isl_tab_pip.c: fix typos in comments
[isl.git] / isl_scheduler.c
blob93948b94c5d666745424db2697c71674b1cc2227
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
10 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
14 * CS 42112, 75589 Paris Cedex 12, France
17 #include <isl_ctx_private.h>
18 #include <isl_map_private.h>
19 #include <isl_space_private.h>
20 #include <isl_aff_private.h>
21 #include <isl/hash.h>
22 #include <isl/constraint.h>
23 #include <isl/schedule.h>
24 #include <isl_schedule_constraints.h>
25 #include <isl/schedule_node.h>
26 #include <isl_mat_private.h>
27 #include <isl_vec_private.h>
28 #include <isl/set.h>
29 #include <isl/union_set.h>
30 #include <isl_seq.h>
31 #include <isl_tab.h>
32 #include <isl_dim_map.h>
33 #include <isl/map_to_basic_set.h>
34 #include <isl_sort.h>
35 #include <isl_options_private.h>
36 #include <isl_tarjan.h>
37 #include <isl_morph.h>
38 #include <isl/ilp.h>
39 #include <isl_val_private.h>
42 * The scheduling algorithm implemented in this file was inspired by
43 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
44 * Parallelization and Locality Optimization in the Polyhedral Model".
48 /* Internal information about a node that is used during the construction
49 * of a schedule.
50 * space represents the space in which the domain lives
51 * sched is a matrix representation of the schedule being constructed
52 * for this node; if compressed is set, then this schedule is
53 * defined over the compressed domain space
54 * sched_map is an isl_map representation of the same (partial) schedule
55 * sched_map may be NULL; if compressed is set, then this map
56 * is defined over the uncompressed domain space
57 * rank is the number of linearly independent rows in the linear part
58 * of sched
59 * the columns of cmap represent a change of basis for the schedule
60 * coefficients; the first rank columns span the linear part of
61 * the schedule rows
62 * cinv is the inverse of cmap.
63 * ctrans is the transpose of cmap.
64 * start is the first variable in the LP problem in the sequences that
65 * represents the schedule coefficients of this node
66 * nvar is the dimension of the domain
67 * nparam is the number of parameters or 0 if we are not constructing
68 * a parametric schedule
70 * If compressed is set, then hull represents the constraints
71 * that were used to derive the compression, while compress and
72 * decompress map the original space to the compressed space and
73 * vice versa.
75 * scc is the index of SCC (or WCC) this node belongs to
77 * "cluster" is only used inside extract_clusters and identifies
78 * the cluster of SCCs that the node belongs to.
80 * coincident contains a boolean for each of the rows of the schedule,
81 * indicating whether the corresponding scheduling dimension satisfies
82 * the coincidence constraints in the sense that the corresponding
83 * dependence distances are zero.
85 * If the schedule_treat_coalescing option is set, then
86 * "sizes" contains the sizes of the (compressed) instance set
87 * in each direction. If there is no fixed size in a given direction,
88 * then the corresponding size value is set to infinity.
89 * If the schedule_treat_coalescing option or the schedule_max_coefficient
90 * option is set, then "max" contains the maximal values for
91 * schedule coefficients of the (compressed) variables. If no bound
92 * needs to be imposed on a particular variable, then the corresponding
93 * value is negative.
95 struct isl_sched_node {
96 isl_space *space;
97 int compressed;
98 isl_set *hull;
99 isl_multi_aff *compress;
100 isl_multi_aff *decompress;
101 isl_mat *sched;
102 isl_map *sched_map;
103 int rank;
104 isl_mat *cmap;
105 isl_mat *cinv;
106 isl_mat *ctrans;
107 int start;
108 int nvar;
109 int nparam;
111 int scc;
112 int cluster;
114 int *coincident;
116 isl_multi_val *sizes;
117 isl_vec *max;
120 static int node_has_space(const void *entry, const void *val)
122 struct isl_sched_node *node = (struct isl_sched_node *)entry;
123 isl_space *dim = (isl_space *)val;
125 return isl_space_is_equal(node->space, dim);
128 static int node_scc_exactly(struct isl_sched_node *node, int scc)
130 return node->scc == scc;
133 static int node_scc_at_most(struct isl_sched_node *node, int scc)
135 return node->scc <= scc;
138 static int node_scc_at_least(struct isl_sched_node *node, int scc)
140 return node->scc >= scc;
143 /* An edge in the dependence graph. An edge may be used to
144 * ensure validity of the generated schedule, to minimize the dependence
145 * distance or both
147 * map is the dependence relation, with i -> j in the map if j depends on i
148 * tagged_condition and tagged_validity contain the union of all tagged
149 * condition or conditional validity dependence relations that
150 * specialize the dependence relation "map"; that is,
151 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
152 * or "tagged_validity", then i -> j is an element of "map".
153 * If these fields are NULL, then they represent the empty relation.
154 * src is the source node
155 * dst is the sink node
157 * types is a bit vector containing the types of this edge.
158 * validity is set if the edge is used to ensure correctness
159 * coincidence is used to enforce zero dependence distances
160 * proximity is set if the edge is used to minimize dependence distances
161 * condition is set if the edge represents a condition
162 * for a conditional validity schedule constraint
163 * local can only be set for condition edges and indicates that
164 * the dependence distance over the edge should be zero
165 * conditional_validity is set if the edge is used to conditionally
166 * ensure correctness
168 * For validity edges, start and end mark the sequence of inequality
169 * constraints in the LP problem that encode the validity constraint
170 * corresponding to this edge.
172 * During clustering, an edge may be marked "no_merge" if it should
173 * not be used to merge clusters.
174 * The weight is also only used during clustering and it is
175 * an indication of how many schedule dimensions on either side
176 * of the schedule constraints can be aligned.
177 * If the weight is negative, then this means that this edge was postponed
178 * by has_bounded_distances or any_no_merge. The original weight can
179 * be retrieved by adding 1 + graph->max_weight, with "graph"
180 * the graph containing this edge.
182 struct isl_sched_edge {
183 isl_map *map;
184 isl_union_map *tagged_condition;
185 isl_union_map *tagged_validity;
187 struct isl_sched_node *src;
188 struct isl_sched_node *dst;
190 unsigned types;
192 int start;
193 int end;
195 int no_merge;
196 int weight;
199 /* Is "edge" marked as being of type "type"?
201 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
203 return ISL_FL_ISSET(edge->types, 1 << type);
206 /* Mark "edge" as being of type "type".
208 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
210 ISL_FL_SET(edge->types, 1 << type);
213 /* No longer mark "edge" as being of type "type"?
215 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
217 ISL_FL_CLR(edge->types, 1 << type);
220 /* Is "edge" marked as a validity edge?
222 static int is_validity(struct isl_sched_edge *edge)
224 return is_type(edge, isl_edge_validity);
227 /* Mark "edge" as a validity edge.
229 static void set_validity(struct isl_sched_edge *edge)
231 set_type(edge, isl_edge_validity);
234 /* Is "edge" marked as a proximity edge?
236 static int is_proximity(struct isl_sched_edge *edge)
238 return is_type(edge, isl_edge_proximity);
241 /* Is "edge" marked as a local edge?
243 static int is_local(struct isl_sched_edge *edge)
245 return is_type(edge, isl_edge_local);
248 /* Mark "edge" as a local edge.
250 static void set_local(struct isl_sched_edge *edge)
252 set_type(edge, isl_edge_local);
255 /* No longer mark "edge" as a local edge.
257 static void clear_local(struct isl_sched_edge *edge)
259 clear_type(edge, isl_edge_local);
262 /* Is "edge" marked as a coincidence edge?
264 static int is_coincidence(struct isl_sched_edge *edge)
266 return is_type(edge, isl_edge_coincidence);
269 /* Is "edge" marked as a condition edge?
271 static int is_condition(struct isl_sched_edge *edge)
273 return is_type(edge, isl_edge_condition);
276 /* Is "edge" marked as a conditional validity edge?
278 static int is_conditional_validity(struct isl_sched_edge *edge)
280 return is_type(edge, isl_edge_conditional_validity);
283 /* Internal information about the dependence graph used during
284 * the construction of the schedule.
286 * intra_hmap is a cache, mapping dependence relations to their dual,
287 * for dependences from a node to itself
288 * inter_hmap is a cache, mapping dependence relations to their dual,
289 * for dependences between distinct nodes
290 * if compression is involved then the key for these maps
291 * is the original, uncompressed dependence relation, while
292 * the value is the dual of the compressed dependence relation.
294 * n is the number of nodes
295 * node is the list of nodes
296 * maxvar is the maximal number of variables over all nodes
297 * max_row is the allocated number of rows in the schedule
298 * n_row is the current (maximal) number of linearly independent
299 * rows in the node schedules
300 * n_total_row is the current number of rows in the node schedules
301 * band_start is the starting row in the node schedules of the current band
302 * root is set if this graph is the original dependence graph,
303 * without any splitting
305 * sorted contains a list of node indices sorted according to the
306 * SCC to which a node belongs
308 * n_edge is the number of edges
309 * edge is the list of edges
310 * max_edge contains the maximal number of edges of each type;
311 * in particular, it contains the number of edges in the inital graph.
312 * edge_table contains pointers into the edge array, hashed on the source
313 * and sink spaces; there is one such table for each type;
314 * a given edge may be referenced from more than one table
315 * if the corresponding relation appears in more than one of the
316 * sets of dependences; however, for each type there is only
317 * a single edge between a given pair of source and sink space
318 * in the entire graph
320 * node_table contains pointers into the node array, hashed on the space
322 * region contains a list of variable sequences that should be non-trivial
324 * lp contains the (I)LP problem used to obtain new schedule rows
326 * src_scc and dst_scc are the source and sink SCCs of an edge with
327 * conflicting constraints
329 * scc represents the number of components
330 * weak is set if the components are weakly connected
332 * max_weight is used during clustering and represents the maximal
333 * weight of the relevant proximity edges.
335 struct isl_sched_graph {
336 isl_map_to_basic_set *intra_hmap;
337 isl_map_to_basic_set *inter_hmap;
339 struct isl_sched_node *node;
340 int n;
341 int maxvar;
342 int max_row;
343 int n_row;
345 int *sorted;
347 int n_total_row;
348 int band_start;
350 int root;
352 struct isl_sched_edge *edge;
353 int n_edge;
354 int max_edge[isl_edge_last + 1];
355 struct isl_hash_table *edge_table[isl_edge_last + 1];
357 struct isl_hash_table *node_table;
358 struct isl_region *region;
360 isl_basic_set *lp;
362 int src_scc;
363 int dst_scc;
365 int scc;
366 int weak;
368 int max_weight;
371 /* Initialize node_table based on the list of nodes.
373 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
375 int i;
377 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
378 if (!graph->node_table)
379 return -1;
381 for (i = 0; i < graph->n; ++i) {
382 struct isl_hash_table_entry *entry;
383 uint32_t hash;
385 hash = isl_space_get_hash(graph->node[i].space);
386 entry = isl_hash_table_find(ctx, graph->node_table, hash,
387 &node_has_space,
388 graph->node[i].space, 1);
389 if (!entry)
390 return -1;
391 entry->data = &graph->node[i];
394 return 0;
397 /* Return a pointer to the node that lives within the given space,
398 * or NULL if there is no such node.
400 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
401 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
403 struct isl_hash_table_entry *entry;
404 uint32_t hash;
406 hash = isl_space_get_hash(dim);
407 entry = isl_hash_table_find(ctx, graph->node_table, hash,
408 &node_has_space, dim, 0);
410 return entry ? entry->data : NULL;
413 static int edge_has_src_and_dst(const void *entry, const void *val)
415 const struct isl_sched_edge *edge = entry;
416 const struct isl_sched_edge *temp = val;
418 return edge->src == temp->src && edge->dst == temp->dst;
421 /* Add the given edge to graph->edge_table[type].
423 static isl_stat graph_edge_table_add(isl_ctx *ctx,
424 struct isl_sched_graph *graph, enum isl_edge_type type,
425 struct isl_sched_edge *edge)
427 struct isl_hash_table_entry *entry;
428 uint32_t hash;
430 hash = isl_hash_init();
431 hash = isl_hash_builtin(hash, edge->src);
432 hash = isl_hash_builtin(hash, edge->dst);
433 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
434 &edge_has_src_and_dst, edge, 1);
435 if (!entry)
436 return isl_stat_error;
437 entry->data = edge;
439 return isl_stat_ok;
442 /* Allocate the edge_tables based on the maximal number of edges of
443 * each type.
445 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
447 int i;
449 for (i = 0; i <= isl_edge_last; ++i) {
450 graph->edge_table[i] = isl_hash_table_alloc(ctx,
451 graph->max_edge[i]);
452 if (!graph->edge_table[i])
453 return -1;
456 return 0;
459 /* If graph->edge_table[type] contains an edge from the given source
460 * to the given destination, then return the hash table entry of this edge.
461 * Otherwise, return NULL.
463 static struct isl_hash_table_entry *graph_find_edge_entry(
464 struct isl_sched_graph *graph,
465 enum isl_edge_type type,
466 struct isl_sched_node *src, struct isl_sched_node *dst)
468 isl_ctx *ctx = isl_space_get_ctx(src->space);
469 uint32_t hash;
470 struct isl_sched_edge temp = { .src = src, .dst = dst };
472 hash = isl_hash_init();
473 hash = isl_hash_builtin(hash, temp.src);
474 hash = isl_hash_builtin(hash, temp.dst);
475 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
476 &edge_has_src_and_dst, &temp, 0);
480 /* If graph->edge_table[type] contains an edge from the given source
481 * to the given destination, then return this edge.
482 * Otherwise, return NULL.
484 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
485 enum isl_edge_type type,
486 struct isl_sched_node *src, struct isl_sched_node *dst)
488 struct isl_hash_table_entry *entry;
490 entry = graph_find_edge_entry(graph, type, src, dst);
491 if (!entry)
492 return NULL;
494 return entry->data;
497 /* Check whether the dependence graph has an edge of the given type
498 * between the given two nodes.
500 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
501 enum isl_edge_type type,
502 struct isl_sched_node *src, struct isl_sched_node *dst)
504 struct isl_sched_edge *edge;
505 isl_bool empty;
507 edge = graph_find_edge(graph, type, src, dst);
508 if (!edge)
509 return 0;
511 empty = isl_map_plain_is_empty(edge->map);
512 if (empty < 0)
513 return isl_bool_error;
515 return !empty;
518 /* Look for any edge with the same src, dst and map fields as "model".
520 * Return the matching edge if one can be found.
521 * Return "model" if no matching edge is found.
522 * Return NULL on error.
524 static struct isl_sched_edge *graph_find_matching_edge(
525 struct isl_sched_graph *graph, struct isl_sched_edge *model)
527 enum isl_edge_type i;
528 struct isl_sched_edge *edge;
530 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
531 int is_equal;
533 edge = graph_find_edge(graph, i, model->src, model->dst);
534 if (!edge)
535 continue;
536 is_equal = isl_map_plain_is_equal(model->map, edge->map);
537 if (is_equal < 0)
538 return NULL;
539 if (is_equal)
540 return edge;
543 return model;
546 /* Remove the given edge from all the edge_tables that refer to it.
548 static void graph_remove_edge(struct isl_sched_graph *graph,
549 struct isl_sched_edge *edge)
551 isl_ctx *ctx = isl_map_get_ctx(edge->map);
552 enum isl_edge_type i;
554 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
555 struct isl_hash_table_entry *entry;
557 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
558 if (!entry)
559 continue;
560 if (entry->data != edge)
561 continue;
562 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
566 /* Check whether the dependence graph has any edge
567 * between the given two nodes.
569 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
570 struct isl_sched_node *src, struct isl_sched_node *dst)
572 enum isl_edge_type i;
573 isl_bool r;
575 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
576 r = graph_has_edge(graph, i, src, dst);
577 if (r < 0 || r)
578 return r;
581 return r;
584 /* Check whether the dependence graph has a validity edge
585 * between the given two nodes.
587 * Conditional validity edges are essentially validity edges that
588 * can be ignored if the corresponding condition edges are iteration private.
589 * Here, we are only checking for the presence of validity
590 * edges, so we need to consider the conditional validity edges too.
591 * In particular, this function is used during the detection
592 * of strongly connected components and we cannot ignore
593 * conditional validity edges during this detection.
595 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
596 struct isl_sched_node *src, struct isl_sched_node *dst)
598 isl_bool r;
600 r = graph_has_edge(graph, isl_edge_validity, src, dst);
601 if (r < 0 || r)
602 return r;
604 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
607 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
608 int n_node, int n_edge)
610 int i;
612 graph->n = n_node;
613 graph->n_edge = n_edge;
614 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
615 graph->sorted = isl_calloc_array(ctx, int, graph->n);
616 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
617 graph->edge = isl_calloc_array(ctx,
618 struct isl_sched_edge, graph->n_edge);
620 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
621 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
623 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
624 !graph->sorted)
625 return -1;
627 for(i = 0; i < graph->n; ++i)
628 graph->sorted[i] = i;
630 return 0;
633 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
635 int i;
637 isl_map_to_basic_set_free(graph->intra_hmap);
638 isl_map_to_basic_set_free(graph->inter_hmap);
640 if (graph->node)
641 for (i = 0; i < graph->n; ++i) {
642 isl_space_free(graph->node[i].space);
643 isl_set_free(graph->node[i].hull);
644 isl_multi_aff_free(graph->node[i].compress);
645 isl_multi_aff_free(graph->node[i].decompress);
646 isl_mat_free(graph->node[i].sched);
647 isl_map_free(graph->node[i].sched_map);
648 isl_mat_free(graph->node[i].cmap);
649 isl_mat_free(graph->node[i].cinv);
650 isl_mat_free(graph->node[i].ctrans);
651 if (graph->root)
652 free(graph->node[i].coincident);
653 isl_multi_val_free(graph->node[i].sizes);
654 isl_vec_free(graph->node[i].max);
656 free(graph->node);
657 free(graph->sorted);
658 if (graph->edge)
659 for (i = 0; i < graph->n_edge; ++i) {
660 isl_map_free(graph->edge[i].map);
661 isl_union_map_free(graph->edge[i].tagged_condition);
662 isl_union_map_free(graph->edge[i].tagged_validity);
664 free(graph->edge);
665 free(graph->region);
666 for (i = 0; i <= isl_edge_last; ++i)
667 isl_hash_table_free(ctx, graph->edge_table[i]);
668 isl_hash_table_free(ctx, graph->node_table);
669 isl_basic_set_free(graph->lp);
672 /* For each "set" on which this function is called, increment
673 * graph->n by one and update graph->maxvar.
675 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
677 struct isl_sched_graph *graph = user;
678 int nvar = isl_set_dim(set, isl_dim_set);
680 graph->n++;
681 if (nvar > graph->maxvar)
682 graph->maxvar = nvar;
684 isl_set_free(set);
686 return isl_stat_ok;
689 /* Compute the number of rows that should be allocated for the schedule.
690 * In particular, we need one row for each variable or one row
691 * for each basic map in the dependences.
692 * Note that it is practically impossible to exhaust both
693 * the number of dependences and the number of variables.
695 static isl_stat compute_max_row(struct isl_sched_graph *graph,
696 __isl_keep isl_schedule_constraints *sc)
698 int n_edge;
699 isl_stat r;
700 isl_union_set *domain;
702 graph->n = 0;
703 graph->maxvar = 0;
704 domain = isl_schedule_constraints_get_domain(sc);
705 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
706 isl_union_set_free(domain);
707 if (r < 0)
708 return isl_stat_error;
709 n_edge = isl_schedule_constraints_n_basic_map(sc);
710 if (n_edge < 0)
711 return isl_stat_error;
712 graph->max_row = n_edge + graph->maxvar;
714 return isl_stat_ok;
717 /* Does "bset" have any defining equalities for its set variables?
719 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
721 int i, n;
723 if (!bset)
724 return isl_bool_error;
726 n = isl_basic_set_dim(bset, isl_dim_set);
727 for (i = 0; i < n; ++i) {
728 isl_bool has;
730 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
731 NULL);
732 if (has < 0 || has)
733 return has;
736 return isl_bool_false;
739 /* Set the entries of node->max to the value of the schedule_max_coefficient
740 * option, if set.
742 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
744 int max;
746 max = isl_options_get_schedule_max_coefficient(ctx);
747 if (max == -1)
748 return isl_stat_ok;
750 node->max = isl_vec_alloc(ctx, node->nvar);
751 node->max = isl_vec_set_si(node->max, max);
752 if (!node->max)
753 return isl_stat_error;
755 return isl_stat_ok;
758 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
759 * option (if set) and half of the minimum of the sizes in the other
760 * dimensions. If the minimum of the sizes is one, half of the size
761 * is zero and this value is reset to one.
762 * If the global minimum is unbounded (i.e., if both
763 * the schedule_max_coefficient is not set and the sizes in the other
764 * dimensions are unbounded), then store a negative value.
765 * If the schedule coefficient is close to the size of the instance set
766 * in another dimension, then the schedule may represent a loop
767 * coalescing transformation (especially if the coefficient
768 * in that other dimension is one). Forcing the coefficient to be
769 * smaller than or equal to half the minimal size should avoid this
770 * situation.
772 static isl_stat compute_max_coefficient(isl_ctx *ctx,
773 struct isl_sched_node *node)
775 int max;
776 int i, j;
777 isl_vec *v;
779 max = isl_options_get_schedule_max_coefficient(ctx);
780 v = isl_vec_alloc(ctx, node->nvar);
781 if (!v)
782 return isl_stat_error;
784 for (i = 0; i < node->nvar; ++i) {
785 isl_int_set_si(v->el[i], max);
786 isl_int_mul_si(v->el[i], v->el[i], 2);
789 for (i = 0; i < node->nvar; ++i) {
790 isl_val *size;
792 size = isl_multi_val_get_val(node->sizes, i);
793 if (!size)
794 goto error;
795 if (!isl_val_is_int(size)) {
796 isl_val_free(size);
797 continue;
799 for (j = 0; j < node->nvar; ++j) {
800 if (j == i)
801 continue;
802 if (isl_int_is_neg(v->el[j]) ||
803 isl_int_gt(v->el[j], size->n))
804 isl_int_set(v->el[j], size->n);
806 isl_val_free(size);
809 for (i = 0; i < node->nvar; ++i) {
810 isl_int_fdiv_q_ui(v->el[i], v->el[i], 2);
811 if (isl_int_is_zero(v->el[i]))
812 isl_int_set_si(v->el[i], 1);
815 node->max = v;
816 return isl_stat_ok;
817 error:
818 isl_vec_free(v);
819 return isl_stat_error;
822 /* Compute and return the size of "set" in dimension "dim".
823 * The size is taken to be the difference in values for that variable
824 * for fixed values of the other variables.
825 * In particular, the variable is first isolated from the other variables
826 * in the range of a map
828 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
830 * and then duplicated
832 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
834 * The shared variables are then projected out and the maximal value
835 * of i_dim' - i_dim is computed.
837 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
839 isl_map *map;
840 isl_local_space *ls;
841 isl_aff *obj;
842 isl_val *v;
844 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
845 map = isl_map_project_out(map, isl_dim_in, dim, 1);
846 map = isl_map_range_product(map, isl_map_copy(map));
847 map = isl_set_unwrap(isl_map_range(map));
848 set = isl_map_deltas(map);
849 ls = isl_local_space_from_space(isl_set_get_space(set));
850 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
851 v = isl_set_max_val(set, obj);
852 isl_aff_free(obj);
853 isl_set_free(set);
855 return v;
858 /* Compute the size of the instance set "set" of "node", after compression,
859 * as well as bounds on the corresponding coefficients, if needed.
