2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include "isl_sample.h"
16 #include "isl_equalities.h"
18 #include "isl_basis_reduction.h"
19 #include <isl_factorization.h>
20 #include <isl_point_private.h>
21 #include <isl_options_private.h>
22 #include <isl_vec_private.h>
24 static struct isl_vec
*empty_sample(struct isl_basic_set
*bset
)
28 vec
= isl_vec_alloc(bset
->ctx
, 0);
29 isl_basic_set_free(bset
);
33 /* Construct a zero sample of the same dimension as bset.
34 * As a special case, if bset is zero-dimensional, this
35 * function creates a zero-dimensional sample point.
37 static struct isl_vec
*zero_sample(struct isl_basic_set
*bset
)
40 struct isl_vec
*sample
;
42 dim
= isl_basic_set_total_dim(bset
);
43 sample
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
45 isl_int_set_si(sample
->el
[0], 1);
46 isl_seq_clr(sample
->el
+ 1, dim
);
48 isl_basic_set_free(bset
);
52 static struct isl_vec
*interval_sample(struct isl_basic_set
*bset
)
56 struct isl_vec
*sample
;
58 bset
= isl_basic_set_simplify(bset
);
61 if (isl_basic_set_plain_is_empty(bset
))
62 return empty_sample(bset
);
63 if (bset
->n_eq
== 0 && bset
->n_ineq
== 0)
64 return zero_sample(bset
);
66 sample
= isl_vec_alloc(bset
->ctx
, 2);
71 isl_int_set_si(sample
->block
.data
[0], 1);
74 isl_assert(bset
->ctx
, bset
->n_eq
== 1, goto error
);
75 isl_assert(bset
->ctx
, bset
->n_ineq
== 0, goto error
);
76 if (isl_int_is_one(bset
->eq
[0][1]))
77 isl_int_neg(sample
->el
[1], bset
->eq
[0][0]);
79 isl_assert(bset
->ctx
, isl_int_is_negone(bset
->eq
[0][1]),
81 isl_int_set(sample
->el
[1], bset
->eq
[0][0]);
83 isl_basic_set_free(bset
);
88 if (isl_int_is_one(bset
->ineq
[0][1]))
89 isl_int_neg(sample
->block
.data
[1], bset
->ineq
[0][0]);
91 isl_int_set(sample
->block
.data
[1], bset
->ineq
[0][0]);
92 for (i
= 1; i
< bset
->n_ineq
; ++i
) {
93 isl_seq_inner_product(sample
->block
.data
,
94 bset
->ineq
[i
], 2, &t
);
95 if (isl_int_is_neg(t
))
99 if (i
< bset
->n_ineq
) {
100 isl_vec_free(sample
);
101 return empty_sample(bset
);
104 isl_basic_set_free(bset
);
107 isl_basic_set_free(bset
);
108 isl_vec_free(sample
);
112 /* Find a sample integer point, if any, in bset, which is known
113 * to have equalities. If bset contains no integer points, then
114 * return a zero-length vector.
115 * We simply remove the known equalities, compute a sample
116 * in the resulting bset, using the specified recurse function,
117 * and then transform the sample back to the original space.
119 static struct isl_vec
*sample_eq(struct isl_basic_set
*bset
,
120 struct isl_vec
*(*recurse
)(struct isl_basic_set
*))
123 struct isl_vec
*sample
;
128 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
129 sample
= recurse(bset
);
130 if (!sample
|| sample
->size
== 0)
133 sample
= isl_mat_vec_product(T
, sample
);
137 /* Return a matrix containing the equalities of the tableau
138 * in constraint form. The tableau is assumed to have
139 * an associated bset that has been kept up-to-date.
141 static struct isl_mat
*tab_equalities(struct isl_tab
*tab
)
146 struct isl_basic_set
*bset
;
151 bset
= isl_tab_peek_bset(tab
);
152 isl_assert(tab
->mat
->ctx
, bset
, return NULL
);
154 n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
155 if (tab
->empty
|| n_eq
== 0)
156 return isl_mat_alloc(tab
->mat
->ctx
, 0, tab
->n_var
);
157 if (n_eq
== tab
->n_var
)
158 return isl_mat_identity(tab
->mat
->ctx
, tab
->n_var
);
160 eq
= isl_mat_alloc(tab
->mat
->ctx
, n_eq
, tab
->n_var
);
163 for (i
= 0, j
= 0; i
< tab
->n_con
; ++i
) {
164 if (tab
->con
[i
].is_row
)
166 if (tab
->con
[i
].index
>= 0 && tab
->con
[i
].index
>= tab
->n_dead
)
169 isl_seq_cpy(eq
->row
[j
], bset
->eq
[i
] + 1, tab
->n_var
);
171 isl_seq_cpy(eq
->row
[j
],
172 bset
->ineq
[i
- bset
->n_eq
] + 1, tab
->n_var
);
175 isl_assert(bset
->ctx
, j
== n_eq
, goto error
);
182 /* Compute and return an initial basis for the bounded tableau "tab".
