isl_output.c: remove some code duplication
[isl.git] / isl_ilp.c
blob83c313edeba4b97c8ade9337b41b7e36adce6b71
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_map_private.h>
11 #include <isl/ilp.h>
12 #include "isl_sample.h"
13 #include <isl/seq.h>
14 #include "isl_equalities.h"
16 /* Given a basic set "bset", construct a basic set U such that for
17 * each element x in U, the whole unit box positioned at x is inside
18 * the given basic set.
19 * Note that U may not contain all points that satisfy this property.
21 * We simply add the sum of all negative coefficients to the constant
22 * term. This ensures that if x satisfies the resulting constraints,
23 * then x plus any sum of unit vectors satisfies the original constraints.
25 static struct isl_basic_set *unit_box_base_points(struct isl_basic_set *bset)
27 int i, j, k;
28 struct isl_basic_set *unit_box = NULL;
29 unsigned total;
31 if (!bset)
32 goto error;
34 if (bset->n_eq != 0) {
35 unit_box = isl_basic_set_empty_like(bset);
36 isl_basic_set_free(bset);
37 return unit_box;
40 total = isl_basic_set_total_dim(bset);
41 unit_box = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset),
42 0, 0, bset->n_ineq);
44 for (i = 0; i < bset->n_ineq; ++i) {
45 k = isl_basic_set_alloc_inequality(unit_box);
46 if (k < 0)
47 goto error;
48 isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total);
49 for (j = 0; j < total; ++j) {
50 if (isl_int_is_nonneg(unit_box->ineq[k][1 + j]))
51 continue;
52 isl_int_add(unit_box->ineq[k][0],
53 unit_box->ineq[k][0], unit_box->ineq[k][1 + j]);
57 isl_basic_set_free(bset);
58 return unit_box;
59 error:
60 isl_basic_set_free(bset);
61 isl_basic_set_free(unit_box);
62 return NULL;
65 /* Find an integer point in "bset", preferably one that is
66 * close to minimizing "f".
68 * We first check if we can easily put unit boxes inside bset.
69 * If so, we take the best base point of any of the unit boxes we can find
70 * and round it up to the nearest integer.
71 * If not, we simply pick any integer point in "bset".
73 static struct isl_vec *initial_solution(struct isl_basic_set *bset, isl_int *f)
75 enum isl_lp_result res;
76 struct isl_basic_set *unit_box;
77 struct isl_vec *sol;
79 unit_box = unit_box_base_points(isl_basic_set_copy(bset));
81 res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one,
82 NULL, NULL, &sol);
83 if (res == isl_lp_ok) {
84 isl_basic_set_free(unit_box);
85 return isl_vec_ceil(sol);
88 isl_basic_set_free(unit_box);
90 return isl_basic_set_sample_vec(isl_basic_set_copy(bset));
93 /* Restrict "bset" to those points with values for f in the interval [l, u].
95 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
96 isl_int *f, isl_int l, isl_int u)
98 int k;
99 unsigned total;
101 total = isl_basic_set_total_dim(bset);
102 bset = isl_basic_set_extend_constraints(bset, 0, 2);
104 k = isl_basic_set_alloc_inequality(bset);
105 if (k < 0)
106 goto error;
107 isl_seq_cpy(bset->ineq[k], f, 1 + total);
108 isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l);
110 k = isl_basic_set_alloc_inequality(bset);
111 if (k < 0)
112 goto error;
113 isl_seq_neg(bset->ineq[k], f, 1 + total);
114 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u);
116 return bset;
117 error:
118 isl_basic_set_free(bset);
119 return NULL;
122 /* Find an integer point in "bset" that minimizes f (in any) such that
123 * the value of f lies inside the interval [l, u].
124 * Return this integer point if it can be found.
125 * Otherwise, return sol.
127 * We perform a number of steps until l > u.
128 * In each step, we look for an integer point with value in either
129 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
130 * The choice depends on whether we have found an integer point in the
131 * previous step. If so, we look for the next point in half of the remaining
132 * interval.
133 * If we find a point, the current solution is updated and u is set
134 * to its value minus 1.
135 * If no point can be found, we update l to the upper bound of the interval
136 * we checked (u or l+floor(u-l-1/2)) plus 1.
138 static struct isl_vec *solve_ilp_search(struct isl_basic_set *bset,
139 isl_int *f, isl_int *opt, struct isl_vec *sol, isl_int l, isl_int u)
141 isl_int tmp;
142 int divide = 1;
144 isl_int_init(tmp);
146 while (isl_int_le(l, u)) {
147 struct isl_basic_set *slice;
148 struct isl_vec *sample;
150 if (!divide)
151 isl_int_set(tmp, u);
152 else {
153 isl_int_sub(tmp, u, l);
154 isl_int_fdiv_q_ui(tmp, tmp, 2);
155 isl_int_add(tmp, tmp, l);
157 slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp);
158 sample = isl_basic_set_sample_vec(slice);
159 if (!sample) {
160 isl_vec_free(sol);
161 sol = NULL;
162 break;
164 if (sample->size > 0) {
165 isl_vec_free(sol);
166 sol = sample;
167 isl_seq_inner_product(f, sol->el, sol->size, opt);
168 isl_int_sub_ui(u, *opt, 1);
169 divide = 1;
170 } else {
171 isl_vec_free(sample);
172 if (!divide)
173 break;
174 isl_int_add_ui(l, tmp, 1);
175 divide = 0;
179 isl_int_clear(tmp);
181 return sol;
184 /* Find an integer point in "bset" that minimizes f (if any).
