3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
8 using C<GMP> or C<imath>.
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
179 The new C<isl_set_dim_has_lower_bound> and
180 C<isl_set_dim_has_upper_bound> have slightly different meanings.
184 =head3 Changes since isl-0.12
188 =item * C<isl_int> has been replaced by C<isl_val>.
189 Some of the old functions are still available in C<isl/deprecated/*.h>
190 but they will be removed in the future.
192 =item * The functions C<isl_pw_qpolynomial_eval>,
193 C<isl_union_pw_qpolynomial_eval>, C<isl_pw_qpolynomial_fold_eval>
194 and C<isl_union_pw_qpolynomial_fold_eval> have been changed to return
195 an C<isl_val> instead of an C<isl_qpolynomial>.
197 =item * The function C<isl_band_member_is_zero_distance>
198 has been removed. Essentially the same functionality is available
199 through C<isl_band_member_is_coincident>, except that is requires
200 setting up coincidence constraints.
201 The option C<schedule_outer_zero_distance> has accordingly been
202 replaced by the option C<schedule_outer_coincidence>.
204 =item * The function C<isl_vertex_get_expr> has been changed
205 to return an C<isl_multi_aff> instead of a rational C<isl_basic_set>.
206 The function C<isl_vertex_get_domain> has been changed to return
207 a regular basic set, rather than a rational basic set.
211 =head3 Changes since isl-0.14
215 =item * Objects of type C<isl_union_pw_multi_aff> can no longer contain
216 two or more C<isl_pw_multi_aff> objects with the same domain space.
218 =item * The function C<isl_union_pw_multi_aff_add> now consistently
219 computes the sum on the shared definition domain.
220 The function C<isl_union_pw_multi_aff_union_add> has been added
221 to compute the sum on the union of definition domains.
222 The original behavior of C<isl_union_pw_multi_aff_add> was
223 confused and is no longer available.
229 C<isl> is released under the MIT license.
233 Permission is hereby granted, free of charge, to any person obtaining a copy of
234 this software and associated documentation files (the "Software"), to deal in
235 the Software without restriction, including without limitation the rights to
236 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
237 of the Software, and to permit persons to whom the Software is furnished to do
238 so, subject to the following conditions:
240 The above copyright notice and this permission notice shall be included in all
241 copies or substantial portions of the Software.
243 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
244 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
245 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
246 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
247 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
248 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
253 Note that by default C<isl> requires C<GMP>, which is released
254 under the GNU Lesser General Public License (LGPL). This means
255 that code linked against C<isl> is also linked against LGPL code.
257 When configuring with C<--with-int=imath>, C<isl> will link against C<imath>, a
258 library for exact integer arithmetic released under the MIT license.
262 The source of C<isl> can be obtained either as a tarball
263 or from the git repository. Both are available from
264 L<http://freshmeat.net/projects/isl/>.
265 The installation process depends on how you obtained
268 =head2 Installation from the git repository
272 =item 1 Clone or update the repository
274 The first time the source is obtained, you need to clone
277 git clone git://repo.or.cz/isl.git
279 To obtain updates, you need to pull in the latest changes
283 =item 2 Optionally get C<imath> submodule
285 To build C<isl> with C<imath>, you need to obtain the C<imath>
286 submodule by running in the git source tree of C<isl>
291 This will fetch the required version of C<imath> in a subdirectory of C<isl>.
293 =item 2 Generate C<configure>
299 After performing the above steps, continue
300 with the L<Common installation instructions>.
302 =head2 Common installation instructions
306 =item 1 Obtain C<GMP>
308 By default, building C<isl> requires C<GMP>, including its headers files.
309 Your distribution may not provide these header files by default
310 and you may need to install a package called C<gmp-devel> or something
311 similar. Alternatively, C<GMP> can be built from
312 source, available from L<http://gmplib.org/>.
313 C<GMP> is not needed if you build C<isl> with C<imath>.
317 C<isl> uses the standard C<autoconf> C<configure> script.
322 optionally followed by some configure options.
323 A complete list of options can be obtained by running
327 Below we discuss some of the more common options.
333 Installation prefix for C<isl>
335 =item C<--with-int=[gmp|imath]>
337 Select the integer library to be used by C<isl>, the default is C<gmp>.
338 Note that C<isl> may run significantly slower if you use C<imath>.
340 =item C<--with-gmp-prefix>
342 Installation prefix for C<GMP> (architecture-independent files).
344 =item C<--with-gmp-exec-prefix>
346 Installation prefix for C<GMP> (architecture-dependent files).
354 =item 4 Install (optional)
360 =head1 Integer Set Library
362 =head2 Memory Management
364 Since a high-level operation on isl objects usually involves
365 several substeps and since the user is usually not interested in
366 the intermediate results, most functions that return a new object
367 will also release all the objects passed as arguments.
368 If the user still wants to use one or more of these arguments
369 after the function call, she should pass along a copy of the
370 object rather than the object itself.
371 The user is then responsible for making sure that the original
372 object gets used somewhere else or is explicitly freed.
374 The arguments and return values of all documented functions are
375 annotated to make clear which arguments are released and which
376 arguments are preserved. In particular, the following annotations
383 C<__isl_give> means that a new object is returned.
384 The user should make sure that the returned pointer is
385 used exactly once as a value for an C<__isl_take> argument.
386 In between, it can be used as a value for as many
387 C<__isl_keep> arguments as the user likes.
388 There is one exception, and that is the case where the
389 pointer returned is C<NULL>. Is this case, the user
390 is free to use it as an C<__isl_take> argument or not.
391 When applied to a C<char *>, the returned pointer needs to be
396 C<__isl_null> means that a C<NULL> value is returned.
400 C<__isl_take> means that the object the argument points to
401 is taken over by the function and may no longer be used
402 by the user as an argument to any other function.
403 The pointer value must be one returned by a function
404 returning an C<__isl_give> pointer.
405 If the user passes in a C<NULL> value, then this will
406 be treated as an error in the sense that the function will
407 not perform its usual operation. However, it will still
408 make sure that all the other C<__isl_take> arguments
413 C<__isl_keep> means that the function will only use the object
414 temporarily. After the function has finished, the user
415 can still use it as an argument to other functions.
416 A C<NULL> value will be treated in the same way as
417 a C<NULL> value for an C<__isl_take> argument.
418 This annotation may also be used on return values of
419 type C<const char *>, in which case the returned pointer should
420 not be freed by the user and is only valid until the object
421 from which it was derived is updated or freed.
425 =head2 Initialization
427 All manipulations of integer sets and relations occur within
428 the context of an C<isl_ctx>.
429 A given C<isl_ctx> can only be used within a single thread.
430 All arguments of a function are required to have been allocated
431 within the same context.
432 There are currently no functions available for moving an object
433 from one C<isl_ctx> to another C<isl_ctx>. This means that
434 there is currently no way of safely moving an object from one
435 thread to another, unless the whole C<isl_ctx> is moved.
437 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
438 freed using C<isl_ctx_free>.
439 All objects allocated within an C<isl_ctx> should be freed
440 before the C<isl_ctx> itself is freed.
442 isl_ctx *isl_ctx_alloc();
443 void isl_ctx_free(isl_ctx *ctx);
445 The user can impose a bound on the number of low-level I<operations>
446 that can be performed by an C<isl_ctx>. This bound can be set and
447 retrieved using the following functions. A bound of zero means that
448 no bound is imposed. The number of operations performed can be
449 reset using C<isl_ctx_reset_operations>. Note that the number
450 of low-level operations needed to perform a high-level computation
451 may differ significantly across different versions
452 of C<isl>, but it should be the same across different platforms
453 for the same version of C<isl>.
455 Warning: This feature is experimental. C<isl> has good support to abort and
456 bail out during the computation, but this feature may exercise error code paths
457 that are normally not used that much. Consequently, it is not unlikely that
458 hidden bugs will be exposed.
460 void isl_ctx_set_max_operations(isl_ctx *ctx,
461 unsigned long max_operations);
462 unsigned long isl_ctx_get_max_operations(isl_ctx *ctx);
463 void isl_ctx_reset_operations(isl_ctx *ctx);
465 In order to be able to create an object in the same context
466 as another object, most object types (described later in
467 this document) provide a function to obtain the context
468 in which the object was created.
471 isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
472 isl_ctx *isl_multi_val_get_ctx(
473 __isl_keep isl_multi_val *mv);
476 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
478 #include <isl/local_space.h>
479 isl_ctx *isl_local_space_get_ctx(
480 __isl_keep isl_local_space *ls);
483 isl_ctx *isl_set_list_get_ctx(
484 __isl_keep isl_set_list *list);
487 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
488 isl_ctx *isl_multi_aff_get_ctx(
489 __isl_keep isl_multi_aff *maff);
490 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pa);
491 isl_ctx *isl_pw_multi_aff_get_ctx(
492 __isl_keep isl_pw_multi_aff *pma);
493 isl_ctx *isl_multi_pw_aff_get_ctx(
494 __isl_keep isl_multi_pw_aff *mpa);
495 isl_ctx *isl_union_pw_multi_aff_get_ctx(
496 __isl_keep isl_union_pw_multi_aff *upma);
498 #include <isl/id_to_ast_expr.h>
499 isl_ctx *isl_id_to_ast_expr_get_ctx(
500 __isl_keep id_to_ast_expr *id2expr);
502 #include <isl/point.h>
503 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
506 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
509 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
511 #include <isl/vertices.h>
512 isl_ctx *isl_vertices_get_ctx(
513 __isl_keep isl_vertices *vertices);
514 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
515 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
517 #include <isl/flow.h>
518 isl_ctx *isl_restriction_get_ctx(
519 __isl_keep isl_restriction *restr);
521 #include <isl/schedule.h>
522 isl_ctx *isl_schedule_constraints_get_ctx(
523 __isl_keep isl_schedule_constraints *sc);
525 #include <isl/band.h>
526 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
528 #include <isl/ast_build.h>
529 isl_ctx *isl_ast_build_get_ctx(
530 __isl_keep isl_ast_build *build);
533 isl_ctx *isl_ast_expr_get_ctx(
534 __isl_keep isl_ast_expr *expr);
535 isl_ctx *isl_ast_node_get_ctx(
536 __isl_keep isl_ast_node *node);
540 An C<isl_val> represents an integer value, a rational value
541 or one of three special values, infinity, negative infinity and NaN.
542 Some predefined values can be created using the following functions.
545 __isl_give isl_val *isl_val_zero(isl_ctx *ctx);
546 __isl_give isl_val *isl_val_one(isl_ctx *ctx);
547 __isl_give isl_val *isl_val_negone(isl_ctx *ctx);
548 __isl_give isl_val *isl_val_nan(isl_ctx *ctx);
549 __isl_give isl_val *isl_val_infty(isl_ctx *ctx);
550 __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);
552 Specific integer values can be created using the following functions.
555 __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
557 __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
559 __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
560 size_t n, size_t size, const void *chunks);
562 The function C<isl_val_int_from_chunks> constructs an C<isl_val>
563 from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
564 The least significant digit is assumed to be stored first.
566 Value objects can be copied and freed using the following functions.
569 __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
570 __isl_null isl_val *isl_val_free(__isl_take isl_val *v);
572 They can be inspected using the following functions.
575 long isl_val_get_num_si(__isl_keep isl_val *v);
576 long isl_val_get_den_si(__isl_keep isl_val *v);
577 double isl_val_get_d(__isl_keep isl_val *v);
578 size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
580 int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
581 size_t size, void *chunks);
583 C<isl_val_n_abs_num_chunks> returns the number of I<digits>
584 of C<size> bytes needed to store the absolute value of the
586 C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
587 which is assumed to have been preallocated by the caller.
