2 * Copyright 2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl_dim_private.h>
15 #include <isl/constraint.h>
16 #include <isl/schedule.h>
17 #include <isl_mat_private.h>
21 #include <isl_dim_map.h>
22 #include <isl_hmap_map_basic_set.h>
23 #include <isl_qsort.h>
24 #include <isl_schedule_private.h>
25 #include <isl_band_private.h>
28 * The scheduling algorithm implemented in this file was inspired by
29 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
30 * Parallelization and Locality Optimization in the Polyhedral Model".
34 /* Internal information about a node that is used during the construction
36 * dim represents the space in which the domain lives
37 * sched is a matrix representation of the schedule being constructed
39 * sched_map is an isl_map representation of the same (partial) schedule
40 * sched_map may be NULL
41 * rank is the number of linearly independent rows in the linear part
43 * the columns of cmap represent a change of basis for the schedule
44 * coefficients; the first rank columns span the linear part of
46 * start is the first variable in the LP problem in the sequences that
47 * represents the schedule coefficients of this node
48 * nvar is the dimension of the domain
49 * nparam is the number of parameters or 0 if we are not constructing
50 * a parametric schedule
52 * scc is the index of SCC (or WCC) this node belongs to
54 * band contains the band index for each of the rows of the schedule.
55 * band_id is used to differentiate between separate bands at the same
56 * level within the same parent band, i.e., bands that are separated
57 * by the parent band or bands that are independent of each other.
58 * zero contains a boolean for each of the rows of the schedule,
59 * indicating whether the corresponding scheduling dimension results
60 * in zero dependence distances within its band and with respect
61 * to the proximity edges.
63 * index, min_index and on_stack are used during the SCC detection
64 * index represents the order in which nodes are visited.
65 * min_index is the index of the root of a (sub)component.
66 * on_stack indicates whether the node is currently on the stack.
68 struct isl_sched_node
{
90 static int node_has_dim(const void *entry
, const void *val
)
92 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
93 isl_dim
*dim
= (isl_dim
*)val
;
95 return isl_dim_equal(node
->dim
, dim
);
98 /* An edge in the dependence graph. An edge may be used to
99 * ensure validity of the generated schedule, to minimize the dependence
102 * map is the dependence relation
103 * src is the source node
104 * dst is the sink node
105 * validity is set if the edge is used to ensure correctness
106 * proximity is set if the edge is used to minimize dependence distances
108 * For validity edges, start and end mark the sequence of inequality
109 * constraints in the LP problem that encode the validity constraint
110 * corresponding to this edge.
112 struct isl_sched_edge
{
115 struct isl_sched_node
*src
;
116 struct isl_sched_node
*dst
;
125 /* Internal information about the dependence graph used during
126 * the construction of the schedule.
128 * intra_hmap is a cache, mapping dependence relations to their dual,
129 * for dependences from a node to itself
130 * inter_hmap is a cache, mapping dependence relations to their dual,
131 * for dependences between distinct nodes
133 * n is the number of nodes
134 * node is the list of nodes
135 * maxvar is the maximal number of variables over all nodes
136 * n_row is the current (maximal) number of linearly independent
137 * rows in the node schedules
138 * n_total_row is the current number of rows in the node schedules
139 * n_band is the current number of completed bands
140 * band_start is the starting row in the node schedules of the current band
141 * root is set if this graph is the original dependence graph,
142 * without any splitting
144 * sorted contains a list of node indices sorted according to the
145 * SCC to which a node belongs
147 * n_edge is the number of edges
148 * edge is the list of edges
149 * edge_table contains pointers into the edge array, hashed on the source
150 * and sink spaces; the table only contains edges that represent
151 * validity constraints (and that may or may not also represent proximity
154 * node_table contains pointers into the node array, hashed on the space
156 * region contains a list of variable sequences that should be non-trivial
158 * lp contains the (I)LP problem used to obtain new schedule rows
160 * src_scc and dst_scc are the source and sink SCCs of an edge with
161 * conflicting constraints
163 * scc, sp, index and stack are used during the detection of SCCs
164 * scc is the number of the next SCC
165 * stack contains the nodes on the path from the root to the current node
166 * sp is the stack pointer
167 * index is the index of the last node visited
169 struct isl_sched_graph
{
170 isl_hmap_map_basic_set
*intra_hmap
;
171 isl_hmap_map_basic_set
*inter_hmap
;
173 struct isl_sched_node
*node
;
186 struct isl_sched_edge
*edge
;
188 struct isl_hash_table
*edge_table
;
190 struct isl_hash_table
*node_table
;
191 struct isl_region
*region
;
205 /* Initialize node_table based on the list of nodes.
207 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
211 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
212 if (!graph
->node_table
)
215 for (i
= 0; i
< graph
->n
; ++i
) {
216 struct isl_hash_table_entry
*entry
;
219 hash
= isl_dim_get_hash(graph
->node
[i
].dim
);
220 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
222 graph
->node
[i
].dim
, 1);
225 entry
->data
= &graph
->node
[i
];
231 /* Return a pointer to the node that lives within the given space,
232 * or NULL if there is no such node.
234 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
235 struct isl_sched_graph
*graph
, __isl_keep isl_dim
*dim
)
237 struct isl_hash_table_entry
*entry
;
240 hash
= isl_dim_get_hash(dim
);
241 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
242 &node_has_dim
, dim
, 0);
244 return entry
? entry
->data
: NULL
;
247 static int edge_has_src_and_dst(const void *entry
, const void *val
)
249 const struct isl_sched_edge
*edge
= entry
;
250 const struct isl_sched_edge
*temp
= val
;
252 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
255 /* Initialize edge_table based on the list of edges.
256 * Only edges with validity set are added to the table.
258 static int graph_init_edge_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
262 graph
->edge_table
= isl_hash_table_alloc(ctx
, graph
->n_edge
);
263 if (!graph
->edge_table
)
266 for (i
= 0; i
< graph
->n_edge
; ++i
) {
267 struct isl_hash_table_entry
*entry
;
270 if (!graph
->edge
[i
].validity
)
273 hash
= isl_hash_init();
274 hash
= isl_hash_builtin(hash
, graph
->edge
[i
].src
);
275 hash
= isl_hash_builtin(hash
, graph
->edge
[i
].dst
);
276 entry
= isl_hash_table_find(ctx
, graph
->edge_table
, hash
,
277 &edge_has_src_and_dst
,
281 entry
->data
= &graph
->edge
[i
];
287 /* Check whether the dependence graph has a (validity) edge
288 * between the given two nodes.
290 static int graph_has_edge(struct isl_sched_graph
*graph
,
291 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
293 isl_ctx
*ctx
= isl_dim_get_ctx(src
->dim
);
294 struct isl_hash_table_entry
*entry
;
296 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
297 struct isl_sched_edge
*edge
;
300 hash
= isl_hash_init();
301 hash
= isl_hash_builtin(hash
, temp
.src
);
302 hash
= isl_hash_builtin(hash
, temp
.dst
);
303 entry
= isl_hash_table_find(ctx
, graph
->edge_table
, hash
,
304 &edge_has_src_and_dst
, &temp
, 0);
309 empty
= isl_map_plain_is_empty(edge
->map
);
316 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
317 int n_node
, int n_edge
)
322 graph
->n_edge
= n_edge
;
323 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
324 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
325 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
326 graph
->stack
= isl_alloc_array(ctx
, int, graph
->n
);
327 graph
->edge
= isl_calloc_array(ctx
,
328 struct isl_sched_edge
, graph
->n_edge
);
330 graph
->intra_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
331 graph
->inter_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
333 if (!graph
->node
|| !graph
->region
|| !graph
->stack
|| !graph
->edge
||
337 for(i
= 0; i
< graph
->n
; ++i
)
338 graph
->sorted
[i
] = i
;
343 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
347 isl_hmap_map_basic_set_free(ctx
, graph
->intra_hmap
);
348 isl_hmap_map_basic_set_free(ctx
, graph
->inter_hmap
);
350 for (i
= 0; i
< graph
->n
; ++i
) {
351 isl_dim_free(graph
->node
[i
].dim
);
352 isl_mat_free(graph
->node
[i
].sched
);
353 isl_map_free(graph
->node
[i
].sched_map
);
354 isl_mat_free(graph
->node
[i
].cmap
);
356 free(graph
->node
[i
].band
);
357 free(graph
->node
[i
].band_id
);
358 free(graph
->node
[i
].zero
);
363 for (i
= 0; i
< graph
->n_edge
; ++i
)
364 isl_map_free(graph
->edge
[i
].map
);
368 isl_hash_table_free(ctx
, graph
->edge_table
);
369 isl_hash_table_free(ctx
, graph
->node_table
);
370 isl_basic_set_free(graph
->lp
);
373 /* Add a new node to the graph representing the given set.
