;
3083 isl_basic_set
*coef
;
3084 struct isl_sched_node
*src
= edge
->src
;
3085 struct isl_sched_node
*dst
= edge
->dst
;
3087 coef
= inter_coefficients(graph
, edge
, map
);
3091 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
3093 total
= isl_basic_set_total_dim(graph
->lp
);
3094 dim_map
= isl_dim_map_alloc(ctx
, total
);
3096 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3098 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
3099 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
3100 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
3101 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
3102 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
3104 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
3105 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
3108 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
3109 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
3110 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
3111 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
3112 isl_space_dim(dim
, isl_dim_set
), 1,
3114 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
3115 isl_space_dim(dim
, isl_dim_set
), 1,
3118 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3119 coef
->n_eq
, coef
->n_ineq
);
3120 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3122 isl_space_free(dim
);
3127 /* Add constraints to graph->lp that force all (conditional) validity
3128 * dependences to be respected and attempt to carry them.
3130 static int add_all_constraints(struct isl_sched_graph
*graph
)
3136 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3137 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3139 if (!edge
->validity
&& !edge
->conditional_validity
)
3142 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3143 isl_basic_map
*bmap
;
3146 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3147 map
= isl_map_from_basic_map(bmap
);
3149 if (edge
->src
== edge
->dst
&&
3150 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
3152 if (edge
->src
!= edge
->dst
&&
3153 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
3162 /* Count the number of equality and inequality constraints
3163 * that will be added to the carry_lp problem.
3164 * We count each edge exactly once.
3166 static int count_all_constraints(struct isl_sched_graph
*graph
,
3167 int *n_eq
, int *n_ineq
)
3171 *n_eq
= *n_ineq
= 0;
3172 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3173 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3174 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3175 isl_basic_map
*bmap
;
3178 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3179 map
= isl_map_from_basic_map(bmap
);
3181 if (count_map_constraints(graph
, edge
, map
,
3182 n_eq
, n_ineq
, 1, 0) < 0)
3190 /* Construct an LP problem for finding schedule coefficients
3191 * such that the schedule carries as many dependences as possible.
3192 * In particular, for each dependence i, we bound the dependence distance
3193 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3194 * of all e_i's. Dependence with e_i = 0 in the solution are simply
3195 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3196 * Note that if the dependence relation is a union of basic maps,
3197 * then we have to consider each basic map individually as it may only
3198 * be possible to carry the dependences expressed by some of those
3199 * basic maps and not all off them.
3200 * Below, we consider each of those basic maps as a separate "edge".
3202 * All variables of the LP are non-negative. The actual coefficients
3203 * may be negative, so each coefficient is represented as the difference
3204 * of two non-negative variables. The negative part always appears
3205 * immediately before the positive part.
3206 * Other than that, the variables have the following order
3208 * - sum of (1 - e_i) over all edges
3209 * - sum of positive and negative parts of all c_n coefficients
3210 * (unconstrained when computing non-parametric schedules)
3211 * - sum of positive and negative parts of all c_x coefficients
3216 * - positive and negative parts of c_i_n (if parametric)
3217 * - positive and negative parts of c_i_x
3219 * The constraints are those from the (validity) edges plus three equalities
3220 * to express the sums and n_edge inequalities to express e_i <= 1.