184 * If the tableau is either full-dimensional or zero-dimensional,
185 * the we simply return an identity matrix.
186 * Otherwise, we construct a basis whose first directions correspond
189 static struct isl_mat
*initial_basis(struct isl_tab
*tab
)
195 tab
->n_unbounded
= 0;
196 tab
->n_zero
= n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
197 if (tab
->empty
|| n_eq
== 0 || n_eq
== tab
->n_var
)
198 return isl_mat_identity(tab
->mat
->ctx
, 1 + tab
->n_var
);
200 eq
= tab_equalities(tab
);
201 eq
= isl_mat_left_hermite(eq
, 0, NULL
, &Q
);
206 Q
= isl_mat_lin_to_aff(Q
);
210 /* Compute the minimum of the current ("level") basis row over "tab"
211 * and store the result in position "level" of "min".
213 static enum isl_lp_result
compute_min(isl_ctx
*ctx
, struct isl_tab
*tab
,
214 __isl_keep isl_vec
*min
, int level
)
216 return isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
217 ctx
->one
, &min
->el
[level
], NULL
, 0);
220 /* Compute the maximum of the current ("level") basis row over "tab"
221 * and store the result in position "level" of "max".
223 static enum isl_lp_result
compute_max(isl_ctx
*ctx
, struct isl_tab
*tab
,
224 __isl_keep isl_vec
*max
, int level
)
226 enum isl_lp_result res
;
227 unsigned dim
= tab
->n_var
;
229 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
230 tab
->basis
->row
[1 + level
] + 1, dim
);
231 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
232 ctx
->one
, &max
->el
[level
], NULL
, 0);
233 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
234 tab
->basis
->row
[1 + level
] + 1, dim
);
235 isl_int_neg(max
->el
[level
], max
->el
[level
]);
240 /* Perform a greedy search for an integer point in the set represented
241 * by "tab", given that the minimal rational value (rounded up to the
242 * nearest integer) at "level" is smaller than the maximal rational
243 * value (rounded down to the nearest integer).
245 * Return 1 if we have found an integer point (if tab->n_unbounded > 0
246 * then we may have only found integer values for the bounded dimensions
247 * and it is the responsibility of the caller to extend this solution
248 * to the unbounded dimensions).
249 * Return 0 if greedy search did not result in a solution.
250 * Return -1 if some error occurred.
252 * We assign a value half-way between the minimum and the maximum
253 * to the current dimension and check if the minimal value of the
254 * next dimension is still smaller than (or equal) to the maximal value.
255 * We continue this process until either
256 * - the minimal value (rounded up) is greater than the maximal value
257 * (rounded down). In this case, greedy search has failed.
258 * - we have exhausted all bounded dimensions, meaning that we have
260 * - the sample value of the tableau is integral.
261 * - some error has occurred.
263 static int greedy_search(isl_ctx
*ctx
, struct isl_tab
*tab
,
264 __isl_keep isl_vec
*min
, __isl_keep isl_vec
*max
, int level
)
266 struct isl_tab_undo
*snap
;
267 enum isl_lp_result res
;
269 snap
= isl_tab_snap(tab
);
272 isl_int_add(tab
->basis
->row
[1 + level
][0],
273 min
->el
[level
], max
->el
[level
]);
274 isl_int_fdiv_q_ui(tab
->basis
->row
[1 + level
][0],
275 tab
->basis
->row
[1 + level
][0], 2);
276 isl_int_neg(tab
->basis
->row
[1 + level
][0],
277 tab
->basis
->row
[1 + level
][0]);
278 if (isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]) < 0)
280 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
282 if (++level
>= tab
->n_var
- tab
->n_unbounded
)
284 if (isl_tab_sample_is_integer(tab
))
287 res
= compute_min(ctx
, tab
, min
, level
);
288 if (res
== isl_lp_error
)
290 if (res
!= isl_lp_ok
)
291 isl_die(ctx
, isl_error_internal
,
292 "expecting bounded rational solution",
294 res
= compute_max(ctx
, tab
, max
, level
);
295 if (res
== isl_lp_error
)
297 if (res
!= isl_lp_ok
)
298 isl_die(ctx
, isl_error_internal
,
299 "expecting bounded rational solution",
301 } while (isl_int_le(min
->el
[level
], max
->el
[level
]));
303 if (isl_tab_rollback(tab
, snap
) < 0)
309 /* Given a tableau representing a set, find and return
310 * an integer point in the set, if there is any.
