drop deprecated isl_map_n_in
[isl.git] / isl_scheduler.c
blob49fc533a46ee81e74250585e731b8c123b612fb6
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/id.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
30 #include <isl/set.h>
31 #include <isl_union_set_private.h>
32 #include <isl_seq.h>
33 #include <isl_tab.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
36 #include <isl_sort.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
40 #include <isl/ilp.h>
41 #include <isl_val_private.h>
44 * The scheduling algorithm implemented in this file was inspired by
45 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
46 * Parallelization and Locality Optimization in the Polyhedral Model".
48 * For a detailed description of the variant implemented in isl,
49 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
53 /* Internal information about a node that is used during the construction
54 * of a schedule.
55 * space represents the original space in which the domain lives;
56 * that is, the space is not affected by compression
57 * sched is a matrix representation of the schedule being constructed
58 * for this node; if compressed is set, then this schedule is
59 * defined over the compressed domain space
60 * sched_map is an isl_map representation of the same (partial) schedule
61 * sched_map may be NULL; if compressed is set, then this map
62 * is defined over the uncompressed domain space
63 * rank is the number of linearly independent rows in the linear part
64 * of sched
65 * the rows of "vmap" represent a change of basis for the node
66 * variables; the first rank rows span the linear part of
67 * the schedule rows; the remaining rows are linearly independent
68 * the rows of "indep" represent linear combinations of the schedule
69 * coefficients that are non-zero when the schedule coefficients are
70 * linearly independent of previously computed schedule rows.
71 * start is the first variable in the LP problem in the sequences that
72 * represents the schedule coefficients of this node
73 * nvar is the dimension of the (compressed) domain
74 * nparam is the number of parameters or 0 if we are not constructing
75 * a parametric schedule
77 * If compressed is set, then hull represents the constraints
78 * that were used to derive the compression, while compress and
79 * decompress map the original space to the compressed space and
80 * vice versa.
82 * scc is the index of SCC (or WCC) this node belongs to
84 * "cluster" is only used inside extract_clusters and identifies
85 * the cluster of SCCs that the node belongs to.
87 * coincident contains a boolean for each of the rows of the schedule,
88 * indicating whether the corresponding scheduling dimension satisfies
89 * the coincidence constraints in the sense that the corresponding
90 * dependence distances are zero.
92 * If the schedule_treat_coalescing option is set, then
93 * "sizes" contains the sizes of the (compressed) instance set
94 * in each direction. If there is no fixed size in a given direction,
95 * then the corresponding size value is set to infinity.
96 * If the schedule_treat_coalescing option or the schedule_max_coefficient
97 * option is set, then "max" contains the maximal values for
98 * schedule coefficients of the (compressed) variables. If no bound
99 * needs to be imposed on a particular variable, then the corresponding
100 * value is negative.
101 * If not NULL, then "bounds" contains a non-parametric set
102 * in the compressed space that is bounded by the size in each direction.
104 struct isl_sched_node {
105 isl_space *space;
106 int compressed;
107 isl_set *hull;
108 isl_multi_aff *compress;
109 isl_multi_aff *decompress;
110 isl_mat *sched;
111 isl_map *sched_map;
112 int rank;
113 isl_mat *indep;
114 isl_mat *vmap;
115 int start;
116 int nvar;
117 int nparam;
119 int scc;
120 int cluster;
122 int *coincident;
124 isl_multi_val *sizes;
125 isl_basic_set *bounds;
126 isl_vec *max;
129 static int node_has_tuples(const void *entry, const void *val)
131 struct isl_sched_node *node = (struct isl_sched_node *)entry;
132 isl_space *space = (isl_space *) val;
134 return isl_space_has_equal_tuples(node->space, space);
137 static int node_scc_exactly(struct isl_sched_node *node, int scc)
139 return node->scc == scc;
142 static int node_scc_at_most(struct isl_sched_node *node, int scc)
144 return node->scc <= scc;
147 static int node_scc_at_least(struct isl_sched_node *node, int scc)
149 return node->scc >= scc;
152 /* An edge in the dependence graph. An edge may be used to
153 * ensure validity of the generated schedule, to minimize the dependence
154 * distance or both
156 * map is the dependence relation, with i -> j in the map if j depends on i
157 * tagged_condition and tagged_validity contain the union of all tagged
158 * condition or conditional validity dependence relations that
159 * specialize the dependence relation "map"; that is,
160 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
161 * or "tagged_validity", then i -> j is an element of "map".
162 * If these fields are NULL, then they represent the empty relation.
163 * src is the source node
164 * dst is the sink node
166 * types is a bit vector containing the types of this edge.
167 * validity is set if the edge is used to ensure correctness
168 * coincidence is used to enforce zero dependence distances
169 * proximity is set if the edge is used to minimize dependence distances
170 * condition is set if the edge represents a condition
171 * for a conditional validity schedule constraint
172 * local can only be set for condition edges and indicates that
173 * the dependence distance over the edge should be zero
174 * conditional_validity is set if the edge is used to conditionally
175 * ensure correctness
177 * For validity edges, start and end mark the sequence of inequality
178 * constraints in the LP problem that encode the validity constraint
179 * corresponding to this edge.
181 * During clustering, an edge may be marked "no_merge" if it should
182 * not be used to merge clusters.
183 * The weight is also only used during clustering and it is
184 * an indication of how many schedule dimensions on either side
185 * of the schedule constraints can be aligned.
186 * If the weight is negative, then this means that this edge was postponed
187 * by has_bounded_distances or any_no_merge. The original weight can
188 * be retrieved by adding 1 + graph->max_weight, with "graph"
189 * the graph containing this edge.
191 struct isl_sched_edge {
192 isl_map *map;
193 isl_union_map *tagged_condition;
194 isl_union_map *tagged_validity;
196 struct isl_sched_node *src;
197 struct isl_sched_node *dst;
199 unsigned types;
201 int start;
202 int end;
204 int no_merge;
205 int weight;
208 /* Is "edge" marked as being of type "type"?
210 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
212 return ISL_FL_ISSET(edge->types, 1 << type);
215 /* Mark "edge" as being of type "type".
217 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
219 ISL_FL_SET(edge->types, 1 << type);
222 /* No longer mark "edge" as being of type "type"?
224 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
226 ISL_FL_CLR(edge->types, 1 << type);
229 /* Is "edge" marked as a validity edge?
231 static int is_validity(struct isl_sched_edge *edge)
233 return is_type(edge, isl_edge_validity);
236 /* Mark "edge" as a validity edge.
238 static void set_validity(struct isl_sched_edge *edge)
240 set_type(edge, isl_edge_validity);
243 /* Is "edge" marked as a proximity edge?
245 static int is_proximity(struct isl_sched_edge *edge)
247 return is_type(edge, isl_edge_proximity);
250 /* Is "edge" marked as a local edge?
252 static int is_local(struct isl_sched_edge *edge)
254 return is_type(edge, isl_edge_local);
257 /* Mark "edge" as a local edge.
259 static void set_local(struct isl_sched_edge *edge)
261 set_type(edge, isl_edge_local);
264 /* No longer mark "edge" as a local edge.
266 static void clear_local(struct isl_sched_edge *edge)
268 clear_type(edge, isl_edge_local);
271 /* Is "edge" marked as a coincidence edge?
273 static int is_coincidence(struct isl_sched_edge *edge)
275 return is_type(edge, isl_edge_coincidence);
278 /* Is "edge" marked as a condition edge?
280 static int is_condition(struct isl_sched_edge *edge)
282 return is_type(edge, isl_edge_condition);
285 /* Is "edge" marked as a conditional validity edge?
287 static int is_conditional_validity(struct isl_sched_edge *edge)
289 return is_type(edge, isl_edge_conditional_validity);
292 /* Is "edge" of a type that can appear multiple times between
293 * the same pair of nodes?
295 * Condition edges and conditional validity edges may have tagged
296 * dependence relations, in which case an edge is added for each
297 * pair of tags.
299 static int is_multi_edge_type(struct isl_sched_edge *edge)
301 return is_condition(edge) || is_conditional_validity(edge);
304 /* Internal information about the dependence graph used during
305 * the construction of the schedule.
307 * intra_hmap is a cache, mapping dependence relations to their dual,
308 * for dependences from a node to itself, possibly without
309 * coefficients for the parameters
310 * intra_hmap_param is a cache, mapping dependence relations to their dual,
311 * for dependences from a node to itself, including coefficients
312 * for the parameters
313 * inter_hmap is a cache, mapping dependence relations to their dual,
314 * for dependences between distinct nodes
315 * if compression is involved then the key for these maps
316 * is the original, uncompressed dependence relation, while
317 * the value is the dual of the compressed dependence relation.
319 * n is the number of nodes
320 * node is the list of nodes
321 * maxvar is the maximal number of variables over all nodes
322 * max_row is the allocated number of rows in the schedule
323 * n_row is the current (maximal) number of linearly independent
324 * rows in the node schedules
325 * n_total_row is the current number of rows in the node schedules
326 * band_start is the starting row in the node schedules of the current band
327 * root is set to the original dependence graph from which this graph
328 * is derived through splitting. If this graph is not the result of
329 * splitting, then the root field points to the graph itself.
331 * sorted contains a list of node indices sorted according to the
332 * SCC to which a node belongs
334 * n_edge is the number of edges
335 * edge is the list of edges
336 * max_edge contains the maximal number of edges of each type;
337 * in particular, it contains the number of edges in the inital graph.
338 * edge_table contains pointers into the edge array, hashed on the source
339 * and sink spaces; there is one such table for each type;
340 * a given edge may be referenced from more than one table
341 * if the corresponding relation appears in more than one of the
342 * sets of dependences; however, for each type there is only
343 * a single edge between a given pair of source and sink space
344 * in the entire graph
346 * node_table contains pointers into the node array, hashed on the space tuples
348 * region contains a list of variable sequences that should be non-trivial
350 * lp contains the (I)LP problem used to obtain new schedule rows
352 * src_scc and dst_scc are the source and sink SCCs of an edge with
353 * conflicting constraints
355 * scc represents the number of components
356 * weak is set if the components are weakly connected
358 * max_weight is used during clustering and represents the maximal
359 * weight of the relevant proximity edges.
361 struct isl_sched_graph {
362 isl_map_to_basic_set *intra_hmap;
363 isl_map_to_basic_set *intra_hmap_param;
364 isl_map_to_basic_set *inter_hmap;
366 struct isl_sched_node *node;
367 int n;
368 int maxvar;
369 int max_row;
370 int n_row;
372 int *sorted;
374 int n_total_row;
375 int band_start;
377 struct isl_sched_graph *root;
379 struct isl_sched_edge *edge;
380 int n_edge;
381 int max_edge[isl_edge_last + 1];
382 struct isl_hash_table *edge_table[isl_edge_last + 1];
384 struct isl_hash_table *node_table;
385 struct isl_trivial_region *region;
387 isl_basic_set *lp;
389 int src_scc;
390 int dst_scc;
392 int scc;
393 int weak;
395 int max_weight;
398 /* Initialize node_table based on the list of nodes.
400 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
402 int i;
404 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
405 if (!graph->node_table)
406 return -1;
408 for (i = 0; i < graph->n; ++i) {
409 struct isl_hash_table_entry *entry;
410 uint32_t hash;
412 hash = isl_space_get_tuple_hash(graph->node[i].space);
413 entry = isl_hash_table_find(ctx, graph->node_table, hash,
414 &node_has_tuples,
415 graph->node[i].space, 1);
416 if (!entry)
417 return -1;
418 entry->data = &graph->node[i];
421 return 0;
424 /* Return a pointer to the node that lives within the given space,
425 * an invalid node if there is no such node, or NULL in case of error.
427 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
428 struct isl_sched_graph *graph, __isl_keep isl_space *space)
430 struct isl_hash_table_entry *entry;
431 uint32_t hash;
433 if (!space)
434 return NULL;
436 hash = isl_space_get_tuple_hash(space);
437 entry = isl_hash_table_find(ctx, graph->node_table, hash,
438 &node_has_tuples, space, 0);
440 return entry ? entry->data : graph->node + graph->n;
443 /* Is "node" a node in "graph"?
445 static int is_node(struct isl_sched_graph *graph,
446 struct isl_sched_node *node)
448 return node && node >= &graph->node[0] && node < &graph->node[graph->n];
451 static int edge_has_src_and_dst(const void *entry, const void *val)
453 const struct isl_sched_edge *edge = entry;
454 const struct isl_sched_edge *temp = val;
456 return edge->src == temp->src && edge->dst == temp->dst;
459 /* Add the given edge to graph->edge_table[type].
461 static isl_stat graph_edge_table_add(isl_ctx *ctx,
462 struct isl_sched_graph *graph, enum isl_edge_type type,
463 struct isl_sched_edge *edge)
465 struct isl_hash_table_entry *entry;
466 uint32_t hash;
468 hash = isl_hash_init();
469 hash = isl_hash_builtin(hash, edge->src);
470 hash = isl_hash_builtin(hash, edge->dst);
471 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
472 &edge_has_src_and_dst, edge, 1);
473 if (!entry)
474 return isl_stat_error;
475 entry->data = edge;
477 return isl_stat_ok;
480 /* Add "edge" to all relevant edge tables.
481 * That is, for every type of the edge, add it to the corresponding table.
483 static isl_stat graph_edge_tables_add(isl_ctx *ctx,
484 struct isl_sched_graph *graph, struct isl_sched_edge *edge)
486 enum isl_edge_type t;
488 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
489 if (!is_type(edge, t))
490 continue;
491 if (graph_edge_table_add(ctx, graph, t, edge) < 0)
492 return isl_stat_error;
495 return isl_stat_ok;
498 /* Allocate the edge_tables based on the maximal number of edges of
499 * each type.
501 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
503 int i;
505 for (i = 0; i <= isl_edge_last; ++i) {
506 graph->edge_table[i] = isl_hash_table_alloc(ctx,
507 graph->max_edge[i]);
508 if (!graph->edge_table[i])
509 return -1;
512 return 0;
515 /* If graph->edge_table[type] contains an edge from the given source
516 * to the given destination, then return the hash table entry of this edge.
517 * Otherwise, return NULL.
519 static struct isl_hash_table_entry *graph_find_edge_entry(
520 struct isl_sched_graph *graph,
521 enum isl_edge_type type,
522 struct isl_sched_node *src, struct isl_sched_node *dst)
524 isl_ctx *ctx = isl_space_get_ctx(src->space);
525 uint32_t hash;
526 struct isl_sched_edge temp = { .src = src, .dst = dst };
528 hash = isl_hash_init();
529 hash = isl_hash_builtin(hash, temp.src);
530 hash = isl_hash_builtin(hash, temp.dst);
531 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
532 &edge_has_src_and_dst, &temp, 0);
536 /* If graph->edge_table[type] contains an edge from the given source
537 * to the given destination, then return this edge.
538 * Otherwise, return NULL.
540 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
541 enum isl_edge_type type,
542 struct isl_sched_node *src, struct isl_sched_node *dst)
544 struct isl_hash_table_entry *entry;
546 entry = graph_find_edge_entry(graph, type, src, dst);
547 if (!entry)
548 return NULL;
550 return entry->data;
553 /* Check whether the dependence graph has an edge of the given type
554 * between the given two nodes.
556 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
557 enum isl_edge_type type,
558 struct isl_sched_node *src, struct isl_sched_node *dst)
560 struct isl_sched_edge *edge;
561 isl_bool empty;
563 edge = graph_find_edge(graph, type, src, dst);
564 if (!edge)
565 return isl_bool_false;
567 empty = isl_map_plain_is_empty(edge->map);
569 return isl_bool_not(empty);
572 /* Look for any edge with the same src, dst and map fields as "model".
574 * Return the matching edge if one can be found.
575 * Return "model" if no matching edge is found.
576 * Return NULL on error.
578 static struct isl_sched_edge *graph_find_matching_edge(
579 struct isl_sched_graph *graph, struct isl_sched_edge *model)
581 enum isl_edge_type i;
582 struct isl_sched_edge *edge;
584 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
585 int is_equal;
587 edge = graph_find_edge(graph, i, model->src, model->dst);
588 if (!edge)
589 continue;
590 is_equal = isl_map_plain_is_equal(model->map, edge->map);
591 if (is_equal < 0)
592 return NULL;
593 if (is_equal)
594 return edge;
597 return model;
600 /* Remove the given edge from all the edge_tables that refer to it.
602 static void graph_remove_edge(struct isl_sched_graph *graph,
603 struct isl_sched_edge *edge)
605 isl_ctx *ctx = isl_map_get_ctx(edge->map);
606 enum isl_edge_type i;
608 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
609 struct isl_hash_table_entry *entry;
611 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
612 if (!entry)
613 continue;
614 if (entry->data != edge)
615 continue;
616 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
620 /* Check whether the dependence graph has any edge
621 * between the given two nodes.
623 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
624 struct isl_sched_node *src, struct isl_sched_node *dst)
626 enum isl_edge_type i;
627 isl_bool r;
629 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
630 r = graph_has_edge(graph, i, src, dst);
631 if (r < 0 || r)
632 return r;
635 return r;
638 /* Check whether the dependence graph has a validity edge
639 * between the given two nodes.
641 * Conditional validity edges are essentially validity edges that
642 * can be ignored if the corresponding condition edges are iteration private.
643 * Here, we are only checking for the presence of validity
644 * edges, so we need to consider the conditional validity edges too.
645 * In particular, this function is used during the detection
646 * of strongly connected components and we cannot ignore
647 * conditional validity edges during this detection.
649 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
650 struct isl_sched_node *src, struct isl_sched_node *dst)
652 isl_bool r;
654 r = graph_has_edge(graph, isl_edge_validity, src, dst);
655 if (r < 0 || r)
656 return r;
658 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
661 /* Perform all the required memory allocations for a schedule graph "graph"
662 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
663 * fields.
665 static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
666 int n_node, int n_edge)
668 int i;
670 graph->n = n_node;
671 graph->n_edge = n_edge;
672 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
673 graph->sorted = isl_calloc_array(ctx, int, graph->n);
674 graph->region = isl_alloc_array(ctx,
675 struct isl_trivial_region, graph->n);
676 graph->edge = isl_calloc_array(ctx,
677 struct isl_sched_edge, graph->n_edge);
679 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
680 graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
681 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
683 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
684 !graph->sorted)
685 return isl_stat_error;
687 for(i = 0; i < graph->n; ++i)
688 graph->sorted[i] = i;
690 return isl_stat_ok;
693 /* Free the memory associated to node "node" in "graph".
694 * The "coincident" field is shared by nodes in a graph and its subgraph.
695 * It therefore only needs to be freed for the original dependence graph,
696 * i.e., one that is not the result of splitting.
698 static void clear_node(struct isl_sched_graph *graph,
699 struct isl_sched_node *node)
701 isl_space_free(node->space);
702 isl_set_free(node->hull);
703 isl_multi_aff_free(node->compress);
704 isl_multi_aff_free(node->decompress);
705 isl_mat_free(node->sched);
706 isl_map_free(node->sched_map);
707 isl_mat_free(node->indep);
708 isl_mat_free(node->vmap);
709 if (graph->root == graph)
710 free(node->coincident);
711 isl_multi_val_free(node->sizes);
712 isl_basic_set_free(node->bounds);
713 isl_vec_free(node->max);
716 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
718 int i;
720 isl_map_to_basic_set_free(graph->intra_hmap);
721 isl_map_to_basic_set_free(graph->intra_hmap_param);
722 isl_map_to_basic_set_free(graph->inter_hmap);
724 if (graph->node)
725 for (i = 0; i < graph->n; ++i)
726 clear_node(graph, &graph->node[i]);
727 free(graph->node);
728 free(graph->sorted);
729 if (graph->edge)
730 for (i = 0; i < graph->n_edge; ++i) {
731 isl_map_free(graph->edge[i].map);
732 isl_union_map_free(graph->edge[i].tagged_condition);
733 isl_union_map_free(graph->edge[i].tagged_validity);
735 free(graph->edge);
736 free(graph->region);
737 for (i = 0; i <= isl_edge_last; ++i)
738 isl_hash_table_free(ctx, graph->edge_table[i]);
739 isl_hash_table_free(ctx, graph->node_table);
740 isl_basic_set_free(graph->lp);
743 /* For each "set" on which this function is called, increment
744 * graph->n by one and update graph->maxvar.
746 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
748 struct isl_sched_graph *graph = user;
749 int nvar = isl_set_dim(set, isl_dim_set);
751 graph->n++;
752 if (nvar > graph->maxvar)
753 graph->maxvar = nvar;
755 isl_set_free(set);
757 return isl_stat_ok;
760 /* Compute the number of rows that should be allocated for the schedule.
761 * In particular, we need one row for each variable or one row
762 * for each basic map in the dependences.
763 * Note that it is practically impossible to exhaust both
764 * the number of dependences and the number of variables.
766 static isl_stat compute_max_row(struct isl_sched_graph *graph,
767 __isl_keep isl_schedule_constraints *sc)
769 int n_edge;
770 isl_stat r;
771 isl_union_set *domain;
773 graph->n = 0;
774 graph->maxvar = 0;
775 domain = isl_schedule_constraints_get_domain(sc);
776 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
777 isl_union_set_free(domain);
778 if (r < 0)
779 return isl_stat_error;
780 n_edge = isl_schedule_constraints_n_basic_map(sc);
781 if (n_edge < 0)
782 return isl_stat_error;
783 graph->max_row = n_edge + graph->maxvar;
785 return isl_stat_ok;
788 /* Does "bset" have any defining equalities for its set variables?
790 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
792 int i, n;
794 if (!bset)
795 return isl_bool_error;
797 n = isl_basic_set_dim(bset, isl_dim_set);
798 for (i = 0; i < n; ++i) {
799 isl_bool has;
801 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
802 NULL);
803 if (has < 0 || has)
804 return has;
807 return isl_bool_false;
810 /* Set the entries of node->max to the value of the schedule_max_coefficient
811 * option, if set.
813 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
815 int max;
817 max = isl_options_get_schedule_max_coefficient(ctx);
818 if (max == -1)
819 return isl_stat_ok;
821 node->max = isl_vec_alloc(ctx, node->nvar);
822 node->max = isl_vec_set_si(node->max, max);
823 if (!node->max)
824 return isl_stat_error;
826 return isl_stat_ok;
829 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
830 * option (if set) and half of the minimum of the sizes in the other
831 * dimensions. Round up when computing the half such that
832 * if the minimum of the sizes is one, half of the size is taken to be one
833 * rather than zero.
834 * If the global minimum is unbounded (i.e., if both
835 * the schedule_max_coefficient is not set and the sizes in the other
836 * dimensions are unbounded), then store a negative value.
837 * If the schedule coefficient is close to the size of the instance set
838 * in another dimension, then the schedule may represent a loop
839 * coalescing transformation (especially if the coefficient
840 * in that other dimension is one). Forcing the coefficient to be
841 * smaller than or equal to half the minimal size should avoid this
842 * situation.
844 static isl_stat compute_max_coefficient(isl_ctx *ctx,
845 struct isl_sched_node *node)
847 int max;
848 int i, j;
849 isl_vec *v;
851 max = isl_options_get_schedule_max_coefficient(ctx);
852 v = isl_vec_alloc(ctx, node->nvar);
853 if (!v)
854 return isl_stat_error;
856 for (i = 0; i < node->nvar; ++i) {
857 isl_int_set_si(v->el[i], max);
858 isl_int_mul_si(v->el[i], v->el[i], 2);
861 for (i = 0; i < node->nvar; ++i) {
862 isl_val *size;
864 size = isl_multi_val_get_val(node->sizes, i);
865 if (!size)
866 goto error;
867 if (!isl_val_is_int(size)) {
868 isl_val_free(size);
869 continue;
871 for (j = 0; j < node->nvar; ++j) {
872 if (j == i)
873 continue;
874 if (isl_int_is_neg(v->el[j]) ||
875 isl_int_gt(v->el[j], size->n))
876 isl_int_set(v->el[j], size->n);
878 isl_val_free(size);
881 for (i = 0; i < node->nvar; ++i)
882 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
884 node->max = v;
885 return isl_stat_ok;
886 error:
887 isl_vec_free(v);
888 return isl_stat_error;
891 /* Compute and return the size of "set" in dimension "dim".
892 * The size is taken to be the difference in values for that variable
893 * for fixed values of the other variables.
894 * This assumes that "set" is convex.
895 * In particular, the variable is first isolated from the other variables
896 * in the range of a map
898 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
900 * and then duplicated
902 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
904 * The shared variables are then projected out and the maximal value
905 * of i_dim' - i_dim is computed.
907 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
909 isl_map *map;
910 isl_local_space *ls;
911 isl_aff *obj;
912 isl_val *v;
914 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
915 map = isl_map_project_out(map, isl_dim_in, dim, 1);
916 map = isl_map_range_product(map, isl_map_copy(map));
917 map = isl_set_unwrap(isl_map_range(map));
918 set = isl_map_deltas(map);
919 ls = isl_local_space_from_space(isl_set_get_space(set));
920 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
921 v = isl_set_max_val(set, obj);
922 isl_aff_free(obj);
923 isl_set_free(set);
925 return v;
928 /* Compute the size of the instance set "set" of "node", after compression,
929 * as well as bounds on the corresponding coefficients, if needed.
931 * The sizes are needed when the schedule_treat_coalescing option is set.
932 * The bounds are needed when the schedule_treat_coalescing option or
933 * the schedule_max_coefficient option is set.
935 * If the schedule_treat_coalescing option is not set, then at most
936 * the bounds need to be set and this is done in set_max_coefficient.
937 * Otherwise, compress the domain if needed, compute the size
938 * in each direction and store the results in node->size.
939 * If the domain is not convex, then the sizes are computed
940 * on a convex superset in order to avoid picking up sizes
941 * that are valid for the individual disjuncts, but not for
942 * the domain as a whole.
943 * Finally, set the bounds on the coefficients based on the sizes
944 * and the schedule_max_coefficient option in compute_max_coefficient.
946 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
947 __isl_take isl_set *set)
949 int j, n;
950 isl_multi_val *mv;
952 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
953 isl_set_free(set);
954 return set_max_coefficient(ctx, node);
957 if (node->compressed)
958 set = isl_set_preimage_multi_aff(set,
959 isl_multi_aff_copy(node->decompress));
960 set = isl_set_from_basic_set(isl_set_simple_hull(set));
961 mv = isl_multi_val_zero(isl_set_get_space(set));
962 n = isl_set_dim(set, isl_dim_set);
963 for (j = 0; j < n; ++j) {
964 isl_val *v;
966 v = compute_size(isl_set_copy(set), j);
967 mv = isl_multi_val_set_val(mv, j, v);
969 node->sizes = mv;
970 isl_set_free(set);
971 if (!node->sizes)
972 return isl_stat_error;
973 return compute_max_coefficient(ctx, node);
976 /* Add a new node to the graph representing the given instance set.
977 * "nvar" is the (possibly compressed) number of variables and
978 * may be smaller than then number of set variables in "set"
979 * if "compressed" is set.
980 * If "compressed" is set, then "hull" represents the constraints
981 * that were used to derive the compression, while "compress" and
982 * "decompress" map the original space to the compressed space and
983 * vice versa.
984 * If "compressed" is not set, then "hull", "compress" and "decompress"
985 * should be NULL.
987 * Compute the size of the instance set and bounds on the coefficients,
988 * if needed.