375 static int extract_node(__isl_take isl_set
*set
, void *user
)
381 struct isl_sched_graph
*graph
= user
;
382 int *band
, *band_id
, *zero
;
384 ctx
= isl_set_get_ctx(set
);
385 dim
= isl_set_get_dim(set
);
387 nvar
= isl_dim_size(dim
, isl_dim_set
);
388 nparam
= isl_dim_size(dim
, isl_dim_param
);
389 if (!ctx
->opt
->schedule_parametric
)
391 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
392 graph
->node
[graph
->n
].dim
= dim
;
393 graph
->node
[graph
->n
].nvar
= nvar
;
394 graph
->node
[graph
->n
].nparam
= nparam
;
395 graph
->node
[graph
->n
].sched
= sched
;
396 graph
->node
[graph
->n
].sched_map
= NULL
;
397 band
= isl_alloc_array(ctx
, int, graph
->n_edge
+ nvar
);
398 graph
->node
[graph
->n
].band
= band
;
399 band_id
= isl_calloc_array(ctx
, int, graph
->n_edge
+ nvar
);
400 graph
->node
[graph
->n
].band_id
= band_id
;
401 zero
= isl_calloc_array(ctx
, int, graph
->n_edge
+ nvar
);
402 graph
->node
[graph
->n
].zero
= zero
;
405 if (!sched
|| !band
|| !band_id
|| !zero
)
411 /* Add a new edge to the graph based on the given map.
412 * Edges are first extracted from the validity dependences,
413 * from which the edge_table is constructed.
414 * Afterwards, the proximity dependences are added. If a proximity
415 * dependence relation happens to be identical to one of the
416 * validity dependence relations added before, then we don't create
417 * a new edge, but instead mark the original edge as also representing
418 * a proximity dependence.
420 static int extract_edge(__isl_take isl_map
*map
, void *user
)
422 isl_ctx
*ctx
= isl_map_get_ctx(map
);
423 struct isl_sched_graph
*graph
= user
;
424 struct isl_sched_node
*src
, *dst
;
427 dim
= isl_dim_domain(isl_map_get_dim(map
));
428 src
= graph_find_node(ctx
, graph
, dim
);
430 dim
= isl_dim_range(isl_map_get_dim(map
));
431 dst
= graph_find_node(ctx
, graph
, dim
);
439 graph
->edge
[graph
->n_edge
].src
= src
;
440 graph
->edge
[graph
->n_edge
].dst
= dst
;
441 graph
->edge
[graph
->n_edge
].map
= map
;
442 graph
->edge
[graph
->n_edge
].validity
= !graph
->edge_table
;
443 graph
->edge
[graph
->n_edge
].proximity
= !!graph
->edge_table
;
446 if (graph
->edge_table
) {
448 struct isl_hash_table_entry
*entry
;
449 struct isl_sched_edge
*edge
;
452 hash
= isl_hash_init();
453 hash
= isl_hash_builtin(hash
, src
);
454 hash
= isl_hash_builtin(hash
, dst
);
455 entry
= isl_hash_table_find(ctx
, graph
->edge_table
, hash
,
456 &edge_has_src_and_dst
,
457 &graph
->edge
[graph
->n_edge
- 1], 0);
461 is_equal
= isl_map_plain_is_equal(map
, edge
->map
);
475 /* Check whether there is a validity dependence from src to dst,
476 * forcing dst to follow src.
478 static int node_follows(struct isl_sched_graph
*graph
,
479 struct isl_sched_node
*dst
, struct isl_sched_node
*src
)
481 return graph_has_edge(graph
, src
, dst
);
484 /* Perform Tarjan's algorithm for computing the strongly connected components
485 * in the dependence graph (only validity edges).
486 * If directed is not set, we consider the graph to be undirected and
487 * we effectively compute the (weakly) connected components.
489 static int detect_sccs_tarjan(struct isl_sched_graph
*g
, int i
, int directed
)
493 g
->node
[i
].index
= g
->index
;
494 g
->node
[i
].min_index
= g
->index
;
495 g
->node
[i
].on_stack
= 1;
497 g
->stack
[g
->sp
++] = i
;
499 for (j
= g
->n
- 1; j
>= 0; --j
) {
504 if (g
->node
[j
].index
>= 0 &&
505 (!g
->node
[j
].on_stack
||
506 g
->node
[j
].index
> g
->node
[i
].min_index
))
509 f
= node_follows(g
, &g
->node
[i
], &g
->node
[j
]);
512 if (!f
&& !directed
) {
513 f
= node_follows(g
, &g
->node
[j
], &g
->node
[i
]);
519 if (g
->node
[j
].index
< 0) {
520 detect_sccs_tarjan(g
, j
, directed
);
521 if (g
->node
[j
].min_index
< g
->node
[i
].min_index
)
522 g
->node
[i
].min_index
= g
->node
[j
].min_index
;
523 } else if (g
->node
[j
].index
< g
->node
[i
].min_index
)
524 g
->node
[i
].min_index
= g
->node
[j
].index
;
527 if (g
->node
[i
].index
!= g
->node
[i
].min_index
)
531 j
= g
->stack
[--g
->sp
];
532 g
->node
[j
].on_stack
= 0;
533 g
->node
[j
].scc
= g
->scc
;
540 static int detect_ccs(struct isl_sched_graph
*graph
, int directed
)
547 for (i
= graph
->n
- 1; i
>= 0; --i
)
548 graph
->node
[i
].index
= -1;
550 for (i
= graph
->n
- 1; i
>= 0; --i
) {
551 if (graph
->node
[i
].index
>= 0)
553 if (detect_sccs_tarjan(graph
, i
, directed
) < 0)
560 /* Apply Tarjan's algorithm to detect the strongly connected components
561 * in the dependence graph.
563 static int detect_sccs(struct isl_sched_graph
*graph
)
565 return detect_ccs(graph
, 1);
568 /* Apply Tarjan's algorithm to detect the (weakly) connected components
569 * in the dependence graph.
571 static int detect_wccs(struct isl_sched_graph
*graph
)
573 return detect_ccs(graph
, 0);
576 static int cmp_scc(const void *a
, const void *b
, void *data
)
578 struct isl_sched_graph
*graph
= data
;
582 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
585 /* Sort the elements of graph->sorted according to the corresponding SCCs.
587 static void sort_sccs(struct isl_sched_graph
*graph
)
589 isl_quicksort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
592 /* Given a dependence relation R from a node to itself,
593 * construct the set of coefficients of valid constraints for elements
594 * in that dependence relation.
595 * In particular, the result contains tuples of coefficients
596 * c_0, c_n, c_x such that
598 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
602 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
604 * We choose here to compute the dual of delta R.
605 * Alternatively, we could have computed the dual of R, resulting
606 * in a set of tuples c_0, c_n, c_x, c_y, and then
607 * plugged in (c_0, c_n, c_x, -c_x).
609 static __isl_give isl_basic_set
*intra_coefficients(
610 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
612 isl_ctx
*ctx
= isl_map_get_ctx(map
);
616 if (isl_hmap_map_basic_set_has(ctx
, graph
->intra_hmap
, map
))
617 return isl_hmap_map_basic_set_get(ctx
, graph
->intra_hmap
, map
);
619 delta
= isl_set_remove_divs(isl_map_deltas(isl_map_copy(map
)));
620 coef
= isl_set_coefficients(delta
);
621 isl_hmap_map_basic_set_set(ctx
, graph
->intra_hmap
, map
,
622 isl_basic_set_copy(coef
));
627 /* Given a dependence relation R, * construct the set of coefficients
628 * of valid constraints for elements in that dependence relation.
629 * In particular, the result contains tuples of coefficients
630 * c_0, c_n, c_x, c_y such that
632 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
635 static __isl_give isl_basic_set
*inter_coefficients(
636 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
638 isl_ctx
*ctx
= isl_map_get_ctx(map
);
642 if (isl_hmap_map_basic_set_has(ctx
, graph
->inter_hmap
, map
))
643 return isl_hmap_map_basic_set_get(ctx
, graph
->inter_hmap
, map
);
645 set
= isl_map_wrap(isl_map_remove_divs(isl_map_copy(map
)));
646 coef
= isl_set_coefficients(set
);
647 isl_hmap_map_basic_set_set(ctx
, graph
->inter_hmap
, map
,
648 isl_basic_set_copy(coef
));
653 /* Add constraints to graph->lp that force validity for the given
654 * dependence from a node i to itself.
655 * That is, add constraints that enforce
657 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
658 * = c_i_x (y - x) >= 0
660 * for each (x,y) in R.
661 * We obtain general constraints on coefficients (c_0, c_n, c_x)
662 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
663 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
664 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
666 * Actually, we do not construct constraints for the c_i_x themselves,
667 * but for the coefficients of c_i_x written as a linear combination
668 * of the columns in node->cmap.
670 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
671 struct isl_sched_edge
*edge
)
674 isl_map
*map
= isl_map_copy(edge
->map
);
675 isl_ctx
*ctx
= isl_map_get_ctx(map
);
677 isl_dim_map
*dim_map
;
679 struct isl_sched_node
*node
= edge
->src
;
681 coef
= intra_coefficients(graph
, map
);
683 dim
= isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef
)));
685 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
686 isl_dim_size(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
688 total
= isl_basic_set_total_dim(graph
->lp
);
689 dim_map
= isl_dim_map_alloc(ctx
, total
);
690 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
691 isl_dim_size(dim
, isl_dim_set
), 1,
693 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
694 isl_dim_size(dim
, isl_dim_set
), 1,
696 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
697 coef
->n_eq
, coef
->n_ineq
);
698 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
705 /* Add constraints to graph->lp that force validity for the given
706 * dependence from node i to node j.
707 * That is, add constraints that enforce
709 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
711 * for each (x,y) in R.