312 * We perform a depth first search
313 * for an integer point, by scanning all possible values in the range
314 * attained by a basis vector, where an initial basis may have been set
315 * by the calling function. Otherwise an initial basis that exploits
316 * the equalities in the tableau is created.
317 * tab->n_zero is currently ignored and is clobbered by this function.
319 * The tableau is allowed to have unbounded direction, but then
320 * the calling function needs to set an initial basis, with the
321 * unbounded directions last and with tab->n_unbounded set
322 * to the number of unbounded directions.
323 * Furthermore, the calling functions needs to add shifted copies
324 * of all constraints involving unbounded directions to ensure
325 * that any feasible rational value in these directions can be rounded
326 * up to yield a feasible integer value.
327 * In particular, let B define the given basis x' = B x
328 * and let T be the inverse of B, i.e., X = T x'.
329 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
330 * or a T x' + c >= 0 in terms of the given basis. Assume that
331 * the bounded directions have an integer value, then we can safely
332 * round up the values for the unbounded directions if we make sure
333 * that x' not only satisfies the original constraint, but also
334 * the constraint "a T x' + c + s >= 0" with s the sum of all
335 * negative values in the last n_unbounded entries of "a T".
336 * The calling function therefore needs to add the constraint
337 * a x + c + s >= 0. The current function then scans the first
338 * directions for an integer value and once those have been found,
339 * it can compute "T ceil(B x)" to yield an integer point in the set.
340 * Note that during the search, the first rows of B may be changed
341 * by a basis reduction, but the last n_unbounded rows of B remain
342 * unaltered and are also not mixed into the first rows.
344 * The search is implemented iteratively. "level" identifies the current
345 * basis vector. "init" is true if we want the first value at the current
346 * level and false if we want the next value.
348 * At the start of each level, we first check if we can find a solution
349 * using greedy search. If not, we continue with the exhaustive search.
351 * The initial basis is the identity matrix. If the range in some direction
352 * contains more than one integer value, we perform basis reduction based
353 * on the value of ctx->opt->gbr
354 * - ISL_GBR_NEVER: never perform basis reduction
355 * - ISL_GBR_ONCE: only perform basis reduction the first
356 * time such a range is encountered
357 * - ISL_GBR_ALWAYS: always perform basis reduction when
358 * such a range is encountered
360 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
361 * reduction computation to return early. That is, as soon as it
362 * finds a reasonable first direction.
364 struct isl_vec
*isl_tab_sample(struct isl_tab
*tab
)
369 struct isl_vec
*sample
;
372 enum isl_lp_result res
;
376 struct isl_tab_undo
**snap
;
381 return isl_vec_alloc(tab
->mat
->ctx
, 0);
384 tab
->basis
= initial_basis(tab
);
387 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_row
== tab
->n_var
+ 1,
389 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_col
== tab
->n_var
+ 1,
396 if (tab
->n_unbounded
== tab
->n_var
) {
397 sample
= isl_tab_get_sample_value(tab
);
398 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
), sample
);
399 sample
= isl_vec_ceil(sample
);
400 sample
= isl_mat_vec_inverse_product(isl_mat_copy(tab
->basis
),
405 if (isl_tab_extend_cons(tab
, dim
+ 1) < 0)
408 min
= isl_vec_alloc(ctx
, dim
);
409 max
= isl_vec_alloc(ctx
, dim
);
410 snap
= isl_alloc_array(ctx
, struct isl_tab_undo
*, dim
);
412 if (!min
|| !max
|| !snap
)
423 res
= compute_min(ctx
, tab
, min
, level
);
424 if (res
== isl_lp_error
)
426 if (res
!= isl_lp_ok
)
427 isl_die(ctx
, isl_error_internal
,
428 "expecting bounded rational solution",
430 if (isl_tab_sample_is_integer(tab
))
432 res
= compute_max(ctx
, tab
, max
, level
);
433 if (res
== isl_lp_error
)
435 if (res
!= isl_lp_ok
)
436 isl_die(ctx
, isl_error_internal
,
437 "expecting bounded rational solution",
439 if (isl_tab_sample_is_integer(tab
))
441 choice
= isl_int_lt(min
->el
[level
], max
->el
[level
]);
444 g
= greedy_search(ctx
, tab
, min
, max
, level
);
450 if (!reduced
&& choice
&&
451 ctx
->opt
->gbr
!= ISL_GBR_NEVER
) {
452 unsigned gbr_only_first
;
453 if (ctx
->opt
->gbr
== ISL_GBR_ONCE
)
454 ctx
->opt
->gbr
= ISL_GBR_NEVER
;
456 gbr_only_first
= ctx
->opt
->gbr_only_first
;
457 ctx
->opt
->gbr_only_first
=
458 ctx
->opt
->gbr
== ISL_GBR_ALWAYS
;
459 tab
= isl_tab_compute_reduced_basis(tab
);
460 ctx
->opt
->gbr_only_first
= gbr_only_first
;
461 if (!tab
|| !tab
->basis
)
467 snap
[level
] = isl_tab_snap(tab
);
469 isl_int_add_ui(min
->el
[level
], min
->el
[level
], 1);
471 if (isl_int_gt(min
->el
[level
], max
->el
[level
])) {
475 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
479 isl_int_neg(tab
->basis
->row
[1 + level
][0], min
->el
[level
]);
480 if (isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]) < 0)
482 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
483 if (level
+ tab
->n_unbounded
< dim
- 1) {
492 sample
= isl_tab_get_sample_value(tab
);
495 if (tab
->n_unbounded
&& !isl_int_is_one(sample
->el
[0])) {
496 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
),
498 sample
= isl_vec_ceil(sample
);
499 sample
= isl_mat_vec_inverse_product(
500 isl_mat_copy(tab
->basis
), sample
);
503 sample
= isl_vec_alloc(ctx
, 0);
518 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
);
520 /* Compute a sample point of the given basic set, based on the given,
521 * non-trivial factorization.