3222 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3232 for (i
= 0; i
< graph
->n_edge
; ++i
)
3233 n_edge
+= graph
->edge
[i
].map
->n
;
3236 for (i
= 0; i
< graph
->n
; ++i
) {
3237 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
3238 node
->start
= total
;
3239 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
3242 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
3244 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
3247 dim
= isl_space_set_alloc(ctx
, 0, total
);
3248 isl_basic_set_free(graph
->lp
);
3251 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
3252 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
3254 k
= isl_basic_set_alloc_equality(graph
->lp
);
3257 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3258 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
3259 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
3260 for (i
= 0; i
< n_edge
; ++i
)
3261 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
3263 k
= isl_basic_set_alloc_equality(graph
->lp
);
3266 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3267 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
3268 for (i
= 0; i
< graph
->n
; ++i
) {
3269 int pos
= 1 + graph
->node
[i
].start
+ 1;
3271 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
3272 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
3275 k
= isl_basic_set_alloc_equality(graph
->lp
);
3278 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3279 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
3280 for (i
= 0; i
< graph
->n
; ++i
) {
3281 struct isl_sched_node
*node
= &graph
->node
[i
];
3282 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
3284 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
3285 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
3288 for (i
= 0; i
< n_edge
; ++i
) {
3289 k
= isl_basic_set_alloc_inequality(graph
->lp
);
3292 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
3293 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
3294 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
3297 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
3299 if (add_all_constraints(graph
) < 0)
3305 /* If the schedule_split_scaled option is set and if the linear
3306 * parts of the scheduling rows for all nodes in the graphs have
3307 * non-trivial common divisor, then split off the constant term
3308 * from the linear part.
3309 * The constant term is then placed in a separate band and
3310 * the linear part is reduced.
3312 static int split_scaled(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3318 if (!ctx
->opt
->schedule_split_scaled
)
3323 if (graph
->n_total_row
>= graph
->max_row
)
3324 isl_die(ctx
, isl_error_internal
,
3325 "too many schedule rows", return -1);
3328 isl_int_init(gcd_i
);
3330 isl_int_set_si(gcd
, 0);
3332 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
3334 for (i
= 0; i
< graph
->n
; ++i
) {
3335 struct isl_sched_node
*node
= &graph
->node
[i
];
3336 int cols
= isl_mat_cols(node
->sched
);
3338 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
3339 isl_int_gcd(gcd
, gcd
, gcd_i
);
3342 isl_int_clear(gcd_i
);
3344 if (isl_int_cmp_si(gcd
, 1) <= 0) {
3351 for (i
= 0; i
< graph
->n
; ++i
) {
3352 struct isl_sched_node
*node
= &graph
->node
[i
];
3354 isl_map_free(node
->sched_map
);
3355 node
->sched_map
= NULL
;
3356 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
3359 isl_int_fdiv_r(node
->sched
->row
[row
+ 1][0],
3360 node
->sched
->row
[row
][0], gcd
);
3361 isl_int_fdiv_q(node
->sched
->row
[row
][0],
3362 node
->sched
->row
[row
][0], gcd
);
3363 isl_int_mul(node
->sched
->row
[row
][0],
3364 node
->sched
->row
[row
][0], gcd
);
3365 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
3368 node
->band
[graph
->n_total_row
] = graph
->n_band
;
3371 graph
->n_total_row
++;
3380 static int compute_component_schedule(isl_ctx
*ctx
,
3381 struct isl_sched_graph
*graph
);
3383 /* Is the schedule row "sol" trivial on node "node"?
3384 * That is, is the solution zero on the dimensions orthogonal to
3385 * the previously found solutions?
3386 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3388 * Each coefficient is represented as the difference between
3389 * two non-negative values in "sol". "sol" has been computed
3390 * in terms of the original iterators (i.e., without use of cmap).
3391 * We construct the schedule row s and write it as a linear
3392 * combination of (linear combinations of) previously computed schedule rows.
3393 * s = Q c or c = U s.
3394 * If the final entries of c are all zero, then the solution is trivial.
3396 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
3406 if (node
->nvar
== node
->rank
)
3409 ctx
= isl_vec_get_ctx(sol
);
3410 node_sol
= isl_vec_alloc(ctx
, node
->nvar
);
3414 pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
3416 for (i
= 0; i
< node
->nvar
; ++i
)
3417 isl_int_sub(node_sol
->el
[i
],
3418 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
3420 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->cinv
), node_sol
);
3425 trivial
= isl_seq_first_non_zero(node_sol
->el
+ node
->rank
,
3426 node
->nvar
- node
->rank
) == -1;
3428 isl_vec_free(node_sol
);
3433 /* Is the schedule row "sol" trivial on any node where it should
3435 * "sol" has been computed in terms of the original iterators
3436 * (i.e., without use of cmap).