185 * If sol_p is not NULL then the integer point is returned in *sol_p.
186 * The optimal value of f is returned in *opt.
188 * The algorithm maintains a currently best solution and an interval [l, u]
189 * of values of f for which integer solutions could potentially still be found.
190 * The initial value of the best solution so far is any solution.
191 * The initial value of l is minimal value of f over the rationals
192 * (rounded up to the nearest integer).
193 * The initial value of u is the value of f at the initial solution minus 1.
195 * We then call solve_ilp_search to perform a binary search on the interval.
197 static enum isl_lp_result solve_ilp(struct isl_basic_set *bset,
198 isl_int *f, isl_int *opt,
199 struct isl_vec **sol_p)
201 enum isl_lp_result res;
202 isl_int l, u;
203 struct isl_vec *sol;
205 res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one,
206 opt, NULL, &sol);
207 if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) {
208 if (sol_p)
209 *sol_p = sol;
210 else
211 isl_vec_free(sol);
212 return isl_lp_ok;
214 isl_vec_free(sol);
215 if (res == isl_lp_error || res == isl_lp_empty)
216 return res;
218 sol = initial_solution(bset, f);
219 if (!sol)
220 return isl_lp_error;
221 if (sol->size == 0) {
222 isl_vec_free(sol);
223 return isl_lp_empty;
225 if (res == isl_lp_unbounded) {
226 isl_vec_free(sol);
227 return isl_lp_unbounded;
230 isl_int_init(l);
231 isl_int_init(u);
233 isl_int_set(l, *opt);
235 isl_seq_inner_product(f, sol->el, sol->size, opt);
236 isl_int_sub_ui(u, *opt, 1);
238 sol = solve_ilp_search(bset, f, opt, sol, l, u);
239 if (!sol)
240 res = isl_lp_error;
242 isl_int_clear(l);
243 isl_int_clear(u);
245 if (sol_p)
246 *sol_p = sol;
247 else
248 isl_vec_free(sol);
250 return res;
253 static enum isl_lp_result solve_ilp_with_eq(struct isl_basic_set *bset, int max,
254 isl_int *f, isl_int *opt,
255 struct isl_vec **sol_p)
257 unsigned dim;
258 enum isl_lp_result res;
259 struct isl_mat *T = NULL;
260 struct isl_vec *v;
262 bset = isl_basic_set_copy(bset);
263 dim = isl_basic_set_total_dim(bset);
264 v = isl_vec_alloc(bset->ctx, 1 + dim);
265 if (!v)
266 goto error;
267 isl_seq_cpy(v->el, f, 1 + dim);
268 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
269 v = isl_vec_mat_product(v, isl_mat_copy(T));
270 if (!v)
271 goto error;
272 res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p);
273 isl_vec_free(v);
274 if (res == isl_lp_ok && sol_p) {
275 *sol_p = isl_mat_vec_product(T, *sol_p);
276 if (!*sol_p)
277 res = isl_lp_error;
278 } else
279 isl_mat_free(T);
280 isl_basic_set_free(bset);
281 return res;
282 error:
283 isl_mat_free(T);
284 isl_basic_set_free(bset);
285 return isl_lp_error;
288 /* Find an integer point in "bset" that minimizes (or maximizes if max is set)
289 * f (if any).
290 * If sol_p is not NULL then the integer point is returned in *sol_p.
291 * The optimal value of f is returned in *opt.
293 * If there is any equality among the points in "bset", then we first
294 * project it out. Otherwise, we continue with solve_ilp above.
296 enum isl_lp_result isl_basic_set_solve_ilp(struct isl_basic_set *bset, int max,
297 isl_int *f, isl_int *opt,
298 struct isl_vec **sol_p)
300 unsigned dim;
301 enum isl_lp_result res;
303 if (!bset)
304 return isl_lp_error;
305 if (sol_p)
306 *sol_p = NULL;
308 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
310 if (isl_basic_set_fast_is_empty(bset))
311 return isl_lp_empty;
313 if (bset->n_eq)
314 return solve_ilp_with_eq(bset, max, f, opt, sol_p);
316 dim = isl_basic_set_total_dim(bset);
318 if (max)
319 isl_seq_neg(f, f, 1 + dim);
321 res = solve_ilp(bset, f, opt, sol_p);
323 if (max) {
324 isl_seq_neg(f, f, 1 + dim);
325 isl_int_neg(*opt, *opt);
328 return res;
329 error:
330 isl_basic_set_free(bset);
331 return isl_lp_error;