2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
14 #include <isl/space.h>
15 #include <isl/constraint.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_private.h>
20 #include <isl_ast_build_private.h>
23 /* Compute the "opposite" of the (numerator of the) argument of a div
24 * with denominator "d".
26 * In particular, compute
30 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
31 __isl_take isl_val
*d
)
33 aff
= isl_aff_neg(aff
);
34 aff
= isl_aff_add_constant_val(aff
, d
);
35 aff
= isl_aff_add_constant_si(aff
, -1);
40 /* Internal data structure used inside isl_ast_expr_add_term.
41 * The domain of "build" is used to simplify the expressions.
42 * "build" needs to be set by the caller of isl_ast_expr_add_term.
43 * "ls" is the domain local space of the affine expression
44 * of which a term is being added.
45 * "cst" is the constant term of the expression in which the added term
46 * appears. It may be modified by isl_ast_expr_add_term.
48 * "v" is the coefficient of the term that is being constructed and
49 * is set internally by isl_ast_expr_add_term.
51 struct isl_ast_add_term_data
{
58 /* Given the numerator "aff" of the argument of an integer division
59 * with denominator "d", check if it can be made non-negative over
60 * data->build->domain by stealing part of the constant term of
61 * the expression in which the integer division appears.
63 * In particular, the outer expression is of the form
65 * v * floor(aff/d) + cst
67 * We already know that "aff" itself may attain negative values.
68 * Here we check if aff + d*floor(cst/v) is non-negative, such
69 * that we could rewrite the expression to
71 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
73 * Note that aff + d*floor(cst/v) can only possibly be non-negative
74 * if data->cst and data->v have the same sign.
75 * Similarly, if floor(cst/v) is zero, then there is no point in
78 static isl_bool
is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
79 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
86 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
87 return isl_bool_false
;
89 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
90 shift
= isl_val_floor(shift
);
91 is_zero
= isl_val_is_zero(shift
);
92 if (is_zero
< 0 || is_zero
) {
94 return isl_bool_not(is_zero
);
96 shift
= isl_val_mul(shift
, isl_val_copy(d
));
97 shifted
= isl_aff_copy(aff
);
98 shifted
= isl_aff_add_constant_val(shifted
, shift
);
99 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
100 isl_aff_free(shifted
);
105 /* Given the numerator "aff" of the argument of an integer division
106 * with denominator "d", steal part of the constant term of
107 * the expression in which the integer division appears to make it
108 * non-negative over data->build->domain.
110 * In particular, the outer expression is of the form
112 * v * floor(aff/d) + cst
114 * We know that "aff" itself may attain negative values,
115 * but that aff + d*floor(cst/v) is non-negative.
116 * Find the minimal positive value that we need to add to "aff"
117 * to make it positive and adjust data->cst accordingly.
118 * That is, compute the minimal value "m" of "aff" over
119 * data->build->domain and take
127 * and rewrite the expression to
129 * v * floor((aff + s*d)/d) + (cst - v*s)
131 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
132 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
137 domain
= isl_ast_build_get_domain(data
->build
);
138 shift
= isl_set_min_val(domain
, aff
);
139 isl_set_free(domain
);
141 shift
= isl_val_neg(shift
);
142 shift
= isl_val_div(shift
, isl_val_copy(d
));
143 shift
= isl_val_ceil(shift
);
145 t
= isl_val_copy(shift
);
146 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
147 data
->cst
= isl_val_sub(data
->cst
, t
);
149 shift
= isl_val_mul(shift
, isl_val_copy(d
));
150 return isl_aff_add_constant_val(aff
, shift
);
153 /* Construct an expression representing the binary operation "type"
154 * (some division or modulo) applied to the expressions
155 * constructed from "aff" and "v".
157 static __isl_give isl_ast_expr
*div_mod(enum isl_ast_expr_op_type type
,
158 __isl_take isl_aff
*aff
, __isl_take isl_val
*v
,
159 __isl_keep isl_ast_build
*build
)
161 isl_ast_expr
*expr1
, *expr2
;
163 expr1
= isl_ast_expr_from_aff(aff
, build
);
164 expr2
= isl_ast_expr_from_val(v
);
165 return isl_ast_expr_alloc_binary(type
, expr1
, expr2
);
168 /* Create an isl_ast_expr evaluating the div at position "pos" in data->ls.
169 * The result is simplified in terms of data->build->domain.
170 * This function may change (the sign of) data->v.
172 * data->ls is known to be non-NULL.
174 * Let the div be of the form floor(e/d).
175 * If the ast_build_prefer_pdiv option is set then we check if "e"
176 * is non-negative, so that we can generate
178 * (pdiv_q, expr(e), expr(d))
182 * (fdiv_q, expr(e), expr(d))
184 * If the ast_build_prefer_pdiv option is set and
185 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
186 * If so, we can rewrite
188 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
190 * and still use pdiv_q, while changing the sign of data->v.
192 * Otherwise, we check if
196 * is non-negative and if so, replace floor(e/d) by
198 * floor((e + s*d)/d) - s
200 * with s the minimal shift that makes the argument non-negative.
202 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
205 isl_ctx
*ctx
= isl_local_space_get_ctx(data
->ls
);
208 enum isl_ast_expr_op_type type
;
210 aff
= isl_local_space_get_div(data
->ls
, pos
);
211 d
= isl_aff_get_denominator_val(aff
);
212 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
214 type
= isl_ast_expr_op_fdiv_q
;
215 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
217 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
218 if (non_neg
>= 0 && !non_neg
) {
219 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
221 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
222 if (non_neg
>= 0 && non_neg
) {
223 data
->v
= isl_val_neg(data
->v
);
229 if (non_neg
>= 0 && !non_neg
) {
230 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
231 if (non_neg
>= 0 && non_neg
)
232 aff
= steal_from_cst(aff
, d
, data
);
235 aff
= isl_aff_free(aff
);
237 type
= isl_ast_expr_op_pdiv_q
;
240 return div_mod(type
, aff
, d
, data
->build
);
243 /* Create an isl_ast_expr evaluating the specified dimension of data->ls.
244 * The result is simplified in terms of data->build->domain.
245 * This function may change (the sign of) data->v.
247 * The isl_ast_expr is constructed based on the type of the dimension.
248 * - divs are constructed by var_div
249 * - set variables are constructed from the iterator isl_ids in data->build
250 * - parameters are constructed from the isl_ids in data->ls
252 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
253 enum isl_dim_type type
, int pos
)
255 isl_ctx
*ctx
= isl_local_space_get_ctx(data
->ls
);
258 if (type
== isl_dim_div
)
259 return var_div(data
, pos
);
261 if (type
== isl_dim_set
) {
262 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
263 return isl_ast_expr_from_id(id
);
266 if (!isl_local_space_has_dim_id(data
->ls
, type
, pos
))
267 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
269 id
= isl_local_space_get_dim_id(data
->ls
, type
, pos
);
270 return isl_ast_expr_from_id(id
);
273 /* Does "expr" represent the zero integer?
275 static isl_bool
ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
278 return isl_bool_error
;
279 if (expr
->type
!= isl_ast_expr_int
)
280 return isl_bool_false
;
281 return isl_val_is_zero(expr
->u
.v
);
284 /* Create an expression representing the sum of "expr1" and "expr2",
285 * provided neither of the two expressions is identically zero.
287 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
288 __isl_take isl_ast_expr
*expr2
)
290 if (!expr1
|| !expr2
)
293 if (ast_expr_is_zero(expr1
)) {
294 isl_ast_expr_free(expr1
);
298 if (ast_expr_is_zero(expr2
)) {
299 isl_ast_expr_free(expr2
);
303 return isl_ast_expr_add(expr1
, expr2
);
305 isl_ast_expr_free(expr1
);
306 isl_ast_expr_free(expr2
);
310 /* Subtract expr2 from expr1.
312 * If expr2 is zero, we simply return expr1.
313 * If expr1 is zero, we return
315 * (isl_ast_expr_op_minus, expr2)
317 * Otherwise, we return
319 * (isl_ast_expr_op_sub, expr1, expr2)
321 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
322 __isl_take isl_ast_expr
*expr2
)
324 if (!expr1
|| !expr2
)
327 if (ast_expr_is_zero(expr2
)) {
328 isl_ast_expr_free(expr2
);
332 if (ast_expr_is_zero(expr1
)) {
333 isl_ast_expr_free(expr1
);
334 return isl_ast_expr_neg(expr2
);
337 return isl_ast_expr_sub(expr1
, expr2
);
339 isl_ast_expr_free(expr1
);
340 isl_ast_expr_free(expr2
);
344 /* Return an isl_ast_expr that represents
348 * v is assumed to be non-negative.
349 * The result is simplified in terms of build->domain.
351 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
352 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
353 __isl_keep isl_ast_build
*build
)
361 expr
= div_mod(isl_ast_expr_op_pdiv_r
,
362 isl_aff_copy(aff
), isl_val_copy(d
), build
);
364 if (!isl_val_is_one(v
)) {
365 c
= isl_ast_expr_from_val(isl_val_copy(v
));
366 expr
= isl_ast_expr_mul(c
, expr
);
372 /* Create an isl_ast_expr that scales "expr" by "v".