3437 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3439 static int is_any_trivial(struct isl_sched_graph
*graph
,
3440 __isl_keep isl_vec
*sol
)
3444 for (i
= 0; i
< graph
->n
; ++i
) {
3445 struct isl_sched_node
*node
= &graph
->node
[i
];
3448 if (!needs_row(graph
, node
))
3450 trivial
= is_trivial(node
, sol
);
3451 if (trivial
< 0 || trivial
)
3458 /* Construct a schedule row for each node such that as many dependences
3459 * as possible are carried and then continue with the next band.
3461 * If the computed schedule row turns out to be trivial on one or
3462 * more nodes where it should not be trivial, then we throw it away
3463 * and try again on each component separately.
3465 * If there is only one component, then we accept the schedule row anyway,
3466 * but we do not consider it as a complete row and therefore do not
3467 * increment graph->n_row. Note that the ranks of the nodes that
3468 * do get a non-trivial schedule part will get updated regardless and
3469 * graph->maxvar is computed based on these ranks. The test for
3470 * whether more schedule rows are required in compute_schedule_wcc
3471 * is therefore not affected.
3473 static int carry_dependences(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3482 for (i
= 0; i
< graph
->n_edge
; ++i
)
3483 n_edge
+= graph
->edge
[i
].map
->n
;
3485 if (setup_carry_lp(ctx
, graph
) < 0)
3488 lp
= isl_basic_set_copy(graph
->lp
);
3489 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
3493 if (sol
->size
== 0) {
3495 isl_die(ctx
, isl_error_internal
,
3496 "error in schedule construction", return -1);
3499 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
3500 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
3502 isl_die(ctx
, isl_error_unknown
,
3503 "unable to carry dependences", return -1);
3506 trivial
= is_any_trivial(graph
, sol
);
3508 sol
= isl_vec_free(sol
);
3509 } else if (trivial
&& graph
->scc
> 1) {
3511 return compute_component_schedule(ctx
, graph
);
3514 if (update_schedule(graph
, sol
, 0, 0) < 0)
3519 if (split_scaled(ctx
, graph
) < 0)
3522 return compute_next_band(ctx
, graph
);
3525 /* Are there any (non-empty) (conditional) validity edges in the graph?
3527 static int has_validity_edges(struct isl_sched_graph
*graph
)
3531 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3534 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
3539 if (graph
->edge
[i
].validity
||
3540 graph
->edge
[i
].conditional_validity
)
3547 /* Should we apply a Feautrier step?
3548 * That is, did the user request the Feautrier algorithm and are
3549 * there any validity dependences (left)?
3551 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3553 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
3556 return has_validity_edges(graph
);
3559 /* Compute a schedule for a connected dependence graph using Feautrier's
3560 * multi-dimensional scheduling algorithm.
3561 * The original algorithm is described in [1].
3562 * The main idea is to minimize the number of scheduling dimensions, by
3563 * trying to satisfy as many dependences as possible per scheduling dimension.
3565 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3566 * Problem, Part II: Multi-Dimensional Time.
3567 * In Intl. Journal of Parallel Programming, 1992.
3569 static int compute_schedule_wcc_feautrier(isl_ctx
*ctx
,
3570 struct isl_sched_graph
*graph
)
3572 return carry_dependences(ctx
, graph
);
3575 /* Turn off the "local" bit on all (condition) edges.
3577 static void clear_local_edges(struct isl_sched_graph
*graph
)
3581 for (i
= 0; i
< graph
->n_edge
; ++i
)
3582 if (graph
->edge
[i
].condition
)
3583 graph
->edge
[i
].local
= 0;
3586 /* Does "graph" have both condition and conditional validity edges?
3588 static int need_condition_check(struct isl_sched_graph
*graph
)
3591 int any_condition
= 0;
3592 int any_conditional_validity
= 0;
3594 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3595 if (graph
->edge
[i
].condition
)
3597 if (graph
->edge
[i
].conditional_validity
)
3598 any_conditional_validity
= 1;
3601 return any_condition
&& any_conditional_validity
;
3604 /* Does "graph" contain any coincidence edge?