861 * The sizes are needed when the schedule_treat_coalescing option is set.
862 * The bounds are needed when the schedule_treat_coalescing option or
863 * the schedule_max_coefficient option is set.
865 * If the schedule_treat_coalescing option is not set, then at most
866 * the bounds need to be set and this is done in set_max_coefficient.
867 * Otherwise, compress the domain if needed, compute the size
868 * in each direction and store the results in node->size.
869 * Finally, set the bounds on the coefficients based on the sizes
870 * and the schedule_max_coefficient option in compute_max_coefficient.
872 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
873 __isl_take isl_set *set)
875 int j, n;
876 isl_multi_val *mv;
878 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
879 isl_set_free(set);
880 return set_max_coefficient(ctx, node);
883 if (node->compressed)
884 set = isl_set_preimage_multi_aff(set,
885 isl_multi_aff_copy(node->decompress));
886 mv = isl_multi_val_zero(isl_set_get_space(set));
887 n = isl_set_dim(set, isl_dim_set);
888 for (j = 0; j < n; ++j) {
889 isl_val *v;
891 v = compute_size(isl_set_copy(set), j);
892 mv = isl_multi_val_set_val(mv, j, v);
894 node->sizes = mv;
895 isl_set_free(set);
896 if (!node->sizes)
897 return isl_stat_error;
898 return compute_max_coefficient(ctx, node);
901 /* Add a new node to the graph representing the given instance set.
902 * "nvar" is the (possibly compressed) number of variables and
903 * may be smaller than then number of set variables in "set"
904 * if "compressed" is set.
905 * If "compressed" is set, then "hull" represents the constraints
906 * that were used to derive the compression, while "compress" and
907 * "decompress" map the original space to the compressed space and
908 * vice versa.
909 * If "compressed" is not set, then "hull", "compress" and "decompress"
910 * should be NULL.
912 * Compute the size of the instance set and bounds on the coefficients,
913 * if needed.
915 static isl_stat add_node(struct isl_sched_graph *graph,
916 __isl_take isl_set *set, int nvar, int compressed,
917 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
918 __isl_take isl_multi_aff *decompress)
920 int nparam;
921 isl_ctx *ctx;
922 isl_mat *sched;
923 isl_space *space;
924 int *coincident;
925 struct isl_sched_node *node;
927 if (!set)
928 return isl_stat_error;
930 ctx = isl_set_get_ctx(set);
931 nparam = isl_set_dim(set, isl_dim_param);
932 if (!ctx->opt->schedule_parametric)
933 nparam = 0;
934 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
935 node = &graph->node[graph->n];
936 graph->n++;
937 space = isl_set_get_space(set);
938 node->space = space;
939 node->nvar = nvar;
940 node->nparam = nparam;
941 node->sched = sched;
942 node->sched_map = NULL;
943 coincident = isl_calloc_array(ctx, int, graph->max_row);
944 node->coincident = coincident;
945 node->compressed = compressed;
946 node->hull = hull;
947 node->compress = compress;
948 node->decompress = decompress;
949 if (compute_sizes_and_max(ctx, node, set) < 0)
950 return isl_stat_error;
952 if (!space || !sched || (graph->max_row && !coincident))
953 return isl_stat_error;
954 if (compressed && (!hull || !compress || !decompress))
955 return isl_stat_error;
957 return isl_stat_ok;
960 /* Add a new node to the graph representing the given set.
962 * If any of the set variables is defined by an equality, then
963 * we perform variable compression such that we can perform
964 * the scheduling on the compressed domain.
966 static isl_stat extract_node(__isl_take isl_set *set, void *user)
968 int nvar;
969 isl_bool has_equality;
970 isl_basic_set *hull;
971 isl_set *hull_set;
972 isl_morph *morph;
973 isl_multi_aff *compress, *decompress;
974 struct isl_sched_graph *graph = user;
976 hull = isl_set_affine_hull(isl_set_copy(set));
977 hull = isl_basic_set_remove_divs(hull);
978 nvar = isl_set_dim(set, isl_dim_set);
979 has_equality = has_any_defining_equality(hull);
981 if (has_equality < 0)
982 goto error;
983 if (!has_equality) {
984 isl_basic_set_free(hull);
985 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
988 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
989 nvar = isl_morph_ran_dim(morph, isl_dim_set);
990 compress = isl_morph_get_var_multi_aff(morph);
991 morph = isl_morph_inverse(morph);
992 decompress = isl_morph_get_var_multi_aff(morph);
993 isl_morph_free(morph);
995 hull_set = isl_set_from_basic_set(hull);
996 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
997 error:
998 isl_basic_set_free(hull);
999 isl_set_free(set);
1000 return isl_stat_error;
1003 struct isl_extract_edge_data {
1004 enum isl_edge_type type;
1005 struct isl_sched_graph *graph;
1008 /* Merge edge2 into edge1, freeing the contents of edge2.
1009 * Return 0 on success and -1 on failure.
1011 * edge1 and edge2 are assumed to have the same value for the map field.
1013 static int merge_edge(struct isl_sched_edge *edge1,
1014 struct isl_sched_edge *edge2)
1016 edge1->types |= edge2->types;
1017 isl_map_free(edge2->map);
1019 if (is_condition(edge2)) {
1020 if (!edge1->tagged_condition)
1021 edge1->tagged_condition = edge2->tagged_condition;
1022 else
1023 edge1->tagged_condition =
1024 isl_union_map_union(edge1->tagged_condition,
1025 edge2->tagged_condition);
1028 if (is_conditional_validity(edge2)) {
1029 if (!edge1->tagged_validity)
1030 edge1->tagged_validity = edge2->tagged_validity;
1031 else
1032 edge1->tagged_validity =
1033 isl_union_map_union(edge1->tagged_validity,
1034 edge2->tagged_validity);
1037 if (is_condition(edge2) && !edge1->tagged_condition)
1038 return -1;
1039 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1040 return -1;
1042 return 0;
1045 /* Insert dummy tags in domain and range of "map".
1047 * In particular, if "map" is of the form
1049 * A -> B
1051 * then return
1053 * [A -> dummy_tag] -> [B -> dummy_tag]
1055 * where the dummy_tags are identical and equal to any dummy tags
1056 * introduced by any other call to this function.
1058 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1060 static char dummy;
1061 isl_ctx *ctx;
1062 isl_id *id;
1063 isl_space *space;
1064 isl_set *domain, *range;
1066 ctx = isl_map_get_ctx(map);
1068 id = isl_id_alloc(ctx, NULL, &dummy);
1069 space = isl_space_params(isl_map_get_space(map));
1070 space = isl_space_set_from_params(space);
1071 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1072 space = isl_space_map_from_set(space);
1074 domain = isl_map_wrap(map);
1075 range = isl_map_wrap(isl_map_universe(space));
1076 map = isl_map_from_domain_and_range(domain, range);
1077 map = isl_map_zip(map);
1079 return map;
1082 /* Given that at least one of "src" or "dst" is compressed, return
1083 * a map between the spaces of these nodes restricted to the affine
1084 * hull that was used in the compression.
1086 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1087 struct isl_sched_node *dst)
1089 isl_set *dom, *ran;
1091 if (src->compressed)
1092 dom = isl_set_copy(src->hull);
1093 else
1094 dom = isl_set_universe(isl_space_copy(src->space));
1095 if (dst->compressed)
1096 ran = isl_set_copy(dst->hull);
1097 else
1098 ran = isl_set_universe(isl_space_copy(dst->space));
1100 return isl_map_from_domain_and_range(dom, ran);
1103 /* Intersect the domains of the nested relations in domain and range
1104 * of "tagged" with "map".
1106 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1107 __isl_keep isl_map *map)
1109 isl_set *set;
1111 tagged = isl_map_zip(tagged);
1112 set = isl_map_wrap(isl_map_copy(map));
1113 tagged = isl_map_intersect_domain(tagged, set);
1114 tagged = isl_map_zip(tagged);
1115 return tagged;
1118 /* Return a pointer to the node that lives in the domain space of "map"
1119 * or NULL if there is no such node.
1121 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1122 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1124 struct isl_sched_node *node;
1125 isl_space *space;
1127 space = isl_space_domain(isl_map_get_space(map));
1128 node = graph_find_node(ctx, graph, space);
1129 isl_space_free(space);
1131 return node;
1134 /* Return a pointer to the node that lives in the range space of "map"
1135 * or NULL if there is no such node.
1137 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1138 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1140 struct isl_sched_node *node;
1141 isl_space *space;
1143 space = isl_space_range(isl_map_get_space(map));
1144 node = graph_find_node(ctx, graph, space);
1145 isl_space_free(space);
1147 return node;
1150 /* Add a new edge to the graph based on the given map
1151 * and add it to data->graph->edge_table[data->type].
1152 * If a dependence relation of a given type happens to be identical
1153 * to one of the dependence relations of a type that was added before,
1154 * then we don't create a new edge, but instead mark the original edge
1155 * as also representing a dependence of the current type.
1157 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1158 * may be specified as "tagged" dependence relations. That is, "map"
1159 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1160 * the dependence on iterations and a and b are tags.
1161 * edge->map is set to the relation containing the elements i -> j,
1162 * while edge->tagged_condition and edge->tagged_validity contain
1163 * the union of all the "map" relations
1164 * for which extract_edge is called that result in the same edge->map.
1166 * If the source or the destination node is compressed, then
1167 * intersect both "map" and "tagged" with the constraints that
1168 * were used to construct the compression.
1169 * This ensures that there are no schedule constraints defined
1170 * outside of these domains, while the scheduler no longer has
1171 * any control over those outside parts.
1173 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1175 isl_ctx *ctx = isl_map_get_ctx(map);
1176 struct isl_extract_edge_data *data = user;
1177 struct isl_sched_graph *graph = data->graph;
1178 struct isl_sched_node *src, *dst;
1179 struct isl_sched_edge *edge;
1180 isl_map *tagged = NULL;
1182 if (data->type == isl_edge_condition ||
1183 data->type == isl_edge_conditional_validity) {
1184 if (isl_map_can_zip(map)) {
1185 tagged = isl_map_copy(map);
1186 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1187 } else {
1188 tagged = insert_dummy_tags(isl_map_copy(map));
1192 src = find_domain_node(ctx, graph, map);
1193 dst = find_range_node(ctx, graph, map);
1195 if (!src || !dst) {
1196 isl_map_free(map);
1197 isl_map_free(tagged);
1198 return isl_stat_ok;
1201 if (src->compressed || dst->compressed) {
1202 isl_map *hull;
1203 hull = extract_hull(src, dst);
1204 if (tagged)
1205 tagged = map_intersect_domains(tagged, hull);
1206 map = isl_map_intersect(map, hull);
1209 graph->edge[graph->n_edge].src = src;
1210 graph->edge[graph->n_edge].dst = dst;
1211 graph->edge[graph->n_edge].map = map;
1212 graph->edge[graph->n_edge].types = 0;
1213 graph->edge[graph->n_edge].tagged_condition = NULL;
1214 graph->edge[graph->n_edge].tagged_validity = NULL;
1215 set_type(&graph->edge[graph->n_edge], data->type);
1216 if (data->type == isl_edge_condition)
1217 graph->edge[graph->n_edge].tagged_condition =
1218 isl_union_map_from_map(tagged);
1219 if (data->type == isl_edge_conditional_validity)
1220 graph->edge[graph->n_edge].tagged_validity =
1221 isl_union_map_from_map(tagged);
1223 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1224 if (!edge) {
1225 graph->n_edge++;
1226 return isl_stat_error;
1228 if (edge == &graph->edge[graph->n_edge])
1229 return graph_edge_table_add(ctx, graph, data->type,
1230 &graph->edge[graph->n_edge++]);
1232 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1233 return -1;
1235 return graph_edge_table_add(ctx, graph, data->type, edge);
1238 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1240 * The context is included in the domain before the nodes of
1241 * the graphs are extracted in order to be able to exploit
1242 * any possible additional equalities.
1243 * Note that this intersection is only performed locally here.
1245 static isl_stat graph_init(struct isl_sched_graph *graph,
1246 __isl_keep isl_schedule_constraints *sc)
1248 isl_ctx *ctx;
1249 isl_union_set *domain;
1250 isl_union_map *c;
1251 struct isl_extract_edge_data data;
1252 enum isl_edge_type i;
1253 isl_stat r;
1255 if (!sc)
1256 return isl_stat_error;
1258 ctx = isl_schedule_constraints_get_ctx(sc);
1260 domain = isl_schedule_constraints_get_domain(sc);
1261 graph->n = isl_union_set_n_set(domain);
1262 isl_union_set_free(domain);
1264 if (graph_alloc(ctx, graph, graph->n,
1265 isl_schedule_constraints_n_map(sc)) < 0)
1266 return isl_stat_error;
1268 if (compute_max_row(graph, sc) < 0)
1269 return isl_stat_error;
1270 graph->root = 1;
1271 graph->n = 0;
1272 domain = isl_schedule_constraints_get_domain(sc);
1273 domain = isl_union_set_intersect_params(domain,
1274 isl_schedule_constraints_get_context(sc));
1275 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1276 isl_union_set_free(domain);
1277 if (r < 0)
1278 return isl_stat_error;
1279 if (graph_init_table(ctx, graph) < 0)
1280 return isl_stat_error;
1281 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1282 c = isl_schedule_constraints_get(sc, i);
1283 graph->max_edge[i] = isl_union_map_n_map(c);
1284 isl_union_map_free(c);
1285 if (!c)
1286 return isl_stat_error;
1288 if (graph_init_edge_tables(ctx, graph) < 0)
1289 return isl_stat_error;
1290 graph->n_edge = 0;
1291 data.graph = graph;
1292 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1293 isl_stat r;
1295 data.type = i;
1296 c = isl_schedule_constraints_get(sc, i);
1297 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1298 isl_union_map_free(c);
1299 if (r < 0)
1300 return isl_stat_error;
1303 return isl_stat_ok;
1306 /* Check whether there is any dependence from node[j] to node[i]
1307 * or from node[i] to node[j].
1309 static isl_bool node_follows_weak(int i, int j, void *user)
1311 isl_bool f;
1312 struct isl_sched_graph *graph = user;
1314 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1315 if (f < 0 || f)
1316 return f;
1317 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1320 /* Check whether there is a (conditional) validity dependence from node[j]
1321 * to node[i], forcing node[i] to follow node[j].
1323 static isl_bool node_follows_strong(int i, int j, void *user)
1325 struct isl_sched_graph *graph = user;
1327 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1330 /* Use Tarjan's algorithm for computing the strongly connected components
1331 * in the dependence graph only considering those edges defined by "follows".
1333 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1334 isl_bool (*follows)(int i, int j, void *user))
1336 int i, n;
1337 struct isl_tarjan_graph *g = NULL;
1339 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1340 if (!g)
1341 return -1;
1343 graph->scc = 0;
1344 i = 0;
1345 n = graph->n;
1346 while (n) {
1347 while (g->order[i] != -1) {
1348 graph->node[g->order[i]].scc = graph->scc;
1349 --n;
1350 ++i;
1352 ++i;
1353 graph->scc++;
1356 isl_tarjan_graph_free(g);
1358 return 0;
1361 /* Apply Tarjan's algorithm to detect the strongly connected components
1362 * in the dependence graph.
1363 * Only consider the (conditional) validity dependences and clear "weak".
1365 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1367 graph->weak = 0;
1368 return detect_ccs(ctx, graph, &node_follows_strong);
1371 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1372 * in the dependence graph.
1373 * Consider all dependences and set "weak".
1375 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1377 graph->weak = 1;
1378 return detect_ccs(ctx, graph, &node_follows_weak);
1381 static int cmp_scc(const void *a, const void *b, void *data)
1383 struct isl_sched_graph *graph = data;
1384 const int *i1 = a;
1385 const int *i2 = b;
1387 return graph->node[*i1].scc - graph->node[*i2].scc;
1390 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1392 static int sort_sccs(struct isl_sched_graph *graph)
1394 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1397 /* Given a dependence relation R from "node" to itself,
1398 * construct the set of coefficients of valid constraints for elements
1399 * in that dependence relation.
1400 * In particular, the result contains tuples of coefficients
1401 * c_0, c_n, c_x such that
1403 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1405 * or, equivalently,
1407 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1409 * We choose here to compute the dual of delta R.
1410 * Alternatively, we could have computed the dual of R, resulting
1411 * in a set of tuples c_0, c_n, c_x, c_y, and then
1412 * plugged in (c_0, c_n, c_x, -c_x).
1414 * If "node" has been compressed, then the dependence relation
1415 * is also compressed before the set of coefficients is computed.
1417 static __isl_give isl_basic_set *intra_coefficients(
1418 struct isl_sched_graph *graph, struct isl_sched_node *node,
1419 __isl_take isl_map *map)
1421 isl_set *delta;
1422 isl_map *key;
1423 isl_basic_set *coef;
1424 isl_maybe_isl_basic_set m;
1426 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1427 if (m.valid < 0 || m.valid) {
1428 isl_map_free(map);
1429 return m.value;
1432 key = isl_map_copy(map);
1433 if (node->compressed) {
1434 map = isl_map_preimage_domain_multi_aff(map,
1435 isl_multi_aff_copy(node->decompress));
1436 map = isl_map_preimage_range_multi_aff(map,
1437 isl_multi_aff_copy(node->decompress));
1439 delta = isl_set_remove_divs(isl_map_deltas(map));
1440 coef = isl_set_coefficients(delta);
1441 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1442 isl_basic_set_copy(coef));
1444 return coef;
1447 /* Given a dependence relation R, construct the set of coefficients
1448 * of valid constraints for elements in that dependence relation.
1449 * In particular, the result contains tuples of coefficients
1450 * c_0, c_n, c_x, c_y such that
1452 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1454 * If the source or destination nodes of "edge" have been compressed,
1455 * then the dependence relation is also compressed before
1456 * the set of coefficients is computed.
1458 static __isl_give isl_basic_set *inter_coefficients(
1459 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1460 __isl_take isl_map *map)
1462 isl_set *set;
1463 isl_map *key;
1464 isl_basic_set *coef;
1465 isl_maybe_isl_basic_set m;
1467 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1468 if (m.valid < 0 || m.valid) {
1469 isl_map_free(map);
1470 return m.value;
1473 key = isl_map_copy(map);
1474 if (edge->src->compressed)
1475 map = isl_map_preimage_domain_multi_aff(map,
1476 isl_multi_aff_copy(edge->src->decompress));
1477 if (edge->dst->compressed)
1478 map = isl_map_preimage_range_multi_aff(map,
1479 isl_multi_aff_copy(edge->dst->decompress));
1480 set = isl_map_wrap(isl_map_remove_divs(map));
1481 coef = isl_set_coefficients(set);
1482 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1483 isl_basic_set_copy(coef));
1485 return coef;
1488 /* Return the position of the coefficients of the variables in
1489 * the coefficients constraints "coef".
1491 * The space of "coef" is of the form
1493 * { coefficients[[cst, params] -> S] }
1495 * Return the position of S.
1497 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1499 int offset;
1500 isl_space *space;
1502 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1503 offset = isl_space_dim(space, isl_dim_in);
1504 isl_space_free(space);
1506 return offset;
1509 /* Return the offset of the coefficients of the variables of "node"
1510 * within the (I)LP.
1512 * Within each node, the coefficients have the following order:
1513 * - c_i_0
1514 * - c_i_n (if parametric)
1515 * - positive and negative parts of c_i_x
1517 static int node_var_coef_offset(struct isl_sched_node *node)
1519 return node->start + 1 + node->nparam;
1522 /* Construct an isl_dim_map for mapping constraints on coefficients
1523 * for "node" to the corresponding positions in graph->lp.
1524 * "offset" is the offset of the coefficients for the variables
1525 * in the input constraints.
1526 * "s" is the sign of the mapping.
1528 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1529 * The mapping produced by this function essentially plugs in
1530 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1531 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1532 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1534 * The caller can extend the mapping to also map the other coefficients
1535 * (and therefore not plug in 0).
1537 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1538 struct isl_sched_graph *graph, struct isl_sched_node *node,
1539 int offset, int s)
1541 int pos;
1542 unsigned total;
1543 isl_dim_map *dim_map;
1545 total = isl_basic_set_total_dim(graph->lp);
1546 pos = node_var_coef_offset(node);
1547 dim_map = isl_dim_map_alloc(ctx, total);
1548 isl_dim_map_range(dim_map, pos, 2, offset, 1, node->nvar, -s);
1549 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, node->nvar, s);
1551 return dim_map;
1554 /* Construct an isl_dim_map for mapping constraints on coefficients
1555 * for "src" (node i) and "dst" (node j) to the corresponding positions
1556 * in graph->lp.
1557 * "offset" is the offset of the coefficients for the variables of "src"
1558 * in the input constraints.
1559 * "s" is the sign of the mapping.
1561 * The input constraints are given in terms of the coefficients
1562 * (c_0, c_n, c_x, c_y).
1563 * The mapping produced by this function essentially plugs in
1564 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1565 * c_j_x^+ - c_j_x^-, -(c_i_x^+ - c_i_x^-)) if s = 1 and
1566 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1567 * - (c_j_x^+ - c_j_x^-), c_i_x^+ - c_i_x^-) if s = -1.
1568 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1570 * The caller can further extend the mapping.
1572 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1573 struct isl_sched_graph *graph, struct isl_sched_node *src,
1574 struct isl_sched_node *dst, int offset, int s)
1576 int pos;
1577 unsigned total;
1578 isl_dim_map *dim_map;
1580 total = isl_basic_set_total_dim(graph->lp);
1581 dim_map = isl_dim_map_alloc(ctx, total);
1583 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, s);
1584 isl_dim_map_range(dim_map, dst->start + 1, 1, 1, 1, dst->nparam, s);
1585 pos = node_var_coef_offset(dst);
1586 isl_dim_map_range(dim_map, pos, 2, offset + src->nvar, 1,
1587 dst->nvar, -s);
1588 isl_dim_map_range(dim_map, pos + 1, 2, offset + src->nvar, 1,
1589 dst->nvar, s);
1591 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -s);
1592 isl_dim_map_range(dim_map, src->start + 1, 1, 1, 1, src->nparam, -s);
1593 pos = node_var_coef_offset(src);
1594 isl_dim_map_range(dim_map, pos, 2, offset, 1, src->nvar, s);
1595 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, src->nvar, -s);
1597 return dim_map;
1600 /* Add constraints to graph->lp that force validity for the given
1601 * dependence from a node i to itself.
1602 * That is, add constraints that enforce
1604 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1605 * = c_i_x (y - x) >= 0
1607 * for each (x,y) in R.
1608 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1609 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1610 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1611 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1613 * Actually, we do not construct constraints for the c_i_x themselves,
1614 * but for the coefficients of c_i_x written as a linear combination
1615 * of the columns in node->cmap.