588 The least significant digit is stored first.
589 Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
590 C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
591 and C<isl_val_get_abs_num_chunks> can only be applied to rational values.
593 An C<isl_val> can be modified using the following function.
596 __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
599 The following unary properties are defined on C<isl_val>s.
602 int isl_val_sgn(__isl_keep isl_val *v);
603 int isl_val_is_zero(__isl_keep isl_val *v);
604 int isl_val_is_one(__isl_keep isl_val *v);
605 int isl_val_is_negone(__isl_keep isl_val *v);
606 int isl_val_is_nonneg(__isl_keep isl_val *v);
607 int isl_val_is_nonpos(__isl_keep isl_val *v);
608 int isl_val_is_pos(__isl_keep isl_val *v);
609 int isl_val_is_neg(__isl_keep isl_val *v);
610 int isl_val_is_int(__isl_keep isl_val *v);
611 int isl_val_is_rat(__isl_keep isl_val *v);
612 int isl_val_is_nan(__isl_keep isl_val *v);
613 int isl_val_is_infty(__isl_keep isl_val *v);
614 int isl_val_is_neginfty(__isl_keep isl_val *v);
616 Note that the sign of NaN is undefined.
618 The following binary properties are defined on pairs of C<isl_val>s.
621 int isl_val_lt(__isl_keep isl_val *v1,
622 __isl_keep isl_val *v2);
623 int isl_val_le(__isl_keep isl_val *v1,
624 __isl_keep isl_val *v2);
625 int isl_val_gt(__isl_keep isl_val *v1,
626 __isl_keep isl_val *v2);
627 int isl_val_ge(__isl_keep isl_val *v1,
628 __isl_keep isl_val *v2);
629 int isl_val_eq(__isl_keep isl_val *v1,
630 __isl_keep isl_val *v2);
631 int isl_val_ne(__isl_keep isl_val *v1,
632 __isl_keep isl_val *v2);
633 int isl_val_abs_eq(__isl_keep isl_val *v1,
634 __isl_keep isl_val *v2);
636 The function C<isl_val_abs_eq> checks whether its two arguments
637 are equal in absolute value.
639 For integer C<isl_val>s we additionally have the following binary property.
642 int isl_val_is_divisible_by(__isl_keep isl_val *v1,
643 __isl_keep isl_val *v2);
645 An C<isl_val> can also be compared to an integer using the following
646 function. The result is undefined for NaN.
649 int isl_val_cmp_si(__isl_keep isl_val *v, long i);
651 The following unary operations are available on C<isl_val>s.
654 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
655 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
656 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
657 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
658 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
659 __isl_give isl_val *isl_val_inv(__isl_take isl_val *v);
660 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
662 The following binary operations are available on C<isl_val>s.
665 __isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
666 __isl_take isl_val *v2);
667 __isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
668 __isl_take isl_val *v2);
669 __isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
670 __isl_take isl_val *v2);
671 __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
673 __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
674 __isl_take isl_val *v2);
675 __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
677 __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
678 __isl_take isl_val *v2);
679 __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
681 __isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
682 __isl_take isl_val *v2);
684 On integer values, we additionally have the following operations.
687 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
688 __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
689 __isl_take isl_val *v2);
690 __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
691 __isl_take isl_val *v2);
692 __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
693 __isl_take isl_val *v2, __isl_give isl_val **x,
694 __isl_give isl_val **y);
696 The function C<isl_val_gcdext> returns the greatest common divisor g
697 of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
698 that C<*x> * C<v1> + C<*y> * C<v2> = g.
700 =head3 GMP specific functions
702 These functions are only available if C<isl> has been compiled with C<GMP>
705 Specific integer and rational values can be created from C<GMP> values using
706 the following functions.
708 #include <isl/val_gmp.h>
709 __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
711 __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
712 const mpz_t n, const mpz_t d);
714 The numerator and denominator of a rational value can be extracted as
715 C<GMP> values using the following functions.
717 #include <isl/val_gmp.h>
718 int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
719 int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);
721 =head2 Sets and Relations
723 C<isl> uses six types of objects for representing sets and relations,
724 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
725 C<isl_union_set> and C<isl_union_map>.
726 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
727 can be described as a conjunction of affine constraints, while
728 C<isl_set> and C<isl_map> represent unions of
729 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
730 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
731 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
732 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
733 where spaces are considered different if they have a different number
734 of dimensions and/or different names (see L<"Spaces">).
735 The difference between sets and relations (maps) is that sets have
736 one set of variables, while relations have two sets of variables,
737 input variables and output variables.
739 =head2 Error Handling
741 C<isl> supports different ways to react in case a runtime error is triggered.
742 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
743 with two maps that have incompatible spaces. There are three possible ways
744 to react on error: to warn, to continue or to abort.
746 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
747 the last error in the corresponding C<isl_ctx> and the function in which the
748 error was triggered returns C<NULL>. An error does not corrupt internal state,
749 such that isl can continue to be used. C<isl> also provides functions to
750 read the last error and to reset the memory that stores the last error. The
751 last error is only stored for information purposes. Its presence does not
752 change the behavior of C<isl>. Hence, resetting an error is not required to
753 continue to use isl, but only to observe new errors.
756 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
757 void isl_ctx_reset_error(isl_ctx *ctx);
759 Another option is to continue on error. This is similar to warn on error mode,
760 except that C<isl> does not print any warning. This allows a program to
761 implement its own error reporting.
763 The last option is to directly abort the execution of the program from within
764 the isl library. This makes it obviously impossible to recover from an error,
765 but it allows to directly spot the error location. By aborting on error,
766 debuggers break at the location the error occurred and can provide a stack
767 trace. Other tools that automatically provide stack traces on abort or that do
768 not want to continue execution after an error was triggered may also prefer to
771 The on error behavior of isl can be specified by calling
772 C<isl_options_set_on_error> or by setting the command line option
773 C<--isl-on-error>. Valid arguments for the function call are
774 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
775 choices for the command line option are C<warn>, C<continue> and C<abort>.
776 It is also possible to query the current error mode.
778 #include <isl/options.h>
779 int isl_options_set_on_error(isl_ctx *ctx, int val);
780 int isl_options_get_on_error(isl_ctx *ctx);
784 Identifiers are used to identify both individual dimensions
785 and tuples of dimensions. They consist of an optional name and an optional
786 user pointer. The name and the user pointer cannot both be C<NULL>, however.
787 Identifiers with the same name but different pointer values
788 are considered to be distinct.
789 Similarly, identifiers with different names but the same pointer value
790 are also considered to be distinct.
791 Equal identifiers are represented using the same object.
792 Pairs of identifiers can therefore be tested for equality using the
794 Identifiers can be constructed, copied, freed, inspected and printed
795 using the following functions.
798 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
799 __isl_keep const char *name, void *user);
800 __isl_give isl_id *isl_id_set_free_user(
801 __isl_take isl_id *id,
802 __isl_give void (*free_user)(void *user));
803 __isl_give isl_id *isl_id_copy(isl_id *id);
804 __isl_null isl_id *isl_id_free(__isl_take isl_id *id);
806 void *isl_id_get_user(__isl_keep isl_id *id);
807 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
809 __isl_give isl_printer *isl_printer_print_id(
810 __isl_take isl_printer *p, __isl_keep isl_id *id);
812 The callback set by C<isl_id_set_free_user> is called on the user
813 pointer when the last reference to the C<isl_id> is freed.
814 Note that C<isl_id_get_name> returns a pointer to some internal
815 data structure, so the result can only be used while the
816 corresponding C<isl_id> is alive.
820 Whenever a new set, relation or similar object is created from scratch,
821 the space in which it lives needs to be specified using an C<isl_space>.
822 Each space involves zero or more parameters and zero, one or two
823 tuples of set or input/output dimensions. The parameters and dimensions
824 are identified by an C<isl_dim_type> and a position.
825 The type C<isl_dim_param> refers to parameters,
826 the type C<isl_dim_set> refers to set dimensions (for spaces
827 with a single tuple of dimensions) and the types C<isl_dim_in>
828 and C<isl_dim_out> refer to input and output dimensions
829 (for spaces with two tuples of dimensions).
830 Local spaces (see L</"Local Spaces">) also contain dimensions
831 of type C<isl_dim_div>.
832 Note that parameters are only identified by their position within
833 a given object. Across different objects, parameters are (usually)
834 identified by their names or identifiers. Only unnamed parameters
835 are identified by their positions across objects. The use of unnamed
836 parameters is discouraged.
838 #include <isl/space.h>
839 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
840 unsigned nparam, unsigned n_in, unsigned n_out);
841 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
843 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
844 unsigned nparam, unsigned dim);
845 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
846 __isl_null isl_space *isl_space_free(__isl_take isl_space *space);
848 The space used for creating a parameter domain
849 needs to be created using C<isl_space_params_alloc>.
850 For other sets, the space
851 needs to be created using C<isl_space_set_alloc>, while
852 for a relation, the space
853 needs to be created using C<isl_space_alloc>.
855 To check whether a given space is that of a set or a map
856 or whether it is a parameter space, use these functions:
858 #include <isl/space.h>
859 int isl_space_is_params(__isl_keep isl_space *space);
860 int isl_space_is_set(__isl_keep isl_space *space);
861 int isl_space_is_map(__isl_keep isl_space *space);
863 Spaces can be compared using the following functions:
865 #include <isl/space.h>
866 int isl_space_is_equal(__isl_keep isl_space *space1,
867 __isl_keep isl_space *space2);
868 int isl_space_is_domain(__isl_keep isl_space *space1,
869 __isl_keep isl_space *space2);
870 int isl_space_is_range(__isl_keep isl_space *space1,
871 __isl_keep isl_space *space2);
872 int isl_space_tuple_is_equal(
873 __isl_keep isl_space *space1,
874 enum isl_dim_type type1,
875 __isl_keep isl_space *space2,
876 enum isl_dim_type type2);
878 C<isl_space_is_domain> checks whether the first argument is equal
879 to the domain of the second argument. This requires in particular that
880 the first argument is a set space and that the second argument
881 is a map space. C<isl_space_tuple_is_equal> checks whether the given
882 tuples (C<isl_dim_in>, C<isl_dim_out> or C<isl_dim_set>) of the given
883 spaces are the same. That is, it checks if they have the same
884 identifier (if any), the same dimension and the same internal structure
887 It is often useful to create objects that live in the
888 same space as some other object. This can be accomplished
889 by creating the new objects
890 (see L</"Creating New Sets and Relations"> or
891 L</"Functions">) based on the space
892 of the original object.