523 static __isl_give isl_vec
*factored_sample(__isl_take isl_basic_set
*bset
,
524 __isl_take isl_factorizer
*f
)
527 isl_vec
*sample
= NULL
;
532 ctx
= isl_basic_set_get_ctx(bset
);
536 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
537 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
539 sample
= isl_vec_alloc(ctx
, 1 + isl_basic_set_total_dim(bset
));
542 isl_int_set_si(sample
->el
[0], 1);
544 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
546 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
547 isl_basic_set
*bset_i
;
550 bset_i
= isl_basic_set_copy(bset
);
551 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
552 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
553 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
555 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
556 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
557 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
559 sample_i
= sample_bounded(bset_i
);
562 if (sample_i
->size
== 0) {
563 isl_basic_set_free(bset
);
564 isl_factorizer_free(f
);
565 isl_vec_free(sample
);
568 isl_seq_cpy(sample
->el
+ 1 + nparam
+ n
,
569 sample_i
->el
+ 1, f
->len
[i
]);
570 isl_vec_free(sample_i
);
575 f
->morph
= isl_morph_inverse(f
->morph
);
576 sample
= isl_morph_vec(isl_morph_copy(f
->morph
), sample
);
578 isl_basic_set_free(bset
);
579 isl_factorizer_free(f
);
582 isl_basic_set_free(bset
);
583 isl_factorizer_free(f
);
584 isl_vec_free(sample
);
588 /* Given a basic set that is known to be bounded, find and return
589 * an integer point in the basic set, if there is any.
591 * After handling some trivial cases, we construct a tableau
592 * and then use isl_tab_sample to find a sample, passing it
593 * the identity matrix as initial basis.
595 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
)
599 struct isl_vec
*sample
;
600 struct isl_tab
*tab
= NULL
;
606 if (isl_basic_set_plain_is_empty(bset
))
607 return empty_sample(bset
);
609 dim
= isl_basic_set_total_dim(bset
);
611 return zero_sample(bset
);
613 return interval_sample(bset
);
615 return sample_eq(bset
, sample_bounded
);
617 f
= isl_basic_set_factorizer(bset
);
621 return factored_sample(bset
, f
);
622 isl_factorizer_free(f
);
626 tab
= isl_tab_from_basic_set(bset
, 1);
627 if (tab
&& tab
->empty
) {
629 ISL_F_SET(bset
, ISL_BASIC_SET_EMPTY
);
630 sample
= isl_vec_alloc(bset
->ctx
, 0);
631 isl_basic_set_free(bset
);
635 if (!ISL_F_ISSET(bset
, ISL_BASIC_SET_NO_IMPLICIT
))
636 if (isl_tab_detect_implicit_equalities(tab
) < 0)
639 sample
= isl_tab_sample(tab
);
643 if (sample
->size
> 0) {
644 isl_vec_free(bset
->sample
);
645 bset
->sample
= isl_vec_copy(sample
);
648 isl_basic_set_free(bset
);
652 isl_basic_set_free(bset
);
657 /* Given a basic set "bset" and a value "sample" for the first coordinates
658 * of bset, plug in these values and drop the corresponding coordinates.
660 * We do this by computing the preimage of the transformation
666 * where [1 s] is the sample value and I is the identity matrix of the
667 * appropriate dimension.