712 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
713 * of valid constraints for R and then plug in
714 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
715 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
716 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
717 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
719 * Actually, we do not construct constraints for the c_*_x themselves,
720 * but for the coefficients of c_*_x written as a linear combination
721 * of the columns in node->cmap.
723 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
724 struct isl_sched_edge
*edge
)
727 isl_map
*map
= isl_map_copy(edge
->map
);
728 isl_ctx
*ctx
= isl_map_get_ctx(map
);
730 isl_dim_map
*dim_map
;
732 struct isl_sched_node
*src
= edge
->src
;
733 struct isl_sched_node
*dst
= edge
->dst
;
735 coef
= inter_coefficients(graph
, map
);
737 dim
= isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef
)));
739 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
740 isl_dim_size(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
741 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
742 isl_dim_size(dim
, isl_dim_set
) + src
->nvar
,
743 isl_mat_copy(dst
->cmap
));
745 total
= isl_basic_set_total_dim(graph
->lp
);
746 dim_map
= isl_dim_map_alloc(ctx
, total
);
748 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
749 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
750 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
751 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
752 isl_dim_size(dim
, isl_dim_set
) + src
->nvar
, 1,
754 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
755 isl_dim_size(dim
, isl_dim_set
) + src
->nvar
, 1,
758 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
759 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
760 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
761 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
762 isl_dim_size(dim
, isl_dim_set
), 1,
764 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
765 isl_dim_size(dim
, isl_dim_set
), 1,
768 edge
->start
= graph
->lp
->n_ineq
;
769 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
770 coef
->n_eq
, coef
->n_ineq
);
771 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
774 edge
->end
= graph
->lp
->n_ineq
;
779 /* Add constraints to graph->lp that bound the dependence distance for the given
780 * dependence from a node i to itself.
781 * If s = 1, we add the constraint
783 * c_i_x (y - x) <= m_0 + m_n n
787 * -c_i_x (y - x) + m_0 + m_n n >= 0
789 * for each (x,y) in R.
790 * If s = -1, we add the constraint
792 * -c_i_x (y - x) <= m_0 + m_n n
796 * c_i_x (y - x) + m_0 + m_n n >= 0
798 * for each (x,y) in R.
799 * We obtain general constraints on coefficients (c_0, c_n, c_x)
800 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
801 * with each coefficient (except m_0) represented as a pair of non-negative
804 * Actually, we do not construct constraints for the c_i_x themselves,
805 * but for the coefficients of c_i_x written as a linear combination
806 * of the columns in node->cmap.
808 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
809 struct isl_sched_edge
*edge
, int s
)
813 isl_map
*map
= isl_map_copy(edge
->map
);
814 isl_ctx
*ctx
= isl_map_get_ctx(map
);
816 isl_dim_map
*dim_map
;
818 struct isl_sched_node
*node
= edge
->src
;
820 coef
= intra_coefficients(graph
, map
);
822 dim
= isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef
)));
824 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
825 isl_dim_size(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
827 nparam
= isl_dim_size(node
->dim
, isl_dim_param
);
828 total
= isl_basic_set_total_dim(graph
->lp
);
829 dim_map
= isl_dim_map_alloc(ctx
, total
);
830 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
831 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
832 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
833 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
834 isl_dim_size(dim
, isl_dim_set
), 1,
836 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
837 isl_dim_size(dim
, isl_dim_set
), 1,
839 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
840 coef
->n_eq
, coef
->n_ineq
);
841 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
848 /* Add constraints to graph->lp that bound the dependence distance for the given
849 * dependence from node i to node j.
850 * If s = 1, we add the constraint
852 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
857 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
860 * for each (x,y) in R.
861 * If s = -1, we add the constraint
863 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
868 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
871 * for each (x,y) in R.
872 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
873 * of valid constraints for R and then plug in
874 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
876 * with each coefficient (except m_0, c_j_0 and c_i_0)
877 * represented as a pair of non-negative coefficients.
879 * Actually, we do not construct constraints for the c_*_x themselves,
880 * but for the coefficients of c_*_x written as a linear combination
881 * of the columns in node->cmap.
883 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
884 struct isl_sched_edge
*edge
, int s
)
888 isl_map
*map
= isl_map_copy(edge
->map
);
889 isl_ctx
*ctx
= isl_map_get_ctx(map
);
891 isl_dim_map
*dim_map
;
893 struct isl_sched_node
*src
= edge
->src
;
894 struct isl_sched_node
*dst
= edge
->dst
;
896 coef
= inter_coefficients(graph
, map
);
898 dim
= isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef
)));
900 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
901 isl_dim_size(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
902 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
903 isl_dim_size(dim
, isl_dim_set
) + src
->nvar
,
904 isl_mat_copy(dst
->cmap
));
906 nparam
= isl_dim_size(src
->dim
, isl_dim_param
);
907 total
= isl_basic_set_total_dim(graph
->lp
);
908 dim_map
= isl_dim_map_alloc(ctx
, total
);
910 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
911 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
912 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
914 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
915 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
916 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
917 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
918 isl_dim_size(dim
, isl_dim_set
) + src
->nvar
, 1,
920 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
921 isl_dim_size(dim
, isl_dim_set
) + src
->nvar
, 1,
924 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
925 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
926 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
927 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
928 isl_dim_size(dim
, isl_dim_set
), 1,
930 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
931 isl_dim_size(dim
, isl_dim_set
), 1,
934 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
935 coef
->n_eq
, coef
->n_ineq
);
936 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
943 static int add_all_validity_constraints(struct isl_sched_graph
*graph
)
947 for (i
= 0; i
< graph
->n_edge
; ++i
) {
948 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
951 if (edge
->src
!= edge
->dst
)
953 if (add_intra_validity_constraints(graph
, edge
) < 0)
957 for (i
= 0; i
< graph
->n_edge
; ++i
) {
958 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
961 if (edge
->src
== edge
->dst
)
963 if (add_inter_validity_constraints(graph
, edge
) < 0)
970 /* Add constraints to graph->lp that bound the dependence distance
971 * for all dependence relations.
972 * If a given proximity dependence is identical to a validity
973 * dependence, then the dependence distance is already bounded
974 * from below (by zero), so we only need to bound the distance
976 * Otherwise, we need to bound the distance both from above and from below.
978 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
)
982 for (i
= 0; i
< graph
->n_edge
; ++i
) {
983 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
984 if (!edge
->proximity
)
986 if (edge
->src
== edge
->dst
&&
987 add_intra_proximity_constraints(graph
, edge
, 1) < 0)
989 if (edge
->src
!= edge
->dst
&&
990 add_inter_proximity_constraints(graph
, edge
, 1) < 0)
994 if (edge
->src
== edge
->dst
&&
995 add_intra_proximity_constraints(graph
, edge
, -1) < 0)
997 if (edge
->src
!= edge
->dst
&&
998 add_inter_proximity_constraints(graph
, edge
, -1) < 0)
1005 /* Compute a basis for the rows in the linear part of the schedule
1006 * and extend this basis to a full basis. The remaining rows
1007 * can then be used to force linear independence from the rows
1010 * In particular, given the schedule rows S, we compute
1014 * with H the Hermite normal form of S. That is, all but the
1015 * first rank columns of Q are zero and so each row in S is
1016 * a linear combination of the first rank rows of Q.
1017 * The matrix Q is then transposed because we will write the
1018 * coefficients of the next schedule row as a column vector s
1019 * and express this s as a linear combination s = Q c of the
1022 static int node_update_cmap(struct isl_sched_node
*node
)
1025 int n_row
= isl_mat_rows(node
->sched
);
1027 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1028 1 + node
->nparam
, node
->nvar
);
1030 H
= isl_mat_left_hermite(H
, 0, NULL
, &Q
);
1031 isl_mat_free(node
->cmap
);
1032 node
->cmap
= isl_mat_transpose(Q
);
1033 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1036 if (!node
->cmap
|| node
->rank
< 0)
1041 /* Count the number of equality and inequality constraints
1042 * that will be added. If once is set, then we count
1043 * each edge exactly once. Otherwise, we count as follows
1044 * validity -> 1 (>= 0)
1045 * validity+proximity -> 2 (>= 0 and upper bound)
1046 * proximity -> 2 (lower and upper bound)
1048 static int count_constraints(struct isl_sched_graph
*graph
,
1049 int *n_eq
, int *n_ineq
, int once
)
1052 isl_basic_set
*coef
;
1054 *n_eq
= *n_ineq
= 0;
1055 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1056 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1057 isl_map
*map
= isl_map_copy(edge
->map
);
1058 int f
= once
? 1 : edge
->proximity
? 2 : 1;
1060 if (edge
->src
== edge
->dst
)
1061 coef
= intra_coefficients(graph
, map
);
1063 coef
= inter_coefficients(graph
, map
);
1066 *n_eq
+= f
* coef
->n_eq
;
1067 *n_ineq
+= f
* coef
->n_ineq
;
1068 isl_basic_set_free(coef
);
1074 /* Construct an ILP problem for finding schedule coefficients
1075 * that result in non-negative, but small dependence distances
1076 * over all dependences.
1077 * In particular, the dependence distances over proximity edges
1078 * are bounded by m_0 + m_n n and we compute schedule coefficients
1079 * with small values (preferably zero) of m_n and m_0.