895 __isl_give isl_space *isl_basic_set_get_space(
896 __isl_keep isl_basic_set *bset);
897 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
899 #include <isl/union_set.h>
900 __isl_give isl_space *isl_union_set_get_space(
901 __isl_keep isl_union_set *uset);
904 __isl_give isl_space *isl_basic_map_get_space(
905 __isl_keep isl_basic_map *bmap);
906 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
908 #include <isl/union_map.h>
909 __isl_give isl_space *isl_union_map_get_space(
910 __isl_keep isl_union_map *umap);
912 #include <isl/constraint.h>
913 __isl_give isl_space *isl_constraint_get_space(
914 __isl_keep isl_constraint *constraint);
916 #include <isl/polynomial.h>
917 __isl_give isl_space *isl_qpolynomial_get_domain_space(
918 __isl_keep isl_qpolynomial *qp);
919 __isl_give isl_space *isl_qpolynomial_get_space(
920 __isl_keep isl_qpolynomial *qp);
921 __isl_give isl_space *isl_qpolynomial_fold_get_space(
922 __isl_keep isl_qpolynomial_fold *fold);
923 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
924 __isl_keep isl_pw_qpolynomial *pwqp);
925 __isl_give isl_space *isl_pw_qpolynomial_get_space(
926 __isl_keep isl_pw_qpolynomial *pwqp);
927 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
928 __isl_keep isl_pw_qpolynomial_fold *pwf);
929 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
930 __isl_keep isl_pw_qpolynomial_fold *pwf);
931 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
932 __isl_keep isl_union_pw_qpolynomial *upwqp);
933 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
934 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
937 __isl_give isl_space *isl_multi_val_get_space(
938 __isl_keep isl_multi_val *mv);
941 __isl_give isl_space *isl_aff_get_domain_space(
942 __isl_keep isl_aff *aff);
943 __isl_give isl_space *isl_aff_get_space(
944 __isl_keep isl_aff *aff);
945 __isl_give isl_space *isl_pw_aff_get_domain_space(
946 __isl_keep isl_pw_aff *pwaff);
947 __isl_give isl_space *isl_pw_aff_get_space(
948 __isl_keep isl_pw_aff *pwaff);
949 __isl_give isl_space *isl_multi_aff_get_domain_space(
950 __isl_keep isl_multi_aff *maff);
951 __isl_give isl_space *isl_multi_aff_get_space(
952 __isl_keep isl_multi_aff *maff);
953 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
954 __isl_keep isl_pw_multi_aff *pma);
955 __isl_give isl_space *isl_pw_multi_aff_get_space(
956 __isl_keep isl_pw_multi_aff *pma);
957 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
958 __isl_keep isl_union_pw_multi_aff *upma);
959 __isl_give isl_space *isl_multi_pw_aff_get_domain_space(
960 __isl_keep isl_multi_pw_aff *mpa);
961 __isl_give isl_space *isl_multi_pw_aff_get_space(
962 __isl_keep isl_multi_pw_aff *mpa);
964 #include <isl/point.h>
965 __isl_give isl_space *isl_point_get_space(
966 __isl_keep isl_point *pnt);
968 The number of dimensions of a given type of space
969 may be read off from a space or an object that lives
970 in a space using the following functions.
971 In case of C<isl_space_dim>, type may be
972 C<isl_dim_param>, C<isl_dim_in> (only for relations),
973 C<isl_dim_out> (only for relations), C<isl_dim_set>
974 (only for sets) or C<isl_dim_all>.
976 #include <isl/space.h>
977 unsigned isl_space_dim(__isl_keep isl_space *space,
978 enum isl_dim_type type);
980 #include <isl/local_space.h>
981 int isl_local_space_dim(__isl_keep isl_local_space *ls,
982 enum isl_dim_type type);
985 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
986 enum isl_dim_type type);
987 unsigned isl_set_dim(__isl_keep isl_set *set,
988 enum isl_dim_type type);
990 #include <isl/union_set.h>
991 unsigned isl_union_set_dim(__isl_keep isl_union_set *uset,
992 enum isl_dim_type type);
995 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
996 enum isl_dim_type type);
997 unsigned isl_map_dim(__isl_keep isl_map *map,
998 enum isl_dim_type type);
1000 #include <isl/union_map.h>
1001 unsigned isl_union_map_dim(__isl_keep isl_union_map *umap,
1002 enum isl_dim_type type);
1004 #include <isl/val.h>
1005 unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
1006 enum isl_dim_type type);
1008 #include <isl/aff.h>
1009 int isl_aff_dim(__isl_keep isl_aff *aff,
1010 enum isl_dim_type type);
1011 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
1012 enum isl_dim_type type);
1013 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
1014 enum isl_dim_type type);
1015 unsigned isl_pw_multi_aff_dim(
1016 __isl_keep isl_pw_multi_aff *pma,
1017 enum isl_dim_type type);
1018 unsigned isl_multi_pw_aff_dim(
1019 __isl_keep isl_multi_pw_aff *mpa,
1020 enum isl_dim_type type);
1021 unsigned isl_union_pw_multi_aff_dim(
1022 __isl_keep isl_union_pw_multi_aff *upma,
1023 enum isl_dim_type type);
1025 #include <isl/polynomial.h>
1026 unsigned isl_union_pw_qpolynomial_dim(
1027 __isl_keep isl_union_pw_qpolynomial *upwqp,
1028 enum isl_dim_type type);
1029 unsigned isl_union_pw_qpolynomial_fold_dim(
1030 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1031 enum isl_dim_type type);
1033 Note that an C<isl_union_set>, an C<isl_union_map>,
1034 an C<isl_union_pw_multi_aff>,
1035 an C<isl_union_pw_qpolynomial> and
1036 an C<isl_union_pw_qpolynomial_fold>
1037 only have parameters.
1039 The identifiers or names of the individual dimensions of spaces
1040 may be set or read off using the following functions on spaces
1041 or objects that live in spaces.
1042 These functions are mostly useful to obtain the identifiers, positions
1043 or names of the parameters. Identifiers of individual dimensions are
1044 essentially only useful for printing. They are ignored by all other
1045 operations and may not be preserved across those operations.
1047 #include <isl/space.h>
1048 __isl_give isl_space *isl_space_set_dim_id(
1049 __isl_take isl_space *space,
1050 enum isl_dim_type type, unsigned pos,
1051 __isl_take isl_id *id);
1052 int isl_space_has_dim_id(__isl_keep isl_space *space,
1053 enum isl_dim_type type, unsigned pos);
1054 __isl_give isl_id *isl_space_get_dim_id(
1055 __isl_keep isl_space *space,
1056 enum isl_dim_type type, unsigned pos);
1057 __isl_give isl_space *isl_space_set_dim_name(
1058 __isl_take isl_space *space,
1059 enum isl_dim_type type, unsigned pos,
1060 __isl_keep const char *name);
1061 int isl_space_has_dim_name(__isl_keep isl_space *space,
1062 enum isl_dim_type type, unsigned pos);
1063 __isl_keep const char *isl_space_get_dim_name(
1064 __isl_keep isl_space *space,
1065 enum isl_dim_type type, unsigned pos);
1067 #include <isl/local_space.h>
1068 __isl_give isl_local_space *isl_local_space_set_dim_id(
1069 __isl_take isl_local_space *ls,
1070 enum isl_dim_type type, unsigned pos,
1071 __isl_take isl_id *id);
1072 int isl_local_space_has_dim_id(
1073 __isl_keep isl_local_space *ls,
1074 enum isl_dim_type type, unsigned pos);
1075 __isl_give isl_id *isl_local_space_get_dim_id(
1076 __isl_keep isl_local_space *ls,
1077 enum isl_dim_type type, unsigned pos);
1078 __isl_give isl_local_space *isl_local_space_set_dim_name(
1079 __isl_take isl_local_space *ls,
1080 enum isl_dim_type type, unsigned pos, const char *s);
1081 int isl_local_space_has_dim_name(
1082 __isl_keep isl_local_space *ls,
1083 enum isl_dim_type type, unsigned pos)
1084 const char *isl_local_space_get_dim_name(
1085 __isl_keep isl_local_space *ls,
1086 enum isl_dim_type type, unsigned pos);
1088 #include <isl/constraint.h>
1089 const char *isl_constraint_get_dim_name(
1090 __isl_keep isl_constraint *constraint,
1091 enum isl_dim_type type, unsigned pos);
1093 #include <isl/set.h>
1094 __isl_give isl_id *isl_basic_set_get_dim_id(
1095 __isl_keep isl_basic_set *bset,
1096 enum isl_dim_type type, unsigned pos);
1097 __isl_give isl_set *isl_set_set_dim_id(
1098 __isl_take isl_set *set, enum isl_dim_type type,
1099 unsigned pos, __isl_take isl_id *id);
1100 int isl_set_has_dim_id(__isl_keep isl_set *set,
1101 enum isl_dim_type type, unsigned pos);
1102 __isl_give isl_id *isl_set_get_dim_id(
1103 __isl_keep isl_set *set, enum isl_dim_type type,
1105 const char *isl_basic_set_get_dim_name(
1106 __isl_keep isl_basic_set *bset,
1107 enum isl_dim_type type, unsigned pos);
1108 int isl_set_has_dim_name(__isl_keep isl_set *set,
1109 enum isl_dim_type type, unsigned pos);
1110 const char *isl_set_get_dim_name(
1111 __isl_keep isl_set *set,
1112 enum isl_dim_type type, unsigned pos);
1114 #include <isl/map.h>
1115 __isl_give isl_map *isl_map_set_dim_id(
1116 __isl_take isl_map *map, enum isl_dim_type type,
1117 unsigned pos, __isl_take isl_id *id);
1118 int isl_basic_map_has_dim_id(
1119 __isl_keep isl_basic_map *bmap,
1120 enum isl_dim_type type, unsigned pos);
1121 int isl_map_has_dim_id(__isl_keep isl_map *map,
1122 enum isl_dim_type type, unsigned pos);
1123 __isl_give isl_id *isl_map_get_dim_id(
1124 __isl_keep isl_map *map, enum isl_dim_type type,
1126 __isl_give isl_id *isl_union_map_get_dim_id(
1127 __isl_keep isl_union_map *umap,
1128 enum isl_dim_type type, unsigned pos);
1129 const char *isl_basic_map_get_dim_name(
1130 __isl_keep isl_basic_map *bmap,
1131 enum isl_dim_type type, unsigned pos);
1132 int isl_map_has_dim_name(__isl_keep isl_map *map,
1133 enum isl_dim_type type, unsigned pos);
1134 const char *isl_map_get_dim_name(
1135 __isl_keep isl_map *map,
1136 enum isl_dim_type type, unsigned pos);
1138 #include <isl/val.h>
1139 __isl_give isl_multi_val *isl_multi_val_set_dim_id(
1140 __isl_take isl_multi_val *mv,
1141 enum isl_dim_type type, unsigned pos,
1142 __isl_take isl_id *id);
1143 __isl_give isl_id *isl_multi_val_get_dim_id(
1144 __isl_keep isl_multi_val *mv,
1145 enum isl_dim_type type, unsigned pos);
1146 __isl_give isl_multi_val *isl_multi_val_set_dim_name(
1147 __isl_take isl_multi_val *mv,
1148 enum isl_dim_type type, unsigned pos, const char *s);
1150 #include <isl/aff.h>
1151 __isl_give isl_aff *isl_aff_set_dim_id(
1152 __isl_take isl_aff *aff, enum isl_dim_type type,
1153 unsigned pos, __isl_take isl_id *id);
1154 __isl_give isl_multi_aff *isl_multi_aff_set_dim_id(
1155 __isl_take isl_multi_aff *maff,
1156 enum isl_dim_type type, unsigned pos,
1157 __isl_take isl_id *id);
1158 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
1159 __isl_take isl_pw_aff *pma,
1160 enum isl_dim_type type, unsigned pos,
1161 __isl_take isl_id *id);
1162 __isl_give isl_multi_pw_aff *
1163 isl_multi_pw_aff_set_dim_id(
1164 __isl_take isl_multi_pw_aff *mpa,
1165 enum isl_dim_type type, unsigned pos,
1166 __isl_take isl_id *id);
1167 __isl_give isl_id *isl_multi_aff_get_dim_id(
1168 __isl_keep isl_multi_aff *ma,
1169 enum isl_dim_type type, unsigned pos);
1170 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
1171 enum isl_dim_type type, unsigned pos);
1172 __isl_give isl_id *isl_pw_aff_get_dim_id(
1173 __isl_keep isl_pw_aff *pa,
1174 enum isl_dim_type type, unsigned pos);
1175 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
1176 __isl_keep isl_pw_multi_aff *pma,
1177 enum isl_dim_type type, unsigned pos);
1178 __isl_give isl_id *isl_multi_pw_aff_get_dim_id(
1179 __isl_keep isl_multi_pw_aff *mpa,
1180 enum isl_dim_type type, unsigned pos);
1181 __isl_give isl_aff *isl_aff_set_dim_name(
1182 __isl_take isl_aff *aff, enum isl_dim_type type,
1183 unsigned pos, const char *s);
1184 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
1185 __isl_take isl_multi_aff *maff,
1186 enum isl_dim_type type, unsigned pos, const char *s);
1187 __isl_give isl_multi_pw_aff *
1188 isl_multi_pw_aff_set_dim_name(
1189 __isl_take isl_multi_pw_aff *mpa,
1190 enum isl_dim_type type, unsigned pos, const char *s);
1191 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
1192 enum isl_dim_type type, unsigned pos);
1193 const char *isl_pw_aff_get_dim_name(
1194 __isl_keep isl_pw_aff *pa,
1195 enum isl_dim_type type, unsigned pos);
1196 const char *isl_pw_multi_aff_get_dim_name(
1197 __isl_keep isl_pw_multi_aff *pma,
1198 enum isl_dim_type type, unsigned pos);
1200 #include <isl/polynomial.h>
1201 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1202 __isl_take isl_qpolynomial *qp,
1203 enum isl_dim_type type, unsigned pos,
1205 __isl_give isl_pw_qpolynomial *
1206 isl_pw_qpolynomial_set_dim_name(
1207 __isl_take isl_pw_qpolynomial *pwqp,
1208 enum isl_dim_type type, unsigned pos,
1210 __isl_give isl_pw_qpolynomial_fold *
1211 isl_pw_qpolynomial_fold_set_dim_name(
1212 __isl_take isl_pw_qpolynomial_fold *pwf,
1213 enum isl_dim_type type, unsigned pos,
1216 Note that C<isl_space_get_name> returns a pointer to some internal
1217 data structure, so the result can only be used while the
1218 corresponding C<isl_space> is alive.
