2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
14 #include <isl_mat_private.h>
17 #include "isl_equalities.h"
20 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
22 /* Return 1 if constraint c is redundant with respect to the constraints
23 * in bmap. If c is a lower [upper] bound in some variable and bmap
24 * does not have a lower [upper] bound in that variable, then c cannot
25 * be redundant and we do not need solve any lp.
27 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
28 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
30 enum isl_lp_result res
;
37 total
= isl_basic_map_total_dim(*bmap
);
38 for (i
= 0; i
< total
; ++i
) {
40 if (isl_int_is_zero(c
[1+i
]))
42 sign
= isl_int_sgn(c
[1+i
]);
43 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
44 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
46 if (j
== (*bmap
)->n_ineq
)
52 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
54 if (res
== isl_lp_unbounded
)
56 if (res
== isl_lp_error
)
58 if (res
== isl_lp_empty
) {
59 *bmap
= isl_basic_map_set_to_empty(*bmap
);
62 return !isl_int_is_neg(*opt_n
);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
66 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
80 __isl_give isl_basic_map
*isl_basic_map_remove_redundancies(
81 __isl_take isl_basic_map
*bmap
)
88 bmap
= isl_basic_map_gauss(bmap
, NULL
);
89 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
91 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
93 if (bmap
->n_ineq
<= 1)
96 tab
= isl_tab_from_basic_map(bmap
);
97 if (isl_tab_detect_implicit_equalities(tab
) < 0)
99 if (isl_tab_detect_redundant(tab
) < 0)
101 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
103 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
104 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
108 isl_basic_map_free(bmap
);
112 __isl_give isl_basic_set
*isl_basic_set_remove_redundancies(
113 __isl_take isl_basic_set
*bset
)
115 return (struct isl_basic_set
*)
116 isl_basic_map_remove_redundancies((struct isl_basic_map
*)bset
);
119 /* Check if the set set is bound in the direction of the affine
120 * constraint c and if so, set the constant term such that the
121 * resulting constraint is a bounding constraint for the set.
123 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
131 isl_int_init(opt_denom
);
133 for (j
= 0; j
< set
->n
; ++j
) {
134 enum isl_lp_result res
;
136 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
139 res
= isl_basic_set_solve_lp(set
->p
[j
],
140 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
141 if (res
== isl_lp_unbounded
)
143 if (res
== isl_lp_error
)
145 if (res
== isl_lp_empty
) {
146 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
151 if (first
|| isl_int_is_neg(opt
)) {
152 if (!isl_int_is_one(opt_denom
))
153 isl_seq_scale(c
, c
, opt_denom
, len
);
154 isl_int_sub(c
[0], c
[0], opt
);
159 isl_int_clear(opt_denom
);
163 isl_int_clear(opt_denom
);
167 __isl_give isl_basic_map
*isl_basic_map_set_rational(
168 __isl_take isl_basic_set
*bmap
)
173 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
176 bmap
= isl_basic_map_cow(bmap
);
180 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
182 return isl_basic_map_finalize(bmap
);
185 __isl_give isl_basic_set
*isl_basic_set_set_rational(
186 __isl_take isl_basic_set
*bset
)
188 return isl_basic_map_set_rational(bset
);
191 static struct isl_set
*isl_set_set_rational(struct isl_set
*set
)
195 set
= isl_set_cow(set
);
198 for (i
= 0; i
< set
->n
; ++i
) {
199 set
->p
[i
] = isl_basic_set_set_rational(set
->p
[i
]);
209 static struct isl_basic_set
*isl_basic_set_add_equality(
210 struct isl_basic_set
*bset
, isl_int
*c
)
218 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
221 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
222 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
223 dim
= isl_basic_set_n_dim(bset
);
224 bset
= isl_basic_set_cow(bset
);
225 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
226 i
= isl_basic_set_alloc_equality(bset
);
229 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
232 isl_basic_set_free(bset
);
236 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
240 set
= isl_set_cow(set
);
243 for (i
= 0; i
< set
->n
; ++i
) {
244 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
254 /* Given a union of basic sets, construct the constraints for wrapping
255 * a facet around one of its ridges.
256 * In particular, if each of n the d-dimensional basic sets i in "set"
257 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
258 * and is defined by the constraints
262 * then the resulting set is of dimension n*(1+d) and has as constraints
271 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
273 struct isl_basic_set
*lp
;
277 unsigned dim
, lp_dim
;
282 dim
= 1 + isl_set_n_dim(set
);
285 for (i
= 0; i
< set
->n
; ++i
) {
286 n_eq
+= set
->p
[i
]->n_eq
;
287 n_ineq
+= set
->p
[i
]->n_ineq
;
289 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
290 lp
= isl_basic_set_set_rational(lp
);
293 lp_dim
= isl_basic_set_n_dim(lp
);
294 k
= isl_basic_set_alloc_equality(lp
);
295 isl_int_set_si(lp
->eq
[k
][0], -1);
296 for (i
= 0; i
< set
->n
; ++i
) {
297 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
298 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
299 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
301 for (i
= 0; i
< set
->n
; ++i
) {
302 k
= isl_basic_set_alloc_inequality(lp
);
303 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
304 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
306 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
307 k
= isl_basic_set_alloc_equality(lp
);
308 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
309 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
310 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
313 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
314 k
= isl_basic_set_alloc_inequality(lp
);
315 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
316 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
317 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
323 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
324 * of that facet, compute the other facet of the convex hull that contains
327 * We first transform the set such that the facet constraint becomes
331 * I.e., the facet lies in
335 * and on that facet, the constraint that defines the ridge is
339 * (This transformation is not strictly needed, all that is needed is
340 * that the ridge contains the origin.)
342 * Since the ridge contains the origin, the cone of the convex hull
343 * will be of the form
348 * with this second constraint defining the new facet.
349 * The constant a is obtained by settting x_1 in the cone of the
350 * convex hull to 1 and minimizing x_2.
351 * Now, each element in the cone of the convex hull is the sum
352 * of elements in the cones of the basic sets.
353 * If a_i is the dilation factor of basic set i, then the problem
354 * we need to solve is
367 * the constraints of each (transformed) basic set.
368 * If a = n/d, then the constraint defining the new facet (in the transformed
371 * -n x_1 + d x_2 >= 0
373 * In the original space, we need to take the same combination of the
374 * corresponding constraints "facet" and "ridge".
376 * If a = -infty = "-1/0", then we just return the original facet constraint.