1617 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1618 struct isl_sched_edge *edge)
1620 int offset;
1621 isl_map *map = isl_map_copy(edge->map);
1622 isl_ctx *ctx = isl_map_get_ctx(map);
1623 isl_dim_map *dim_map;
1624 isl_basic_set *coef;
1625 struct isl_sched_node *node = edge->src;
1627 coef = intra_coefficients(graph, node, map);
1629 offset = coef_var_offset(coef);
1631 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1632 offset, isl_mat_copy(node->cmap));
1633 if (!coef)
1634 return isl_stat_error;
1636 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1637 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1638 coef->n_eq, coef->n_ineq);
1639 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1640 coef, dim_map);
1642 return isl_stat_ok;
1645 /* Add constraints to graph->lp that force validity for the given
1646 * dependence from node i to node j.
1647 * That is, add constraints that enforce
1649 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1651 * for each (x,y) in R.
1652 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1653 * of valid constraints for R and then plug in
1654 * (c_j_0 - c_i_0, c_j_n - c_i_n, c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1655 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1656 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1658 * Actually, we do not construct constraints for the c_*_x themselves,
1659 * but for the coefficients of c_*_x written as a linear combination
1660 * of the columns in node->cmap.
1662 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1663 struct isl_sched_edge *edge)
1665 int offset;
1666 isl_map *map;
1667 isl_ctx *ctx;
1668 isl_dim_map *dim_map;
1669 isl_basic_set *coef;
1670 struct isl_sched_node *src = edge->src;
1671 struct isl_sched_node *dst = edge->dst;
1673 if (!graph->lp)
1674 return isl_stat_error;
1676 map = isl_map_copy(edge->map);
1677 ctx = isl_map_get_ctx(map);
1678 coef = inter_coefficients(graph, edge, map);
1680 offset = coef_var_offset(coef);
1682 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1683 offset, isl_mat_copy(src->cmap));
1684 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1685 offset + src->nvar, isl_mat_copy(dst->cmap));
1686 if (!coef)
1687 return isl_stat_error;
1689 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1691 edge->start = graph->lp->n_ineq;
1692 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1693 coef->n_eq, coef->n_ineq);
1694 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1695 coef, dim_map);
1696 if (!graph->lp)
1697 return isl_stat_error;
1698 edge->end = graph->lp->n_ineq;
1700 return isl_stat_ok;
1703 /* Add constraints to graph->lp that bound the dependence distance for the given
1704 * dependence from a node i to itself.
1705 * If s = 1, we add the constraint
1707 * c_i_x (y - x) <= m_0 + m_n n
1709 * or
1711 * -c_i_x (y - x) + m_0 + m_n n >= 0
1713 * for each (x,y) in R.
1714 * If s = -1, we add the constraint
1716 * -c_i_x (y - x) <= m_0 + m_n n
1718 * or
1720 * c_i_x (y - x) + m_0 + m_n n >= 0
1722 * for each (x,y) in R.
1723 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1724 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1725 * with each coefficient (except m_0) represented as a pair of non-negative
1726 * coefficients.
1728 * Actually, we do not construct constraints for the c_i_x themselves,
1729 * but for the coefficients of c_i_x written as a linear combination
1730 * of the columns in node->cmap.
1733 * If "local" is set, then we add constraints
1735 * c_i_x (y - x) <= 0
1737 * or
1739 * -c_i_x (y - x) <= 0
1741 * instead, forcing the dependence distance to be (less than or) equal to 0.
1742 * That is, we plug in (0, 0, -s * c_i_x),
1743 * Note that dependences marked local are treated as validity constraints
1744 * by add_all_validity_constraints and therefore also have
1745 * their distances bounded by 0 from below.
1747 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1748 struct isl_sched_edge *edge, int s, int local)
1750 int offset;
1751 unsigned nparam;
1752 isl_map *map = isl_map_copy(edge->map);
1753 isl_ctx *ctx = isl_map_get_ctx(map);
1754 isl_dim_map *dim_map;
1755 isl_basic_set *coef;
1756 struct isl_sched_node *node = edge->src;
1758 coef = intra_coefficients(graph, node, map);
1760 offset = coef_var_offset(coef);
1762 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1763 offset, isl_mat_copy(node->cmap));
1764 if (!coef)
1765 return isl_stat_error;
1767 nparam = isl_space_dim(node->space, isl_dim_param);
1768 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1770 if (!local) {
1771 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1772 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1773 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1775 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1776 coef->n_eq, coef->n_ineq);
1777 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1778 coef, dim_map);
1780 return isl_stat_ok;
1783 /* Add constraints to graph->lp that bound the dependence distance for the given
1784 * dependence from node i to node j.
1785 * If s = 1, we add the constraint
1787 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1788 * <= m_0 + m_n n
1790 * or
1792 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1793 * m_0 + m_n n >= 0
1795 * for each (x,y) in R.
1796 * If s = -1, we add the constraint
1798 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1799 * <= m_0 + m_n n
1801 * or
1803 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1804 * m_0 + m_n n >= 0
1806 * for each (x,y) in R.
1807 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1808 * of valid constraints for R and then plug in
1809 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1810 * -s*c_j_x+s*c_i_x)
1811 * with each coefficient (except m_0, c_*_0 and c_*_n)
1812 * represented as a pair of non-negative coefficients.
1814 * Actually, we do not construct constraints for the c_*_x themselves,
1815 * but for the coefficients of c_*_x written as a linear combination
1816 * of the columns in node->cmap.
1819 * If "local" is set, then we add constraints
1821 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1823 * or
1825 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1827 * instead, forcing the dependence distance to be (less than or) equal to 0.
1828 * That is, we plug in
1829 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1830 * Note that dependences marked local are treated as validity constraints
1831 * by add_all_validity_constraints and therefore also have
1832 * their distances bounded by 0 from below.
1834 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
1835 struct isl_sched_edge *edge, int s, int local)
1837 int offset;
1838 unsigned nparam;
1839 isl_map *map = isl_map_copy(edge->map);
1840 isl_ctx *ctx = isl_map_get_ctx(map);
1841 isl_dim_map *dim_map;
1842 isl_basic_set *coef;
1843 struct isl_sched_node *src = edge->src;
1844 struct isl_sched_node *dst = edge->dst;
1846 coef = inter_coefficients(graph, edge, map);
1848 offset = coef_var_offset(coef);
1850 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1851 offset, isl_mat_copy(src->cmap));
1852 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1853 offset + src->nvar, isl_mat_copy(dst->cmap));
1854 if (!coef)
1855 return isl_stat_error;
1857 nparam = isl_space_dim(src->space, isl_dim_param);
1858 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
1860 if (!local) {
1861 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1862 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1863 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1866 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1867 coef->n_eq, coef->n_ineq);
1868 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1869 coef, dim_map);
1871 return isl_stat_ok;
1874 /* Add all validity constraints to graph->lp.
1876 * An edge that is forced to be local needs to have its dependence
1877 * distances equal to zero. We take care of bounding them by 0 from below
1878 * here. add_all_proximity_constraints takes care of bounding them by 0
1879 * from above.
1881 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1882 * Otherwise, we ignore them.
1884 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1885 int use_coincidence)
1887 int i;
1889 for (i = 0; i < graph->n_edge; ++i) {
1890 struct isl_sched_edge *edge= &graph->edge[i];
1891 int local;
1893 local = is_local(edge) ||
1894 (is_coincidence(edge) && use_coincidence);
1895 if (!is_validity(edge) && !local)
1896 continue;
1897 if (edge->src != edge->dst)
1898 continue;
1899 if (add_intra_validity_constraints(graph, edge) < 0)
1900 return -1;
1903 for (i = 0; i < graph->n_edge; ++i) {
1904 struct isl_sched_edge *edge = &graph->edge[i];
1905 int local;
1907 local = is_local(edge) ||
1908 (is_coincidence(edge) && use_coincidence);
1909 if (!is_validity(edge) && !local)
1910 continue;
1911 if (edge->src == edge->dst)
1912 continue;
1913 if (add_inter_validity_constraints(graph, edge) < 0)
1914 return -1;
1917 return 0;
1920 /* Add constraints to graph->lp that bound the dependence distance
1921 * for all dependence relations.
1922 * If a given proximity dependence is identical to a validity
1923 * dependence, then the dependence distance is already bounded
1924 * from below (by zero), so we only need to bound the distance
1925 * from above. (This includes the case of "local" dependences
1926 * which are treated as validity dependence by add_all_validity_constraints.)
1927 * Otherwise, we need to bound the distance both from above and from below.
1929 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1930 * Otherwise, we ignore them.
1932 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1933 int use_coincidence)
1935 int i;
1937 for (i = 0; i < graph->n_edge; ++i) {
1938 struct isl_sched_edge *edge= &graph->edge[i];
1939 int local;
1941 local = is_local(edge) ||
1942 (is_coincidence(edge) && use_coincidence);
1943 if (!is_proximity(edge) && !local)
1944 continue;
1945 if (edge->src == edge->dst &&
1946 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1947 return -1;
1948 if (edge->src != edge->dst &&
1949 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1950 return -1;
1951 if (is_validity(edge) || local)
1952 continue;
1953 if (edge->src == edge->dst &&
1954 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1955 return -1;
1956 if (edge->src != edge->dst &&
1957 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1958 return -1;
1961 return 0;
1964 /* Compute a basis for the rows in the linear part of the schedule
1965 * and extend this basis to a full basis. The remaining rows
1966 * can then be used to force linear independence from the rows
1967 * in the schedule.
1969 * In particular, given the schedule rows S, we compute
1971 * S = H Q
1972 * S U = H
1974 * with H the Hermite normal form of S. That is, all but the
1975 * first rank columns of H are zero and so each row in S is
1976 * a linear combination of the first rank rows of Q.
1977 * The matrix Q is then transposed because we will write the
1978 * coefficients of the next schedule row as a column vector s
1979 * and express this s as a linear combination s = Q c of the
1980 * computed basis.
1981 * Similarly, the matrix U is transposed such that we can
1982 * compute the coefficients c = U s from a schedule row s.
1984 static int node_update_cmap(struct isl_sched_node *node)
1986 isl_mat *H, *U, *Q;
1987 int n_row = isl_mat_rows(node->sched);
1989 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1990 1 + node->nparam, node->nvar);
1992 H = isl_mat_left_hermite(H, 0, &U, &Q);
1993 isl_mat_free(node->cmap);
1994 isl_mat_free(node->cinv);
1995 isl_mat_free(node->ctrans);
1996 node->ctrans = isl_mat_copy(Q);
1997 node->cmap = isl_mat_transpose(Q);
1998 node->cinv = isl_mat_transpose(U);
1999 node->rank = isl_mat_initial_non_zero_cols(H);
2000 isl_mat_free(H);
2002 if (!node->cmap || !node->cinv || !node->ctrans || node->rank < 0)
2003 return -1;
2004 return 0;
2007 /* Is "edge" marked as a validity or a conditional validity edge?
2009 static int is_any_validity(struct isl_sched_edge *edge)
2011 return is_validity(edge) || is_conditional_validity(edge);
2014 /* How many times should we count the constraints in "edge"?
2016 * If carry is set, then we are counting the number of
2017 * (validity or conditional validity) constraints that will be added
2018 * in setup_carry_lp and we count each edge exactly once.
2020 * Otherwise, we count as follows
2021 * validity -> 1 (>= 0)
2022 * validity+proximity -> 2 (>= 0 and upper bound)
2023 * proximity -> 2 (lower and upper bound)
2024 * local(+any) -> 2 (>= 0 and <= 0)
2026 * If an edge is only marked conditional_validity then it counts
2027 * as zero since it is only checked afterwards.
2029 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2030 * Otherwise, we ignore them.
2032 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
2033 int use_coincidence)
2035 if (carry)
2036 return 1;
2037 if (is_proximity(edge) || is_local(edge))
2038 return 2;
2039 if (use_coincidence && is_coincidence(edge))
2040 return 2;
2041 if (is_validity(edge))
2042 return 1;
2043 return 0;
2046 /* Count the number of equality and inequality constraints
2047 * that will be added for the given map.
2049 * "use_coincidence" is set if we should take into account coincidence edges.
2051 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2052 struct isl_sched_edge *edge, __isl_take isl_map *map,
2053 int *n_eq, int *n_ineq, int carry, int use_coincidence)
2055 isl_basic_set *coef;
2056 int f = edge_multiplicity(edge, carry, use_coincidence);
2058 if (f == 0) {
2059 isl_map_free(map);
2060 return isl_stat_ok;
2063 if (edge->src == edge->dst)
2064 coef = intra_coefficients(graph, edge->src, map);
2065 else
2066 coef = inter_coefficients(graph, edge, map);
2067 if (!coef)
2068 return isl_stat_error;
2069 *n_eq += f * coef->n_eq;
2070 *n_ineq += f * coef->n_ineq;
2071 isl_basic_set_free(coef);
2073 return isl_stat_ok;
2076 /* Count the number of equality and inequality constraints
2077 * that will be added to the main lp problem.
2078 * We count as follows
2079 * validity -> 1 (>= 0)
2080 * validity+proximity -> 2 (>= 0 and upper bound)
2081 * proximity -> 2 (lower and upper bound)
2082 * local(+any) -> 2 (>= 0 and <= 0)
2084 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2085 * Otherwise, we ignore them.
2087 static int count_constraints(struct isl_sched_graph *graph,
2088 int *n_eq, int *n_ineq, int use_coincidence)
2090 int i;
2092 *n_eq = *n_ineq = 0;
2093 for (i = 0; i < graph->n_edge; ++i) {
2094 struct isl_sched_edge *edge= &graph->edge[i];
2095 isl_map *map = isl_map_copy(edge->map);
2097 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2098 0, use_coincidence) < 0)
2099 return -1;
2102 return 0;
2105 /* Count the number of constraints that will be added by
2106 * add_bound_constant_constraints to bound the values of the constant terms
2107 * and increment *n_eq and *n_ineq accordingly.
2109 * In practice, add_bound_constant_constraints only adds inequalities.
2111 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2112 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2114 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2115 return isl_stat_ok;
2117 *n_ineq += graph->n;
2119 return isl_stat_ok;
2122 /* Add constraints to bound the values of the constant terms in the schedule,
2123 * if requested by the user.
2125 * The maximal value of the constant terms is defined by the option
2126 * "schedule_max_constant_term".
2128 * Within each node, the coefficients have the following order:
2129 * - c_i_0
2130 * - c_i_n (if parametric)
2131 * - positive and negative parts of c_i_x
2133 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2134 struct isl_sched_graph *graph)
2136 int i, k;
2137 int max;
2138 int total;
2140 max = isl_options_get_schedule_max_constant_term(ctx);
2141 if (max == -1)
2142 return isl_stat_ok;
2144 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2146 for (i = 0; i < graph->n; ++i) {
2147 struct isl_sched_node *node = &graph->node[i];
2148 k = isl_basic_set_alloc_inequality(graph->lp);
2149 if (k < 0)
2150 return isl_stat_error;
2151 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2152 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2153 isl_int_set_si(graph->lp->ineq[k][0], max);
2156 return isl_stat_ok;
2159 /* Count the number of constraints that will be added by
2160 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2161 * accordingly.
2163 * In practice, add_bound_coefficient_constraints only adds inequalities.
2165 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2166 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2168 int i;
2170 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2171 !isl_options_get_schedule_treat_coalescing(ctx))
2172 return 0;
2174 for (i = 0; i < graph->n; ++i)
2175 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2177 return 0;
2180 /* Add constraints to graph->lp that bound the values of
2181 * the parameter schedule coefficients of "node" to "max" and
2182 * the variable schedule coefficients to the corresponding entry
2183 * in node->max.
2184 * In either case, a negative value means that no bound needs to be imposed.
2186 * For parameter coefficients, this amounts to adding a constraint
2188 * c_n <= max
2190 * i.e.,
2192 * -c_n + max >= 0
2194 * The variables coefficients are, however, not represented directly.
2195 * Instead, the variables coefficients c_x are written as a linear
2196 * combination c_x = cmap c_z of some other coefficients c_z,
2197 * which are in turn encoded as c_z = c_z^+ - c_z^-.
2198 * Let a_j be the elements of row i of node->cmap, then
2200 * -max_i <= c_x_i <= max_i
2202 * is encoded as
2204 * -max_i <= \sum_j a_j (c_z_j^+ - c_z_j^-) <= max_i
2206 * or
2208 * -\sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2209 * \sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2211 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2212 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2214 int i, j, k;
2215 int total;
2216 isl_vec *ineq;
2218 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2220 for (j = 0; j < node->nparam; ++j) {
2221 int dim;
2223 if (max < 0)
2224 continue;
2226 k = isl_basic_set_alloc_inequality(graph->lp);
2227 if (k < 0)
2228 return isl_stat_error;
2229 dim = 1 + node->start + 1 + j;
2230 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2231 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2232 isl_int_set_si(graph->lp->ineq[k][0], max);
2235 ineq = isl_vec_alloc(ctx, 1 + total);
2236 ineq = isl_vec_clr(ineq);
2237 if (!ineq)
2238 return isl_stat_error;
2239 for (i = 0; i < node->nvar; ++i) {
2240 int pos = 1 + node_var_coef_offset(node);
2242 if (isl_int_is_neg(node->max->el[i]))
2243 continue;
2245 for (j = 0; j < node->nvar; ++j) {
2246 isl_int_set(ineq->el[pos + 2 * j],
2247 node->cmap->row[i][j]);
2248 isl_int_neg(ineq->el[pos + 2 * j + 1],
2249 node->cmap->row[i][j]);
2251 isl_int_set(ineq->el[0], node->max->el[i]);
2253 k = isl_basic_set_alloc_inequality(graph->lp);
2254 if (k < 0)
2255 goto error;
2256 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2258 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2 * node->nvar);
2259 k = isl_basic_set_alloc_inequality(graph->lp);
2260 if (k < 0)
2261 goto error;
2262 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2264 isl_vec_free(ineq);
2266 return isl_stat_ok;
2267 error:
2268 isl_vec_free(ineq);
2269 return isl_stat_error;
2272 /* Add constraints that bound the values of the variable and parameter
2273 * coefficients of the schedule.
2275 * The maximal value of the coefficients is defined by the option
2276 * 'schedule_max_coefficient' and the entries in node->max.
2277 * These latter entries are only set if either the schedule_max_coefficient
2278 * option or the schedule_treat_coalescing option is set.
2280 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2281 struct isl_sched_graph *graph)
2283 int i;
2284 int max;
2286 max = isl_options_get_schedule_max_coefficient(ctx);
2288 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2289 return isl_stat_ok;
2291 for (i = 0; i < graph->n; ++i) {
2292 struct isl_sched_node *node = &graph->node[i];
2294 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2295 return isl_stat_error;
2298 return isl_stat_ok;
2301 /* Add a constraint to graph->lp that equates the value at position
2302 * "sum_pos" to the sum of the "n" values starting at "first".
2304 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2305 int sum_pos, int first, int n)
2307 int i, k;
2308 int total;
2310 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2312 k = isl_basic_set_alloc_equality(graph->lp);
2313 if (k < 0)
2314 return isl_stat_error;
2315 isl_seq_clr(graph->lp->eq[k], 1 + total);
2316 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2317 for (i = 0; i < n; ++i)
2318 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2320 return isl_stat_ok;
2323 /* Add a constraint to graph->lp that equates the value at position
2324 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2326 * Within each node, the coefficients have the following order:
2327 * - c_i_0
2328 * - c_i_n (if parametric)
2329 * - positive and negative parts of c_i_x
2331 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2332 int sum_pos)
2334 int i, j, k;
2335 int total;
2337 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2339 k = isl_basic_set_alloc_equality(graph->lp);
2340 if (k < 0)
2341 return isl_stat_error;
2342 isl_seq_clr(graph->lp->eq[k], 1 + total);
2343 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2344 for (i = 0; i < graph->n; ++i) {
2345 int pos = 1 + graph->node[i].start + 1;
2347 for (j = 0; j < graph->node[i].nparam; ++j)
2348 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2351 return isl_stat_ok;
2354 /* Add a constraint to graph->lp that equates the value at position
2355 * "sum_pos" to the sum of the variable coefficients of all nodes.
2357 * Within each node, the coefficients have the following order:
2358 * - c_i_0
2359 * - c_i_n (if parametric)
2360 * - positive and negative parts of c_i_x
2362 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2363 int sum_pos)
2365 int i, j, k;
2366 int total;
2368 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2370 k = isl_basic_set_alloc_equality(graph->lp);
2371 if (k < 0)
2372 return isl_stat_error;
2373 isl_seq_clr(graph->lp->eq[k], 1 + total);
2374 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2375 for (i = 0; i < graph->n; ++i) {
2376 struct isl_sched_node *node = &graph->node[i];
2377 int pos = 1 + node_var_coef_offset(node);
2379 for (j = 0; j < 2 * node->nvar; ++j)
2380 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2383 return isl_stat_ok;
2386 /* Construct an ILP problem for finding schedule coefficients
2387 * that result in non-negative, but small dependence distances
2388 * over all dependences.
2389 * In particular, the dependence distances over proximity edges
2390 * are bounded by m_0 + m_n n and we compute schedule coefficients
2391 * with small values (preferably zero) of m_n and m_0.
2393 * All variables of the ILP are non-negative. The actual coefficients
2394 * may be negative, so each coefficient is represented as the difference
2395 * of two non-negative variables. The negative part always appears
2396 * immediately before the positive part.
2397 * Other than that, the variables have the following order
2399 * - sum of positive and negative parts of m_n coefficients
2400 * - m_0
2401 * - sum of all c_n coefficients
2402 * (unconstrained when computing non-parametric schedules)
2403 * - sum of positive and negative parts of all c_x coefficients
2404 * - positive and negative parts of m_n coefficients
2405 * - for each node
2406 * - c_i_0
2407 * - c_i_n (if parametric)
2408 * - positive and negative parts of c_i_x
2410 * The c_i_x are not represented directly, but through the columns of
2411 * node->cmap. That is, the computed values are for variable t_i_x
2412 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2414 * The constraints are those from the edges plus two or three equalities
2415 * to express the sums.
2417 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2418 * Otherwise, we ignore them.
2420 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2421 int use_coincidence)
2423 int i;
2424 unsigned nparam;
2425 unsigned total;
2426 isl_space *space;
2427 int parametric;
2428 int param_pos;
2429 int n_eq, n_ineq;
2431 parametric = ctx->opt->schedule_parametric;
2432 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2433 param_pos = 4;
2434 total = param_pos + 2 * nparam;
2435 for (i = 0; i < graph->n; ++i) {
2436 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2437 if (node_update_cmap(node) < 0)
2438 return isl_stat_error;
2439 node->start = total;
2440 total += 1 + node->nparam + 2 * node->nvar;
2443 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2444 return isl_stat_error;
2445 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2446 return isl_stat_error;
2447 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2448 return isl_stat_error;
2450 space = isl_space_set_alloc(ctx, 0, total);
2451 isl_basic_set_free(graph->lp);
2452 n_eq += 2 + parametric;
2454 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2456 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2457 return isl_stat_error;
2458 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2459 return isl_stat_error;
2460 if (add_var_sum_constraint(graph, 3) < 0)
2461 return isl_stat_error;
2462 if (add_bound_constant_constraints(ctx, graph) < 0)
2463 return isl_stat_error;
2464 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2465 return isl_stat_error;
2466 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2467 return isl_stat_error;
2468 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2469 return isl_stat_error;
2471 return isl_stat_ok;
2474 /* Analyze the conflicting constraint found by
2475 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2476 * constraint of one of the edges between distinct nodes, living, moreover
2477 * in distinct SCCs, then record the source and sink SCC as this may
2478 * be a good place to cut between SCCs.