1219 Also note that every function that operates on two sets or relations
1220 requires that both arguments have the same parameters. This also
1221 means that if one of the arguments has named parameters, then the
1222 other needs to have named parameters too and the names need to match.
1223 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
1224 arguments may have different parameters (as long as they are named),
1225 in which case the result will have as parameters the union of the parameters of
1228 Given the identifier or name of a dimension (typically a parameter),
1229 its position can be obtained from the following functions.
1231 #include <isl/space.h>
1232 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
1233 enum isl_dim_type type, __isl_keep isl_id *id);
1234 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
1235 enum isl_dim_type type, const char *name);
1237 #include <isl/local_space.h>
1238 int isl_local_space_find_dim_by_name(
1239 __isl_keep isl_local_space *ls,
1240 enum isl_dim_type type, const char *name);
1242 #include <isl/val.h>
1243 int isl_multi_val_find_dim_by_id(
1244 __isl_keep isl_multi_val *mv,
1245 enum isl_dim_type type, __isl_keep isl_id *id);
1246 int isl_multi_val_find_dim_by_name(
1247 __isl_keep isl_multi_val *mv,
1248 enum isl_dim_type type, const char *name);
1250 #include <isl/set.h>
1251 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1252 enum isl_dim_type type, __isl_keep isl_id *id);
1253 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1254 enum isl_dim_type type, const char *name);
1256 #include <isl/map.h>
1257 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1258 enum isl_dim_type type, __isl_keep isl_id *id);
1259 int isl_basic_map_find_dim_by_name(
1260 __isl_keep isl_basic_map *bmap,
1261 enum isl_dim_type type, const char *name);
1262 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1263 enum isl_dim_type type, const char *name);
1264 int isl_union_map_find_dim_by_name(
1265 __isl_keep isl_union_map *umap,
1266 enum isl_dim_type type, const char *name);
1268 #include <isl/aff.h>
1269 int isl_multi_aff_find_dim_by_id(
1270 __isl_keep isl_multi_aff *ma,
1271 enum isl_dim_type type, __isl_keep isl_id *id);
1272 int isl_multi_pw_aff_find_dim_by_id(
1273 __isl_keep isl_multi_pw_aff *mpa,
1274 enum isl_dim_type type, __isl_keep isl_id *id);
1275 int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff,
1276 enum isl_dim_type type, const char *name);
1277 int isl_multi_aff_find_dim_by_name(
1278 __isl_keep isl_multi_aff *ma,
1279 enum isl_dim_type type, const char *name);
1280 int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa,
1281 enum isl_dim_type type, const char *name);
1282 int isl_multi_pw_aff_find_dim_by_name(
1283 __isl_keep isl_multi_pw_aff *mpa,
1284 enum isl_dim_type type, const char *name);
1285 int isl_pw_multi_aff_find_dim_by_name(
1286 __isl_keep isl_pw_multi_aff *pma,
1287 enum isl_dim_type type, const char *name);
1288 int isl_union_pw_multi_aff_find_dim_by_name(
1289 __isl_keep isl_union_pw_multi_aff *upma,
1290 enum isl_dim_type type, const char *name);
1292 #include <isl/polynomial.h>
1293 int isl_pw_qpolynomial_find_dim_by_name(
1294 __isl_keep isl_pw_qpolynomial *pwqp,
1295 enum isl_dim_type type, const char *name);
1296 int isl_pw_qpolynomial_fold_find_dim_by_name(
1297 __isl_keep isl_pw_qpolynomial_fold *pwf,
1298 enum isl_dim_type type, const char *name);
1299 int isl_union_pw_qpolynomial_find_dim_by_name(
1300 __isl_keep isl_union_pw_qpolynomial *upwqp,
1301 enum isl_dim_type type, const char *name);
1302 int isl_union_pw_qpolynomial_fold_find_dim_by_name(
1303 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1304 enum isl_dim_type type, const char *name);
1306 The identifiers or names of entire spaces may be set or read off
1307 using the following functions.
1309 #include <isl/space.h>
1310 __isl_give isl_space *isl_space_set_tuple_id(
1311 __isl_take isl_space *space,
1312 enum isl_dim_type type, __isl_take isl_id *id);
1313 __isl_give isl_space *isl_space_reset_tuple_id(
1314 __isl_take isl_space *space, enum isl_dim_type type);
1315 int isl_space_has_tuple_id(__isl_keep isl_space *space,
1316 enum isl_dim_type type);
1317 __isl_give isl_id *isl_space_get_tuple_id(
1318 __isl_keep isl_space *space, enum isl_dim_type type);
1319 __isl_give isl_space *isl_space_set_tuple_name(
1320 __isl_take isl_space *space,
1321 enum isl_dim_type type, const char *s);
1322 int isl_space_has_tuple_name(__isl_keep isl_space *space,
1323 enum isl_dim_type type);
1324 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
1325 enum isl_dim_type type);
1327 #include <isl/local_space.h>
1328 __isl_give isl_local_space *isl_local_space_set_tuple_id(
1329 __isl_take isl_local_space *ls,
1330 enum isl_dim_type type, __isl_take isl_id *id);
1332 #include <isl/set.h>
1333 __isl_give isl_basic_set *isl_basic_set_set_tuple_id(
1334 __isl_take isl_basic_set *bset,
1335 __isl_take isl_id *id);
1336 __isl_give isl_set *isl_set_set_tuple_id(
1337 __isl_take isl_set *set, __isl_take isl_id *id);
1338 __isl_give isl_set *isl_set_reset_tuple_id(
1339 __isl_take isl_set *set);
1340 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1341 __isl_give isl_id *isl_set_get_tuple_id(
1342 __isl_keep isl_set *set);
1343 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1344 __isl_take isl_basic_set *set, const char *s);
1345 __isl_give isl_set *isl_set_set_tuple_name(
1346 __isl_take isl_set *set, const char *s);
1347 const char *isl_basic_set_get_tuple_name(
1348 __isl_keep isl_basic_set *bset);
1349 int isl_set_has_tuple_name(__isl_keep isl_set *set);
1350 const char *isl_set_get_tuple_name(
1351 __isl_keep isl_set *set);
1353 #include <isl/map.h>
1354 __isl_give isl_basic_map *isl_basic_map_set_tuple_id(
1355 __isl_take isl_basic_map *bmap,
1356 enum isl_dim_type type, __isl_take isl_id *id);
1357 __isl_give isl_map *isl_map_set_tuple_id(
1358 __isl_take isl_map *map, enum isl_dim_type type,
1359 __isl_take isl_id *id);
1360 __isl_give isl_map *isl_map_reset_tuple_id(
1361 __isl_take isl_map *map, enum isl_dim_type type);
1362 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1363 enum isl_dim_type type);
1364 __isl_give isl_id *isl_map_get_tuple_id(
1365 __isl_keep isl_map *map, enum isl_dim_type type);
1366 __isl_give isl_map *isl_map_set_tuple_name(
1367 __isl_take isl_map *map,
1368 enum isl_dim_type type, const char *s);
1369 const char *isl_basic_map_get_tuple_name(
1370 __isl_keep isl_basic_map *bmap,
1371 enum isl_dim_type type);
1372 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1373 __isl_take isl_basic_map *bmap,
1374 enum isl_dim_type type, const char *s);
1375 int isl_map_has_tuple_name(__isl_keep isl_map *map,
1376 enum isl_dim_type type);
1377 const char *isl_map_get_tuple_name(
1378 __isl_keep isl_map *map,
1379 enum isl_dim_type type);
1381 #include <isl/val.h>
1382 __isl_give isl_multi_val *isl_multi_val_set_tuple_id(
1383 __isl_take isl_multi_val *mv,
1384 enum isl_dim_type type, __isl_take isl_id *id);
1385 __isl_give isl_multi_val *isl_multi_val_reset_tuple_id(
1386 __isl_take isl_multi_val *mv,
1387 enum isl_dim_type type);
1388 int isl_multi_val_has_tuple_id(__isl_keep isl_multi_val *mv,
1389 enum isl_dim_type type);
1390 __isl_give isl_id *isl_multi_val_get_tuple_id(
1391 __isl_keep isl_multi_val *mv,
1392 enum isl_dim_type type);
1393 __isl_give isl_multi_val *isl_multi_val_set_tuple_name(
1394 __isl_take isl_multi_val *mv,
1395 enum isl_dim_type type, const char *s);
1396 const char *isl_multi_val_get_tuple_name(
1397 __isl_keep isl_multi_val *mv,
1398 enum isl_dim_type type);
1400 #include <isl/aff.h>
1401 __isl_give isl_aff *isl_aff_set_tuple_id(
1402 __isl_take isl_aff *aff,
1403 enum isl_dim_type type, __isl_take isl_id *id);
1404 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
1405 __isl_take isl_multi_aff *maff,
1406 enum isl_dim_type type, __isl_take isl_id *id);
1407 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
1408 __isl_take isl_pw_aff *pwaff,
1409 enum isl_dim_type type, __isl_take isl_id *id);
1410 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
1411 __isl_take isl_pw_multi_aff *pma,
1412 enum isl_dim_type type, __isl_take isl_id *id);
1413 __isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id(
1414 __isl_take isl_multi_aff *ma,
1415 enum isl_dim_type type);
1416 __isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id(
1417 __isl_take isl_pw_aff *pa,
1418 enum isl_dim_type type);
1419 __isl_give isl_multi_pw_aff *
1420 isl_multi_pw_aff_reset_tuple_id(
1421 __isl_take isl_multi_pw_aff *mpa,
1422 enum isl_dim_type type);
1423 __isl_give isl_pw_multi_aff *
1424 isl_pw_multi_aff_reset_tuple_id(
1425 __isl_take isl_pw_multi_aff *pma,
1426 enum isl_dim_type type);
1427 int isl_multi_aff_has_tuple_id(__isl_keep isl_multi_aff *ma,
1428 enum isl_dim_type type);
1429 __isl_give isl_id *isl_multi_aff_get_tuple_id(
1430 __isl_keep isl_multi_aff *ma,
1431 enum isl_dim_type type);
1432 int isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa,
1433 enum isl_dim_type type);
1434 __isl_give isl_id *isl_pw_aff_get_tuple_id(
1435 __isl_keep isl_pw_aff *pa,
1436 enum isl_dim_type type);
1437 int isl_pw_multi_aff_has_tuple_id(
1438 __isl_keep isl_pw_multi_aff *pma,
1439 enum isl_dim_type type);
1440 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
1441 __isl_keep isl_pw_multi_aff *pma,
1442 enum isl_dim_type type);
1443 int isl_multi_pw_aff_has_tuple_id(
1444 __isl_keep isl_multi_pw_aff *mpa,
1445 enum isl_dim_type type);
1446 __isl_give isl_id *isl_multi_pw_aff_get_tuple_id(
1447 __isl_keep isl_multi_pw_aff *mpa,
1448 enum isl_dim_type type);
1449 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
1450 __isl_take isl_multi_aff *maff,
1451 enum isl_dim_type type, const char *s);
1452 __isl_give isl_multi_pw_aff *
1453 isl_multi_pw_aff_set_tuple_name(
1454 __isl_take isl_multi_pw_aff *mpa,
1455 enum isl_dim_type type, const char *s);
1456 const char *isl_multi_aff_get_tuple_name(
1457 __isl_keep isl_multi_aff *multi,
1458 enum isl_dim_type type);
1459 int isl_pw_multi_aff_has_tuple_name(
1460 __isl_keep isl_pw_multi_aff *pma,
1461 enum isl_dim_type type);
1462 const char *isl_pw_multi_aff_get_tuple_name(
1463 __isl_keep isl_pw_multi_aff *pma,
1464 enum isl_dim_type type);
1466 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
1467 or C<isl_dim_set>. As with C<isl_space_get_name>,
1468 the C<isl_space_get_tuple_name> function returns a pointer to some internal
1470 Binary operations require the corresponding spaces of their arguments
1471 to have the same name.