377 * This means that the facet is unbounded, but has a bounded intersection
378 * with the union of sets.
380 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
381 isl_int
*facet
, isl_int
*ridge
)
385 struct isl_mat
*T
= NULL
;
386 struct isl_basic_set
*lp
= NULL
;
388 enum isl_lp_result res
;
395 set
= isl_set_copy(set
);
396 set
= isl_set_set_rational(set
);
398 dim
= 1 + isl_set_n_dim(set
);
399 T
= isl_mat_alloc(ctx
, 3, dim
);
402 isl_int_set_si(T
->row
[0][0], 1);
403 isl_seq_clr(T
->row
[0]+1, dim
- 1);
404 isl_seq_cpy(T
->row
[1], facet
, dim
);
405 isl_seq_cpy(T
->row
[2], ridge
, dim
);
406 T
= isl_mat_right_inverse(T
);
407 set
= isl_set_preimage(set
, T
);
411 lp
= wrap_constraints(set
);
412 obj
= isl_vec_alloc(ctx
, 1 + dim
*set
->n
);
415 isl_int_set_si(obj
->block
.data
[0], 0);
416 for (i
= 0; i
< set
->n
; ++i
) {
417 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
418 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
419 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
423 res
= isl_basic_set_solve_lp(lp
, 0,
424 obj
->block
.data
, ctx
->one
, &num
, &den
, NULL
);
425 if (res
== isl_lp_ok
) {
426 isl_int_neg(num
, num
);
427 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
428 isl_seq_normalize(ctx
, facet
, dim
);
433 isl_basic_set_free(lp
);
435 if (res
== isl_lp_error
)
437 isl_assert(ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
441 isl_basic_set_free(lp
);
447 /* Compute the constraint of a facet of "set".
449 * We first compute the intersection with a bounding constraint
450 * that is orthogonal to one of the coordinate axes.
451 * If the affine hull of this intersection has only one equality,
452 * we have found a facet.
453 * Otherwise, we wrap the current bounding constraint around
454 * one of the equalities of the face (one that is not equal to
455 * the current bounding constraint).
456 * This process continues until we have found a facet.
457 * The dimension of the intersection increases by at least
458 * one on each iteration, so termination is guaranteed.
460 static __isl_give isl_mat
*initial_facet_constraint(__isl_keep isl_set
*set
)
462 struct isl_set
*slice
= NULL
;
463 struct isl_basic_set
*face
= NULL
;
465 unsigned dim
= isl_set_n_dim(set
);
469 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
470 bounds
= isl_mat_alloc(set
->ctx
, 1, 1 + dim
);
474 isl_seq_clr(bounds
->row
[0], dim
);
475 isl_int_set_si(bounds
->row
[0][1 + dim
- 1], 1);
476 is_bound
= uset_is_bound(set
, bounds
->row
[0], 1 + dim
);
479 isl_assert(set
->ctx
, is_bound
, goto error
);
480 isl_seq_normalize(set
->ctx
, bounds
->row
[0], 1 + dim
);
484 slice
= isl_set_copy(set
);
485 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
486 face
= isl_set_affine_hull(slice
);
489 if (face
->n_eq
== 1) {
490 isl_basic_set_free(face
);
493 for (i
= 0; i
< face
->n_eq
; ++i
)
494 if (!isl_seq_eq(bounds
->row
[0], face
->eq
[i
], 1 + dim
) &&
495 !isl_seq_is_neg(bounds
->row
[0],
496 face
->eq
[i
], 1 + dim
))
498 isl_assert(set
->ctx
, i
< face
->n_eq
, goto error
);
499 if (!isl_set_wrap_facet(set
, bounds
->row
[0], face
->eq
[i
]))
501 isl_seq_normalize(set
->ctx
, bounds
->row
[0], bounds
->n_col
);
502 isl_basic_set_free(face
);
507 isl_basic_set_free(face
);
508 isl_mat_free(bounds
);
512 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
513 * compute a hyperplane description of the facet, i.e., compute the facets
516 * We compute an affine transformation that transforms the constraint
525 * by computing the right inverse U of a matrix that starts with the rows
538 * Since z_1 is zero, we can drop this variable as well as the corresponding
539 * column of U to obtain
547 * with Q' equal to Q, but without the corresponding row.
548 * After computing the facets of the facet in the z' space,
549 * we convert them back to the x space through Q.
551 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
553 struct isl_mat
*m
, *U
, *Q
;
554 struct isl_basic_set
*facet
= NULL
;
559 set
= isl_set_copy(set
);
560 dim
= isl_set_n_dim(set
);
561 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
564 isl_int_set_si(m
->row
[0][0], 1);
565 isl_seq_clr(m
->row
[0]+1, dim
);
566 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
567 U
= isl_mat_right_inverse(m
);
568 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
569 U
= isl_mat_drop_cols(U
, 1, 1);
570 Q
= isl_mat_drop_rows(Q
, 1, 1);
571 set
= isl_set_preimage(set
, U
);
572 facet
= uset_convex_hull_wrap_bounded(set
);
573 facet
= isl_basic_set_preimage(facet
, Q
);
575 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
578 isl_basic_set_free(facet
);
583 /* Given an initial facet constraint, compute the remaining facets.
584 * We do this by running through all facets found so far and computing
585 * the adjacent facets through wrapping, adding those facets that we
586 * hadn't already found before.
588 * For each facet we have found so far, we first compute its facets
589 * in the resulting convex hull. That is, we compute the ridges
590 * of the resulting convex hull contained in the facet.
591 * We also compute the corresponding facet in the current approximation
592 * of the convex hull. There is no need to wrap around the ridges
593 * in this facet since that would result in a facet that is already
594 * present in the current approximation.
596 * This function can still be significantly optimized by checking which of
597 * the facets of the basic sets are also facets of the convex hull and
598 * using all the facets so far to help in constructing the facets of the
601 * using the technique in section "3.1 Ridge Generation" of
602 * "Extended Convex Hull" by Fukuda et al.