990 static isl_stat add_node(struct isl_sched_graph *graph,
991 __isl_take isl_set *set, int nvar, int compressed,
992 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
993 __isl_take isl_multi_aff *decompress)
995 int nparam;
996 isl_ctx *ctx;
997 isl_mat *sched;
998 isl_space *space;
999 int *coincident;
1000 struct isl_sched_node *node;
1002 if (!set)
1003 goto error;
1005 ctx = isl_set_get_ctx(set);
1006 nparam = isl_set_dim(set, isl_dim_param);
1007 if (!ctx->opt->schedule_parametric)
1008 nparam = 0;
1009 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
1010 node = &graph->node[graph->n];
1011 graph->n++;
1012 space = isl_set_get_space(set);
1013 node->space = space;
1014 node->nvar = nvar;
1015 node->nparam = nparam;
1016 node->sched = sched;
1017 node->sched_map = NULL;
1018 coincident = isl_calloc_array(ctx, int, graph->max_row);
1019 node->coincident = coincident;
1020 node->compressed = compressed;
1021 node->hull = hull;
1022 node->compress = compress;
1023 node->decompress = decompress;
1024 if (compute_sizes_and_max(ctx, node, set) < 0)
1025 return isl_stat_error;
1027 if (!space || !sched || (graph->max_row && !coincident))
1028 return isl_stat_error;
1029 if (compressed && (!hull || !compress || !decompress))
1030 return isl_stat_error;
1032 return isl_stat_ok;
1033 error:
1034 isl_set_free(set);
1035 isl_set_free(hull);
1036 isl_multi_aff_free(compress);
1037 isl_multi_aff_free(decompress);
1038 return isl_stat_error;
1041 /* Construct an identifier for node "node", which will represent "set".
1042 * The name of the identifier is either "compressed" or
1043 * "compressed_<name>", with <name> the name of the space of "set".
1044 * The user pointer of the identifier points to "node".
1046 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
1047 struct isl_sched_node *node)
1049 isl_bool has_name;
1050 isl_ctx *ctx;
1051 isl_id *id;
1052 isl_printer *p;
1053 const char *name;
1054 char *id_name;
1056 has_name = isl_set_has_tuple_name(set);
1057 if (has_name < 0)
1058 return NULL;
1060 ctx = isl_set_get_ctx(set);
1061 if (!has_name)
1062 return isl_id_alloc(ctx, "compressed", node);
1064 p = isl_printer_to_str(ctx);
1065 name = isl_set_get_tuple_name(set);
1066 p = isl_printer_print_str(p, "compressed_");
1067 p = isl_printer_print_str(p, name);
1068 id_name = isl_printer_get_str(p);
1069 isl_printer_free(p);
1071 id = isl_id_alloc(ctx, id_name, node);
1072 free(id_name);
1074 return id;
1077 /* Add a new node to the graph representing the given set.
1079 * If any of the set variables is defined by an equality, then
1080 * we perform variable compression such that we can perform
1081 * the scheduling on the compressed domain.
1082 * In this case, an identifier is used that references the new node
1083 * such that each compressed space is unique and
1084 * such that the node can be recovered from the compressed space.
1086 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1088 int nvar;
1089 isl_bool has_equality;
1090 isl_id *id;
1091 isl_basic_set *hull;
1092 isl_set *hull_set;
1093 isl_morph *morph;
1094 isl_multi_aff *compress, *decompress;
1095 struct isl_sched_graph *graph = user;
1097 hull = isl_set_affine_hull(isl_set_copy(set));
1098 hull = isl_basic_set_remove_divs(hull);
1099 nvar = isl_set_dim(set, isl_dim_set);
1100 has_equality = has_any_defining_equality(hull);
1102 if (has_equality < 0)
1103 goto error;
1104 if (!has_equality) {
1105 isl_basic_set_free(hull);
1106 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1109 id = construct_compressed_id(set, &graph->node[graph->n]);
1110 morph = isl_basic_set_variable_compression_with_id(hull,
1111 isl_dim_set, id);
1112 isl_id_free(id);
1113 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1114 compress = isl_morph_get_var_multi_aff(morph);
1115 morph = isl_morph_inverse(morph);
1116 decompress = isl_morph_get_var_multi_aff(morph);
1117 isl_morph_free(morph);
1119 hull_set = isl_set_from_basic_set(hull);
1120 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1121 error:
1122 isl_basic_set_free(hull);
1123 isl_set_free(set);
1124 return isl_stat_error;
1127 struct isl_extract_edge_data {
1128 enum isl_edge_type type;
1129 struct isl_sched_graph *graph;
1132 /* Merge edge2 into edge1, freeing the contents of edge2.
1133 * Return 0 on success and -1 on failure.
1135 * edge1 and edge2 are assumed to have the same value for the map field.
1137 static int merge_edge(struct isl_sched_edge *edge1,
1138 struct isl_sched_edge *edge2)
1140 edge1->types |= edge2->types;
1141 isl_map_free(edge2->map);
1143 if (is_condition(edge2)) {
1144 if (!edge1->tagged_condition)
1145 edge1->tagged_condition = edge2->tagged_condition;
1146 else
1147 edge1->tagged_condition =
1148 isl_union_map_union(edge1->tagged_condition,
1149 edge2->tagged_condition);
1152 if (is_conditional_validity(edge2)) {
1153 if (!edge1->tagged_validity)
1154 edge1->tagged_validity = edge2->tagged_validity;
1155 else
1156 edge1->tagged_validity =
1157 isl_union_map_union(edge1->tagged_validity,
1158 edge2->tagged_validity);
1161 if (is_condition(edge2) && !edge1->tagged_condition)
1162 return -1;
1163 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1164 return -1;
1166 return 0;
1169 /* Insert dummy tags in domain and range of "map".
1171 * In particular, if "map" is of the form
1173 * A -> B
1175 * then return
1177 * [A -> dummy_tag] -> [B -> dummy_tag]
1179 * where the dummy_tags are identical and equal to any dummy tags
1180 * introduced by any other call to this function.
1182 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1184 static char dummy;
1185 isl_ctx *ctx;
1186 isl_id *id;
1187 isl_space *space;
1188 isl_set *domain, *range;
1190 ctx = isl_map_get_ctx(map);
1192 id = isl_id_alloc(ctx, NULL, &dummy);
1193 space = isl_space_params(isl_map_get_space(map));
1194 space = isl_space_set_from_params(space);
1195 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1196 space = isl_space_map_from_set(space);
1198 domain = isl_map_wrap(map);
1199 range = isl_map_wrap(isl_map_universe(space));
1200 map = isl_map_from_domain_and_range(domain, range);
1201 map = isl_map_zip(map);
1203 return map;
1206 /* Given that at least one of "src" or "dst" is compressed, return
1207 * a map between the spaces of these nodes restricted to the affine
1208 * hull that was used in the compression.
1210 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1211 struct isl_sched_node *dst)
1213 isl_set *dom, *ran;
1215 if (src->compressed)
1216 dom = isl_set_copy(src->hull);
1217 else
1218 dom = isl_set_universe(isl_space_copy(src->space));
1219 if (dst->compressed)
1220 ran = isl_set_copy(dst->hull);
1221 else
1222 ran = isl_set_universe(isl_space_copy(dst->space));
1224 return isl_map_from_domain_and_range(dom, ran);
1227 /* Intersect the domains of the nested relations in domain and range
1228 * of "tagged" with "map".
1230 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1231 __isl_keep isl_map *map)
1233 isl_set *set;
1235 tagged = isl_map_zip(tagged);
1236 set = isl_map_wrap(isl_map_copy(map));
1237 tagged = isl_map_intersect_domain(tagged, set);
1238 tagged = isl_map_zip(tagged);
1239 return tagged;
1242 /* Return a pointer to the node that lives in the domain space of "map",
1243 * an invalid node if there is no such node, or NULL in case of error.
1245 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1246 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1248 struct isl_sched_node *node;
1249 isl_space *space;
1251 space = isl_space_domain(isl_map_get_space(map));
1252 node = graph_find_node(ctx, graph, space);
1253 isl_space_free(space);
1255 return node;
1258 /* Return a pointer to the node that lives in the range space of "map",
1259 * an invalid node if there is no such node, or NULL in case of error.
1261 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1262 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1264 struct isl_sched_node *node;
1265 isl_space *space;
1267 space = isl_space_range(isl_map_get_space(map));
1268 node = graph_find_node(ctx, graph, space);
1269 isl_space_free(space);
1271 return node;
1274 /* Refrain from adding a new edge based on "map".
1275 * Instead, just free the map.
1276 * "tagged" is either a copy of "map" with additional tags or NULL.
1278 static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
1280 isl_map_free(map);
1281 isl_map_free(tagged);
1283 return isl_stat_ok;
1286 /* Add a new edge to the graph based on the given map
1287 * and add it to data->graph->edge_table[data->type].
1288 * If a dependence relation of a given type happens to be identical
1289 * to one of the dependence relations of a type that was added before,
1290 * then we don't create a new edge, but instead mark the original edge
1291 * as also representing a dependence of the current type.
1293 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1294 * may be specified as "tagged" dependence relations. That is, "map"
1295 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1296 * the dependence on iterations and a and b are tags.
1297 * edge->map is set to the relation containing the elements i -> j,
1298 * while edge->tagged_condition and edge->tagged_validity contain
1299 * the union of all the "map" relations
1300 * for which extract_edge is called that result in the same edge->map.
1302 * If the source or the destination node is compressed, then
1303 * intersect both "map" and "tagged" with the constraints that
1304 * were used to construct the compression.
1305 * This ensures that there are no schedule constraints defined
1306 * outside of these domains, while the scheduler no longer has
1307 * any control over those outside parts.
1309 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1311 isl_bool empty;
1312 isl_ctx *ctx = isl_map_get_ctx(map);
1313 struct isl_extract_edge_data *data = user;
1314 struct isl_sched_graph *graph = data->graph;
1315 struct isl_sched_node *src, *dst;
1316 struct isl_sched_edge *edge;
1317 isl_map *tagged = NULL;
1319 if (data->type == isl_edge_condition ||
1320 data->type == isl_edge_conditional_validity) {
1321 if (isl_map_can_zip(map)) {
1322 tagged = isl_map_copy(map);
1323 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1324 } else {
1325 tagged = insert_dummy_tags(isl_map_copy(map));
1329 src = find_domain_node(ctx, graph, map);
1330 dst = find_range_node(ctx, graph, map);
1332 if (!src || !dst)
1333 goto error;
1334 if (!is_node(graph, src) || !is_node(graph, dst))
1335 return skip_edge(map, tagged);
1337 if (src->compressed || dst->compressed) {
1338 isl_map *hull;
1339 hull = extract_hull(src, dst);
1340 if (tagged)
1341 tagged = map_intersect_domains(tagged, hull);
1342 map = isl_map_intersect(map, hull);
1345 empty = isl_map_plain_is_empty(map);
1346 if (empty < 0)
1347 goto error;
1348 if (empty)
1349 return skip_edge(map, tagged);
1351 graph->edge[graph->n_edge].src = src;
1352 graph->edge[graph->n_edge].dst = dst;
1353 graph->edge[graph->n_edge].map = map;
1354 graph->edge[graph->n_edge].types = 0;
1355 graph->edge[graph->n_edge].tagged_condition = NULL;
1356 graph->edge[graph->n_edge].tagged_validity = NULL;
1357 set_type(&graph->edge[graph->n_edge], data->type);
1358 if (data->type == isl_edge_condition)
1359 graph->edge[graph->n_edge].tagged_condition =
1360 isl_union_map_from_map(tagged);
1361 if (data->type == isl_edge_conditional_validity)
1362 graph->edge[graph->n_edge].tagged_validity =
1363 isl_union_map_from_map(tagged);
1365 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1366 if (!edge) {
1367 graph->n_edge++;
1368 return isl_stat_error;
1370 if (edge == &graph->edge[graph->n_edge])
1371 return graph_edge_table_add(ctx, graph, data->type,
1372 &graph->edge[graph->n_edge++]);
1374 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1375 return isl_stat_error;
1377 return graph_edge_table_add(ctx, graph, data->type, edge);
1378 error:
1379 isl_map_free(map);
1380 isl_map_free(tagged);
1381 return isl_stat_error;
1384 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1386 * The context is included in the domain before the nodes of
1387 * the graphs are extracted in order to be able to exploit
1388 * any possible additional equalities.
1389 * Note that this intersection is only performed locally here.
1391 static isl_stat graph_init(struct isl_sched_graph *graph,
1392 __isl_keep isl_schedule_constraints *sc)
1394 isl_ctx *ctx;
1395 isl_union_set *domain;
1396 isl_union_map *c;
1397 struct isl_extract_edge_data data;
1398 enum isl_edge_type i;
1399 isl_stat r;
1401 if (!sc)
1402 return isl_stat_error;
1404 ctx = isl_schedule_constraints_get_ctx(sc);
1406 domain = isl_schedule_constraints_get_domain(sc);
1407 graph->n = isl_union_set_n_set(domain);
1408 isl_union_set_free(domain);
1410 if (graph_alloc(ctx, graph, graph->n,
1411 isl_schedule_constraints_n_map(sc)) < 0)
1412 return isl_stat_error;
1414 if (compute_max_row(graph, sc) < 0)
1415 return isl_stat_error;
1416 graph->root = graph;
1417 graph->n = 0;
1418 domain = isl_schedule_constraints_get_domain(sc);
1419 domain = isl_union_set_intersect_params(domain,
1420 isl_schedule_constraints_get_context(sc));
1421 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1422 isl_union_set_free(domain);
1423 if (r < 0)
1424 return isl_stat_error;
1425 if (graph_init_table(ctx, graph) < 0)
1426 return isl_stat_error;
1427 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1428 c = isl_schedule_constraints_get(sc, i);
1429 graph->max_edge[i] = isl_union_map_n_map(c);
1430 isl_union_map_free(c);
1431 if (!c)
1432 return isl_stat_error;
1434 if (graph_init_edge_tables(ctx, graph) < 0)
1435 return isl_stat_error;
1436 graph->n_edge = 0;
1437 data.graph = graph;
1438 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1439 isl_stat r;
1441 data.type = i;
1442 c = isl_schedule_constraints_get(sc, i);
1443 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1444 isl_union_map_free(c);
1445 if (r < 0)
1446 return isl_stat_error;
1449 return isl_stat_ok;
1452 /* Check whether there is any dependence from node[j] to node[i]
1453 * or from node[i] to node[j].
1455 static isl_bool node_follows_weak(int i, int j, void *user)
1457 isl_bool f;
1458 struct isl_sched_graph *graph = user;
1460 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1461 if (f < 0 || f)
1462 return f;
1463 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1466 /* Check whether there is a (conditional) validity dependence from node[j]
1467 * to node[i], forcing node[i] to follow node[j].
1469 static isl_bool node_follows_strong(int i, int j, void *user)
1471 struct isl_sched_graph *graph = user;
1473 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1476 /* Use Tarjan's algorithm for computing the strongly connected components
1477 * in the dependence graph only considering those edges defined by "follows".
1479 static isl_stat detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1480 isl_bool (*follows)(int i, int j, void *user))
1482 int i, n;
1483 struct isl_tarjan_graph *g = NULL;
1485 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1486 if (!g)
1487 return isl_stat_error;
1489 graph->scc = 0;
1490 i = 0;
1491 n = graph->n;
1492 while (n) {
1493 while (g->order[i] != -1) {
1494 graph->node[g->order[i]].scc = graph->scc;
1495 --n;
1496 ++i;
1498 ++i;
1499 graph->scc++;
1502 isl_tarjan_graph_free(g);
1504 return isl_stat_ok;
1507 /* Apply Tarjan's algorithm to detect the strongly connected components
1508 * in the dependence graph.
1509 * Only consider the (conditional) validity dependences and clear "weak".
1511 static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1513 graph->weak = 0;
1514 return detect_ccs(ctx, graph, &node_follows_strong);
1517 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1518 * in the dependence graph.
1519 * Consider all dependences and set "weak".
1521 static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1523 graph->weak = 1;
1524 return detect_ccs(ctx, graph, &node_follows_weak);
1527 static int cmp_scc(const void *a, const void *b, void *data)
1529 struct isl_sched_graph *graph = data;
1530 const int *i1 = a;
1531 const int *i2 = b;
1533 return graph->node[*i1].scc - graph->node[*i2].scc;
1536 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1538 static int sort_sccs(struct isl_sched_graph *graph)
1540 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1543 /* Return a non-parametric set in the compressed space of "node" that is
1544 * bounded by the size in each direction
1546 * { [x] : -S_i <= x_i <= S_i }
1548 * If S_i is infinity in direction i, then there are no constraints
1549 * in that direction.
1551 * Cache the result in node->bounds.
1553 static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
1555 isl_space *space;
1556 isl_basic_set *bounds;
1557 int i;
1559 if (node->bounds)
1560 return isl_basic_set_copy(node->bounds);
1562 if (node->compressed)
1563 space = isl_multi_aff_get_domain_space(node->decompress);
1564 else
1565 space = isl_space_copy(node->space);
1566 space = isl_space_drop_all_params(space);
1567 bounds = isl_basic_set_universe(space);
1569 for (i = 0; i < node->nvar; ++i) {
1570 isl_val *size;
1572 size = isl_multi_val_get_val(node->sizes, i);
1573 if (!size)
1574 return isl_basic_set_free(bounds);
1575 if (!isl_val_is_int(size)) {
1576 isl_val_free(size);
1577 continue;
1579 bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
1580 isl_val_copy(size));
1581 bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
1582 isl_val_neg(size));
1585 node->bounds = isl_basic_set_copy(bounds);
1586 return bounds;
1589 /* Drop some constraints from "delta" that could be exploited
1590 * to construct loop coalescing schedules.
1591 * In particular, drop those constraint that bound the difference
1592 * to the size of the domain.
1593 * First project out the parameters to improve the effectiveness.
1595 static __isl_give isl_set *drop_coalescing_constraints(
1596 __isl_take isl_set *delta, struct isl_sched_node *node)
1598 unsigned nparam;
1599 isl_basic_set *bounds;
1601 bounds = get_size_bounds(node);
1603 nparam = isl_set_dim(delta, isl_dim_param);
1604 delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
1605 delta = isl_set_remove_divs(delta);
1606 delta = isl_set_plain_gist_basic_set(delta, bounds);
1607 return delta;
1610 /* Given a dependence relation R from "node" to itself,
1611 * construct the set of coefficients of valid constraints for elements
1612 * in that dependence relation.
1613 * In particular, the result contains tuples of coefficients
1614 * c_0, c_n, c_x such that
1616 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1618 * or, equivalently,
1620 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1622 * We choose here to compute the dual of delta R.
1623 * Alternatively, we could have computed the dual of R, resulting
1624 * in a set of tuples c_0, c_n, c_x, c_y, and then
1625 * plugged in (c_0, c_n, c_x, -c_x).
1627 * If "need_param" is set, then the resulting coefficients effectively
1628 * include coefficients for the parameters c_n. Otherwise, they may
1629 * have been projected out already.
1630 * Since the constraints may be different for these two cases,
1631 * they are stored in separate caches.
1632 * In particular, if no parameter coefficients are required and
1633 * the schedule_treat_coalescing option is set, then the parameters
1634 * are projected out and some constraints that could be exploited
1635 * to construct coalescing schedules are removed before the dual
1636 * is computed.
1638 * If "node" has been compressed, then the dependence relation
1639 * is also compressed before the set of coefficients is computed.
1641 static __isl_give isl_basic_set *intra_coefficients(
1642 struct isl_sched_graph *graph, struct isl_sched_node *node,
1643 __isl_take isl_map *map, int need_param)
1645 isl_ctx *ctx;
1646 isl_set *delta;
1647 isl_map *key;
1648 isl_basic_set *coef;
1649 isl_maybe_isl_basic_set m;
1650 isl_map_to_basic_set **hmap = &graph->intra_hmap;
1651 int treat;
1653 if (!map)
1654 return NULL;
1656 ctx = isl_map_get_ctx(map);
1657 treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
1658 if (!treat)
1659 hmap = &graph->intra_hmap_param;
1660 m = isl_map_to_basic_set_try_get(*hmap, map);
1661 if (m.valid < 0 || m.valid) {
1662 isl_map_free(map);
1663 return m.value;
1666 key = isl_map_copy(map);
1667 if (node->compressed) {
1668 map = isl_map_preimage_domain_multi_aff(map,
1669 isl_multi_aff_copy(node->decompress));
1670 map = isl_map_preimage_range_multi_aff(map,
1671 isl_multi_aff_copy(node->decompress));
1673 delta = isl_map_deltas(map);
1674 if (treat)
1675 delta = drop_coalescing_constraints(delta, node);
1676 delta = isl_set_remove_divs(delta);
1677 coef = isl_set_coefficients(delta);
1678 *hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
1680 return coef;
1683 /* Given a dependence relation R, construct the set of coefficients
1684 * of valid constraints for elements in that dependence relation.
1685 * In particular, the result contains tuples of coefficients
1686 * c_0, c_n, c_x, c_y such that
1688 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1690 * If the source or destination nodes of "edge" have been compressed,
1691 * then the dependence relation is also compressed before
1692 * the set of coefficients is computed.
1694 static __isl_give isl_basic_set *inter_coefficients(
1695 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1696 __isl_take isl_map *map)
1698 isl_set *set;
1699 isl_map *key;
1700 isl_basic_set *coef;
1701 isl_maybe_isl_basic_set m;
1703 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1704 if (m.valid < 0 || m.valid) {
1705 isl_map_free(map);
1706 return m.value;
1709 key = isl_map_copy(map);
1710 if (edge->src->compressed)
1711 map = isl_map_preimage_domain_multi_aff(map,
1712 isl_multi_aff_copy(edge->src->decompress));
1713 if (edge->dst->compressed)
1714 map = isl_map_preimage_range_multi_aff(map,
1715 isl_multi_aff_copy(edge->dst->decompress));
1716 set = isl_map_wrap(isl_map_remove_divs(map));
1717 coef = isl_set_coefficients(set);
1718 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1719 isl_basic_set_copy(coef));
1721 return coef;
1724 /* Return the position of the coefficients of the variables in
1725 * the coefficients constraints "coef".
1727 * The space of "coef" is of the form
1729 * { coefficients[[cst, params] -> S] }
1731 * Return the position of S.
1733 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1735 int offset;
1736 isl_space *space;
1738 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1739 offset = isl_space_dim(space, isl_dim_in);
1740 isl_space_free(space);
1742 return offset;
1745 /* Return the offset of the coefficient of the constant term of "node"
1746 * within the (I)LP.
1748 * Within each node, the coefficients have the following order:
1749 * - positive and negative parts of c_i_x
1750 * - c_i_n (if parametric)
1751 * - c_i_0
1753 static int node_cst_coef_offset(struct isl_sched_node *node)
1755 return node->start + 2 * node->nvar + node->nparam;
1758 /* Return the offset of the coefficients of the parameters of "node"
1759 * within the (I)LP.
1761 * Within each node, the coefficients have the following order:
1762 * - positive and negative parts of c_i_x
1763 * - c_i_n (if parametric)
1764 * - c_i_0
1766 static int node_par_coef_offset(struct isl_sched_node *node)
1768 return node->start + 2 * node->nvar;
1771 /* Return the offset of the coefficients of the variables of "node"
1772 * within the (I)LP.
1774 * Within each node, the coefficients have the following order:
1775 * - positive and negative parts of c_i_x
1776 * - c_i_n (if parametric)
1777 * - c_i_0
1779 static int node_var_coef_offset(struct isl_sched_node *node)
1781 return node->start;
1784 /* Return the position of the pair of variables encoding
1785 * coefficient "i" of "node".
1787 * The order of these variable pairs is the opposite of
1788 * that of the coefficients, with 2 variables per coefficient.
1790 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1792 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1795 /* Construct an isl_dim_map for mapping constraints on coefficients
1796 * for "node" to the corresponding positions in graph->lp.
1797 * "offset" is the offset of the coefficients for the variables
1798 * in the input constraints.
1799 * "s" is the sign of the mapping.
1801 * The input constraints are given in terms of the coefficients
1802 * (c_0, c_x) or (c_0, c_n, c_x).
1803 * The mapping produced by this function essentially plugs in
1804 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1805 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1806 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1807 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1808 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1809 * Furthermore, the order of these pairs is the opposite of that
1810 * of the corresponding coefficients.
1812 * The caller can extend the mapping to also map the other coefficients
1813 * (and therefore not plug in 0).
1815 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1816 struct isl_sched_graph *graph, struct isl_sched_node *node,
1817 int offset, int s)
1819 int pos;
1820 unsigned total;
1821 isl_dim_map *dim_map;
1823 if (!node || !graph->lp)
1824 return NULL;
1826 total = isl_basic_set_total_dim(graph->lp);
1827 pos = node_var_coef_pos(node, 0);
1828 dim_map = isl_dim_map_alloc(ctx, total);
1829 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1830 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1832 return dim_map;
1835 /* Construct an isl_dim_map for mapping constraints on coefficients
1836 * for "src" (node i) and "dst" (node j) to the corresponding positions
1837 * in graph->lp.
1838 * "offset" is the offset of the coefficients for the variables of "src"
1839 * in the input constraints.
1840 * "s" is the sign of the mapping.
1842 * The input constraints are given in terms of the coefficients
1843 * (c_0, c_n, c_x, c_y).
1844 * The mapping produced by this function essentially plugs in
1845 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1846 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1847 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1848 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1849 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1850 * Furthermore, the order of these pairs is the opposite of that
1851 * of the corresponding coefficients.
1853 * The caller can further extend the mapping.
1855 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1856 struct isl_sched_graph *graph, struct isl_sched_node *src,
1857 struct isl_sched_node *dst, int offset, int s)
1859 int pos;
1860 unsigned total;
1861 isl_dim_map *dim_map;
1863 if (!src || !dst || !graph->lp)
1864 return NULL;
1866 total = isl_basic_set_total_dim(graph->lp);
1867 dim_map = isl_dim_map_alloc(ctx, total);
1869 pos = node_cst_coef_offset(dst);
1870 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1871 pos = node_par_coef_offset(dst);
1872 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1873 pos = node_var_coef_pos(dst, 0);
1874 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1875 dst->nvar, -s);
1876 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1877 dst->nvar, s);
1879 pos = node_cst_coef_offset(src);
1880 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1881 pos = node_par_coef_offset(src);
1882 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1883 pos = node_var_coef_pos(src, 0);
1884 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1885 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1887 return dim_map;
1890 /* Add the constraints from "src" to "dst" using "dim_map",
1891 * after making sure there is enough room in "dst" for the extra constraints.
1893 static __isl_give isl_basic_set *add_constraints_dim_map(
1894 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1895 __isl_take isl_dim_map *dim_map)
1897 int n_eq, n_ineq;
1899 n_eq = isl_basic_set_n_equality(src);
1900 n_ineq = isl_basic_set_n_inequality(src);
1901 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1902 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1903 return dst;
1906 /* Add constraints to graph->lp that force validity for the given
1907 * dependence from a node i to itself.
1908 * That is, add constraints that enforce
1910 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1911 * = c_i_x (y - x) >= 0
1913 * for each (x,y) in R.
1914 * We obtain general constraints on coefficients (c_0, c_x)
1915 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1916 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1917 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1918 * Note that the result of intra_coefficients may also contain
1919 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1921 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1922 struct isl_sched_edge *edge)
1924 int offset;
1925 isl_map *map = isl_map_copy(edge->map);
1926 isl_ctx *ctx = isl_map_get_ctx(map);
1927 isl_dim_map *dim_map;
1928 isl_basic_set *coef;
1929 struct isl_sched_node *node = edge->src;
1931 coef = intra_coefficients(graph, node, map, 0);
1933 offset = coef_var_offset(coef);
1935 if (!coef)
1936 return isl_stat_error;
1938 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1939 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1941 return isl_stat_ok;
1944 /* Add constraints to graph->lp that force validity for the given
1945 * dependence from node i to node j.