1081 * All variables of the ILP are non-negative. The actual coefficients
1082 * may be negative, so each coefficient is represented as the difference
1083 * of two non-negative variables. The negative part always appears
1084 * immediately before the positive part.
1085 * Other than that, the variables have the following order
1087 * - sum of positive and negative parts of m_n coefficients
1089 * - sum of positive and negative parts of all c_n coefficients
1090 * (unconstrained when computing non-parametric schedules)
1091 * - sum of positive and negative parts of all c_x coefficients
1092 * - positive and negative parts of m_n coefficients
1095 * - positive and negative parts of c_i_n (if parametric)
1096 * - positive and negative parts of c_i_x
1098 * The c_i_x are not represented directly, but through the columns of
1099 * node->cmap. That is, the computed values are for variable t_i_x
1100 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1102 * The constraints are those from the edges plus two or three equalities
1103 * to express the sums.
1105 * If force_zero is set, then we add equalities to ensure that
1106 * the sum of the m_n coefficients and m_0 are both zero.
1108 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1120 parametric
= ctx
->opt
->schedule_parametric
;
1121 nparam
= isl_dim_size(graph
->node
[0].dim
, isl_dim_param
);
1123 total
= param_pos
+ 2 * nparam
;
1124 for (i
= 0; i
< graph
->n
; ++i
) {
1125 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
1126 if (node_update_cmap(node
) < 0)
1128 node
->start
= total
;
1129 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
1132 if (count_constraints(graph
, &n_eq
, &n_ineq
, 0) < 0)
1135 dim
= isl_dim_set_alloc(ctx
, 0, total
);
1136 isl_basic_set_free(graph
->lp
);
1137 n_eq
+= 2 + parametric
+ force_zero
;
1138 graph
->lp
= isl_basic_set_alloc_dim(dim
, 0, n_eq
, n_ineq
);
1140 k
= isl_basic_set_alloc_equality(graph
->lp
);
1143 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1145 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
1146 for (i
= 0; i
< 2 * nparam
; ++i
)
1147 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
1150 k
= isl_basic_set_alloc_equality(graph
->lp
);
1153 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1154 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
1158 k
= isl_basic_set_alloc_equality(graph
->lp
);
1161 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1162 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
1163 for (i
= 0; i
< graph
->n
; ++i
) {
1164 int pos
= 1 + graph
->node
[i
].start
+ 1;
1166 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
1167 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1171 k
= isl_basic_set_alloc_equality(graph
->lp
);
1174 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1175 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
1176 for (i
= 0; i
< graph
->n
; ++i
) {
1177 struct isl_sched_node
*node
= &graph
->node
[i
];
1178 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
1180 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
1181 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1184 if (add_all_validity_constraints(graph
) < 0)
1186 if (add_all_proximity_constraints(graph
) < 0)
1192 /* Analyze the conflicting constraint found by
1193 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1194 * constraint of one of the edges between distinct nodes, living, moreover
1195 * in distinct SCCs, then record the source and sink SCC as this may
1196 * be a good place to cut between SCCs.
1198 static int check_conflict(int con
, void *user
)
1201 struct isl_sched_graph
*graph
= user
;
1203 if (graph
->src_scc
>= 0)
1206 con
-= graph
->lp
->n_eq
;
1208 if (con
>= graph
->lp
->n_ineq
)
1211 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1212 if (!graph
->edge
[i
].validity
)
1214 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
1216 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
1218 if (graph
->edge
[i
].start
> con
)
1220 if (graph
->edge
[i
].end
<= con
)
1222 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
1223 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
1229 /* Check whether the next schedule row of the given node needs to be
1230 * non-trivial. Lower-dimensional domains may have some trivial rows,
1231 * but as soon as the number of remaining required non-trivial rows
1232 * is as large as the number or remaining rows to be computed,
1233 * all remaining rows need to be non-trivial.
1235 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
1237 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
1240 /* Solve the ILP problem constructed in setup_lp.
1241 * For each node such that all the remaining rows of its schedule
1242 * need to be non-trivial, we construct a non-triviality region.
1243 * This region imposes that the next row is independent of previous rows.
1244 * In particular the coefficients c_i_x are represented by t_i_x
1245 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1246 * its first columns span the rows of the previously computed part
1247 * of the schedule. The non-triviality region enforces that at least
1248 * one of the remaining components of t_i_x is non-zero, i.e.,
1249 * that the new schedule row depends on at least one of the remaining
1252 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
1258 for (i
= 0; i
< graph
->n
; ++i
) {
1259 struct isl_sched_node
*node
= &graph
->node
[i
];
1260 int skip
= node
->rank
;
1261 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
1262 if (needs_row(graph
, node
))
1263 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
1265 graph
->region
[i
].len
= 0;
1267 lp
= isl_basic_set_copy(graph
->lp
);
1268 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
1269 graph
->region
, &check_conflict
, graph
);
1273 /* Update the schedules of all nodes based on the given solution
1274 * of the LP problem.
1275 * The new row is added to the current band.
1276 * All possibly negative coefficients are encoded as a difference
1277 * of two non-negative variables, so we need to perform the subtraction
1278 * here. Moreover, if use_cmap is set, then the solution does
1279 * not refer to the actual coefficients c_i_x, but instead to variables
1280 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1281 * In this case, we then also need to perform this multiplication
1282 * to obtain the values of c_i_x.
1284 * If check_zero is set, then the first two coordinates of sol are
1285 * assumed to correspond to the dependence distance. If these two
1286 * coordinates are zero, then the corresponding scheduling dimension
1287 * is marked as being zero distance.
1289 static int update_schedule(struct isl_sched_graph
*graph
,
1290 __isl_take isl_vec
*sol
, int use_cmap
, int check_zero
)
1294 isl_vec
*csol
= NULL
;
1299 isl_die(sol
->ctx
, isl_error_internal
,
1300 "no solution found", goto error
);
1303 zero
= isl_int_is_zero(sol
->el
[1]) &&
1304 isl_int_is_zero(sol
->el
[2]);
1306 for (i
= 0; i
< graph
->n
; ++i
) {
1307 struct isl_sched_node
*node
= &graph
->node
[i
];
1308 int pos
= node
->start
;
1309 int row
= isl_mat_rows(node
->sched
);
1312 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
1316 isl_map_free(node
->sched_map
);
1317 node
->sched_map
= NULL
;
1318 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1321 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
1323 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
1324 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1325 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1326 sol
->el
[1 + pos
+ 1 + 2 * j
]);
1327 for (j
= 0; j
< node
->nparam
; ++j
)
1328 node
->sched
= isl_mat_set_element(node
->sched
,
1329 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
1330 for (j
= 0; j
< node
->nvar
; ++j
)
1331 isl_int_set(csol
->el
[j
],
1332 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
1334 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
1338 for (j
= 0; j
< node
->nvar
; ++j
)
1339 node
->sched
= isl_mat_set_element(node
->sched
,
1340 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
1341 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1342 node
->zero
[graph
->n_total_row
] = zero
;
1348 graph
->n_total_row
++;
1357 /* Convert node->sched into a map and return this map.
1358 * We simply add equality constraints that express each output variable
1359 * as the affine combination of parameters and input variables specified
1360 * by the schedule matrix.
1362 * The result is cached in node->sched_map, which needs to be released
1363 * whenever node->sched is updated.
1365 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
1369 isl_basic_map
*bmap
;
1374 if (node
->sched_map
)
1375 return isl_map_copy(node
->sched_map
);
1377 nrow
= isl_mat_rows(node
->sched
);
1378 ncol
= isl_mat_cols(node
->sched
) - 1;
1379 dim
= isl_dim_from_domain(isl_dim_copy(node
->dim
));
1380 dim
= isl_dim_add(dim
, isl_dim_out
, nrow
);
1381 bmap
= isl_basic_map_universe(isl_dim_copy(dim
));
1385 for (i
= 0; i
< nrow
; ++i
) {
1386 c
= isl_equality_alloc(isl_dim_copy(dim
));
1387 isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1388 isl_mat_get_element(node
->sched
, i
, 0, &v
);
1389 isl_constraint_set_constant(c
, v
);
1390 for (j
= 0; j
< node
->nparam
; ++j
) {
1391 isl_mat_get_element(node
->sched
, i
, 1 + j
, &v
);
1392 isl_constraint_set_coefficient(c
, isl_dim_param
, j
, v
);
1394 for (j
= 0; j
< node
->nvar
; ++j
) {
1395 isl_mat_get_element(node
->sched
,
1396 i
, 1 + node
->nparam
+ j
, &v
);
1397 isl_constraint_set_coefficient(c
, isl_dim_in
, j
, v
);
1399 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1406 node
->sched_map
= isl_map_from_basic_map(bmap
);
1407 return isl_map_copy(node
->sched_map
);
1410 /* Update the given dependence relation based on the current schedule.
1411 * That is, intersect the dependence relation with a map expressing
1412 * that source and sink are executed within the same iteration of
1413 * the current schedule.
1414 * This is not the most efficient way, but this shouldn't be a critical
1417 static __isl_give isl_map
*specialize(__isl_take isl_map
*map
,
1418 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
1420 isl_map
*src_sched
, *dst_sched
, *id
;
1422 src_sched
= node_extract_schedule(src
);
1423 dst_sched
= node_extract_schedule(dst
);
1424 id
= isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
1425 return isl_map_intersect(map
, id
);
1428 /* Update the dependence relations of all edges based on the current schedule.