604 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
609 struct isl_basic_set
*facet
= NULL
;
610 struct isl_basic_set
*hull_facet
= NULL
;
616 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
618 dim
= isl_set_n_dim(set
);
620 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
621 facet
= compute_facet(set
, hull
->ineq
[i
]);
622 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
623 facet
= isl_basic_set_gauss(facet
, NULL
);
624 facet
= isl_basic_set_normalize_constraints(facet
);
625 hull_facet
= isl_basic_set_copy(hull
);
626 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
627 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
628 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
629 if (!facet
|| !hull_facet
)
631 hull
= isl_basic_set_cow(hull
);
632 hull
= isl_basic_set_extend_dim(hull
,
633 isl_dim_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
636 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
637 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
638 if (isl_seq_eq(facet
->ineq
[j
],
639 hull_facet
->ineq
[f
], 1 + dim
))
641 if (f
< hull_facet
->n_ineq
)
643 k
= isl_basic_set_alloc_inequality(hull
);
646 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
647 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
650 isl_basic_set_free(hull_facet
);
651 isl_basic_set_free(facet
);
653 hull
= isl_basic_set_simplify(hull
);
654 hull
= isl_basic_set_finalize(hull
);
657 isl_basic_set_free(hull_facet
);
658 isl_basic_set_free(facet
);
659 isl_basic_set_free(hull
);
663 /* Special case for computing the convex hull of a one dimensional set.
664 * We simply collect the lower and upper bounds of each basic set
665 * and the biggest of those.
667 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
669 struct isl_mat
*c
= NULL
;
670 isl_int
*lower
= NULL
;
671 isl_int
*upper
= NULL
;
674 struct isl_basic_set
*hull
;
676 for (i
= 0; i
< set
->n
; ++i
) {
677 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
681 set
= isl_set_remove_empty_parts(set
);
684 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
685 c
= isl_mat_alloc(set
->ctx
, 2, 2);
689 if (set
->p
[0]->n_eq
> 0) {
690 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
693 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
694 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
695 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
697 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
698 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
701 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
702 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
704 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
707 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
714 for (i
= 0; i
< set
->n
; ++i
) {
715 struct isl_basic_set
*bset
= set
->p
[i
];
719 for (j
= 0; j
< bset
->n_eq
; ++j
) {
723 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
724 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
725 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
726 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
727 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
728 isl_seq_neg(lower
, bset
->eq
[j
], 2);
731 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
732 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
733 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
734 isl_seq_neg(upper
, bset
->eq
[j
], 2);
735 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
736 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
739 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
740 if (isl_int_is_pos(bset
->ineq
[j
][1]))
742 if (isl_int_is_neg(bset
->ineq
[j
][1]))
744 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
745 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
746 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
747 if (isl_int_lt(a
, b
))
748 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
750 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
751 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
752 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
753 if (isl_int_gt(a
, b
))
754 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
765 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
766 hull
= isl_basic_set_set_rational(hull
);
770 k
= isl_basic_set_alloc_inequality(hull
);
771 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
774 k
= isl_basic_set_alloc_inequality(hull
);
775 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
777 hull
= isl_basic_set_finalize(hull
);
787 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
789 struct isl_basic_set
*convex_hull
;
794 if (isl_set_is_empty(set
))
795 convex_hull
= isl_basic_set_empty(isl_dim_copy(set
->dim
));
797 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
802 /* Compute the convex hull of a pair of basic sets without any parameters or
803 * integer divisions using Fourier-Motzkin elimination.
804 * The convex hull is the set of all points that can be written as
805 * the sum of points from both basic sets (in homogeneous coordinates).
806 * We set up the constraints in a space with dimensions for each of
807 * the three sets and then project out the dimensions corresponding
808 * to the two original basic sets, retaining only those corresponding
809 * to the convex hull.
811 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
812 struct isl_basic_set
*bset2
)
815 struct isl_basic_set
*bset
[2];
816 struct isl_basic_set
*hull
= NULL
;
819 if (!bset1
|| !bset2
)
822 dim
= isl_basic_set_n_dim(bset1
);
823 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
824 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
825 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
828 for (i
= 0; i
< 2; ++i
) {
829 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
830 k
= isl_basic_set_alloc_equality(hull
);
833 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
834 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
835 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
838 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
839 k
= isl_basic_set_alloc_inequality(hull
);
842 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
843 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
844 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
845 bset
[i
]->ineq
[j
], 1+dim
);
847 k
= isl_basic_set_alloc_inequality(hull
);
850 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
851 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
853 for (j
= 0; j
< 1+dim
; ++j
) {
854 k
= isl_basic_set_alloc_equality(hull
);
857 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
858 isl_int_set_si(hull
->eq
[k
][j
], -1);
859 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
860 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
862 hull
= isl_basic_set_set_rational(hull
);
863 hull
= isl_basic_set_remove_dims(hull
, isl_dim_set
, dim
, 2*(1+dim
));
864 hull
= isl_basic_set_remove_redundancies(hull
);
865 isl_basic_set_free(bset1
);
866 isl_basic_set_free(bset2
);
869 isl_basic_set_free(bset1
);
870 isl_basic_set_free(bset2
);
871 isl_basic_set_free(hull
);
875 /* Is the set bounded for each value of the parameters?
877 int isl_basic_set_is_bounded(__isl_keep isl_basic_set
*bset
)
884 if (isl_basic_set_plain_is_empty(bset
))
887 tab
= isl_tab_from_recession_cone(bset
, 1);
888 bounded
= isl_tab_cone_is_bounded(tab
);
893 /* Is the image bounded for each value of the parameters and
894 * the domain variables?
896 int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map
*bmap
)
898 unsigned nparam
= isl_basic_map_dim(bmap
, isl_dim_param
);
899 unsigned n_in
= isl_basic_map_dim(bmap
, isl_dim_in
);
902 bmap
= isl_basic_map_copy(bmap
);
903 bmap
= isl_basic_map_cow(bmap
);
904 bmap
= isl_basic_map_move_dims(bmap
, isl_dim_param
, nparam
,
905 isl_dim_in
, 0, n_in
);
906 bounded
= isl_basic_set_is_bounded((isl_basic_set
*)bmap
);
907 isl_basic_map_free(bmap
);
912 /* Is the set bounded for each value of the parameters?
914 int isl_set_is_bounded(__isl_keep isl_set
*set
)
921 for (i
= 0; i
< set
->n
; ++i
) {
922 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
923 if (!bounded
|| bounded
< 0)
929 /* Compute the lineality space of the convex hull of bset1 and bset2.
931 * We first compute the intersection of the recession cone of bset1
932 * with the negative of the recession cone of bset2 and then compute
933 * the linear hull of the resulting cone.