1946 * That is, add constraints that enforce
1948 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1950 * for each (x,y) in R.
1951 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1952 * of valid constraints for R and then plug in
1953 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1954 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1955 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1957 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1958 struct isl_sched_edge *edge)
1960 int offset;
1961 isl_map *map;
1962 isl_ctx *ctx;
1963 isl_dim_map *dim_map;
1964 isl_basic_set *coef;
1965 struct isl_sched_node *src = edge->src;
1966 struct isl_sched_node *dst = edge->dst;
1968 if (!graph->lp)
1969 return isl_stat_error;
1971 map = isl_map_copy(edge->map);
1972 ctx = isl_map_get_ctx(map);
1973 coef = inter_coefficients(graph, edge, map);
1975 offset = coef_var_offset(coef);
1977 if (!coef)
1978 return isl_stat_error;
1980 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1982 edge->start = graph->lp->n_ineq;
1983 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1984 if (!graph->lp)
1985 return isl_stat_error;
1986 edge->end = graph->lp->n_ineq;
1988 return isl_stat_ok;
1991 /* Add constraints to graph->lp that bound the dependence distance for the given
1992 * dependence from a node i to itself.
1993 * If s = 1, we add the constraint
1995 * c_i_x (y - x) <= m_0 + m_n n
1997 * or
1999 * -c_i_x (y - x) + m_0 + m_n n >= 0
2001 * for each (x,y) in R.
2002 * If s = -1, we add the constraint
2004 * -c_i_x (y - x) <= m_0 + m_n n
2006 * or
2008 * c_i_x (y - x) + m_0 + m_n n >= 0
2010 * for each (x,y) in R.
2011 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2012 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2013 * with each coefficient (except m_0) represented as a pair of non-negative
2014 * coefficients.
2017 * If "local" is set, then we add constraints
2019 * c_i_x (y - x) <= 0
2021 * or
2023 * -c_i_x (y - x) <= 0
2025 * instead, forcing the dependence distance to be (less than or) equal to 0.
2026 * That is, we plug in (0, 0, -s * c_i_x),
2027 * intra_coefficients is not required to have c_n in its result when
2028 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2029 * Note that dependences marked local are treated as validity constraints
2030 * by add_all_validity_constraints and therefore also have
2031 * their distances bounded by 0 from below.
2033 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
2034 struct isl_sched_edge *edge, int s, int local)
2036 int offset;
2037 unsigned nparam;
2038 isl_map *map = isl_map_copy(edge->map);
2039 isl_ctx *ctx = isl_map_get_ctx(map);
2040 isl_dim_map *dim_map;
2041 isl_basic_set *coef;
2042 struct isl_sched_node *node = edge->src;
2044 coef = intra_coefficients(graph, node, map, !local);
2046 offset = coef_var_offset(coef);
2048 if (!coef)
2049 return isl_stat_error;
2051 nparam = isl_space_dim(node->space, isl_dim_param);
2052 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
2054 if (!local) {
2055 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2056 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2057 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2059 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2061 return isl_stat_ok;
2064 /* Add constraints to graph->lp that bound the dependence distance for the given
2065 * dependence from node i to node j.
2066 * If s = 1, we add the constraint
2068 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2069 * <= m_0 + m_n n
2071 * or
2073 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2074 * m_0 + m_n n >= 0
2076 * for each (x,y) in R.
2077 * If s = -1, we add the constraint
2079 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2080 * <= m_0 + m_n n
2082 * or
2084 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2085 * m_0 + m_n n >= 0
2087 * for each (x,y) in R.
2088 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2089 * of valid constraints for R and then plug in
2090 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2091 * s*c_i_x, -s*c_j_x)
2092 * with each coefficient (except m_0, c_*_0 and c_*_n)
2093 * represented as a pair of non-negative coefficients.
2096 * If "local" is set (and s = 1), then we add constraints
2098 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2100 * or
2102 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2104 * instead, forcing the dependence distance to be (less than or) equal to 0.
2105 * That is, we plug in
2106 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2107 * Note that dependences marked local are treated as validity constraints
2108 * by add_all_validity_constraints and therefore also have
2109 * their distances bounded by 0 from below.
2111 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2112 struct isl_sched_edge *edge, int s, int local)
2114 int offset;
2115 unsigned nparam;
2116 isl_map *map = isl_map_copy(edge->map);
2117 isl_ctx *ctx = isl_map_get_ctx(map);
2118 isl_dim_map *dim_map;
2119 isl_basic_set *coef;
2120 struct isl_sched_node *src = edge->src;
2121 struct isl_sched_node *dst = edge->dst;
2123 coef = inter_coefficients(graph, edge, map);
2125 offset = coef_var_offset(coef);
2127 if (!coef)
2128 return isl_stat_error;
2130 nparam = isl_space_dim(src->space, isl_dim_param);
2131 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
2133 if (!local) {
2134 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2135 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2136 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2139 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2141 return isl_stat_ok;
2144 /* Should the distance over "edge" be forced to zero?
2145 * That is, is it marked as a local edge?
2146 * If "use_coincidence" is set, then coincidence edges are treated
2147 * as local edges.
2149 static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
2151 return is_local(edge) || (use_coincidence && is_coincidence(edge));
2154 /* Add all validity constraints to graph->lp.
2156 * An edge that is forced to be local needs to have its dependence
2157 * distances equal to zero. We take care of bounding them by 0 from below
2158 * here. add_all_proximity_constraints takes care of bounding them by 0
2159 * from above.
2161 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2162 * Otherwise, we ignore them.
2164 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2165 int use_coincidence)
2167 int i;
2169 for (i = 0; i < graph->n_edge; ++i) {
2170 struct isl_sched_edge *edge = &graph->edge[i];
2171 int zero;
2173 zero = force_zero(edge, use_coincidence);
2174 if (!is_validity(edge) && !zero)
2175 continue;
2176 if (edge->src != edge->dst)
2177 continue;
2178 if (add_intra_validity_constraints(graph, edge) < 0)
2179 return -1;
2182 for (i = 0; i < graph->n_edge; ++i) {
2183 struct isl_sched_edge *edge = &graph->edge[i];
2184 int zero;
2186 zero = force_zero(edge, use_coincidence);
2187 if (!is_validity(edge) && !zero)
2188 continue;
2189 if (edge->src == edge->dst)
2190 continue;
2191 if (add_inter_validity_constraints(graph, edge) < 0)
2192 return -1;
2195 return 0;
2198 /* Add constraints to graph->lp that bound the dependence distance
2199 * for all dependence relations.
2200 * If a given proximity dependence is identical to a validity
2201 * dependence, then the dependence distance is already bounded
2202 * from below (by zero), so we only need to bound the distance
2203 * from above. (This includes the case of "local" dependences
2204 * which are treated as validity dependence by add_all_validity_constraints.)
2205 * Otherwise, we need to bound the distance both from above and from below.
2207 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2208 * Otherwise, we ignore them.
2210 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2211 int use_coincidence)
2213 int i;
2215 for (i = 0; i < graph->n_edge; ++i) {
2216 struct isl_sched_edge *edge = &graph->edge[i];
2217 int zero;
2219 zero = force_zero(edge, use_coincidence);
2220 if (!is_proximity(edge) && !zero)
2221 continue;
2222 if (edge->src == edge->dst &&
2223 add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
2224 return -1;
2225 if (edge->src != edge->dst &&
2226 add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
2227 return -1;
2228 if (is_validity(edge) || zero)
2229 continue;
2230 if (edge->src == edge->dst &&
2231 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2232 return -1;
2233 if (edge->src != edge->dst &&
2234 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2235 return -1;
2238 return 0;
2241 /* Normalize the rows of "indep" such that all rows are lexicographically
2242 * positive and such that each row contains as many final zeros as possible,
2243 * given the choice for the previous rows.
2244 * Do this by performing elementary row operations.
2246 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2248 indep = isl_mat_reverse_gauss(indep);
2249 indep = isl_mat_lexnonneg_rows(indep);
2250 return indep;
2253 /* Extract the linear part of the current schedule for node "node".
2255 static __isl_give isl_mat *extract_linear_schedule(struct isl_sched_node *node)
2257 int n_row = isl_mat_rows(node->sched);
2259 return isl_mat_sub_alloc(node->sched, 0, n_row,
2260 1 + node->nparam, node->nvar);
2263 /* Compute a basis for the rows in the linear part of the schedule
2264 * and extend this basis to a full basis. The remaining rows
2265 * can then be used to force linear independence from the rows
2266 * in the schedule.
2268 * In particular, given the schedule rows S, we compute
2270 * S = H Q
2271 * S U = H
2273 * with H the Hermite normal form of S. That is, all but the
2274 * first rank columns of H are zero and so each row in S is
2275 * a linear combination of the first rank rows of Q.
2276 * The matrix Q can be used as a variable transformation
2277 * that isolates the directions of S in the first rank rows.
2278 * Transposing S U = H yields
2280 * U^T S^T = H^T
2282 * with all but the first rank rows of H^T zero.
2283 * The last rows of U^T are therefore linear combinations
2284 * of schedule coefficients that are all zero on schedule
2285 * coefficients that are linearly dependent on the rows of S.
2286 * At least one of these combinations is non-zero on
2287 * linearly independent schedule coefficients.
2288 * The rows are normalized to involve as few of the last
2289 * coefficients as possible and to have a positive initial value.
2291 static int node_update_vmap(struct isl_sched_node *node)
2293 isl_mat *H, *U, *Q;
2295 H = extract_linear_schedule(node);
2297 H = isl_mat_left_hermite(H, 0, &U, &Q);
2298 isl_mat_free(node->indep);
2299 isl_mat_free(node->vmap);
2300 node->vmap = Q;
2301 node->indep = isl_mat_transpose(U);
2302 node->rank = isl_mat_initial_non_zero_cols(H);
2303 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2304 node->indep = normalize_independent(node->indep);
2305 isl_mat_free(H);
2307 if (!node->indep || !node->vmap || node->rank < 0)
2308 return -1;
2309 return 0;
2312 /* Is "edge" marked as a validity or a conditional validity edge?
2314 static int is_any_validity(struct isl_sched_edge *edge)
2316 return is_validity(edge) || is_conditional_validity(edge);
2319 /* How many times should we count the constraints in "edge"?
2321 * We count as follows
2322 * validity -> 1 (>= 0)
2323 * validity+proximity -> 2 (>= 0 and upper bound)
2324 * proximity -> 2 (lower and upper bound)
2325 * local(+any) -> 2 (>= 0 and <= 0)
2327 * If an edge is only marked conditional_validity then it counts
2328 * as zero since it is only checked afterwards.
2330 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2331 * Otherwise, we ignore them.
2333 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2335 if (is_proximity(edge) || force_zero(edge, use_coincidence))
2336 return 2;
2337 if (is_validity(edge))
2338 return 1;
2339 return 0;
2342 /* How many times should the constraints in "edge" be counted
2343 * as a parametric intra-node constraint?
2345 * Only proximity edges that are not forced zero need
2346 * coefficient constraints that include coefficients for parameters.
2347 * If the edge is also a validity edge, then only
2348 * an upper bound is introduced. Otherwise, both lower and upper bounds
2349 * are introduced.
2351 static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
2352 int use_coincidence)
2354 if (edge->src != edge->dst)
2355 return 0;
2356 if (!is_proximity(edge))
2357 return 0;
2358 if (force_zero(edge, use_coincidence))
2359 return 0;
2360 if (is_validity(edge))
2361 return 1;
2362 else
2363 return 2;
2366 /* Add "f" times the number of equality and inequality constraints of "bset"
2367 * to "n_eq" and "n_ineq" and free "bset".
2369 static isl_stat update_count(__isl_take isl_basic_set *bset,
2370 int f, int *n_eq, int *n_ineq)
2372 if (!bset)
2373 return isl_stat_error;
2375 *n_eq += isl_basic_set_n_equality(bset);
2376 *n_ineq += isl_basic_set_n_inequality(bset);
2377 isl_basic_set_free(bset);
2379 return isl_stat_ok;
2382 /* Count the number of equality and inequality constraints
2383 * that will be added for the given map.
2385 * The edges that require parameter coefficients are counted separately.
2387 * "use_coincidence" is set if we should take into account coincidence edges.
2389 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2390 struct isl_sched_edge *edge, __isl_take isl_map *map,
2391 int *n_eq, int *n_ineq, int use_coincidence)
2393 isl_map *copy;
2394 isl_basic_set *coef;
2395 int f = edge_multiplicity(edge, use_coincidence);
2396 int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
2398 if (f == 0) {
2399 isl_map_free(map);
2400 return isl_stat_ok;
2403 if (edge->src != edge->dst) {
2404 coef = inter_coefficients(graph, edge, map);
2405 return update_count(coef, f, n_eq, n_ineq);
2408 if (fp > 0) {
2409 copy = isl_map_copy(map);
2410 coef = intra_coefficients(graph, edge->src, copy, 1);
2411 if (update_count(coef, fp, n_eq, n_ineq) < 0)
2412 goto error;
2415 if (f > fp) {
2416 copy = isl_map_copy(map);
2417 coef = intra_coefficients(graph, edge->src, copy, 0);
2418 if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
2419 goto error;
2422 isl_map_free(map);
2423 return isl_stat_ok;
2424 error:
2425 isl_map_free(map);
2426 return isl_stat_error;
2429 /* Count the number of equality and inequality constraints
2430 * that will be added to the main lp problem.
2431 * We count as follows
2432 * validity -> 1 (>= 0)
2433 * validity+proximity -> 2 (>= 0 and upper bound)
2434 * proximity -> 2 (lower and upper bound)
2435 * local(+any) -> 2 (>= 0 and <= 0)
2437 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2438 * Otherwise, we ignore them.
2440 static int count_constraints(struct isl_sched_graph *graph,
2441 int *n_eq, int *n_ineq, int use_coincidence)
2443 int i;
2445 *n_eq = *n_ineq = 0;
2446 for (i = 0; i < graph->n_edge; ++i) {
2447 struct isl_sched_edge *edge = &graph->edge[i];
2448 isl_map *map = isl_map_copy(edge->map);
2450 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2451 use_coincidence) < 0)
2452 return -1;
2455 return 0;
2458 /* Count the number of constraints that will be added by
2459 * add_bound_constant_constraints to bound the values of the constant terms
2460 * and increment *n_eq and *n_ineq accordingly.
2462 * In practice, add_bound_constant_constraints only adds inequalities.
2464 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2465 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2467 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2468 return isl_stat_ok;
2470 *n_ineq += graph->n;
2472 return isl_stat_ok;
2475 /* Add constraints to bound the values of the constant terms in the schedule,
2476 * if requested by the user.
2478 * The maximal value of the constant terms is defined by the option
2479 * "schedule_max_constant_term".
2481 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2482 struct isl_sched_graph *graph)
2484 int i, k;
2485 int max;
2486 int total;
2488 max = isl_options_get_schedule_max_constant_term(ctx);
2489 if (max == -1)
2490 return isl_stat_ok;
2492 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2494 for (i = 0; i < graph->n; ++i) {
2495 struct isl_sched_node *node = &graph->node[i];
2496 int pos;
2498 k = isl_basic_set_alloc_inequality(graph->lp);
2499 if (k < 0)
2500 return isl_stat_error;
2501 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2502 pos = node_cst_coef_offset(node);
2503 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2504 isl_int_set_si(graph->lp->ineq[k][0], max);
2507 return isl_stat_ok;
2510 /* Count the number of constraints that will be added by
2511 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2512 * accordingly.
2514 * In practice, add_bound_coefficient_constraints only adds inequalities.
2516 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2517 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2519 int i;
2521 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2522 !isl_options_get_schedule_treat_coalescing(ctx))
2523 return 0;
2525 for (i = 0; i < graph->n; ++i)
2526 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2528 return 0;
2531 /* Add constraints to graph->lp that bound the values of
2532 * the parameter schedule coefficients of "node" to "max" and
2533 * the variable schedule coefficients to the corresponding entry
2534 * in node->max.
2535 * In either case, a negative value means that no bound needs to be imposed.
2537 * For parameter coefficients, this amounts to adding a constraint
2539 * c_n <= max
2541 * i.e.,
2543 * -c_n + max >= 0
2545 * The variables coefficients are, however, not represented directly.
2546 * Instead, the variable coefficients c_x are written as differences
2547 * c_x = c_x^+ - c_x^-.
2548 * That is,
2550 * -max_i <= c_x_i <= max_i
2552 * is encoded as
2554 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2556 * or
2558 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2559 * c_x_i^+ - c_x_i^- + max_i >= 0
2561 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2562 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2564 int i, j, k;
2565 int total;
2566 isl_vec *ineq;
2568 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2570 for (j = 0; j < node->nparam; ++j) {
2571 int dim;
2573 if (max < 0)
2574 continue;
2576 k = isl_basic_set_alloc_inequality(graph->lp);
2577 if (k < 0)
2578 return isl_stat_error;
2579 dim = 1 + node_par_coef_offset(node) + j;
2580 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2581 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2582 isl_int_set_si(graph->lp->ineq[k][0], max);
2585 ineq = isl_vec_alloc(ctx, 1 + total);
2586 ineq = isl_vec_clr(ineq);
2587 if (!ineq)
2588 return isl_stat_error;
2589 for (i = 0; i < node->nvar; ++i) {
2590 int pos = 1 + node_var_coef_pos(node, i);
2592 if (isl_int_is_neg(node->max->el[i]))
2593 continue;
2595 isl_int_set_si(ineq->el[pos], 1);
2596 isl_int_set_si(ineq->el[pos + 1], -1);
2597 isl_int_set(ineq->el[0], node->max->el[i]);
2599 k = isl_basic_set_alloc_inequality(graph->lp);
2600 if (k < 0)
2601 goto error;
2602 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2604 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
2605 k = isl_basic_set_alloc_inequality(graph->lp);
2606 if (k < 0)
2607 goto error;
2608 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2610 isl_seq_clr(ineq->el + pos, 2);
2612 isl_vec_free(ineq);
2614 return isl_stat_ok;
2615 error:
2616 isl_vec_free(ineq);
2617 return isl_stat_error;
2620 /* Add constraints that bound the values of the variable and parameter
2621 * coefficients of the schedule.
2623 * The maximal value of the coefficients is defined by the option
2624 * 'schedule_max_coefficient' and the entries in node->max.
2625 * These latter entries are only set if either the schedule_max_coefficient
2626 * option or the schedule_treat_coalescing option is set.
2628 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2629 struct isl_sched_graph *graph)
2631 int i;
2632 int max;
2634 max = isl_options_get_schedule_max_coefficient(ctx);
2636 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2637 return isl_stat_ok;
2639 for (i = 0; i < graph->n; ++i) {
2640 struct isl_sched_node *node = &graph->node[i];
2642 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2643 return isl_stat_error;
2646 return isl_stat_ok;
2649 /* Add a constraint to graph->lp that equates the value at position
2650 * "sum_pos" to the sum of the "n" values starting at "first".
2652 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2653 int sum_pos, int first, int n)
2655 int i, k;
2656 int total;
2658 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2660 k = isl_basic_set_alloc_equality(graph->lp);
2661 if (k < 0)
2662 return isl_stat_error;
2663 isl_seq_clr(graph->lp->eq[k], 1 + total);
2664 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2665 for (i = 0; i < n; ++i)
2666 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2668 return isl_stat_ok;
2671 /* Add a constraint to graph->lp that equates the value at position
2672 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2674 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2675 int sum_pos)
2677 int i, j, k;
2678 int total;
2680 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2682 k = isl_basic_set_alloc_equality(graph->lp);
2683 if (k < 0)
2684 return isl_stat_error;
2685 isl_seq_clr(graph->lp->eq[k], 1 + total);
2686 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2687 for (i = 0; i < graph->n; ++i) {
2688 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2690 for (j = 0; j < graph->node[i].nparam; ++j)
2691 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2694 return isl_stat_ok;
2697 /* Add a constraint to graph->lp that equates the value at position
2698 * "sum_pos" to the sum of the variable coefficients of all nodes.
2700 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2701 int sum_pos)
2703 int i, j, k;
2704 int total;
2706 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2708 k = isl_basic_set_alloc_equality(graph->lp);
2709 if (k < 0)
2710 return isl_stat_error;
2711 isl_seq_clr(graph->lp->eq[k], 1 + total);
2712 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2713 for (i = 0; i < graph->n; ++i) {
2714 struct isl_sched_node *node = &graph->node[i];
2715 int pos = 1 + node_var_coef_offset(node);
2717 for (j = 0; j < 2 * node->nvar; ++j)
2718 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2721 return isl_stat_ok;
2724 /* Construct an ILP problem for finding schedule coefficients
2725 * that result in non-negative, but small dependence distances
2726 * over all dependences.
2727 * In particular, the dependence distances over proximity edges
2728 * are bounded by m_0 + m_n n and we compute schedule coefficients
2729 * with small values (preferably zero) of m_n and m_0.
2731 * All variables of the ILP are non-negative. The actual coefficients
2732 * may be negative, so each coefficient is represented as the difference
2733 * of two non-negative variables. The negative part always appears
2734 * immediately before the positive part.
2735 * Other than that, the variables have the following order
2737 * - sum of positive and negative parts of m_n coefficients
2738 * - m_0
2739 * - sum of all c_n coefficients
2740 * (unconstrained when computing non-parametric schedules)
2741 * - sum of positive and negative parts of all c_x coefficients
2742 * - positive and negative parts of m_n coefficients
2743 * - for each node
2744 * - positive and negative parts of c_i_x, in opposite order
2745 * - c_i_n (if parametric)
2746 * - c_i_0
2748 * The constraints are those from the edges plus two or three equalities
2749 * to express the sums.
2751 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2752 * Otherwise, we ignore them.
2754 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2755 int use_coincidence)
2757 int i;
2758 unsigned nparam;
2759 unsigned total;
2760 isl_space *space;
2761 int parametric;
2762 int param_pos;
2763 int n_eq, n_ineq;
2765 parametric = ctx->opt->schedule_parametric;
2766 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2767 param_pos = 4;
2768 total = param_pos + 2 * nparam;
2769 for (i = 0; i < graph->n; ++i) {
2770 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2771 if (node_update_vmap(node) < 0)
2772 return isl_stat_error;
2773 node->start = total;
2774 total += 1 + node->nparam + 2 * node->nvar;
2777 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2778 return isl_stat_error;
2779 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2780 return isl_stat_error;
2781 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2782 return isl_stat_error;
2784 space = isl_space_set_alloc(ctx, 0, total);
2785 isl_basic_set_free(graph->lp);
2786 n_eq += 2 + parametric;
2788 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2790 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2791 return isl_stat_error;
2792 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2793 return isl_stat_error;
2794 if (add_var_sum_constraint(graph, 3) < 0)
2795 return isl_stat_error;
2796 if (add_bound_constant_constraints(ctx, graph) < 0)
2797 return isl_stat_error;
2798 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2799 return isl_stat_error;
2800 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2801 return isl_stat_error;
2802 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2803 return isl_stat_error;
2805 return isl_stat_ok;
2808 /* Analyze the conflicting constraint found by
2809 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2810 * constraint of one of the edges between distinct nodes, living, moreover
2811 * in distinct SCCs, then record the source and sink SCC as this may
2812 * be a good place to cut between SCCs.
2814 static int check_conflict(int con, void *user)
2816 int i;
2817 struct isl_sched_graph *graph = user;
2819 if (graph->src_scc >= 0)
2820 return 0;
2822 con -= graph->lp->n_eq;
2824 if (con >= graph->lp->n_ineq)
2825 return 0;
2827 for (i = 0; i < graph->n_edge; ++i) {
2828 if (!is_validity(&graph->edge[i]))
2829 continue;
2830 if (graph->edge[i].src == graph->edge[i].dst)
2831 continue;
2832 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2833 continue;
2834 if (graph->edge[i].start > con)
2835 continue;
2836 if (graph->edge[i].end <= con)
2837 continue;
2838 graph->src_scc = graph->edge[i].src->scc;
2839 graph->dst_scc = graph->edge[i].dst->scc;
2842 return 0;
2845 /* Check whether the next schedule row of the given node needs to be
2846 * non-trivial. Lower-dimensional domains may have some trivial rows,
2847 * but as soon as the number of remaining required non-trivial rows
2848 * is as large as the number or remaining rows to be computed,
2849 * all remaining rows need to be non-trivial.
2851 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2853 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2856 /* Construct a non-triviality region with triviality directions
2857 * corresponding to the rows of "indep".
2858 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2859 * while the triviality directions are expressed in terms of
2860 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2861 * before c^+_i. Furthermore,
2862 * the pairs of non-negative variables representing the coefficients
2863 * are stored in the opposite order.
2865 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2867 isl_ctx *ctx;
2868 isl_mat *mat;
2869 int i, j, n, n_var;
2871 if (!indep)
2872 return NULL;
2874 ctx = isl_mat_get_ctx(indep);
2875 n = isl_mat_rows(indep);
2876 n_var = isl_mat_cols(indep);
2877 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2878 if (!mat)
2879 return NULL;
2880 for (i = 0; i < n; ++i) {
2881 for (j = 0; j < n_var; ++j) {
2882 int nj = n_var - 1 - j;
2883 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2884 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2888 return mat;
2891 /* Solve the ILP problem constructed in setup_lp.
2892 * For each node such that all the remaining rows of its schedule
2893 * need to be non-trivial, we construct a non-triviality region.
2894 * This region imposes that the next row is independent of previous rows.
2895 * In particular, the non-triviality region enforces that at least
2896 * one of the linear combinations in the rows of node->indep is non-zero.
2898 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2900 int i;
2901 isl_vec *sol;
2902 isl_basic_set *lp;
2904 for (i = 0; i < graph->n; ++i) {
2905 struct isl_sched_node *node = &graph->node[i];
2906 isl_mat *trivial;
2908 graph->region[i].pos = node_var_coef_offset(node);
2909 if (needs_row(graph, node))
2910 trivial = construct_trivial(node->indep);
2911 else
2912 trivial = isl_mat_zero(ctx, 0, 0);
2913 graph->region[i].trivial = trivial;
2915 lp = isl_basic_set_copy(graph->lp);
2916 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2917 graph->region, &check_conflict, graph);
2918 for (i = 0; i < graph->n; ++i)
2919 isl_mat_free(graph->region[i].trivial);
2920 return sol;
2923 /* Extract the coefficients for the variables of "node" from "sol".
2925 * Each schedule coefficient c_i_x is represented as the difference
2926 * between two non-negative variables c_i_x^+ - c_i_x^-.
2927 * The c_i_x^- appear before their c_i_x^+ counterpart.
2928 * Furthermore, the order of these pairs is the opposite of that
2929 * of the corresponding coefficients.
2931 * Return c_i_x = c_i_x^+ - c_i_x^-
2933 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2934 __isl_keep isl_vec *sol)
2936 int i;
2937 int pos;
2938 isl_vec *csol;
2940 if (!sol)
2941 return NULL;
2942 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2943 if (!csol)
2944 return NULL;
2946 pos = 1 + node_var_coef_offset(node);
2947 for (i = 0; i < node->nvar; ++i)
2948 isl_int_sub(csol->el[node->nvar - 1 - i],
2949 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2951 return csol;
2954 /* Update the schedules of all nodes based on the given solution
2955 * of the LP problem.
2956 * The new row is added to the current band.
2957 * All possibly negative coefficients are encoded as a difference
2958 * of two non-negative variables, so we need to perform the subtraction
2959 * here.
2961 * If coincident is set, then the caller guarantees that the new
2962 * row satisfies the coincidence constraints.