3606 static int has_any_coincidence(struct isl_sched_graph
*graph
)
3610 for (i
= 0; i
< graph
->n_edge
; ++i
)
3611 if (graph
->edge
[i
].coincidence
)
3617 /* Extract the final schedule row as a map with the iteration domain
3618 * of "node" as domain.
3620 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
3622 isl_local_space
*ls
;
3626 row
= isl_mat_rows(node
->sched
) - 1;
3627 ls
= isl_local_space_from_space(isl_space_copy(node
->space
));
3628 aff
= extract_schedule_row(ls
, node
, row
);
3629 return isl_map_from_aff(aff
);
3632 /* Is the conditional validity dependence in the edge with index "edge_index"
3633 * violated by the latest (i.e., final) row of the schedule?
3634 * That is, is i scheduled after j
3635 * for any conditional validity dependence i -> j?
3637 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
3639 isl_map
*src_sched
, *dst_sched
, *map
;
3640 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
3643 src_sched
= final_row(edge
->src
);
3644 dst_sched
= final_row(edge
->dst
);
3645 map
= isl_map_copy(edge
->map
);
3646 map
= isl_map_apply_domain(map
, src_sched
);
3647 map
= isl_map_apply_range(map
, dst_sched
);
3648 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
3649 empty
= isl_map_is_empty(map
);
3658 /* Does the domain of "umap" intersect "uset"?
3660 static int domain_intersects(__isl_keep isl_union_map
*umap
,
3661 __isl_keep isl_union_set
*uset
)
3665 umap
= isl_union_map_copy(umap
);
3666 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
3667 empty
= isl_union_map_is_empty(umap
);
3668 isl_union_map_free(umap
);
3670 return empty
< 0 ? -1 : !empty
;
3673 /* Does the range of "umap" intersect "uset"?
3675 static int range_intersects(__isl_keep isl_union_map
*umap
,
3676 __isl_keep isl_union_set
*uset
)
3680 umap
= isl_union_map_copy(umap
);
3681 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
3682 empty
= isl_union_map_is_empty(umap
);
3683 isl_union_map_free(umap
);
3685 return empty
< 0 ? -1 : !empty
;
3688 /* Are the condition dependences of "edge" local with respect to
3689 * the current schedule?
3691 * That is, are domain and range of the condition dependences mapped
3692 * to the same point?
3694 * In other words, is the condition false?
3696 static int is_condition_false(struct isl_sched_edge
*edge
)
3698 isl_union_map
*umap
;
3699 isl_map
*map
, *sched
, *test
;
3702 umap
= isl_union_map_copy(edge
->tagged_condition
);
3703 umap
= isl_union_map_zip(umap
);
3704 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
3705 map
= isl_map_from_union_map(umap
);
3707 sched
= node_extract_schedule(edge
->src
);
3708 map
= isl_map_apply_domain(map
, sched
);
3709 sched
= node_extract_schedule(edge
->dst
);
3710 map
= isl_map_apply_range(map
, sched
);
3712 test
= isl_map_identity(isl_map_get_space(map
));
3713 local
= isl_map_is_subset(map
, test
);
3720 /* Does "graph" have any satisfied condition edges that
3721 * are adjacent to the conditional validity constraint with
3722 * domain "conditional_source" and range "conditional_sink"?
3724 * A satisfied condition is one that is not local.
3725 * If a condition was forced to be local already (i.e., marked as local)
3726 * then there is no need to check if it is in fact local.
3728 * Additionally, mark all adjacent condition edges found as local.