935 static struct isl_basic_set
*induced_lineality_space(
936 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
939 struct isl_basic_set
*lin
= NULL
;
942 if (!bset1
|| !bset2
)
945 dim
= isl_basic_set_total_dim(bset1
);
946 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1
), 0,
947 bset1
->n_eq
+ bset2
->n_eq
,
948 bset1
->n_ineq
+ bset2
->n_ineq
);
949 lin
= isl_basic_set_set_rational(lin
);
952 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
953 k
= isl_basic_set_alloc_equality(lin
);
956 isl_int_set_si(lin
->eq
[k
][0], 0);
957 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
959 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
960 k
= isl_basic_set_alloc_inequality(lin
);
963 isl_int_set_si(lin
->ineq
[k
][0], 0);
964 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
966 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
967 k
= isl_basic_set_alloc_equality(lin
);
970 isl_int_set_si(lin
->eq
[k
][0], 0);
971 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
973 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
974 k
= isl_basic_set_alloc_inequality(lin
);
977 isl_int_set_si(lin
->ineq
[k
][0], 0);
978 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
981 isl_basic_set_free(bset1
);
982 isl_basic_set_free(bset2
);
983 return isl_basic_set_affine_hull(lin
);
985 isl_basic_set_free(lin
);
986 isl_basic_set_free(bset1
);
987 isl_basic_set_free(bset2
);
991 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
993 /* Given a set and a linear space "lin" of dimension n > 0,
994 * project the linear space from the set, compute the convex hull
995 * and then map the set back to the original space.
1001 * describe the linear space. We first compute the Hermite normal
1002 * form H = M U of M = H Q, to obtain
1006 * The last n rows of H will be zero, so the last n variables of x' = Q x
1007 * are the one we want to project out. We do this by transforming each
1008 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1009 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1010 * we transform the hull back to the original space as A' Q_1 x >= b',
1011 * with Q_1 all but the last n rows of Q.
1013 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1014 struct isl_basic_set
*lin
)
1016 unsigned total
= isl_basic_set_total_dim(lin
);
1018 struct isl_basic_set
*hull
;
1019 struct isl_mat
*M
, *U
, *Q
;
1023 lin_dim
= total
- lin
->n_eq
;
1024 M
= isl_mat_sub_alloc6(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1025 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1029 isl_basic_set_free(lin
);
1031 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1033 U
= isl_mat_lin_to_aff(U
);
1034 Q
= isl_mat_lin_to_aff(Q
);
1036 set
= isl_set_preimage(set
, U
);
1037 set
= isl_set_remove_dims(set
, isl_dim_set
, total
- lin_dim
, lin_dim
);
1038 hull
= uset_convex_hull(set
);
1039 hull
= isl_basic_set_preimage(hull
, Q
);
1043 isl_basic_set_free(lin
);
1048 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1049 * set up an LP for solving
1051 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1053 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1054 * The next \alpha{ij} correspond to the equalities and come in pairs.
1055 * The final \alpha{ij} correspond to the inequalities.
1057 static struct isl_basic_set
*valid_direction_lp(
1058 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1060 struct isl_dim
*dim
;
1061 struct isl_basic_set
*lp
;
1066 if (!bset1
|| !bset2
)
1068 d
= 1 + isl_basic_set_total_dim(bset1
);
1070 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1071 dim
= isl_dim_set_alloc(bset1
->ctx
, 0, n
);
1072 lp
= isl_basic_set_alloc_dim(dim
, 0, d
, n
);
1075 for (i
= 0; i
< n
; ++i
) {
1076 k
= isl_basic_set_alloc_inequality(lp
);
1079 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1080 isl_int_set_si(lp
->ineq
[k
][0], -1);
1081 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1083 for (i
= 0; i
< d
; ++i
) {
1084 k
= isl_basic_set_alloc_equality(lp
);
1088 isl_int_set_si(lp
->eq
[k
][n
], 0); n
++;
1089 /* positivity constraint 1 >= 0 */
1090 isl_int_set_si(lp
->eq
[k
][n
], i
== 0); n
++;
1091 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1092 isl_int_set(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1093 isl_int_neg(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1095 for (j
= 0; j
< bset1
->n_ineq
; ++j
) {
1096 isl_int_set(lp
->eq
[k
][n
], bset1
->ineq
[j
][i
]); n
++;
1098 /* positivity constraint 1 >= 0 */
1099 isl_int_set_si(lp
->eq
[k
][n
], -(i
== 0)); n
++;
1100 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1101 isl_int_neg(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1102 isl_int_set(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1104 for (j
= 0; j
< bset2
->n_ineq
; ++j
) {
1105 isl_int_neg(lp
->eq
[k
][n
], bset2
->ineq
[j
][i
]); n
++;
1108 lp
= isl_basic_set_gauss(lp
, NULL
);
1109 isl_basic_set_free(bset1
);
1110 isl_basic_set_free(bset2
);
1113 isl_basic_set_free(bset1
);
1114 isl_basic_set_free(bset2
);
1118 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1119 * for all rays in the homogeneous space of the two cones that correspond
1120 * to the input polyhedra bset1 and bset2.
1122 * We compute s as a vector that satisfies
1124 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1126 * with h_{ij} the normals of the facets of polyhedron i
1127 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1128 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1129 * We first set up an LP with as variables the \alpha{ij}.
1130 * In this formulation, for each polyhedron i,
1131 * the first constraint is the positivity constraint, followed by pairs
1132 * of variables for the equalities, followed by variables for the inequalities.
1133 * We then simply pick a feasible solution and compute s using (*).
1135 * Note that we simply pick any valid direction and make no attempt
1136 * to pick a "good" or even the "best" valid direction.