2964 static int update_schedule(struct isl_sched_graph *graph,
2965 __isl_take isl_vec *sol, int coincident)
2967 int i, j;
2968 isl_vec *csol = NULL;
2970 if (!sol)
2971 goto error;
2972 if (sol->size == 0)
2973 isl_die(sol->ctx, isl_error_internal,
2974 "no solution found", goto error);
2975 if (graph->n_total_row >= graph->max_row)
2976 isl_die(sol->ctx, isl_error_internal,
2977 "too many schedule rows", goto error);
2979 for (i = 0; i < graph->n; ++i) {
2980 struct isl_sched_node *node = &graph->node[i];
2981 int pos;
2982 int row = isl_mat_rows(node->sched);
2984 isl_vec_free(csol);
2985 csol = extract_var_coef(node, sol);
2986 if (!csol)
2987 goto error;
2989 isl_map_free(node->sched_map);
2990 node->sched_map = NULL;
2991 node->sched = isl_mat_add_rows(node->sched, 1);
2992 if (!node->sched)
2993 goto error;
2994 pos = node_cst_coef_offset(node);
2995 node->sched = isl_mat_set_element(node->sched,
2996 row, 0, sol->el[1 + pos]);
2997 pos = node_par_coef_offset(node);
2998 for (j = 0; j < node->nparam; ++j)
2999 node->sched = isl_mat_set_element(node->sched,
3000 row, 1 + j, sol->el[1 + pos + j]);
3001 for (j = 0; j < node->nvar; ++j)
3002 node->sched = isl_mat_set_element(node->sched,
3003 row, 1 + node->nparam + j, csol->el[j]);
3004 node->coincident[graph->n_total_row] = coincident;
3006 isl_vec_free(sol);
3007 isl_vec_free(csol);
3009 graph->n_row++;
3010 graph->n_total_row++;
3012 return 0;
3013 error:
3014 isl_vec_free(sol);
3015 isl_vec_free(csol);
3016 return -1;
3019 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3020 * and return this isl_aff.
3022 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
3023 struct isl_sched_node *node, int row)
3025 int j;
3026 isl_int v;
3027 isl_aff *aff;
3029 isl_int_init(v);
3031 aff = isl_aff_zero_on_domain(ls);
3032 if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
3033 goto error;
3034 aff = isl_aff_set_constant(aff, v);
3035 for (j = 0; j < node->nparam; ++j) {
3036 if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
3037 goto error;
3038 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
3040 for (j = 0; j < node->nvar; ++j) {
3041 if (isl_mat_get_element(node->sched, row,
3042 1 + node->nparam + j, &v) < 0)
3043 goto error;
3044 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
3047 isl_int_clear(v);
3049 return aff;
3050 error:
3051 isl_int_clear(v);
3052 isl_aff_free(aff);
3053 return NULL;
3056 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3057 * and return this multi_aff.
3059 * The result is defined over the uncompressed node domain.
3061 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
3062 struct isl_sched_node *node, int first, int n)
3064 int i;
3065 isl_space *space;
3066 isl_local_space *ls;
3067 isl_aff *aff;
3068 isl_multi_aff *ma;
3069 int nrow;
3071 if (!node)
3072 return NULL;
3073 nrow = isl_mat_rows(node->sched);
3074 if (node->compressed)
3075 space = isl_multi_aff_get_domain_space(node->decompress);
3076 else
3077 space = isl_space_copy(node->space);
3078 ls = isl_local_space_from_space(isl_space_copy(space));
3079 space = isl_space_from_domain(space);
3080 space = isl_space_add_dims(space, isl_dim_out, n);
3081 ma = isl_multi_aff_zero(space);
3083 for (i = first; i < first + n; ++i) {
3084 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
3085 ma = isl_multi_aff_set_aff(ma, i - first, aff);
3088 isl_local_space_free(ls);
3090 if (node->compressed)
3091 ma = isl_multi_aff_pullback_multi_aff(ma,
3092 isl_multi_aff_copy(node->compress));
3094 return ma;
3097 /* Convert node->sched into a multi_aff and return this multi_aff.
3099 * The result is defined over the uncompressed node domain.
3101 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
3102 struct isl_sched_node *node)
3104 int nrow;
3106 nrow = isl_mat_rows(node->sched);
3107 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
3110 /* Convert node->sched into a map and return this map.
3112 * The result is cached in node->sched_map, which needs to be released
3113 * whenever node->sched is updated.
3114 * It is defined over the uncompressed node domain.
3116 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3118 if (!node->sched_map) {
3119 isl_multi_aff *ma;
3121 ma = node_extract_schedule_multi_aff(node);
3122 node->sched_map = isl_map_from_multi_aff(ma);
3125 return isl_map_copy(node->sched_map);
3128 /* Construct a map that can be used to update a dependence relation
3129 * based on the current schedule.
3130 * That is, construct a map expressing that source and sink
3131 * are executed within the same iteration of the current schedule.
3132 * This map can then be intersected with the dependence relation.
3133 * This is not the most efficient way, but this shouldn't be a critical
3134 * operation.
3136 static __isl_give isl_map *specializer(struct isl_sched_node *src,
3137 struct isl_sched_node *dst)
3139 isl_map *src_sched, *dst_sched;
3141 src_sched = node_extract_schedule(src);
3142 dst_sched = node_extract_schedule(dst);
3143 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
3146 /* Intersect the domains of the nested relations in domain and range
3147 * of "umap" with "map".
3149 static __isl_give isl_union_map *intersect_domains(
3150 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3152 isl_union_set *uset;
3154 umap = isl_union_map_zip(umap);
3155 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
3156 umap = isl_union_map_intersect_domain(umap, uset);
3157 umap = isl_union_map_zip(umap);
3158 return umap;
3161 /* Update the dependence relation of the given edge based
3162 * on the current schedule.
3163 * If the dependence is carried completely by the current schedule, then
3164 * it is removed from the edge_tables. It is kept in the list of edges
3165 * as otherwise all edge_tables would have to be recomputed.
3167 * If the edge is of a type that can appear multiple times
3168 * between the same pair of nodes, then it is added to
3169 * the edge table (again). This prevents the situation
3170 * where none of these edges is referenced from the edge table
3171 * because the one that was referenced turned out to be empty and
3172 * was therefore removed from the table.
3174 static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
3175 struct isl_sched_edge *edge)
3177 int empty;
3178 isl_map *id;
3180 id = specializer(edge->src, edge->dst);
3181 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
3182 if (!edge->map)
3183 goto error;
3185 if (edge->tagged_condition) {
3186 edge->tagged_condition =
3187 intersect_domains(edge->tagged_condition, id);
3188 if (!edge->tagged_condition)
3189 goto error;
3191 if (edge->tagged_validity) {
3192 edge->tagged_validity =
3193 intersect_domains(edge->tagged_validity, id);
3194 if (!edge->tagged_validity)
3195 goto error;
3198 empty = isl_map_plain_is_empty(edge->map);
3199 if (empty < 0)
3200 goto error;
3201 if (empty) {
3202 graph_remove_edge(graph, edge);
3203 } else if (is_multi_edge_type(edge)) {
3204 if (graph_edge_tables_add(ctx, graph, edge) < 0)
3205 goto error;
3208 isl_map_free(id);
3209 return isl_stat_ok;
3210 error:
3211 isl_map_free(id);
3212 return isl_stat_error;
3215 /* Does the domain of "umap" intersect "uset"?
3217 static int domain_intersects(__isl_keep isl_union_map *umap,
3218 __isl_keep isl_union_set *uset)
3220 int empty;
3222 umap = isl_union_map_copy(umap);
3223 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3224 empty = isl_union_map_is_empty(umap);
3225 isl_union_map_free(umap);
3227 return empty < 0 ? -1 : !empty;
3230 /* Does the range of "umap" intersect "uset"?
3232 static int range_intersects(__isl_keep isl_union_map *umap,
3233 __isl_keep isl_union_set *uset)
3235 int empty;
3237 umap = isl_union_map_copy(umap);
3238 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3239 empty = isl_union_map_is_empty(umap);
3240 isl_union_map_free(umap);
3242 return empty < 0 ? -1 : !empty;
3245 /* Are the condition dependences of "edge" local with respect to
3246 * the current schedule?
3248 * That is, are domain and range of the condition dependences mapped
3249 * to the same point?
3251 * In other words, is the condition false?
3253 static int is_condition_false(struct isl_sched_edge *edge)
3255 isl_union_map *umap;
3256 isl_map *map, *sched, *test;
3257 int empty, local;
3259 empty = isl_union_map_is_empty(edge->tagged_condition);
3260 if (empty < 0 || empty)
3261 return empty;
3263 umap = isl_union_map_copy(edge->tagged_condition);
3264 umap = isl_union_map_zip(umap);
3265 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3266 map = isl_map_from_union_map(umap);
3268 sched = node_extract_schedule(edge->src);
3269 map = isl_map_apply_domain(map, sched);
3270 sched = node_extract_schedule(edge->dst);
3271 map = isl_map_apply_range(map, sched);
3273 test = isl_map_identity(isl_map_get_space(map));
3274 local = isl_map_is_subset(map, test);
3275 isl_map_free(map);
3276 isl_map_free(test);
3278 return local;
3281 /* For each conditional validity constraint that is adjacent
3282 * to a condition with domain in condition_source or range in condition_sink,
3283 * turn it into an unconditional validity constraint.
3285 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3286 __isl_take isl_union_set *condition_source,
3287 __isl_take isl_union_set *condition_sink)
3289 int i;
3291 condition_source = isl_union_set_coalesce(condition_source);
3292 condition_sink = isl_union_set_coalesce(condition_sink);
3294 for (i = 0; i < graph->n_edge; ++i) {
3295 int adjacent;
3296 isl_union_map *validity;
3298 if (!is_conditional_validity(&graph->edge[i]))
3299 continue;
3300 if (is_validity(&graph->edge[i]))
3301 continue;
3303 validity = graph->edge[i].tagged_validity;
3304 adjacent = domain_intersects(validity, condition_sink);
3305 if (adjacent >= 0 && !adjacent)
3306 adjacent = range_intersects(validity, condition_source);
3307 if (adjacent < 0)
3308 goto error;
3309 if (!adjacent)
3310 continue;
3312 set_validity(&graph->edge[i]);
3315 isl_union_set_free(condition_source);
3316 isl_union_set_free(condition_sink);
3317 return 0;
3318 error:
3319 isl_union_set_free(condition_source);
3320 isl_union_set_free(condition_sink);
3321 return -1;
3324 /* Update the dependence relations of all edges based on the current schedule
3325 * and enforce conditional validity constraints that are adjacent
3326 * to satisfied condition constraints.
3328 * First check if any of the condition constraints are satisfied
3329 * (i.e., not local to the outer schedule) and keep track of
3330 * their domain and range.
3331 * Then update all dependence relations (which removes the non-local
3332 * constraints).
3333 * Finally, if any condition constraints turned out to be satisfied,
3334 * then turn all adjacent conditional validity constraints into
3335 * unconditional validity constraints.
3337 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3339 int i;
3340 int any = 0;
3341 isl_union_set *source, *sink;
3343 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3344 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3345 for (i = 0; i < graph->n_edge; ++i) {
3346 int local;
3347 isl_union_set *uset;
3348 isl_union_map *umap;
3350 if (!is_condition(&graph->edge[i]))
3351 continue;
3352 if (is_local(&graph->edge[i]))
3353 continue;
3354 local = is_condition_false(&graph->edge[i]);
3355 if (local < 0)
3356 goto error;
3357 if (local)
3358 continue;
3360 any = 1;
3362 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3363 uset = isl_union_map_domain(umap);
3364 source = isl_union_set_union(source, uset);
3366 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3367 uset = isl_union_map_range(umap);
3368 sink = isl_union_set_union(sink, uset);
3371 for (i = 0; i < graph->n_edge; ++i) {
3372 if (update_edge(ctx, graph, &graph->edge[i]) < 0)
3373 goto error;
3376 if (any)
3377 return unconditionalize_adjacent_validity(graph, source, sink);
3379 isl_union_set_free(source);
3380 isl_union_set_free(sink);
3381 return 0;
3382 error:
3383 isl_union_set_free(source);
3384 isl_union_set_free(sink);
3385 return -1;
3388 static void next_band(struct isl_sched_graph *graph)
3390 graph->band_start = graph->n_total_row;
3393 /* Return the union of the universe domains of the nodes in "graph"
3394 * that satisfy "pred".
3396 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3397 struct isl_sched_graph *graph,
3398 int (*pred)(struct isl_sched_node *node, int data), int data)
3400 int i;
3401 isl_set *set;
3402 isl_union_set *dom;
3404 for (i = 0; i < graph->n; ++i)
3405 if (pred(&graph->node[i], data))
3406 break;
3408 if (i >= graph->n)
3409 isl_die(ctx, isl_error_internal,
3410 "empty component", return NULL);
3412 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3413 dom = isl_union_set_from_set(set);
3415 for (i = i + 1; i < graph->n; ++i) {
3416 if (!pred(&graph->node[i], data))
3417 continue;
3418 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3419 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3422 return dom;
3425 /* Return a list of unions of universe domains, where each element
3426 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3428 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3429 struct isl_sched_graph *graph)
3431 int i;
3432 isl_union_set_list *filters;
3434 filters = isl_union_set_list_alloc(ctx, graph->scc);
3435 for (i = 0; i < graph->scc; ++i) {
3436 isl_union_set *dom;
3438 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3439 filters = isl_union_set_list_add(filters, dom);
3442 return filters;
3445 /* Return a list of two unions of universe domains, one for the SCCs up
3446 * to and including graph->src_scc and another for the other SCCs.
3448 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3449 struct isl_sched_graph *graph)
3451 isl_union_set *dom;
3452 isl_union_set_list *filters;
3454 filters = isl_union_set_list_alloc(ctx, 2);
3455 dom = isl_sched_graph_domain(ctx, graph,
3456 &node_scc_at_most, graph->src_scc);
3457 filters = isl_union_set_list_add(filters, dom);
3458 dom = isl_sched_graph_domain(ctx, graph,
3459 &node_scc_at_least, graph->src_scc + 1);
3460 filters = isl_union_set_list_add(filters, dom);
3462 return filters;
3465 /* Copy nodes that satisfy node_pred from the src dependence graph
3466 * to the dst dependence graph.
3468 static isl_stat copy_nodes(struct isl_sched_graph *dst,
3469 struct isl_sched_graph *src,
3470 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3472 int i;
3474 dst->n = 0;
3475 for (i = 0; i < src->n; ++i) {
3476 int j;
3478 if (!node_pred(&src->node[i], data))
3479 continue;
3481 j = dst->n;
3482 dst->node[j].space = isl_space_copy(src->node[i].space);
3483 dst->node[j].compressed = src->node[i].compressed;
3484 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3485 dst->node[j].compress =
3486 isl_multi_aff_copy(src->node[i].compress);
3487 dst->node[j].decompress =
3488 isl_multi_aff_copy(src->node[i].decompress);
3489 dst->node[j].nvar = src->node[i].nvar;
3490 dst->node[j].nparam = src->node[i].nparam;
3491 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3492 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3493 dst->node[j].coincident = src->node[i].coincident;
3494 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3495 dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
3496 dst->node[j].max = isl_vec_copy(src->node[i].max);
3497 dst->n++;
3499 if (!dst->node[j].space || !dst->node[j].sched)
3500 return isl_stat_error;
3501 if (dst->node[j].compressed &&
3502 (!dst->node[j].hull || !dst->node[j].compress ||
3503 !dst->node[j].decompress))
3504 return isl_stat_error;
3507 return isl_stat_ok;
3510 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3511 * to the dst dependence graph.
3512 * If the source or destination node of the edge is not in the destination
3513 * graph, then it must be a backward proximity edge and it should simply
3514 * be ignored.
3516 static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3517 struct isl_sched_graph *src,
3518 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3520 int i;
3522 dst->n_edge = 0;
3523 for (i = 0; i < src->n_edge; ++i) {
3524 struct isl_sched_edge *edge = &src->edge[i];
3525 isl_map *map;
3526 isl_union_map *tagged_condition;
3527 isl_union_map *tagged_validity;
3528 struct isl_sched_node *dst_src, *dst_dst;
3530 if (!edge_pred(edge, data))
3531 continue;
3533 if (isl_map_plain_is_empty(edge->map))
3534 continue;
3536 dst_src = graph_find_node(ctx, dst, edge->src->space);
3537 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3538 if (!dst_src || !dst_dst)
3539 return isl_stat_error;
3540 if (!is_node(dst, dst_src) || !is_node(dst, dst_dst)) {
3541 if (is_validity(edge) || is_conditional_validity(edge))
3542 isl_die(ctx, isl_error_internal,
3543 "backward (conditional) validity edge",
3544 return isl_stat_error);
3545 continue;
3548 map = isl_map_copy(edge->map);
3549 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3550 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3552 dst->edge[dst->n_edge].src = dst_src;
3553 dst->edge[dst->n_edge].dst = dst_dst;
3554 dst->edge[dst->n_edge].map = map;
3555 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3556 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3557 dst->edge[dst->n_edge].types = edge->types;
3558 dst->n_edge++;
3560 if (edge->tagged_condition && !tagged_condition)
3561 return isl_stat_error;
3562 if (edge->tagged_validity && !tagged_validity)
3563 return isl_stat_error;
3565 if (graph_edge_tables_add(ctx, dst,
3566 &dst->edge[dst->n_edge - 1]) < 0)
3567 return isl_stat_error;
3570 return isl_stat_ok;
3573 /* Compute the maximal number of variables over all nodes.
3574 * This is the maximal number of linearly independent schedule
3575 * rows that we need to compute.
3576 * Just in case we end up in a part of the dependence graph
3577 * with only lower-dimensional domains, we make sure we will
3578 * compute the required amount of extra linearly independent rows.
3580 static int compute_maxvar(struct isl_sched_graph *graph)
3582 int i;
3584 graph->maxvar = 0;
3585 for (i = 0; i < graph->n; ++i) {
3586 struct isl_sched_node *node = &graph->node[i];
3587 int nvar;
3589 if (node_update_vmap(node) < 0)
3590 return -1;
3591 nvar = node->nvar + graph->n_row - node->rank;
3592 if (nvar > graph->maxvar)
3593 graph->maxvar = nvar;
3596 return 0;
3599 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3600 * "node_pred" and the edges satisfying "edge_pred" and store
3601 * the result in "sub".
3603 static isl_stat extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3604 int (*node_pred)(struct isl_sched_node *node, int data),
3605 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3606 int data, struct isl_sched_graph *sub)
3608 int i, n = 0, n_edge = 0;
3609 int t;
3611 for (i = 0; i < graph->n; ++i)
3612 if (node_pred(&graph->node[i], data))
3613 ++n;
3614 for (i = 0; i < graph->n_edge; ++i)
3615 if (edge_pred(&graph->edge[i], data))
3616 ++n_edge;
3617 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3618 return isl_stat_error;
3619 sub->root = graph->root;
3620 if (copy_nodes(sub, graph, node_pred, data) < 0)
3621 return isl_stat_error;
3622 if (graph_init_table(ctx, sub) < 0)
3623 return isl_stat_error;
3624 for (t = 0; t <= isl_edge_last; ++t)
3625 sub->max_edge[t] = graph->max_edge[t];
3626 if (graph_init_edge_tables(ctx, sub) < 0)
3627 return isl_stat_error;
3628 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3629 return isl_stat_error;
3630 sub->n_row = graph->n_row;
3631 sub->max_row = graph->max_row;
3632 sub->n_total_row = graph->n_total_row;
3633 sub->band_start = graph->band_start;
3635 return isl_stat_ok;
3638 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3639 struct isl_sched_graph *graph);
3640 static __isl_give isl_schedule_node *compute_schedule_wcc(
3641 isl_schedule_node *node, struct isl_sched_graph *graph);
3643 /* Compute a schedule for a subgraph of "graph". In particular, for
3644 * the graph composed of nodes that satisfy node_pred and edges that
3645 * that satisfy edge_pred.
3646 * If the subgraph is known to consist of a single component, then wcc should
3647 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3648 * Otherwise, we call compute_schedule, which will check whether the subgraph
3649 * is connected.
3651 * The schedule is inserted at "node" and the updated schedule node
3652 * is returned.
3654 static __isl_give isl_schedule_node *compute_sub_schedule(
3655 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3656 struct isl_sched_graph *graph,
3657 int (*node_pred)(struct isl_sched_node *node, int data),
3658 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3659 int data, int wcc)
3661 struct isl_sched_graph split = { 0 };
3663 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3664 &split) < 0)
3665 goto error;
3667 if (wcc)
3668 node = compute_schedule_wcc(node, &split);
3669 else
3670 node = compute_schedule(node, &split);
3672 graph_free(ctx, &split);
3673 return node;
3674 error:
3675 graph_free(ctx, &split);
3676 return isl_schedule_node_free(node);
3679 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3681 return edge->src->scc == scc && edge->dst->scc == scc;
3684 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3686 return edge->dst->scc <= scc;
3689 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3691 return edge->src->scc >= scc;
3694 /* Reset the current band by dropping all its schedule rows.
3696 static isl_stat reset_band(struct isl_sched_graph *graph)
3698 int i;
3699 int drop;
3701 drop = graph->n_total_row - graph->band_start;
3702 graph->n_total_row -= drop;
3703 graph->n_row -= drop;
3705 for (i = 0; i < graph->n; ++i) {
3706 struct isl_sched_node *node = &graph->node[i];
3708 isl_map_free(node->sched_map);
3709 node->sched_map = NULL;
3711 node->sched = isl_mat_drop_rows(node->sched,
3712 graph->band_start, drop);
3714 if (!node->sched)
3715 return isl_stat_error;
3718 return isl_stat_ok;
3721 /* Split the current graph into two parts and compute a schedule for each
3722 * part individually. In particular, one part consists of all SCCs up
3723 * to and including graph->src_scc, while the other part contains the other
3724 * SCCs. The split is enforced by a sequence node inserted at position "node"
3725 * in the schedule tree. Return the updated schedule node.
3726 * If either of these two parts consists of a sequence, then it is spliced
3727 * into the sequence containing the two parts.
3729 * The current band is reset. It would be possible to reuse
3730 * the previously computed rows as the first rows in the next
3731 * band, but recomputing them may result in better rows as we are looking
3732 * at a smaller part of the dependence graph.
3734 static __isl_give isl_schedule_node *compute_split_schedule(
3735 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3737 int is_seq;
3738 isl_ctx *ctx;
3739 isl_union_set_list *filters;
3741 if (!node)
3742 return NULL;
3744 if (reset_band(graph) < 0)
3745 return isl_schedule_node_free(node);
3747 next_band(graph);
3749 ctx = isl_schedule_node_get_ctx(node);
3750 filters = extract_split(ctx, graph);
3751 node = isl_schedule_node_insert_sequence(node, filters);
3752 node = isl_schedule_node_child(node, 1);
3753 node = isl_schedule_node_child(node, 0);
3755 node = compute_sub_schedule(node, ctx, graph,
3756 &node_scc_at_least, &edge_src_scc_at_least,
3757 graph->src_scc + 1, 0);
3758 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3759 node = isl_schedule_node_parent(node);
3760 node = isl_schedule_node_parent(node);
3761 if (is_seq)
3762 node = isl_schedule_node_sequence_splice_child(node, 1);
3763 node = isl_schedule_node_child(node, 0);
3764 node = isl_schedule_node_child(node, 0);
3765 node = compute_sub_schedule(node, ctx, graph,
3766 &node_scc_at_most, &edge_dst_scc_at_most,
3767 graph->src_scc, 0);
3768 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3769 node = isl_schedule_node_parent(node);
3770 node = isl_schedule_node_parent(node);
3771 if (is_seq)
3772 node = isl_schedule_node_sequence_splice_child(node, 0);
3774 return node;
3777 /* Insert a band node at position "node" in the schedule tree corresponding
3778 * to the current band in "graph". Mark the band node permutable
3779 * if "permutable" is set.
3780 * The partial schedules and the coincidence property are extracted
3781 * from the graph nodes.
3782 * Return the updated schedule node.
3784 static __isl_give isl_schedule_node *insert_current_band(
3785 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3786 int permutable)
3788 int i;
3789 int start, end, n;
3790 isl_multi_aff *ma;
3791 isl_multi_pw_aff *mpa;
3792 isl_multi_union_pw_aff *mupa;
3794 if (!node)
3795 return NULL;
3797 if (graph->n < 1)
3798 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3799 "graph should have at least one node",
3800 return isl_schedule_node_free(node));
3802 start = graph->band_start;
3803 end = graph->n_total_row;
3804 n = end - start;
3806 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3807 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3808 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3810 for (i = 1; i < graph->n; ++i) {
3811 isl_multi_union_pw_aff *mupa_i;
3813 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3814 start, n);
3815 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3816 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3817 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3819 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3821 for (i = 0; i < n; ++i)
3822 node = isl_schedule_node_band_member_set_coincident(node, i,
3823 graph->node[0].coincident[start + i]);
3824 node = isl_schedule_node_band_set_permutable(node, permutable);
3826 return node;
3829 /* Update the dependence relations based on the current schedule,
3830 * add the current band to "node" and then continue with the computation
3831 * of the next band.
3832 * Return the updated schedule node.
3834 static __isl_give isl_schedule_node *compute_next_band(
3835 __isl_take isl_schedule_node *node,
3836 struct isl_sched_graph *graph, int permutable)
3838 isl_ctx *ctx;
3840 if (!node)
3841 return NULL;
3843 ctx = isl_schedule_node_get_ctx(node);
3844 if (update_edges(ctx, graph) < 0)
3845 return isl_schedule_node_free(node);
3846 node = insert_current_band(node, graph, permutable);
3847 next_band(graph);
3849 node = isl_schedule_node_child(node, 0);
3850 node = compute_schedule(node, graph);
3851 node = isl_schedule_node_parent(node);
3853 return node;
3856 /* Add the constraints "coef" derived from an edge from "node" to itself
3857 * to graph->lp in order to respect the dependences and to try and carry them.
3858 * "pos" is the sequence number of the edge that needs to be carried.
3859 * "coef" represents general constraints on coefficients (c_0, c_x)
3860 * of valid constraints for (y - x) with x and y instances of the node.
3862 * The constraints added to graph->lp need to enforce
3864 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3865 * = c_j_x (y - x) >= e_i
3867 * for each (x,y) in the dependence relation of the edge.
3868 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3869 * taking into account that each coefficient in c_j_x is represented
3870 * as a pair of non-negative coefficients.
3872 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3873 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3875 int offset;
3876 isl_ctx *ctx;
3877 isl_dim_map *dim_map;
3879 if (!coef)
3880 return isl_stat_error;
3882 ctx = isl_basic_set_get_ctx(coef);
3883 offset = coef_var_offset(coef);
3884 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3885 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3886 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3888 return isl_stat_ok;
3891 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3892 * to graph->lp in order to respect the dependences and to try and carry them.
3893 * "pos" is the sequence number of the edge that needs to be carried or
3894 * -1 if no attempt should be made to carry the dependences.
3895 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3896 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3898 * The constraints added to graph->lp need to enforce
3900 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3902 * for each (x,y) in the dependence relation of the edge or
3904 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3906 * if pos is -1.
3907 * That is,
3908 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3909 * or
3910 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3911 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3912 * taking into account that each coefficient in c_j_x and c_k_x is represented
3913 * as a pair of non-negative coefficients.