2480 static int check_conflict(int con, void *user)
2482 int i;
2483 struct isl_sched_graph *graph = user;
2485 if (graph->src_scc >= 0)
2486 return 0;
2488 con -= graph->lp->n_eq;
2490 if (con >= graph->lp->n_ineq)
2491 return 0;
2493 for (i = 0; i < graph->n_edge; ++i) {
2494 if (!is_validity(&graph->edge[i]))
2495 continue;
2496 if (graph->edge[i].src == graph->edge[i].dst)
2497 continue;
2498 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2499 continue;
2500 if (graph->edge[i].start > con)
2501 continue;
2502 if (graph->edge[i].end <= con)
2503 continue;
2504 graph->src_scc = graph->edge[i].src->scc;
2505 graph->dst_scc = graph->edge[i].dst->scc;
2508 return 0;
2511 /* Check whether the next schedule row of the given node needs to be
2512 * non-trivial. Lower-dimensional domains may have some trivial rows,
2513 * but as soon as the number of remaining required non-trivial rows
2514 * is as large as the number or remaining rows to be computed,
2515 * all remaining rows need to be non-trivial.
2517 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2519 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2522 /* Solve the ILP problem constructed in setup_lp.
2523 * For each node such that all the remaining rows of its schedule
2524 * need to be non-trivial, we construct a non-triviality region.
2525 * This region imposes that the next row is independent of previous rows.
2526 * In particular the coefficients c_i_x are represented by t_i_x
2527 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2528 * its first columns span the rows of the previously computed part
2529 * of the schedule. The non-triviality region enforces that at least
2530 * one of the remaining components of t_i_x is non-zero, i.e.,
2531 * that the new schedule row depends on at least one of the remaining
2532 * columns of Q.
2534 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2536 int i;
2537 isl_vec *sol;
2538 isl_basic_set *lp;
2540 for (i = 0; i < graph->n; ++i) {
2541 struct isl_sched_node *node = &graph->node[i];
2542 int skip = node->rank;
2543 graph->region[i].pos = node_var_coef_offset(node) + 2 * skip;
2544 if (needs_row(graph, node))
2545 graph->region[i].len = 2 * (node->nvar - skip);
2546 else
2547 graph->region[i].len = 0;
2549 lp = isl_basic_set_copy(graph->lp);
2550 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2551 graph->region, &check_conflict, graph);
2552 return sol;
2555 /* Extract the coefficients for the variables of "node" from "sol".
2557 * Within each node, the coefficients have the following order:
2558 * - c_i_0
2559 * - c_i_n (if parametric)
2560 * - positive and negative parts of c_i_x
2562 * The c_i_x^- appear before their c_i_x^+ counterpart.
2564 * Return c_i_x = c_i_x^+ - c_i_x^-
2566 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2567 __isl_keep isl_vec *sol)
2569 int i;
2570 int pos;
2571 isl_vec *csol;
2573 if (!sol)
2574 return NULL;
2575 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2576 if (!csol)
2577 return NULL;
2579 pos = 1 + node_var_coef_offset(node);
2580 for (i = 0; i < node->nvar; ++i)
2581 isl_int_sub(csol->el[i],
2582 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2584 return csol;
2587 /* Update the schedules of all nodes based on the given solution
2588 * of the LP problem.
2589 * The new row is added to the current band.
2590 * All possibly negative coefficients are encoded as a difference
2591 * of two non-negative variables, so we need to perform the subtraction
2592 * here. Moreover, if use_cmap is set, then the solution does
2593 * not refer to the actual coefficients c_i_x, but instead to variables
2594 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2595 * In this case, we then also need to perform this multiplication
2596 * to obtain the values of c_i_x.
2598 * If coincident is set, then the caller guarantees that the new
2599 * row satisfies the coincidence constraints.
2601 static int update_schedule(struct isl_sched_graph *graph,
2602 __isl_take isl_vec *sol, int use_cmap, int coincident)
2604 int i, j;
2605 isl_vec *csol = NULL;
2607 if (!sol)
2608 goto error;
2609 if (sol->size == 0)
2610 isl_die(sol->ctx, isl_error_internal,
2611 "no solution found", goto error);
2612 if (graph->n_total_row >= graph->max_row)
2613 isl_die(sol->ctx, isl_error_internal,
2614 "too many schedule rows", goto error);
2616 for (i = 0; i < graph->n; ++i) {
2617 struct isl_sched_node *node = &graph->node[i];
2618 int pos = node->start;
2619 int row = isl_mat_rows(node->sched);
2621 isl_vec_free(csol);
2622 csol = extract_var_coef(node, sol);
2623 if (!csol)
2624 goto error;
2626 isl_map_free(node->sched_map);
2627 node->sched_map = NULL;
2628 node->sched = isl_mat_add_rows(node->sched, 1);
2629 if (!node->sched)
2630 goto error;
2631 for (j = 0; j < 1 + node->nparam; ++j)
2632 node->sched = isl_mat_set_element(node->sched,
2633 row, j, sol->el[1 + pos + j]);
2634 if (use_cmap)
2635 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2636 csol);
2637 if (!csol)
2638 goto error;
2639 for (j = 0; j < node->nvar; ++j)
2640 node->sched = isl_mat_set_element(node->sched,
2641 row, 1 + node->nparam + j, csol->el[j]);
2642 node->coincident[graph->n_total_row] = coincident;
2644 isl_vec_free(sol);
2645 isl_vec_free(csol);
2647 graph->n_row++;
2648 graph->n_total_row++;
2650 return 0;
2651 error:
2652 isl_vec_free(sol);
2653 isl_vec_free(csol);
2654 return -1;
2657 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2658 * and return this isl_aff.
2660 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2661 struct isl_sched_node *node, int row)
2663 int j;
2664 isl_int v;
2665 isl_aff *aff;
2667 isl_int_init(v);
2669 aff = isl_aff_zero_on_domain(ls);
2670 isl_mat_get_element(node->sched, row, 0, &v);
2671 aff = isl_aff_set_constant(aff, v);
2672 for (j = 0; j < node->nparam; ++j) {
2673 isl_mat_get_element(node->sched, row, 1 + j, &v);
2674 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2676 for (j = 0; j < node->nvar; ++j) {
2677 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2678 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2681 isl_int_clear(v);
2683 return aff;
2686 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2687 * and return this multi_aff.
2689 * The result is defined over the uncompressed node domain.
2691 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2692 struct isl_sched_node *node, int first, int n)
2694 int i;
2695 isl_space *space;
2696 isl_local_space *ls;
2697 isl_aff *aff;
2698 isl_multi_aff *ma;
2699 int nrow;
2701 if (!node)
2702 return NULL;
2703 nrow = isl_mat_rows(node->sched);
2704 if (node->compressed)
2705 space = isl_multi_aff_get_domain_space(node->decompress);
2706 else
2707 space = isl_space_copy(node->space);
2708 ls = isl_local_space_from_space(isl_space_copy(space));
2709 space = isl_space_from_domain(space);
2710 space = isl_space_add_dims(space, isl_dim_out, n);
2711 ma = isl_multi_aff_zero(space);
2713 for (i = first; i < first + n; ++i) {
2714 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2715 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2718 isl_local_space_free(ls);
2720 if (node->compressed)
2721 ma = isl_multi_aff_pullback_multi_aff(ma,
2722 isl_multi_aff_copy(node->compress));
2724 return ma;
2727 /* Convert node->sched into a multi_aff and return this multi_aff.
2729 * The result is defined over the uncompressed node domain.
2731 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2732 struct isl_sched_node *node)
2734 int nrow;
2736 nrow = isl_mat_rows(node->sched);
2737 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2740 /* Convert node->sched into a map and return this map.
2742 * The result is cached in node->sched_map, which needs to be released
2743 * whenever node->sched is updated.
2744 * It is defined over the uncompressed node domain.
2746 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2748 if (!node->sched_map) {
2749 isl_multi_aff *ma;
2751 ma = node_extract_schedule_multi_aff(node);
2752 node->sched_map = isl_map_from_multi_aff(ma);
2755 return isl_map_copy(node->sched_map);
2758 /* Construct a map that can be used to update a dependence relation
2759 * based on the current schedule.
2760 * That is, construct a map expressing that source and sink
2761 * are executed within the same iteration of the current schedule.
2762 * This map can then be intersected with the dependence relation.
2763 * This is not the most efficient way, but this shouldn't be a critical
2764 * operation.
2766 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2767 struct isl_sched_node *dst)
2769 isl_map *src_sched, *dst_sched;
2771 src_sched = node_extract_schedule(src);
2772 dst_sched = node_extract_schedule(dst);
2773 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2776 /* Intersect the domains of the nested relations in domain and range
2777 * of "umap" with "map".
2779 static __isl_give isl_union_map *intersect_domains(
2780 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2782 isl_union_set *uset;
2784 umap = isl_union_map_zip(umap);
2785 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2786 umap = isl_union_map_intersect_domain(umap, uset);
2787 umap = isl_union_map_zip(umap);
2788 return umap;
2791 /* Update the dependence relation of the given edge based
2792 * on the current schedule.
2793 * If the dependence is carried completely by the current schedule, then
2794 * it is removed from the edge_tables. It is kept in the list of edges
2795 * as otherwise all edge_tables would have to be recomputed.
2797 static int update_edge(struct isl_sched_graph *graph,
2798 struct isl_sched_edge *edge)
2800 int empty;
2801 isl_map *id;
2803 id = specializer(edge->src, edge->dst);
2804 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2805 if (!edge->map)
2806 goto error;
2808 if (edge->tagged_condition) {
2809 edge->tagged_condition =
2810 intersect_domains(edge->tagged_condition, id);
2811 if (!edge->tagged_condition)
2812 goto error;
2814 if (edge->tagged_validity) {
2815 edge->tagged_validity =
2816 intersect_domains(edge->tagged_validity, id);
2817 if (!edge->tagged_validity)
2818 goto error;
2821 empty = isl_map_plain_is_empty(edge->map);
2822 if (empty < 0)
2823 goto error;
2824 if (empty)
2825 graph_remove_edge(graph, edge);
2827 isl_map_free(id);
2828 return 0;
2829 error:
2830 isl_map_free(id);
2831 return -1;
2834 /* Does the domain of "umap" intersect "uset"?
2836 static int domain_intersects(__isl_keep isl_union_map *umap,
2837 __isl_keep isl_union_set *uset)
2839 int empty;
2841 umap = isl_union_map_copy(umap);
2842 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2843 empty = isl_union_map_is_empty(umap);
2844 isl_union_map_free(umap);
2846 return empty < 0 ? -1 : !empty;
2849 /* Does the range of "umap" intersect "uset"?
2851 static int range_intersects(__isl_keep isl_union_map *umap,
2852 __isl_keep isl_union_set *uset)
2854 int empty;
2856 umap = isl_union_map_copy(umap);
2857 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2858 empty = isl_union_map_is_empty(umap);
2859 isl_union_map_free(umap);
2861 return empty < 0 ? -1 : !empty;
2864 /* Are the condition dependences of "edge" local with respect to
2865 * the current schedule?
2867 * That is, are domain and range of the condition dependences mapped
2868 * to the same point?
2870 * In other words, is the condition false?
2872 static int is_condition_false(struct isl_sched_edge *edge)
2874 isl_union_map *umap;
2875 isl_map *map, *sched, *test;
2876 int empty, local;
2878 empty = isl_union_map_is_empty(edge->tagged_condition);
2879 if (empty < 0 || empty)
2880 return empty;
2882 umap = isl_union_map_copy(edge->tagged_condition);
2883 umap = isl_union_map_zip(umap);
2884 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2885 map = isl_map_from_union_map(umap);
2887 sched = node_extract_schedule(edge->src);
2888 map = isl_map_apply_domain(map, sched);
2889 sched = node_extract_schedule(edge->dst);
2890 map = isl_map_apply_range(map, sched);
2892 test = isl_map_identity(isl_map_get_space(map));
2893 local = isl_map_is_subset(map, test);
2894 isl_map_free(map);
2895 isl_map_free(test);
2897 return local;
2900 /* For each conditional validity constraint that is adjacent
2901 * to a condition with domain in condition_source or range in condition_sink,
2902 * turn it into an unconditional validity constraint.
2904 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2905 __isl_take isl_union_set *condition_source,
2906 __isl_take isl_union_set *condition_sink)
2908 int i;
2910 condition_source = isl_union_set_coalesce(condition_source);
2911 condition_sink = isl_union_set_coalesce(condition_sink);
2913 for (i = 0; i < graph->n_edge; ++i) {
2914 int adjacent;
2915 isl_union_map *validity;
2917 if (!is_conditional_validity(&graph->edge[i]))
2918 continue;
2919 if (is_validity(&graph->edge[i]))
2920 continue;
2922 validity = graph->edge[i].tagged_validity;
2923 adjacent = domain_intersects(validity, condition_sink);
2924 if (adjacent >= 0 && !adjacent)
2925 adjacent = range_intersects(validity, condition_source);
2926 if (adjacent < 0)
2927 goto error;
2928 if (!adjacent)
2929 continue;
2931 set_validity(&graph->edge[i]);
2934 isl_union_set_free(condition_source);
2935 isl_union_set_free(condition_sink);
2936 return 0;
2937 error:
2938 isl_union_set_free(condition_source);
2939 isl_union_set_free(condition_sink);
2940 return -1;
2943 /* Update the dependence relations of all edges based on the current schedule
2944 * and enforce conditional validity constraints that are adjacent
2945 * to satisfied condition constraints.
2947 * First check if any of the condition constraints are satisfied
2948 * (i.e., not local to the outer schedule) and keep track of
2949 * their domain and range.
2950 * Then update all dependence relations (which removes the non-local
2951 * constraints).
2952 * Finally, if any condition constraints turned out to be satisfied,
2953 * then turn all adjacent conditional validity constraints into
2954 * unconditional validity constraints.
2956 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2958 int i;
2959 int any = 0;
2960 isl_union_set *source, *sink;
2962 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2963 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2964 for (i = 0; i < graph->n_edge; ++i) {
2965 int local;
2966 isl_union_set *uset;
2967 isl_union_map *umap;
2969 if (!is_condition(&graph->edge[i]))
2970 continue;
2971 if (is_local(&graph->edge[i]))
2972 continue;
2973 local = is_condition_false(&graph->edge[i]);
2974 if (local < 0)
2975 goto error;
2976 if (local)
2977 continue;
2979 any = 1;
2981 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
2982 uset = isl_union_map_domain(umap);
2983 source = isl_union_set_union(source, uset);
2985 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
2986 uset = isl_union_map_range(umap);
2987 sink = isl_union_set_union(sink, uset);
2990 for (i = graph->n_edge - 1; i >= 0; --i) {
2991 if (update_edge(graph, &graph->edge[i]) < 0)
2992 goto error;
2995 if (any)
2996 return unconditionalize_adjacent_validity(graph, source, sink);
2998 isl_union_set_free(source);
2999 isl_union_set_free(sink);
3000 return 0;
3001 error:
3002 isl_union_set_free(source);
3003 isl_union_set_free(sink);
3004 return -1;
3007 static void next_band(struct isl_sched_graph *graph)
3009 graph->band_start = graph->n_total_row;
3012 /* Return the union of the universe domains of the nodes in "graph"
3013 * that satisfy "pred".
3015 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3016 struct isl_sched_graph *graph,
3017 int (*pred)(struct isl_sched_node *node, int data), int data)
3019 int i;
3020 isl_set *set;
3021 isl_union_set *dom;
3023 for (i = 0; i < graph->n; ++i)
3024 if (pred(&graph->node[i], data))
3025 break;
3027 if (i >= graph->n)
3028 isl_die(ctx, isl_error_internal,
3029 "empty component", return NULL);
3031 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3032 dom = isl_union_set_from_set(set);
3034 for (i = i + 1; i < graph->n; ++i) {
3035 if (!pred(&graph->node[i], data))
3036 continue;
3037 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3038 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3041 return dom;
3044 /* Return a list of unions of universe domains, where each element
3045 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3047 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3048 struct isl_sched_graph *graph)
3050 int i;
3051 isl_union_set_list *filters;
3053 filters = isl_union_set_list_alloc(ctx, graph->scc);
3054 for (i = 0; i < graph->scc; ++i) {
3055 isl_union_set *dom;
3057 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3058 filters = isl_union_set_list_add(filters, dom);
3061 return filters;
3064 /* Return a list of two unions of universe domains, one for the SCCs up
3065 * to and including graph->src_scc and another for the other SCCs.
3067 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3068 struct isl_sched_graph *graph)
3070 isl_union_set *dom;
3071 isl_union_set_list *filters;
3073 filters = isl_union_set_list_alloc(ctx, 2);
3074 dom = isl_sched_graph_domain(ctx, graph,
3075 &node_scc_at_most, graph->src_scc);
3076 filters = isl_union_set_list_add(filters, dom);
3077 dom = isl_sched_graph_domain(ctx, graph,
3078 &node_scc_at_least, graph->src_scc + 1);
3079 filters = isl_union_set_list_add(filters, dom);
3081 return filters;
3084 /* Copy nodes that satisfy node_pred from the src dependence graph
3085 * to the dst dependence graph.
3087 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3088 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3090 int i;
3092 dst->n = 0;
3093 for (i = 0; i < src->n; ++i) {
3094 int j;
3096 if (!node_pred(&src->node[i], data))
3097 continue;
3099 j = dst->n;
3100 dst->node[j].space = isl_space_copy(src->node[i].space);
3101 dst->node[j].compressed = src->node[i].compressed;
3102 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3103 dst->node[j].compress =
3104 isl_multi_aff_copy(src->node[i].compress);
3105 dst->node[j].decompress =
3106 isl_multi_aff_copy(src->node[i].decompress);
3107 dst->node[j].nvar = src->node[i].nvar;
3108 dst->node[j].nparam = src->node[i].nparam;
3109 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3110 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3111 dst->node[j].coincident = src->node[i].coincident;
3112 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3113 dst->node[j].max = isl_vec_copy(src->node[i].max);
3114 dst->n++;
3116 if (!dst->node[j].space || !dst->node[j].sched)
3117 return -1;
3118 if (dst->node[j].compressed &&
3119 (!dst->node[j].hull || !dst->node[j].compress ||
3120 !dst->node[j].decompress))
3121 return -1;
3124 return 0;
3127 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3128 * to the dst dependence graph.
3129 * If the source or destination node of the edge is not in the destination
3130 * graph, then it must be a backward proximity edge and it should simply
3131 * be ignored.
3133 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3134 struct isl_sched_graph *src,
3135 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3137 int i;
3138 enum isl_edge_type t;
3140 dst->n_edge = 0;
3141 for (i = 0; i < src->n_edge; ++i) {
3142 struct isl_sched_edge *edge = &src->edge[i];
3143 isl_map *map;
3144 isl_union_map *tagged_condition;
3145 isl_union_map *tagged_validity;
3146 struct isl_sched_node *dst_src, *dst_dst;
3148 if (!edge_pred(edge, data))
3149 continue;
3151 if (isl_map_plain_is_empty(edge->map))
3152 continue;
3154 dst_src = graph_find_node(ctx, dst, edge->src->space);
3155 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3156 if (!dst_src || !dst_dst) {
3157 if (is_validity(edge) || is_conditional_validity(edge))
3158 isl_die(ctx, isl_error_internal,
3159 "backward (conditional) validity edge",
3160 return -1);
3161 continue;
3164 map = isl_map_copy(edge->map);
3165 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3166 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3168 dst->edge[dst->n_edge].src = dst_src;
3169 dst->edge[dst->n_edge].dst = dst_dst;
3170 dst->edge[dst->n_edge].map = map;
3171 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3172 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3173 dst->edge[dst->n_edge].types = edge->types;
3174 dst->n_edge++;
3176 if (edge->tagged_condition && !tagged_condition)
3177 return -1;
3178 if (edge->tagged_validity && !tagged_validity)
3179 return -1;
3181 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3182 if (edge !=
3183 graph_find_edge(src, t, edge->src, edge->dst))
3184 continue;
3185 if (graph_edge_table_add(ctx, dst, t,
3186 &dst->edge[dst->n_edge - 1]) < 0)
3187 return -1;
3191 return 0;
3194 /* Compute the maximal number of variables over all nodes.
3195 * This is the maximal number of linearly independent schedule
3196 * rows that we need to compute.
3197 * Just in case we end up in a part of the dependence graph
3198 * with only lower-dimensional domains, we make sure we will
3199 * compute the required amount of extra linearly independent rows.
3201 static int compute_maxvar(struct isl_sched_graph *graph)
3203 int i;
3205 graph->maxvar = 0;
3206 for (i = 0; i < graph->n; ++i) {
3207 struct isl_sched_node *node = &graph->node[i];
3208 int nvar;
3210 if (node_update_cmap(node) < 0)
3211 return -1;
3212 nvar = node->nvar + graph->n_row - node->rank;
3213 if (nvar > graph->maxvar)
3214 graph->maxvar = nvar;
3217 return 0;
3220 /* Extract the subgraph of "graph" that consists of the node satisfying
3221 * "node_pred" and the edges satisfying "edge_pred" and store
3222 * the result in "sub".
3224 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3225 int (*node_pred)(struct isl_sched_node *node, int data),
3226 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3227 int data, struct isl_sched_graph *sub)
3229 int i, n = 0, n_edge = 0;
3230 int t;
3232 for (i = 0; i < graph->n; ++i)
3233 if (node_pred(&graph->node[i], data))
3234 ++n;
3235 for (i = 0; i < graph->n_edge; ++i)
3236 if (edge_pred(&graph->edge[i], data))
3237 ++n_edge;
3238 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3239 return -1;
3240 if (copy_nodes(sub, graph, node_pred, data) < 0)
3241 return -1;
3242 if (graph_init_table(ctx, sub) < 0)
3243 return -1;
3244 for (t = 0; t <= isl_edge_last; ++t)
3245 sub->max_edge[t] = graph->max_edge[t];
3246 if (graph_init_edge_tables(ctx, sub) < 0)
3247 return -1;
3248 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3249 return -1;
3250 sub->n_row = graph->n_row;
3251 sub->max_row = graph->max_row;
3252 sub->n_total_row = graph->n_total_row;
3253 sub->band_start = graph->band_start;
3255 return 0;
3258 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3259 struct isl_sched_graph *graph);
3260 static __isl_give isl_schedule_node *compute_schedule_wcc(
3261 isl_schedule_node *node, struct isl_sched_graph *graph);
3263 /* Compute a schedule for a subgraph of "graph". In particular, for
3264 * the graph composed of nodes that satisfy node_pred and edges that
3265 * that satisfy edge_pred.
3266 * If the subgraph is known to consist of a single component, then wcc should
3267 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3268 * Otherwise, we call compute_schedule, which will check whether the subgraph
3269 * is connected.
3271 * The schedule is inserted at "node" and the updated schedule node
3272 * is returned.