1138 static struct isl_vec
*valid_direction(
1139 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1141 struct isl_basic_set
*lp
;
1142 struct isl_tab
*tab
;
1143 struct isl_vec
*sample
= NULL
;
1144 struct isl_vec
*dir
;
1149 if (!bset1
|| !bset2
)
1151 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1152 isl_basic_set_copy(bset2
));
1153 tab
= isl_tab_from_basic_set(lp
);
1154 sample
= isl_tab_get_sample_value(tab
);
1156 isl_basic_set_free(lp
);
1159 d
= isl_basic_set_total_dim(bset1
);
1160 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1163 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1165 /* positivity constraint 1 >= 0 */
1166 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
]); n
++;
1167 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1168 isl_int_sub(sample
->block
.data
[n
],
1169 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1170 isl_seq_combine(dir
->block
.data
,
1171 bset1
->ctx
->one
, dir
->block
.data
,
1172 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1176 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1177 isl_seq_combine(dir
->block
.data
,
1178 bset1
->ctx
->one
, dir
->block
.data
,
1179 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1180 isl_vec_free(sample
);
1181 isl_seq_normalize(bset1
->ctx
, dir
->el
, dir
->size
);
1182 isl_basic_set_free(bset1
);
1183 isl_basic_set_free(bset2
);
1186 isl_vec_free(sample
);
1187 isl_basic_set_free(bset1
);
1188 isl_basic_set_free(bset2
);
1192 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1193 * compute b_i' + A_i' x' >= 0, with
1195 * [ b_i A_i ] [ y' ] [ y' ]
1196 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1198 * In particular, add the "positivity constraint" and then perform
1201 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1208 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1209 k
= isl_basic_set_alloc_inequality(bset
);
1212 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1213 isl_int_set_si(bset
->ineq
[k
][0], 1);
1214 bset
= isl_basic_set_preimage(bset
, T
);
1218 isl_basic_set_free(bset
);
1222 /* Compute the convex hull of a pair of basic sets without any parameters or
1223 * integer divisions, where the convex hull is known to be pointed,
1224 * but the basic sets may be unbounded.
1226 * We turn this problem into the computation of a convex hull of a pair
1227 * _bounded_ polyhedra by "changing the direction of the homogeneous
1228 * dimension". This idea is due to Matthias Koeppe.
1230 * Consider the cones in homogeneous space that correspond to the
1231 * input polyhedra. The rays of these cones are also rays of the
1232 * polyhedra if the coordinate that corresponds to the homogeneous
1233 * dimension is zero. That is, if the inner product of the rays
1234 * with the homogeneous direction is zero.
1235 * The cones in the homogeneous space can also be considered to
1236 * correspond to other pairs of polyhedra by chosing a different
1237 * homogeneous direction. To ensure that both of these polyhedra
1238 * are bounded, we need to make sure that all rays of the cones
1239 * correspond to vertices and not to rays.
1240 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1241 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1242 * The vector s is computed in valid_direction.
1244 * Note that we need to consider _all_ rays of the cones and not just
1245 * the rays that correspond to rays in the polyhedra. If we were to
1246 * only consider those rays and turn them into vertices, then we
1247 * may inadvertently turn some vertices into rays.
1249 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1250 * We therefore transform the two polyhedra such that the selected
1251 * direction is mapped onto this standard direction and then proceed
1252 * with the normal computation.
1253 * Let S be a non-singular square matrix with s as its first row,
1254 * then we want to map the polyhedra to the space
1256 * [ y' ] [ y ] [ y ] [ y' ]
1257 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1259 * We take S to be the unimodular completion of s to limit the growth
1260 * of the coefficients in the following computations.
1262 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1263 * We first move to the homogeneous dimension
1265 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1266 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1268 * Then we change directoin
1270 * [ b_i A_i ] [ y' ] [ y' ]
1271 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1273 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1274 * resulting in b' + A' x' >= 0, which we then convert back
1277 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1279 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1281 static struct isl_basic_set
*convex_hull_pair_pointed(
1282 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1284 struct isl_ctx
*ctx
= NULL
;
1285 struct isl_vec
*dir
= NULL
;
1286 struct isl_mat
*T
= NULL
;
1287 struct isl_mat
*T2
= NULL
;
1288 struct isl_basic_set
*hull
;
1289 struct isl_set
*set
;
1291 if (!bset1
|| !bset2
)
1294 dir
= valid_direction(isl_basic_set_copy(bset1
),
1295 isl_basic_set_copy(bset2
));
1298 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1301 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1302 T
= isl_mat_unimodular_complete(T
, 1);
1303 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1305 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1306 bset2
= homogeneous_map(bset2
, T2
);
1307 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1308 set
= isl_set_add_basic_set(set
, bset1
);
1309 set
= isl_set_add_basic_set(set
, bset2
);
1310 hull
= uset_convex_hull(set
);
1311 hull
= isl_basic_set_preimage(hull
, T
);
1318 isl_basic_set_free(bset1
);
1319 isl_basic_set_free(bset2
);
1323 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
);
1324 static struct isl_basic_set
*modulo_affine_hull(
1325 struct isl_set
*set
, struct isl_basic_set
*affine_hull
);
1327 /* Compute the convex hull of a pair of basic sets without any parameters or
1328 * integer divisions.
1330 * This function is called from uset_convex_hull_unbounded, which
1331 * means that the complete convex hull is unbounded. Some pairs
1332 * of basic sets may still be bounded, though.
1333 * They may even lie inside a lower dimensional space, in which
1334 * case they need to be handled inside their affine hull since
1335 * the main algorithm assumes that the result is full-dimensional.
1337 * If the convex hull of the two basic sets would have a non-trivial
1338 * lineality space, we first project out this lineality space.
1340 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1341 struct isl_basic_set
*bset2
)
1343 isl_basic_set
*lin
, *aff
;
1344 int bounded1
, bounded2
;
1346 if (bset1
->ctx
->opt
->convex
== ISL_CONVEX_HULL_FM
)
1347 return convex_hull_pair_elim(bset1
, bset2
);
1349 aff
= isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1
),
1350 isl_basic_set_copy(bset2
)));
1354 return modulo_affine_hull(isl_basic_set_union(bset1
, bset2
), aff
);
1355 isl_basic_set_free(aff
);
1357 bounded1
= isl_basic_set_is_bounded(bset1
);
1358 bounded2
= isl_basic_set_is_bounded(bset2
);
1360 if (bounded1
< 0 || bounded2
< 0)
1363 if (bounded1
&& bounded2
)
1364 uset_convex_hull_wrap(isl_basic_set_union(bset1
, bset2
));
1366 if (bounded1
|| bounded2
)
1367 return convex_hull_pair_pointed(bset1
, bset2
);
1369 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1370 isl_basic_set_copy(bset2
));
1373 if (isl_basic_set_is_universe(lin
)) {
1374 isl_basic_set_free(bset1
);
1375 isl_basic_set_free(bset2
);
1378 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1379 struct isl_set
*set
;
1380 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1381 set
= isl_set_add_basic_set(set
, bset1
);
1382 set
= isl_set_add_basic_set(set
, bset2
);
1383 return modulo_lineality(set
, lin
);
1385 isl_basic_set_free(lin
);
1387 return convex_hull_pair_pointed(bset1
, bset2
);
1389 isl_basic_set_free(bset1
);
1390 isl_basic_set_free(bset2
);
1394 /* Compute the lineality space of a basic set.