3915 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3916 struct isl_sched_node *src, struct isl_sched_node *dst,
3917 __isl_take isl_basic_set *coef, int pos)
3919 int offset;
3920 isl_ctx *ctx;
3921 isl_dim_map *dim_map;
3923 if (!coef)
3924 return isl_stat_error;
3926 ctx = isl_basic_set_get_ctx(coef);
3927 offset = coef_var_offset(coef);
3928 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3929 if (pos >= 0)
3930 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3931 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3933 return isl_stat_ok;
3936 /* Data structure for keeping track of the data needed
3937 * to exploit non-trivial lineality spaces.
3939 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3940 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3941 * "equivalent" connects instances to other instances on the same line(s).
3942 * "mask" contains the domain spaces of "equivalent".
3943 * Any instance set not in "mask" does not have a non-trivial lineality space.
3945 struct isl_exploit_lineality_data {
3946 isl_bool any_non_trivial;
3947 isl_union_map *equivalent;
3948 isl_union_set *mask;
3951 /* Data structure collecting information used during the construction
3952 * of an LP for carrying dependences.
3954 * "intra" is a sequence of coefficient constraints for intra-node edges.
3955 * "inter" is a sequence of coefficient constraints for inter-node edges.
3956 * "lineality" contains data used to exploit non-trivial lineality spaces.
3958 struct isl_carry {
3959 isl_basic_set_list *intra;
3960 isl_basic_set_list *inter;
3961 struct isl_exploit_lineality_data lineality;
3964 /* Free all the data stored in "carry".
3966 static void isl_carry_clear(struct isl_carry *carry)
3968 isl_basic_set_list_free(carry->intra);
3969 isl_basic_set_list_free(carry->inter);
3970 isl_union_map_free(carry->lineality.equivalent);
3971 isl_union_set_free(carry->lineality.mask);
3974 /* Return a pointer to the node in "graph" that lives in "space".
3975 * If the requested node has been compressed, then "space"
3976 * corresponds to the compressed space.
3977 * The graph is assumed to have such a node.
3978 * Return NULL in case of error.
3980 * First try and see if "space" is the space of an uncompressed node.
3981 * If so, return that node.
3982 * Otherwise, "space" was constructed by construct_compressed_id and
3983 * contains a user pointer pointing to the node in the tuple id.
3984 * However, this node belongs to the original dependence graph.
3985 * If "graph" is a subgraph of this original dependence graph,
3986 * then the node with the same space still needs to be looked up
3987 * in the current graph.
3989 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
3990 struct isl_sched_graph *graph, __isl_keep isl_space *space)
3992 isl_id *id;
3993 struct isl_sched_node *node;
3995 if (!space)
3996 return NULL;
3998 node = graph_find_node(ctx, graph, space);
3999 if (!node)
4000 return NULL;
4001 if (is_node(graph, node))
4002 return node;
4004 id = isl_space_get_tuple_id(space, isl_dim_set);
4005 node = isl_id_get_user(id);
4006 isl_id_free(id);
4008 if (!node)
4009 return NULL;
4011 if (!is_node(graph->root, node))
4012 isl_die(ctx, isl_error_internal,
4013 "space points to invalid node", return NULL);
4014 if (graph != graph->root)
4015 node = graph_find_node(ctx, graph, node->space);
4016 if (!is_node(graph, node))
4017 isl_die(ctx, isl_error_internal,
4018 "unable to find node", return NULL);
4020 return node;
4023 /* Internal data structure for add_all_constraints.
4025 * "graph" is the schedule constraint graph for which an LP problem
4026 * is being constructed.
4027 * "carry_inter" indicates whether inter-node edges should be carried.
4028 * "pos" is the position of the next edge that needs to be carried.
4030 struct isl_add_all_constraints_data {
4031 isl_ctx *ctx;
4032 struct isl_sched_graph *graph;
4033 int carry_inter;
4034 int pos;
4037 /* Add the constraints "coef" derived from an edge from a node to itself
4038 * to data->graph->lp in order to respect the dependences and
4039 * to try and carry them.
4041 * The space of "coef" is of the form
4043 * coefficients[[c_cst] -> S[c_x]]
4045 * with S[c_x] the (compressed) space of the node.
4046 * Extract the node from the space and call add_intra_constraints.
4048 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
4050 struct isl_add_all_constraints_data *data = user;
4051 isl_space *space;
4052 struct isl_sched_node *node;
4054 space = isl_basic_set_get_space(coef);
4055 space = isl_space_range(isl_space_unwrap(space));
4056 node = graph_find_compressed_node(data->ctx, data->graph, space);
4057 isl_space_free(space);
4058 return add_intra_constraints(data->graph, node, coef, data->pos++);
4061 /* Add the constraints "coef" derived from an edge from a node j
4062 * to a node k to data->graph->lp in order to respect the dependences and
4063 * to try and carry them (provided data->carry_inter is set).
4065 * The space of "coef" is of the form
4067 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4069 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4070 * Extract the nodes from the space and call add_inter_constraints.
4072 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
4074 struct isl_add_all_constraints_data *data = user;
4075 isl_space *space, *dom;
4076 struct isl_sched_node *src, *dst;
4077 int pos;
4079 space = isl_basic_set_get_space(coef);
4080 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
4081 dom = isl_space_domain(isl_space_copy(space));
4082 src = graph_find_compressed_node(data->ctx, data->graph, dom);
4083 isl_space_free(dom);
4084 space = isl_space_range(space);
4085 dst = graph_find_compressed_node(data->ctx, data->graph, space);
4086 isl_space_free(space);
4088 pos = data->carry_inter ? data->pos++ : -1;
4089 return add_inter_constraints(data->graph, src, dst, coef, pos);
4092 /* Add constraints to graph->lp that force all (conditional) validity
4093 * dependences to be respected and attempt to carry them.
4094 * "intra" is the sequence of coefficient constraints for intra-node edges.
4095 * "inter" is the sequence of coefficient constraints for inter-node edges.
4096 * "carry_inter" indicates whether inter-node edges should be carried or
4097 * only respected.
4099 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
4100 __isl_keep isl_basic_set_list *intra,
4101 __isl_keep isl_basic_set_list *inter, int carry_inter)
4103 struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
4105 data.pos = 0;
4106 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
4107 return isl_stat_error;
4108 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
4109 return isl_stat_error;
4110 return isl_stat_ok;
4113 /* Internal data structure for count_all_constraints
4114 * for keeping track of the number of equality and inequality constraints.
4116 struct isl_sched_count {
4117 int n_eq;
4118 int n_ineq;
4121 /* Add the number of equality and inequality constraints of "bset"
4122 * to data->n_eq and data->n_ineq.
4124 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
4126 struct isl_sched_count *data = user;
4128 return update_count(bset, 1, &data->n_eq, &data->n_ineq);
4131 /* Count the number of equality and inequality constraints
4132 * that will be added to the carry_lp problem.
4133 * We count each edge exactly once.
4134 * "intra" is the sequence of coefficient constraints for intra-node edges.
4135 * "inter" is the sequence of coefficient constraints for inter-node edges.
4137 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
4138 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
4140 struct isl_sched_count data;
4142 data.n_eq = data.n_ineq = 0;
4143 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
4144 return isl_stat_error;
4145 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
4146 return isl_stat_error;
4148 *n_eq = data.n_eq;
4149 *n_ineq = data.n_ineq;
4151 return isl_stat_ok;
4154 /* Construct an LP problem for finding schedule coefficients
4155 * such that the schedule carries as many validity dependences as possible.
4156 * In particular, for each dependence i, we bound the dependence distance
4157 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4158 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4159 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4160 * "intra" is the sequence of coefficient constraints for intra-node edges.
4161 * "inter" is the sequence of coefficient constraints for inter-node edges.
4162 * "n_edge" is the total number of edges.
4163 * "carry_inter" indicates whether inter-node edges should be carried or
4164 * only respected. That is, if "carry_inter" is not set, then
4165 * no e_i variables are introduced for the inter-node edges.
4167 * All variables of the LP are non-negative. The actual coefficients
4168 * may be negative, so each coefficient is represented as the difference
4169 * of two non-negative variables. The negative part always appears
4170 * immediately before the positive part.
4171 * Other than that, the variables have the following order
4173 * - sum of (1 - e_i) over all edges
4174 * - sum of all c_n coefficients
4175 * (unconstrained when computing non-parametric schedules)
4176 * - sum of positive and negative parts of all c_x coefficients
4177 * - for each edge
4178 * - e_i
4179 * - for each node
4180 * - positive and negative parts of c_i_x, in opposite order
4181 * - c_i_n (if parametric)
4182 * - c_i_0
4184 * The constraints are those from the (validity) edges plus three equalities
4185 * to express the sums and n_edge inequalities to express e_i <= 1.
4187 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
4188 int n_edge, __isl_keep isl_basic_set_list *intra,
4189 __isl_keep isl_basic_set_list *inter, int carry_inter)
4191 int i;
4192 int k;
4193 isl_space *dim;
4194 unsigned total;
4195 int n_eq, n_ineq;
4197 total = 3 + n_edge;
4198 for (i = 0; i < graph->n; ++i) {
4199 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4200 node->start = total;
4201 total += 1 + node->nparam + 2 * node->nvar;
4204 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
4205 return isl_stat_error;
4207 dim = isl_space_set_alloc(ctx, 0, total);
4208 isl_basic_set_free(graph->lp);
4209 n_eq += 3;
4210 n_ineq += n_edge;
4211 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
4212 graph->lp = isl_basic_set_set_rational(graph->lp);
4214 k = isl_basic_set_alloc_equality(graph->lp);
4215 if (k < 0)
4216 return isl_stat_error;
4217 isl_seq_clr(graph->lp->eq[k], 1 + total);
4218 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4219 isl_int_set_si(graph->lp->eq[k][1], 1);
4220 for (i = 0; i < n_edge; ++i)
4221 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4223 if (add_param_sum_constraint(graph, 1) < 0)
4224 return isl_stat_error;
4225 if (add_var_sum_constraint(graph, 2) < 0)
4226 return isl_stat_error;
4228 for (i = 0; i < n_edge; ++i) {
4229 k = isl_basic_set_alloc_inequality(graph->lp);
4230 if (k < 0)
4231 return isl_stat_error;
4232 isl_seq_clr(graph->lp->ineq[k], 1 + total);
4233 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4234 isl_int_set_si(graph->lp->ineq[k][0], 1);
4237 if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
4238 return isl_stat_error;
4240 return isl_stat_ok;
4243 static __isl_give isl_schedule_node *compute_component_schedule(
4244 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4245 int wcc);
4247 /* If the schedule_split_scaled option is set and if the linear
4248 * parts of the scheduling rows for all nodes in the graphs have
4249 * a non-trivial common divisor, then remove this
4250 * common divisor from the linear part.
4251 * Otherwise, insert a band node directly and continue with
4252 * the construction of the schedule.
4254 * If a non-trivial common divisor is found, then
4255 * the linear part is reduced and the remainder is ignored.
4256 * The pieces of the graph that are assigned different remainders
4257 * form (groups of) strongly connected components within
4258 * the scaled down band. If needed, they can therefore
4259 * be ordered along this remainder in a sequence node.
4260 * However, this ordering is not enforced here in order to allow
4261 * the scheduler to combine some of the strongly connected components.
4263 static __isl_give isl_schedule_node *split_scaled(
4264 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4266 int i;
4267 int row;
4268 isl_ctx *ctx;
4269 isl_int gcd, gcd_i;
4271 if (!node)
4272 return NULL;
4274 ctx = isl_schedule_node_get_ctx(node);
4275 if (!ctx->opt->schedule_split_scaled)
4276 return compute_next_band(node, graph, 0);
4277 if (graph->n <= 1)
4278 return compute_next_band(node, graph, 0);
4280 isl_int_init(gcd);
4281 isl_int_init(gcd_i);
4283 isl_int_set_si(gcd, 0);
4285 row = isl_mat_rows(graph->node[0].sched) - 1;
4287 for (i = 0; i < graph->n; ++i) {
4288 struct isl_sched_node *node = &graph->node[i];
4289 int cols = isl_mat_cols(node->sched);
4291 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4292 isl_int_gcd(gcd, gcd, gcd_i);
4295 isl_int_clear(gcd_i);
4297 if (isl_int_cmp_si(gcd, 1) <= 0) {
4298 isl_int_clear(gcd);
4299 return compute_next_band(node, graph, 0);
4302 for (i = 0; i < graph->n; ++i) {
4303 struct isl_sched_node *node = &graph->node[i];
4305 isl_int_fdiv_q(node->sched->row[row][0],
4306 node->sched->row[row][0], gcd);
4307 isl_int_mul(node->sched->row[row][0],
4308 node->sched->row[row][0], gcd);
4309 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4310 if (!node->sched)
4311 goto error;
4314 isl_int_clear(gcd);
4316 return compute_next_band(node, graph, 0);
4317 error:
4318 isl_int_clear(gcd);
4319 return isl_schedule_node_free(node);
4322 /* Is the schedule row "sol" trivial on node "node"?
4323 * That is, is the solution zero on the dimensions linearly independent of
4324 * the previously found solutions?
4325 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4327 * Each coefficient is represented as the difference between
4328 * two non-negative values in "sol".
4329 * We construct the schedule row s and check if it is linearly
4330 * independent of previously computed schedule rows
4331 * by computing T s, with T the linear combinations that are zero
4332 * on linearly dependent schedule rows.
4333 * If the result consists of all zeros, then the solution is trivial.
4335 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4337 int trivial;
4338 isl_vec *node_sol;
4340 if (!sol)
4341 return -1;
4342 if (node->nvar == node->rank)
4343 return 0;
4345 node_sol = extract_var_coef(node, sol);
4346 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4347 if (!node_sol)
4348 return -1;
4350 trivial = isl_seq_first_non_zero(node_sol->el,
4351 node->nvar - node->rank) == -1;
4353 isl_vec_free(node_sol);
4355 return trivial;
4358 /* Is the schedule row "sol" trivial on any node where it should
4359 * not be trivial?
4360 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4362 static int is_any_trivial(struct isl_sched_graph *graph,
4363 __isl_keep isl_vec *sol)
4365 int i;
4367 for (i = 0; i < graph->n; ++i) {
4368 struct isl_sched_node *node = &graph->node[i];
4369 int trivial;
4371 if (!needs_row(graph, node))
4372 continue;
4373 trivial = is_trivial(node, sol);
4374 if (trivial < 0 || trivial)
4375 return trivial;
4378 return 0;
4381 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4382 * If so, return the position of the coalesced dimension.
4383 * Otherwise, return node->nvar or -1 on error.
4385 * In particular, look for pairs of coefficients c_i and c_j such that
4386 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4387 * If any such pair is found, then return i.
4388 * If size_i is infinity, then no check on c_i needs to be performed.
4390 static int find_node_coalescing(struct isl_sched_node *node,
4391 __isl_keep isl_vec *sol)
4393 int i, j;
4394 isl_int max;
4395 isl_vec *csol;
4397 if (node->nvar <= 1)
4398 return node->nvar;
4400 csol = extract_var_coef(node, sol);
4401 if (!csol)
4402 return -1;
4403 isl_int_init(max);
4404 for (i = 0; i < node->nvar; ++i) {
4405 isl_val *v;
4407 if (isl_int_is_zero(csol->el[i]))
4408 continue;
4409 v = isl_multi_val_get_val(node->sizes, i);
4410 if (!v)
4411 goto error;
4412 if (!isl_val_is_int(v)) {
4413 isl_val_free(v);
4414 continue;
4416 v = isl_val_div_ui(v, 2);
4417 v = isl_val_ceil(v);
4418 if (!v)
4419 goto error;
4420 isl_int_mul(max, v->n, csol->el[i]);
4421 isl_val_free(v);
4423 for (j = 0; j < node->nvar; ++j) {
4424 if (j == i)
4425 continue;
4426 if (isl_int_abs_gt(csol->el[j], max))
4427 break;
4429 if (j < node->nvar)
4430 break;
4433 isl_int_clear(max);
4434 isl_vec_free(csol);
4435 return i;
4436 error:
4437 isl_int_clear(max);
4438 isl_vec_free(csol);
4439 return -1;
4442 /* Force the schedule coefficient at position "pos" of "node" to be zero
4443 * in "tl".
4444 * The coefficient is encoded as the difference between two non-negative
4445 * variables. Force these two variables to have the same value.
4447 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4448 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4450 int dim;
4451 isl_ctx *ctx;
4452 isl_vec *eq;
4454 ctx = isl_space_get_ctx(node->space);
4455 dim = isl_tab_lexmin_dim(tl);
4456 if (dim < 0)
4457 return isl_tab_lexmin_free(tl);
4458 eq = isl_vec_alloc(ctx, 1 + dim);
4459 eq = isl_vec_clr(eq);
4460 if (!eq)
4461 return isl_tab_lexmin_free(tl);
4463 pos = 1 + node_var_coef_pos(node, pos);
4464 isl_int_set_si(eq->el[pos], 1);
4465 isl_int_set_si(eq->el[pos + 1], -1);
4466 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4467 isl_vec_free(eq);
4469 return tl;
4472 /* Return the lexicographically smallest rational point in the basic set
4473 * from which "tl" was constructed, double checking that this input set
4474 * was not empty.
4476 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4478 isl_vec *sol;
4480 sol = isl_tab_lexmin_get_solution(tl);
4481 if (!sol)
4482 return NULL;
4483 if (sol->size == 0)
4484 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4485 "error in schedule construction",
4486 return isl_vec_free(sol));
4487 return sol;
4490 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4491 * carry any of the "n_edge" groups of dependences?
4492 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4493 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4494 * by the edge are carried by the solution.
4495 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4496 * one of those is carried.
4498 * Note that despite the fact that the problem is solved using a rational
4499 * solver, the solution is guaranteed to be integral.
4500 * Specifically, the dependence distance lower bounds e_i (and therefore
4501 * also their sum) are integers. See Lemma 5 of [1].
4503 * Any potential denominator of the sum is cleared by this function.
4504 * The denominator is not relevant for any of the other elements
4505 * in the solution.
4507 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4508 * Problem, Part II: Multi-Dimensional Time.
4509 * In Intl. Journal of Parallel Programming, 1992.
4511 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4513 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4514 isl_int_set_si(sol->el[0], 1);
4515 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4518 /* Return the lexicographically smallest rational point in "lp",
4519 * assuming that all variables are non-negative and performing some
4520 * additional sanity checks.
4521 * If "want_integral" is set, then compute the lexicographically smallest
4522 * integer point instead.
4523 * In particular, "lp" should not be empty by construction.
4524 * Double check that this is the case.
4525 * If dependences are not carried for any of the "n_edge" edges,
4526 * then return an empty vector.
4528 * If the schedule_treat_coalescing option is set and
4529 * if the computed schedule performs loop coalescing on a given node,
4530 * i.e., if it is of the form
4532 * c_i i + c_j j + ...
4534 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4535 * to cut out this solution. Repeat this process until no more loop
4536 * coalescing occurs or until no more dependences can be carried.
4537 * In the latter case, revert to the previously computed solution.
4539 * If the caller requests an integral solution and if coalescing should
4540 * be treated, then perform the coalescing treatment first as
4541 * an integral solution computed before coalescing treatment
4542 * would carry the same number of edges and would therefore probably
4543 * also be coalescing.
4545 * To allow the coalescing treatment to be performed first,
4546 * the initial solution is allowed to be rational and it is only
4547 * cut out (if needed) in the next iteration, if no coalescing measures
4548 * were taken.
4550 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4551 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4553 int i, pos, cut;
4554 isl_ctx *ctx;
4555 isl_tab_lexmin *tl;
4556 isl_vec *sol = NULL, *prev;
4557 int treat_coalescing;
4558 int try_again;
4560 if (!lp)
4561 return NULL;
4562 ctx = isl_basic_set_get_ctx(lp);
4563 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4564 tl = isl_tab_lexmin_from_basic_set(lp);
4566 cut = 0;
4567 do {
4568 int integral;
4570 try_again = 0;
4571 if (cut)
4572 tl = isl_tab_lexmin_cut_to_integer(tl);
4573 prev = sol;
4574 sol = non_empty_solution(tl);
4575 if (!sol)
4576 goto error;
4578 integral = isl_int_is_one(sol->el[0]);
4579 if (!carries_dependences(sol, n_edge)) {
4580 if (!prev)
4581 prev = isl_vec_alloc(ctx, 0);
4582 isl_vec_free(sol);
4583 sol = prev;
4584 break;
4586 prev = isl_vec_free(prev);
4587 cut = want_integral && !integral;
4588 if (cut)
4589 try_again = 1;
4590 if (!treat_coalescing)
4591 continue;
4592 for (i = 0; i < graph->n; ++i) {
4593 struct isl_sched_node *node = &graph->node[i];
4595 pos = find_node_coalescing(node, sol);
4596 if (pos < 0)
4597 goto error;
4598 if (pos < node->nvar)
4599 break;
4601 if (i < graph->n) {
4602 try_again = 1;
4603 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4604 cut = 0;
4606 } while (try_again);
4608 isl_tab_lexmin_free(tl);
4610 return sol;
4611 error:
4612 isl_tab_lexmin_free(tl);
4613 isl_vec_free(prev);
4614 isl_vec_free(sol);
4615 return NULL;
4618 /* If "edge" is an edge from a node to itself, then add the corresponding
4619 * dependence relation to "umap".
4620 * If "node" has been compressed, then the dependence relation
4621 * is also compressed first.
4623 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4624 struct isl_sched_edge *edge)
4626 isl_map *map;
4627 struct isl_sched_node *node = edge->src;
4629 if (edge->src != edge->dst)
4630 return umap;
4632 map = isl_map_copy(edge->map);
4633 if (node->compressed) {
4634 map = isl_map_preimage_domain_multi_aff(map,
4635 isl_multi_aff_copy(node->decompress));
4636 map = isl_map_preimage_range_multi_aff(map,
4637 isl_multi_aff_copy(node->decompress));
4639 umap = isl_union_map_add_map(umap, map);
4640 return umap;
4643 /* If "edge" is an edge from a node to another node, then add the corresponding
4644 * dependence relation to "umap".
4645 * If the source or destination nodes of "edge" have been compressed,
4646 * then the dependence relation is also compressed first.
4648 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4649 struct isl_sched_edge *edge)
4651 isl_map *map;
4653 if (edge->src == edge->dst)
4654 return umap;
4656 map = isl_map_copy(edge->map);
4657 if (edge->src->compressed)
4658 map = isl_map_preimage_domain_multi_aff(map,
4659 isl_multi_aff_copy(edge->src->decompress));
4660 if (edge->dst->compressed)
4661 map = isl_map_preimage_range_multi_aff(map,
4662 isl_multi_aff_copy(edge->dst->decompress));
4663 umap = isl_union_map_add_map(umap, map);
4664 return umap;
4667 /* Internal data structure used by union_drop_coalescing_constraints
4668 * to collect bounds on all relevant statements.
4670 * "graph" is the schedule constraint graph for which an LP problem
4671 * is being constructed.
4672 * "bounds" collects the bounds.
4674 struct isl_collect_bounds_data {
4675 isl_ctx *ctx;
4676 struct isl_sched_graph *graph;
4677 isl_union_set *bounds;
4680 /* Add the size bounds for the node with instance deltas in "set"
4681 * to data->bounds.
4683 static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
4685 struct isl_collect_bounds_data *data = user;
4686 struct isl_sched_node *node;
4687 isl_space *space;
4688 isl_set *bounds;
4690 space = isl_set_get_space(set);
4691 isl_set_free(set);
4693 node = graph_find_compressed_node(data->ctx, data->graph, space);
4694 isl_space_free(space);
4696 bounds = isl_set_from_basic_set(get_size_bounds(node));
4697 data->bounds = isl_union_set_add_set(data->bounds, bounds);
4699 return isl_stat_ok;
4702 /* Drop some constraints from "delta" that could be exploited
4703 * to construct loop coalescing schedules.
4704 * In particular, drop those constraint that bound the difference
4705 * to the size of the domain.
4706 * Do this for each set/node in "delta" separately.
4707 * The parameters are assumed to have been projected out by the caller.
4709 static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
4710 struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
4712 struct isl_collect_bounds_data data = { ctx, graph };
4714 data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4715 if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
4716 data.bounds = isl_union_set_free(data.bounds);
4717 delta = isl_union_set_plain_gist(delta, data.bounds);
4719 return delta;
4722 /* Given a non-trivial lineality space "lineality", add the corresponding
4723 * universe set to data->mask and add a map from elements to
4724 * other elements along the lines in "lineality" to data->equivalent.
4725 * If this is the first time this function gets called
4726 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4727 * initialize data->mask and data->equivalent.
4729 * In particular, if the lineality space is defined by equality constraints
4731 * E x = 0
4733 * then construct an affine mapping
4735 * f : x -> E x
4737 * and compute the equivalence relation of having the same image under f:
4739 * { x -> x' : E x = E x' }
4741 static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
4742 struct isl_exploit_lineality_data *data)
4744 isl_mat *eq;
4745 isl_space *space;
4746 isl_set *univ;
4747 isl_multi_aff *ma;
4748 isl_multi_pw_aff *mpa;
4749 isl_map *map;
4750 int n;
4752 if (isl_basic_set_check_no_locals(lineality) < 0)
4753 goto error;
4755 space = isl_basic_set_get_space(lineality);
4756 if (!data->any_non_trivial) {
4757 data->equivalent = isl_union_map_empty(isl_space_copy(space));
4758 data->mask = isl_union_set_empty(isl_space_copy(space));
4760 data->any_non_trivial = isl_bool_true;
4762 univ = isl_set_universe(isl_space_copy(space));
4763 data->mask = isl_union_set_add_set(data->mask, univ);
4765 eq = isl_basic_set_extract_equalities(lineality);
4766 n = isl_mat_rows(eq);
4767 eq = isl_mat_insert_zero_rows(eq, 0, 1);
4768 eq = isl_mat_set_element_si(eq, 0, 0, 1);
4769 space = isl_space_from_domain(space);
4770 space = isl_space_add_dims(space, isl_dim_out, n);
4771 ma = isl_multi_aff_from_aff_mat(space, eq);
4772 mpa = isl_multi_pw_aff_from_multi_aff(ma);
4773 map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
4774 data->equivalent = isl_union_map_add_map(data->equivalent, map);
4776 isl_basic_set_free(lineality);
4777 return isl_stat_ok;
4778 error:
4779 isl_basic_set_free(lineality);
4780 return isl_stat_error;
4783 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4784 * the origin or, in other words, satisfies a number of equality constraints
4785 * that is smaller than the dimension of the set).
4786 * If so, extend data->mask and data->equivalent accordingly.
4788 * The input should not have any local variables already, but
4789 * isl_set_remove_divs is called to make sure it does not.
4791 static isl_stat add_lineality(__isl_take isl_set *set, void *user)
4793 struct isl_exploit_lineality_data *data = user;
4794 isl_basic_set *hull;
4795 int dim, n_eq;
4797 set = isl_set_remove_divs(set);
4798 hull = isl_set_unshifted_simple_hull(set);
4799 dim = isl_basic_set_dim(hull, isl_dim_set);
4800 n_eq = isl_basic_set_n_equality(hull);
4801 if (!hull)
4802 return isl_stat_error;
4803 if (dim != n_eq)
4804 return add_non_trivial_lineality(hull, data);
4805 isl_basic_set_free(hull);
4806 return isl_stat_ok;
4809 /* Check if the difference set on intra-node schedule constraints "intra"
4810 * has any non-trivial lineality space.
4811 * If so, then extend the difference set to a difference set
4812 * on equivalent elements. That is, if "intra" is
4814 * { y - x : (x,y) \in V }
4816 * and elements are equivalent if they have the same image under f,
4817 * then return
4819 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4821 * or, since f is linear,
4823 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4825 * The results of the search for non-trivial lineality spaces is stored
4826 * in "data".