1429 * If a dependence is carried completely by the current schedule, then
1430 * it is removed and edge_table is updated accordingly.
1432 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1435 int reset_table
= 0;
1437 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
1438 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1439 edge
->map
= specialize(edge
->map
, edge
->src
, edge
->dst
);
1443 if (isl_map_plain_is_empty(edge
->map
)) {
1445 isl_map_free(edge
->map
);
1446 if (i
!= graph
->n_edge
- 1)
1447 graph
->edge
[i
] = graph
->edge
[graph
->n_edge
- 1];
1453 isl_hash_table_free(ctx
, graph
->edge_table
);
1454 graph
->edge_table
= NULL
;
1455 return graph_init_edge_table(ctx
, graph
);
1461 static void next_band(struct isl_sched_graph
*graph
)
1463 graph
->band_start
= graph
->n_total_row
;
1467 /* Topologically sort statements mapped to same schedule iteration
1468 * and add a row to the schedule corresponding to this order.
1470 static int sort_statements(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1477 if (update_edges(ctx
, graph
) < 0)
1480 if (graph
->n_edge
== 0)
1483 if (detect_sccs(graph
) < 0)
1486 for (i
= 0; i
< graph
->n
; ++i
) {
1487 struct isl_sched_node
*node
= &graph
->node
[i
];
1488 int row
= isl_mat_rows(node
->sched
);
1489 int cols
= isl_mat_cols(node
->sched
);
1491 isl_map_free(node
->sched_map
);
1492 node
->sched_map
= NULL
;
1493 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1496 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
1498 for (j
= 1; j
< cols
; ++j
)
1499 node
->sched
= isl_mat_set_element_si(node
->sched
,
1501 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1504 graph
->n_total_row
++;
1510 /* Construct an isl_schedule based on the computed schedule stored
1511 * in graph and with parameters specified by dim.
1513 static __isl_give isl_schedule
*extract_schedule(struct isl_sched_graph
*graph
,
1514 __isl_take isl_dim
*dim
)
1518 isl_schedule
*sched
= NULL
;
1523 ctx
= isl_dim_get_ctx(dim
);
1524 sched
= isl_calloc(ctx
, struct isl_schedule
,
1525 sizeof(struct isl_schedule
) +
1526 (graph
->n
- 1) * sizeof(struct isl_schedule_node
));
1531 sched
->n
= graph
->n
;
1532 sched
->n_band
= graph
->n_band
;
1533 sched
->n_total_row
= graph
->n_total_row
;
1535 for (i
= 0; i
< sched
->n
; ++i
) {
1537 int *band_end
, *band_id
, *zero
;
1539 band_end
= isl_alloc_array(ctx
, int, graph
->n_band
);
1540 band_id
= isl_alloc_array(ctx
, int, graph
->n_band
);
1541 zero
= isl_alloc_array(ctx
, int, graph
->n_total_row
);
1542 sched
->node
[i
].sched
= node_extract_schedule(&graph
->node
[i
]);
1543 sched
->node
[i
].band_end
= band_end
;
1544 sched
->node
[i
].band_id
= band_id
;
1545 sched
->node
[i
].zero
= zero
;
1546 if (!band_end
|| !band_id
|| !zero
)
1549 for (r
= 0; r
< graph
->n_total_row
; ++r
)
1550 zero
[r
] = graph
->node
[i
].zero
[r
];
1551 for (r
= b
= 0; r
< graph
->n_total_row
; ++r
) {
1552 if (graph
->node
[i
].band
[r
] == b
)
1555 if (graph
->node
[i
].band
[r
] == -1)
1558 if (r
== graph
->n_total_row
)
1560 sched
->node
[i
].n_band
= b
;
1561 for (--b
; b
>= 0; --b
)
1562 band_id
[b
] = graph
->node
[i
].band_id
[b
];
1570 isl_schedule_free(sched
);
1574 /* Copy nodes that satisfy node_pred from the src dependence graph
1575 * to the dst dependence graph.
1577 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
1578 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1583 for (i
= 0; i
< src
->n
; ++i
) {
1584 if (!node_pred(&src
->node
[i
], data
))
1586 dst
->node
[dst
->n
].dim
= isl_dim_copy(src
->node
[i
].dim
);
1587 dst
->node
[dst
->n
].nvar
= src
->node
[i
].nvar
;
1588 dst
->node
[dst
->n
].nparam
= src
->node
[i
].nparam
;
1589 dst
->node
[dst
->n
].sched
= isl_mat_copy(src
->node
[i
].sched
);
1590 dst
->node
[dst
->n
].sched_map
=
1591 isl_map_copy(src
->node
[i
].sched_map
);
1592 dst
->node
[dst
->n
].band
= src
->node
[i
].band
;
1593 dst
->node
[dst
->n
].band_id
= src
->node
[i
].band_id
;
1594 dst
->node
[dst
->n
].zero
= src
->node
[i
].zero
;
1601 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1602 * to the dst dependence graph.
1604 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
1605 struct isl_sched_graph
*src
,
1606 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
1611 for (i
= 0; i
< src
->n_edge
; ++i
) {
1612 struct isl_sched_edge
*edge
= &src
->edge
[i
];
1615 if (!edge_pred(edge
, data
))
1618 if (isl_map_plain_is_empty(edge
->map
))
1621 map
= isl_map_copy(edge
->map
);
1623 dst
->edge
[dst
->n_edge
].src
=
1624 graph_find_node(ctx
, dst
, edge
->src
->dim
);
1625 dst
->edge
[dst
->n_edge
].dst
=
1626 graph_find_node(ctx
, dst
, edge
->dst
->dim
);
1627 dst
->edge
[dst
->n_edge
].map
= map
;
1628 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
1629 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
1636 /* Given a "src" dependence graph that contains the nodes from "dst"
1637 * that satisfy node_pred, copy the schedule computed in "src"
1638 * for those nodes back to "dst".
1640 static int copy_schedule(struct isl_sched_graph
*dst
,
1641 struct isl_sched_graph
*src
,
1642 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1647 for (i
= 0; i
< dst
->n
; ++i
) {
1648 if (!node_pred(&dst
->node
[i
], data
))
1650 isl_mat_free(dst
->node
[i
].sched
);
1651 isl_map_free(dst
->node
[i
].sched_map
);
1652 dst
->node
[i
].sched
= isl_mat_copy(src
->node
[src
->n
].sched
);
1653 dst
->node
[i
].sched_map
=
1654 isl_map_copy(src
->node
[src
->n
].sched_map
);
1658 dst
->n_total_row
= src
->n_total_row
;
1659 dst
->n_band
= src
->n_band
;
1664 /* Compute the maximal number of variables over all nodes.
1665 * This is the maximal number of linearly independent schedule
1666 * rows that we need to compute.
1667 * Just in case we end up in a part of the dependence graph
1668 * with only lower-dimensional domains, we make sure we will
1669 * compute the required amount of extra linearly independent rows.
1671 static int compute_maxvar(struct isl_sched_graph
*graph
)
1676 for (i
= 0; i
< graph
->n
; ++i
) {
1677 struct isl_sched_node
*node
= &graph
->node
[i
];
1680 if (node_update_cmap(node
) < 0)
1682 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
1683 if (nvar
> graph
->maxvar
)
1684 graph
->maxvar
= nvar
;
1690 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1691 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1693 /* Compute a schedule for a subgraph of "graph". In particular, for
1694 * the graph composed of nodes that satisfy node_pred and edges that
1695 * that satisfy edge_pred. The caller should precompute the number
1696 * of nodes and edges that satisfy these predicates and pass them along
1697 * as "n" and "n_edge".
1698 * If the subgraph is known to consist of a single component, then wcc should
1699 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1700 * Otherwise, we call compute_schedule, which will check whether the subgraph
1703 static int compute_sub_schedule(isl_ctx
*ctx
,
1704 struct isl_sched_graph
*graph
, int n
, int n_edge
,
1705 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
1706 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
1709 struct isl_sched_graph split
= { 0 };
1711 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
1713 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
1715 if (graph_init_table(ctx
, &split
) < 0)
1717 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
1719 if (graph_init_edge_table(ctx
, &split
) < 0)
1721 split
.n_row
= graph
->n_row
;
1722 split
.n_total_row
= graph
->n_total_row
;
1723 split
.n_band
= graph
->n_band
;
1724 split
.band_start
= graph
->band_start
;
1726 if (wcc
&& compute_schedule_wcc(ctx
, &split
) < 0)
1728 if (!wcc
&& compute_schedule(ctx
, &split
) < 0)
1731 copy_schedule(graph
, &split
, node_pred
, data
);
1733 graph_free(ctx
, &split
);
1736 graph_free(ctx
, &split
);
1740 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
1742 return node
->scc
== scc
;
1745 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
1747 return node
->scc
<= scc
;
1750 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
1752 return node
->scc
>= scc
;
1755 static int edge_src_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
1757 return edge
->src
->scc
== scc
;
1760 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
1762 return edge
->dst
->scc
<= scc
;
1765 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
1767 return edge
->src
->scc
>= scc
;
1770 /* Pad the schedules of all nodes with zero rows such that in the end
1771 * they all have graph->n_total_row rows.
1772 * The extra rows don't belong to any band, so they get assigned band number -1.