3730 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
3731 __isl_keep isl_union_set
*conditional_source
,
3732 __isl_keep isl_union_set
*conditional_sink
)
3737 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3738 int adjacent
, local
;
3739 isl_union_map
*condition
;
3741 if (!graph
->edge
[i
].condition
)
3743 if (graph
->edge
[i
].local
)
3746 condition
= graph
->edge
[i
].tagged_condition
;
3747 adjacent
= domain_intersects(condition
, conditional_sink
);
3748 if (adjacent
>= 0 && !adjacent
)
3749 adjacent
= range_intersects(condition
,
3750 conditional_source
);
3756 graph
->edge
[i
].local
= 1;
3758 local
= is_condition_false(&graph
->edge
[i
]);
3768 /* Are there any violated conditional validity dependences with
3769 * adjacent condition dependences that are not local with respect
3770 * to the current schedule?
3771 * That is, is the conditional validity constraint violated?
3773 * Additionally, mark all those adjacent condition dependences as local.
3774 * We also mark those adjacent condition dependences that were not marked
3775 * as local before, but just happened to be local already. This ensures
3776 * that they remain local if the schedule is recomputed.
3778 * We first collect domain and range of all violated conditional validity
3779 * dependences and then check if there are any adjacent non-local
3780 * condition dependences.
3782 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
3783 struct isl_sched_graph
*graph
)
3787 isl_union_set
*source
, *sink
;
3789 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3790 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3791 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3792 isl_union_set
*uset
;
3793 isl_union_map
*umap
;
3796 if (!graph
->edge
[i
].conditional_validity
)
3799 violated
= is_violated(graph
, i
);
3807 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
3808 uset
= isl_union_map_domain(umap
);
3809 source
= isl_union_set_union(source
, uset
);
3810 source
= isl_union_set_coalesce(source
);
3812 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
3813 uset
= isl_union_map_range(umap
);
3814 sink
= isl_union_set_union(sink
, uset
);
3815 sink
= isl_union_set_coalesce(sink
);
3819 any
= has_adjacent_true_conditions(graph
, source
, sink
);
3821 isl_union_set_free(source
);
3822 isl_union_set_free(sink
);
3825 isl_union_set_free(source
);
3826 isl_union_set_free(sink
);
3830 /* Compute a schedule for a connected dependence graph.
3831 * We try to find a sequence of as many schedule rows as possible that result
3832 * in non-negative dependence distances (independent of the previous rows
3833 * in the sequence, i.e., such that the sequence is tilable), with as
3834 * many of the initial rows as possible satisfying the coincidence constraints.
3835 * If we can't find any more rows we either
3836 * - split between SCCs and start over (assuming we found an interesting
3837 * pair of SCCs between which to split)
3838 * - continue with the next band (assuming the current band has at least
3840 * - try to carry as many dependences as possible and continue with the next
3843 * If Feautrier's algorithm is selected, we first recursively try to satisfy
3844 * as many validity dependences as possible. When all validity dependences
3845 * are satisfied we extend the schedule to a full-dimensional schedule.
3847 * If we manage to complete the schedule, we finish off by topologically
3848 * sorting the statements based on the remaining dependences.
3850 * If ctx->opt->schedule_outer_coincidence is set, then we force the
3851 * outermost dimension to satisfy the coincidence constraints. If this
3852 * turns out to be impossible, we fall back on the general scheme above
3853 * and try to carry as many dependences as possible.
3855 * If "graph" contains both condition and conditional validity dependences,
3856 * then we need to check that that the conditional schedule constraint
3857 * is satisfied, i.e., there are no violated conditional validity dependences
3858 * that are adjacent to any non-local condition dependences.
3859 * If there are, then we mark all those adjacent condition dependences
3860 * as local and recompute the current band. Those dependences that
3861 * are marked local will then be forced to be local.
3862 * The initial computation is performed with no dependences marked as local.
3863 * If we are lucky, then there will be no violated conditional validity
3864 * dependences adjacent to any non-local condition dependences.
3865 * Otherwise, we mark some additional condition dependences as local and
3866 * recompute. We continue this process until there are no violations left or
3867 * until we are no longer able to compute a schedule.
3868 * Since there are only a finite number of dependences,
3869 * there will only be a finite number of iterations.