4828 static __isl_give isl_union_set *exploit_intra_lineality(
4829 __isl_take isl_union_set *intra,
4830 struct isl_exploit_lineality_data *data)
4832 isl_union_set *lineality;
4833 isl_union_set *uset;
4835 data->any_non_trivial = isl_bool_false;
4836 lineality = isl_union_set_copy(intra);
4837 lineality = isl_union_set_combined_lineality_space(lineality);
4838 if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
4839 data->any_non_trivial = isl_bool_error;
4840 isl_union_set_free(lineality);
4842 if (data->any_non_trivial < 0)
4843 return isl_union_set_free(intra);
4844 if (!data->any_non_trivial)
4845 return intra;
4847 uset = isl_union_set_copy(intra);
4848 intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
4849 uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
4850 intra = isl_union_set_union(intra, uset);
4852 intra = isl_union_set_remove_divs(intra);
4854 return intra;
4857 /* If the difference set on intra-node schedule constraints was found to have
4858 * any non-trivial lineality space by exploit_intra_lineality,
4859 * as recorded in "data", then extend the inter-node
4860 * schedule constraints "inter" to schedule constraints on equivalent elements.
4861 * That is, if "inter" is V and
4862 * elements are equivalent if they have the same image under f, then return
4864 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4866 static __isl_give isl_union_map *exploit_inter_lineality(
4867 __isl_take isl_union_map *inter,
4868 struct isl_exploit_lineality_data *data)
4870 isl_union_map *umap;
4872 if (data->any_non_trivial < 0)
4873 return isl_union_map_free(inter);
4874 if (!data->any_non_trivial)
4875 return inter;
4877 umap = isl_union_map_copy(inter);
4878 inter = isl_union_map_subtract_range(inter,
4879 isl_union_set_copy(data->mask));
4880 umap = isl_union_map_apply_range(umap,
4881 isl_union_map_copy(data->equivalent));
4882 inter = isl_union_map_union(inter, umap);
4883 umap = isl_union_map_copy(inter);
4884 inter = isl_union_map_subtract_domain(inter,
4885 isl_union_set_copy(data->mask));
4886 umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
4887 umap);
4888 inter = isl_union_map_union(inter, umap);
4890 inter = isl_union_map_remove_divs(inter);
4892 return inter;
4895 /* For each (conditional) validity edge in "graph",
4896 * add the corresponding dependence relation using "add"
4897 * to a collection of dependence relations and return the result.
4898 * If "coincidence" is set, then coincidence edges are considered as well.
4900 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4901 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4902 struct isl_sched_edge *edge), int coincidence)
4904 int i;
4905 isl_space *space;
4906 isl_union_map *umap;
4908 space = isl_space_copy(graph->node[0].space);
4909 umap = isl_union_map_empty(space);
4911 for (i = 0; i < graph->n_edge; ++i) {
4912 struct isl_sched_edge *edge = &graph->edge[i];
4914 if (!is_any_validity(edge) &&
4915 (!coincidence || !is_coincidence(edge)))
4916 continue;
4918 umap = add(umap, edge);
4921 return umap;
4924 /* For each dependence relation on a (conditional) validity edge
4925 * from a node to itself,
4926 * construct the set of coefficients of valid constraints for elements
4927 * in that dependence relation and collect the results.
4928 * If "coincidence" is set, then coincidence edges are considered as well.
4930 * In particular, for each dependence relation R, constraints
4931 * on coefficients (c_0, c_x) are constructed such that
4933 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4935 * If the schedule_treat_coalescing option is set, then some constraints
4936 * that could be exploited to construct coalescing schedules
4937 * are removed before the dual is computed, but after the parameters
4938 * have been projected out.
4939 * The entire computation is essentially the same as that performed
4940 * by intra_coefficients, except that it operates on multiple
4941 * edges together and that the parameters are always projected out.
4943 * Additionally, exploit any non-trivial lineality space
4944 * in the difference set after removing coalescing constraints and
4945 * store the results of the non-trivial lineality space detection in "data".
4946 * The procedure is currently run unconditionally, but it is unlikely
4947 * to find any non-trivial lineality spaces if no coalescing constraints
4948 * have been removed.
4950 * Note that if a dependence relation is a union of basic maps,
4951 * then each basic map needs to be treated individually as it may only
4952 * be possible to carry the dependences expressed by some of those
4953 * basic maps and not all of them.
4954 * The collected validity constraints are therefore not coalesced and
4955 * it is assumed that they are not coalesced automatically.
4956 * Duplicate basic maps can be removed, however.
4957 * In particular, if the same basic map appears as a disjunct
4958 * in multiple edges, then it only needs to be carried once.
4960 static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
4961 struct isl_sched_graph *graph, int coincidence,
4962 struct isl_exploit_lineality_data *data)
4964 isl_union_map *intra;
4965 isl_union_set *delta;
4966 isl_basic_set_list *list;
4968 intra = collect_validity(graph, &add_intra, coincidence);
4969 delta = isl_union_map_deltas(intra);
4970 delta = isl_union_set_project_out_all_params(delta);
4971 delta = isl_union_set_remove_divs(delta);
4972 if (isl_options_get_schedule_treat_coalescing(ctx))
4973 delta = union_drop_coalescing_constraints(ctx, graph, delta);
4974 delta = exploit_intra_lineality(delta, data);
4975 list = isl_union_set_get_basic_set_list(delta);
4976 isl_union_set_free(delta);
4978 return isl_basic_set_list_coefficients(list);
4981 /* For each dependence relation on a (conditional) validity edge
4982 * from a node to some other node,
4983 * construct the set of coefficients of valid constraints for elements
4984 * in that dependence relation and collect the results.
4985 * If "coincidence" is set, then coincidence edges are considered as well.
4987 * In particular, for each dependence relation R, constraints
4988 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4990 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4992 * This computation is essentially the same as that performed
4993 * by inter_coefficients, except that it operates on multiple
4994 * edges together.
4996 * Additionally, exploit any non-trivial lineality space
4997 * that may have been discovered by collect_intra_validity
4998 * (as stored in "data").
5000 * Note that if a dependence relation is a union of basic maps,
5001 * then each basic map needs to be treated individually as it may only
5002 * be possible to carry the dependences expressed by some of those
5003 * basic maps and not all of them.
5004 * The collected validity constraints are therefore not coalesced and
5005 * it is assumed that they are not coalesced automatically.
5006 * Duplicate basic maps can be removed, however.
5007 * In particular, if the same basic map appears as a disjunct
5008 * in multiple edges, then it only needs to be carried once.
5010 static __isl_give isl_basic_set_list *collect_inter_validity(
5011 struct isl_sched_graph *graph, int coincidence,
5012 struct isl_exploit_lineality_data *data)
5014 isl_union_map *inter;
5015 isl_union_set *wrap;
5016 isl_basic_set_list *list;
5018 inter = collect_validity(graph, &add_inter, coincidence);
5019 inter = exploit_inter_lineality(inter, data);
5020 inter = isl_union_map_remove_divs(inter);
5021 wrap = isl_union_map_wrap(inter);
5022 list = isl_union_set_get_basic_set_list(wrap);
5023 isl_union_set_free(wrap);
5024 return isl_basic_set_list_coefficients(list);
5027 /* Construct an LP problem for finding schedule coefficients
5028 * such that the schedule carries as many of the "n_edge" groups of
5029 * dependences as possible based on the corresponding coefficient
5030 * constraints and return the lexicographically smallest non-trivial solution.
5031 * "intra" is the sequence of coefficient constraints for intra-node edges.
5032 * "inter" is the sequence of coefficient constraints for inter-node edges.
5033 * If "want_integral" is set, then compute an integral solution
5034 * for the coefficients rather than using the numerators
5035 * of a rational solution.
5036 * "carry_inter" indicates whether inter-node edges should be carried or
5037 * only respected.
5039 * If none of the "n_edge" groups can be carried
5040 * then return an empty vector.
5042 static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
5043 struct isl_sched_graph *graph, int n_edge,
5044 __isl_keep isl_basic_set_list *intra,
5045 __isl_keep isl_basic_set_list *inter, int want_integral,
5046 int carry_inter)
5048 isl_basic_set *lp;
5050 if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
5051 return NULL;
5053 lp = isl_basic_set_copy(graph->lp);
5054 return non_neg_lexmin(graph, lp, n_edge, want_integral);
5057 /* Construct an LP problem for finding schedule coefficients
5058 * such that the schedule carries as many of the validity dependences
5059 * as possible and
5060 * return the lexicographically smallest non-trivial solution.
5061 * If "fallback" is set, then the carrying is performed as a fallback
5062 * for the Pluto-like scheduler.
5063 * If "coincidence" is set, then try and carry coincidence edges as well.
5065 * The variable "n_edge" stores the number of groups that should be carried.
5066 * If none of the "n_edge" groups can be carried
5067 * then return an empty vector.
5068 * If, moreover, "n_edge" is zero, then the LP problem does not even
5069 * need to be constructed.
5071 * If a fallback solution is being computed, then compute an integral solution
5072 * for the coefficients rather than using the numerators
5073 * of a rational solution.
5075 * If a fallback solution is being computed, if there are any intra-node
5076 * dependences, and if requested by the user, then first try
5077 * to only carry those intra-node dependences.
5078 * If this fails to carry any dependences, then try again
5079 * with the inter-node dependences included.
5081 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
5082 struct isl_sched_graph *graph, int fallback, int coincidence)
5084 int n_intra, n_inter;
5085 int n_edge;
5086 struct isl_carry carry = { 0 };
5087 isl_vec *sol;
5089 carry.intra = collect_intra_validity(ctx, graph, coincidence,
5090 &carry.lineality);
5091 carry.inter = collect_inter_validity(graph, coincidence,
5092 &carry.lineality);
5093 if (!carry.intra || !carry.inter)
5094 goto error;
5095 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
5096 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
5098 if (fallback && n_intra > 0 &&
5099 isl_options_get_schedule_carry_self_first(ctx)) {
5100 sol = compute_carrying_sol_coef(ctx, graph, n_intra,
5101 carry.intra, carry.inter, fallback, 0);
5102 if (!sol || sol->size != 0 || n_inter == 0) {
5103 isl_carry_clear(&carry);
5104 return sol;
5106 isl_vec_free(sol);
5109 n_edge = n_intra + n_inter;
5110 if (n_edge == 0) {
5111 isl_carry_clear(&carry);
5112 return isl_vec_alloc(ctx, 0);
5115 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
5116 carry.intra, carry.inter, fallback, 1);
5117 isl_carry_clear(&carry);
5118 return sol;
5119 error:
5120 isl_carry_clear(&carry);
5121 return NULL;
5124 /* Construct a schedule row for each node such that as many validity dependences
5125 * as possible are carried and then continue with the next band.
5126 * If "fallback" is set, then the carrying is performed as a fallback
5127 * for the Pluto-like scheduler.
5128 * If "coincidence" is set, then try and carry coincidence edges as well.
5130 * If there are no validity dependences, then no dependence can be carried and
5131 * the procedure is guaranteed to fail. If there is more than one component,
5132 * then try computing a schedule on each component separately
5133 * to prevent or at least postpone this failure.
5135 * If a schedule row is computed, then check that dependences are carried
5136 * for at least one of the edges.
5138 * If the computed schedule row turns out to be trivial on one or
5139 * more nodes where it should not be trivial, then we throw it away
5140 * and try again on each component separately.
5142 * If there is only one component, then we accept the schedule row anyway,
5143 * but we do not consider it as a complete row and therefore do not
5144 * increment graph->n_row. Note that the ranks of the nodes that
5145 * do get a non-trivial schedule part will get updated regardless and
5146 * graph->maxvar is computed based on these ranks. The test for
5147 * whether more schedule rows are required in compute_schedule_wcc
5148 * is therefore not affected.
5150 * Insert a band corresponding to the schedule row at position "node"
5151 * of the schedule tree and continue with the construction of the schedule.
5152 * This insertion and the continued construction is performed by split_scaled
5153 * after optionally checking for non-trivial common divisors.
5155 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
5156 struct isl_sched_graph *graph, int fallback, int coincidence)
5158 int trivial;
5159 isl_ctx *ctx;
5160 isl_vec *sol;
5162 if (!node)
5163 return NULL;
5165 ctx = isl_schedule_node_get_ctx(node);
5166 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
5167 if (!sol)
5168 return isl_schedule_node_free(node);
5169 if (sol->size == 0) {
5170 isl_vec_free(sol);
5171 if (graph->scc > 1)
5172 return compute_component_schedule(node, graph, 1);
5173 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
5174 return isl_schedule_node_free(node));
5177 trivial = is_any_trivial(graph, sol);
5178 if (trivial < 0) {
5179 sol = isl_vec_free(sol);
5180 } else if (trivial && graph->scc > 1) {
5181 isl_vec_free(sol);
5182 return compute_component_schedule(node, graph, 1);
5185 if (update_schedule(graph, sol, 0) < 0)
5186 return isl_schedule_node_free(node);
5187 if (trivial)
5188 graph->n_row--;
5190 return split_scaled(node, graph);
5193 /* Construct a schedule row for each node such that as many validity dependences
5194 * as possible are carried and then continue with the next band.
5195 * Do so as a fallback for the Pluto-like scheduler.
5196 * If "coincidence" is set, then try and carry coincidence edges as well.
5198 static __isl_give isl_schedule_node *carry_fallback(
5199 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5200 int coincidence)
5202 return carry(node, graph, 1, coincidence);
5205 /* Construct a schedule row for each node such that as many validity dependences
5206 * as possible are carried and then continue with the next band.
5207 * Do so for the case where the Feautrier scheduler was selected
5208 * by the user.
5210 static __isl_give isl_schedule_node *carry_feautrier(
5211 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5213 return carry(node, graph, 0, 0);
5216 /* Construct a schedule row for each node such that as many validity dependences
5217 * as possible are carried and then continue with the next band.
5218 * Do so as a fallback for the Pluto-like scheduler.
5220 static __isl_give isl_schedule_node *carry_dependences(
5221 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5223 return carry_fallback(node, graph, 0);
5226 /* Construct a schedule row for each node such that as many validity or
5227 * coincidence dependences as possible are carried and
5228 * then continue with the next band.
5229 * Do so as a fallback for the Pluto-like scheduler.
5231 static __isl_give isl_schedule_node *carry_coincidence(
5232 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5234 return carry_fallback(node, graph, 1);
5237 /* Topologically sort statements mapped to the same schedule iteration
5238 * and add insert a sequence node in front of "node"
5239 * corresponding to this order.
5240 * If "initialized" is set, then it may be assumed that compute_maxvar
5241 * has been called on the current band. Otherwise, call
5242 * compute_maxvar if and before carry_dependences gets called.
5244 * If it turns out to be impossible to sort the statements apart,
5245 * because different dependences impose different orderings
5246 * on the statements, then we extend the schedule such that
5247 * it carries at least one more dependence.
5249 static __isl_give isl_schedule_node *sort_statements(
5250 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5251 int initialized)
5253 isl_ctx *ctx;
5254 isl_union_set_list *filters;
5256 if (!node)
5257 return NULL;
5259 ctx = isl_schedule_node_get_ctx(node);
5260 if (graph->n < 1)
5261 isl_die(ctx, isl_error_internal,
5262 "graph should have at least one node",
5263 return isl_schedule_node_free(node));
5265 if (graph->n == 1)
5266 return node;
5268 if (update_edges(ctx, graph) < 0)
5269 return isl_schedule_node_free(node);
5271 if (graph->n_edge == 0)
5272 return node;
5274 if (detect_sccs(ctx, graph) < 0)
5275 return isl_schedule_node_free(node);
5277 next_band(graph);
5278 if (graph->scc < graph->n) {
5279 if (!initialized && compute_maxvar(graph) < 0)
5280 return isl_schedule_node_free(node);
5281 return carry_dependences(node, graph);
5284 filters = extract_sccs(ctx, graph);
5285 node = isl_schedule_node_insert_sequence(node, filters);
5287 return node;
5290 /* Are there any (non-empty) (conditional) validity edges in the graph?
5292 static int has_validity_edges(struct isl_sched_graph *graph)
5294 int i;
5296 for (i = 0; i < graph->n_edge; ++i) {
5297 int empty;
5299 empty = isl_map_plain_is_empty(graph->edge[i].map);
5300 if (empty < 0)
5301 return -1;
5302 if (empty)
5303 continue;
5304 if (is_any_validity(&graph->edge[i]))
5305 return 1;
5308 return 0;
5311 /* Should we apply a Feautrier step?
5312 * That is, did the user request the Feautrier algorithm and are
5313 * there any validity dependences (left)?
5315 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
5317 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
5318 return 0;
5320 return has_validity_edges(graph);
5323 /* Compute a schedule for a connected dependence graph using Feautrier's
5324 * multi-dimensional scheduling algorithm and return the updated schedule node.
5326 * The original algorithm is described in [1].
5327 * The main idea is to minimize the number of scheduling dimensions, by
5328 * trying to satisfy as many dependences as possible per scheduling dimension.
5330 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5331 * Problem, Part II: Multi-Dimensional Time.
5332 * In Intl. Journal of Parallel Programming, 1992.
5334 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
5335 isl_schedule_node *node, struct isl_sched_graph *graph)
5337 return carry_feautrier(node, graph);
5340 /* Turn off the "local" bit on all (condition) edges.
5342 static void clear_local_edges(struct isl_sched_graph *graph)
5344 int i;
5346 for (i = 0; i < graph->n_edge; ++i)
5347 if (is_condition(&graph->edge[i]))
5348 clear_local(&graph->edge[i]);
5351 /* Does "graph" have both condition and conditional validity edges?
5353 static int need_condition_check(struct isl_sched_graph *graph)
5355 int i;
5356 int any_condition = 0;
5357 int any_conditional_validity = 0;
5359 for (i = 0; i < graph->n_edge; ++i) {
5360 if (is_condition(&graph->edge[i]))
5361 any_condition = 1;
5362 if (is_conditional_validity(&graph->edge[i]))
5363 any_conditional_validity = 1;
5366 return any_condition && any_conditional_validity;
5369 /* Does "graph" contain any coincidence edge?
5371 static int has_any_coincidence(struct isl_sched_graph *graph)
5373 int i;
5375 for (i = 0; i < graph->n_edge; ++i)
5376 if (is_coincidence(&graph->edge[i]))
5377 return 1;
5379 return 0;
5382 /* Extract the final schedule row as a map with the iteration domain
5383 * of "node" as domain.
5385 static __isl_give isl_map *final_row(struct isl_sched_node *node)
5387 isl_multi_aff *ma;
5388 int row;
5390 row = isl_mat_rows(node->sched) - 1;
5391 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
5392 return isl_map_from_multi_aff(ma);
5395 /* Is the conditional validity dependence in the edge with index "edge_index"
5396 * violated by the latest (i.e., final) row of the schedule?
5397 * That is, is i scheduled after j
5398 * for any conditional validity dependence i -> j?
5400 static int is_violated(struct isl_sched_graph *graph, int edge_index)
5402 isl_map *src_sched, *dst_sched, *map;
5403 struct isl_sched_edge *edge = &graph->edge[edge_index];
5404 int empty;
5406 src_sched = final_row(edge->src);
5407 dst_sched = final_row(edge->dst);
5408 map = isl_map_copy(edge->map);
5409 map = isl_map_apply_domain(map, src_sched);
5410 map = isl_map_apply_range(map, dst_sched);
5411 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
5412 empty = isl_map_is_empty(map);
5413 isl_map_free(map);
5415 if (empty < 0)
5416 return -1;
5418 return !empty;
5421 /* Does "graph" have any satisfied condition edges that
5422 * are adjacent to the conditional validity constraint with
5423 * domain "conditional_source" and range "conditional_sink"?
5425 * A satisfied condition is one that is not local.
5426 * If a condition was forced to be local already (i.e., marked as local)
5427 * then there is no need to check if it is in fact local.
5429 * Additionally, mark all adjacent condition edges found as local.
5431 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
5432 __isl_keep isl_union_set *conditional_source,
5433 __isl_keep isl_union_set *conditional_sink)
5435 int i;
5436 int any = 0;
5438 for (i = 0; i < graph->n_edge; ++i) {
5439 int adjacent, local;
5440 isl_union_map *condition;
5442 if (!is_condition(&graph->edge[i]))
5443 continue;
5444 if (is_local(&graph->edge[i]))
5445 continue;
5447 condition = graph->edge[i].tagged_condition;
5448 adjacent = domain_intersects(condition, conditional_sink);
5449 if (adjacent >= 0 && !adjacent)
5450 adjacent = range_intersects(condition,
5451 conditional_source);
5452 if (adjacent < 0)
5453 return -1;
5454 if (!adjacent)
5455 continue;
5457 set_local(&graph->edge[i]);
5459 local = is_condition_false(&graph->edge[i]);
5460 if (local < 0)
5461 return -1;
5462 if (!local)
5463 any = 1;
5466 return any;
5469 /* Are there any violated conditional validity dependences with
5470 * adjacent condition dependences that are not local with respect
5471 * to the current schedule?
5472 * That is, is the conditional validity constraint violated?
5474 * Additionally, mark all those adjacent condition dependences as local.
5475 * We also mark those adjacent condition dependences that were not marked
5476 * as local before, but just happened to be local already. This ensures
5477 * that they remain local if the schedule is recomputed.
5479 * We first collect domain and range of all violated conditional validity
5480 * dependences and then check if there are any adjacent non-local
5481 * condition dependences.
5483 static int has_violated_conditional_constraint(isl_ctx *ctx,
5484 struct isl_sched_graph *graph)
5486 int i;
5487 int any = 0;
5488 isl_union_set *source, *sink;
5490 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5491 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5492 for (i = 0; i < graph->n_edge; ++i) {
5493 isl_union_set *uset;
5494 isl_union_map *umap;
5495 int violated;
5497 if (!is_conditional_validity(&graph->edge[i]))
5498 continue;
5500 violated = is_violated(graph, i);
5501 if (violated < 0)
5502 goto error;
5503 if (!violated)
5504 continue;
5506 any = 1;
5508 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5509 uset = isl_union_map_domain(umap);
5510 source = isl_union_set_union(source, uset);
5511 source = isl_union_set_coalesce(source);
5513 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5514 uset = isl_union_map_range(umap);
5515 sink = isl_union_set_union(sink, uset);
5516 sink = isl_union_set_coalesce(sink);
5519 if (any)
5520 any = has_adjacent_true_conditions(graph, source, sink);
5522 isl_union_set_free(source);
5523 isl_union_set_free(sink);
5524 return any;
5525 error:
5526 isl_union_set_free(source);
5527 isl_union_set_free(sink);
5528 return -1;
5531 /* Examine the current band (the rows between graph->band_start and
5532 * graph->n_total_row), deciding whether to drop it or add it to "node"
5533 * and then continue with the computation of the next band, if any.
5534 * If "initialized" is set, then it may be assumed that compute_maxvar
5535 * has been called on the current band. Otherwise, call
5536 * compute_maxvar if and before carry_dependences gets called.
5538 * The caller keeps looking for a new row as long as
5539 * graph->n_row < graph->maxvar. If the latest attempt to find
5540 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5541 * then we either
5542 * - split between SCCs and start over (assuming we found an interesting
5543 * pair of SCCs between which to split)
5544 * - continue with the next band (assuming the current band has at least
5545 * one row)
5546 * - if there is more than one SCC left, then split along all SCCs
5547 * - if outer coincidence needs to be enforced, then try to carry as many
5548 * validity or coincidence dependences as possible and
5549 * continue with the next band
5550 * - try to carry as many validity dependences as possible and
5551 * continue with the next band
5552 * In each case, we first insert a band node in the schedule tree
5553 * if any rows have been computed.
5555 * If the caller managed to complete the schedule and the current band
5556 * is empty, then finish off by topologically
5557 * sorting the statements based on the remaining dependences.
5558 * If, on the other hand, the current band has at least one row,
5559 * then continue with the next band. Note that this next band
5560 * will necessarily be empty, but the graph may still be split up
5561 * into weakly connected components before arriving back here.
5563 static __isl_give isl_schedule_node *compute_schedule_finish_band(
5564 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5565 int initialized)
5567 int empty;
5569 if (!node)
5570 return NULL;
5572 empty = graph->n_total_row == graph->band_start;
5573 if (graph->n_row < graph->maxvar) {
5574 isl_ctx *ctx;
5576 ctx = isl_schedule_node_get_ctx(node);
5577 if (!ctx->opt->schedule_maximize_band_depth && !empty)
5578 return compute_next_band(node, graph, 1);
5579 if (graph->src_scc >= 0)
5580 return compute_split_schedule(node, graph);
5581 if (!empty)
5582 return compute_next_band(node, graph, 1);
5583 if (graph->scc > 1)
5584 return compute_component_schedule(node, graph, 1);
5585 if (!initialized && compute_maxvar(graph) < 0)
5586 return isl_schedule_node_free(node);
5587 if (isl_options_get_schedule_outer_coincidence(ctx))
5588 return carry_coincidence(node, graph);
5589 return carry_dependences(node, graph);
5592 if (!empty)
5593 return compute_next_band(node, graph, 1);
5594 return sort_statements(node, graph, initialized);
5597 /* Construct a band of schedule rows for a connected dependence graph.
5598 * The caller is responsible for determining the strongly connected
5599 * components and calling compute_maxvar first.
5601 * We try to find a sequence of as many schedule rows as possible that result
5602 * in non-negative dependence distances (independent of the previous rows
5603 * in the sequence, i.e., such that the sequence is tilable), with as
5604 * many of the initial rows as possible satisfying the coincidence constraints.
5605 * The computation stops if we can't find any more rows or if we have found
5606 * all the rows we wanted to find.
5608 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5609 * outermost dimension to satisfy the coincidence constraints. If this
5610 * turns out to be impossible, we fall back on the general scheme above
5611 * and try to carry as many dependences as possible.
5613 * If "graph" contains both condition and conditional validity dependences,
5614 * then we need to check that that the conditional schedule constraint
5615 * is satisfied, i.e., there are no violated conditional validity dependences
5616 * that are adjacent to any non-local condition dependences.
5617 * If there are, then we mark all those adjacent condition dependences
5618 * as local and recompute the current band. Those dependences that
5619 * are marked local will then be forced to be local.
5620 * The initial computation is performed with no dependences marked as local.
5621 * If we are lucky, then there will be no violated conditional validity
5622 * dependences adjacent to any non-local condition dependences.
5623 * Otherwise, we mark some additional condition dependences as local and
5624 * recompute. We continue this process until there are no violations left or
5625 * until we are no longer able to compute a schedule.
5626 * Since there are only a finite number of dependences,
5627 * there will only be a finite number of iterations.
5629 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5630 struct isl_sched_graph *graph)
5632 int has_coincidence;
5633 int use_coincidence;
5634 int force_coincidence = 0;
5635 int check_conditional;
5637 if (sort_sccs(graph) < 0)
5638 return isl_stat_error;
5640 clear_local_edges(graph);
5641 check_conditional = need_condition_check(graph);
5642 has_coincidence = has_any_coincidence(graph);
5644 if (ctx->opt->schedule_outer_coincidence)
5645 force_coincidence = 1;
5647 use_coincidence = has_coincidence;
5648 while (graph->n_row < graph->maxvar) {
5649 isl_vec *sol;
5650 int violated;
5651 int coincident;
5653 graph->src_scc = -1;
5654 graph->dst_scc = -1;
5656 if (setup_lp(ctx, graph, use_coincidence) < 0)
5657 return isl_stat_error;
5658 sol = solve_lp(ctx, graph);
5659 if (!sol)
5660 return isl_stat_error;
5661 if (sol->size == 0) {
5662 int empty = graph->n_total_row == graph->band_start;
5664 isl_vec_free(sol);
5665 if (use_coincidence && (!force_coincidence || !empty)) {
5666 use_coincidence = 0;
5667 continue;
5669 return isl_stat_ok;
5671 coincident = !has_coincidence || use_coincidence;
5672 if (update_schedule(graph, sol, coincident) < 0)
5673 return isl_stat_error;
5675 if (!check_conditional)
5676 continue;
5677 violated = has_violated_conditional_constraint(ctx, graph);
5678 if (violated < 0)
5679 return isl_stat_error;
5680 if (!violated)
5681 continue;
5682 if (reset_band(graph) < 0)
5683 return isl_stat_error;
5684 use_coincidence = has_coincidence;
5687 return isl_stat_ok;
5690 /* Compute a schedule for a connected dependence graph by considering
5691 * the graph as a whole and return the updated schedule node.