669 static struct isl_basic_set
*plug_in(struct isl_basic_set
*bset
,
670 struct isl_vec
*sample
)
676 if (!bset
|| !sample
)
679 total
= isl_basic_set_total_dim(bset
);
680 T
= isl_mat_alloc(bset
->ctx
, 1 + total
, 1 + total
- (sample
->size
- 1));
684 for (i
= 0; i
< sample
->size
; ++i
) {
685 isl_int_set(T
->row
[i
][0], sample
->el
[i
]);
686 isl_seq_clr(T
->row
[i
] + 1, T
->n_col
- 1);
688 for (i
= 0; i
< T
->n_col
- 1; ++i
) {
689 isl_seq_clr(T
->row
[sample
->size
+ i
], T
->n_col
);
690 isl_int_set_si(T
->row
[sample
->size
+ i
][1 + i
], 1);
692 isl_vec_free(sample
);
694 bset
= isl_basic_set_preimage(bset
, T
);
697 isl_basic_set_free(bset
);
698 isl_vec_free(sample
);
702 /* Given a basic set "bset", return any (possibly non-integer) point
705 static struct isl_vec
*rational_sample(struct isl_basic_set
*bset
)
708 struct isl_vec
*sample
;
713 tab
= isl_tab_from_basic_set(bset
, 0);
714 sample
= isl_tab_get_sample_value(tab
);
717 isl_basic_set_free(bset
);
722 /* Given a linear cone "cone" and a rational point "vec",
723 * construct a polyhedron with shifted copies of the constraints in "cone",
724 * i.e., a polyhedron with "cone" as its recession cone, such that each
725 * point x in this polyhedron is such that the unit box positioned at x
726 * lies entirely inside the affine cone 'vec + cone'.
727 * Any rational point in this polyhedron may therefore be rounded up
728 * to yield an integer point that lies inside said affine cone.
730 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
731 * point "vec" by v/d.
732 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
733 * by <a_i, x> - b/d >= 0.
734 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
735 * We prefer this polyhedron over the actual affine cone because it doesn't
736 * require a scaling of the constraints.
737 * If each of the vertices of the unit cube positioned at x lies inside
738 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
739 * We therefore impose that x' = x + \sum e_i, for any selection of unit
740 * vectors lies inside the polyhedron, i.e.,
742 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
744 * The most stringent of these constraints is the one that selects
745 * all negative a_i, so the polyhedron we are looking for has constraints
747 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
749 * Note that if cone were known to have only non-negative rays
750 * (which can be accomplished by a unimodular transformation),
751 * then we would only have to check the points x' = x + e_i
752 * and we only have to add the smallest negative a_i (if any)
753 * instead of the sum of all negative a_i.
755 static struct isl_basic_set
*shift_cone(struct isl_basic_set
*cone
,
761 struct isl_basic_set
*shift
= NULL
;
766 isl_assert(cone
->ctx
, cone
->n_eq
== 0, goto error
);
768 total
= isl_basic_set_total_dim(cone
);
770 shift
= isl_basic_set_alloc_space(isl_basic_set_get_space(cone
),
773 for (i
= 0; i
< cone
->n_ineq
; ++i
) {
774 k
= isl_basic_set_alloc_inequality(shift
);
777 isl_seq_cpy(shift
->ineq
[k
] + 1, cone
->ineq
[i
] + 1, total
);
778 isl_seq_inner_product(shift
->ineq
[k
] + 1, vec
->el
+ 1, total
,
780 isl_int_cdiv_q(shift
->ineq
[k
][0],
781 shift
->ineq
[k
][0], vec
->el
[0]);
782 isl_int_neg(shift
->ineq
[k
][0], shift
->ineq
[k
][0]);
783 for (j
= 0; j
< total
; ++j
) {
784 if (isl_int_is_nonneg(shift
->ineq
[k
][1 + j
]))
786 isl_int_add(shift
->ineq
[k
][0],
787 shift
->ineq
[k
][0], shift
->ineq
[k
][1 + j
]);
791 isl_basic_set_free(cone
);
794 return isl_basic_set_finalize(shift
);
796 isl_basic_set_free(shift
);
797 isl_basic_set_free(cone
);
802 /* Given a rational point vec in a (transformed) basic set,
803 * such that cone is the recession cone of the original basic set,
804 * "round up" the rational point to an integer point.
806 * We first check if the rational point just happens to be integer.
807 * If not, we transform the cone in the same way as the basic set,
808 * pick a point x in this cone shifted to the rational point such that
809 * the whole unit cube at x is also inside this affine cone.
810 * Then we simply round up the coordinates of x and return the
811 * resulting integer point.