3274 static __isl_give isl_schedule_node *compute_sub_schedule(
3275 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3276 struct isl_sched_graph *graph,
3277 int (*node_pred)(struct isl_sched_node *node, int data),
3278 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3279 int data, int wcc)
3281 struct isl_sched_graph split = { 0 };
3283 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3284 &split) < 0)
3285 goto error;
3287 if (wcc)
3288 node = compute_schedule_wcc(node, &split);
3289 else
3290 node = compute_schedule(node, &split);
3292 graph_free(ctx, &split);
3293 return node;
3294 error:
3295 graph_free(ctx, &split);
3296 return isl_schedule_node_free(node);
3299 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3301 return edge->src->scc == scc && edge->dst->scc == scc;
3304 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3306 return edge->dst->scc <= scc;
3309 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3311 return edge->src->scc >= scc;
3314 /* Reset the current band by dropping all its schedule rows.
3316 static int reset_band(struct isl_sched_graph *graph)
3318 int i;
3319 int drop;
3321 drop = graph->n_total_row - graph->band_start;
3322 graph->n_total_row -= drop;
3323 graph->n_row -= drop;
3325 for (i = 0; i < graph->n; ++i) {
3326 struct isl_sched_node *node = &graph->node[i];
3328 isl_map_free(node->sched_map);
3329 node->sched_map = NULL;
3331 node->sched = isl_mat_drop_rows(node->sched,
3332 graph->band_start, drop);
3334 if (!node->sched)
3335 return -1;
3338 return 0;
3341 /* Split the current graph into two parts and compute a schedule for each
3342 * part individually. In particular, one part consists of all SCCs up
3343 * to and including graph->src_scc, while the other part contains the other
3344 * SCCs. The split is enforced by a sequence node inserted at position "node"
3345 * in the schedule tree. Return the updated schedule node.
3346 * If either of these two parts consists of a sequence, then it is spliced
3347 * into the sequence containing the two parts.
3349 * The current band is reset. It would be possible to reuse
3350 * the previously computed rows as the first rows in the next
3351 * band, but recomputing them may result in better rows as we are looking
3352 * at a smaller part of the dependence graph.
3354 static __isl_give isl_schedule_node *compute_split_schedule(
3355 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3357 int is_seq;
3358 isl_ctx *ctx;
3359 isl_union_set_list *filters;
3361 if (!node)
3362 return NULL;
3364 if (reset_band(graph) < 0)
3365 return isl_schedule_node_free(node);
3367 next_band(graph);
3369 ctx = isl_schedule_node_get_ctx(node);
3370 filters = extract_split(ctx, graph);
3371 node = isl_schedule_node_insert_sequence(node, filters);
3372 node = isl_schedule_node_child(node, 1);
3373 node = isl_schedule_node_child(node, 0);
3375 node = compute_sub_schedule(node, ctx, graph,
3376 &node_scc_at_least, &edge_src_scc_at_least,
3377 graph->src_scc + 1, 0);
3378 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3379 node = isl_schedule_node_parent(node);
3380 node = isl_schedule_node_parent(node);
3381 if (is_seq)
3382 node = isl_schedule_node_sequence_splice_child(node, 1);
3383 node = isl_schedule_node_child(node, 0);
3384 node = isl_schedule_node_child(node, 0);
3385 node = compute_sub_schedule(node, ctx, graph,
3386 &node_scc_at_most, &edge_dst_scc_at_most,
3387 graph->src_scc, 0);
3388 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3389 node = isl_schedule_node_parent(node);
3390 node = isl_schedule_node_parent(node);
3391 if (is_seq)
3392 node = isl_schedule_node_sequence_splice_child(node, 0);
3394 return node;
3397 /* Insert a band node at position "node" in the schedule tree corresponding
3398 * to the current band in "graph". Mark the band node permutable
3399 * if "permutable" is set.
3400 * The partial schedules and the coincidence property are extracted
3401 * from the graph nodes.
3402 * Return the updated schedule node.
3404 static __isl_give isl_schedule_node *insert_current_band(
3405 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3406 int permutable)
3408 int i;
3409 int start, end, n;
3410 isl_multi_aff *ma;
3411 isl_multi_pw_aff *mpa;
3412 isl_multi_union_pw_aff *mupa;
3414 if (!node)
3415 return NULL;
3417 if (graph->n < 1)
3418 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3419 "graph should have at least one node",
3420 return isl_schedule_node_free(node));
3422 start = graph->band_start;
3423 end = graph->n_total_row;
3424 n = end - start;
3426 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3427 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3428 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3430 for (i = 1; i < graph->n; ++i) {
3431 isl_multi_union_pw_aff *mupa_i;
3433 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3434 start, n);
3435 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3436 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3437 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3439 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3441 for (i = 0; i < n; ++i)
3442 node = isl_schedule_node_band_member_set_coincident(node, i,
3443 graph->node[0].coincident[start + i]);
3444 node = isl_schedule_node_band_set_permutable(node, permutable);
3446 return node;
3449 /* Update the dependence relations based on the current schedule,
3450 * add the current band to "node" and then continue with the computation
3451 * of the next band.
3452 * Return the updated schedule node.
3454 static __isl_give isl_schedule_node *compute_next_band(
3455 __isl_take isl_schedule_node *node,
3456 struct isl_sched_graph *graph, int permutable)
3458 isl_ctx *ctx;
3460 if (!node)
3461 return NULL;
3463 ctx = isl_schedule_node_get_ctx(node);
3464 if (update_edges(ctx, graph) < 0)
3465 return isl_schedule_node_free(node);
3466 node = insert_current_band(node, graph, permutable);
3467 next_band(graph);
3469 node = isl_schedule_node_child(node, 0);
3470 node = compute_schedule(node, graph);
3471 node = isl_schedule_node_parent(node);
3473 return node;
3476 /* Add constraints to graph->lp that force the dependence "map" (which
3477 * is part of the dependence relation of "edge")
3478 * to be respected and attempt to carry it, where the edge is one from
3479 * a node j to itself. "pos" is the sequence number of the given map.
3480 * That is, add constraints that enforce
3482 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3483 * = c_j_x (y - x) >= e_i
3485 * for each (x,y) in R.
3486 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3487 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3488 * with each coefficient in c_j_x represented as a pair of non-negative
3489 * coefficients.
3491 static int add_intra_constraints(struct isl_sched_graph *graph,
3492 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3494 int offset;
3495 isl_ctx *ctx = isl_map_get_ctx(map);
3496 isl_dim_map *dim_map;
3497 isl_basic_set *coef;
3498 struct isl_sched_node *node = edge->src;
3500 coef = intra_coefficients(graph, node, map);
3501 if (!coef)
3502 return -1;
3504 offset = coef_var_offset(coef);
3505 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3506 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3507 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3508 coef->n_eq, coef->n_ineq);
3509 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3510 coef, dim_map);
3512 return 0;
3515 /* Add constraints to graph->lp that force the dependence "map" (which
3516 * is part of the dependence relation of "edge")
3517 * to be respected and attempt to carry it, where the edge is one from
3518 * node j to node k. "pos" is the sequence number of the given map.
3519 * That is, add constraints that enforce
3521 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3523 * for each (x,y) in R.
3524 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3525 * of valid constraints for R and then plug in
3526 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3527 * with each coefficient (except e_i, c_*_0 and c_*_n)
3528 * represented as a pair of non-negative coefficients.
3530 static int add_inter_constraints(struct isl_sched_graph *graph,
3531 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3533 int offset;
3534 isl_ctx *ctx = isl_map_get_ctx(map);
3535 isl_dim_map *dim_map;
3536 isl_basic_set *coef;
3537 struct isl_sched_node *src = edge->src;
3538 struct isl_sched_node *dst = edge->dst;
3540 coef = inter_coefficients(graph, edge, map);
3541 if (!coef)
3542 return -1;
3544 offset = coef_var_offset(coef);
3545 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3546 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3547 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3548 coef->n_eq, coef->n_ineq);
3549 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3550 coef, dim_map);
3552 return 0;
3555 /* Add constraints to graph->lp that force all (conditional) validity
3556 * dependences to be respected and attempt to carry them.
3558 static isl_stat add_all_constraints(struct isl_sched_graph *graph)
3560 int i, j;
3561 int pos;
3563 pos = 0;
3564 for (i = 0; i < graph->n_edge; ++i) {
3565 struct isl_sched_edge *edge= &graph->edge[i];
3567 if (!is_any_validity(edge))
3568 continue;
3570 for (j = 0; j < edge->map->n; ++j) {
3571 isl_basic_map *bmap;
3572 isl_map *map;
3574 bmap = isl_basic_map_copy(edge->map->p[j]);
3575 map = isl_map_from_basic_map(bmap);
3577 if (edge->src == edge->dst &&
3578 add_intra_constraints(graph, edge, map, pos) < 0)
3579 return isl_stat_error;
3580 if (edge->src != edge->dst &&
3581 add_inter_constraints(graph, edge, map, pos) < 0)
3582 return isl_stat_error;
3583 ++pos;
3587 return isl_stat_ok;
3590 /* Count the number of equality and inequality constraints
3591 * that will be added to the carry_lp problem.
3592 * We count each edge exactly once.
3594 static isl_stat count_all_constraints(struct isl_sched_graph *graph,
3595 int *n_eq, int *n_ineq)
3597 int i, j;
3599 *n_eq = *n_ineq = 0;
3600 for (i = 0; i < graph->n_edge; ++i) {
3601 struct isl_sched_edge *edge= &graph->edge[i];
3603 if (!is_any_validity(edge))
3604 continue;
3606 for (j = 0; j < edge->map->n; ++j) {
3607 isl_basic_map *bmap;
3608 isl_map *map;
3610 bmap = isl_basic_map_copy(edge->map->p[j]);
3611 map = isl_map_from_basic_map(bmap);
3613 if (count_map_constraints(graph, edge, map,
3614 n_eq, n_ineq, 1, 0) < 0)
3615 return isl_stat_error;
3619 return isl_stat_ok;
3622 /* Return the total number of (validity) edges that carry_dependences will
3623 * attempt to carry.
3625 static int count_carry_edges(struct isl_sched_graph *graph)
3627 int i;
3628 int n_edge;
3630 n_edge = 0;
3631 for (i = 0; i < graph->n_edge; ++i) {
3632 struct isl_sched_edge *edge = &graph->edge[i];
3634 if (!is_any_validity(edge))
3635 continue;
3637 n_edge += isl_map_n_basic_map(edge->map);
3640 return n_edge;
3643 /* Construct an LP problem for finding schedule coefficients
3644 * such that the schedule carries as many validity dependences as possible.
3645 * In particular, for each dependence i, we bound the dependence distance
3646 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3647 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3648 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3649 * Note that if the dependence relation is a union of basic maps,
3650 * then we have to consider each basic map individually as it may only
3651 * be possible to carry the dependences expressed by some of those
3652 * basic maps and not all of them.
3653 * Below, we consider each of those basic maps as a separate "edge".
3654 * "n_edge" is the number of these edges.
3656 * All variables of the LP are non-negative. The actual coefficients
3657 * may be negative, so each coefficient is represented as the difference
3658 * of two non-negative variables. The negative part always appears
3659 * immediately before the positive part.
3660 * Other than that, the variables have the following order
3662 * - sum of (1 - e_i) over all edges
3663 * - sum of all c_n coefficients
3664 * (unconstrained when computing non-parametric schedules)
3665 * - sum of positive and negative parts of all c_x coefficients
3666 * - for each edge
3667 * - e_i
3668 * - for each node
3669 * - c_i_0
3670 * - c_i_n (if parametric)
3671 * - positive and negative parts of c_i_x
3673 * The constraints are those from the (validity) edges plus three equalities
3674 * to express the sums and n_edge inequalities to express e_i <= 1.
3676 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
3677 int n_edge)
3679 int i;
3680 int k;
3681 isl_space *dim;
3682 unsigned total;
3683 int n_eq, n_ineq;
3685 total = 3 + n_edge;
3686 for (i = 0; i < graph->n; ++i) {
3687 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3688 node->start = total;
3689 total += 1 + node->nparam + 2 * node->nvar;
3692 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
3693 return isl_stat_error;
3695 dim = isl_space_set_alloc(ctx, 0, total);
3696 isl_basic_set_free(graph->lp);
3697 n_eq += 3;
3698 n_ineq += n_edge;
3699 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3700 graph->lp = isl_basic_set_set_rational(graph->lp);
3702 k = isl_basic_set_alloc_equality(graph->lp);
3703 if (k < 0)
3704 return isl_stat_error;
3705 isl_seq_clr(graph->lp->eq[k], 1 + total);
3706 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3707 isl_int_set_si(graph->lp->eq[k][1], 1);
3708 for (i = 0; i < n_edge; ++i)
3709 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3711 if (add_param_sum_constraint(graph, 1) < 0)
3712 return isl_stat_error;
3713 if (add_var_sum_constraint(graph, 2) < 0)
3714 return isl_stat_error;
3716 for (i = 0; i < n_edge; ++i) {
3717 k = isl_basic_set_alloc_inequality(graph->lp);
3718 if (k < 0)
3719 return isl_stat_error;
3720 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3721 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3722 isl_int_set_si(graph->lp->ineq[k][0], 1);
3725 if (add_all_constraints(graph) < 0)
3726 return isl_stat_error;
3728 return isl_stat_ok;
3731 static __isl_give isl_schedule_node *compute_component_schedule(
3732 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3733 int wcc);
3735 /* Comparison function for sorting the statements based on
3736 * the corresponding value in "r".
3738 static int smaller_value(const void *a, const void *b, void *data)
3740 isl_vec *r = data;
3741 const int *i1 = a;
3742 const int *i2 = b;
3744 return isl_int_cmp(r->el[*i1], r->el[*i2]);
3747 /* If the schedule_split_scaled option is set and if the linear
3748 * parts of the scheduling rows for all nodes in the graphs have
3749 * a non-trivial common divisor, then split off the remainder of the
3750 * constant term modulo this common divisor from the linear part.
3751 * Otherwise, insert a band node directly and continue with
3752 * the construction of the schedule.
3754 * If a non-trivial common divisor is found, then
3755 * the linear part is reduced and the remainder is enforced
3756 * by a sequence node with the children placed in the order
3757 * of this remainder.
3758 * In particular, we assign an scc index based on the remainder and
3759 * then rely on compute_component_schedule to insert the sequence and
3760 * to continue the schedule construction on each part.
3762 static __isl_give isl_schedule_node *split_scaled(
3763 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3765 int i;
3766 int row;
3767 int scc;
3768 isl_ctx *ctx;
3769 isl_int gcd, gcd_i;
3770 isl_vec *r;
3771 int *order;
3773 if (!node)
3774 return NULL;
3776 ctx = isl_schedule_node_get_ctx(node);
3777 if (!ctx->opt->schedule_split_scaled)
3778 return compute_next_band(node, graph, 0);
3779 if (graph->n <= 1)
3780 return compute_next_band(node, graph, 0);
3782 isl_int_init(gcd);
3783 isl_int_init(gcd_i);
3785 isl_int_set_si(gcd, 0);
3787 row = isl_mat_rows(graph->node[0].sched) - 1;
3789 for (i = 0; i < graph->n; ++i) {
3790 struct isl_sched_node *node = &graph->node[i];
3791 int cols = isl_mat_cols(node->sched);
3793 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3794 isl_int_gcd(gcd, gcd, gcd_i);
3797 isl_int_clear(gcd_i);
3799 if (isl_int_cmp_si(gcd, 1) <= 0) {
3800 isl_int_clear(gcd);
3801 return compute_next_band(node, graph, 0);
3804 r = isl_vec_alloc(ctx, graph->n);
3805 order = isl_calloc_array(ctx, int, graph->n);
3806 if (!r || !order)
3807 goto error;
3809 for (i = 0; i < graph->n; ++i) {
3810 struct isl_sched_node *node = &graph->node[i];
3812 order[i] = i;
3813 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
3814 isl_int_fdiv_q(node->sched->row[row][0],
3815 node->sched->row[row][0], gcd);
3816 isl_int_mul(node->sched->row[row][0],
3817 node->sched->row[row][0], gcd);
3818 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3819 if (!node->sched)
3820 goto error;
3823 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
3824 goto error;
3826 scc = 0;
3827 for (i = 0; i < graph->n; ++i) {
3828 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
3829 ++scc;
3830 graph->node[order[i]].scc = scc;
3832 graph->scc = ++scc;
3833 graph->weak = 0;
3835 isl_int_clear(gcd);
3836 isl_vec_free(r);
3837 free(order);
3839 if (update_edges(ctx, graph) < 0)
3840 return isl_schedule_node_free(node);
3841 node = insert_current_band(node, graph, 0);
3842 next_band(graph);
3844 node = isl_schedule_node_child(node, 0);
3845 node = compute_component_schedule(node, graph, 0);
3846 node = isl_schedule_node_parent(node);
3848 return node;
3849 error:
3850 isl_vec_free(r);
3851 free(order);
3852 isl_int_clear(gcd);
3853 return isl_schedule_node_free(node);
3856 /* Is the schedule row "sol" trivial on node "node"?
3857 * That is, is the solution zero on the dimensions linearly independent of
3858 * the previously found solutions?
3859 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3861 * Each coefficient is represented as the difference between
3862 * two non-negative values in "sol". "sol" has been computed
3863 * in terms of the original iterators (i.e., without use of cmap).
3864 * We construct the schedule row s and write it as a linear
3865 * combination of (linear combinations of) previously computed schedule rows.
3866 * s = Q c or c = U s.
3867 * If the final entries of c are all zero, then the solution is trivial.
3869 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3871 int trivial;
3872 isl_vec *node_sol;
3874 if (!sol)
3875 return -1;
3876 if (node->nvar == node->rank)
3877 return 0;
3879 node_sol = extract_var_coef(node, sol);
3880 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3881 if (!node_sol)
3882 return -1;
3884 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3885 node->nvar - node->rank) == -1;
3887 isl_vec_free(node_sol);
3889 return trivial;
3892 /* Is the schedule row "sol" trivial on any node where it should
3893 * not be trivial?
3894 * "sol" has been computed in terms of the original iterators
3895 * (i.e., without use of cmap).
3896 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3898 static int is_any_trivial(struct isl_sched_graph *graph,
3899 __isl_keep isl_vec *sol)
3901 int i;
3903 for (i = 0; i < graph->n; ++i) {
3904 struct isl_sched_node *node = &graph->node[i];
3905 int trivial;
3907 if (!needs_row(graph, node))
3908 continue;
3909 trivial = is_trivial(node, sol);
3910 if (trivial < 0 || trivial)
3911 return trivial;
3914 return 0;
3917 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
3918 * If so, return the position of the coalesced dimension.
3919 * Otherwise, return node->nvar or -1 on error.
3921 * In particular, look for pairs of coefficients c_i and c_j such that
3922 * |c_j/c_i| >= size_i, i.e., |c_j| >= |c_i * size_i|.
3923 * If any such pair is found, then return i.
3924 * If size_i is infinity, then no check on c_i needs to be performed.
3926 static int find_node_coalescing(struct isl_sched_node *node,
3927 __isl_keep isl_vec *sol)
3929 int i, j;
3930 isl_int max;
3931 isl_vec *csol;
3933 if (node->nvar <= 1)
3934 return node->nvar;
3936 csol = extract_var_coef(node, sol);
3937 if (!csol)
3938 return -1;
3939 isl_int_init(max);
3940 for (i = 0; i < node->nvar; ++i) {
3941 isl_val *v;
3943 if (isl_int_is_zero(csol->el[i]))
3944 continue;
3945 v = isl_multi_val_get_val(node->sizes, i);
3946 if (!v)
3947 goto error;
3948 if (!isl_val_is_int(v)) {
3949 isl_val_free(v);
3950 continue;
3952 isl_int_mul(max, v->n, csol->el[i]);
3953 isl_val_free(v);
3955 for (j = 0; j < node->nvar; ++j) {
3956 if (j == i)
3957 continue;
3958 if (isl_int_abs_ge(csol->el[j], max))
3959 break;
3961 if (j < node->nvar)
3962 break;
3965 isl_int_clear(max);
3966 isl_vec_free(csol);
3967 return i;
3968 error:
3969 isl_int_clear(max);
3970 isl_vec_free(csol);
3971 return -1;
3974 /* Force the schedule coefficient at position "pos" of "node" to be zero
3975 * in "tl".
3976 * The coefficient is encoded as the difference between two non-negative
3977 * variables. Force these two variables to have the same value.
3979 static __isl_give isl_tab_lexmin *zero_out_node_coef(
3980 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
3982 int dim;
3983 isl_ctx *ctx;
3984 isl_vec *eq;
3986 ctx = isl_space_get_ctx(node->space);
3987 dim = isl_tab_lexmin_dim(tl);
3988 if (dim < 0)
3989 return isl_tab_lexmin_free(tl);
3990 eq = isl_vec_alloc(ctx, 1 + dim);
3991 eq = isl_vec_clr(eq);
3992 if (!eq)
3993 return isl_tab_lexmin_free(tl);
3995 pos = 1 + node_var_coef_offset(node) + 2 * pos;
3996 isl_int_set_si(eq->el[pos], 1);
3997 isl_int_set_si(eq->el[pos + 1], -1);
3998 tl = isl_tab_lexmin_add_eq(tl, eq->el);
3999 isl_vec_free(eq);
4001 return tl;
4004 /* Return the lexicographically smallest rational point in the basic set
4005 * from which "tl" was constructed, double checking that this input set
4006 * was not empty.
4008 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4010 isl_vec *sol;
4012 sol = isl_tab_lexmin_get_solution(tl);
4013 if (!sol)
4014 return NULL;
4015 if (sol->size == 0)
4016 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4017 "error in schedule construction",
4018 return isl_vec_free(sol));
4019 return sol;
4022 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4023 * carry any of the "n_edge" groups of dependences?
4024 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4025 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4026 * by the edge are carried by the solution.
4027 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4028 * one of those is carried.
4030 * Note that despite the fact that the problem is solved using a rational
4031 * solver, the solution is guaranteed to be integral.
4032 * Specifically, the dependence distance lower bounds e_i (and therefore
4033 * also their sum) are integers. See Lemma 5 of [1].
4035 * Any potential denominator of the sum is cleared by this function.
4036 * The denominator is not relevant for any of the other elements
4037 * in the solution.
4039 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4040 * Problem, Part II: Multi-Dimensional Time.
4041 * In Intl. Journal of Parallel Programming, 1992.
4043 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4045 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4046 isl_int_set_si(sol->el[0], 1);
4047 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4050 /* Return the lexicographically smallest rational point in "lp",
4051 * assuming that all variables are non-negative and performing some
4052 * additional sanity checks.
4053 * In particular, "lp" should not be empty by construction.
4054 * Double check that this is the case.
4055 * Also, check that dependences are carried for at least one of
4056 * the "n_edge" edges.
4058 * If the computed schedule performs loop coalescing on a given node,
4059 * i.e., if it is of the form
4061 * c_i i + c_j j + ...
4063 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4064 * to cut out this solution. Repeat this process until no more loop
4065 * coalescing occurs or until no more dependences can be carried.
4066 * In the latter case, revert to the previously computed solution.