3871 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3873 int has_coincidence
;
3874 int use_coincidence
;
3875 int force_coincidence
= 0;
3876 int check_conditional
;
3878 if (detect_sccs(ctx
, graph
) < 0)
3880 if (sort_sccs(graph
) < 0)
3883 if (compute_maxvar(graph
) < 0)
3886 if (need_feautrier_step(ctx
, graph
))
3887 return compute_schedule_wcc_feautrier(ctx
, graph
);
3889 clear_local_edges(graph
);
3890 check_conditional
= need_condition_check(graph
);
3891 has_coincidence
= has_any_coincidence(graph
);
3893 if (ctx
->opt
->schedule_outer_coincidence
)
3894 force_coincidence
= 1;
3896 use_coincidence
= has_coincidence
;
3897 while (graph
->n_row
< graph
->maxvar
) {
3902 graph
->src_scc
= -1;
3903 graph
->dst_scc
= -1;
3905 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
3907 sol
= solve_lp(graph
);
3910 if (sol
->size
== 0) {
3911 int empty
= graph
->n_total_row
== graph
->band_start
;
3914 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
3915 use_coincidence
= 0;
3918 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
3919 return compute_next_band(ctx
, graph
);
3920 if (graph
->src_scc
>= 0)
3921 return compute_split_schedule(ctx
, graph
);
3923 return compute_next_band(ctx
, graph
);
3924 return carry_dependences(ctx
, graph
);
3926 coincident
= !has_coincidence
|| use_coincidence
;
3927 if (update_schedule(graph
, sol
, 1, coincident
) < 0)
3930 if (!check_conditional
)
3932 violated
= has_violated_conditional_constraint(ctx
, graph
);
3937 if (reset_band(graph
) < 0)
3939 use_coincidence
= has_coincidence
;
3942 if (graph
->n_total_row
> graph
->band_start
)
3944 return sort_statements(ctx
, graph
);
3947 /* Add a row to the schedules that separates the SCCs and move
3950 static int split_on_scc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3954 if (graph
->n_total_row
>= graph
->max_row
)
3955 isl_die(ctx
, isl_error_internal
,
3956 "too many schedule rows", return -1);
3958 for (i
= 0; i
< graph
->n
; ++i
) {
3959 struct isl_sched_node
*node
= &graph
->node
[i
];
3960 int row
= isl_mat_rows(node
->sched
);
3962 isl_map_free(node
->sched_map
);
3963 node
->sched_map
= NULL
;
3964 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
3965 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
3969 node
->band
[graph
->n_total_row
] = graph
->n_band
;
3972 graph
->n_total_row
++;
3978 /* Compute a schedule for each component (identified by node->scc)
3979 * of the dependence graph separately and then combine the results.
3980 * Depending on the setting of schedule_fuse, a component may be
3981 * either weakly or strongly connected.
3983 * The band_id is adjusted such that each component has a separate id.
3984 * Note that the band_id may have already been set to a value different
3985 * from zero by compute_split_schedule.
3987 static int compute_component_schedule(isl_ctx
*ctx
,
3988 struct isl_sched_graph
*graph
)
3992 int n_total_row
, orig_total_row
;
3993 int n_band
, orig_band
;
3995 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
||
3996 ctx
->opt
->schedule_separate_components
)
3997 if (split_on_scc(ctx
, graph
) < 0)
4001 orig_total_row
= graph
->n_total_row
;
4003 orig_band
= graph
->n_band
;
4004 for (i
= 0; i
< graph
->n
; ++i
)
4005 graph
->node
[i
].band_id
[graph
->n_band
] += graph
->node
[i
].scc
;
4006 for (wcc
= 0; wcc
< graph
->scc
; ++wcc
) {
4008 for (i
= 0; i
< graph
->n
; ++i
)
4009 if (graph
->node
[i
].scc
== wcc
)
4012 for (i
= 0; i
< graph
->n_edge
; ++i
)
4013 if (graph
->edge
[i
].src
->scc
== wcc
&&
4014 graph
->edge
[i
].dst
->scc
== wcc
)
4017 if (compute_sub_schedule(ctx
, graph
, n
, n_edge
,
4019 &edge_scc_exactly
, wcc
, 1) < 0)
4021 if (graph
->n_total_row
> n_total_row
)
4022 n_total_row
= graph
->n_total_row
;
4023 graph
->n_total_row
= orig_total_row
;
4024 if (graph
->n_band
> n_band
)
4025 n_band
= graph
->n_band
;
4026 graph
->n_band
= orig_band
;
4029 graph
->n_total_row
= n_total_row
;
4030 graph
->n_band
= n_band
;
4032 return pad_schedule(graph
);
4035 /* Compute a schedule for the given dependence graph.