374 * If v is 1, we simply return expr.
375 * If v is -1, we return
377 * (isl_ast_expr_op_minus, expr)
379 * Otherwise, we return
381 * (isl_ast_expr_op_mul, expr(v), expr)
383 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
384 __isl_take isl_val
*v
)
390 if (isl_val_is_one(v
)) {
395 if (isl_val_is_negone(v
)) {
397 expr
= isl_ast_expr_neg(expr
);
399 c
= isl_ast_expr_from_val(v
);
400 expr
= isl_ast_expr_mul(c
, expr
);
406 isl_ast_expr_free(expr
);
410 /* Add an expression for "*v" times the specified dimension of data->ls
412 * If the dimension is an integer division, then this function
413 * may modify data->cst in order to make the numerator non-negative.
414 * The result is simplified in terms of data->build->domain.
416 * Let e be the expression for the specified dimension,
417 * multiplied by the absolute value of "*v".
418 * If "*v" is negative, we create
420 * (isl_ast_expr_op_sub, expr, e)
422 * except when expr is trivially zero, in which case we create
424 * (isl_ast_expr_op_minus, e)
428 * If "*v" is positive, we simply create
430 * (isl_ast_expr_op_add, expr, e)
433 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
434 __isl_take isl_ast_expr
*expr
, enum isl_dim_type type
, int pos
,
435 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
443 term
= var(data
, type
, pos
);
446 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
448 term
= scale(term
, v
);
449 return ast_expr_sub(expr
, term
);
451 term
= scale(term
, v
);
452 return ast_expr_add(expr
, term
);
456 /* Add an expression for "v" to expr.
458 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
459 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
461 isl_ast_expr
*expr_int
;
466 if (isl_val_is_zero(v
)) {
471 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
473 expr_int
= isl_ast_expr_from_val(v
);
474 return ast_expr_sub(expr
, expr_int
);
476 expr_int
= isl_ast_expr_from_val(v
);
477 return ast_expr_add(expr
, expr_int
);
480 isl_ast_expr_free(expr
);
485 /* Internal data structure used inside extract_modulos.
487 * If any modulo expressions are detected in "aff", then the
488 * expression is removed from "aff" and added to either "pos" or "neg"
489 * depending on the sign of the coefficient of the modulo expression
492 * "add" is an expression that needs to be added to "aff" at the end of
493 * the computation. It is NULL as long as no modulos have been extracted.
495 * "i" is the position in "aff" of the div under investigation
496 * "v" is the coefficient in "aff" of the div
497 * "div" is the argument of the div, with the denominator removed
498 * "d" is the original denominator of the argument of the div
500 * "nonneg" is an affine expression that is non-negative over "build"
501 * and that can be used to extract a modulo expression from "div".
502 * In particular, if "sign" is 1, then the coefficients of "nonneg"
503 * are equal to those of "div" modulo "d". If "sign" is -1, then
504 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
505 * If "sign" is 0, then no such affine expression has been found (yet).
507 struct isl_extract_mod_data
{
508 isl_ast_build
*build
;
529 * represent (a special case of) a test for some linear expression
532 * In particular, is it of the form
538 static isl_bool
is_even_test(struct isl_extract_mod_data
*data
,
539 __isl_keep isl_aff
*arg
)
544 res
= isl_val_eq_si(data
->d
, 2);
548 cst
= isl_aff_get_constant_val(arg
);
549 res
= isl_val_eq_si(cst
, -1);
555 /* Given that data->v * div_i in data->aff is equal to
557 * f * (term - (arg mod d))
559 * with data->d * f = data->v and "arg" non-negative on data->build, add
565 * abs(f) * (arg mod d)
567 * to data->neg or data->pos depending on the sign of -f.
569 * In the special case that "arg mod d" is of the form "(lin - 1) mod 2",
570 * with "lin" some linear expression, first replace
572 * f * (term - ((lin - 1) mod 2))
576 * -f * (1 - term - (lin mod 2))
578 * These two are equal because
580 * ((lin - 1) mod 2) + (lin mod 2) = 1
582 * Also, if "lin - 1" is non-negative, then "lin" is non-negative too.
584 static isl_stat
extract_term_and_mod(struct isl_extract_mod_data
*data
,
585 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
591 even
= is_even_test(data
, arg
);
593 arg
= isl_aff_free(arg
);
595 term
= oppose_div_arg(term
, isl_val_copy(data
->d
));
596 data
->v
= isl_val_neg(data
->v
);
597 arg
= isl_aff_set_constant_si(arg
, 0);
600 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
601 s
= isl_val_sgn(data
->v
);
602 data
->v
= isl_val_abs(data
->v
);
603 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
606 data
->neg
= ast_expr_add(data
->neg
, expr
);
608 data
->pos
= ast_expr_add(data
->pos
, expr
);
609 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
610 isl_dim_div
, data
->i
, 0);
612 data
->v
= isl_val_neg(data
->v
);
613 term
= isl_aff_scale_val(term
, isl_val_copy(data
->v
));
618 data
->add
= isl_aff_add(data
->add
, term
);
620 return isl_stat_error
;
625 /* Given that data->v * div_i in data->aff is of the form
627 * f * d * floor(div/d)
629 * with div nonnegative on data->build, rewrite it as
631 * f * (div - (div mod d)) = f * div - f * (div mod d)
639 * abs(f) * (div mod d)
641 * to data->neg or data->pos depending on the sign of -f.
643 static isl_stat
extract_mod(struct isl_extract_mod_data
*data
)
645 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
646 isl_aff_copy(data
->div
));
649 /* Given that data->v * div_i in data->aff is of the form
651 * f * d * floor(div/d) (1)
653 * check if div is non-negative on data->build and, if so,
654 * extract the corresponding modulo from data->aff.
655 * If not, then check if
659 * is non-negative on data->build. If so, replace (1) by
661 * -f * d * floor((-div + d - 1)/d)
663 * and extract the corresponding modulo from data->aff.
665 * This function may modify data->div.
667 static isl_stat
extract_nonneg_mod(struct isl_extract_mod_data
*data
)
671 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
675 return extract_mod(data
);
677 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
678 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
682 data
->v
= isl_val_neg(data
->v
);
683 return extract_mod(data
);
688 data
->aff
= isl_aff_free(data
->aff
);
689 return isl_stat_error
;
692 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
693 * for use in extracting a modulo expression?
695 * We currently only consider the constant term of the affine expression.
696 * In particular, we prefer the affine expression with the smallest constant
698 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
699 * then we would pick x >= 0
701 * More detailed heuristics could be used if it turns out that there is a need.
703 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
704 __isl_keep isl_constraint
*c
)
712 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
713 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
714 simpler
= isl_val_lt(v1
, v2
);
721 /* Check if the coefficients of "c" are either equal or opposite to those
722 * of data->div modulo data->d. If so, and if "c" is "simpler" than
723 * data->nonneg, then replace data->nonneg by the affine expression of "c"
724 * and set data->sign accordingly.
726 * Both "c" and data->div are assumed not to involve any integer divisions.
728 * Before we start the actual comparison, we first quickly check if
729 * "c" and data->div have the same non-zero coefficients.
730 * If not, then we assume that "c" is not of the desired form.
731 * Note that while the coefficients of data->div can be reasonably expected
732 * not to involve any coefficients that are multiples of d, "c" may
733 * very well involve such coefficients. This means that we may actually
736 * If the constant term is "too large", then the constraint is rejected,
737 * where "too large" is fairly arbitrarily set to 1 << 15.
738 * We do this to avoid picking up constraints that bound a variable
739 * by a very large number, say the largest or smallest possible
740 * variable in the representation of some integer type.
742 static isl_stat
check_parallel_or_opposite(__isl_take isl_constraint
*c
,
745 struct isl_extract_mod_data
*data
= user
;
746 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
747 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
750 isl_bool parallel
= isl_bool_true
, opposite
= isl_bool_true
;
752 for (t
= 0; t
< 2; ++t
) {
753 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
756 for (i
= 0; i
< n
[t
]; ++i
) {
759 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
760 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
764 parallel
= opposite
= isl_bool_false
;
768 if (parallel
|| opposite
) {
771 v
= isl_val_abs(isl_constraint_get_constant_val(c
));
772 if (isl_val_cmp_si(v
, 1 << 15) > 0)
773 parallel
= opposite
= isl_bool_false
;
777 for (t
= 0; t
< 2; ++t
) {
778 for (i
= 0; i
< n
[t
]; ++i
) {
781 if (!parallel
&& !opposite
)
783 v1
= isl_constraint_get_coefficient_val(c
,
785 v2
= isl_aff_get_coefficient_val(data
->div
,
788 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
789 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
790 v1
= isl_val_add(v1
, isl_val_copy(v2
));
793 v1
= isl_val_add(v1
, isl_val_copy(v2
));
794 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
798 if (parallel
< 0 || opposite
< 0)
803 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
804 isl_aff_free(data
->nonneg
);
805 data
->nonneg
= isl_constraint_get_aff(c
);
806 data
->sign
= parallel
? 1 : -1;
809 isl_constraint_free(c
);
811 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
812 return isl_stat_error
;
816 isl_constraint_free(c
);
817 return isl_stat_error
;
820 /* Given that data->v * div_i in data->aff is of the form
822 * f * d * floor(div/d) (1)
824 * see if we can find an expression div' that is non-negative over data->build
825 * and that is related to div through
831 * div' = -div + d - 1 + d * e
833 * with e some affine expression.