1774 static int pad_schedule(struct isl_sched_graph
*graph
)
1778 for (i
= 0; i
< graph
->n
; ++i
) {
1779 struct isl_sched_node
*node
= &graph
->node
[i
];
1780 int row
= isl_mat_rows(node
->sched
);
1781 if (graph
->n_total_row
> row
) {
1782 isl_map_free(node
->sched_map
);
1783 node
->sched_map
= NULL
;
1785 node
->sched
= isl_mat_add_zero_rows(node
->sched
,
1786 graph
->n_total_row
- row
);
1789 for (j
= row
; j
< graph
->n_total_row
; ++j
)
1796 /* Split the current graph into two parts and compute a schedule for each
1797 * part individually. In particular, one part consists of all SCCs up
1798 * to and including graph->src_scc, while the other part contains the other
1801 * The split is enforced in the schedule by constant rows with two different
1802 * values (0 and 1). These constant rows replace the previously computed rows
1803 * in the current band.
1804 * It would be possible to reuse them as the first rows in the next
1805 * band, but recomputing them may result in better rows as we are looking
1806 * at a smaller part of the dependence graph.
1808 * The band_id of the second group is set to n, where n is the number
1809 * of nodes in the first group. This ensures that the band_ids over
1810 * the two groups remain disjoint, even if either or both of the two
1811 * groups contain independent components.
1813 static int compute_split_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1815 int i
, j
, n
, e1
, e2
;
1816 int n_total_row
, orig_total_row
;
1817 int n_band
, orig_band
;
1820 drop
= graph
->n_total_row
- graph
->band_start
;
1821 graph
->n_total_row
-= drop
;
1822 graph
->n_row
-= drop
;
1825 for (i
= 0; i
< graph
->n
; ++i
) {
1826 struct isl_sched_node
*node
= &graph
->node
[i
];
1827 int row
= isl_mat_rows(node
->sched
) - drop
;
1828 int cols
= isl_mat_cols(node
->sched
);
1829 int before
= node
->scc
<= graph
->src_scc
;
1834 isl_map_free(node
->sched_map
);
1835 node
->sched_map
= NULL
;
1836 node
->sched
= isl_mat_drop_rows(node
->sched
,
1837 graph
->band_start
, drop
);
1838 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1841 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
1843 for (j
= 1; j
< cols
; ++j
)
1844 node
->sched
= isl_mat_set_element_si(node
->sched
,
1846 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1850 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1851 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
1853 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
1857 graph
->n_total_row
++;
1860 for (i
= 0; i
< graph
->n
; ++i
) {
1861 struct isl_sched_node
*node
= &graph
->node
[i
];
1862 if (node
->scc
> graph
->src_scc
)
1863 node
->band_id
[graph
->n_band
] = n
;
1866 orig_total_row
= graph
->n_total_row
;
1867 orig_band
= graph
->n_band
;
1868 if (compute_sub_schedule(ctx
, graph
, n
, e1
,
1869 &node_scc_at_most
, &edge_dst_scc_at_most
,
1870 graph
->src_scc
, 0) < 0)
1872 n_total_row
= graph
->n_total_row
;
1873 graph
->n_total_row
= orig_total_row
;
1874 n_band
= graph
->n_band
;
1875 graph
->n_band
= orig_band
;
1876 if (compute_sub_schedule(ctx
, graph
, graph
->n
- n
, e2
,
1877 &node_scc_at_least
, &edge_src_scc_at_least
,
1878 graph
->src_scc
+ 1, 0) < 0)
1880 if (n_total_row
> graph
->n_total_row
)
1881 graph
->n_total_row
= n_total_row
;
1882 if (n_band
> graph
->n_band
)
1883 graph
->n_band
= n_band
;
1885 return pad_schedule(graph
);
1888 /* Compute the next band of the schedule after updating the dependence
1889 * relations based on the the current schedule.
1891 static int compute_next_band(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1893 if (update_edges(ctx
, graph
) < 0)
1897 return compute_schedule(ctx
, graph
);
1900 /* Add constraints to graph->lp that force the dependence of edge i
1901 * to be respected and attempt to carry it, where edge i is one from
1902 * a node j to itself.
1903 * That is, add constraints that enforce
1905 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
1906 * = c_j_x (y - x) >= e_i
1908 * for each (x,y) in R.
1909 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1910 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
1911 * with each coefficient in c_j_x represented as a pair of non-negative
1914 static int add_intra_constraints(struct isl_sched_graph
*graph
, int i
)
1917 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1918 isl_map
*map
= isl_map_copy(edge
->map
);
1919 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1921 isl_dim_map
*dim_map
;
1922 isl_basic_set
*coef
;
1923 struct isl_sched_node
*node
= edge
->src
;
1925 coef
= intra_coefficients(graph
, map
);
1927 dim
= isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef
)));
1929 total
= isl_basic_set_total_dim(graph
->lp
);
1930 dim_map
= isl_dim_map_alloc(ctx
, total
);
1931 isl_dim_map_range(dim_map
, 3 + i
, 0, 0, 0, 1, -1);
1932 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1933 isl_dim_size(dim
, isl_dim_set
), 1,
1935 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1936 isl_dim_size(dim
, isl_dim_set
), 1,
1938 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1939 coef
->n_eq
, coef
->n_ineq
);
1940 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1947 /* Add constraints to graph->lp that force the dependence of edge i
1948 * to be respected and attempt to carry it, where edge i is one from
1950 * That is, add constraints that enforce
1952 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
1954 * for each (x,y) in R.
1955 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1956 * of valid constraints for R and then plug in
1957 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
1958 * with each coefficient (except e_i, c_k_0 and c_j_0)
1959 * represented as a pair of non-negative coefficients.
1961 static int add_inter_constraints(struct isl_sched_graph
*graph
, int i
)
1964 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1965 isl_map
*map
= isl_map_copy(edge
->map
);
1966 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1968 isl_dim_map
*dim_map
;
1969 isl_basic_set
*coef
;
1970 struct isl_sched_node
*src
= edge
->src
;
1971 struct isl_sched_node
*dst
= edge
->dst
;
1973 coef
= inter_coefficients(graph
, map
);
1975 dim
= isl_dim_domain(isl_dim_unwrap(isl_basic_set_get_dim(coef
)));
1977 total
= isl_basic_set_total_dim(graph
->lp
);
1978 dim_map
= isl_dim_map_alloc(ctx
, total
);
1980 isl_dim_map_range(dim_map
, 3 + i
, 0, 0, 0, 1, -1);
1982 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
1983 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
1984 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
1985 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1986 isl_dim_size(dim
, isl_dim_set
) + src
->nvar
, 1,
1988 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1989 isl_dim_size(dim
, isl_dim_set
) + src
->nvar
, 1,
1992 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
1993 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
1994 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
1995 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1996 isl_dim_size(dim
, isl_dim_set
), 1,
1998 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1999 isl_dim_size(dim
, isl_dim_set
), 1,
2002 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2003 coef
->n_eq
, coef
->n_ineq
);
2004 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2011 /* Add constraints to graph->lp that force all dependence
2012 * to be respected and attempt to carry it.
2014 static int add_all_constraints(struct isl_sched_graph
*graph
)
2018 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2019 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2020 if (edge
->src
== edge
->dst
&&
2021 add_intra_constraints(graph
, i
) < 0)
2023 if (edge
->src
!= edge
->dst
&&
2024 add_inter_constraints(graph
, i
) < 0)
2031 /* Construct an LP problem for finding schedule coefficients
2032 * such that the schedule carries as many dependences as possible.
2033 * In particular, for each dependence i, we bound the dependence distance
2034 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2035 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2036 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2038 * All variables of the LP are non-negative. The actual coefficients
2039 * may be negative, so each coefficient is represented as the difference
2040 * of two non-negative variables. The negative part always appears
2041 * immediately before the positive part.
2042 * Other than that, the variables have the following order
2044 * - sum of (1 - e_i) over all edges
2045 * - sum of positive and negative parts of all c_n coefficients
2046 * (unconstrained when computing non-parametric schedules)
2047 * - sum of positive and negative parts of all c_x coefficients
2052 * - positive and negative parts of c_i_n (if parametric)
2053 * - positive and negative parts of c_i_x
2055 * The constraints are those from the edges plus three equalities
2056 * to express the sums and n_edge inequalities to express e_i <= 1.
2058 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2066 total
= 3 + graph
->n_edge
;
2067 for (i
= 0; i
< graph
->n
; ++i
) {
2068 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2069 node
->start
= total
;
2070 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2073 if (count_constraints(graph
, &n_eq
, &n_ineq
, 1) < 0)
2076 dim
= isl_dim_set_alloc(ctx
, 0, total
);
2077 isl_basic_set_free(graph
->lp
);
2079 n_ineq
+= graph
->n_edge
;
2080 graph
->lp
= isl_basic_set_alloc_dim(dim
, 0, n_eq
, n_ineq
);
2081 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
2083 k
= isl_basic_set_alloc_equality(graph
->lp
);
2086 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2087 isl_int_set_si(graph
->lp
->eq
[k
][0], -graph
->n_edge
);
2088 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
2089 for (i
= 0; i
< graph
->n_edge
; ++i
)
2090 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
2092 k
= isl_basic_set_alloc_equality(graph
->lp
);
2095 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2096 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
2097 for (i
= 0; i
< graph
->n
; ++i
) {
2098 int pos
= 1 + graph
->node
[i
].start
+ 1;
2100 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2101 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2104 k
= isl_basic_set_alloc_equality(graph
->lp
);
2107 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2108 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2109 for (i
= 0; i
< graph
->n
; ++i
) {
2110 struct isl_sched_node
*node
= &graph
->node
[i
];
2111 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2113 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2114 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2117 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2118 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2121 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2122 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
2123 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
2126 if (add_all_constraints(graph
) < 0)
2132 /* If the schedule_split_parallel option is set and if the linear
2133 * parts of the scheduling rows for all nodes in the graphs are the same,
2134 * then split off the constant term from the linear part.