813 static struct isl_vec
*round_up_in_cone(struct isl_vec
*vec
,
814 struct isl_basic_set
*cone
, struct isl_mat
*U
)
818 if (!vec
|| !cone
|| !U
)
821 isl_assert(vec
->ctx
, vec
->size
!= 0, goto error
);
822 if (isl_int_is_one(vec
->el
[0])) {
824 isl_basic_set_free(cone
);
828 total
= isl_basic_set_total_dim(cone
);
829 cone
= isl_basic_set_preimage(cone
, U
);
830 cone
= isl_basic_set_remove_dims(cone
, isl_dim_set
,
831 0, total
- (vec
->size
- 1));
833 cone
= shift_cone(cone
, vec
);
835 vec
= rational_sample(cone
);
836 vec
= isl_vec_ceil(vec
);
841 isl_basic_set_free(cone
);
845 /* Concatenate two integer vectors, i.e., two vectors with denominator
846 * (stored in element 0) equal to 1.
848 static struct isl_vec
*vec_concat(struct isl_vec
*vec1
, struct isl_vec
*vec2
)
854 isl_assert(vec1
->ctx
, vec1
->size
> 0, goto error
);
855 isl_assert(vec2
->ctx
, vec2
->size
> 0, goto error
);
856 isl_assert(vec1
->ctx
, isl_int_is_one(vec1
->el
[0]), goto error
);
857 isl_assert(vec2
->ctx
, isl_int_is_one(vec2
->el
[0]), goto error
);
859 vec
= isl_vec_alloc(vec1
->ctx
, vec1
->size
+ vec2
->size
- 1);
863 isl_seq_cpy(vec
->el
, vec1
->el
, vec1
->size
);
864 isl_seq_cpy(vec
->el
+ vec1
->size
, vec2
->el
+ 1, vec2
->size
- 1);
876 /* Give a basic set "bset" with recession cone "cone", compute and
877 * return an integer point in bset, if any.
879 * If the recession cone is full-dimensional, then we know that
880 * bset contains an infinite number of integer points and it is
881 * fairly easy to pick one of them.
882 * If the recession cone is not full-dimensional, then we first
883 * transform bset such that the bounded directions appear as
884 * the first dimensions of the transformed basic set.
885 * We do this by using a unimodular transformation that transforms
886 * the equalities in the recession cone to equalities on the first
889 * The transformed set is then projected onto its bounded dimensions.
890 * Note that to compute this projection, we can simply drop all constraints
891 * involving any of the unbounded dimensions since these constraints
892 * cannot be combined to produce a constraint on the bounded dimensions.
893 * To see this, assume that there is such a combination of constraints
894 * that produces a constraint on the bounded dimensions. This means
895 * that some combination of the unbounded dimensions has both an upper
896 * bound and a lower bound in terms of the bounded dimensions, but then
897 * this combination would be a bounded direction too and would have been
898 * transformed into a bounded dimensions.
900 * We then compute a sample value in the bounded dimensions.
901 * If no such value can be found, then the original set did not contain
902 * any integer points and we are done.
903 * Otherwise, we plug in the value we found in the bounded dimensions,
904 * project out these bounded dimensions and end up with a set with
905 * a full-dimensional recession cone.
906 * A sample point in this set is computed by "rounding up" any
907 * rational point in the set.
909 * The sample points in the bounded and unbounded dimensions are
910 * then combined into a single sample point and transformed back
911 * to the original space.
913 __isl_give isl_vec
*isl_basic_set_sample_with_cone(
914 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*cone
)
918 struct isl_mat
*M
, *U
;
919 struct isl_vec
*sample
;
920 struct isl_vec
*cone_sample
;
922 struct isl_basic_set
*bounded
;
928 total
= isl_basic_set_total_dim(cone
);
929 cone_dim
= total
- cone
->n_eq
;
931 M
= isl_mat_sub_alloc6(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
932 M
= isl_mat_left_hermite(M
, 0, &U
, NULL
);
937 U
= isl_mat_lin_to_aff(U
);
938 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
940 bounded
= isl_basic_set_copy(bset
);
941 bounded
= isl_basic_set_drop_constraints_involving(bounded
,
942 total
- cone_dim
, cone_dim
);
943 bounded
= isl_basic_set_drop_dims(bounded
, total
- cone_dim
, cone_dim
);
944 sample
= sample_bounded(bounded
);
945 if (!sample
|| sample
->size
== 0) {
946 isl_basic_set_free(bset
);
947 isl_basic_set_free(cone
);
951 bset
= plug_in(bset
, isl_vec_copy(sample
));
952 cone_sample
= rational_sample(bset
);
953 cone_sample
= round_up_in_cone(cone_sample
, cone
, isl_mat_copy(U
));
954 sample
= vec_concat(sample
, cone_sample
);
955 sample
= isl_mat_vec_product(U
, sample
);
958 isl_basic_set_free(cone
);
959 isl_basic_set_free(bset
);
963 static void vec_sum_of_neg(struct isl_vec
*v
, isl_int
*s
)
967 isl_int_set_si(*s
, 0);
969 for (i
= 0; i
< v
->size
; ++i
)
970 if (isl_int_is_neg(v
->el
[i
]))
971 isl_int_add(*s
, *s
, v
->el
[i
]);
974 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
975 * to the recession cone and the inverse of a new basis U = inv(B),
976 * with the unbounded directions in B last,
977 * add constraints to "tab" that ensure any rational value
978 * in the unbounded directions can be rounded up to an integer value.