834 * If so, we write (1) as
836 * f * div + f * (div' mod d)
840 * -f * (-div + d - 1) - f * (div' mod d)
842 * exploiting (in the second case) the fact that
844 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
847 * We first try to find an appropriate expression for div'
848 * from the constraints of data->build->domain (which is therefore
849 * guaranteed to be non-negative on data->build), where we remove
850 * any integer divisions from the constraints and skip this step
851 * if "div" itself involves any integer divisions.
852 * If we cannot find an appropriate expression this way, then
853 * we pass control to extract_nonneg_mod where check
854 * if div or "-div + d -1" themselves happen to be
855 * non-negative on data->build.
857 * While looking for an appropriate constraint in data->build->domain,
858 * we ignore the constant term, so after finding such a constraint,
859 * we still need to fix up the constant term.
860 * In particular, if a is the constant term of "div"
861 * (or d - 1 - the constant term of "div" if data->sign < 0)
862 * and b is the constant term of the constraint, then we need to find
863 * a non-negative constant c such that
865 * b + c \equiv a mod d
871 * and add it to b to obtain the constant term of div'.
872 * If this constant term is "too negative", then we add an appropriate
873 * multiple of d to make it positive.
876 * Note that the above is only a very simple heuristic for finding an
877 * appropriate expression. We could try a bit harder by also considering
878 * sums of constraints that involve disjoint sets of variables or
879 * we could consider arbitrary linear combinations of constraints,
880 * although that could potentially be much more expensive as it involves
881 * the solution of an LP problem.
883 * In particular, if v_i is a column vector representing constraint i,
884 * w represents div and e_i is the i-th unit vector, then we are looking
885 * for a solution of the constraints
887 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
889 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
890 * If we are not just interested in a non-negative expression, but
891 * also in one with a minimal range, then we don't just want
892 * c = \sum_i lambda_i v_i to be non-negative over the domain,
893 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
894 * that we want to minimize and we now also have to take into account
895 * the constant terms of the constraints.
896 * Alternatively, we could first compute the dual of the domain
897 * and plug in the constraints on the coefficients.
899 static isl_stat
try_extract_mod(struct isl_extract_mod_data
*data
)
909 n
= isl_aff_dim(data
->div
, isl_dim_div
);
913 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
914 return extract_nonneg_mod(data
);
916 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
917 hull
= isl_basic_set_remove_divs(hull
);
920 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
922 isl_basic_set_free(hull
);
924 if (!data
->sign
|| r
< 0) {
925 isl_aff_free(data
->nonneg
);
928 return extract_nonneg_mod(data
);
931 v1
= isl_aff_get_constant_val(data
->div
);
932 v2
= isl_aff_get_constant_val(data
->nonneg
);
933 if (data
->sign
< 0) {
934 v1
= isl_val_neg(v1
);
935 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
936 v1
= isl_val_sub_ui(v1
, 1);
938 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
939 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
940 v1
= isl_val_add(v1
, v2
);
941 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
942 v2
= isl_val_ceil(v2
);
943 if (isl_val_is_neg(v2
)) {
944 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
945 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
947 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
950 if (data
->sign
< 0) {
951 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
952 data
->v
= isl_val_neg(data
->v
);
955 return extract_term_and_mod(data
,
956 isl_aff_copy(data
->div
), data
->nonneg
);
958 data
->aff
= isl_aff_free(data
->aff
);
959 return isl_stat_error
;
962 /* Check if "data->aff" involves any (implicit) modulo computations based
964 * If so, remove them from aff and add expressions corresponding
965 * to those modulo computations to data->pos and/or data->neg.
967 * "aff" is assumed to be an integer affine expression.
969 * In particular, check if (v * div_j) is of the form
971 * f * m * floor(a / m)
973 * and, if so, rewrite it as
975 * f * (a - (a mod m)) = f * a - f * (a mod m)
977 * and extract out -f * (a mod m).
978 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
979 * If f < 0, we add ((-f) * (a mod m)) to *pos.
981 * Note that in order to represent "a mod m" as
983 * (isl_ast_expr_op_pdiv_r, a, m)
985 * we need to make sure that a is non-negative.
986 * If not, we check if "-a + m - 1" is non-negative.
987 * If so, we can rewrite
989 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
991 * and still extract a modulo.
993 static int extract_modulo(struct isl_extract_mod_data
*data
)
995 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
996 data
->d
= isl_aff_get_denominator_val(data
->div
);
997 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
998 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
999 if (try_extract_mod(data
) < 0)
1000 data
->aff
= isl_aff_free(data
->aff
);
1002 isl_aff_free(data
->div
);
1003 isl_val_free(data
->d
);
1007 /* Check if "aff" involves any (implicit) modulo computations.
1008 * If so, remove them from aff and add expressions corresponding
1009 * to those modulo computations to *pos and/or *neg.
1010 * We only do this if the option ast_build_prefer_pdiv is set.
1012 * "aff" is assumed to be an integer affine expression.
1014 * A modulo expression is of the form
1016 * a mod m = a - m * floor(a / m)
1018 * To detect them in aff, we look for terms of the form
1020 * f * m * floor(a / m)
1024 * f * (a - (a mod m)) = f * a - f * (a mod m)
1026 * and extract out -f * (a mod m).
1027 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
1028 * If f < 0, we add ((-f) * (a mod m)) to *pos.
1030 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
1031 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
1032 __isl_keep isl_ast_build
*build
)
1034 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
1041 ctx
= isl_aff_get_ctx(aff
);
1042 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
1045 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
1047 return isl_aff_free(aff
);
1048 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
1049 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
1050 isl_dim_div
, data
.i
);
1052 return isl_aff_free(aff
);
1053 if (isl_val_is_zero(data
.v
) ||
1054 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
1055 isl_val_free(data
.v
);
1058 if (extract_modulo(&data
) < 0)
1059 data
.aff
= isl_aff_free(data
.aff
);
1060 isl_val_free(data
.v
);
1066 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
1073 /* Call "fn" on every non-zero coefficient of "aff",
1074 * passing it in the type of dimension (in terms of the domain),
1075 * the position and the value, as long as "fn" returns isl_bool_true.
1076 * If "reverse" is set, then the coefficients are considered in reverse order
1079 static isl_bool
every_non_zero_coefficient(__isl_keep isl_aff
*aff
,
1081 isl_bool (*fn
)(enum isl_dim_type type
, int pos
, __isl_take isl_val
*v
,
1086 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1087 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1090 for (i
= 0; i
< 3; ++i
) {
1093 n
= isl_aff_dim(aff
, t
[i
]);
1095 return isl_bool_error
;
1096 for (j
= 0; j
< n
; ++j
) {
1100 pos
= reverse
? n
- 1 - j
: j
;
1101 v
= isl_aff_get_coefficient_val(aff
, t
[i
], pos
);
1102 ok
= isl_val_is_zero(v
);
1104 ok
= fn(l
[i
], pos
, v
, user
);
1112 return isl_bool_true
;
1115 /* Internal data structure for extract_rational.
1117 * "d" is the denominator of the original affine expression.
1118 * "ls" is its domain local space.
1119 * "rat" collects the rational part.
1121 struct isl_ast_extract_rational_data
{
1123 isl_local_space
*ls
;
1128 /* Given a non-zero term in an affine expression equal to "v" times
1129 * the variable of type "type" at position "pos",
1130 * add it to data->rat if "v" is not a multiple of data->d.
1132 static isl_bool
add_rational(enum isl_dim_type type
, int pos
,
1133 __isl_take isl_val
*v
, void *user
)
1135 struct isl_ast_extract_rational_data
*data
= user
;
1138 if (isl_val_is_divisible_by(v
, data
->d
)) {
1140 return isl_bool_true
;
1142 rat
= isl_aff_var_on_domain(isl_local_space_copy(data
->ls
), type
, pos
);
1143 rat
= isl_aff_scale_val(rat
, v
);
1144 data
->rat
= isl_aff_add(data
->rat
, rat
);
1145 return isl_bool_true
;
1148 /* Check if aff involves any non-integer coefficients.
1149 * If so, split aff into
1151 * aff = aff1 + (aff2 / d)
1153 * with both aff1 and aff2 having only integer coefficients.
1154 * Return aff1 and add (aff2 / d) to *expr.