2135 * The constant term is then placed in a separate band and
2136 * the linear part is simplified.
2138 static int split_parallel(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2143 struct isl_sched_node
*node0
;
2145 if (!ctx
->opt
->schedule_split_parallel
)
2150 node0
= &graph
->node
[0];
2151 row
= isl_mat_rows(node0
->sched
) - 1;
2152 cols
= isl_mat_cols(node0
->sched
);
2153 for (i
= 1; i
< graph
->n
; ++i
) {
2154 struct isl_sched_node
*node
= &graph
->node
[i
];
2156 if (!isl_seq_eq(node0
->sched
->row
[row
] + 1,
2157 node
->sched
->row
[row
] + 1, cols
- 1))
2160 isl_int_ne(node0
->sched
->row
[row
][0],
2161 node
->sched
->row
[row
][0]))
2169 for (i
= 0; i
< graph
->n
; ++i
) {
2170 struct isl_sched_node
*node
= &graph
->node
[i
];
2172 isl_map_free(node
->sched_map
);
2173 node
->sched_map
= NULL
;
2174 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2177 isl_int_set(node
->sched
->row
[row
+ 1][0],
2178 node
->sched
->row
[row
][0]);
2179 isl_int_set_si(node
->sched
->row
[row
][0], 0);
2180 node
->sched
= isl_mat_normalize_row(node
->sched
, row
);
2183 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2186 graph
->n_total_row
++;
2191 /* Construct a schedule row for each node such that as many dependences
2192 * as possible are carried and then continue with the next band.
2194 static int carry_dependences(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2199 if (setup_carry_lp(ctx
, graph
) < 0)
2202 lp
= isl_basic_set_copy(graph
->lp
);
2203 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
2207 if (sol
->size
== 0) {
2209 isl_die(ctx
, isl_error_internal
,
2210 "error in schedule construction", return -1);
2213 if (isl_int_cmp_si(sol
->el
[1], graph
->n_edge
) >= 0) {
2215 isl_die(ctx
, isl_error_unknown
,
2216 "unable to carry dependences", return -1);
2219 if (update_schedule(graph
, sol
, 0, 0) < 0)
2222 if (split_parallel(ctx
, graph
) < 0)
2225 return compute_next_band(ctx
, graph
);
2228 /* Compute a schedule for a connected dependence graph.
2229 * We try to find a sequence of as many schedule rows as possible that result
2230 * in non-negative dependence distances (independent of the previous rows
2231 * in the sequence, i.e., such that the sequence is tilable).
2232 * If we can't find any more rows we either
2233 * - split between SCCs and start over (assuming we found an interesting
2234 * pair of SCCs between which to split)
2235 * - continue with the next band (assuming the current band has at least
2237 * - try to carry as many dependences as possible and continue with the next
2240 * If we manage to complete the schedule, we finish off by topologically
2241 * sorting the statements based on the remaining dependences.
2243 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2244 * outermost dimension in the current band to be zero distance. If this
2245 * turns out to be impossible, we fall back on the general scheme above
2246 * and try to carry as many dependences as possible.
2248 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2252 if (detect_sccs(graph
) < 0)
2256 if (compute_maxvar(graph
) < 0)
2259 if (ctx
->opt
->schedule_outer_zero_distance
)
2262 while (graph
->n_row
< graph
->maxvar
) {
2265 graph
->src_scc
= -1;
2266 graph
->dst_scc
= -1;
2268 if (setup_lp(ctx
, graph
, force_zero
) < 0)
2270 sol
= solve_lp(graph
);
2273 if (sol
->size
== 0) {
2275 if (graph
->src_scc
>= 0)
2276 return compute_split_schedule(ctx
, graph
);
2277 if (graph
->n_total_row
> graph
->band_start
)
2278 return compute_next_band(ctx
, graph
);
2279 return carry_dependences(ctx
, graph
);
2281 if (update_schedule(graph
, sol
, 1, 1) < 0)
2286 if (graph
->n_total_row
> graph
->band_start
)
2288 return sort_statements(ctx
, graph
);
2291 /* Compute a schedule for each component (identified by node->scc)
2292 * of the dependence graph separately and then combine the results.
2294 * The band_id is adjusted such that each component has a separate id.
2295 * Note that the band_id may have already been set to a value different
2296 * from zero by compute_split_schedule.
2298 static int compute_component_schedule(isl_ctx
*ctx
,
2299 struct isl_sched_graph
*graph
)
2303 int n_total_row
, orig_total_row
;
2304 int n_band
, orig_band
;
2307 orig_total_row
= graph
->n_total_row
;
2309 orig_band
= graph
->n_band
;
2310 for (i
= 0; i
< graph
->n
; ++i
)
2311 graph
->node
[i
].band_id
[graph
->n_band
] += graph
->node
[i
].scc
;
2312 for (wcc
= 0; wcc
< graph
->scc
; ++wcc
) {
2314 for (i
= 0; i
< graph
->n
; ++i
)
2315 if (graph
->node
[i
].scc
== wcc
)
2318 for (i
= 0; i
< graph
->n_edge
; ++i
)
2319 if (graph
->edge
[i
].src
->scc
== wcc
)
2322 if (compute_sub_schedule(ctx
, graph
, n
, n_edge
,
2324 &edge_src_scc_exactly
, wcc
, 1) < 0)
2326 if (graph
->n_total_row
> n_total_row
)
2327 n_total_row
= graph
->n_total_row
;
2328 graph
->n_total_row
= orig_total_row
;
2329 if (graph
->n_band
> n_band
)
2330 n_band
= graph
->n_band
;
2331 graph
->n_band
= orig_band
;
2334 graph
->n_total_row
= n_total_row
;
2335 graph
->n_band
= n_band
;
2337 return pad_schedule(graph
);
2340 /* Compute a schedule for the given dependence graph.
2341 * We first check if the graph is connected (through validity dependences)
2342 * and if so compute a schedule for each component separately.
2344 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2346 if (detect_wccs(graph
) < 0)
2350 return compute_component_schedule(ctx
, graph
);
2352 return compute_schedule_wcc(ctx
, graph
);
2355 /* Compute a schedule for the given union of domains that respects
2356 * all the validity dependences and tries to minimize the dependence
2357 * distances over the proximity dependences.
2359 __isl_give isl_schedule
*isl_union_set_compute_schedule(
2360 __isl_take isl_union_set
*domain
,
2361 __isl_take isl_union_map
*validity
,
2362 __isl_take isl_union_map
*proximity
)
2364 isl_ctx
*ctx
= isl_union_set_get_ctx(domain
);
2366 struct isl_sched_graph graph
= { 0 };
2367 isl_schedule
*sched
;
2369 domain
= isl_union_set_align_params(domain
,
2370 isl_union_map_get_dim(validity
));
2371 domain
= isl_union_set_align_params(domain
,
2372 isl_union_map_get_dim(proximity
));
2373 dim
= isl_union_set_get_dim(domain
);
2374 validity
= isl_union_map_align_params(validity
, isl_dim_copy(dim
));
2375 proximity
= isl_union_map_align_params(proximity
, dim
);
2380 graph
.n
= isl_union_set_n_set(domain
);
2383 if (graph_alloc(ctx
, &graph
, graph
.n
,
2384 isl_union_map_n_map(validity
) + isl_union_map_n_map(proximity
)) < 0)
2388 if (isl_union_set_foreach_set(domain
, &extract_node
, &graph
) < 0)
2390 if (graph_init_table(ctx
, &graph
) < 0)
2393 if (isl_union_map_foreach_map(validity
, &extract_edge
, &graph
) < 0)
2395 if (graph_init_edge_table(ctx
, &graph
) < 0)
2397 if (isl_union_map_foreach_map(proximity
, &extract_edge
, &graph
) < 0)
2400 if (compute_schedule(ctx
, &graph
) < 0)
2404 sched
= extract_schedule(&graph
, isl_union_set_get_dim(domain
));
2406 graph_free(ctx
, &graph
);
2407 isl_union_set_free(domain
);
2408 isl_union_map_free(validity
);
2409 isl_union_map_free(proximity
);
2413 graph_free(ctx
, &graph
);
2414 isl_union_set_free(domain
);
2415 isl_union_map_free(validity
);
2416 isl_union_map_free(proximity
);
2420 void *isl_schedule_free(__isl_take isl_schedule
*sched
)
2426 if (--sched
->ref
> 0)
2429 for (i
= 0; i
< sched
->n
; ++i
) {
2430 isl_map_free(sched
->node
[i
].sched
);
2431 free(sched
->node
[i
].band_end
);
2432 free(sched
->node
[i
].band_id
);
2433 free(sched
->node
[i
].zero
);
2435 isl_dim_free(sched
->dim
);
2436 isl_band_list_free(sched
->band_forest
);
2441 isl_ctx
*isl_schedule_get_ctx(__isl_keep isl_schedule
*schedule
)
2443 return schedule
? isl_dim_get_ctx(schedule
->dim
) : NULL
;
2446 __isl_give isl_union_map
*isl_schedule_get_map(__isl_keep isl_schedule
*sched
)
2449 isl_union_map
*umap
;
2454 umap
= isl_union_map_empty(isl_dim_copy(sched
->dim
));
2455 for (i
= 0; i
< sched
->n
; ++i
)
2456 umap
= isl_union_map_add_map(umap
,
2457 isl_map_copy(sched
->node
[i
].sched
));
2462 int isl_schedule_n_band(__isl_keep isl_schedule
*sched
)
2464 return sched
? sched
->n_band
: 0;
2467 /* Construct a mapping that maps each domain to the band in its schedule
2468 * with the specified band index. Note that bands with the same index
2469 * but for different domains do not need to be related.