4068 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4069 __isl_take isl_basic_set *lp, int n_edge)
4071 int i, pos;
4072 isl_ctx *ctx;
4073 isl_tab_lexmin *tl;
4074 isl_vec *sol, *prev = NULL;
4075 int treat_coalescing;
4077 if (!lp)
4078 return NULL;
4079 ctx = isl_basic_set_get_ctx(lp);
4080 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4081 tl = isl_tab_lexmin_from_basic_set(lp);
4083 do {
4084 sol = non_empty_solution(tl);
4085 if (!sol)
4086 goto error;
4088 if (!carries_dependences(sol, n_edge)) {
4089 if (!prev)
4090 isl_die(ctx, isl_error_unknown,
4091 "unable to carry dependences",
4092 goto error);
4093 isl_vec_free(sol);
4094 sol = prev;
4095 break;
4097 prev = isl_vec_free(prev);
4098 if (!treat_coalescing)
4099 break;
4100 for (i = 0; i < graph->n; ++i) {
4101 struct isl_sched_node *node = &graph->node[i];
4103 pos = find_node_coalescing(node, sol);
4104 if (pos < 0)
4105 goto error;
4106 if (pos < node->nvar)
4107 break;
4109 if (i < graph->n) {
4110 prev = sol;
4111 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4113 } while (i < graph->n);
4115 isl_tab_lexmin_free(tl);
4117 return sol;
4118 error:
4119 isl_tab_lexmin_free(tl);
4120 isl_vec_free(prev);
4121 isl_vec_free(sol);
4122 return NULL;
4125 /* Construct a schedule row for each node such that as many validity dependences
4126 * as possible are carried and then continue with the next band.
4128 * If there are no validity dependences, then no dependence can be carried and
4129 * the procedure is guaranteed to fail. If there is more than one component,
4130 * then try computing a schedule on each component separately
4131 * to prevent or at least postpone this failure.
4133 * If the computed schedule row turns out to be trivial on one or
4134 * more nodes where it should not be trivial, then we throw it away
4135 * and try again on each component separately.
4137 * If there is only one component, then we accept the schedule row anyway,
4138 * but we do not consider it as a complete row and therefore do not
4139 * increment graph->n_row. Note that the ranks of the nodes that
4140 * do get a non-trivial schedule part will get updated regardless and
4141 * graph->maxvar is computed based on these ranks. The test for
4142 * whether more schedule rows are required in compute_schedule_wcc
4143 * is therefore not affected.
4145 * Insert a band corresponding to the schedule row at position "node"
4146 * of the schedule tree and continue with the construction of the schedule.
4147 * This insertion and the continued construction is performed by split_scaled
4148 * after optionally checking for non-trivial common divisors.
4150 static __isl_give isl_schedule_node *carry_dependences(
4151 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4153 int n_edge;
4154 int trivial;
4155 isl_ctx *ctx;
4156 isl_vec *sol;
4157 isl_basic_set *lp;
4159 if (!node)
4160 return NULL;
4162 n_edge = count_carry_edges(graph);
4163 if (n_edge == 0 && graph->scc > 1)
4164 return compute_component_schedule(node, graph, 1);
4166 ctx = isl_schedule_node_get_ctx(node);
4167 if (setup_carry_lp(ctx, graph, n_edge) < 0)
4168 return isl_schedule_node_free(node);
4170 lp = isl_basic_set_copy(graph->lp);
4171 sol = non_neg_lexmin(graph, lp, n_edge);
4172 if (!sol)
4173 return isl_schedule_node_free(node);
4175 trivial = is_any_trivial(graph, sol);
4176 if (trivial < 0) {
4177 sol = isl_vec_free(sol);
4178 } else if (trivial && graph->scc > 1) {
4179 isl_vec_free(sol);
4180 return compute_component_schedule(node, graph, 1);
4183 if (update_schedule(graph, sol, 0, 0) < 0)
4184 return isl_schedule_node_free(node);
4185 if (trivial)
4186 graph->n_row--;
4188 return split_scaled(node, graph);
4191 /* Topologically sort statements mapped to the same schedule iteration
4192 * and add insert a sequence node in front of "node"
4193 * corresponding to this order.
4194 * If "initialized" is set, then it may be assumed that compute_maxvar
4195 * has been called on the current band. Otherwise, call
4196 * compute_maxvar if and before carry_dependences gets called.
4198 * If it turns out to be impossible to sort the statements apart,
4199 * because different dependences impose different orderings
4200 * on the statements, then we extend the schedule such that
4201 * it carries at least one more dependence.
4203 static __isl_give isl_schedule_node *sort_statements(
4204 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4205 int initialized)
4207 isl_ctx *ctx;
4208 isl_union_set_list *filters;
4210 if (!node)
4211 return NULL;
4213 ctx = isl_schedule_node_get_ctx(node);
4214 if (graph->n < 1)
4215 isl_die(ctx, isl_error_internal,
4216 "graph should have at least one node",
4217 return isl_schedule_node_free(node));
4219 if (graph->n == 1)
4220 return node;
4222 if (update_edges(ctx, graph) < 0)
4223 return isl_schedule_node_free(node);
4225 if (graph->n_edge == 0)
4226 return node;
4228 if (detect_sccs(ctx, graph) < 0)
4229 return isl_schedule_node_free(node);
4231 next_band(graph);
4232 if (graph->scc < graph->n) {
4233 if (!initialized && compute_maxvar(graph) < 0)
4234 return isl_schedule_node_free(node);
4235 return carry_dependences(node, graph);
4238 filters = extract_sccs(ctx, graph);
4239 node = isl_schedule_node_insert_sequence(node, filters);
4241 return node;
4244 /* Are there any (non-empty) (conditional) validity edges in the graph?
4246 static int has_validity_edges(struct isl_sched_graph *graph)
4248 int i;
4250 for (i = 0; i < graph->n_edge; ++i) {
4251 int empty;
4253 empty = isl_map_plain_is_empty(graph->edge[i].map);
4254 if (empty < 0)
4255 return -1;
4256 if (empty)
4257 continue;
4258 if (is_any_validity(&graph->edge[i]))
4259 return 1;
4262 return 0;
4265 /* Should we apply a Feautrier step?
4266 * That is, did the user request the Feautrier algorithm and are
4267 * there any validity dependences (left)?
4269 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4271 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4272 return 0;
4274 return has_validity_edges(graph);
4277 /* Compute a schedule for a connected dependence graph using Feautrier's
4278 * multi-dimensional scheduling algorithm and return the updated schedule node.
4280 * The original algorithm is described in [1].
4281 * The main idea is to minimize the number of scheduling dimensions, by
4282 * trying to satisfy as many dependences as possible per scheduling dimension.
4284 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4285 * Problem, Part II: Multi-Dimensional Time.
4286 * In Intl. Journal of Parallel Programming, 1992.
4288 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4289 isl_schedule_node *node, struct isl_sched_graph *graph)
4291 return carry_dependences(node, graph);
4294 /* Turn off the "local" bit on all (condition) edges.
4296 static void clear_local_edges(struct isl_sched_graph *graph)
4298 int i;
4300 for (i = 0; i < graph->n_edge; ++i)
4301 if (is_condition(&graph->edge[i]))
4302 clear_local(&graph->edge[i]);
4305 /* Does "graph" have both condition and conditional validity edges?
4307 static int need_condition_check(struct isl_sched_graph *graph)
4309 int i;
4310 int any_condition = 0;
4311 int any_conditional_validity = 0;
4313 for (i = 0; i < graph->n_edge; ++i) {
4314 if (is_condition(&graph->edge[i]))
4315 any_condition = 1;
4316 if (is_conditional_validity(&graph->edge[i]))
4317 any_conditional_validity = 1;
4320 return any_condition && any_conditional_validity;
4323 /* Does "graph" contain any coincidence edge?
4325 static int has_any_coincidence(struct isl_sched_graph *graph)
4327 int i;
4329 for (i = 0; i < graph->n_edge; ++i)
4330 if (is_coincidence(&graph->edge[i]))
4331 return 1;
4333 return 0;
4336 /* Extract the final schedule row as a map with the iteration domain
4337 * of "node" as domain.
4339 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4341 isl_multi_aff *ma;
4342 int row;
4344 row = isl_mat_rows(node->sched) - 1;
4345 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
4346 return isl_map_from_multi_aff(ma);
4349 /* Is the conditional validity dependence in the edge with index "edge_index"
4350 * violated by the latest (i.e., final) row of the schedule?
4351 * That is, is i scheduled after j
4352 * for any conditional validity dependence i -> j?
4354 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4356 isl_map *src_sched, *dst_sched, *map;
4357 struct isl_sched_edge *edge = &graph->edge[edge_index];
4358 int empty;
4360 src_sched = final_row(edge->src);
4361 dst_sched = final_row(edge->dst);
4362 map = isl_map_copy(edge->map);
4363 map = isl_map_apply_domain(map, src_sched);
4364 map = isl_map_apply_range(map, dst_sched);
4365 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4366 empty = isl_map_is_empty(map);
4367 isl_map_free(map);
4369 if (empty < 0)
4370 return -1;
4372 return !empty;
4375 /* Does "graph" have any satisfied condition edges that
4376 * are adjacent to the conditional validity constraint with
4377 * domain "conditional_source" and range "conditional_sink"?
4379 * A satisfied condition is one that is not local.
4380 * If a condition was forced to be local already (i.e., marked as local)
4381 * then there is no need to check if it is in fact local.
4383 * Additionally, mark all adjacent condition edges found as local.
4385 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4386 __isl_keep isl_union_set *conditional_source,
4387 __isl_keep isl_union_set *conditional_sink)
4389 int i;
4390 int any = 0;
4392 for (i = 0; i < graph->n_edge; ++i) {
4393 int adjacent, local;
4394 isl_union_map *condition;
4396 if (!is_condition(&graph->edge[i]))
4397 continue;
4398 if (is_local(&graph->edge[i]))
4399 continue;
4401 condition = graph->edge[i].tagged_condition;
4402 adjacent = domain_intersects(condition, conditional_sink);
4403 if (adjacent >= 0 && !adjacent)
4404 adjacent = range_intersects(condition,
4405 conditional_source);
4406 if (adjacent < 0)
4407 return -1;
4408 if (!adjacent)
4409 continue;
4411 set_local(&graph->edge[i]);
4413 local = is_condition_false(&graph->edge[i]);
4414 if (local < 0)
4415 return -1;
4416 if (!local)
4417 any = 1;
4420 return any;
4423 /* Are there any violated conditional validity dependences with
4424 * adjacent condition dependences that are not local with respect
4425 * to the current schedule?
4426 * That is, is the conditional validity constraint violated?
4428 * Additionally, mark all those adjacent condition dependences as local.
4429 * We also mark those adjacent condition dependences that were not marked
4430 * as local before, but just happened to be local already. This ensures
4431 * that they remain local if the schedule is recomputed.
4433 * We first collect domain and range of all violated conditional validity
4434 * dependences and then check if there are any adjacent non-local
4435 * condition dependences.
4437 static int has_violated_conditional_constraint(isl_ctx *ctx,
4438 struct isl_sched_graph *graph)
4440 int i;
4441 int any = 0;
4442 isl_union_set *source, *sink;
4444 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4445 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4446 for (i = 0; i < graph->n_edge; ++i) {
4447 isl_union_set *uset;
4448 isl_union_map *umap;
4449 int violated;
4451 if (!is_conditional_validity(&graph->edge[i]))
4452 continue;
4454 violated = is_violated(graph, i);
4455 if (violated < 0)
4456 goto error;
4457 if (!violated)
4458 continue;
4460 any = 1;
4462 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4463 uset = isl_union_map_domain(umap);
4464 source = isl_union_set_union(source, uset);
4465 source = isl_union_set_coalesce(source);
4467 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4468 uset = isl_union_map_range(umap);
4469 sink = isl_union_set_union(sink, uset);
4470 sink = isl_union_set_coalesce(sink);
4473 if (any)
4474 any = has_adjacent_true_conditions(graph, source, sink);
4476 isl_union_set_free(source);
4477 isl_union_set_free(sink);
4478 return any;
4479 error:
4480 isl_union_set_free(source);
4481 isl_union_set_free(sink);
4482 return -1;
4485 /* Examine the current band (the rows between graph->band_start and
4486 * graph->n_total_row), deciding whether to drop it or add it to "node"
4487 * and then continue with the computation of the next band, if any.
4488 * If "initialized" is set, then it may be assumed that compute_maxvar
4489 * has been called on the current band. Otherwise, call
4490 * compute_maxvar if and before carry_dependences gets called.
4492 * The caller keeps looking for a new row as long as
4493 * graph->n_row < graph->maxvar. If the latest attempt to find
4494 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4495 * then we either
4496 * - split between SCCs and start over (assuming we found an interesting
4497 * pair of SCCs between which to split)
4498 * - continue with the next band (assuming the current band has at least
4499 * one row)
4500 * - try to carry as many dependences as possible and continue with the next
4501 * band
4502 * In each case, we first insert a band node in the schedule tree
4503 * if any rows have been computed.
4505 * If the caller managed to complete the schedule, we insert a band node
4506 * (if any schedule rows were computed) and we finish off by topologically
4507 * sorting the statements based on the remaining dependences.
4509 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4510 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4511 int initialized)
4513 int insert;
4515 if (!node)
4516 return NULL;
4518 if (graph->n_row < graph->maxvar) {
4519 isl_ctx *ctx;
4520 int empty = graph->n_total_row == graph->band_start;
4522 ctx = isl_schedule_node_get_ctx(node);
4523 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4524 return compute_next_band(node, graph, 1);
4525 if (graph->src_scc >= 0)
4526 return compute_split_schedule(node, graph);
4527 if (!empty)
4528 return compute_next_band(node, graph, 1);
4529 if (!initialized && compute_maxvar(graph) < 0)
4530 return isl_schedule_node_free(node);
4531 return carry_dependences(node, graph);
4534 insert = graph->n_total_row > graph->band_start;
4535 if (insert) {
4536 node = insert_current_band(node, graph, 1);
4537 node = isl_schedule_node_child(node, 0);
4539 node = sort_statements(node, graph, initialized);
4540 if (insert)
4541 node = isl_schedule_node_parent(node);
4543 return node;
4546 /* Construct a band of schedule rows for a connected dependence graph.
4547 * The caller is responsible for determining the strongly connected
4548 * components and calling compute_maxvar first.
4550 * We try to find a sequence of as many schedule rows as possible that result
4551 * in non-negative dependence distances (independent of the previous rows
4552 * in the sequence, i.e., such that the sequence is tilable), with as
4553 * many of the initial rows as possible satisfying the coincidence constraints.
4554 * The computation stops if we can't find any more rows or if we have found
4555 * all the rows we wanted to find.
4557 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4558 * outermost dimension to satisfy the coincidence constraints. If this
4559 * turns out to be impossible, we fall back on the general scheme above
4560 * and try to carry as many dependences as possible.
4562 * If "graph" contains both condition and conditional validity dependences,
4563 * then we need to check that that the conditional schedule constraint
4564 * is satisfied, i.e., there are no violated conditional validity dependences
4565 * that are adjacent to any non-local condition dependences.
4566 * If there are, then we mark all those adjacent condition dependences
4567 * as local and recompute the current band. Those dependences that
4568 * are marked local will then be forced to be local.
4569 * The initial computation is performed with no dependences marked as local.
4570 * If we are lucky, then there will be no violated conditional validity
4571 * dependences adjacent to any non-local condition dependences.
4572 * Otherwise, we mark some additional condition dependences as local and
4573 * recompute. We continue this process until there are no violations left or
4574 * until we are no longer able to compute a schedule.
4575 * Since there are only a finite number of dependences,
4576 * there will only be a finite number of iterations.
4578 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
4579 struct isl_sched_graph *graph)
4581 int has_coincidence;
4582 int use_coincidence;
4583 int force_coincidence = 0;
4584 int check_conditional;
4586 if (sort_sccs(graph) < 0)
4587 return isl_stat_error;
4589 clear_local_edges(graph);
4590 check_conditional = need_condition_check(graph);
4591 has_coincidence = has_any_coincidence(graph);
4593 if (ctx->opt->schedule_outer_coincidence)
4594 force_coincidence = 1;
4596 use_coincidence = has_coincidence;
4597 while (graph->n_row < graph->maxvar) {
4598 isl_vec *sol;
4599 int violated;
4600 int coincident;
4602 graph->src_scc = -1;
4603 graph->dst_scc = -1;
4605 if (setup_lp(ctx, graph, use_coincidence) < 0)
4606 return isl_stat_error;
4607 sol = solve_lp(graph);
4608 if (!sol)
4609 return isl_stat_error;
4610 if (sol->size == 0) {
4611 int empty = graph->n_total_row == graph->band_start;
4613 isl_vec_free(sol);
4614 if (use_coincidence && (!force_coincidence || !empty)) {
4615 use_coincidence = 0;
4616 continue;
4618 return isl_stat_ok;
4620 coincident = !has_coincidence || use_coincidence;
4621 if (update_schedule(graph, sol, 1, coincident) < 0)
4622 return isl_stat_error;
4624 if (!check_conditional)
4625 continue;
4626 violated = has_violated_conditional_constraint(ctx, graph);
4627 if (violated < 0)
4628 return isl_stat_error;
4629 if (!violated)
4630 continue;
4631 if (reset_band(graph) < 0)
4632 return isl_stat_error;
4633 use_coincidence = has_coincidence;
4636 return isl_stat_ok;
4639 /* Compute a schedule for a connected dependence graph by considering
4640 * the graph as a whole and return the updated schedule node.
4642 * The actual schedule rows of the current band are computed by
4643 * compute_schedule_wcc_band. compute_schedule_finish_band takes
4644 * care of integrating the band into "node" and continuing
4645 * the computation.
4647 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
4648 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4650 isl_ctx *ctx;
4652 if (!node)
4653 return NULL;
4655 ctx = isl_schedule_node_get_ctx(node);
4656 if (compute_schedule_wcc_band(ctx, graph) < 0)
4657 return isl_schedule_node_free(node);
4659 return compute_schedule_finish_band(node, graph, 1);
4662 /* Clustering information used by compute_schedule_wcc_clustering.
4664 * "n" is the number of SCCs in the original dependence graph
4665 * "scc" is an array of "n" elements, each representing an SCC
4666 * of the original dependence graph. All entries in the same cluster
4667 * have the same number of schedule rows.
4668 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
4669 * where each cluster is represented by the index of the first SCC
4670 * in the cluster. Initially, each SCC belongs to a cluster containing
4671 * only that SCC.
4673 * "scc_in_merge" is used by merge_clusters_along_edge to keep
4674 * track of which SCCs need to be merged.
4676 * "cluster" contains the merged clusters of SCCs after the clustering
4677 * has completed.
4679 * "scc_node" is a temporary data structure used inside copy_partial.
4680 * For each SCC, it keeps track of the number of nodes in the SCC
4681 * that have already been copied.
4683 struct isl_clustering {
4684 int n;
4685 struct isl_sched_graph *scc;
4686 struct isl_sched_graph *cluster;
4687 int *scc_cluster;
4688 int *scc_node;
4689 int *scc_in_merge;
4692 /* Initialize the clustering data structure "c" from "graph".
4694 * In particular, allocate memory, extract the SCCs from "graph"
4695 * into c->scc, initialize scc_cluster and construct
4696 * a band of schedule rows for each SCC.
4697 * Within each SCC, there is only one SCC by definition.
4698 * Each SCC initially belongs to a cluster containing only that SCC.
4700 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
4701 struct isl_sched_graph *graph)
4703 int i;
4705 c->n = graph->scc;
4706 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4707 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4708 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
4709 c->scc_node = isl_calloc_array(ctx, int, c->n);
4710 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
4711 if (!c->scc || !c->cluster ||
4712 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
4713 return isl_stat_error;
4715 for (i = 0; i < c->n; ++i) {
4716 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
4717 &edge_scc_exactly, i, &c->scc[i]) < 0)
4718 return isl_stat_error;
4719 c->scc[i].scc = 1;
4720 if (compute_maxvar(&c->scc[i]) < 0)
4721 return isl_stat_error;
4722 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
4723 return isl_stat_error;
4724 c->scc_cluster[i] = i;
4727 return isl_stat_ok;
4730 /* Free all memory allocated for "c".
4732 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
4734 int i;
4736 if (c->scc)
4737 for (i = 0; i < c->n; ++i)
4738 graph_free(ctx, &c->scc[i]);
4739 free(c->scc);
4740 if (c->cluster)
4741 for (i = 0; i < c->n; ++i)
4742 graph_free(ctx, &c->cluster[i]);
4743 free(c->cluster);
4744 free(c->scc_cluster);
4745 free(c->scc_node);
4746 free(c->scc_in_merge);
4749 /* Should we refrain from merging the cluster in "graph" with
4750 * any other cluster?
4751 * In particular, is its current schedule band empty and incomplete.
4753 static int bad_cluster(struct isl_sched_graph *graph)
4755 return graph->n_row < graph->maxvar &&
4756 graph->n_total_row == graph->band_start;
4759 /* Return the index of an edge in "graph" that can be used to merge
4760 * two clusters in "c".
4761 * Return graph->n_edge if no such edge can be found.
4762 * Return -1 on error.
4764 * In particular, return a proximity edge between two clusters
4765 * that is not marked "no_merge" and such that neither of the
4766 * two clusters has an incomplete, empty band.
4768 * If there are multiple such edges, then try and find the most
4769 * appropriate edge to use for merging. In particular, pick the edge
4770 * with the greatest weight. If there are multiple of those,
4771 * then pick one with the shortest distance between
4772 * the two cluster representatives.
4774 static int find_proximity(struct isl_sched_graph *graph,
4775 struct isl_clustering *c)
4777 int i, best = graph->n_edge, best_dist, best_weight;
4779 for (i = 0; i < graph->n_edge; ++i) {
4780 struct isl_sched_edge *edge = &graph->edge[i];
4781 int dist, weight;
4783 if (!is_proximity(edge))
4784 continue;
4785 if (edge->no_merge)
4786 continue;
4787 if (bad_cluster(&c->scc[edge->src->scc]) ||
4788 bad_cluster(&c->scc[edge->dst->scc]))
4789 continue;
4790 dist = c->scc_cluster[edge->dst->scc] -
4791 c->scc_cluster[edge->src->scc];
4792 if (dist == 0)
4793 continue;
4794 weight = edge->weight;
4795 if (best < graph->n_edge) {
4796 if (best_weight > weight)
4797 continue;
4798 if (best_weight == weight && best_dist <= dist)
4799 continue;
4801 best = i;
4802 best_dist = dist;
4803 best_weight = weight;
4806 return best;
4809 /* Internal data structure used in mark_merge_sccs.
4811 * "graph" is the dependence graph in which a strongly connected
4812 * component is constructed.
4813 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
4814 * "src" and "dst" are the indices of the nodes that are being merged.
4816 struct isl_mark_merge_sccs_data {
4817 struct isl_sched_graph *graph;
4818 int *scc_cluster;
4819 int src;
4820 int dst;
4823 /* Check whether the cluster containing node "i" depends on the cluster
4824 * containing node "j". If "i" and "j" belong to the same cluster,
4825 * then they are taken to depend on each other to ensure that
4826 * the resulting strongly connected component consists of complete
4827 * clusters. Furthermore, if "i" and "j" are the two nodes that
4828 * are being merged, then they are taken to depend on each other as well.
4829 * Otherwise, check if there is a (conditional) validity dependence
4830 * from node[j] to node[i], forcing node[i] to follow node[j].