980 * The new basis is given by x' = B x, i.e., x = U x'.
981 * For any rational value of the last tab->n_unbounded coordinates
982 * in the update tableau, the value that is obtained by rounding
983 * up this value should be contained in the original tableau.
984 * For any constraint "a x + c >= 0", we therefore need to add
985 * a constraint "a x + c + s >= 0", with s the sum of all negative
986 * entries in the last elements of "a U".
988 * Since we are not interested in the first entries of any of the "a U",
989 * we first drop the columns of U that correpond to bounded directions.
991 static int tab_shift_cone(struct isl_tab
*tab
,
992 struct isl_tab
*tab_cone
, struct isl_mat
*U
)
996 struct isl_basic_set
*bset
= NULL
;
998 if (tab
&& tab
->n_unbounded
== 0) {
1003 if (!tab
|| !tab_cone
|| !U
)
1005 bset
= isl_tab_peek_bset(tab_cone
);
1006 U
= isl_mat_drop_cols(U
, 0, tab
->n_var
- tab
->n_unbounded
);
1007 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1009 struct isl_vec
*row
= NULL
;
1010 if (isl_tab_is_equality(tab_cone
, tab_cone
->n_eq
+ i
))
1012 row
= isl_vec_alloc(bset
->ctx
, tab_cone
->n_var
);
1015 isl_seq_cpy(row
->el
, bset
->ineq
[i
] + 1, tab_cone
->n_var
);
1016 row
= isl_vec_mat_product(row
, isl_mat_copy(U
));
1019 vec_sum_of_neg(row
, &v
);
1021 if (isl_int_is_zero(v
))
1023 if (isl_tab_extend_cons(tab
, 1) < 0)
1025 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1026 ok
= isl_tab_add_ineq(tab
, bset
->ineq
[i
]) >= 0;
1027 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1041 /* Compute and return an initial basis for the possibly
1042 * unbounded tableau "tab". "tab_cone" is a tableau
1043 * for the corresponding recession cone.
1044 * Additionally, add constraints to "tab" that ensure
1045 * that any rational value for the unbounded directions
1046 * can be rounded up to an integer value.
1048 * If the tableau is bounded, i.e., if the recession cone
1049 * is zero-dimensional, then we just use inital_basis.
1050 * Otherwise, we construct a basis whose first directions
1051 * correspond to equalities, followed by bounded directions,
1052 * i.e., equalities in the recession cone.
1053 * The remaining directions are then unbounded.
1055 int isl_tab_set_initial_basis_with_cone(struct isl_tab
*tab
,
1056 struct isl_tab
*tab_cone
)
1059 struct isl_mat
*cone_eq
;
1060 struct isl_mat
*U
, *Q
;
1062 if (!tab
|| !tab_cone
)
1065 if (tab_cone
->n_col
== tab_cone
->n_dead
) {
1066 tab
->basis
= initial_basis(tab
);
1067 return tab
->basis
? 0 : -1;
1070 eq
= tab_equalities(tab
);
1073 tab
->n_zero
= eq
->n_row
;
1074 cone_eq
= tab_equalities(tab_cone
);
1075 eq
= isl_mat_concat(eq
, cone_eq
);
1078 tab
->n_unbounded
= tab
->n_var
- (eq
->n_row
- tab
->n_zero
);
1079 eq
= isl_mat_left_hermite(eq
, 0, &U
, &Q
);
1083 tab
->basis
= isl_mat_lin_to_aff(Q
);
1084 if (tab_shift_cone(tab
, tab_cone
, U
) < 0)
1091 /* Compute and return a sample point in bset using generalized basis
1092 * reduction. We first check if the input set has a non-trivial
1093 * recession cone. If so, we perform some extra preprocessing in
1094 * sample_with_cone. Otherwise, we directly perform generalized basis
1097 static struct isl_vec
*gbr_sample(struct isl_basic_set
*bset
)
1100 struct isl_basic_set
*cone
;
1102 dim
= isl_basic_set_total_dim(bset
);
1104 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
1108 if (cone
->n_eq
< dim
)
1109 return isl_basic_set_sample_with_cone(bset
, cone
);
1111 isl_basic_set_free(cone
);
1112 return sample_bounded(bset
);
1114 isl_basic_set_free(bset
);
1118 static struct isl_vec
*basic_set_sample(struct isl_basic_set
*bset
, int bounded
)
1120 struct isl_ctx
*ctx
;
1126 if (isl_basic_set_plain_is_empty(bset
))
1127 return empty_sample(bset
);
1129 dim
= isl_basic_set_n_dim(bset
);
1130 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
1131 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
1133 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
1134 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
1138 struct isl_vec
*sample
= isl_vec_copy(bset
->sample
);
1139 isl_basic_set_free(bset
);
1143 isl_vec_free(bset
->sample
);
1144 bset
->sample
= NULL
;
1147 return sample_eq(bset
, bounded
? isl_basic_set_sample_bounded
1148 : isl_basic_set_sample_vec
);
1150 return zero_sample(bset
);
1152 return interval_sample(bset
);
1154 return bounded
? sample_bounded(bset
) : gbr_sample(bset
);
1156 isl_basic_set_free(bset
);
1160 __isl_give isl_vec
*isl_basic_set_sample_vec(__isl_take isl_basic_set
*bset
)
1162 return basic_set_sample(bset
, 0);
1165 /* Compute an integer sample in "bset", where the caller guarantees
1166 * that "bset" is bounded.