5693 * The actual schedule rows of the current band are computed by
5694 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5695 * care of integrating the band into "node" and continuing
5696 * the computation.
5698 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5699 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5701 isl_ctx *ctx;
5703 if (!node)
5704 return NULL;
5706 ctx = isl_schedule_node_get_ctx(node);
5707 if (compute_schedule_wcc_band(ctx, graph) < 0)
5708 return isl_schedule_node_free(node);
5710 return compute_schedule_finish_band(node, graph, 1);
5713 /* Clustering information used by compute_schedule_wcc_clustering.
5715 * "n" is the number of SCCs in the original dependence graph
5716 * "scc" is an array of "n" elements, each representing an SCC
5717 * of the original dependence graph. All entries in the same cluster
5718 * have the same number of schedule rows.
5719 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5720 * where each cluster is represented by the index of the first SCC
5721 * in the cluster. Initially, each SCC belongs to a cluster containing
5722 * only that SCC.
5724 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5725 * track of which SCCs need to be merged.
5727 * "cluster" contains the merged clusters of SCCs after the clustering
5728 * has completed.
5730 * "scc_node" is a temporary data structure used inside copy_partial.
5731 * For each SCC, it keeps track of the number of nodes in the SCC
5732 * that have already been copied.
5734 struct isl_clustering {
5735 int n;
5736 struct isl_sched_graph *scc;
5737 struct isl_sched_graph *cluster;
5738 int *scc_cluster;
5739 int *scc_node;
5740 int *scc_in_merge;
5743 /* Initialize the clustering data structure "c" from "graph".
5745 * In particular, allocate memory, extract the SCCs from "graph"
5746 * into c->scc, initialize scc_cluster and construct
5747 * a band of schedule rows for each SCC.
5748 * Within each SCC, there is only one SCC by definition.
5749 * Each SCC initially belongs to a cluster containing only that SCC.
5751 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5752 struct isl_sched_graph *graph)
5754 int i;
5756 c->n = graph->scc;
5757 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5758 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5759 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5760 c->scc_node = isl_calloc_array(ctx, int, c->n);
5761 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5762 if (!c->scc || !c->cluster ||
5763 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5764 return isl_stat_error;
5766 for (i = 0; i < c->n; ++i) {
5767 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5768 &edge_scc_exactly, i, &c->scc[i]) < 0)
5769 return isl_stat_error;
5770 c->scc[i].scc = 1;
5771 if (compute_maxvar(&c->scc[i]) < 0)
5772 return isl_stat_error;
5773 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5774 return isl_stat_error;
5775 c->scc_cluster[i] = i;
5778 return isl_stat_ok;
5781 /* Free all memory allocated for "c".
5783 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5785 int i;
5787 if (c->scc)
5788 for (i = 0; i < c->n; ++i)
5789 graph_free(ctx, &c->scc[i]);
5790 free(c->scc);
5791 if (c->cluster)
5792 for (i = 0; i < c->n; ++i)
5793 graph_free(ctx, &c->cluster[i]);
5794 free(c->cluster);
5795 free(c->scc_cluster);
5796 free(c->scc_node);
5797 free(c->scc_in_merge);
5800 /* Should we refrain from merging the cluster in "graph" with
5801 * any other cluster?
5802 * In particular, is its current schedule band empty and incomplete.
5804 static int bad_cluster(struct isl_sched_graph *graph)
5806 return graph->n_row < graph->maxvar &&
5807 graph->n_total_row == graph->band_start;
5810 /* Is "edge" a proximity edge with a non-empty dependence relation?
5812 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
5814 if (!is_proximity(edge))
5815 return isl_bool_false;
5816 return isl_bool_not(isl_map_plain_is_empty(edge->map));
5819 /* Return the index of an edge in "graph" that can be used to merge
5820 * two clusters in "c".
5821 * Return graph->n_edge if no such edge can be found.
5822 * Return -1 on error.
5824 * In particular, return a proximity edge between two clusters
5825 * that is not marked "no_merge" and such that neither of the
5826 * two clusters has an incomplete, empty band.
5828 * If there are multiple such edges, then try and find the most
5829 * appropriate edge to use for merging. In particular, pick the edge
5830 * with the greatest weight. If there are multiple of those,
5831 * then pick one with the shortest distance between
5832 * the two cluster representatives.
5834 static int find_proximity(struct isl_sched_graph *graph,
5835 struct isl_clustering *c)
5837 int i, best = graph->n_edge, best_dist, best_weight;
5839 for (i = 0; i < graph->n_edge; ++i) {
5840 struct isl_sched_edge *edge = &graph->edge[i];
5841 int dist, weight;
5842 isl_bool prox;
5844 prox = is_non_empty_proximity(edge);
5845 if (prox < 0)
5846 return -1;
5847 if (!prox)
5848 continue;
5849 if (edge->no_merge)
5850 continue;
5851 if (bad_cluster(&c->scc[edge->src->scc]) ||
5852 bad_cluster(&c->scc[edge->dst->scc]))
5853 continue;
5854 dist = c->scc_cluster[edge->dst->scc] -
5855 c->scc_cluster[edge->src->scc];
5856 if (dist == 0)
5857 continue;
5858 weight = edge->weight;
5859 if (best < graph->n_edge) {
5860 if (best_weight > weight)
5861 continue;
5862 if (best_weight == weight && best_dist <= dist)
5863 continue;
5865 best = i;
5866 best_dist = dist;
5867 best_weight = weight;
5870 return best;
5873 /* Internal data structure used in mark_merge_sccs.
5875 * "graph" is the dependence graph in which a strongly connected
5876 * component is constructed.
5877 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5878 * "src" and "dst" are the indices of the nodes that are being merged.
5880 struct isl_mark_merge_sccs_data {
5881 struct isl_sched_graph *graph;
5882 int *scc_cluster;
5883 int src;
5884 int dst;
5887 /* Check whether the cluster containing node "i" depends on the cluster
5888 * containing node "j". If "i" and "j" belong to the same cluster,
5889 * then they are taken to depend on each other to ensure that
5890 * the resulting strongly connected component consists of complete
5891 * clusters. Furthermore, if "i" and "j" are the two nodes that
5892 * are being merged, then they are taken to depend on each other as well.
5893 * Otherwise, check if there is a (conditional) validity dependence
5894 * from node[j] to node[i], forcing node[i] to follow node[j].
5896 static isl_bool cluster_follows(int i, int j, void *user)
5898 struct isl_mark_merge_sccs_data *data = user;
5899 struct isl_sched_graph *graph = data->graph;
5900 int *scc_cluster = data->scc_cluster;
5902 if (data->src == i && data->dst == j)
5903 return isl_bool_true;
5904 if (data->src == j && data->dst == i)
5905 return isl_bool_true;
5906 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5907 return isl_bool_true;
5909 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5912 /* Mark all SCCs that belong to either of the two clusters in "c"
5913 * connected by the edge in "graph" with index "edge", or to any
5914 * of the intermediate clusters.
5915 * The marking is recorded in c->scc_in_merge.
5917 * The given edge has been selected for merging two clusters,
5918 * meaning that there is at least a proximity edge between the two nodes.
5919 * However, there may also be (indirect) validity dependences
5920 * between the two nodes. When merging the two clusters, all clusters
5921 * containing one or more of the intermediate nodes along the
5922 * indirect validity dependences need to be merged in as well.
5924 * First collect all such nodes by computing the strongly connected
5925 * component (SCC) containing the two nodes connected by the edge, where
5926 * the two nodes are considered to depend on each other to make
5927 * sure they end up in the same SCC. Similarly, each node is considered
5928 * to depend on every other node in the same cluster to ensure
5929 * that the SCC consists of complete clusters.
5931 * Then the original SCCs that contain any of these nodes are marked
5932 * in c->scc_in_merge.
5934 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5935 int edge, struct isl_clustering *c)
5937 struct isl_mark_merge_sccs_data data;
5938 struct isl_tarjan_graph *g;
5939 int i;
5941 for (i = 0; i < c->n; ++i)
5942 c->scc_in_merge[i] = 0;
5944 data.graph = graph;
5945 data.scc_cluster = c->scc_cluster;
5946 data.src = graph->edge[edge].src - graph->node;
5947 data.dst = graph->edge[edge].dst - graph->node;
5949 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5950 &cluster_follows, &data);
5951 if (!g)
5952 goto error;
5954 i = g->op;
5955 if (i < 3)
5956 isl_die(ctx, isl_error_internal,
5957 "expecting at least two nodes in component",
5958 goto error);
5959 if (g->order[--i] != -1)
5960 isl_die(ctx, isl_error_internal,
5961 "expecting end of component marker", goto error);
5963 for (--i; i >= 0 && g->order[i] != -1; --i) {
5964 int scc = graph->node[g->order[i]].scc;
5965 c->scc_in_merge[scc] = 1;
5968 isl_tarjan_graph_free(g);
5969 return isl_stat_ok;
5970 error:
5971 isl_tarjan_graph_free(g);
5972 return isl_stat_error;
5975 /* Construct the identifier "cluster_i".
5977 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5979 char name[40];
5981 snprintf(name, sizeof(name), "cluster_%d", i);
5982 return isl_id_alloc(ctx, name, NULL);
5985 /* Construct the space of the cluster with index "i" containing
5986 * the strongly connected component "scc".
5988 * In particular, construct a space called cluster_i with dimension equal
5989 * to the number of schedule rows in the current band of "scc".
5991 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5993 int nvar;
5994 isl_space *space;
5995 isl_id *id;
5997 nvar = scc->n_total_row - scc->band_start;
5998 space = isl_space_copy(scc->node[0].space);
5999 space = isl_space_params(space);
6000 space = isl_space_set_from_params(space);
6001 space = isl_space_add_dims(space, isl_dim_set, nvar);
6002 id = cluster_id(isl_space_get_ctx(space), i);
6003 space = isl_space_set_tuple_id(space, isl_dim_set, id);
6005 return space;
6008 /* Collect the domain of the graph for merging clusters.
6010 * In particular, for each cluster with first SCC "i", construct
6011 * a set in the space called cluster_i with dimension equal
6012 * to the number of schedule rows in the current band of the cluster.
6014 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
6015 struct isl_sched_graph *graph, struct isl_clustering *c)
6017 int i;
6018 isl_space *space;
6019 isl_union_set *domain;
6021 space = isl_space_params_alloc(ctx, 0);
6022 domain = isl_union_set_empty(space);
6024 for (i = 0; i < graph->scc; ++i) {
6025 isl_space *space;
6027 if (!c->scc_in_merge[i])
6028 continue;
6029 if (c->scc_cluster[i] != i)
6030 continue;
6031 space = cluster_space(&c->scc[i], i);
6032 domain = isl_union_set_add_set(domain, isl_set_universe(space));
6035 return domain;
6038 /* Construct a map from the original instances to the corresponding
6039 * cluster instance in the current bands of the clusters in "c".
6041 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
6042 struct isl_sched_graph *graph, struct isl_clustering *c)
6044 int i, j;
6045 isl_space *space;
6046 isl_union_map *cluster_map;
6048 space = isl_space_params_alloc(ctx, 0);
6049 cluster_map = isl_union_map_empty(space);
6050 for (i = 0; i < graph->scc; ++i) {
6051 int start, n;
6052 isl_id *id;
6054 if (!c->scc_in_merge[i])
6055 continue;
6057 id = cluster_id(ctx, c->scc_cluster[i]);
6058 start = c->scc[i].band_start;
6059 n = c->scc[i].n_total_row - start;
6060 for (j = 0; j < c->scc[i].n; ++j) {
6061 isl_multi_aff *ma;
6062 isl_map *map;
6063 struct isl_sched_node *node = &c->scc[i].node[j];
6065 ma = node_extract_partial_schedule_multi_aff(node,
6066 start, n);
6067 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
6068 isl_id_copy(id));
6069 map = isl_map_from_multi_aff(ma);
6070 cluster_map = isl_union_map_add_map(cluster_map, map);
6072 isl_id_free(id);
6075 return cluster_map;
6078 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
6079 * that are not isl_edge_condition or isl_edge_conditional_validity.
6081 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
6082 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
6083 __isl_take isl_schedule_constraints *sc)
6085 enum isl_edge_type t;
6087 if (!sc)
6088 return NULL;
6090 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
6091 if (t == isl_edge_condition ||
6092 t == isl_edge_conditional_validity)
6093 continue;
6094 if (!is_type(edge, t))
6095 continue;
6096 sc = isl_schedule_constraints_add(sc, t,
6097 isl_union_map_copy(umap));
6100 return sc;
6103 /* Add schedule constraints of types isl_edge_condition and
6104 * isl_edge_conditional_validity to "sc" by applying "umap" to
6105 * the domains of the wrapped relations in domain and range
6106 * of the corresponding tagged constraints of "edge".
6108 static __isl_give isl_schedule_constraints *add_conditional_constraints(
6109 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
6110 __isl_take isl_schedule_constraints *sc)
6112 enum isl_edge_type t;
6113 isl_union_map *tagged;
6115 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
6116 if (!is_type(edge, t))
6117 continue;
6118 if (t == isl_edge_condition)
6119 tagged = isl_union_map_copy(edge->tagged_condition);
6120 else
6121 tagged = isl_union_map_copy(edge->tagged_validity);
6122 tagged = isl_union_map_zip(tagged);
6123 tagged = isl_union_map_apply_domain(tagged,
6124 isl_union_map_copy(umap));
6125 tagged = isl_union_map_zip(tagged);
6126 sc = isl_schedule_constraints_add(sc, t, tagged);
6127 if (!sc)
6128 return NULL;
6131 return sc;
6134 /* Given a mapping "cluster_map" from the original instances to
6135 * the cluster instances, add schedule constraints on the clusters
6136 * to "sc" corresponding to the original constraints represented by "edge".
6138 * For non-tagged dependence constraints, the cluster constraints
6139 * are obtained by applying "cluster_map" to the edge->map.
6141 * For tagged dependence constraints, "cluster_map" needs to be applied
6142 * to the domains of the wrapped relations in domain and range
6143 * of the tagged dependence constraints. Pick out the mappings
6144 * from these domains from "cluster_map" and construct their product.
6145 * This mapping can then be applied to the pair of domains.
6147 static __isl_give isl_schedule_constraints *collect_edge_constraints(
6148 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
6149 __isl_take isl_schedule_constraints *sc)
6151 isl_union_map *umap;
6152 isl_space *space;
6153 isl_union_set *uset;
6154 isl_union_map *umap1, *umap2;
6156 if (!sc)
6157 return NULL;
6159 umap = isl_union_map_from_map(isl_map_copy(edge->map));
6160 umap = isl_union_map_apply_domain(umap,
6161 isl_union_map_copy(cluster_map));
6162 umap = isl_union_map_apply_range(umap,
6163 isl_union_map_copy(cluster_map));
6164 sc = add_non_conditional_constraints(edge, umap, sc);
6165 isl_union_map_free(umap);
6167 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
6168 return sc;
6170 space = isl_space_domain(isl_map_get_space(edge->map));
6171 uset = isl_union_set_from_set(isl_set_universe(space));
6172 umap1 = isl_union_map_copy(cluster_map);
6173 umap1 = isl_union_map_intersect_domain(umap1, uset);
6174 space = isl_space_range(isl_map_get_space(edge->map));
6175 uset = isl_union_set_from_set(isl_set_universe(space));
6176 umap2 = isl_union_map_copy(cluster_map);
6177 umap2 = isl_union_map_intersect_domain(umap2, uset);
6178 umap = isl_union_map_product(umap1, umap2);
6180 sc = add_conditional_constraints(edge, umap, sc);
6182 isl_union_map_free(umap);
6183 return sc;
6186 /* Given a mapping "cluster_map" from the original instances to
6187 * the cluster instances, add schedule constraints on the clusters
6188 * to "sc" corresponding to all edges in "graph" between nodes that
6189 * belong to SCCs that are marked for merging in "scc_in_merge".
6191 static __isl_give isl_schedule_constraints *collect_constraints(
6192 struct isl_sched_graph *graph, int *scc_in_merge,
6193 __isl_keep isl_union_map *cluster_map,
6194 __isl_take isl_schedule_constraints *sc)
6196 int i;
6198 for (i = 0; i < graph->n_edge; ++i) {
6199 struct isl_sched_edge *edge = &graph->edge[i];
6201 if (!scc_in_merge[edge->src->scc])
6202 continue;
6203 if (!scc_in_merge[edge->dst->scc])
6204 continue;
6205 sc = collect_edge_constraints(edge, cluster_map, sc);
6208 return sc;
6211 /* Construct a dependence graph for scheduling clusters with respect
6212 * to each other and store the result in "merge_graph".
6213 * In particular, the nodes of the graph correspond to the schedule
6214 * dimensions of the current bands of those clusters that have been
6215 * marked for merging in "c".
6217 * First construct an isl_schedule_constraints object for this domain
6218 * by transforming the edges in "graph" to the domain.
6219 * Then initialize a dependence graph for scheduling from these
6220 * constraints.
6222 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
6223 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6225 isl_union_set *domain;
6226 isl_union_map *cluster_map;
6227 isl_schedule_constraints *sc;
6228 isl_stat r;
6230 domain = collect_domain(ctx, graph, c);
6231 sc = isl_schedule_constraints_on_domain(domain);
6232 if (!sc)
6233 return isl_stat_error;
6234 cluster_map = collect_cluster_map(ctx, graph, c);
6235 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
6236 isl_union_map_free(cluster_map);
6238 r = graph_init(merge_graph, sc);
6240 isl_schedule_constraints_free(sc);
6242 return r;
6245 /* Compute the maximal number of remaining schedule rows that still need
6246 * to be computed for the nodes that belong to clusters with the maximal
6247 * dimension for the current band (i.e., the band that is to be merged).
6248 * Only clusters that are about to be merged are considered.
6249 * "maxvar" is the maximal dimension for the current band.
6250 * "c" contains information about the clusters.
6252 * Return the maximal number of remaining schedule rows or -1 on error.
6254 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
6256 int i, j;
6257 int max_slack;
6259 max_slack = 0;
6260 for (i = 0; i < c->n; ++i) {
6261 int nvar;
6262 struct isl_sched_graph *scc;
6264 if (!c->scc_in_merge[i])
6265 continue;
6266 scc = &c->scc[i];
6267 nvar = scc->n_total_row - scc->band_start;
6268 if (nvar != maxvar)
6269 continue;
6270 for (j = 0; j < scc->n; ++j) {
6271 struct isl_sched_node *node = &scc->node[j];
6272 int slack;
6274 if (node_update_vmap(node) < 0)
6275 return -1;
6276 slack = node->nvar - node->rank;
6277 if (slack > max_slack)
6278 max_slack = slack;
6282 return max_slack;
6285 /* If there are any clusters where the dimension of the current band
6286 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6287 * if there are any nodes in such a cluster where the number
6288 * of remaining schedule rows that still need to be computed
6289 * is greater than "max_slack", then return the smallest current band
6290 * dimension of all these clusters. Otherwise return the original value
6291 * of "maxvar". Return -1 in case of any error.
6292 * Only clusters that are about to be merged are considered.
6293 * "c" contains information about the clusters.
6295 static int limit_maxvar_to_slack(int maxvar, int max_slack,
6296 struct isl_clustering *c)
6298 int i, j;
6300 for (i = 0; i < c->n; ++i) {
6301 int nvar;
6302 struct isl_sched_graph *scc;
6304 if (!c->scc_in_merge[i])
6305 continue;
6306 scc = &c->scc[i];
6307 nvar = scc->n_total_row - scc->band_start;
6308 if (nvar >= maxvar)
6309 continue;
6310 for (j = 0; j < scc->n; ++j) {
6311 struct isl_sched_node *node = &scc->node[j];
6312 int slack;
6314 if (node_update_vmap(node) < 0)
6315 return -1;
6316 slack = node->nvar - node->rank;
6317 if (slack > max_slack) {
6318 maxvar = nvar;
6319 break;
6324 return maxvar;
6327 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6328 * that still need to be computed. In particular, if there is a node
6329 * in a cluster where the dimension of the current band is smaller
6330 * than merge_graph->maxvar, but the number of remaining schedule rows
6331 * is greater than that of any node in a cluster with the maximal
6332 * dimension for the current band (i.e., merge_graph->maxvar),
6333 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6334 * of those clusters. Without this adjustment, the total number of
6335 * schedule dimensions would be increased, resulting in a skewed view
6336 * of the number of coincident dimensions.
6337 * "c" contains information about the clusters.
6339 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6340 * then there is no point in attempting any merge since it will be rejected
6341 * anyway. Set merge_graph->maxvar to zero in such cases.
6343 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
6344 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
6346 int max_slack, maxvar;
6348 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
6349 if (max_slack < 0)
6350 return isl_stat_error;
6351 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
6352 if (maxvar < 0)
6353 return isl_stat_error;
6355 if (maxvar < merge_graph->maxvar) {
6356 if (isl_options_get_schedule_maximize_band_depth(ctx))
6357 merge_graph->maxvar = 0;
6358 else
6359 merge_graph->maxvar = maxvar;
6362 return isl_stat_ok;
6365 /* Return the number of coincident dimensions in the current band of "graph",
6366 * where the nodes of "graph" are assumed to be scheduled by a single band.
6368 static int get_n_coincident(struct isl_sched_graph *graph)
6370 int i;
6372 for (i = graph->band_start; i < graph->n_total_row; ++i)
6373 if (!graph->node[0].coincident[i])
6374 break;
6376 return i - graph->band_start;
6379 /* Should the clusters be merged based on the cluster schedule
6380 * in the current (and only) band of "merge_graph", given that
6381 * coincidence should be maximized?
6383 * If the number of coincident schedule dimensions in the merged band
6384 * would be less than the maximal number of coincident schedule dimensions
6385 * in any of the merged clusters, then the clusters should not be merged.
6387 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
6388 struct isl_sched_graph *merge_graph)
6390 int i;
6391 int n_coincident;
6392 int max_coincident;
6394 max_coincident = 0;
6395 for (i = 0; i < c->n; ++i) {
6396 if (!c->scc_in_merge[i])
6397 continue;
6398 n_coincident = get_n_coincident(&c->scc[i]);
6399 if (n_coincident > max_coincident)
6400 max_coincident = n_coincident;
6403 n_coincident = get_n_coincident(merge_graph);
6405 return n_coincident >= max_coincident;
6408 /* Return the transformation on "node" expressed by the current (and only)
6409 * band of "merge_graph" applied to the clusters in "c".
6411 * First find the representation of "node" in its SCC in "c" and
6412 * extract the transformation expressed by the current band.
6413 * Then extract the transformation applied by "merge_graph"
6414 * to the cluster to which this SCC belongs.
6415 * Combine the two to obtain the complete transformation on the node.
6417 * Note that the range of the first transformation is an anonymous space,
6418 * while the domain of the second is named "cluster_X". The range
6419 * of the former therefore needs to be adjusted before the two
6420 * can be combined.
6422 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
6423 struct isl_sched_node *node, struct isl_clustering *c,
6424 struct isl_sched_graph *merge_graph)
6426 struct isl_sched_node *scc_node, *cluster_node;
6427 int start, n;
6428 isl_id *id;
6429 isl_space *space;
6430 isl_multi_aff *ma, *ma2;
6432 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
6433 if (scc_node && !is_node(&c->scc[node->scc], scc_node))
6434 isl_die(ctx, isl_error_internal, "unable to find node",
6435 return NULL);
6436 start = c->scc[node->scc].band_start;
6437 n = c->scc[node->scc].n_total_row - start;
6438 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
6439 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
6440 cluster_node = graph_find_node(ctx, merge_graph, space);
6441 if (cluster_node && !is_node(merge_graph, cluster_node))
6442 isl_die(ctx, isl_error_internal, "unable to find cluster",
6443 space = isl_space_free(space));
6444 id = isl_space_get_tuple_id(space, isl_dim_set);
6445 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
6446 isl_space_free(space);
6447 n = merge_graph->n_total_row;
6448 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
6449 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
6451 return isl_map_from_multi_aff(ma);
6454 /* Give a set of distances "set", are they bounded by a small constant
6455 * in direction "pos"?
6456 * In practice, check if they are bounded by 2 by checking that there
6457 * are no elements with a value greater than or equal to 3 or
6458 * smaller than or equal to -3.
6460 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
6462 isl_bool bounded;
6463 isl_set *test;
6465 if (!set)
6466 return isl_bool_error;
6468 test = isl_set_copy(set);
6469 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
6470 bounded = isl_set_is_empty(test);
6471 isl_set_free(test);
6473 if (bounded < 0 || !bounded)
6474 return bounded;
6476 test = isl_set_copy(set);
6477 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
6478 bounded = isl_set_is_empty(test);
6479 isl_set_free(test);
6481 return bounded;
6484 /* Does the set "set" have a fixed (but possible parametric) value
6485 * at dimension "pos"?
6487 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
6489 int n;
6490 isl_bool single;
6492 if (!set)
6493 return isl_bool_error;
6494 set = isl_set_copy(set);
6495 n = isl_set_dim(set, isl_dim_set);
6496 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
6497 set = isl_set_project_out(set, isl_dim_set, 0, pos);
6498 single = isl_set_is_singleton(set);
6499 isl_set_free(set);
6501 return single;
6504 /* Does "map" have a fixed (but possible parametric) value
6505 * at dimension "pos" of either its domain or its range?
6507 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
6509 isl_set *set;
6510 isl_bool single;
6512 set = isl_map_domain(isl_map_copy(map));
6513 single = has_single_value(set, pos);
6514 isl_set_free(set);
6516 if (single < 0 || single)
6517 return single;
6519 set = isl_map_range(isl_map_copy(map));
6520 single = has_single_value(set, pos);
6521 isl_set_free(set);
6523 return single;
6526 /* Does the edge "edge" from "graph" have bounded dependence distances
6527 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6529 * Extract the complete transformations of the source and destination
6530 * nodes of the edge, apply them to the edge constraints and
6531 * compute the differences. Finally, check if these differences are bounded
6532 * in each direction.
6534 * If the dimension of the band is greater than the number of
6535 * dimensions that can be expected to be optimized by the edge
6536 * (based on its weight), then also allow the differences to be unbounded
6537 * in the remaining dimensions, but only if either the source or
6538 * the destination has a fixed value in that direction.
6539 * This allows a statement that produces values that are used by
6540 * several instances of another statement to be merged with that
6541 * other statement.
6542 * However, merging such clusters will introduce an inherently
6543 * large proximity distance inside the merged cluster, meaning
6544 * that proximity distances will no longer be optimized in
6545 * subsequent merges. These merges are therefore only allowed
6546 * after all other possible merges have been tried.
6547 * The first time such a merge is encountered, the weight of the edge
6548 * is replaced by a negative weight. The second time (i.e., after
6549 * all merges over edges with a non-negative weight have been tried),
6550 * the merge is allowed.