4832 static isl_bool cluster_follows(int i, int j, void *user)
4834 struct isl_mark_merge_sccs_data *data = user;
4835 struct isl_sched_graph *graph = data->graph;
4836 int *scc_cluster = data->scc_cluster;
4838 if (data->src == i && data->dst == j)
4839 return isl_bool_true;
4840 if (data->src == j && data->dst == i)
4841 return isl_bool_true;
4842 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
4843 return isl_bool_true;
4845 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
4848 /* Mark all SCCs that belong to either of the two clusters in "c"
4849 * connected by the edge in "graph" with index "edge", or to any
4850 * of the intermediate clusters.
4851 * The marking is recorded in c->scc_in_merge.
4853 * The given edge has been selected for merging two clusters,
4854 * meaning that there is at least a proximity edge between the two nodes.
4855 * However, there may also be (indirect) validity dependences
4856 * between the two nodes. When merging the two clusters, all clusters
4857 * containing one or more of the intermediate nodes along the
4858 * indirect validity dependences need to be merged in as well.
4860 * First collect all such nodes by computing the strongly connected
4861 * component (SCC) containing the two nodes connected by the edge, where
4862 * the two nodes are considered to depend on each other to make
4863 * sure they end up in the same SCC. Similarly, each node is considered
4864 * to depend on every other node in the same cluster to ensure
4865 * that the SCC consists of complete clusters.
4867 * Then the original SCCs that contain any of these nodes are marked
4868 * in c->scc_in_merge.
4870 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
4871 int edge, struct isl_clustering *c)
4873 struct isl_mark_merge_sccs_data data;
4874 struct isl_tarjan_graph *g;
4875 int i;
4877 for (i = 0; i < c->n; ++i)
4878 c->scc_in_merge[i] = 0;
4880 data.graph = graph;
4881 data.scc_cluster = c->scc_cluster;
4882 data.src = graph->edge[edge].src - graph->node;
4883 data.dst = graph->edge[edge].dst - graph->node;
4885 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
4886 &cluster_follows, &data);
4887 if (!g)
4888 goto error;
4890 i = g->op;
4891 if (i < 3)
4892 isl_die(ctx, isl_error_internal,
4893 "expecting at least two nodes in component",
4894 goto error);
4895 if (g->order[--i] != -1)
4896 isl_die(ctx, isl_error_internal,
4897 "expecting end of component marker", goto error);
4899 for (--i; i >= 0 && g->order[i] != -1; --i) {
4900 int scc = graph->node[g->order[i]].scc;
4901 c->scc_in_merge[scc] = 1;
4904 isl_tarjan_graph_free(g);
4905 return isl_stat_ok;
4906 error:
4907 isl_tarjan_graph_free(g);
4908 return isl_stat_error;
4911 /* Construct the identifier "cluster_i".
4913 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
4915 char name[40];
4917 snprintf(name, sizeof(name), "cluster_%d", i);
4918 return isl_id_alloc(ctx, name, NULL);
4921 /* Construct the space of the cluster with index "i" containing
4922 * the strongly connected component "scc".
4924 * In particular, construct a space called cluster_i with dimension equal
4925 * to the number of schedule rows in the current band of "scc".
4927 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
4929 int nvar;
4930 isl_space *space;
4931 isl_id *id;
4933 nvar = scc->n_total_row - scc->band_start;
4934 space = isl_space_copy(scc->node[0].space);
4935 space = isl_space_params(space);
4936 space = isl_space_set_from_params(space);
4937 space = isl_space_add_dims(space, isl_dim_set, nvar);
4938 id = cluster_id(isl_space_get_ctx(space), i);
4939 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4941 return space;
4944 /* Collect the domain of the graph for merging clusters.
4946 * In particular, for each cluster with first SCC "i", construct
4947 * a set in the space called cluster_i with dimension equal
4948 * to the number of schedule rows in the current band of the cluster.
4950 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
4951 struct isl_sched_graph *graph, struct isl_clustering *c)
4953 int i;
4954 isl_space *space;
4955 isl_union_set *domain;
4957 space = isl_space_params_alloc(ctx, 0);
4958 domain = isl_union_set_empty(space);
4960 for (i = 0; i < graph->scc; ++i) {
4961 isl_space *space;
4963 if (!c->scc_in_merge[i])
4964 continue;
4965 if (c->scc_cluster[i] != i)
4966 continue;
4967 space = cluster_space(&c->scc[i], i);
4968 domain = isl_union_set_add_set(domain, isl_set_universe(space));
4971 return domain;
4974 /* Construct a map from the original instances to the corresponding
4975 * cluster instance in the current bands of the clusters in "c".
4977 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
4978 struct isl_sched_graph *graph, struct isl_clustering *c)
4980 int i, j;
4981 isl_space *space;
4982 isl_union_map *cluster_map;
4984 space = isl_space_params_alloc(ctx, 0);
4985 cluster_map = isl_union_map_empty(space);
4986 for (i = 0; i < graph->scc; ++i) {
4987 int start, n;
4988 isl_id *id;
4990 if (!c->scc_in_merge[i])
4991 continue;
4993 id = cluster_id(ctx, c->scc_cluster[i]);
4994 start = c->scc[i].band_start;
4995 n = c->scc[i].n_total_row - start;
4996 for (j = 0; j < c->scc[i].n; ++j) {
4997 isl_multi_aff *ma;
4998 isl_map *map;
4999 struct isl_sched_node *node = &c->scc[i].node[j];
5001 ma = node_extract_partial_schedule_multi_aff(node,
5002 start, n);
5003 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5004 isl_id_copy(id));
5005 map = isl_map_from_multi_aff(ma);
5006 cluster_map = isl_union_map_add_map(cluster_map, map);
5008 isl_id_free(id);
5011 return cluster_map;
5014 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5015 * that are not isl_edge_condition or isl_edge_conditional_validity.
5017 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5018 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5019 __isl_take isl_schedule_constraints *sc)
5021 enum isl_edge_type t;
5023 if (!sc)
5024 return NULL;
5026 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5027 if (t == isl_edge_condition ||
5028 t == isl_edge_conditional_validity)
5029 continue;
5030 if (!is_type(edge, t))
5031 continue;
5032 sc = isl_schedule_constraints_add(sc, t,
5033 isl_union_map_copy(umap));
5036 return sc;
5039 /* Add schedule constraints of types isl_edge_condition and
5040 * isl_edge_conditional_validity to "sc" by applying "umap" to
5041 * the domains of the wrapped relations in domain and range
5042 * of the corresponding tagged constraints of "edge".
5044 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5045 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5046 __isl_take isl_schedule_constraints *sc)
5048 enum isl_edge_type t;
5049 isl_union_map *tagged;
5051 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5052 if (!is_type(edge, t))
5053 continue;
5054 if (t == isl_edge_condition)
5055 tagged = isl_union_map_copy(edge->tagged_condition);
5056 else
5057 tagged = isl_union_map_copy(edge->tagged_validity);
5058 tagged = isl_union_map_zip(tagged);
5059 tagged = isl_union_map_apply_domain(tagged,
5060 isl_union_map_copy(umap));
5061 tagged = isl_union_map_zip(tagged);
5062 sc = isl_schedule_constraints_add(sc, t, tagged);
5063 if (!sc)
5064 return NULL;
5067 return sc;
5070 /* Given a mapping "cluster_map" from the original instances to
5071 * the cluster instances, add schedule constraints on the clusters
5072 * to "sc" corresponding to the original constraints represented by "edge".
5074 * For non-tagged dependence constraints, the cluster constraints
5075 * are obtained by applying "cluster_map" to the edge->map.
5077 * For tagged dependence constraints, "cluster_map" needs to be applied
5078 * to the domains of the wrapped relations in domain and range
5079 * of the tagged dependence constraints. Pick out the mappings
5080 * from these domains from "cluster_map" and construct their product.
5081 * This mapping can then be applied to the pair of domains.
5083 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5084 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5085 __isl_take isl_schedule_constraints *sc)
5087 isl_union_map *umap;
5088 isl_space *space;
5089 isl_union_set *uset;
5090 isl_union_map *umap1, *umap2;
5092 if (!sc)
5093 return NULL;
5095 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5096 umap = isl_union_map_apply_domain(umap,
5097 isl_union_map_copy(cluster_map));
5098 umap = isl_union_map_apply_range(umap,
5099 isl_union_map_copy(cluster_map));
5100 sc = add_non_conditional_constraints(edge, umap, sc);
5101 isl_union_map_free(umap);
5103 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5104 return sc;
5106 space = isl_space_domain(isl_map_get_space(edge->map));
5107 uset = isl_union_set_from_set(isl_set_universe(space));
5108 umap1 = isl_union_map_copy(cluster_map);
5109 umap1 = isl_union_map_intersect_domain(umap1, uset);
5110 space = isl_space_range(isl_map_get_space(edge->map));
5111 uset = isl_union_set_from_set(isl_set_universe(space));
5112 umap2 = isl_union_map_copy(cluster_map);
5113 umap2 = isl_union_map_intersect_domain(umap2, uset);
5114 umap = isl_union_map_product(umap1, umap2);
5116 sc = add_conditional_constraints(edge, umap, sc);
5118 isl_union_map_free(umap);
5119 return sc;
5122 /* Given a mapping "cluster_map" from the original instances to
5123 * the cluster instances, add schedule constraints on the clusters
5124 * to "sc" corresponding to all edges in "graph" between nodes that
5125 * belong to SCCs that are marked for merging in "scc_in_merge".
5127 static __isl_give isl_schedule_constraints *collect_constraints(
5128 struct isl_sched_graph *graph, int *scc_in_merge,
5129 __isl_keep isl_union_map *cluster_map,
5130 __isl_take isl_schedule_constraints *sc)
5132 int i;
5134 for (i = 0; i < graph->n_edge; ++i) {
5135 struct isl_sched_edge *edge = &graph->edge[i];
5137 if (!scc_in_merge[edge->src->scc])
5138 continue;
5139 if (!scc_in_merge[edge->dst->scc])
5140 continue;
5141 sc = collect_edge_constraints(edge, cluster_map, sc);
5144 return sc;
5147 /* Construct a dependence graph for scheduling clusters with respect
5148 * to each other and store the result in "merge_graph".
5149 * In particular, the nodes of the graph correspond to the schedule
5150 * dimensions of the current bands of those clusters that have been
5151 * marked for merging in "c".
5153 * First construct an isl_schedule_constraints object for this domain
5154 * by transforming the edges in "graph" to the domain.
5155 * Then initialize a dependence graph for scheduling from these
5156 * constraints.
5158 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5159 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5161 isl_union_set *domain;
5162 isl_union_map *cluster_map;
5163 isl_schedule_constraints *sc;
5164 isl_stat r;
5166 domain = collect_domain(ctx, graph, c);
5167 sc = isl_schedule_constraints_on_domain(domain);
5168 if (!sc)
5169 return isl_stat_error;
5170 cluster_map = collect_cluster_map(ctx, graph, c);
5171 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5172 isl_union_map_free(cluster_map);
5174 r = graph_init(merge_graph, sc);
5176 isl_schedule_constraints_free(sc);
5178 return r;
5181 /* Compute the maximal number of remaining schedule rows that still need
5182 * to be computed for the nodes that belong to clusters with the maximal
5183 * dimension for the current band (i.e., the band that is to be merged).
5184 * Only clusters that are about to be merged are considered.
5185 * "maxvar" is the maximal dimension for the current band.
5186 * "c" contains information about the clusters.
5188 * Return the maximal number of remaining schedule rows or -1 on error.
5190 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5192 int i, j;
5193 int max_slack;
5195 max_slack = 0;
5196 for (i = 0; i < c->n; ++i) {
5197 int nvar;
5198 struct isl_sched_graph *scc;
5200 if (!c->scc_in_merge[i])
5201 continue;
5202 scc = &c->scc[i];
5203 nvar = scc->n_total_row - scc->band_start;
5204 if (nvar != maxvar)
5205 continue;
5206 for (j = 0; j < scc->n; ++j) {
5207 struct isl_sched_node *node = &scc->node[j];
5208 int slack;
5210 if (node_update_cmap(node) < 0)
5211 return -1;
5212 slack = node->nvar - node->rank;
5213 if (slack > max_slack)
5214 max_slack = slack;
5218 return max_slack;
5221 /* If there are any clusters where the dimension of the current band
5222 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5223 * if there are any nodes in such a cluster where the number
5224 * of remaining schedule rows that still need to be computed
5225 * is greater than "max_slack", then return the smallest current band
5226 * dimension of all these clusters. Otherwise return the original value
5227 * of "maxvar". Return -1 in case of any error.
5228 * Only clusters that are about to be merged are considered.
5229 * "c" contains information about the clusters.
5231 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5232 struct isl_clustering *c)
5234 int i, j;
5236 for (i = 0; i < c->n; ++i) {
5237 int nvar;
5238 struct isl_sched_graph *scc;
5240 if (!c->scc_in_merge[i])
5241 continue;
5242 scc = &c->scc[i];
5243 nvar = scc->n_total_row - scc->band_start;
5244 if (nvar >= maxvar)
5245 continue;
5246 for (j = 0; j < scc->n; ++j) {
5247 struct isl_sched_node *node = &scc->node[j];
5248 int slack;
5250 if (node_update_cmap(node) < 0)
5251 return -1;
5252 slack = node->nvar - node->rank;
5253 if (slack > max_slack) {
5254 maxvar = nvar;
5255 break;
5260 return maxvar;
5263 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5264 * that still need to be computed. In particular, if there is a node
5265 * in a cluster where the dimension of the current band is smaller
5266 * than merge_graph->maxvar, but the number of remaining schedule rows
5267 * is greater than that of any node in a cluster with the maximal
5268 * dimension for the current band (i.e., merge_graph->maxvar),
5269 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5270 * of those clusters. Without this adjustment, the total number of
5271 * schedule dimensions would be increased, resulting in a skewed view
5272 * of the number of coincident dimensions.
5273 * "c" contains information about the clusters.
5275 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5276 * then there is no point in attempting any merge since it will be rejected
5277 * anyway. Set merge_graph->maxvar to zero in such cases.
5279 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5280 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5282 int max_slack, maxvar;
5284 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5285 if (max_slack < 0)
5286 return isl_stat_error;
5287 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5288 if (maxvar < 0)
5289 return isl_stat_error;
5291 if (maxvar < merge_graph->maxvar) {
5292 if (isl_options_get_schedule_maximize_band_depth(ctx))
5293 merge_graph->maxvar = 0;
5294 else
5295 merge_graph->maxvar = maxvar;
5298 return isl_stat_ok;
5301 /* Return the number of coincident dimensions in the current band of "graph",
5302 * where the nodes of "graph" are assumed to be scheduled by a single band.
5304 static int get_n_coincident(struct isl_sched_graph *graph)
5306 int i;
5308 for (i = graph->band_start; i < graph->n_total_row; ++i)
5309 if (!graph->node[0].coincident[i])
5310 break;
5312 return i - graph->band_start;
5315 /* Should the clusters be merged based on the cluster schedule
5316 * in the current (and only) band of "merge_graph", given that
5317 * coincidence should be maximized?
5319 * If the number of coincident schedule dimensions in the merged band
5320 * would be less than the maximal number of coincident schedule dimensions
5321 * in any of the merged clusters, then the clusters should not be merged.
5323 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5324 struct isl_sched_graph *merge_graph)
5326 int i;
5327 int n_coincident;
5328 int max_coincident;
5330 max_coincident = 0;
5331 for (i = 0; i < c->n; ++i) {
5332 if (!c->scc_in_merge[i])
5333 continue;
5334 n_coincident = get_n_coincident(&c->scc[i]);
5335 if (n_coincident > max_coincident)
5336 max_coincident = n_coincident;
5339 n_coincident = get_n_coincident(merge_graph);
5341 return n_coincident >= max_coincident;
5344 /* Return the transformation on "node" expressed by the current (and only)
5345 * band of "merge_graph" applied to the clusters in "c".
5347 * First find the representation of "node" in its SCC in "c" and
5348 * extract the transformation expressed by the current band.
5349 * Then extract the transformation applied by "merge_graph"
5350 * to the cluster to which this SCC belongs.
5351 * Combine the two to obtain the complete transformation on the node.
5353 * Note that the range of the first transformation is an anonymous space,
5354 * while the domain of the second is named "cluster_X". The range
5355 * of the former therefore needs to be adjusted before the two
5356 * can be combined.
5358 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5359 struct isl_sched_node *node, struct isl_clustering *c,
5360 struct isl_sched_graph *merge_graph)
5362 struct isl_sched_node *scc_node, *cluster_node;
5363 int start, n;
5364 isl_id *id;
5365 isl_space *space;
5366 isl_multi_aff *ma, *ma2;
5368 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5369 start = c->scc[node->scc].band_start;
5370 n = c->scc[node->scc].n_total_row - start;
5371 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5372 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5373 cluster_node = graph_find_node(ctx, merge_graph, space);
5374 if (space && !cluster_node)
5375 isl_die(ctx, isl_error_internal, "unable to find cluster",
5376 space = isl_space_free(space));
5377 id = isl_space_get_tuple_id(space, isl_dim_set);
5378 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5379 isl_space_free(space);
5380 n = merge_graph->n_total_row;
5381 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5382 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5384 return isl_map_from_multi_aff(ma);
5387 /* Give a set of distances "set", are they bounded by a small constant
5388 * in direction "pos"?
5389 * In practice, check if they are bounded by 2 by checking that there
5390 * are no elements with a value greater than or equal to 3 or
5391 * smaller than or equal to -3.
5393 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5395 isl_bool bounded;
5396 isl_set *test;
5398 if (!set)
5399 return isl_bool_error;
5401 test = isl_set_copy(set);
5402 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5403 bounded = isl_set_is_empty(test);
5404 isl_set_free(test);
5406 if (bounded < 0 || !bounded)
5407 return bounded;
5409 test = isl_set_copy(set);
5410 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5411 bounded = isl_set_is_empty(test);
5412 isl_set_free(test);
5414 return bounded;
5417 /* Does the set "set" have a fixed (but possible parametric) value
5418 * at dimension "pos"?
5420 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5422 int n;
5423 isl_bool single;
5425 if (!set)
5426 return isl_bool_error;
5427 set = isl_set_copy(set);
5428 n = isl_set_dim(set, isl_dim_set);
5429 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5430 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5431 single = isl_set_is_singleton(set);
5432 isl_set_free(set);
5434 return single;
5437 /* Does "map" have a fixed (but possible parametric) value
5438 * at dimension "pos" of either its domain or its range?
5440 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5442 isl_set *set;
5443 isl_bool single;
5445 set = isl_map_domain(isl_map_copy(map));
5446 single = has_single_value(set, pos);
5447 isl_set_free(set);
5449 if (single < 0 || single)
5450 return single;
5452 set = isl_map_range(isl_map_copy(map));
5453 single = has_single_value(set, pos);
5454 isl_set_free(set);
5456 return single;
5459 /* Does the edge "edge" from "graph" have bounded dependence distances
5460 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5462 * Extract the complete transformations of the source and destination
5463 * nodes of the edge, apply them to the edge constraints and
5464 * compute the differences. Finally, check if these differences are bounded
5465 * in each direction.
5467 * If the dimension of the band is greater than the number of
5468 * dimensions that can be expected to be optimized by the edge
5469 * (based on its weight), then also allow the differences to be unbounded
5470 * in the remaining dimensions, but only if either the source or
5471 * the destination has a fixed value in that direction.
5472 * This allows a statement that produces values that are used by
5473 * several instances of another statement to be merged with that
5474 * other statement.
5475 * However, merging such clusters will introduce an inherently
5476 * large proximity distance inside the merged cluster, meaning
5477 * that proximity distances will no longer be optimized in
5478 * subsequent merges. These merges are therefore only allowed
5479 * after all other possible merges have been tried.
5480 * The first time such a merge is encountered, the weight of the edge
5481 * is replaced by a negative weight. The second time (i.e., after
5482 * all merges over edges with a non-negative weight have been tried),
5483 * the merge is allowed.
5485 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5486 struct isl_sched_graph *graph, struct isl_clustering *c,
5487 struct isl_sched_graph *merge_graph)
5489 int i, n, n_slack;
5490 isl_bool bounded;
5491 isl_map *map, *t;
5492 isl_set *dist;
5494 map = isl_map_copy(edge->map);
5495 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5496 map = isl_map_apply_domain(map, t);
5497 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5498 map = isl_map_apply_range(map, t);
5499 dist = isl_map_deltas(isl_map_copy(map));
5501 bounded = isl_bool_true;
5502 n = isl_set_dim(dist, isl_dim_set);
5503 n_slack = n - edge->weight;
5504 if (edge->weight < 0)
5505 n_slack -= graph->max_weight + 1;
5506 for (i = 0; i < n; ++i) {
5507 isl_bool bounded_i, singular_i;
5509 bounded_i = distance_is_bounded(dist, i);
5510 if (bounded_i < 0)
5511 goto error;
5512 if (bounded_i)
5513 continue;
5514 if (edge->weight >= 0)
5515 bounded = isl_bool_false;
5516 n_slack--;
5517 if (n_slack < 0)
5518 break;
5519 singular_i = has_singular_src_or_dst(map, i);
5520 if (singular_i < 0)
5521 goto error;
5522 if (singular_i)
5523 continue;
5524 bounded = isl_bool_false;
5525 break;
5527 if (!bounded && i >= n && edge->weight >= 0)
5528 edge->weight -= graph->max_weight + 1;
5529 isl_map_free(map);
5530 isl_set_free(dist);
5532 return bounded;
5533 error:
5534 isl_map_free(map);
5535 isl_set_free(dist);
5536 return isl_bool_error;
5539 /* Should the clusters be merged based on the cluster schedule
5540 * in the current (and only) band of "merge_graph"?
5541 * "graph" is the original dependence graph, while "c" records
5542 * which SCCs are involved in the latest merge.
5544 * In particular, is there at least one proximity constraint
5545 * that is optimized by the merge?
5547 * A proximity constraint is considered to be optimized
5548 * if the dependence distances are small.
5550 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
5551 struct isl_sched_graph *graph, struct isl_clustering *c,
5552 struct isl_sched_graph *merge_graph)
5554 int i;
5556 for (i = 0; i < graph->n_edge; ++i) {
5557 struct isl_sched_edge *edge = &graph->edge[i];
5558 isl_bool bounded;
5560 if (!is_proximity(edge))
5561 continue;
5562 if (!c->scc_in_merge[edge->src->scc])
5563 continue;
5564 if (!c->scc_in_merge[edge->dst->scc])
5565 continue;
5566 if (c->scc_cluster[edge->dst->scc] ==
5567 c->scc_cluster[edge->src->scc])
5568 continue;
5569 bounded = has_bounded_distances(ctx, edge, graph, c,
5570 merge_graph);
5571 if (bounded < 0 || bounded)
5572 return bounded;
5575 return isl_bool_false;
5578 /* Should the clusters be merged based on the cluster schedule
5579 * in the current (and only) band of "merge_graph"?
5580 * "graph" is the original dependence graph, while "c" records
5581 * which SCCs are involved in the latest merge.
5583 * If the current band is empty, then the clusters should not be merged.
5585 * If the band depth should be maximized and the merge schedule
5586 * is incomplete (meaning that the dimension of some of the schedule
5587 * bands in the original schedule will be reduced), then the clusters
5588 * should not be merged.
5590 * If the schedule_maximize_coincidence option is set, then check that
5591 * the number of coincident schedule dimensions is not reduced.