1156 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
1157 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
1159 struct isl_ast_extract_rational_data data
= { NULL
};
1160 isl_ast_expr
*rat_expr
;
1165 data
.d
= isl_aff_get_denominator_val(aff
);
1168 if (isl_val_is_one(data
.d
)) {
1169 isl_val_free(data
.d
);
1173 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.d
));
1175 data
.ls
= isl_aff_get_domain_local_space(aff
);
1176 data
.rat
= isl_aff_zero_on_domain(isl_local_space_copy(data
.ls
));
1178 if (every_non_zero_coefficient(aff
, 0, &add_rational
, &data
) < 0)
1181 v
= isl_aff_get_constant_val(aff
);
1182 if (isl_val_is_divisible_by(v
, data
.d
)) {
1187 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(data
.ls
), v
);
1188 data
.rat
= isl_aff_add(data
.rat
, rat_0
);
1191 isl_local_space_free(data
.ls
);
1193 aff
= isl_aff_sub(aff
, isl_aff_copy(data
.rat
));
1194 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(data
.d
));
1196 rat_expr
= div_mod(isl_ast_expr_op_div
, data
.rat
, data
.d
, build
);
1197 *expr
= ast_expr_add(*expr
, rat_expr
);
1201 isl_aff_free(data
.rat
);
1202 isl_local_space_free(data
.ls
);
1204 isl_val_free(data
.d
);
1208 /* Internal data structure for isl_ast_expr_from_aff.
1210 * "term" contains the information for adding a term.
1211 * "expr" collects the results.
1213 struct isl_ast_add_terms_data
{
1214 struct isl_ast_add_term_data
*term
;
1218 /* Given a non-zero term in an affine expression equal to "v" times
1219 * the variable of type "type" at position "pos",
1220 * add the corresponding AST expression to data->expr.
1222 static isl_bool
add_term(enum isl_dim_type type
, int pos
,
1223 __isl_take isl_val
*v
, void *user
)
1225 struct isl_ast_add_terms_data
*data
= user
;
1228 isl_ast_expr_add_term(data
->expr
, type
, pos
, v
, data
->term
);
1230 return isl_bool_true
;
1233 /* Add terms to "expr" for each variable in "aff".
1234 * The result is simplified in terms of data->build->domain.
1236 static __isl_give isl_ast_expr
*add_terms(__isl_take isl_ast_expr
*expr
,
1237 __isl_keep isl_aff
*aff
, struct isl_ast_add_term_data
*data
)
1239 struct isl_ast_add_terms_data terms_data
= { data
, expr
};
1241 if (every_non_zero_coefficient(aff
, 0, &add_term
, &terms_data
) < 0)
1242 return isl_ast_expr_free(terms_data
.expr
);
1244 return terms_data
.expr
;
1247 /* Construct an isl_ast_expr that evaluates the affine expression "aff".
1248 * The result is simplified in terms of build->domain.
1250 * We first extract hidden modulo computations from the affine expression
1251 * and then add terms for each variable with a non-zero coefficient.
1252 * Finally, if the affine expression has a non-trivial denominator,
1253 * we divide the resulting isl_ast_expr by this denominator.
1255 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1256 __isl_keep isl_ast_build
*build
)
1258 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1259 isl_ast_expr
*expr
, *expr_neg
;
1260 struct isl_ast_add_term_data term_data
;
1265 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1266 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1268 aff
= extract_rational(aff
, &expr
, build
);
1270 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1271 expr
= ast_expr_sub(expr
, expr_neg
);
1273 term_data
.build
= build
;
1274 term_data
.ls
= isl_aff_get_domain_local_space(aff
);
1275 term_data
.cst
= isl_aff_get_constant_val(aff
);
1276 expr
= add_terms(expr
, aff
, &term_data
);
1278 expr
= isl_ast_expr_add_int(expr
, term_data
.cst
);
1279 isl_local_space_free(term_data
.ls
);
1285 /* Internal data structure for coefficients_of_sign.
1287 * "sign" is the sign of the coefficients that should be retained.
1288 * "aff" is the affine expression of which some coefficients are zeroed out.
1290 struct isl_ast_coefficients_of_sign_data
{
1295 /* Clear the specified coefficient of data->aff if the value "v"
1296 * does not have the required sign.
1298 static isl_bool
clear_opposite_sign(enum isl_dim_type type
, int pos
,
1299 __isl_take isl_val
*v
, void *user
)
1301 struct isl_ast_coefficients_of_sign_data
*data
= user
;
1303 if (type
== isl_dim_set
)
1305 if (data
->sign
* isl_val_sgn(v
) < 0)
1306 data
->aff
= isl_aff_set_coefficient_si(data
->aff
, type
, pos
, 0);
1309 return isl_bool_true
;
1312 /* Extract the coefficients of "aff" (excluding the constant term)
1313 * that have the given sign.
1315 * Take a copy of "aff" and clear the coefficients that do not have
1316 * the required sign.
1317 * Consider the coefficients in reverse order since clearing
1318 * the coefficient of an integer division in data.aff
1319 * could result in the removal of that integer division from data.aff,
1320 * changing the positions of all subsequent integer divisions of data.aff,
1321 * while those of "aff" remain the same.
1323 static __isl_give isl_aff
*coefficients_of_sign(__isl_take isl_aff
*aff
,
1326 struct isl_ast_coefficients_of_sign_data data
;
1329 data
.aff
= isl_aff_copy(aff
);
1330 if (every_non_zero_coefficient(aff
, 1, &clear_opposite_sign
, &data
) < 0)
1331 data
.aff
= isl_aff_free(data
.aff
);
1334 data
.aff
= isl_aff_set_constant_si(data
.aff
, 0);
1339 /* Should the constant term "v" be considered positive?
1341 * A positive constant will be added to "pos" by the caller,
1342 * while a negative constant will be added to "neg".
1343 * If either "pos" or "neg" is exactly zero, then we prefer
1344 * to add the constant "v" to that side, irrespective of the sign of "v".
1345 * This results in slightly shorter expressions and may reduce the risk
1348 static isl_bool
constant_is_considered_positive(__isl_keep isl_val
*v
,
1349 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1353 zero
= ast_expr_is_zero(pos
);
1354 if (zero
< 0 || zero
)
1356 zero
= ast_expr_is_zero(neg
);
1357 if (zero
< 0 || zero
)
1358 return isl_bool_not(zero
);
1359 return isl_val_is_pos(v
);
1362 /* Check if the equality
1366 * represents a stride constraint on the integer division "pos".
1368 * In particular, if the integer division "pos" is equal to
1372 * then check if aff is equal to
1378 * If so, the equality is exactly
1382 * Note that in principle we could also accept
1386 * where e and e' differ by a constant.
1388 static isl_bool
is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1394 div
= isl_aff_get_div(aff
, pos
);
1395 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1396 d
= isl_aff_get_denominator_val(div
);
1397 eq
= isl_val_abs_eq(c
, d
);
1398 if (eq
>= 0 && eq
) {
1399 aff
= isl_aff_copy(aff
);
1400 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1401 div
= isl_aff_scale_val(div
, d
);
1402 if (isl_val_is_pos(c
))
1403 div
= isl_aff_neg(div
);
1404 eq
= isl_aff_plain_is_equal(div
, aff
);
1414 /* Are all coefficients of "aff" (zero or) negative?
1416 static isl_bool
all_negative_coefficients(__isl_keep isl_aff
*aff
)
1421 n
= isl_aff_dim(aff
, isl_dim_param
);
1423 return isl_bool_error
;
1424 for (i
= 0; i
< n
; ++i
)
1425 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1426 return isl_bool_false
;
1428 n
= isl_aff_dim(aff
, isl_dim_in
);
1430 return isl_bool_error
;
1431 for (i
= 0; i
< n
; ++i
)
1432 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1433 return isl_bool_false
;
1435 return isl_bool_true
;
1438 /* Give an equality of the form
1440 * aff = e - d floor(e/d) = 0
1444 * aff = -e + d floor(e/d) = 0
1446 * with the integer division "pos" equal to floor(e/d),
1447 * construct the AST expression
1449 * (isl_ast_expr_op_eq,
1450 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1452 * If e only has negative coefficients, then construct
1454 * (isl_ast_expr_op_eq,
1455 * (isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
1459 static __isl_give isl_ast_expr
*extract_stride_constraint(
1460 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1465 isl_ast_expr
*expr
, *cst
;
1470 ctx
= isl_aff_get_ctx(aff
);
1472 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1473 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1475 all_neg
= all_negative_coefficients(aff
);
1477 aff
= isl_aff_free(aff
);
1479 aff
= isl_aff_neg(aff
);
1481 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1482 expr
= isl_ast_expr_from_aff(aff
, build
);
1484 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r
, expr
, cst
);
1485 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1486 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_eq
, expr
, cst
);
1491 /* Construct an isl_ast_expr evaluating
1493 * "expr_pos" == "expr_neg", if "eq" is set, or
1494 * "expr_pos" >= "expr_neg", if "eq" is not set
1496 * However, if "expr_pos" is an integer constant (and "expr_neg" is not),
1497 * then the two expressions are interchanged. This ensures that,
1498 * e.g., "i <= 5" is constructed rather than "5 >= i".