4036 * We first check if the graph is connected (through validity and conditional
4037 * validity dependences) and, if not, compute a schedule
4038 * for each component separately.
4039 * If schedule_fuse is set to minimal fusion, then we check for strongly
4040 * connected components instead and compute a separate schedule for
4041 * each such strongly connected component.
4043 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
4045 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
) {
4046 if (detect_sccs(ctx
, graph
) < 0)
4049 if (detect_wccs(ctx
, graph
) < 0)
4054 return compute_component_schedule(ctx
, graph
);
4056 return compute_schedule_wcc(ctx
, graph
);
4059 /* Compute a schedule on sc->domain that respects the given schedule
4062 * In particular, the schedule respects all the validity dependences.
4063 * If the default isl scheduling algorithm is used, it tries to minimize
4064 * the dependence distances over the proximity dependences.
4065 * If Feautrier's scheduling algorithm is used, the proximity dependence
4066 * distances are only minimized during the extension to a full-dimensional
4069 * If there are any condition and conditional validity dependences,
4070 * then the conditional validity dependences may be violated inside
4071 * a tilable band, provided they have no adjacent non-local
4072 * condition dependences.
4074 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
4075 __isl_take isl_schedule_constraints
*sc
)
4077 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
4078 struct isl_sched_graph graph
= { 0 };
4079 isl_schedule
*sched
;
4080 struct isl_extract_edge_data data
;
4081 enum isl_edge_type i
;
4083 sc
= isl_schedule_constraints_align_params(sc
);
4087 graph
.n
= isl_union_set_n_set(sc
->domain
);
4090 if (graph_alloc(ctx
, &graph
, graph
.n
,
4091 isl_schedule_constraints_n_map(sc
)) < 0)
4093 if (compute_max_row(&graph
, sc
) < 0)
4097 if (isl_union_set_foreach_set(sc
->domain
, &extract_node
, &graph
) < 0)
4099 if (graph_init_table(ctx
, &graph
) < 0)
4101 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
4102 graph
.max_edge
[i
] = isl_union_map_n_map(sc
->constraint
[i
]);
4103 if (graph_init_edge_tables(ctx
, &graph
) < 0)
4106 data
.graph
= &graph
;
4107 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
4109 if (isl_union_map_foreach_map(sc
->constraint
[i
],
4110 &extract_edge
, &data
) < 0)
4114 if (compute_schedule(ctx
, &graph
) < 0)
4118 sched
= extract_schedule(&graph
, isl_union_set_get_space(sc
->domain
));
4120 graph_free(ctx
, &graph
);
4121 isl_schedule_constraints_free(sc
);
4125 graph_free(ctx
, &graph
);
4126 isl_schedule_constraints_free(sc
);
4130 /* Compute a schedule for the given union of domains that respects
4131 * all the validity dependences and minimizes
4132 * the dependence distances over the proximity dependences.
4134 * This function is kept for backward compatibility.
4136 __isl_give isl_schedule
*isl_union_set_compute_schedule(
4137 __isl_take isl_union_set
*domain
,
4138 __isl_take isl_union_map
*validity
,
4139 __isl_take isl_union_map
*proximity
)
4141 isl_schedule_constraints
*sc
;
4143 sc
= isl_schedule_constraints_on_domain(domain
);
4144 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
4145 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
4147 return isl_schedule_constraints_compute_schedule(sc
);