1395 * We currently do not allow the basic set to have any divs.
1396 * We basically just drop the constants and turn every inequality
1399 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1402 struct isl_basic_set
*lin
= NULL
;
1407 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1408 dim
= isl_basic_set_total_dim(bset
);
1410 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
), 0, dim
, 0);
1413 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1414 k
= isl_basic_set_alloc_equality(lin
);
1417 isl_int_set_si(lin
->eq
[k
][0], 0);
1418 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1420 lin
= isl_basic_set_gauss(lin
, NULL
);
1423 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1424 k
= isl_basic_set_alloc_equality(lin
);
1427 isl_int_set_si(lin
->eq
[k
][0], 0);
1428 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1429 lin
= isl_basic_set_gauss(lin
, NULL
);
1433 isl_basic_set_free(bset
);
1436 isl_basic_set_free(lin
);
1437 isl_basic_set_free(bset
);
1441 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1442 * "underlying" set "set".
1444 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1447 struct isl_set
*lin
= NULL
;
1452 struct isl_dim
*dim
= isl_set_get_dim(set
);
1454 return isl_basic_set_empty(dim
);
1457 lin
= isl_set_alloc_dim(isl_set_get_dim(set
), set
->n
, 0);
1458 for (i
= 0; i
< set
->n
; ++i
)
1459 lin
= isl_set_add_basic_set(lin
,
1460 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1462 return isl_set_affine_hull(lin
);
1465 /* Compute the convex hull of a set without any parameters or
1466 * integer divisions.
1467 * In each step, we combined two basic sets until only one
1468 * basic set is left.
1469 * The input basic sets are assumed not to have a non-trivial
1470 * lineality space. If any of the intermediate results has
1471 * a non-trivial lineality space, it is projected out.
1473 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1475 struct isl_basic_set
*convex_hull
= NULL
;
1477 convex_hull
= isl_set_copy_basic_set(set
);
1478 set
= isl_set_drop_basic_set(set
, convex_hull
);
1481 while (set
->n
> 0) {
1482 struct isl_basic_set
*t
;
1483 t
= isl_set_copy_basic_set(set
);
1486 set
= isl_set_drop_basic_set(set
, t
);
1489 convex_hull
= convex_hull_pair(convex_hull
, t
);
1492 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1495 if (isl_basic_set_is_universe(t
)) {
1496 isl_basic_set_free(convex_hull
);
1500 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1501 set
= isl_set_add_basic_set(set
, convex_hull
);
1502 return modulo_lineality(set
, t
);
1504 isl_basic_set_free(t
);
1510 isl_basic_set_free(convex_hull
);
1514 /* Compute an initial hull for wrapping containing a single initial
1516 * This function assumes that the given set is bounded.
1518 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1519 struct isl_set
*set
)
1521 struct isl_mat
*bounds
= NULL
;
1527 bounds
= initial_facet_constraint(set
);
1530 k
= isl_basic_set_alloc_inequality(hull
);
1533 dim
= isl_set_n_dim(set
);
1534 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1535 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1536 isl_mat_free(bounds
);
1540 isl_basic_set_free(hull
);
1541 isl_mat_free(bounds
);
1545 struct max_constraint
{
1551 static int max_constraint_equal(const void *entry
, const void *val
)
1553 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1554 isl_int
*b
= (isl_int
*)val
;
1556 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1559 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1560 isl_int
*con
, unsigned len
, int n
, int ineq
)
1562 struct isl_hash_table_entry
*entry
;
1563 struct max_constraint
*c
;
1566 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1567 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1573 isl_hash_table_remove(ctx
, table
, entry
);
1577 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1579 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1584 c
->c
= isl_mat_cow(c
->c
);
1585 isl_int_set(c
->c
->row
[0][0], con
[0]);
1589 /* Check whether the constraint hash table "table" constains the constraint
1592 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1593 isl_int
*con
, unsigned len
, int n
)
1595 struct isl_hash_table_entry
*entry
;
1596 struct max_constraint
*c
;
1599 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1600 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1607 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1610 /* Check for inequality constraints of a basic set without equalities
1611 * such that the same or more stringent copies of the constraint appear
1612 * in all of the basic sets. Such constraints are necessarily facet
1613 * constraints of the convex hull.
1615 * If the resulting basic set is by chance identical to one of
1616 * the basic sets in "set", then we know that this basic set contains
1617 * all other basic sets and is therefore the convex hull of set.
1618 * In this case we set *is_hull to 1.
1620 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1621 struct isl_set
*set
, int *is_hull
)
1624 int min_constraints
;
1626 struct max_constraint
*constraints
= NULL
;
1627 struct isl_hash_table
*table
= NULL
;
1632 for (i
= 0; i
< set
->n
; ++i
)
1633 if (set
->p
[i
]->n_eq
== 0)
1637 min_constraints
= set
->p
[i
]->n_ineq
;
1639 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1640 if (set
->p
[i
]->n_eq
!= 0)
1642 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1644 min_constraints
= set
->p
[i
]->n_ineq
;
1647 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1651 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1652 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1655 total
= isl_dim_total(set
->dim
);
1656 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1657 constraints
[i
].c
= isl_mat_sub_alloc6(hull
->ctx
,
1658 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1659 if (!constraints
[i
].c
)
1661 constraints
[i
].ineq
= 1;
1663 for (i
= 0; i
< min_constraints
; ++i
) {
1664 struct isl_hash_table_entry
*entry
;
1666 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1667 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1668 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1671 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1672 entry
->data
= &constraints
[i
];
1676 for (s
= 0; s
< set
->n
; ++s
) {
1680 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1681 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1682 for (j
= 0; j
< 2; ++j
) {
1683 isl_seq_neg(eq
, eq
, 1 + total
);
1684 update_constraint(hull
->ctx
, table
,
1688 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1689 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1690 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1691 set
->p
[s
]->n_eq
== 0);
1696 for (i
= 0; i
< min_constraints
; ++i
) {
1697 if (constraints
[i
].count
< n
)
1699 if (!constraints
[i
].ineq
)
1701 j
= isl_basic_set_alloc_inequality(hull
);
1704 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1707 for (s
= 0; s
< set
->n
; ++s
) {
1708 if (set
->p
[s
]->n_eq
)
1710 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1712 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1713 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1714 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1717 if (i
== set
->p
[s
]->n_ineq
)
1721 isl_hash_table_clear(table
);
1722 for (i
= 0; i
< min_constraints
; ++i
)
1723 isl_mat_free(constraints
[i
].c
);
1728 isl_hash_table_clear(table
);
1731 for (i
= 0; i
< min_constraints
; ++i
)
1732 isl_mat_free(constraints
[i
].c
);
1737 /* Create a template for the convex hull of "set" and fill it up
1738 * obvious facet constraints, if any. If the result happens to
1739 * be the convex hull of "set" then *is_hull is set to 1.