1500 static __isl_give isl_ast_expr
*construct_constraint_expr(int eq
,
1501 __isl_take isl_ast_expr
*expr_pos
, __isl_take isl_ast_expr
*expr_neg
)
1504 enum isl_ast_expr_op_type type
;
1505 int pos_is_cst
, neg_is_cst
;
1507 pos_is_cst
= isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
;
1508 neg_is_cst
= isl_ast_expr_get_type(expr_neg
) == isl_ast_expr_int
;
1509 if (pos_is_cst
&& !neg_is_cst
) {
1510 type
= eq
? isl_ast_expr_op_eq
: isl_ast_expr_op_le
;
1511 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1513 type
= eq
? isl_ast_expr_op_eq
: isl_ast_expr_op_ge
;
1514 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1520 /* Construct an isl_ast_expr that evaluates the condition "aff" == 0
1521 * (if "eq" is set) or "aff" >= 0 (otherwise).
1522 * The result is simplified in terms of build->domain.
1524 * We first extract hidden modulo computations from "aff"
1525 * and then collect all the terms with a positive coefficient in cons_pos
1526 * and the terms with a negative coefficient in cons_neg.
1528 * The result is then essentially of the form
1530 * (isl_ast_expr_op_ge, expr(pos), expr(-neg)))
1534 * (isl_ast_expr_op_eq, expr(pos), expr(-neg)))
1536 * However, if there are no terms with positive coefficients (or no terms
1537 * with negative coefficients), then the constant term is added to "pos"
1538 * (or "neg"), ignoring the sign of the constant term.
1540 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint_no_stride(
1541 int eq
, __isl_take isl_aff
*aff
, __isl_keep isl_ast_build
*build
)
1543 isl_bool cst_is_pos
;
1545 isl_ast_expr
*expr_pos
;
1546 isl_ast_expr
*expr_neg
;
1547 isl_aff
*aff_pos
, *aff_neg
;
1548 struct isl_ast_add_term_data data
;
1550 ctx
= isl_aff_get_ctx(aff
);
1551 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1552 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1554 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1557 data
.ls
= isl_aff_get_domain_local_space(aff
);
1558 data
.cst
= isl_aff_get_constant_val(aff
);
1560 aff_pos
= coefficients_of_sign(isl_aff_copy(aff
), 1);
1561 aff_neg
= isl_aff_neg(coefficients_of_sign(aff
, -1));
1563 expr_pos
= add_terms(expr_pos
, aff_pos
, &data
);
1564 data
.cst
= isl_val_neg(data
.cst
);
1565 expr_neg
= add_terms(expr_neg
, aff_neg
, &data
);
1566 data
.cst
= isl_val_neg(data
.cst
);
1567 isl_local_space_free(data
.ls
);
1570 constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
);
1572 expr_pos
= isl_ast_expr_free(expr_pos
);
1575 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1577 data
.cst
= isl_val_neg(data
.cst
);
1578 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1581 isl_aff_free(aff_pos
);
1582 isl_aff_free(aff_neg
);
1583 return construct_constraint_expr(eq
, expr_pos
, expr_neg
);
1586 /* Construct an isl_ast_expr that evaluates the condition "constraint".
1587 * The result is simplified in terms of build->domain.
1589 * We first check if the constraint is an equality of the form
1591 * e - d floor(e/d) = 0
1597 * If so, we convert it to
1599 * (isl_ast_expr_op_eq,
1600 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1602 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1603 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1610 aff
= isl_constraint_get_aff(constraint
);
1611 eq
= isl_constraint_is_equality(constraint
);
1612 isl_constraint_free(constraint
);
1616 n
= isl_aff_dim(aff
, isl_dim_div
);
1618 aff
= isl_aff_free(aff
);
1620 for (i
= 0; i
< n
; ++i
) {
1622 is_stride
= is_stride_constraint(aff
, i
);
1626 return extract_stride_constraint(aff
, i
, build
);
1629 return isl_ast_expr_from_constraint_no_stride(eq
, aff
, build
);
1635 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1636 * as a callback to isl_constraint_list_sort.
1637 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1638 * apart, then use isl_constraint_plain_cmp instead.
1640 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1641 __isl_keep isl_constraint
*b
, void *user
)
1645 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1648 return isl_constraint_plain_cmp(a
, b
);
1651 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1652 * The result is simplified in terms of build->domain.
1654 * If "bset" is not bounded by any constraint, then we construct
1655 * the expression "1", i.e., "true".
1657 * Otherwise, we sort the constraints, putting constraints that involve
1658 * integer divisions after those that do not, and construct an "and"
1659 * of the ast expressions of the individual constraints.
1661 * Each constraint is added to the generated constraints of the build
1662 * after it has been converted to an AST expression so that it can be used
1663 * to simplify the following constraints. This may change the truth value
1664 * of subsequent constraints that do not satisfy the earlier constraints,
1665 * but this does not affect the outcome of the conjunction as it is
1666 * only true if all the conjuncts are true (no matter in what order
1667 * they are evaluated). In particular, the constraints that do not
1668 * involve integer divisions may serve to simplify some constraints
1669 * that do involve integer divisions.
1671 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1672 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1677 isl_constraint_list
*list
;
1681 list
= isl_basic_set_get_constraint_list(bset
);
1682 isl_basic_set_free(bset
);
1683 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1684 n
= isl_constraint_list_n_constraint(list
);
1688 isl_ctx
*ctx
= isl_constraint_list_get_ctx(list
);
1689 isl_constraint_list_free(list
);
1690 return isl_ast_expr_alloc_int_si(ctx
, 1);
1693 build
= isl_ast_build_copy(build
);
1695 c
= isl_constraint_list_get_constraint(list
, 0);
1696 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1697 set
= isl_set_from_basic_set(bset
);
1698 res
= isl_ast_expr_from_constraint(c
, build
);
1699 build
= isl_ast_build_restrict_generated(build
, set
);
1701 for (i
= 1; i
< n
; ++i
) {
1704 c
= isl_constraint_list_get_constraint(list
, i
);
1705 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1706 set
= isl_set_from_basic_set(bset
);
1707 expr
= isl_ast_expr_from_constraint(c
, build
);
1708 build
= isl_ast_build_restrict_generated(build
, set
);
1709 res
= isl_ast_expr_and(res
, expr
);
1712 isl_constraint_list_free(list
);
1713 isl_ast_build_free(build
);
1717 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1718 * The result is simplified in terms of build->domain.
1720 * If "set" is an (obviously) empty set, then return the expression "0".
1722 * If there are multiple disjuncts in the description of the set,
1723 * then subsequent disjuncts are simplified in a context where
1724 * the previous disjuncts have been removed from build->domain.
1725 * In particular, constraints that ensure that there is no overlap
1726 * with these previous disjuncts, can be removed.
1727 * This is mostly useful for disjuncts that are only defined by
1728 * a single constraint (relative to the build domain) as the opposite
1729 * of that single constraint can then be removed from the other disjuncts.
1730 * In order not to increase the number of disjuncts in the build domain
1731 * after subtracting the previous disjuncts of "set", the simple hull
1732 * is computed after taking the difference with each of these disjuncts.
1733 * This means that constraints that prevent overlap with a union
1734 * of multiple previous disjuncts are not removed.
1736 * "set" lives in the internal schedule space.
1738 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
1739 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1743 isl_basic_set
*bset
;
1744 isl_basic_set_list
*list
;
1748 list
= isl_set_get_basic_set_list(set
);
1751 n
= isl_basic_set_list_n_basic_set(list
);
1755 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1756 isl_basic_set_list_free(list
);
1757 return isl_ast_expr_from_val(isl_val_zero(ctx
));
1760 domain
= isl_ast_build_get_domain(build
);
1762 bset
= isl_basic_set_list_get_basic_set(list
, 0);
1763 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1764 res
= isl_ast_build_expr_from_basic_set(build
, bset
);
1766 for (i
= 1; i
< n
; ++i
) {
1770 rest
= isl_set_subtract(isl_set_copy(domain
), set
);
1771 rest
= isl_set_from_basic_set(isl_set_simple_hull(rest
));
1772 domain
= isl_set_intersect(domain
, rest
);
1773 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1774 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1775 bset
= isl_basic_set_gist(bset
,
1776 isl_set_simple_hull(isl_set_copy(domain
)));
1777 expr
= isl_ast_build_expr_from_basic_set(build
, bset
);
1778 res
= isl_ast_expr_or(res
, expr
);
1781 isl_set_free(domain
);
1783 isl_basic_set_list_free(list
);
1787 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1788 * The result is simplified in terms of build->domain.
1790 * If "set" is an (obviously) empty set, then return the expression "0".
1792 * "set" lives in the external schedule space.
1794 * The internal AST expression generation assumes that there are
1795 * no unknown divs, so make sure an explicit representation is available.
1796 * Since the set comes from the outside, it may have constraints that
1797 * are redundant with respect to the build domain. Remove them first.
1799 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1800 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1804 needs_map
= isl_ast_build_need_schedule_map(build
);
1805 if (needs_map
< 0) {
1806 set
= isl_set_free(set
);
1807 } else if (needs_map
) {
1809 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1810 set
= isl_set_preimage_multi_aff(set
, ma
);
1813 set
= isl_set_compute_divs(set
);
1814 set
= isl_ast_build_compute_gist(build
, set
);
1815 return isl_ast_build_expr_from_set_internal(build
, set
);
1818 /* State of data about previous pieces in
1819 * isl_ast_build_expr_from_pw_aff_internal.