1168 struct isl_vec
*isl_basic_set_sample_bounded(struct isl_basic_set
*bset
)
1170 return basic_set_sample(bset
, 1);
1173 __isl_give isl_basic_set
*isl_basic_set_from_vec(__isl_take isl_vec
*vec
)
1177 struct isl_basic_set
*bset
= NULL
;
1178 struct isl_ctx
*ctx
;
1184 isl_assert(ctx
, vec
->size
!= 0, goto error
);
1186 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
1189 dim
= isl_basic_set_n_dim(bset
);
1190 for (i
= dim
- 1; i
>= 0; --i
) {
1191 k
= isl_basic_set_alloc_equality(bset
);
1194 isl_seq_clr(bset
->eq
[k
], 1 + dim
);
1195 isl_int_neg(bset
->eq
[k
][0], vec
->el
[1 + i
]);
1196 isl_int_set(bset
->eq
[k
][1 + i
], vec
->el
[0]);
1202 isl_basic_set_free(bset
);
1207 __isl_give isl_basic_map
*isl_basic_map_sample(__isl_take isl_basic_map
*bmap
)
1209 struct isl_basic_set
*bset
;
1210 struct isl_vec
*sample_vec
;
1212 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1213 sample_vec
= isl_basic_set_sample_vec(bset
);
1216 if (sample_vec
->size
== 0) {
1217 struct isl_basic_map
*sample
;
1218 sample
= isl_basic_map_empty_like(bmap
);
1219 isl_vec_free(sample_vec
);
1220 isl_basic_map_free(bmap
);
1223 bset
= isl_basic_set_from_vec(sample_vec
);
1224 return isl_basic_map_overlying_set(bset
, bmap
);
1226 isl_basic_map_free(bmap
);
1230 __isl_give isl_basic_set
*isl_basic_set_sample(__isl_take isl_basic_set
*bset
)
1232 return isl_basic_map_sample(bset
);
1235 __isl_give isl_basic_map
*isl_map_sample(__isl_take isl_map
*map
)
1238 isl_basic_map
*sample
= NULL
;
1243 for (i
= 0; i
< map
->n
; ++i
) {
1244 sample
= isl_basic_map_sample(isl_basic_map_copy(map
->p
[i
]));
1247 if (!ISL_F_ISSET(sample
, ISL_BASIC_MAP_EMPTY
))
1249 isl_basic_map_free(sample
);
1252 sample
= isl_basic_map_empty_like_map(map
);
1260 __isl_give isl_basic_set
*isl_set_sample(__isl_take isl_set
*set
)
1262 return (isl_basic_set
*) isl_map_sample((isl_map
*)set
);
1265 __isl_give isl_point
*isl_basic_set_sample_point(__isl_take isl_basic_set
*bset
)
1270 dim
= isl_basic_set_get_space(bset
);
1271 bset
= isl_basic_set_underlying_set(bset
);
1272 vec
= isl_basic_set_sample_vec(bset
);
1274 return isl_point_alloc(dim
, vec
);
1277 __isl_give isl_point
*isl_set_sample_point(__isl_take isl_set
*set
)
1285 for (i
= 0; i
< set
->n
; ++i
) {
1286 pnt
= isl_basic_set_sample_point(isl_basic_set_copy(set
->p
[i
]));
1289 if (!isl_point_is_void(pnt
))
1291 isl_point_free(pnt
);
1294 pnt
= isl_point_void(isl_set_get_space(set
));