1741 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1743 struct isl_basic_set
*hull
;
1748 for (i
= 0; i
< set
->n
; ++i
) {
1749 n_ineq
+= set
->p
[i
]->n_eq
;
1750 n_ineq
+= set
->p
[i
]->n_ineq
;
1752 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
1753 hull
= isl_basic_set_set_rational(hull
);
1756 return common_constraints(hull
, set
, is_hull
);
1759 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1761 struct isl_basic_set
*hull
;
1764 hull
= proto_hull(set
, &is_hull
);
1765 if (hull
&& !is_hull
) {
1766 if (hull
->n_ineq
== 0)
1767 hull
= initial_hull(hull
, set
);
1768 hull
= extend(hull
, set
);
1775 /* Compute the convex hull of a set without any parameters or
1776 * integer divisions. Depending on whether the set is bounded,
1777 * we pass control to the wrapping based convex hull or
1778 * the Fourier-Motzkin elimination based convex hull.
1779 * We also handle a few special cases before checking the boundedness.
1781 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1783 struct isl_basic_set
*convex_hull
= NULL
;
1784 struct isl_basic_set
*lin
;
1786 if (isl_set_n_dim(set
) == 0)
1787 return convex_hull_0d(set
);
1789 set
= isl_set_coalesce(set
);
1790 set
= isl_set_set_rational(set
);
1797 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1801 if (isl_set_n_dim(set
) == 1)
1802 return convex_hull_1d(set
);
1804 if (isl_set_is_bounded(set
) &&
1805 set
->ctx
->opt
->convex
== ISL_CONVEX_HULL_WRAP
)
1806 return uset_convex_hull_wrap(set
);
1808 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1811 if (isl_basic_set_is_universe(lin
)) {
1815 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1816 return modulo_lineality(set
, lin
);
1817 isl_basic_set_free(lin
);
1819 return uset_convex_hull_unbounded(set
);
1822 isl_basic_set_free(convex_hull
);
1826 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1827 * without parameters or divs and where the convex hull of set is
1828 * known to be full-dimensional.
1830 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1832 struct isl_basic_set
*convex_hull
= NULL
;
1837 if (isl_set_n_dim(set
) == 0) {
1838 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
1840 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1844 set
= isl_set_set_rational(set
);
1845 set
= isl_set_coalesce(set
);
1849 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1853 if (isl_set_n_dim(set
) == 1)
1854 return convex_hull_1d(set
);
1856 return uset_convex_hull_wrap(set
);
1862 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1863 * We first remove the equalities (transforming the set), compute the
1864 * convex hull of the transformed set and then add the equalities back
1865 * (after performing the inverse transformation.
1867 static struct isl_basic_set
*modulo_affine_hull(
1868 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1872 struct isl_basic_set
*dummy
;
1873 struct isl_basic_set
*convex_hull
;
1875 dummy
= isl_basic_set_remove_equalities(
1876 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1879 isl_basic_set_free(dummy
);
1880 set
= isl_set_preimage(set
, T
);
1881 convex_hull
= uset_convex_hull(set
);
1882 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1883 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1886 isl_basic_set_free(affine_hull
);
1891 /* Compute the convex hull of a map.
1893 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1894 * specifically, the wrapping of facets to obtain new facets.
1896 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1898 struct isl_basic_set
*bset
;
1899 struct isl_basic_map
*model
= NULL
;
1900 struct isl_basic_set
*affine_hull
= NULL
;
1901 struct isl_basic_map
*convex_hull
= NULL
;
1902 struct isl_set
*set
= NULL
;
1903 struct isl_ctx
*ctx
;
1910 convex_hull
= isl_basic_map_empty_like_map(map
);
1915 map
= isl_map_detect_equalities(map
);
1916 map
= isl_map_align_divs(map
);
1919 model
= isl_basic_map_copy(map
->p
[0]);
1920 set
= isl_map_underlying_set(map
);
1924 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1927 if (affine_hull
->n_eq
!= 0)
1928 bset
= modulo_affine_hull(set
, affine_hull
);
1930 isl_basic_set_free(affine_hull
);
1931 bset
= uset_convex_hull(set
);
1934 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1938 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1939 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1940 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1944 isl_basic_map_free(model
);
1948 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1950 return (struct isl_basic_set
*)
1951 isl_map_convex_hull((struct isl_map
*)set
);
1954 __isl_give isl_basic_map
*isl_map_polyhedral_hull(__isl_take isl_map
*map
)
1956 isl_basic_map
*hull
;
1958 hull
= isl_map_convex_hull(map
);
1959 return isl_basic_map_remove_divs(hull
);
1962 __isl_give isl_basic_set
*isl_set_polyhedral_hull(__isl_take isl_set
*set
)
1964 return (isl_basic_set
*)isl_map_polyhedral_hull((isl_map
*)set
);
1967 struct sh_data_entry
{
1968 struct isl_hash_table
*table
;
1969 struct isl_tab
*tab
;
1972 /* Holds the data needed during the simple hull computation.
1974 * n the number of basic sets in the original set
1975 * hull_table a hash table of already computed constraints
1976 * in the simple hull
1977 * p for each basic set,
1978 * table a hash table of the constraints
1979 * tab the tableau corresponding to the basic set
1982 struct isl_ctx
*ctx
;
1984 struct isl_hash_table
*hull_table
;
1985 struct sh_data_entry p
[1];
1988 static void sh_data_free(struct sh_data
*data
)
1994 isl_hash_table_free(data
->ctx
, data
->hull_table
);
1995 for (i
= 0; i
< data
->n
; ++i
) {
1996 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
1997 isl_tab_free(data
->p
[i
].tab
);
2002 struct ineq_cmp_data
{
2007 static int has_ineq(const void *entry
, const void *val
)
2009 isl_int
*row
= (isl_int
*)entry
;
2010 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2012 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2013 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2016 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2017 isl_int
*ineq
, unsigned len
)
2020 struct ineq_cmp_data v
;
2021 struct isl_hash_table_entry
*entry
;
2025 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
2026 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2033 /* Fill hash table "table" with the constraints of "bset".