1821 * isl_state_none: no data about previous pieces
1822 * isl_state_single: data about a single previous piece
1823 * isl_state_min: data represents minimum of several pieces
1824 * isl_state_max: data represents maximum of several pieces
1826 enum isl_from_pw_aff_state
{
1833 /* Internal date structure representing a single piece in the input of
1834 * isl_ast_build_expr_from_pw_aff_internal.
1836 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1837 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1838 * single previous subpiece.
1839 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1840 * a sequence of several previous subpieces that are equal to the minimum
1841 * of the entries in "aff_list" over the union of "set_list"
1842 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1843 * a sequence of several previous subpieces that are equal to the maximum
1844 * of the entries in "aff_list" over the union of "set_list"
1846 * During the construction of the pieces, "set" is NULL.
1847 * After the construction, "set" is set to the union of the elements
1848 * in "set_list", at which point "set_list" is set to NULL.
1850 struct isl_from_pw_aff_piece
{
1851 enum isl_from_pw_aff_state state
;
1853 isl_set_list
*set_list
;
1854 isl_aff_list
*aff_list
;
1857 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1859 * "build" specifies the domain against which the result is simplified.
1860 * "dom" is the domain of the entire isl_pw_aff.
1862 * "n" is the number of pieces constructed already.
1863 * In particular, during the construction of the pieces, "n" points to
1864 * the piece that is being constructed. After the construction of the
1865 * pieces, "n" is set to the total number of pieces.
1866 * "max" is the total number of allocated entries.
1867 * "p" contains the individual pieces.
1869 struct isl_from_pw_aff_data
{
1870 isl_ast_build
*build
;
1875 struct isl_from_pw_aff_piece
*p
;
1878 /* Initialize "data" based on "build" and "pa".
1880 static isl_stat
isl_from_pw_aff_data_init(struct isl_from_pw_aff_data
*data
,
1881 __isl_keep isl_ast_build
*build
, __isl_keep isl_pw_aff
*pa
)
1886 ctx
= isl_pw_aff_get_ctx(pa
);
1887 n
= isl_pw_aff_n_piece(pa
);
1889 return isl_stat_error
;
1891 isl_die(ctx
, isl_error_invalid
,
1892 "cannot handle void expression", return isl_stat_error
);
1894 data
->p
= isl_calloc_array(ctx
, struct isl_from_pw_aff_piece
, n
);
1896 return isl_stat_error
;
1897 data
->build
= build
;
1898 data
->dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1904 /* Free all memory allocated for "data".
1906 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data
*data
)
1910 isl_set_free(data
->dom
);
1914 for (i
= 0; i
< data
->max
; ++i
) {
1915 isl_set_free(data
->p
[i
].set
);
1916 isl_set_list_free(data
->p
[i
].set_list
);
1917 isl_aff_list_free(data
->p
[i
].aff_list
);
1922 /* Initialize the current entry of "data" to an unused piece.
1924 static void set_none(struct isl_from_pw_aff_data
*data
)
1926 data
->p
[data
->n
].state
= isl_state_none
;
1927 data
->p
[data
->n
].set_list
= NULL
;
1928 data
->p
[data
->n
].aff_list
= NULL
;
1931 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
1933 static void set_single(struct isl_from_pw_aff_data
*data
,
1934 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1936 data
->p
[data
->n
].state
= isl_state_single
;
1937 data
->p
[data
->n
].set_list
= isl_set_list_from_set(set
);
1938 data
->p
[data
->n
].aff_list
= isl_aff_list_from_aff(aff
);
1941 /* Extend the current entry of "data" with "set" and "aff"
1942 * as a minimum expression.
1944 static isl_stat
extend_min(struct isl_from_pw_aff_data
*data
,
1945 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1948 data
->p
[n
].state
= isl_state_min
;
1949 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1950 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1952 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1953 return isl_stat_error
;
1957 /* Extend the current entry of "data" with "set" and "aff"
1958 * as a maximum expression.
1960 static isl_stat
extend_max(struct isl_from_pw_aff_data
*data
,
1961 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1964 data
->p
[n
].state
= isl_state_max
;
1965 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1966 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1968 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1969 return isl_stat_error
;
1973 /* Extend the domain of the current entry of "data", which is assumed
1974 * to contain a single subpiece, with "set". If "replace" is set,
1975 * then also replace the affine function by "aff". Otherwise,
1976 * simply free "aff".
1978 static isl_stat
extend_domain(struct isl_from_pw_aff_data
*data
,
1979 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
, int replace
)
1984 set_n
= isl_set_list_get_set(data
->p
[n
].set_list
, 0);
1985 set_n
= isl_set_union(set_n
, set
);
1986 data
->p
[n
].set_list
=
1987 isl_set_list_set_set(data
->p
[n
].set_list
, 0, set_n
);
1990 data
->p
[n
].aff_list
=
1991 isl_aff_list_set_aff(data
->p
[n
].aff_list
, 0, aff
);
1995 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1996 return isl_stat_error
;
2000 /* Construct an isl_ast_expr from "list" within "build".
2001 * If "state" is isl_state_single, then "list" contains a single entry and
2002 * an isl_ast_expr is constructed for that entry.
2003 * Otherwise a min or max expression is constructed from "list"
2004 * depending on "state".
2006 static __isl_give isl_ast_expr
*ast_expr_from_aff_list(
2007 __isl_take isl_aff_list
*list
, enum isl_from_pw_aff_state state
,
2008 __isl_keep isl_ast_build
*build
)
2013 isl_ast_expr
*expr
= NULL
;
2014 enum isl_ast_expr_op_type op_type
;
2016 if (state
== isl_state_single
) {
2017 aff
= isl_aff_list_get_aff(list
, 0);
2018 isl_aff_list_free(list
);
2019 return isl_ast_expr_from_aff(aff
, build
);
2021 n
= isl_aff_list_n_aff(list
);
2024 op_type
= state
== isl_state_min
? isl_ast_expr_op_min
2025 : isl_ast_expr_op_max
;
2026 expr
= isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build
), op_type
, n
);
2028 for (i
= 0; i
< n
; ++i
) {
2029 isl_ast_expr
*expr_i
;
2031 aff
= isl_aff_list_get_aff(list
, i
);
2032 expr_i
= isl_ast_expr_from_aff(aff
, build
);
2033 expr
= isl_ast_expr_op_add_arg(expr
, expr_i
);
2036 isl_aff_list_free(list
);
2039 isl_aff_list_free(list
);
2040 isl_ast_expr_free(expr
);
2044 /* Extend the list of expressions in "next" to take into account
2045 * the piece at position "pos" in "data", allowing for a further extension
2046 * for the next piece(s).
2047 * In particular, "next" is extended with a select operation that selects
2048 * an isl_ast_expr corresponding to data->aff_list on data->set and
2049 * to an expression that will be filled in by later calls.
2050 * Return a pointer to the arguments of this select operation.
2051 * Afterwards, the state of "data" is set to isl_state_none.
2053 * The constraints of data->set are added to the generated
2054 * constraints of the build such that they can be exploited to simplify
2055 * the AST expression constructed from data->aff_list.
2057 static isl_ast_expr_list
**add_intermediate_piece(
2058 struct isl_from_pw_aff_data
*data
,
2059 int pos
, isl_ast_expr_list
**next
)
2062 isl_ast_build
*build
;
2063 isl_ast_expr
*ternary
, *arg
;
2064 isl_set
*set
, *gist
;
2066 set
= data
->p
[pos
].set
;
2067 data
->p
[pos
].set
= NULL
;
2068 ctx
= isl_ast_build_get_ctx(data
->build
);
2069 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_expr_op_select
, 3);
2070 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
2071 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
2072 ternary
= isl_ast_expr_op_add_arg(ternary
, arg
);
2073 build
= isl_ast_build_copy(data
->build
);
2074 build
= isl_ast_build_restrict_generated(build
, set
);
2075 arg
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
2076 data
->p
[pos
].state
, build
);
2077 data
->p
[pos
].aff_list
= NULL
;
2078 isl_ast_build_free(build
);
2079 ternary
= isl_ast_expr_op_add_arg(ternary
, arg
);
2080 data
->p
[pos
].state
= isl_state_none
;
2084 *next
= isl_ast_expr_list_add(*next
, ternary
);
2085 return &ternary
->u
.op
.args
;
2088 /* Extend the list of expressions in "next" to take into account
2089 * the final piece, located at position "pos" in "data".
2090 * In particular, "next" is extended with an expression
2091 * to evaluate data->aff_list and the domain is ignored.
2092 * Return isl_stat_ok on success and isl_stat_error on failure.
2094 * The constraints of data->set are however added to the generated
2095 * constraints of the build such that they can be exploited to simplify
2096 * the AST expression constructed from data->aff_list.