6552 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
6553 struct isl_sched_graph *graph, struct isl_clustering *c,
6554 struct isl_sched_graph *merge_graph)
6556 int i, n, n_slack;
6557 isl_bool bounded;
6558 isl_map *map, *t;
6559 isl_set *dist;
6561 map = isl_map_copy(edge->map);
6562 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
6563 map = isl_map_apply_domain(map, t);
6564 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
6565 map = isl_map_apply_range(map, t);
6566 dist = isl_map_deltas(isl_map_copy(map));
6568 bounded = isl_bool_true;
6569 n = isl_set_dim(dist, isl_dim_set);
6570 n_slack = n - edge->weight;
6571 if (edge->weight < 0)
6572 n_slack -= graph->max_weight + 1;
6573 for (i = 0; i < n; ++i) {
6574 isl_bool bounded_i, singular_i;
6576 bounded_i = distance_is_bounded(dist, i);
6577 if (bounded_i < 0)
6578 goto error;
6579 if (bounded_i)
6580 continue;
6581 if (edge->weight >= 0)
6582 bounded = isl_bool_false;
6583 n_slack--;
6584 if (n_slack < 0)
6585 break;
6586 singular_i = has_singular_src_or_dst(map, i);
6587 if (singular_i < 0)
6588 goto error;
6589 if (singular_i)
6590 continue;
6591 bounded = isl_bool_false;
6592 break;
6594 if (!bounded && i >= n && edge->weight >= 0)
6595 edge->weight -= graph->max_weight + 1;
6596 isl_map_free(map);
6597 isl_set_free(dist);
6599 return bounded;
6600 error:
6601 isl_map_free(map);
6602 isl_set_free(dist);
6603 return isl_bool_error;
6606 /* Should the clusters be merged based on the cluster schedule
6607 * in the current (and only) band of "merge_graph"?
6608 * "graph" is the original dependence graph, while "c" records
6609 * which SCCs are involved in the latest merge.
6611 * In particular, is there at least one proximity constraint
6612 * that is optimized by the merge?
6614 * A proximity constraint is considered to be optimized
6615 * if the dependence distances are small.
6617 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
6618 struct isl_sched_graph *graph, struct isl_clustering *c,
6619 struct isl_sched_graph *merge_graph)
6621 int i;
6623 for (i = 0; i < graph->n_edge; ++i) {
6624 struct isl_sched_edge *edge = &graph->edge[i];
6625 isl_bool bounded;
6627 if (!is_proximity(edge))
6628 continue;
6629 if (!c->scc_in_merge[edge->src->scc])
6630 continue;
6631 if (!c->scc_in_merge[edge->dst->scc])
6632 continue;
6633 if (c->scc_cluster[edge->dst->scc] ==
6634 c->scc_cluster[edge->src->scc])
6635 continue;
6636 bounded = has_bounded_distances(ctx, edge, graph, c,
6637 merge_graph);
6638 if (bounded < 0 || bounded)
6639 return bounded;
6642 return isl_bool_false;
6645 /* Should the clusters be merged based on the cluster schedule
6646 * in the current (and only) band of "merge_graph"?
6647 * "graph" is the original dependence graph, while "c" records
6648 * which SCCs are involved in the latest merge.
6650 * If the current band is empty, then the clusters should not be merged.
6652 * If the band depth should be maximized and the merge schedule
6653 * is incomplete (meaning that the dimension of some of the schedule
6654 * bands in the original schedule will be reduced), then the clusters
6655 * should not be merged.
6657 * If the schedule_maximize_coincidence option is set, then check that
6658 * the number of coincident schedule dimensions is not reduced.
6660 * Finally, only allow the merge if at least one proximity
6661 * constraint is optimized.
6663 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6664 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6666 if (merge_graph->n_total_row == merge_graph->band_start)
6667 return isl_bool_false;
6669 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6670 merge_graph->n_total_row < merge_graph->maxvar)
6671 return isl_bool_false;
6673 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6674 isl_bool ok;
6676 ok = ok_to_merge_coincident(c, merge_graph);
6677 if (ok < 0 || !ok)
6678 return ok;
6681 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6684 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6685 * of the schedule in "node" and return the result.
6687 * That is, essentially compute
6689 * T * N(first:first+n-1)
6691 * taking into account the constant term and the parameter coefficients
6692 * in "t_node".
6694 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6695 struct isl_sched_node *t_node, struct isl_sched_node *node,
6696 int first, int n)
6698 int i, j;
6699 isl_mat *t;
6700 int n_row, n_col, n_param, n_var;
6702 n_param = node->nparam;
6703 n_var = node->nvar;
6704 n_row = isl_mat_rows(t_node->sched);
6705 n_col = isl_mat_cols(node->sched);
6706 t = isl_mat_alloc(ctx, n_row, n_col);
6707 if (!t)
6708 return NULL;
6709 for (i = 0; i < n_row; ++i) {
6710 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6711 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6712 for (j = 0; j < n; ++j)
6713 isl_seq_addmul(t->row[i],
6714 t_node->sched->row[i][1 + n_param + j],
6715 node->sched->row[first + j],
6716 1 + n_param + n_var);
6718 return t;
6721 /* Apply the cluster schedule in "t_node" to the current band
6722 * schedule of the nodes in "graph".
6724 * In particular, replace the rows starting at band_start
6725 * by the result of applying the cluster schedule in "t_node"
6726 * to the original rows.
6728 * The coincidence of the schedule is determined by the coincidence
6729 * of the cluster schedule.
6731 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6732 struct isl_sched_node *t_node)
6734 int i, j;
6735 int n_new;
6736 int start, n;
6738 start = graph->band_start;
6739 n = graph->n_total_row - start;
6741 n_new = isl_mat_rows(t_node->sched);
6742 for (i = 0; i < graph->n; ++i) {
6743 struct isl_sched_node *node = &graph->node[i];
6744 isl_mat *t;
6746 t = node_transformation(ctx, t_node, node, start, n);
6747 node->sched = isl_mat_drop_rows(node->sched, start, n);
6748 node->sched = isl_mat_concat(node->sched, t);
6749 node->sched_map = isl_map_free(node->sched_map);
6750 if (!node->sched)
6751 return isl_stat_error;
6752 for (j = 0; j < n_new; ++j)
6753 node->coincident[start + j] = t_node->coincident[j];
6755 graph->n_total_row -= n;
6756 graph->n_row -= n;
6757 graph->n_total_row += n_new;
6758 graph->n_row += n_new;
6760 return isl_stat_ok;
6763 /* Merge the clusters marked for merging in "c" into a single
6764 * cluster using the cluster schedule in the current band of "merge_graph".
6765 * The representative SCC for the new cluster is the SCC with
6766 * the smallest index.
6768 * The current band schedule of each SCC in the new cluster is obtained
6769 * by applying the schedule of the corresponding original cluster
6770 * to the original band schedule.
6771 * All SCCs in the new cluster have the same number of schedule rows.
6773 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6774 struct isl_sched_graph *merge_graph)
6776 int i;
6777 int cluster = -1;
6778 isl_space *space;
6780 for (i = 0; i < c->n; ++i) {
6781 struct isl_sched_node *node;
6783 if (!c->scc_in_merge[i])
6784 continue;
6785 if (cluster < 0)
6786 cluster = i;
6787 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6788 node = graph_find_node(ctx, merge_graph, space);
6789 isl_space_free(space);
6790 if (!node)
6791 return isl_stat_error;
6792 if (!is_node(merge_graph, node))
6793 isl_die(ctx, isl_error_internal,
6794 "unable to find cluster",
6795 return isl_stat_error);
6796 if (transform(ctx, &c->scc[i], node) < 0)
6797 return isl_stat_error;
6798 c->scc_cluster[i] = cluster;
6801 return isl_stat_ok;
6804 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6805 * by scheduling the current cluster bands with respect to each other.
6807 * Construct a dependence graph with a space for each cluster and
6808 * with the coordinates of each space corresponding to the schedule
6809 * dimensions of the current band of that cluster.
6810 * Construct a cluster schedule in this cluster dependence graph and
6811 * apply it to the current cluster bands if it is applicable
6812 * according to ok_to_merge.
6814 * If the number of remaining schedule dimensions in a cluster
6815 * with a non-maximal current schedule dimension is greater than
6816 * the number of remaining schedule dimensions in clusters
6817 * with a maximal current schedule dimension, then restrict
6818 * the number of rows to be computed in the cluster schedule
6819 * to the minimal such non-maximal current schedule dimension.
6820 * Do this by adjusting merge_graph.maxvar.
6822 * Return isl_bool_true if the clusters have effectively been merged
6823 * into a single cluster.
6825 * Note that since the standard scheduling algorithm minimizes the maximal
6826 * distance over proximity constraints, the proximity constraints between
6827 * the merged clusters may not be optimized any further than what is
6828 * sufficient to bring the distances within the limits of the internal
6829 * proximity constraints inside the individual clusters.
6830 * It may therefore make sense to perform an additional translation step
6831 * to bring the clusters closer to each other, while maintaining
6832 * the linear part of the merging schedule found using the standard
6833 * scheduling algorithm.
6835 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6836 struct isl_clustering *c)
6838 struct isl_sched_graph merge_graph = { 0 };
6839 isl_bool merged;
6841 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6842 goto error;
6844 if (compute_maxvar(&merge_graph) < 0)
6845 goto error;
6846 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6847 goto error;
6848 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6849 goto error;
6850 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6851 if (merged && merge(ctx, c, &merge_graph) < 0)
6852 goto error;
6854 graph_free(ctx, &merge_graph);
6855 return merged;
6856 error:
6857 graph_free(ctx, &merge_graph);
6858 return isl_bool_error;
6861 /* Is there any edge marked "no_merge" between two SCCs that are
6862 * about to be merged (i.e., that are set in "scc_in_merge")?
6863 * "merge_edge" is the proximity edge along which the clusters of SCCs
6864 * are going to be merged.
6866 * If there is any edge between two SCCs with a negative weight,
6867 * while the weight of "merge_edge" is non-negative, then this
6868 * means that the edge was postponed. "merge_edge" should then
6869 * also be postponed since merging along the edge with negative weight should
6870 * be postponed until all edges with non-negative weight have been tried.
6871 * Replace the weight of "merge_edge" by a negative weight as well and
6872 * tell the caller not to attempt a merge.
6874 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6875 struct isl_sched_edge *merge_edge)
6877 int i;
6879 for (i = 0; i < graph->n_edge; ++i) {
6880 struct isl_sched_edge *edge = &graph->edge[i];
6882 if (!scc_in_merge[edge->src->scc])
6883 continue;
6884 if (!scc_in_merge[edge->dst->scc])
6885 continue;
6886 if (edge->no_merge)
6887 return 1;
6888 if (merge_edge->weight >= 0 && edge->weight < 0) {
6889 merge_edge->weight -= graph->max_weight + 1;
6890 return 1;
6894 return 0;
6897 /* Merge the two clusters in "c" connected by the edge in "graph"
6898 * with index "edge" into a single cluster.
6899 * If it turns out to be impossible to merge these two clusters,
6900 * then mark the edge as "no_merge" such that it will not be
6901 * considered again.
6903 * First mark all SCCs that need to be merged. This includes the SCCs
6904 * in the two clusters, but it may also include the SCCs
6905 * of intermediate clusters.
6906 * If there is already a no_merge edge between any pair of such SCCs,
6907 * then simply mark the current edge as no_merge as well.
6908 * Likewise, if any of those edges was postponed by has_bounded_distances,
6909 * then postpone the current edge as well.
6910 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6911 * if the clusters did not end up getting merged, unless the non-merge
6912 * is due to the fact that the edge was postponed. This postponement
6913 * can be recognized by a change in weight (from non-negative to negative).
6915 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6916 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6918 isl_bool merged;
6919 int edge_weight = graph->edge[edge].weight;
6921 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6922 return isl_stat_error;
6924 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6925 merged = isl_bool_false;
6926 else
6927 merged = try_merge(ctx, graph, c);
6928 if (merged < 0)
6929 return isl_stat_error;
6930 if (!merged && edge_weight == graph->edge[edge].weight)
6931 graph->edge[edge].no_merge = 1;
6933 return isl_stat_ok;
6936 /* Does "node" belong to the cluster identified by "cluster"?
6938 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6940 return node->cluster == cluster;
6943 /* Does "edge" connect two nodes belonging to the cluster
6944 * identified by "cluster"?
6946 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6948 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6951 /* Swap the schedule of "node1" and "node2".
6952 * Both nodes have been derived from the same node in a common parent graph.
6953 * Since the "coincident" field is shared with that node
6954 * in the parent graph, there is no need to also swap this field.
6956 static void swap_sched(struct isl_sched_node *node1,
6957 struct isl_sched_node *node2)
6959 isl_mat *sched;
6960 isl_map *sched_map;
6962 sched = node1->sched;
6963 node1->sched = node2->sched;
6964 node2->sched = sched;
6966 sched_map = node1->sched_map;
6967 node1->sched_map = node2->sched_map;
6968 node2->sched_map = sched_map;
6971 /* Copy the current band schedule from the SCCs that form the cluster
6972 * with index "pos" to the actual cluster at position "pos".
6973 * By construction, the index of the first SCC that belongs to the cluster
6974 * is also "pos".
6976 * The order of the nodes inside both the SCCs and the cluster
6977 * is assumed to be same as the order in the original "graph".
6979 * Since the SCC graphs will no longer be used after this function,
6980 * the schedules are actually swapped rather than copied.
6982 static isl_stat copy_partial(struct isl_sched_graph *graph,
6983 struct isl_clustering *c, int pos)
6985 int i, j;
6987 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6988 c->cluster[pos].n_row = c->scc[pos].n_row;
6989 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6990 j = 0;
6991 for (i = 0; i < graph->n; ++i) {
6992 int k;
6993 int s;
6995 if (graph->node[i].cluster != pos)
6996 continue;
6997 s = graph->node[i].scc;
6998 k = c->scc_node[s]++;
6999 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
7000 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
7001 c->cluster[pos].maxvar = c->scc[s].maxvar;
7002 ++j;
7005 return isl_stat_ok;
7008 /* Is there a (conditional) validity dependence from node[j] to node[i],
7009 * forcing node[i] to follow node[j] or do the nodes belong to the same
7010 * cluster?
7012 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
7014 struct isl_sched_graph *graph = user;
7016 if (graph->node[i].cluster == graph->node[j].cluster)
7017 return isl_bool_true;
7018 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
7021 /* Extract the merged clusters of SCCs in "graph", sort them, and
7022 * store them in c->clusters. Update c->scc_cluster accordingly.
7024 * First keep track of the cluster containing the SCC to which a node
7025 * belongs in the node itself.
7026 * Then extract the clusters into c->clusters, copying the current
7027 * band schedule from the SCCs that belong to the cluster.
7028 * Do this only once per cluster.
7030 * Finally, topologically sort the clusters and update c->scc_cluster
7031 * to match the new scc numbering. While the SCCs were originally
7032 * sorted already, some SCCs that depend on some other SCCs may
7033 * have been merged with SCCs that appear before these other SCCs.
7034 * A reordering may therefore be required.
7036 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
7037 struct isl_clustering *c)
7039 int i;
7041 for (i = 0; i < graph->n; ++i)
7042 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
7044 for (i = 0; i < graph->scc; ++i) {
7045 if (c->scc_cluster[i] != i)
7046 continue;
7047 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
7048 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
7049 return isl_stat_error;
7050 c->cluster[i].src_scc = -1;
7051 c->cluster[i].dst_scc = -1;
7052 if (copy_partial(graph, c, i) < 0)
7053 return isl_stat_error;
7056 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
7057 return isl_stat_error;
7058 for (i = 0; i < graph->n; ++i)
7059 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
7061 return isl_stat_ok;
7064 /* Compute weights on the proximity edges of "graph" that can
7065 * be used by find_proximity to find the most appropriate
7066 * proximity edge to use to merge two clusters in "c".
7067 * The weights are also used by has_bounded_distances to determine
7068 * whether the merge should be allowed.
7069 * Store the maximum of the computed weights in graph->max_weight.
7071 * The computed weight is a measure for the number of remaining schedule
7072 * dimensions that can still be completely aligned.
7073 * In particular, compute the number of equalities between
7074 * input dimensions and output dimensions in the proximity constraints.
7075 * The directions that are already handled by outer schedule bands
7076 * are projected out prior to determining this number.
7078 * Edges that will never be considered by find_proximity are ignored.
7080 static isl_stat compute_weights(struct isl_sched_graph *graph,
7081 struct isl_clustering *c)
7083 int i;
7085 graph->max_weight = 0;
7087 for (i = 0; i < graph->n_edge; ++i) {
7088 struct isl_sched_edge *edge = &graph->edge[i];
7089 struct isl_sched_node *src = edge->src;
7090 struct isl_sched_node *dst = edge->dst;
7091 isl_basic_map *hull;
7092 isl_bool prox;
7093 int n_in, n_out;
7095 prox = is_non_empty_proximity(edge);
7096 if (prox < 0)
7097 return isl_stat_error;
7098 if (!prox)
7099 continue;
7100 if (bad_cluster(&c->scc[edge->src->scc]) ||
7101 bad_cluster(&c->scc[edge->dst->scc]))
7102 continue;
7103 if (c->scc_cluster[edge->dst->scc] ==
7104 c->scc_cluster[edge->src->scc])
7105 continue;
7107 hull = isl_map_affine_hull(isl_map_copy(edge->map));
7108 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
7109 isl_mat_copy(src->vmap));
7110 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
7111 isl_mat_copy(dst->vmap));
7112 hull = isl_basic_map_project_out(hull,
7113 isl_dim_in, 0, src->rank);
7114 hull = isl_basic_map_project_out(hull,
7115 isl_dim_out, 0, dst->rank);
7116 hull = isl_basic_map_remove_divs(hull);
7117 n_in = isl_basic_map_dim(hull, isl_dim_in);
7118 n_out = isl_basic_map_dim(hull, isl_dim_out);
7119 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
7120 isl_dim_in, 0, n_in);
7121 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
7122 isl_dim_out, 0, n_out);
7123 if (!hull)
7124 return isl_stat_error;
7125 edge->weight = isl_basic_map_n_equality(hull);
7126 isl_basic_map_free(hull);
7128 if (edge->weight > graph->max_weight)
7129 graph->max_weight = edge->weight;
7132 return isl_stat_ok;
7135 /* Call compute_schedule_finish_band on each of the clusters in "c"
7136 * in their topological order. This order is determined by the scc
7137 * fields of the nodes in "graph".
7138 * Combine the results in a sequence expressing the topological order.
7140 * If there is only one cluster left, then there is no need to introduce
7141 * a sequence node. Also, in this case, the cluster necessarily contains
7142 * the SCC at position 0 in the original graph and is therefore also
7143 * stored in the first cluster of "c".
7145 static __isl_give isl_schedule_node *finish_bands_clustering(
7146 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
7147 struct isl_clustering *c)
7149 int i;
7150 isl_ctx *ctx;
7151 isl_union_set_list *filters;
7153 if (graph->scc == 1)
7154 return compute_schedule_finish_band(node, &c->cluster[0], 0);
7156 ctx = isl_schedule_node_get_ctx(node);
7158 filters = extract_sccs(ctx, graph);
7159 node = isl_schedule_node_insert_sequence(node, filters);
7161 for (i = 0; i < graph->scc; ++i) {
7162 int j = c->scc_cluster[i];
7163 node = isl_schedule_node_child(node, i);
7164 node = isl_schedule_node_child(node, 0);
7165 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
7166 node = isl_schedule_node_parent(node);
7167 node = isl_schedule_node_parent(node);
7170 return node;
7173 /* Compute a schedule for a connected dependence graph by first considering
7174 * each strongly connected component (SCC) in the graph separately and then
7175 * incrementally combining them into clusters.
7176 * Return the updated schedule node.
7178 * Initially, each cluster consists of a single SCC, each with its
7179 * own band schedule. The algorithm then tries to merge pairs
7180 * of clusters along a proximity edge until no more suitable
7181 * proximity edges can be found. During this merging, the schedule
7182 * is maintained in the individual SCCs.
7183 * After the merging is completed, the full resulting clusters
7184 * are extracted and in finish_bands_clustering,
7185 * compute_schedule_finish_band is called on each of them to integrate
7186 * the band into "node" and to continue the computation.
7188 * compute_weights initializes the weights that are used by find_proximity.
7190 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
7191 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
7193 isl_ctx *ctx;
7194 struct isl_clustering c;
7195 int i;
7197 ctx = isl_schedule_node_get_ctx(node);
7199 if (clustering_init(ctx, &c, graph) < 0)
7200 goto error;
7202 if (compute_weights(graph, &c) < 0)
7203 goto error;
7205 for (;;) {
7206 i = find_proximity(graph, &c);
7207 if (i < 0)
7208 goto error;
7209 if (i >= graph->n_edge)
7210 break;
7211 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
7212 goto error;
7215 if (extract_clusters(ctx, graph, &c) < 0)
7216 goto error;
7218 node = finish_bands_clustering(node, graph, &c);
7220 clustering_free(ctx, &c);
7221 return node;
7222 error:
7223 clustering_free(ctx, &c);
7224 return isl_schedule_node_free(node);
7227 /* Compute a schedule for a connected dependence graph and return
7228 * the updated schedule node.
7230 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7231 * as many validity dependences as possible. When all validity dependences
7232 * are satisfied we extend the schedule to a full-dimensional schedule.
7234 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7235 * depending on whether the user has selected the option to try and
7236 * compute a schedule for the entire (weakly connected) component first.
7237 * If there is only a single strongly connected component (SCC), then
7238 * there is no point in trying to combine SCCs
7239 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7240 * is called instead.
7242 static __isl_give isl_schedule_node *compute_schedule_wcc(
7243 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
7245 isl_ctx *ctx;
7247 if (!node)
7248 return NULL;
7250 ctx = isl_schedule_node_get_ctx(node);
7251 if (detect_sccs(ctx, graph) < 0)
7252 return isl_schedule_node_free(node);
7254 if (compute_maxvar(graph) < 0)
7255 return isl_schedule_node_free(node);
7257 if (need_feautrier_step(ctx, graph))
7258 return compute_schedule_wcc_feautrier(node, graph);
7260 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
7261 return compute_schedule_wcc_whole(node, graph);
7262 else
7263 return compute_schedule_wcc_clustering(node, graph);
7266 /* Compute a schedule for each group of nodes identified by node->scc
7267 * separately and then combine them in a sequence node (or as set node
7268 * if graph->weak is set) inserted at position "node" of the schedule tree.
7269 * Return the updated schedule node.
7271 * If "wcc" is set then each of the groups belongs to a single
7272 * weakly connected component in the dependence graph so that
7273 * there is no need for compute_sub_schedule to look for weakly
7274 * connected components.
7276 * If a set node would be introduced and if the number of components
7277 * is equal to the number of nodes, then check if the schedule
7278 * is already complete. If so, a redundant set node would be introduced
7279 * (without any further descendants) stating that the statements
7280 * can be executed in arbitrary order, which is also expressed
7281 * by the absence of any node. Refrain from inserting any nodes
7282 * in this case and simply return.
7284 static __isl_give isl_schedule_node *compute_component_schedule(
7285 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
7286 int wcc)
7288 int component;
7289 isl_ctx *ctx;
7290 isl_union_set_list *filters;
7292 if (!node)
7293 return NULL;
7295 if (graph->weak && graph->scc == graph->n) {
7296 if (compute_maxvar(graph) < 0)
7297 return isl_schedule_node_free(node);
7298 if (graph->n_row >= graph->maxvar)
7299 return node;
7302 ctx = isl_schedule_node_get_ctx(node);
7303 filters = extract_sccs(ctx, graph);
7304 if (graph->weak)
7305 node = isl_schedule_node_insert_set(node, filters);
7306 else
7307 node = isl_schedule_node_insert_sequence(node, filters);
7309 for (component = 0; component < graph->scc; ++component) {
7310 node = isl_schedule_node_child(node, component);
7311 node = isl_schedule_node_child(node, 0);
7312 node = compute_sub_schedule(node, ctx, graph,
7313 &node_scc_exactly,
7314 &edge_scc_exactly, component, wcc);
7315 node = isl_schedule_node_parent(node);
7316 node = isl_schedule_node_parent(node);
7319 return node;
7322 /* Compute a schedule for the given dependence graph and insert it at "node".
7323 * Return the updated schedule node.
7325 * We first check if the graph is connected (through validity and conditional
7326 * validity dependences) and, if not, compute a schedule
7327 * for each component separately.
7328 * If the schedule_serialize_sccs option is set, then we check for strongly
7329 * connected components instead and compute a separate schedule for
7330 * each such strongly connected component.
7332 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
7333 struct isl_sched_graph *graph)
7335 isl_ctx *ctx;
7337 if (!node)
7338 return NULL;
7340 ctx = isl_schedule_node_get_ctx(node);
7341 if (isl_options_get_schedule_serialize_sccs(ctx)) {
7342 if (detect_sccs(ctx, graph) < 0)
7343 return isl_schedule_node_free(node);
7344 } else {
7345 if (detect_wccs(ctx, graph) < 0)
7346 return isl_schedule_node_free(node);
7349 if (graph->scc > 1)
7350 return compute_component_schedule(node, graph, 1);
7352 return compute_schedule_wcc(node, graph);
7355 /* Compute a schedule on sc->domain that respects the given schedule
7356 * constraints.
7358 * In particular, the schedule respects all the validity dependences.
7359 * If the default isl scheduling algorithm is used, it tries to minimize
7360 * the dependence distances over the proximity dependences.
7361 * If Feautrier's scheduling algorithm is used, the proximity dependence
7362 * distances are only minimized during the extension to a full-dimensional
7363 * schedule.
7365 * If there are any condition and conditional validity dependences,
7366 * then the conditional validity dependences may be violated inside
7367 * a tilable band, provided they have no adjacent non-local
7368 * condition dependences.
7370 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
7371 __isl_take isl_schedule_constraints *sc)
7373 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
7374 struct isl_sched_graph graph = { 0 };
7375 isl_schedule *sched;
7376 isl_schedule_node *node;
7377 isl_union_set *domain;
7379 sc = isl_schedule_constraints_align_params(sc);
7381 domain = isl_schedule_constraints_get_domain(sc);
7382 if (isl_union_set_n_set(domain) == 0) {
7383 isl_schedule_constraints_free(sc);
7384 return isl_schedule_from_domain(domain);
7387 if (graph_init(&graph, sc) < 0)
7388 domain = isl_union_set_free(domain);
7390 node = isl_schedule_node_from_domain(domain);
7391 node = isl_schedule_node_child(node, 0);
7392 if (graph.n > 0)
7393 node = compute_schedule(node, &graph);
7394 sched = isl_schedule_node_get_schedule(node);
7395 isl_schedule_node_free(node);
7397 graph_free(ctx, &graph);
7398 isl_schedule_constraints_free(sc);
7400 return sched;
7403 /* Compute a schedule for the given union of domains that respects
7404 * all the validity dependences and minimizes
7405 * the dependence distances over the proximity dependences.
7407 * This function is kept for backward compatibility.
7409 __isl_give isl_schedule *isl_union_set_compute_schedule(
7410 __isl_take isl_union_set *domain,
7411 __isl_take isl_union_map *validity,
7412 __isl_take isl_union_map *proximity)
7414 isl_schedule_constraints *sc;
7416 sc = isl_schedule_constraints_on_domain(domain);
7417 sc = isl_schedule_constraints_set_validity(sc, validity);
7418 sc = isl_schedule_constraints_set_proximity(sc, proximity);
7420 return isl_schedule_constraints_compute_schedule(sc);