2471 __isl_give isl_union_map
*isl_schedule_get_band(__isl_keep isl_schedule
*sched
,
2475 isl_union_map
*umap
;
2480 umap
= isl_union_map_empty(isl_dim_copy(sched
->dim
));
2481 for (i
= 0; i
< sched
->n
; ++i
) {
2485 if (band
>= sched
->node
[i
].n_band
)
2488 start
= band
> 0 ? sched
->node
[i
].band_end
[band
- 1] : 0;
2489 end
= sched
->node
[i
].band_end
[band
];
2491 map
= isl_map_copy(sched
->node
[i
].sched
);
2493 map
= isl_map_project_out(map
, isl_dim_out
, end
,
2494 sched
->n_total_row
- end
);
2495 map
= isl_map_project_out(map
, isl_dim_out
, 0, start
);
2497 umap
= isl_union_map_add_map(umap
, map
);
2503 static __isl_give isl_band_list
*construct_band_list(
2504 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
2505 int band_nr
, int *parent_active
, int n_active
);
2507 /* Construct an isl_band structure for the band in the given schedule
2508 * with sequence number band_nr for the n_active nodes marked by active.
2509 * If the nodes don't have a band with the given sequence number,
2510 * then a band without members is created.
2512 * Because of the way the schedule is constructed, we know that
2513 * the position of the band inside the schedule of a node is the same
2514 * for all active nodes.
2516 static __isl_give isl_band
*construct_band(__isl_keep isl_schedule
*schedule
,
2517 __isl_keep isl_band
*parent
,
2518 int band_nr
, int *active
, int n_active
)
2521 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2523 unsigned start
, end
;
2525 band
= isl_calloc_type(ctx
, isl_band
);
2530 band
->schedule
= schedule
;
2531 band
->parent
= parent
;
2533 for (i
= 0; i
< schedule
->n
; ++i
)
2534 if (active
[i
] && schedule
->node
[i
].n_band
> band_nr
+ 1)
2537 if (i
< schedule
->n
) {
2538 band
->children
= construct_band_list(schedule
, band
,
2539 band_nr
+ 1, active
, n_active
);
2540 if (!band
->children
)
2544 for (i
= 0; i
< schedule
->n
; ++i
)
2548 if (i
>= schedule
->n
)
2549 isl_die(ctx
, isl_error_internal
,
2550 "band without active statements", goto error
);
2552 start
= band_nr
? schedule
->node
[i
].band_end
[band_nr
- 1] : 0;
2553 end
= band_nr
< schedule
->node
[i
].n_band
?
2554 schedule
->node
[i
].band_end
[band_nr
] : start
;
2555 band
->n
= end
- start
;
2557 band
->zero
= isl_alloc_array(ctx
, int, band
->n
);
2561 for (j
= 0; j
< band
->n
; ++j
)
2562 band
->zero
[j
] = schedule
->node
[i
].zero
[start
+ j
];
2564 band
->map
= isl_union_map_empty(isl_dim_copy(schedule
->dim
));
2565 for (i
= 0; i
< schedule
->n
; ++i
) {
2572 map
= isl_map_copy(schedule
->node
[i
].sched
);
2573 n_out
= isl_map_dim(map
, isl_dim_out
);
2574 map
= isl_map_project_out(map
, isl_dim_out
, end
, n_out
- end
);
2575 map
= isl_map_project_out(map
, isl_dim_out
, 0, start
);
2576 band
->map
= isl_union_map_union(band
->map
,
2577 isl_union_map_from_map(map
));
2584 isl_band_free(band
);
2588 /* Construct a list of bands that start at the same position (with
2589 * sequence number band_nr) in the schedules of the nodes that
2590 * were active in the parent band.
2592 * A separate isl_band structure is created for each band_id
2593 * and for each node that does not have a band with sequence
2594 * number band_nr. In the latter case, a band without members
2596 * This ensures that if a band has any children, then each node
2597 * that was active in the band is active in exactly one of the children.
2599 static __isl_give isl_band_list
*construct_band_list(
2600 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
2601 int band_nr
, int *parent_active
, int n_active
)
2604 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2607 isl_band_list
*list
;
2610 for (i
= 0; i
< n_active
; ++i
) {
2611 for (j
= 0; j
< schedule
->n
; ++j
) {
2612 if (!parent_active
[j
])
2614 if (schedule
->node
[j
].n_band
<= band_nr
)
2616 if (schedule
->node
[j
].band_id
[band_nr
] == i
) {
2622 for (j
= 0; j
< schedule
->n
; ++j
)
2623 if (schedule
->node
[j
].n_band
<= band_nr
)
2628 list
= isl_band_list_alloc(ctx
, n_band
);
2629 band
= construct_band(schedule
, parent
, band_nr
,
2630 parent_active
, n_active
);
2631 return isl_band_list_add(list
, band
);
2634 active
= isl_alloc_array(ctx
, int, schedule
->n
);
2638 list
= isl_band_list_alloc(ctx
, n_band
);
2640 for (i
= 0; i
< n_active
; ++i
) {
2644 for (j
= 0; j
< schedule
->n
; ++j
) {
2645 active
[j
] = parent_active
[j
] &&
2646 schedule
->node
[j
].n_band
> band_nr
&&
2647 schedule
->node
[j
].band_id
[band_nr
] == i
;
2654 band
= construct_band(schedule
, parent
, band_nr
, active
, n
);
2656 list
= isl_band_list_add(list
, band
);
2658 for (i
= 0; i
< schedule
->n
; ++i
) {
2660 if (!parent_active
[i
])
2662 if (schedule
->node
[i
].n_band
> band_nr
)
2664 for (j
= 0; j
< schedule
->n
; ++j
)
2666 band
= construct_band(schedule
, parent
, band_nr
, active
, 1);
2667 list
= isl_band_list_add(list
, band
);
2675 /* Construct a band forest representation of the schedule and
2676 * return the list of roots.
2678 static __isl_give isl_band_list
*construct_forest(
2679 __isl_keep isl_schedule
*schedule
)
2682 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2683 isl_band_list
*forest
;
2686 active
= isl_alloc_array(ctx
, int, schedule
->n
);
2690 for (i
= 0; i
< schedule
->n
; ++i
)
2693 forest
= construct_band_list(schedule
, NULL
, 0, active
, schedule
->n
);
2700 /* Return the roots of a band forest representation of the schedule.
2702 __isl_give isl_band_list
*isl_schedule_get_band_forest(
2703 __isl_keep isl_schedule
*schedule
)
2707 if (!schedule
->band_forest
)
2708 schedule
->band_forest
= construct_forest(schedule
);
2709 return isl_band_list_copy(schedule
->band_forest
);
2712 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
2713 __isl_keep isl_band_list
*list
);
2715 static __isl_give isl_printer
*print_band(__isl_take isl_printer
*p
,
2716 __isl_keep isl_band
*band
)
2718 isl_band_list
*children
;
2720 p
= isl_printer_start_line(p
);
2721 p
= isl_printer_print_union_map(p
, band
->map
);
2722 p
= isl_printer_end_line(p
);
2724 if (!isl_band_has_children(band
))
2727 children
= isl_band_get_children(band
);
2729 p
= isl_printer_indent(p
, 4);
2730 p
= print_band_list(p
, children
);
2731 p
= isl_printer_indent(p
, -4);
2733 isl_band_list_free(children
);
2738 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
2739 __isl_keep isl_band_list
*list
)
2743 n
= isl_band_list_n_band(list
);
2744 for (i
= 0; i
< n
; ++i
) {
2746 band
= isl_band_list_get_band(list
, i
);
2747 p
= print_band(p
, band
);
2748 isl_band_free(band
);
2754 __isl_give isl_printer
*isl_printer_print_schedule(__isl_take isl_printer
*p
,
2755 __isl_keep isl_schedule
*schedule
)
2757 isl_band_list
*forest
;
2759 forest
= isl_schedule_get_band_forest(schedule
);
2761 p
= print_band_list(p
, forest
);
2763 isl_band_list_free(forest
);
2768 void isl_schedule_dump(__isl_keep isl_schedule
*schedule
)
2770 isl_printer
*printer
;
2775 printer
= isl_printer_to_file(isl_schedule_get_ctx(schedule
), stderr
);
2776 printer
= isl_printer_print_schedule(printer
, schedule
);
2778 isl_printer_free(printer
);