2098 static isl_stat
add_last_piece(struct isl_from_pw_aff_data
*data
,
2099 int pos
, isl_ast_expr_list
**next
)
2101 isl_ast_build
*build
;
2104 if (data
->p
[pos
].state
== isl_state_none
)
2105 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
2106 "cannot handle void expression", return isl_stat_error
);
2108 build
= isl_ast_build_copy(data
->build
);
2109 build
= isl_ast_build_restrict_generated(build
, data
->p
[pos
].set
);
2110 data
->p
[pos
].set
= NULL
;
2111 last
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
2112 data
->p
[pos
].state
, build
);
2113 *next
= isl_ast_expr_list_add(*next
, last
);
2114 data
->p
[pos
].aff_list
= NULL
;
2115 isl_ast_build_free(build
);
2116 data
->p
[pos
].state
= isl_state_none
;
2118 return isl_stat_error
;
2123 /* Return -1 if the piece "p1" should be sorted before "p2"
2124 * and 1 if it should be sorted after "p2".
2125 * Return 0 if they do not need to be sorted in a specific order.
2127 * Pieces are sorted according to the number of disjuncts
2130 static int sort_pieces_cmp(const void *p1
, const void *p2
, void *arg
)
2132 const struct isl_from_pw_aff_piece
*piece1
= p1
;
2133 const struct isl_from_pw_aff_piece
*piece2
= p2
;
2136 n1
= isl_set_n_basic_set(piece1
->set
);
2137 n2
= isl_set_n_basic_set(piece2
->set
);
2142 /* Construct an isl_ast_expr from the pieces in "data".
2143 * Return the result or NULL on failure.
2145 * When this function is called, data->n points to the current piece.
2146 * If this is an effective piece, then first increment data->n such
2147 * that data->n contains the number of pieces.
2148 * The "set_list" fields are subsequently replaced by the corresponding
2149 * "set" fields, after which the pieces are sorted according to
2150 * the number of disjuncts in these "set" fields.
2152 * Construct intermediate AST expressions for the initial pieces and
2153 * finish off with the final pieces.
2155 * Any piece that is not the very first is added to the list of arguments
2156 * of the previously constructed piece.
2157 * In order not to have to special case the first piece,
2158 * an extra list is created to hold the final result.
2160 static isl_ast_expr
*build_pieces(struct isl_from_pw_aff_data
*data
)
2164 isl_ast_expr_list
*res_list
;
2165 isl_ast_expr_list
**next
= &res_list
;
2168 if (data
->p
[data
->n
].state
!= isl_state_none
)
2170 ctx
= isl_ast_build_get_ctx(data
->build
);
2172 isl_die(ctx
, isl_error_invalid
,
2173 "cannot handle void expression", return NULL
);
2175 for (i
= 0; i
< data
->n
; ++i
) {
2176 data
->p
[i
].set
= isl_set_list_union(data
->p
[i
].set_list
);
2177 if (data
->p
[i
].state
!= isl_state_single
)
2178 data
->p
[i
].set
= isl_set_coalesce(data
->p
[i
].set
);
2179 data
->p
[i
].set_list
= NULL
;
2182 if (isl_sort(data
->p
, data
->n
, sizeof(data
->p
[0]),
2183 &sort_pieces_cmp
, NULL
) < 0)
2186 res_list
= isl_ast_expr_list_alloc(ctx
, 1);
2189 for (i
= 0; i
+ 1 < data
->n
; ++i
) {
2190 next
= add_intermediate_piece(data
, i
, next
);
2195 if (add_last_piece(data
, data
->n
- 1, next
) < 0)
2198 res
= isl_ast_expr_list_get_at(res_list
, 0);
2199 isl_ast_expr_list_free(res_list
);
2202 isl_ast_expr_list_free(res_list
);
2206 /* Is the domain of the current entry of "data", which is assumed
2207 * to contain a single subpiece, a subset of "set"?
2209 static isl_bool
single_is_subset(struct isl_from_pw_aff_data
*data
,
2210 __isl_keep isl_set
*set
)
2215 set_n
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, 0);
2216 subset
= isl_set_is_subset(set_n
, set
);
2217 isl_set_free(set_n
);
2222 /* Is "aff" a rational expression, i.e., does it have a denominator
2223 * different from one?
2225 static isl_bool
aff_is_rational(__isl_keep isl_aff
*aff
)
2230 den
= isl_aff_get_denominator_val(aff
);
2231 rational
= isl_bool_not(isl_val_is_one(den
));
2237 /* Does "list" consist of a single rational affine expression?
2239 static isl_bool
is_single_rational_aff(__isl_keep isl_aff_list
*list
)
2245 n
= isl_aff_list_n_aff(list
);
2247 return isl_bool_error
;
2249 return isl_bool_false
;
2250 aff
= isl_aff_list_get_aff(list
, 0);
2251 rational
= aff_is_rational(aff
);
2257 /* Can the list of subpieces in the last piece of "data" be extended with
2258 * "set" and "aff" based on "test"?
2259 * In particular, is it the case for each entry (set_i, aff_i) that
2261 * test(aff, aff_i) holds on set_i, and
2262 * test(aff_i, aff) holds on set?
2264 * "test" returns the set of elements where the tests holds, meaning
2265 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2267 * This function is used to detect min/max expressions.
2268 * If the ast_build_detect_min_max option is turned off, then
2269 * do not even try and perform any detection and return false instead.
2271 * Rational affine expressions are not considered for min/max expressions
2272 * since the combined expression will be defined on the union of the domains,
2273 * while a rational expression may only yield integer values
2274 * on its own definition domain.
2276 static isl_bool
extends(struct isl_from_pw_aff_data
*data
,
2277 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
,
2278 __isl_give isl_basic_set
*(*test
)(__isl_take isl_aff
*aff1
,
2279 __isl_take isl_aff
*aff2
))
2283 isl_bool is_rational
;
2287 is_rational
= aff_is_rational(aff
);
2288 if (is_rational
>= 0 && !is_rational
)
2289 is_rational
= is_single_rational_aff(data
->p
[data
->n
].aff_list
);
2290 if (is_rational
< 0 || is_rational
)
2291 return isl_bool_not(is_rational
);
2293 ctx
= isl_ast_build_get_ctx(data
->build
);
2294 if (!isl_options_get_ast_build_detect_min_max(ctx
))
2295 return isl_bool_false
;
2297 n
= isl_set_list_n_set(data
->p
[data
->n
].set_list
);
2299 return isl_bool_error
;
2301 dom
= isl_ast_build_get_domain(data
->build
);
2302 set
= isl_set_intersect(dom
, isl_set_copy(set
));
2304 for (i
= 0; i
< n
; ++i
) {
2307 isl_set
*dom
, *required
;
2310 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2311 valid
= isl_set_from_basic_set(test(isl_aff_copy(aff
), aff_i
));
2312 required
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, i
);
2313 dom
= isl_ast_build_get_domain(data
->build
);
2314 required
= isl_set_intersect(dom
, required
);
2315 is_valid
= isl_set_is_subset(required
, valid
);
2316 isl_set_free(required
);
2317 isl_set_free(valid
);
2318 if (is_valid
< 0 || !is_valid
) {
2323 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2324 valid
= isl_set_from_basic_set(test(aff_i
, isl_aff_copy(aff
)));
2325 is_valid
= isl_set_is_subset(set
, valid
);
2326 isl_set_free(valid
);
2327 if (is_valid
< 0 || !is_valid
) {
2334 return isl_bool_true
;
2337 /* Can the list of pieces in "data" be extended with "set" and "aff"
2338 * to form/preserve a minimum expression?
2339 * In particular, is it the case for each entry (set_i, aff_i) that
2341 * aff >= aff_i on set_i, and
2342 * aff_i >= aff on set?
2344 static isl_bool
extends_min(struct isl_from_pw_aff_data
*data
,
2345 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2347 return extends(data
, set
, aff
, &isl_aff_ge_basic_set
);
2350 /* Can the list of pieces in "data" be extended with "set" and "aff"
2351 * to form/preserve a maximum expression?
2352 * In particular, is it the case for each entry (set_i, aff_i) that
2354 * aff <= aff_i on set_i, and
2355 * aff_i <= aff on set?
2357 static isl_bool
extends_max(struct isl_from_pw_aff_data
*data
,
2358 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2360 return extends(data
, set
, aff
, &isl_aff_le_basic_set
);
2363 /* This function is called during the construction of an isl_ast_expr
2364 * that evaluates an isl_pw_aff.
2365 * If the last piece of "data" contains a single subpiece and
2366 * if its affine function is equal to "aff" on a part of the domain
2367 * that includes either "set" or the domain of that single subpiece,
2368 * then extend the domain of that single subpiece with "set".
2369 * If it was the original domain of the single subpiece where
2370 * the two affine functions are equal, then also replace
2371 * the affine function of the single subpiece by "aff".
2372 * If the last piece of "data" contains either a single subpiece
2373 * or a minimum, then check if this minimum expression can be extended
2375 * If so, extend the sequence and return.
2376 * Perform the same operation for maximum expressions.
2377 * If no such extension can be performed, then move to the next piece
2378 * in "data" (if the current piece contains any data), and then store
2379 * the current subpiece in the current piece of "data" for later handling.