2034 * Equalities are added as two inequalities.
2035 * The value in the hash table is a pointer to the (in)equality of "bset".
2037 static int hash_basic_set(struct isl_hash_table
*table
,
2038 struct isl_basic_set
*bset
)
2041 unsigned dim
= isl_basic_set_total_dim(bset
);
2043 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2044 for (j
= 0; j
< 2; ++j
) {
2045 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2046 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2050 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2051 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2057 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2059 struct sh_data
*data
;
2062 data
= isl_calloc(set
->ctx
, struct sh_data
,
2063 sizeof(struct sh_data
) +
2064 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2067 data
->ctx
= set
->ctx
;
2069 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2070 if (!data
->hull_table
)
2072 for (i
= 0; i
< set
->n
; ++i
) {
2073 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2074 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2075 if (!data
->p
[i
].table
)
2077 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2086 /* Check if inequality "ineq" is a bound for basic set "j" or if
2087 * it can be relaxed (by increasing the constant term) to become
2088 * a bound for that basic set. In the latter case, the constant
2090 * Return 1 if "ineq" is a bound
2091 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2092 * -1 if some error occurred
2094 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2097 enum isl_lp_result res
;
2100 if (!data
->p
[j
].tab
) {
2101 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2102 if (!data
->p
[j
].tab
)
2108 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2110 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2111 isl_int_sub(ineq
[0], ineq
[0], opt
);
2115 return (res
== isl_lp_ok
|| res
== isl_lp_empty
) ? 1 :
2116 res
== isl_lp_unbounded
? 0 : -1;
2119 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2120 * become a bound on the whole set. If so, add the (relaxed) inequality
2123 * We first check if "hull" already contains a translate of the inequality.
2124 * If so, we are done.
2125 * Then, we check if any of the previous basic sets contains a translate
2126 * of the inequality. If so, then we have already considered this
2127 * inequality and we are done.
2128 * Otherwise, for each basic set other than "i", we check if the inequality
2129 * is a bound on the basic set.
2130 * For previous basic sets, we know that they do not contain a translate
2131 * of the inequality, so we directly call is_bound.
2132 * For following basic sets, we first check if a translate of the
2133 * inequality appears in its description and if so directly update
2134 * the inequality accordingly.
2136 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2137 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2140 struct ineq_cmp_data v
;
2141 struct isl_hash_table_entry
*entry
;
2147 v
.len
= isl_basic_set_total_dim(hull
);
2149 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2151 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2156 for (j
= 0; j
< i
; ++j
) {
2157 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2158 c_hash
, has_ineq
, &v
, 0);
2165 k
= isl_basic_set_alloc_inequality(hull
);
2166 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2170 for (j
= 0; j
< i
; ++j
) {
2172 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2179 isl_basic_set_free_inequality(hull
, 1);
2183 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2186 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2187 c_hash
, has_ineq
, &v
, 0);
2189 ineq_j
= entry
->data
;
2190 neg
= isl_seq_is_neg(ineq_j
+ 1,
2191 hull
->ineq
[k
] + 1, v
.len
);
2193 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2194 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2195 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2197 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2200 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2207 isl_basic_set_free_inequality(hull
, 1);
2211 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2215 entry
->data
= hull
->ineq
[k
];
2219 isl_basic_set_free(hull
);
2223 /* Check if any inequality from basic set "i" can be relaxed to
2224 * become a bound on the whole set. If so, add the (relaxed) inequality
2227 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2228 struct sh_data
*data
, struct isl_set
*set
, int i
)
2231 unsigned dim
= isl_basic_set_total_dim(bset
);
2233 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2234 for (k
= 0; k
< 2; ++k
) {
2235 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2236 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2239 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2240 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2244 /* Compute a superset of the convex hull of set that is described
2245 * by only translates of the constraints in the constituents of set.
2247 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2249 struct sh_data
*data
= NULL
;
2250 struct isl_basic_set
*hull
= NULL
;
2258 for (i
= 0; i
< set
->n
; ++i
) {
2261 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2264 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
2268 data
= sh_data_alloc(set
, n_ineq
);
2272 for (i
= 0; i
< set
->n
; ++i
)
2273 hull
= add_bounds(hull
, data
, set
, i
);
2281 isl_basic_set_free(hull
);
2286 /* Compute a superset of the convex hull of map that is described
2287 * by only translates of the constraints in the constituents of map.
2289 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2291 struct isl_set
*set
= NULL
;
2292 struct isl_basic_map
*model
= NULL
;
2293 struct isl_basic_map
*hull
;
2294 struct isl_basic_map
*affine_hull
;
2295 struct isl_basic_set
*bset
= NULL
;
2300 hull
= isl_basic_map_empty_like_map(map
);
2305 hull
= isl_basic_map_copy(map
->p
[0]);
2310 map
= isl_map_detect_equalities(map
);
2311 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2312 map
= isl_map_align_divs(map
);
2313 model
= isl_basic_map_copy(map
->p
[0]);
2315 set
= isl_map_underlying_set(map
);
2317 bset
= uset_simple_hull(set
);
2319 hull
= isl_basic_map_overlying_set(bset
, model
);
2321 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2322 hull
= isl_basic_map_remove_redundancies(hull
);
2323 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2324 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2329 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2331 return (struct isl_basic_set
*)
2332 isl_map_simple_hull((struct isl_map
*)set
);
2335 /* Given a set "set", return parametric bounds on the dimension "dim".
2337 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2339 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2340 set
= isl_set_copy(set
);
2341 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2342 set
= isl_set_eliminate_dims(set
, 0, dim
);
2343 return isl_set_convex_hull(set
);
2346 /* Computes a "simple hull" and then check if each dimension in the
2347 * resulting hull is bounded by a symbolic constant. If not, the
2348 * hull is intersected with the corresponding bounds on the whole set.
2350 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2353 struct isl_basic_set
*hull
;
2354 unsigned nparam
, left
;
2355 int removed_divs
= 0;
2357 hull
= isl_set_simple_hull(isl_set_copy(set
));
2361 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2362 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2363 int lower
= 0, upper
= 0;
2364 struct isl_basic_set
*bounds
;
2366 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2367 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2368 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2370 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2377 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2378 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2380 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2382 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2385 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2396 if (!removed_divs
) {
2397 set
= isl_set_remove_divs(set
);
2402 bounds
= set_bounds(set
, i
);
2403 hull
= isl_basic_set_intersect(hull
, bounds
);