1473 To keep the names of all parameters and tuples, but reset the user pointers
1474 of all the corresponding identifiers, use the following function.
1476 #include <isl/space.h>
1477 __isl_give isl_space *isl_space_reset_user(
1478 __isl_take isl_space *space);
1480 #include <isl/set.h>
1481 __isl_give isl_set *isl_set_reset_user(
1482 __isl_take isl_set *set);
1484 #include <isl/map.h>
1485 __isl_give isl_map *isl_map_reset_user(
1486 __isl_take isl_map *map);
1488 #include <isl/union_set.h>
1489 __isl_give isl_union_set *isl_union_set_reset_user(
1490 __isl_take isl_union_set *uset);
1492 #include <isl/union_map.h>
1493 __isl_give isl_union_map *isl_union_map_reset_user(
1494 __isl_take isl_union_map *umap);
1496 #include <isl/val.h>
1497 __isl_give isl_multi_val *isl_multi_val_reset_user(
1498 __isl_take isl_multi_val *mv);
1500 #include <isl/aff.h>
1501 __isl_give isl_multi_aff *isl_multi_aff_reset_user(
1502 __isl_take isl_multi_aff *ma);
1503 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user(
1504 __isl_take isl_multi_pw_aff *mpa);
1506 Spaces can be nested. In particular, the domain of a set or
1507 the domain or range of a relation can be a nested relation.
1508 This process is also called I<wrapping>.
1509 The functions for detecting, constructing and deconstructing
1510 such nested spaces can be found in the wrapping properties
1511 of L</"Unary Properties">, the wrapping operations
1512 of L</"Unary Operations"> and the Cartesian product operations
1513 of L</"Basic Operations">.
1515 Spaces can be created from other spaces
1516 using the functions described in L</"Unary Operations">
1517 and L</"Binary Operations">.
1521 A local space is essentially a space with
1522 zero or more existentially quantified variables.
1523 The local space of various objects can be obtained
1524 using the following functions.
1526 #include <isl/constraint.h>
1527 __isl_give isl_local_space *isl_constraint_get_local_space(
1528 __isl_keep isl_constraint *constraint);
1530 #include <isl/set.h>
1531 __isl_give isl_local_space *isl_basic_set_get_local_space(
1532 __isl_keep isl_basic_set *bset);
1534 #include <isl/map.h>
1535 __isl_give isl_local_space *isl_basic_map_get_local_space(
1536 __isl_keep isl_basic_map *bmap);
1538 #include <isl/aff.h>
1539 __isl_give isl_local_space *isl_aff_get_domain_local_space(
1540 __isl_keep isl_aff *aff);
1541 __isl_give isl_local_space *isl_aff_get_local_space(
1542 __isl_keep isl_aff *aff);
1544 A new local space can be created from a space using
1546 #include <isl/local_space.h>
1547 __isl_give isl_local_space *isl_local_space_from_space(
1548 __isl_take isl_space *space);
1550 They can be inspected, modified, copied and freed using the following functions.
1552 #include <isl/local_space.h>
1553 int isl_local_space_is_params(
1554 __isl_keep isl_local_space *ls);
1555 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
1556 __isl_give isl_space *isl_local_space_get_space(
1557 __isl_keep isl_local_space *ls);
1558 __isl_give isl_aff *isl_local_space_get_div(
1559 __isl_keep isl_local_space *ls, int pos);
1560 __isl_give isl_local_space *isl_local_space_copy(
1561 __isl_keep isl_local_space *ls);
1562 __isl_null isl_local_space *isl_local_space_free(
1563 __isl_take isl_local_space *ls);
1565 Note that C<isl_local_space_get_div> can only be used on local spaces
1568 Two local spaces can be compared using
1570 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
1571 __isl_keep isl_local_space *ls2);
1573 Local spaces can be created from other local spaces
1574 using the functions described in L</"Unary Operations">
1575 and L</"Binary Operations">.
1577 =head2 Creating New Sets and Relations
1579 C<isl> has functions for creating some standard sets and relations.
1583 =item * Empty sets and relations
1585 __isl_give isl_basic_set *isl_basic_set_empty(
1586 __isl_take isl_space *space);
1587 __isl_give isl_basic_map *isl_basic_map_empty(
1588 __isl_take isl_space *space);
1589 __isl_give isl_set *isl_set_empty(
1590 __isl_take isl_space *space);
1591 __isl_give isl_map *isl_map_empty(
1592 __isl_take isl_space *space);
1593 __isl_give isl_union_set *isl_union_set_empty(
1594 __isl_take isl_space *space);
1595 __isl_give isl_union_map *isl_union_map_empty(
1596 __isl_take isl_space *space);
1598 For C<isl_union_set>s and C<isl_union_map>s, the space
1599 is only used to specify the parameters.
1601 =item * Universe sets and relations
1603 __isl_give isl_basic_set *isl_basic_set_universe(
1604 __isl_take isl_space *space);
1605 __isl_give isl_basic_map *isl_basic_map_universe(
1606 __isl_take isl_space *space);
1607 __isl_give isl_set *isl_set_universe(
1608 __isl_take isl_space *space);
1609 __isl_give isl_map *isl_map_universe(
1610 __isl_take isl_space *space);
1611 __isl_give isl_union_set *isl_union_set_universe(
1612 __isl_take isl_union_set *uset);
1613 __isl_give isl_union_map *isl_union_map_universe(
1614 __isl_take isl_union_map *umap);
1616 The sets and relations constructed by the functions above
1617 contain all integer values, while those constructed by the
1618 functions below only contain non-negative values.
1620 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1621 __isl_take isl_space *space);
1622 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1623 __isl_take isl_space *space);
1624 __isl_give isl_set *isl_set_nat_universe(
1625 __isl_take isl_space *space);
1626 __isl_give isl_map *isl_map_nat_universe(
1627 __isl_take isl_space *space);
1629 =item * Identity relations
1631 __isl_give isl_basic_map *isl_basic_map_identity(
1632 __isl_take isl_space *space);
1633 __isl_give isl_map *isl_map_identity(
1634 __isl_take isl_space *space);
1636 The number of input and output dimensions in C<space> needs
1639 =item * Lexicographic order
1641 __isl_give isl_map *isl_map_lex_lt(
1642 __isl_take isl_space *set_space);
1643 __isl_give isl_map *isl_map_lex_le(
1644 __isl_take isl_space *set_space);
1645 __isl_give isl_map *isl_map_lex_gt(
1646 __isl_take isl_space *set_space);
1647 __isl_give isl_map *isl_map_lex_ge(
1648 __isl_take isl_space *set_space);
1649 __isl_give isl_map *isl_map_lex_lt_first(
1650 __isl_take isl_space *space, unsigned n);
1651 __isl_give isl_map *isl_map_lex_le_first(
1652 __isl_take isl_space *space, unsigned n);
1653 __isl_give isl_map *isl_map_lex_gt_first(
1654 __isl_take isl_space *space, unsigned n);
1655 __isl_give isl_map *isl_map_lex_ge_first(
1656 __isl_take isl_space *space, unsigned n);
1658 The first four functions take a space for a B<set>
1659 and return relations that express that the elements in the domain
1660 are lexicographically less
1661 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1662 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1663 than the elements in the range.
1664 The last four functions take a space for a map
1665 and return relations that express that the first C<n> dimensions
1666 in the domain are lexicographically less
1667 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1668 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1669 than the first C<n> dimensions in the range.
1673 A basic set or relation can be converted to a set or relation
1674 using the following functions.
1676 __isl_give isl_set *isl_set_from_basic_set(
1677 __isl_take isl_basic_set *bset);
1678 __isl_give isl_map *isl_map_from_basic_map(
1679 __isl_take isl_basic_map *bmap);
1681 Sets and relations can be converted to union sets and relations
1682 using the following functions.