2381 static isl_stat
ast_expr_from_pw_aff(__isl_take isl_set
*set
,
2382 __isl_take isl_aff
*aff
, void *user
)
2384 struct isl_from_pw_aff_data
*data
= user
;
2386 enum isl_from_pw_aff_state state
;
2388 state
= data
->p
[data
->n
].state
;
2389 if (state
== isl_state_single
) {
2392 isl_bool subset1
, subset2
= isl_bool_false
;
2393 aff0
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, 0);
2394 eq
= isl_aff_eq_set(isl_aff_copy(aff
), aff0
);
2395 subset1
= isl_set_is_subset(set
, eq
);
2396 if (subset1
>= 0 && !subset1
)
2397 subset2
= single_is_subset(data
, eq
);
2399 if (subset1
< 0 || subset2
< 0)
2402 return extend_domain(data
, set
, aff
, 0);
2404 return extend_domain(data
, set
, aff
, 1);
2406 if (state
== isl_state_single
|| state
== isl_state_min
) {
2407 test
= extends_min(data
, set
, aff
);
2411 return extend_min(data
, set
, aff
);
2413 if (state
== isl_state_single
|| state
== isl_state_max
) {
2414 test
= extends_max(data
, set
, aff
);
2418 return extend_max(data
, set
, aff
);
2420 if (state
!= isl_state_none
)
2422 set_single(data
, set
, aff
);
2428 return isl_stat_error
;
2431 /* Construct an isl_ast_expr that evaluates "pa".
2432 * The result is simplified in terms of build->domain.
2434 * The domain of "pa" lives in the internal schedule space.
2436 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
2437 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2439 struct isl_from_pw_aff_data data
= { NULL
};
2440 isl_ast_expr
*res
= NULL
;
2442 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
2443 pa
= isl_pw_aff_coalesce(pa
);
2447 if (isl_from_pw_aff_data_init(&data
, build
, pa
) < 0)
2451 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) >= 0)
2452 res
= build_pieces(&data
);
2454 isl_pw_aff_free(pa
);
2455 isl_from_pw_aff_data_clear(&data
);
2458 isl_pw_aff_free(pa
);
2459 isl_from_pw_aff_data_clear(&data
);
2463 /* Construct an isl_ast_expr that evaluates "pa".
2464 * The result is simplified in terms of build->domain.
2466 * The domain of "pa" lives in the external schedule space.
2468 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
2469 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2474 needs_map
= isl_ast_build_need_schedule_map(build
);
2475 if (needs_map
< 0) {
2476 pa
= isl_pw_aff_free(pa
);
2477 } else if (needs_map
) {
2479 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2480 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
2482 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2486 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2489 * The domain of "mpa" is assumed to live in the internal schedule domain.
2491 static __isl_give isl_multi_pw_aff
*set_iterator_names(
2492 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2497 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
2499 return isl_multi_pw_aff_free(mpa
);
2500 for (i
= 0; i
< n
; ++i
) {
2503 id
= isl_ast_build_get_iterator_id(build
, i
);
2504 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
2510 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2511 * the remaining arguments derived from "mpa".
2512 * That is, construct a call or access expression that calls/accesses "arg0"
2513 * with arguments/indices specified by "mpa".
2515 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
2516 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2517 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
2524 ctx
= isl_ast_build_get_ctx(build
);
2526 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
2527 expr
= n
>= 0 ? isl_ast_expr_alloc_op(ctx
, type
, 1 + n
) : NULL
;
2528 expr
= isl_ast_expr_op_add_arg(expr
, arg0
);
2529 for (i
= 0; i
< n
; ++i
) {
2533 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
2534 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2535 expr
= isl_ast_expr_op_add_arg(expr
, arg
);
2538 isl_multi_pw_aff_free(mpa
);
2542 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2543 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2544 __isl_take isl_multi_pw_aff
*mpa
);
2546 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2547 * The range of "mpa" is assumed to be wrapped relation.
2548 * The domain of this wrapped relation specifies the structure being
2549 * accessed, while the range of this wrapped relation spacifies the
2550 * member of the structure being accessed.
2552 * The domain of "mpa" is assumed to live in the internal schedule domain.
2554 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
2555 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2558 isl_multi_pw_aff
*domain
;
2559 isl_ast_expr
*domain_expr
, *expr
;
2560 enum isl_ast_expr_op_type type
= isl_ast_expr_op_access
;
2562 domain
= isl_multi_pw_aff_copy(mpa
);
2563 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
2564 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
2566 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
2567 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2568 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2569 "missing field name", goto error
);
2570 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2571 expr
= isl_ast_expr_from_id(id
);
2572 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_member
,
2574 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2576 isl_multi_pw_aff_free(mpa
);
2580 /* Construct an isl_ast_expr of type "type" that calls or accesses
2581 * the element specified by "mpa".
2582 * The first argument is obtained from the output tuple name.
2583 * The remaining arguments are given by the piecewise affine expressions.
2585 * If the range of "mpa" is a mapped relation, then we assume it
2586 * represents an access to a member of a structure.
2588 * The domain of "mpa" is assumed to live in the internal schedule domain.
2590 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2591 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2592 __isl_take isl_multi_pw_aff
*mpa
)
2601 if (type
== isl_ast_expr_op_access
&&
2602 isl_multi_pw_aff_range_is_wrapping(mpa
))
2603 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
2605 mpa
= set_iterator_names(build
, mpa
);
2609 ctx
= isl_ast_build_get_ctx(build
);
2611 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2612 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2614 id
= isl_id_alloc(ctx
, "", NULL
);
2616 expr
= isl_ast_expr_from_id(id
);
2617 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2619 isl_multi_pw_aff_free(mpa
);
2623 /* Construct an isl_ast_expr of type "type" that calls or accesses
2624 * the element specified by "pma".
2625 * The first argument is obtained from the output tuple name.
2626 * The remaining arguments are given by the piecewise affine expressions.
2628 * The domain of "pma" is assumed to live in the internal schedule domain.
2630 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
2631 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2632 __isl_take isl_pw_multi_aff
*pma
)
2634 isl_multi_pw_aff
*mpa
;
2636 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2637 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2640 /* Construct an isl_ast_expr of type "type" that calls or accesses
2641 * the element specified by "mpa".
2642 * The first argument is obtained from the output tuple name.
2643 * The remaining arguments are given by the piecewise affine expressions.
2645 * The domain of "mpa" is assumed to live in the external schedule domain.
2647 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
2648 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2649 __isl_take isl_multi_pw_aff
*mpa
)
2654 isl_space
*space_build
, *space_mpa
;
2656 space_build
= isl_ast_build_get_space(build
, 0);
2657 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
2658 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
2659 space_mpa
, isl_dim_in
);
2660 isl_space_free(space_build
);
2661 isl_space_free(space_mpa
);
2665 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2666 "spaces don't match", goto error
);
2668 needs_map
= isl_ast_build_need_schedule_map(build
);
2673 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2674 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
2677 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2680 isl_multi_pw_aff_free(mpa
);
2684 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2685 * The name of the function is obtained from the output tuple name.
2686 * The arguments are given by the piecewise affine expressions.
2688 * The domain of "mpa" is assumed to live in the external schedule domain.
2690 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
2691 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2693 return isl_ast_build_from_multi_pw_aff(build
,
2694 isl_ast_expr_op_call
, mpa
);
2697 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2698 * The name of the array is obtained from the output tuple name.
2699 * The index expressions are given by the piecewise affine expressions.
2701 * The domain of "mpa" is assumed to live in the external schedule domain.
2703 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
2704 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2706 return isl_ast_build_from_multi_pw_aff(build
,
2707 isl_ast_expr_op_access
, mpa
);
2710 /* Construct an isl_ast_expr of type "type" that calls or accesses
2711 * the element specified by "pma".
2712 * The first argument is obtained from the output tuple name.
2713 * The remaining arguments are given by the piecewise affine expressions.
2715 * The domain of "pma" is assumed to live in the external schedule domain.
2717 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
2718 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2719 __isl_take isl_pw_multi_aff
*pma
)
2721 isl_multi_pw_aff
*mpa
;
2723 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2724 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
2727 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2728 * The name of the function is obtained from the output tuple name.
2729 * The arguments are given by the piecewise affine expressions.
2731 * The domain of "pma" is assumed to live in the external schedule domain.
2733 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
2734 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2736 return isl_ast_build_from_pw_multi_aff(build
,
2737 isl_ast_expr_op_call
, pma
);
2740 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2741 * The name of the array is obtained from the output tuple name.
2742 * The index expressions are given by the piecewise affine expressions.
2744 * The domain of "pma" is assumed to live in the external schedule domain.
2746 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
2747 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2749 return isl_ast_build_from_pw_multi_aff(build
,
2750 isl_ast_expr_op_access
, pma
);
2753 /* Construct an isl_ast_expr that calls the domain element
2754 * specified by "executed".
2756 * "executed" is assumed to be single-valued, with a domain that lives
2757 * in the internal schedule space.
2759 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
2760 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
2762 isl_pw_multi_aff
*iteration
;
2765 iteration
= isl_pw_multi_aff_from_map(executed
);
2766 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
2767 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
2768 isl_ast_build_get_domain(build
));
2769 expr
= isl_ast_build_from_pw_multi_aff_internal(build
,
2770 isl_ast_expr_op_call
, iteration
);
2771 return isl_ast_node_alloc_user(expr
);