5593 * Finally, only allow the merge if at least one proximity
5594 * constraint is optimized.
5596 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5597 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5599 if (merge_graph->n_total_row == merge_graph->band_start)
5600 return isl_bool_false;
5602 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
5603 merge_graph->n_total_row < merge_graph->maxvar)
5604 return isl_bool_false;
5606 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
5607 isl_bool ok;
5609 ok = ok_to_merge_coincident(c, merge_graph);
5610 if (ok < 0 || !ok)
5611 return ok;
5614 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
5617 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
5618 * of the schedule in "node" and return the result.
5620 * That is, essentially compute
5622 * T * N(first:first+n-1)
5624 * taking into account the constant term and the parameter coefficients
5625 * in "t_node".
5627 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
5628 struct isl_sched_node *t_node, struct isl_sched_node *node,
5629 int first, int n)
5631 int i, j;
5632 isl_mat *t;
5633 int n_row, n_col, n_param, n_var;
5635 n_param = node->nparam;
5636 n_var = node->nvar;
5637 n_row = isl_mat_rows(t_node->sched);
5638 n_col = isl_mat_cols(node->sched);
5639 t = isl_mat_alloc(ctx, n_row, n_col);
5640 if (!t)
5641 return NULL;
5642 for (i = 0; i < n_row; ++i) {
5643 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
5644 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
5645 for (j = 0; j < n; ++j)
5646 isl_seq_addmul(t->row[i],
5647 t_node->sched->row[i][1 + n_param + j],
5648 node->sched->row[first + j],
5649 1 + n_param + n_var);
5651 return t;
5654 /* Apply the cluster schedule in "t_node" to the current band
5655 * schedule of the nodes in "graph".
5657 * In particular, replace the rows starting at band_start
5658 * by the result of applying the cluster schedule in "t_node"
5659 * to the original rows.
5661 * The coincidence of the schedule is determined by the coincidence
5662 * of the cluster schedule.
5664 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
5665 struct isl_sched_node *t_node)
5667 int i, j;
5668 int n_new;
5669 int start, n;
5671 start = graph->band_start;
5672 n = graph->n_total_row - start;
5674 n_new = isl_mat_rows(t_node->sched);
5675 for (i = 0; i < graph->n; ++i) {
5676 struct isl_sched_node *node = &graph->node[i];
5677 isl_mat *t;
5679 t = node_transformation(ctx, t_node, node, start, n);
5680 node->sched = isl_mat_drop_rows(node->sched, start, n);
5681 node->sched = isl_mat_concat(node->sched, t);
5682 node->sched_map = isl_map_free(node->sched_map);
5683 if (!node->sched)
5684 return isl_stat_error;
5685 for (j = 0; j < n_new; ++j)
5686 node->coincident[start + j] = t_node->coincident[j];
5688 graph->n_total_row -= n;
5689 graph->n_row -= n;
5690 graph->n_total_row += n_new;
5691 graph->n_row += n_new;
5693 return isl_stat_ok;
5696 /* Merge the clusters marked for merging in "c" into a single
5697 * cluster using the cluster schedule in the current band of "merge_graph".
5698 * The representative SCC for the new cluster is the SCC with
5699 * the smallest index.
5701 * The current band schedule of each SCC in the new cluster is obtained
5702 * by applying the schedule of the corresponding original cluster
5703 * to the original band schedule.
5704 * All SCCs in the new cluster have the same number of schedule rows.
5706 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
5707 struct isl_sched_graph *merge_graph)
5709 int i;
5710 int cluster = -1;
5711 isl_space *space;
5713 for (i = 0; i < c->n; ++i) {
5714 struct isl_sched_node *node;
5716 if (!c->scc_in_merge[i])
5717 continue;
5718 if (cluster < 0)
5719 cluster = i;
5720 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
5721 if (!space)
5722 return isl_stat_error;
5723 node = graph_find_node(ctx, merge_graph, space);
5724 isl_space_free(space);
5725 if (!node)
5726 isl_die(ctx, isl_error_internal,
5727 "unable to find cluster",
5728 return isl_stat_error);
5729 if (transform(ctx, &c->scc[i], node) < 0)
5730 return isl_stat_error;
5731 c->scc_cluster[i] = cluster;
5734 return isl_stat_ok;
5737 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
5738 * by scheduling the current cluster bands with respect to each other.
5740 * Construct a dependence graph with a space for each cluster and
5741 * with the coordinates of each space corresponding to the schedule
5742 * dimensions of the current band of that cluster.
5743 * Construct a cluster schedule in this cluster dependence graph and
5744 * apply it to the current cluster bands if it is applicable
5745 * according to ok_to_merge.
5747 * If the number of remaining schedule dimensions in a cluster
5748 * with a non-maximal current schedule dimension is greater than
5749 * the number of remaining schedule dimensions in clusters
5750 * with a maximal current schedule dimension, then restrict
5751 * the number of rows to be computed in the cluster schedule
5752 * to the minimal such non-maximal current schedule dimension.
5753 * Do this by adjusting merge_graph.maxvar.
5755 * Return isl_bool_true if the clusters have effectively been merged
5756 * into a single cluster.
5758 * Note that since the standard scheduling algorithm minimizes the maximal
5759 * distance over proximity constraints, the proximity constraints between
5760 * the merged clusters may not be optimized any further than what is
5761 * sufficient to bring the distances within the limits of the internal
5762 * proximity constraints inside the individual clusters.
5763 * It may therefore make sense to perform an additional translation step
5764 * to bring the clusters closer to each other, while maintaining
5765 * the linear part of the merging schedule found using the standard
5766 * scheduling algorithm.
5768 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5769 struct isl_clustering *c)
5771 struct isl_sched_graph merge_graph = { 0 };
5772 isl_bool merged;
5774 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
5775 goto error;
5777 if (compute_maxvar(&merge_graph) < 0)
5778 goto error;
5779 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
5780 goto error;
5781 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
5782 goto error;
5783 merged = ok_to_merge(ctx, graph, c, &merge_graph);
5784 if (merged && merge(ctx, c, &merge_graph) < 0)
5785 goto error;
5787 graph_free(ctx, &merge_graph);
5788 return merged;
5789 error:
5790 graph_free(ctx, &merge_graph);
5791 return isl_bool_error;
5794 /* Is there any edge marked "no_merge" between two SCCs that are
5795 * about to be merged (i.e., that are set in "scc_in_merge")?
5796 * "merge_edge" is the proximity edge along which the clusters of SCCs
5797 * are going to be merged.
5799 * If there is any edge between two SCCs with a negative weight,
5800 * while the weight of "merge_edge" is non-negative, then this
5801 * means that the edge was postponed. "merge_edge" should then
5802 * also be postponed since merging along the edge with negative weight should
5803 * be postponed until all edges with non-negative weight have been tried.
5804 * Replace the weight of "merge_edge" by a negative weight as well and
5805 * tell the caller not to attempt a merge.
5807 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
5808 struct isl_sched_edge *merge_edge)
5810 int i;
5812 for (i = 0; i < graph->n_edge; ++i) {
5813 struct isl_sched_edge *edge = &graph->edge[i];
5815 if (!scc_in_merge[edge->src->scc])
5816 continue;
5817 if (!scc_in_merge[edge->dst->scc])
5818 continue;
5819 if (edge->no_merge)
5820 return 1;
5821 if (merge_edge->weight >= 0 && edge->weight < 0) {
5822 merge_edge->weight -= graph->max_weight + 1;
5823 return 1;
5827 return 0;
5830 /* Merge the two clusters in "c" connected by the edge in "graph"
5831 * with index "edge" into a single cluster.
5832 * If it turns out to be impossible to merge these two clusters,
5833 * then mark the edge as "no_merge" such that it will not be
5834 * considered again.
5836 * First mark all SCCs that need to be merged. This includes the SCCs
5837 * in the two clusters, but it may also include the SCCs
5838 * of intermediate clusters.
5839 * If there is already a no_merge edge between any pair of such SCCs,
5840 * then simply mark the current edge as no_merge as well.
5841 * Likewise, if any of those edges was postponed by has_bounded_distances,
5842 * then postpone the current edge as well.
5843 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
5844 * if the clusters did not end up getting merged, unless the non-merge
5845 * is due to the fact that the edge was postponed. This postponement
5846 * can be recognized by a change in weight (from non-negative to negative).
5848 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
5849 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
5851 isl_bool merged;
5852 int edge_weight = graph->edge[edge].weight;
5854 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
5855 return isl_stat_error;
5857 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
5858 merged = isl_bool_false;
5859 else
5860 merged = try_merge(ctx, graph, c);
5861 if (merged < 0)
5862 return isl_stat_error;
5863 if (!merged && edge_weight == graph->edge[edge].weight)
5864 graph->edge[edge].no_merge = 1;
5866 return isl_stat_ok;
5869 /* Does "node" belong to the cluster identified by "cluster"?
5871 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
5873 return node->cluster == cluster;
5876 /* Does "edge" connect two nodes belonging to the cluster
5877 * identified by "cluster"?
5879 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
5881 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
5884 /* Swap the schedule of "node1" and "node2".
5885 * Both nodes have been derived from the same node in a common parent graph.
5886 * Since the "coincident" field is shared with that node
5887 * in the parent graph, there is no need to also swap this field.
5889 static void swap_sched(struct isl_sched_node *node1,
5890 struct isl_sched_node *node2)
5892 isl_mat *sched;
5893 isl_map *sched_map;
5895 sched = node1->sched;
5896 node1->sched = node2->sched;
5897 node2->sched = sched;
5899 sched_map = node1->sched_map;
5900 node1->sched_map = node2->sched_map;
5901 node2->sched_map = sched_map;
5904 /* Copy the current band schedule from the SCCs that form the cluster
5905 * with index "pos" to the actual cluster at position "pos".
5906 * By construction, the index of the first SCC that belongs to the cluster
5907 * is also "pos".
5909 * The order of the nodes inside both the SCCs and the cluster
5910 * is assumed to be same as the order in the original "graph".
5912 * Since the SCC graphs will no longer be used after this function,
5913 * the schedules are actually swapped rather than copied.
5915 static isl_stat copy_partial(struct isl_sched_graph *graph,
5916 struct isl_clustering *c, int pos)
5918 int i, j;
5920 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
5921 c->cluster[pos].n_row = c->scc[pos].n_row;
5922 c->cluster[pos].maxvar = c->scc[pos].maxvar;
5923 j = 0;
5924 for (i = 0; i < graph->n; ++i) {
5925 int k;
5926 int s;
5928 if (graph->node[i].cluster != pos)
5929 continue;
5930 s = graph->node[i].scc;
5931 k = c->scc_node[s]++;
5932 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
5933 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
5934 c->cluster[pos].maxvar = c->scc[s].maxvar;
5935 ++j;
5938 return isl_stat_ok;
5941 /* Is there a (conditional) validity dependence from node[j] to node[i],
5942 * forcing node[i] to follow node[j] or do the nodes belong to the same
5943 * cluster?
5945 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
5947 struct isl_sched_graph *graph = user;
5949 if (graph->node[i].cluster == graph->node[j].cluster)
5950 return isl_bool_true;
5951 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5954 /* Extract the merged clusters of SCCs in "graph", sort them, and
5955 * store them in c->clusters. Update c->scc_cluster accordingly.
5957 * First keep track of the cluster containing the SCC to which a node
5958 * belongs in the node itself.
5959 * Then extract the clusters into c->clusters, copying the current
5960 * band schedule from the SCCs that belong to the cluster.
5961 * Do this only once per cluster.
5963 * Finally, topologically sort the clusters and update c->scc_cluster
5964 * to match the new scc numbering. While the SCCs were originally
5965 * sorted already, some SCCs that depend on some other SCCs may
5966 * have been merged with SCCs that appear before these other SCCs.
5967 * A reordering may therefore be required.
5969 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
5970 struct isl_clustering *c)
5972 int i;
5974 for (i = 0; i < graph->n; ++i)
5975 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
5977 for (i = 0; i < graph->scc; ++i) {
5978 if (c->scc_cluster[i] != i)
5979 continue;
5980 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
5981 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
5982 return isl_stat_error;
5983 c->cluster[i].src_scc = -1;
5984 c->cluster[i].dst_scc = -1;
5985 if (copy_partial(graph, c, i) < 0)
5986 return isl_stat_error;
5989 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
5990 return isl_stat_error;
5991 for (i = 0; i < graph->n; ++i)
5992 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
5994 return isl_stat_ok;
5997 /* Compute weights on the proximity edges of "graph" that can
5998 * be used by find_proximity to find the most appropriate
5999 * proximity edge to use to merge two clusters in "c".
6000 * The weights are also used by has_bounded_distances to determine
6001 * whether the merge should be allowed.
6002 * Store the maximum of the computed weights in graph->max_weight.
6004 * The computed weight is a measure for the number of remaining schedule
6005 * dimensions that can still be completely aligned.
6006 * In particular, compute the number of equalities between
6007 * input dimensions and output dimensions in the proximity constraints.
6008 * The directions that are already handled by outer schedule bands
6009 * are projected out prior to determining this number.
6011 * Edges that will never be considered by find_proximity are ignored.
6013 static isl_stat compute_weights(struct isl_sched_graph *graph,
6014 struct isl_clustering *c)
6016 int i;
6018 graph->max_weight = 0;
6020 for (i = 0; i < graph->n_edge; ++i) {
6021 struct isl_sched_edge *edge = &graph->edge[i];
6022 struct isl_sched_node *src = edge->src;
6023 struct isl_sched_node *dst = edge->dst;
6024 isl_basic_map *hull;
6025 int n_in, n_out;
6027 if (!is_proximity(edge))
6028 continue;
6029 if (bad_cluster(&c->scc[edge->src->scc]) ||
6030 bad_cluster(&c->scc[edge->dst->scc]))
6031 continue;
6032 if (c->scc_cluster[edge->dst->scc] ==
6033 c->scc_cluster[edge->src->scc])
6034 continue;
6036 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6037 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6038 isl_mat_copy(src->ctrans));
6039 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6040 isl_mat_copy(dst->ctrans));
6041 hull = isl_basic_map_project_out(hull,
6042 isl_dim_in, 0, src->rank);
6043 hull = isl_basic_map_project_out(hull,
6044 isl_dim_out, 0, dst->rank);
6045 hull = isl_basic_map_remove_divs(hull);
6046 n_in = isl_basic_map_dim(hull, isl_dim_in);
6047 n_out = isl_basic_map_dim(hull, isl_dim_out);
6048 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6049 isl_dim_in, 0, n_in);
6050 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6051 isl_dim_out, 0, n_out);
6052 if (!hull)
6053 return isl_stat_error;
6054 edge->weight = hull->n_eq;
6055 isl_basic_map_free(hull);
6057 if (edge->weight > graph->max_weight)
6058 graph->max_weight = edge->weight;
6061 return isl_stat_ok;
6064 /* Call compute_schedule_finish_band on each of the clusters in "c"
6065 * in their topological order. This order is determined by the scc
6066 * fields of the nodes in "graph".
6067 * Combine the results in a sequence expressing the topological order.
6069 * If there is only one cluster left, then there is no need to introduce
6070 * a sequence node. Also, in this case, the cluster necessarily contains
6071 * the SCC at position 0 in the original graph and is therefore also
6072 * stored in the first cluster of "c".
6074 static __isl_give isl_schedule_node *finish_bands_clustering(
6075 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6076 struct isl_clustering *c)
6078 int i;
6079 isl_ctx *ctx;
6080 isl_union_set_list *filters;
6082 if (graph->scc == 1)
6083 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6085 ctx = isl_schedule_node_get_ctx(node);
6087 filters = extract_sccs(ctx, graph);
6088 node = isl_schedule_node_insert_sequence(node, filters);
6090 for (i = 0; i < graph->scc; ++i) {
6091 int j = c->scc_cluster[i];
6092 node = isl_schedule_node_child(node, i);
6093 node = isl_schedule_node_child(node, 0);
6094 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6095 node = isl_schedule_node_parent(node);
6096 node = isl_schedule_node_parent(node);
6099 return node;
6102 /* Compute a schedule for a connected dependence graph by first considering
6103 * each strongly connected component (SCC) in the graph separately and then
6104 * incrementally combining them into clusters.
6105 * Return the updated schedule node.
6107 * Initially, each cluster consists of a single SCC, each with its
6108 * own band schedule. The algorithm then tries to merge pairs
6109 * of clusters along a proximity edge until no more suitable
6110 * proximity edges can be found. During this merging, the schedule
6111 * is maintained in the individual SCCs.
6112 * After the merging is completed, the full resulting clusters
6113 * are extracted and in finish_bands_clustering,
6114 * compute_schedule_finish_band is called on each of them to integrate
6115 * the band into "node" and to continue the computation.
6117 * compute_weights initializes the weights that are used by find_proximity.
6119 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6120 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6122 isl_ctx *ctx;
6123 struct isl_clustering c;
6124 int i;
6126 ctx = isl_schedule_node_get_ctx(node);
6128 if (clustering_init(ctx, &c, graph) < 0)
6129 goto error;
6131 if (compute_weights(graph, &c) < 0)
6132 goto error;
6134 for (;;) {
6135 i = find_proximity(graph, &c);
6136 if (i < 0)
6137 goto error;
6138 if (i >= graph->n_edge)
6139 break;
6140 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6141 goto error;
6144 if (extract_clusters(ctx, graph, &c) < 0)
6145 goto error;
6147 node = finish_bands_clustering(node, graph, &c);
6149 clustering_free(ctx, &c);
6150 return node;
6151 error:
6152 clustering_free(ctx, &c);
6153 return isl_schedule_node_free(node);
6156 /* Compute a schedule for a connected dependence graph and return
6157 * the updated schedule node.
6159 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6160 * as many validity dependences as possible. When all validity dependences
6161 * are satisfied we extend the schedule to a full-dimensional schedule.
6163 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6164 * depending on whether the user has selected the option to try and
6165 * compute a schedule for the entire (weakly connected) component first.
6166 * If there is only a single strongly connected component (SCC), then
6167 * there is no point in trying to combine SCCs
6168 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6169 * is called instead.
6171 static __isl_give isl_schedule_node *compute_schedule_wcc(
6172 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6174 isl_ctx *ctx;
6176 if (!node)
6177 return NULL;
6179 ctx = isl_schedule_node_get_ctx(node);
6180 if (detect_sccs(ctx, graph) < 0)
6181 return isl_schedule_node_free(node);
6183 if (compute_maxvar(graph) < 0)
6184 return isl_schedule_node_free(node);
6186 if (need_feautrier_step(ctx, graph))
6187 return compute_schedule_wcc_feautrier(node, graph);
6189 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6190 return compute_schedule_wcc_whole(node, graph);
6191 else
6192 return compute_schedule_wcc_clustering(node, graph);
6195 /* Compute a schedule for each group of nodes identified by node->scc
6196 * separately and then combine them in a sequence node (or as set node
6197 * if graph->weak is set) inserted at position "node" of the schedule tree.
6198 * Return the updated schedule node.
6200 * If "wcc" is set then each of the groups belongs to a single
6201 * weakly connected component in the dependence graph so that
6202 * there is no need for compute_sub_schedule to look for weakly
6203 * connected components.
6205 static __isl_give isl_schedule_node *compute_component_schedule(
6206 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6207 int wcc)
6209 int component;
6210 isl_ctx *ctx;
6211 isl_union_set_list *filters;
6213 if (!node)
6214 return NULL;
6215 ctx = isl_schedule_node_get_ctx(node);
6217 filters = extract_sccs(ctx, graph);
6218 if (graph->weak)
6219 node = isl_schedule_node_insert_set(node, filters);
6220 else
6221 node = isl_schedule_node_insert_sequence(node, filters);
6223 for (component = 0; component < graph->scc; ++component) {
6224 node = isl_schedule_node_child(node, component);
6225 node = isl_schedule_node_child(node, 0);
6226 node = compute_sub_schedule(node, ctx, graph,
6227 &node_scc_exactly,
6228 &edge_scc_exactly, component, wcc);
6229 node = isl_schedule_node_parent(node);
6230 node = isl_schedule_node_parent(node);
6233 return node;
6236 /* Compute a schedule for the given dependence graph and insert it at "node".
6237 * Return the updated schedule node.
6239 * We first check if the graph is connected (through validity and conditional
6240 * validity dependences) and, if not, compute a schedule
6241 * for each component separately.
6242 * If the schedule_serialize_sccs option is set, then we check for strongly
6243 * connected components instead and compute a separate schedule for
6244 * each such strongly connected component.
6246 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6247 struct isl_sched_graph *graph)
6249 isl_ctx *ctx;
6251 if (!node)
6252 return NULL;
6254 ctx = isl_schedule_node_get_ctx(node);
6255 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6256 if (detect_sccs(ctx, graph) < 0)
6257 return isl_schedule_node_free(node);
6258 } else {
6259 if (detect_wccs(ctx, graph) < 0)
6260 return isl_schedule_node_free(node);
6263 if (graph->scc > 1)
6264 return compute_component_schedule(node, graph, 1);
6266 return compute_schedule_wcc(node, graph);
6269 /* Compute a schedule on sc->domain that respects the given schedule
6270 * constraints.
6272 * In particular, the schedule respects all the validity dependences.
6273 * If the default isl scheduling algorithm is used, it tries to minimize
6274 * the dependence distances over the proximity dependences.
6275 * If Feautrier's scheduling algorithm is used, the proximity dependence
6276 * distances are only minimized during the extension to a full-dimensional
6277 * schedule.
6279 * If there are any condition and conditional validity dependences,
6280 * then the conditional validity dependences may be violated inside
6281 * a tilable band, provided they have no adjacent non-local
6282 * condition dependences.
6284 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6285 __isl_take isl_schedule_constraints *sc)
6287 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6288 struct isl_sched_graph graph = { 0 };
6289 isl_schedule *sched;
6290 isl_schedule_node *node;
6291 isl_union_set *domain;
6293 sc = isl_schedule_constraints_align_params(sc);
6295 domain = isl_schedule_constraints_get_domain(sc);
6296 if (isl_union_set_n_set(domain) == 0) {
6297 isl_schedule_constraints_free(sc);
6298 return isl_schedule_from_domain(domain);
6301 if (graph_init(&graph, sc) < 0)
6302 domain = isl_union_set_free(domain);
6304 node = isl_schedule_node_from_domain(domain);
6305 node = isl_schedule_node_child(node, 0);
6306 if (graph.n > 0)
6307 node = compute_schedule(node, &graph);
6308 sched = isl_schedule_node_get_schedule(node);
6309 isl_schedule_node_free(node);
6311 graph_free(ctx, &graph);
6312 isl_schedule_constraints_free(sc);
6314 return sched;
6317 /* Compute a schedule for the given union of domains that respects
6318 * all the validity dependences and minimizes
6319 * the dependence distances over the proximity dependences.
6321 * This function is kept for backward compatibility.
6323 __isl_give isl_schedule *isl_union_set_compute_schedule(
6324 __isl_take isl_union_set *domain,
6325 __isl_take isl_union_map *validity,
6326 __isl_take isl_union_map *proximity)
6328 isl_schedule_constraints *sc;
6330 sc = isl_schedule_constraints_on_domain(domain);
6331 sc = isl_schedule_constraints_set_validity(sc, validity);
6332 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6334 return isl_schedule_constraints_compute_schedule(sc);