1684 __isl_give isl_union_set *isl_union_set_from_basic_set(
1685 __isl_take isl_basic_set *bset);
1686 __isl_give isl_union_map *isl_union_map_from_basic_map(
1687 __isl_take isl_basic_map *bmap);
1688 __isl_give isl_union_set *isl_union_set_from_set(
1689 __isl_take isl_set *set);
1690 __isl_give isl_union_map *isl_union_map_from_map(
1691 __isl_take isl_map *map);
1693 The inverse conversions below can only be used if the input
1694 union set or relation is known to contain elements in exactly one
1697 __isl_give isl_set *isl_set_from_union_set(
1698 __isl_take isl_union_set *uset);
1699 __isl_give isl_map *isl_map_from_union_map(
1700 __isl_take isl_union_map *umap);
1702 Sets and relations can be copied and freed again using the following
1705 __isl_give isl_basic_set *isl_basic_set_copy(
1706 __isl_keep isl_basic_set *bset);
1707 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1708 __isl_give isl_union_set *isl_union_set_copy(
1709 __isl_keep isl_union_set *uset);
1710 __isl_give isl_basic_map *isl_basic_map_copy(
1711 __isl_keep isl_basic_map *bmap);
1712 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1713 __isl_give isl_union_map *isl_union_map_copy(
1714 __isl_keep isl_union_map *umap);
1715 __isl_null isl_basic_set *isl_basic_set_free(
1716 __isl_take isl_basic_set *bset);
1717 __isl_null isl_set *isl_set_free(__isl_take isl_set *set);
1718 __isl_null isl_union_set *isl_union_set_free(
1719 __isl_take isl_union_set *uset);
1720 __isl_null isl_basic_map *isl_basic_map_free(
1721 __isl_take isl_basic_map *bmap);
1722 __isl_null isl_map *isl_map_free(__isl_take isl_map *map);
1723 __isl_null isl_union_map *isl_union_map_free(
1724 __isl_take isl_union_map *umap);
1726 Other sets and relations can be constructed by starting
1727 from a universe set or relation, adding equality and/or
1728 inequality constraints and then projecting out the
1729 existentially quantified variables, if any.
1730 Constraints can be constructed, manipulated and
1731 added to (or removed from) (basic) sets and relations
1732 using the following functions.
1734 #include <isl/constraint.h>
1735 __isl_give isl_constraint *isl_equality_alloc(
1736 __isl_take isl_local_space *ls);
1737 __isl_give isl_constraint *isl_inequality_alloc(
1738 __isl_take isl_local_space *ls);
1739 __isl_give isl_constraint *isl_constraint_set_constant_si(
1740 __isl_take isl_constraint *constraint, int v);
1741 __isl_give isl_constraint *isl_constraint_set_constant_val(
1742 __isl_take isl_constraint *constraint,
1743 __isl_take isl_val *v);
1744 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1745 __isl_take isl_constraint *constraint,
1746 enum isl_dim_type type, int pos, int v);
1747 __isl_give isl_constraint *
1748 isl_constraint_set_coefficient_val(
1749 __isl_take isl_constraint *constraint,
1750 enum isl_dim_type type, int pos,
1751 __isl_take isl_val *v);
1752 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1753 __isl_take isl_basic_map *bmap,
1754 __isl_take isl_constraint *constraint);
1755 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1756 __isl_take isl_basic_set *bset,
1757 __isl_take isl_constraint *constraint);
1758 __isl_give isl_map *isl_map_add_constraint(
1759 __isl_take isl_map *map,
1760 __isl_take isl_constraint *constraint);
1761 __isl_give isl_set *isl_set_add_constraint(
1762 __isl_take isl_set *set,
1763 __isl_take isl_constraint *constraint);
1764 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1765 __isl_take isl_basic_set *bset,
1766 __isl_take isl_constraint *constraint);
1768 For example, to create a set containing the even integers
1769 between 10 and 42, you would use the following code.
1772 isl_local_space *ls;
1774 isl_basic_set *bset;
1776 space = isl_space_set_alloc(ctx, 0, 2);
1777 bset = isl_basic_set_universe(isl_space_copy(space));
1778 ls = isl_local_space_from_space(space);
1780 c = isl_equality_alloc(isl_local_space_copy(ls));
1781 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1782 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1783 bset = isl_basic_set_add_constraint(bset, c);
1785 c = isl_inequality_alloc(isl_local_space_copy(ls));
1786 c = isl_constraint_set_constant_si(c, -10);
1787 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1788 bset = isl_basic_set_add_constraint(bset, c);
1790 c = isl_inequality_alloc(ls);
1791 c = isl_constraint_set_constant_si(c, 42);
1792 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1793 bset = isl_basic_set_add_constraint(bset, c);
1795 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1799 isl_basic_set *bset;
1800 bset = isl_basic_set_read_from_str(ctx,
1801 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1803 A basic set or relation can also be constructed from two matrices
1804 describing the equalities and the inequalities.
1806 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1807 __isl_take isl_space *space,
1808 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1809 enum isl_dim_type c1,
1810 enum isl_dim_type c2, enum isl_dim_type c3,
1811 enum isl_dim_type c4);
1812 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1813 __isl_take isl_space *space,
1814 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1815 enum isl_dim_type c1,
1816 enum isl_dim_type c2, enum isl_dim_type c3,
1817 enum isl_dim_type c4, enum isl_dim_type c5);
1819 The C<isl_dim_type> arguments indicate the order in which
1820 different kinds of variables appear in the input matrices
1821 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1822 C<isl_dim_set> and C<isl_dim_div> for sets and
1823 of C<isl_dim_cst>, C<isl_dim_param>,
1824 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1826 A (basic or union) set or relation can also be constructed from a
1827 (union) (piecewise) (multiple) affine expression
1828 or a list of affine expressions
1829 (See L</"Functions">).
1831 __isl_give isl_basic_map *isl_basic_map_from_aff(
1832 __isl_take isl_aff *aff);
1833 __isl_give isl_map *isl_map_from_aff(
1834 __isl_take isl_aff *aff);
1835 __isl_give isl_set *isl_set_from_pw_aff(
1836 __isl_take isl_pw_aff *pwaff);
1837 __isl_give isl_map *isl_map_from_pw_aff(
1838 __isl_take isl_pw_aff *pwaff);
1839 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1840 __isl_take isl_space *domain_space,
1841 __isl_take isl_aff_list *list);
1842 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1843 __isl_take isl_multi_aff *maff)
1844 __isl_give isl_map *isl_map_from_multi_aff(
1845 __isl_take isl_multi_aff *maff)
1846 __isl_give isl_set *isl_set_from_pw_multi_aff(
1847 __isl_take isl_pw_multi_aff *pma);
1848 __isl_give isl_map *isl_map_from_pw_multi_aff(
1849 __isl_take isl_pw_multi_aff *pma);
1850 __isl_give isl_set *isl_set_from_multi_pw_aff(
1851 __isl_take isl_multi_pw_aff *mpa);
1852 __isl_give isl_map *isl_map_from_multi_pw_aff(
1853 __isl_take isl_multi_pw_aff *mpa);
1854 __isl_give isl_union_map *
1855 isl_union_map_from_union_pw_multi_aff(
1856 __isl_take isl_union_pw_multi_aff *upma);
1858 The C<domain_space> argument describes the domain of the resulting
1859 basic relation. It is required because the C<list> may consist
1860 of zero affine expressions.
1862 =head2 Inspecting Sets and Relations
1864 Usually, the user should not have to care about the actual constraints
1865 of the sets and maps, but should instead apply the abstract operations
1866 explained in the following sections.
1867 Occasionally, however, it may be required to inspect the individual
1868 coefficients of the constraints. This section explains how to do so.
1869 In these cases, it may also be useful to have C<isl> compute
1870 an explicit representation of the existentially quantified variables.
1872 __isl_give isl_set *isl_set_compute_divs(
1873 __isl_take isl_set *set);
1874 __isl_give isl_map *isl_map_compute_divs(
1875 __isl_take isl_map *map);
1876 __isl_give isl_union_set *isl_union_set_compute_divs(
1877 __isl_take isl_union_set *uset);
1878 __isl_give isl_union_map *isl_union_map_compute_divs(
1879 __isl_take isl_union_map *umap);
1881 This explicit representation defines the existentially quantified
1882 variables as integer divisions of the other variables, possibly
1883 including earlier existentially quantified variables.
1884 An explicitly represented existentially quantified variable therefore
1885 has a unique value when the values of the other variables are known.
1886 If, furthermore, the same existentials, i.e., existentials
1887 with the same explicit representations, should appear in the
1888 same order in each of the disjuncts of a set or map, then the user should call
1889 either of the following functions.
1891 __isl_give isl_set *isl_set_align_divs(
1892 __isl_take isl_set *set);
1893 __isl_give isl_map *isl_map_align_divs(
1894 __isl_take isl_map *map);
1896 Alternatively, the existentially quantified variables can be removed
1897 using the following functions, which compute an overapproximation.
1899 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1900 __isl_take isl_basic_set *bset);
1901 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1902 __isl_take isl_basic_map *bmap);
1903 __isl_give isl_set *isl_set_remove_divs(
1904 __isl_take isl_set *set);
1905 __isl_give isl_map *isl_map_remove_divs(
1906 __isl_take isl_map *map);
1908 It is also possible to only remove those divs that are defined
1909 in terms of a given range of dimensions or only those for which
1910 no explicit representation is known.
1912 __isl_give isl_basic_set *
1913 isl_basic_set_remove_divs_involving_dims(
1914 __isl_take isl_basic_set *bset,
1915 enum isl_dim_type type,
1916 unsigned first, unsigned n);
1917 __isl_give isl_basic_map *
1918 isl_basic_map_remove_divs_involving_dims(
1919 __isl_take isl_basic_map *bmap,
1920 enum isl_dim_type type,
1921 unsigned first, unsigned n);
1922 __isl_give isl_set *isl_set_remove_divs_involving_dims(
1923 __isl_take isl_set *set, enum isl_dim_type type,
1924 unsigned first, unsigned n);
1925 __isl_give isl_map *isl_map_remove_divs_involving_dims(
1926 __isl_take isl_map *map, enum isl_dim_type type,
1927 unsigned first, unsigned n);
1929 __isl_give isl_basic_set *
1930 isl_basic_set_remove_unknown_divs(
1931 __isl_take isl_basic_set *bset);
1932 __isl_give isl_set *isl_set_remove_unknown_divs(
1933 __isl_take isl_set *set);
1934 __isl_give isl_map *isl_map_remove_unknown_divs(
1935 __isl_take isl_map *map);
1937 To iterate over all the sets or maps in a union set or map, use
1939 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1940 int (*fn)(__isl_take isl_set *set, void *user),
1942 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1943 int (*fn)(__isl_take isl_map *map, void *user),
1946 The number of sets or maps in a union set or map can be obtained
1949 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1950 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1952 To extract the set or map in a given space from a union, use
1954 __isl_give isl_set *isl_union_set_extract_set(
1955 __isl_keep isl_union_set *uset,
1956 __isl_take isl_space *space);
1957 __isl_give isl_map *isl_union_map_extract_map(
1958 __isl_keep isl_union_map *umap,
1959 __isl_take isl_space *space);
1961 To iterate over all the basic sets or maps in a set or map, use
1963 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1964 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1966 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1967 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1970 The callback function C<fn> should return 0 if successful and
1971 -1 if an error occurs. In the latter case, or if any other error
1972 occurs, the above functions will return -1.
1974 It should be noted that C<isl> does not guarantee that
1975 the basic sets or maps passed to C<fn> are disjoint.
1976 If this is required, then the user should call one of
1977 the following functions first.
1979 __isl_give isl_set *isl_set_make_disjoint(
1980 __isl_take isl_set *set);
1981 __isl_give isl_map *isl_map_make_disjoint(
1982 __isl_take isl_map *map);
1984 The number of basic sets in a set can be obtained
1985 or the number of basic maps in a map can be obtained
1988 #include <isl/set.h>
1989 int isl_set_n_basic_set(__isl_keep isl_set *set);
1991 #include <isl/map.h>
1992 int isl_map_n_basic_map(__isl_keep isl_map *map);
1994 To iterate over the constraints of a basic set or map, use
1996 #include <isl/constraint.h>
1998 int isl_basic_set_n_constraint(
1999 __isl_keep isl_basic_set *bset);
2000 int isl_basic_set_foreach_constraint(
2001 __isl_keep isl_basic_set *bset,
2002 int (*fn)(__isl_take isl_constraint *c, void *user),
2004 int isl_basic_map_n_constraint(
2005 __isl_keep isl_basic_map *bmap);
2006 int isl_basic_map_foreach_constraint(
2007 __isl_keep isl_basic_map *bmap,
2008 int (*fn)(__isl_take isl_constraint *c, void *user),
2010 __isl_null isl_constraint *isl_constraint_free(
2011 __isl_take isl_constraint *c);
2013 Again, the callback function C<fn> should return 0 if successful and
2014 -1 if an error occurs. In the latter case, or if any other error
2015 occurs, the above functions will return -1.
2016 The constraint C<c> represents either an equality or an inequality.
2017 Use the following function to find out whether a constraint
2018 represents an equality. If not, it represents an inequality.
2020 int isl_constraint_is_equality(
2021 __isl_keep isl_constraint *constraint);
2023 It is also possible to obtain a list of constraints from a basic
2026 #include <isl/constraint.h>
2027 __isl_give isl_constraint_list *
2028 isl_basic_map_get_constraint_list(
2029 __isl_keep isl_basic_map *bmap);
2030 __isl_give isl_constraint_list *
2031 isl_basic_set_get_constraint_list(
2032 __isl_keep isl_basic_set *bset);
2034 These functions require that all existentially quantified variables
2035 have an explicit representation.
2036 The returned list can be manipulated using the functions in L<"Lists">.
2038 The coefficients of the constraints can be inspected using
2039 the following functions.
2041 int isl_constraint_is_lower_bound(
2042 __isl_keep isl_constraint *constraint,
2043 enum isl_dim_type type, unsigned pos);
2044 int isl_constraint_is_upper_bound(
2045 __isl_keep isl_constraint *constraint,
2046 enum isl_dim_type type, unsigned pos);
2047 __isl_give isl_val *isl_constraint_get_constant_val(
2048 __isl_keep isl_constraint *constraint);
2049 __isl_give isl_val *isl_constraint_get_coefficient_val(
2050 __isl_keep isl_constraint *constraint,
2051 enum isl_dim_type type, int pos);
2053 The explicit representations of the existentially quantified
2054 variables can be inspected using the following function.
2055 Note that the user is only allowed to use this function
2056 if the inspected set or map is the result of a call
2057 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
2058 The existentially quantified variable is equal to the floor
2059 of the returned affine expression. The affine expression
2060 itself can be inspected using the functions in
2063 __isl_give isl_aff *isl_constraint_get_div(
2064 __isl_keep isl_constraint *constraint, int pos);
2066 To obtain the constraints of a basic set or map in matrix
2067 form, use the following functions.
2069 __isl_give isl_mat *isl_basic_set_equalities_matrix(
2070 __isl_keep isl_basic_set *bset,
2071 enum isl_dim_type c1, enum isl_dim_type c2,
2072 enum isl_dim_type c3, enum isl_dim_type c4);
2073 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
2074 __isl_keep isl_basic_set *bset,
2075 enum isl_dim_type c1, enum isl_dim_type c2,
2076 enum isl_dim_type c3, enum isl_dim_type c4);
2077 __isl_give isl_mat *isl_basic_map_equalities_matrix(
2078 __isl_keep isl_basic_map *bmap,
2079 enum isl_dim_type c1,
2080 enum isl_dim_type c2, enum isl_dim_type c3,
2081 enum isl_dim_type c4, enum isl_dim_type c5);
2082 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
2083 __isl_keep isl_basic_map *bmap,
2084 enum isl_dim_type c1,
2085 enum isl_dim_type c2, enum isl_dim_type c3,
2086 enum isl_dim_type c4, enum isl_dim_type c5);
2088 The C<isl_dim_type> arguments dictate the order in which
2089 different kinds of variables appear in the resulting matrix.
2090 For set inputs, they should be a permutation of
2091 C<isl_dim_cst>, C<isl_dim_param>, C<isl_dim_set> and C<isl_dim_div>.
2092 For map inputs, they should be a permutation of
2093 C<isl_dim_cst>, C<isl_dim_param>,
2094 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
2098 Points are elements of a set. They can be used to construct
2099 simple sets (boxes) or they can be used to represent the
2100 individual elements of a set.
2101 The zero point (the origin) can be created using
2103 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
2105 The coordinates of a point can be inspected, set and changed
2108 __isl_give isl_val *isl_point_get_coordinate_val(
2109 __isl_keep isl_point *pnt,
2110 enum isl_dim_type type, int pos);
2111 __isl_give isl_point *isl_point_set_coordinate_val(
2112 __isl_take isl_point *pnt,
2113 enum isl_dim_type type, int pos,
2114 __isl_take isl_val *v);
2116 __isl_give isl_point *isl_point_add_ui(
2117 __isl_take isl_point *pnt,
2118 enum isl_dim_type type, int pos, unsigned val);
2119 __isl_give isl_point *isl_point_sub_ui(
2120 __isl_take isl_point *pnt,
2121 enum isl_dim_type type, int pos, unsigned val);
2123 Points can be copied or freed using
2125 __isl_give isl_point *isl_point_copy(
2126 __isl_keep isl_point *pnt);
2127 void isl_point_free(__isl_take isl_point *pnt);
2129 A singleton set can be created from a point using
2131 __isl_give isl_basic_set *isl_basic_set_from_point(
2132 __isl_take isl_point *pnt);
2133 __isl_give isl_set *isl_set_from_point(
2134 __isl_take isl_point *pnt);
2136 and a box can be created from two opposite extremal points using
2138 __isl_give isl_basic_set *isl_basic_set_box_from_points(
2139 __isl_take isl_point *pnt1,
2140 __isl_take isl_point *pnt2);
2141 __isl_give isl_set *isl_set_box_from_points(
2142 __isl_take isl_point *pnt1,
2143 __isl_take isl_point *pnt2);
2145 All elements of a B<bounded> (union) set can be enumerated using
2146 the following functions.
2148 int isl_set_foreach_point(__isl_keep isl_set *set,
2149 int (*fn)(__isl_take isl_point *pnt, void *user),
2151 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
2152 int (*fn)(__isl_take isl_point *pnt, void *user),
2155 The function C<fn> is called for each integer point in
2156 C<set> with as second argument the last argument of
2157 the C<isl_set_foreach_point> call. The function C<fn>
2158 should return C<0> on success and C<-1> on failure.
2159 In the latter case, C<isl_set_foreach_point> will stop
2160 enumerating and return C<-1> as well.
2161 If the enumeration is performed successfully and to completion,
2162 then C<isl_set_foreach_point> returns C<0>.
2164 To obtain a single point of a (basic) set, use
2166 __isl_give isl_point *isl_basic_set_sample_point(
2167 __isl_take isl_basic_set *bset);
2168 __isl_give isl_point *isl_set_sample_point(
2169 __isl_take isl_set *set);
2171 If C<set> does not contain any (integer) points, then the
2172 resulting point will be ``void'', a property that can be
2175 int isl_point_is_void(__isl_keep isl_point *pnt);
2179 Besides sets and relation, C<isl> also supports various types of functions.
2180 Each of these types is derived from the value type (see L</"Values">)
2181 or from one of two primitive function types
2182 through the application of zero or more type constructors.
2183 We first describe the primitive type and then we describe
2184 the types derived from these primitive types.
2186 =head3 Primitive Functions
2188 C<isl> support two primitive function types, quasi-affine
2189 expressions and quasipolynomials.
2190 A quasi-affine expression is defined either over a parameter
2191 space or over a set and is composed of integer constants,
2192 parameters and set variables, addition, subtraction and
2193 integer division by an integer constant.
2194 For example, the quasi-affine expression
2196 [n] -> { [x] -> [2*floor((4 n + x)/9] }
2198 maps C<x> to C<2*floor((4 n + x)/9>.
2199 A quasipolynomial is a polynomial expression in quasi-affine
2200 expression. That is, it additionally allows for multiplication.
2201 Note, though, that it is not allowed to construct an integer
2202 division of an expression involving multiplications.
2203 Here is an example of a quasipolynomial that is not
2204 quasi-affine expression
2206 [n] -> { [x] -> (n*floor((4 n + x)/9) }
2208 Note that the external representations of quasi-affine expressions
2209 and quasipolynomials are different. Quasi-affine expressions
2210 use a notation with square brackets just like binary relations,
2211 while quasipolynomials do not. This might change at some point.
2213 If a primitive function is defined over a parameter space,
2214 then the space of the function itself is that of a set.
2215 If it is defined over a set, then the space of the function
2216 is that of a relation. In both cases, the set space (or
2217 the output space) is single-dimensional, anonymous and unstructured.
2218 To create functions with multiple dimensions or with other kinds
2219 of set or output spaces, use multiple expressions
2220 (see L</"Multiple Expressions">).
2224 =item * Quasi-affine Expressions
2226 Besides the expressions described above, a quasi-affine
2227 expression can also be set to NaN. Such expressions
2228 typically represent a failure to represent a result
2229 as a quasi-affine expression.
2231 The zero quasi affine expression or the quasi affine expression
2232 that is equal to a given value or
2233 a specified dimension on a given domain can be created using
2235 #include <isl/aff.h>
2236 __isl_give isl_aff *isl_aff_zero_on_domain(
2237 __isl_take isl_local_space *ls);
2238 __isl_give isl_aff *isl_aff_val_on_domain(
2239 __isl_take isl_local_space *ls,
2240 __isl_take isl_val *val);
2241 __isl_give isl_aff *isl_aff_var_on_domain(
2242 __isl_take isl_local_space *ls,
2243 enum isl_dim_type type, unsigned pos);
2244 __isl_give isl_aff *isl_aff_nan_on_domain(
2245 __isl_take isl_local_space *ls);
2247 Quasi affine expressions can be copied and freed using
2249 #include <isl/aff.h>
2250 __isl_give isl_aff *isl_aff_copy(
2251 __isl_keep isl_aff *aff);
2252 __isl_null isl_aff *isl_aff_free(
2253 __isl_take isl_aff *aff);
2255 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2256 using the following function. The constraint is required to have
2257 a non-zero coefficient for the specified dimension.
2259 #include <isl/constraint.h>
2260 __isl_give isl_aff *isl_constraint_get_bound(
2261 __isl_keep isl_constraint *constraint,
2262 enum isl_dim_type type, int pos);
2264 The entire affine expression of the constraint can also be extracted
2265 using the following function.
2267 #include <isl/constraint.h>
2268 __isl_give isl_aff *isl_constraint_get_aff(
2269 __isl_keep isl_constraint *constraint);
2271 Conversely, an equality constraint equating
2272 the affine expression to zero or an inequality constraint enforcing
2273 the affine expression to be non-negative, can be constructed using
2275 __isl_give isl_constraint *isl_equality_from_aff(
2276 __isl_take isl_aff *aff);
2277 __isl_give isl_constraint *isl_inequality_from_aff(
2278 __isl_take isl_aff *aff);
2280 The coefficients and the integer divisions of an affine expression
2281 can be inspected using the following functions.
2283 #include <isl/aff.h>
2284 __isl_give isl_val *isl_aff_get_constant_val(
2285 __isl_keep isl_aff *aff);
2286 __isl_give isl_val *isl_aff_get_coefficient_val(
2287 __isl_keep isl_aff *aff,
2288 enum isl_dim_type type, int pos);
2289 int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff,
2290 enum isl_dim_type type, int pos);
2291 __isl_give isl_val *isl_aff_get_denominator_val(
2292 __isl_keep isl_aff *aff);
2293 __isl_give isl_aff *isl_aff_get_div(
2294 __isl_keep isl_aff *aff, int pos);
2296 They can be modified using the following functions.
2298 #include <isl/aff.h>
2299 __isl_give isl_aff *isl_aff_set_constant_si(
2300 __isl_take isl_aff *aff, int v);
2301 __isl_give isl_aff *isl_aff_set_constant_val(
2302 __isl_take isl_aff *aff, __isl_take isl_val *v);
2303 __isl_give isl_aff *isl_aff_set_coefficient_si(
2304 __isl_take isl_aff *aff,
2305 enum isl_dim_type type, int pos, int v);
2306 __isl_give isl_aff *isl_aff_set_coefficient_val(
2307 __isl_take isl_aff *aff,
2308 enum isl_dim_type type, int pos,
2309 __isl_take isl_val *v);
2311 __isl_give isl_aff *isl_aff_add_constant_si(
2312 __isl_take isl_aff *aff, int v);
2313 __isl_give isl_aff *isl_aff_add_constant_val(
2314 __isl_take isl_aff *aff, __isl_take isl_val *v);
2315 __isl_give isl_aff *isl_aff_add_constant_num_si(
2316 __isl_take isl_aff *aff, int v);
2317 __isl_give isl_aff *isl_aff_add_coefficient_si(
2318 __isl_take isl_aff *aff,
2319 enum isl_dim_type type, int pos, int v);
2320 __isl_give isl_aff *isl_aff_add_coefficient_val(
2321 __isl_take isl_aff *aff,
2322 enum isl_dim_type type, int pos,
2323 __isl_take isl_val *v);
2325 Note that C<isl_aff_set_constant_si> and C<isl_aff_set_coefficient_si>
2326 set the I<numerator> of the constant or coefficient, while
2327 C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
2328 the constant or coefficient as a whole.
2329 The C<add_constant> and C<add_coefficient> functions add an integer
2330 or rational value to
2331 the possibly rational constant or coefficient.
2332 The C<add_constant_num> functions add an integer value to
2335 =item * Quasipolynomials
2337 Some simple quasipolynomials can be created using the following functions.
2339 #include <isl/polynomial.h>
2340 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
2341 __isl_take isl_space *domain);
2342 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
2343 __isl_take isl_space *domain);
2344 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
2345 __isl_take isl_space *domain);
2346 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
2347 __isl_take isl_space *domain);
2348 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
2349 __isl_take isl_space *domain);
2350 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2351 __isl_take isl_space *domain,
2352 __isl_take isl_val *val);
2353 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2354 __isl_take isl_space *domain,
2355 enum isl_dim_type type, unsigned pos);
2356 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
2357 __isl_take isl_aff *aff);
2359 Recall that the space in which a quasipolynomial lives is a map space
2360 with a one-dimensional range. The C<domain> argument in some of
2361 the functions above corresponds to the domain of this map space.
2363 Quasipolynomials can be copied and freed again using the following
2366 #include <isl/polynomial.h>
2367 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
2368 __isl_keep isl_qpolynomial *qp);
2369 __isl_null isl_qpolynomial *isl_qpolynomial_free(
2370 __isl_take isl_qpolynomial *qp);
2372 The constant term of a quasipolynomial can be extracted using
2374 __isl_give isl_val *isl_qpolynomial_get_constant_val(
2375 __isl_keep isl_qpolynomial *qp);
2377 To iterate over all terms in a quasipolynomial,
2380 int isl_qpolynomial_foreach_term(
2381 __isl_keep isl_qpolynomial *qp,
2382 int (*fn)(__isl_take isl_term *term,
2383 void *user), void *user);
2385 The terms themselves can be inspected and freed using
2388 unsigned isl_term_dim(__isl_keep isl_term *term,
2389 enum isl_dim_type type);
2390 __isl_give isl_val *isl_term_get_coefficient_val(
2391 __isl_keep isl_term *term);
2392 int isl_term_get_exp(__isl_keep isl_term *term,
2393 enum isl_dim_type type, unsigned pos);
2394 __isl_give isl_aff *isl_term_get_div(
2395 __isl_keep isl_term *term, unsigned pos);
2396 void isl_term_free(__isl_take isl_term *term);
2398 Each term is a product of parameters, set variables and
2399 integer divisions. The function C<isl_term_get_exp>
2400 returns the exponent of a given dimensions in the given term.
2406 A reduction represents a maximum or a minimum of its
2408 The only reduction type defined by C<isl> is
2409 C<isl_qpolynomial_fold>.
2411 There are currently no functions to directly create such
2412 objects, but they do appear in the piecewise quasipolynomial
2413 reductions returned by the C<isl_pw_qpolynomial_bound> function.
2415 L</"Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions">.
2417 Reductions can be copied and freed using
2418 the following functions.
2420 #include <isl/polynomial.h>
2421 __isl_give isl_qpolynomial_fold *
2422 isl_qpolynomial_fold_copy(
2423 __isl_keep isl_qpolynomial_fold *fold);
2424 void isl_qpolynomial_fold_free(
2425 __isl_take isl_qpolynomial_fold *fold);
2427 To iterate over all quasipolynomials in a reduction, use
2429 int isl_qpolynomial_fold_foreach_qpolynomial(
2430 __isl_keep isl_qpolynomial_fold *fold,
2431 int (*fn)(__isl_take isl_qpolynomial *qp,
2432 void *user), void *user);
2434 =head3 Multiple Expressions
2436 A multiple expression represents a sequence of zero or
2437 more base expressions, all defined on the same domain space.
2438 The domain space of the multiple expression is the same
2439 as that of the base expressions, but the range space
2440 can be any space. In case the base expressions have
2441 a set space, the corresponding multiple expression
2442 also has a set space.
2443 Objects of the value type do not have an associated space.
2444 The space of a multiple value is therefore always a set space.
2446 The multiple expression types defined by C<isl>
2447 are C<isl_multi_val>, C<isl_multi_aff> and C<isl_multi_pw_aff>.
2449 A multiple expression with the value zero for
2450 each output (or set) dimension can be created
2451 using the following functions.
2453 #include <isl/val.h>
2454 __isl_give isl_multi_val *isl_multi_val_zero(
2455 __isl_take isl_space *space);
2457 #include <isl/aff.h>
2458 __isl_give isl_multi_aff *isl_multi_aff_zero(
2459 __isl_take isl_space *space);
2460 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
2461 __isl_take isl_space *space);
2463 An identity function can be created using the following
2464 functions. The space needs to be that of a relation
2465 with the same number of input and output dimensions.
2467 #include <isl/aff.h>
2468 __isl_give isl_multi_aff *isl_multi_aff_identity(
2469 __isl_take isl_space *space);
2470 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
2471 __isl_take isl_space *space);
2473 A function that performs a projection on a universe
2474 relation or set can be created using the following functions.
2475 See also the corresponding
2476 projection operations in L</"Unary Operations">.
2478 #include <isl/aff.h>
2479 __isl_give isl_multi_aff *isl_multi_aff_domain_map(
2480 __isl_take isl_space *space);
2481 __isl_give isl_multi_aff *isl_multi_aff_range_map(
2482 __isl_take isl_space *space);
2483 __isl_give isl_multi_aff *isl_multi_aff_project_out_map(
2484 __isl_take isl_space *space,
2485 enum isl_dim_type type,
2486 unsigned first, unsigned n);
2488 A multiple expression can be created from a single
2489 base expression using the following functions.
2490 The space of the created multiple expression is the same
2491 as that of the base expression.
2493 #include <isl/aff.h>
2494 __isl_give isl_multi_aff *isl_multi_aff_from_aff(
2495 __isl_take isl_aff *aff);
2496 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
2497 __isl_take isl_pw_aff *pa);
2499 A multiple expression can be created from a list
2500 of base expression in a specified space.
2501 The domain of this space needs to be the same
2502 as the domains of the base expressions in the list.
2503 If the base expressions have a set space (or no associated space),
2504 then this space also needs to be a set space.
2506 #include <isl/val.h>
2507 __isl_give isl_multi_val *isl_multi_val_from_val_list(
2508 __isl_take isl_space *space,
2509 __isl_take isl_val_list *list);
2511 #include <isl/aff.h>
2512 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
2513 __isl_take isl_space *space,
2514 __isl_take isl_aff_list *list);
2516 As a convenience, a multiple piecewise expression can
2517 also be created from a multiple expression.
2518 Each piecewise expression in the result has a single
2521 #include <isl/aff.h>
2522 __isl_give isl_multi_pw_aff *
2523 isl_multi_pw_aff_from_multi_aff(
2524 __isl_take isl_multi_aff *ma);
2526 A multiple quasi-affine expression can be created from
2527 a multiple value with a given domain space using the following
2530 #include <isl/aff.h>
2531 __isl_give isl_multi_aff *
2532 isl_multi_aff_multi_val_on_space(
2533 __isl_take isl_space *space,
2534 __isl_take isl_multi_val *mv);
2536 Multiple expressions can be copied and freed using
2537 the following functions.
2539 #include <isl/val.h>
2540 __isl_give isl_multi_val *isl_multi_val_copy(
2541 __isl_keep isl_multi_val *mv);
2542 __isl_null isl_multi_val *isl_multi_val_free(
2543 __isl_take isl_multi_val *mv);
2545 #include <isl/aff.h>
2546 __isl_give isl_multi_aff *isl_multi_aff_copy(
2547 __isl_keep isl_multi_aff *maff);
2548 __isl_null isl_multi_aff *isl_multi_aff_free(
2549 __isl_take isl_multi_aff *maff);
2550 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
2551 __isl_keep isl_multi_pw_aff *mpa);
2552 __isl_null isl_multi_pw_aff *isl_multi_pw_aff_free(
2553 __isl_take isl_multi_pw_aff *mpa);
2555 The base expression at a given position of a multiple
2556 expression can be extracted using the following functions.
2558 #include <isl/val.h>
2559 __isl_give isl_val *isl_multi_val_get_val(
2560 __isl_keep isl_multi_val *mv, int pos);
2562 #include <isl/aff.h>
2563 __isl_give isl_aff *isl_multi_aff_get_aff(
2564 __isl_keep isl_multi_aff *multi, int pos);
2565 __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
2566 __isl_keep isl_multi_pw_aff *mpa, int pos);
2568 It can be replaced using the following functions.
2570 #include <isl/val.h>
2571 __isl_give isl_multi_val *isl_multi_val_set_val(
2572 __isl_take isl_multi_val *mv, int pos,
2573 __isl_take isl_val *val);
2575 #include <isl/aff.h>
2576 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
2577 __isl_take isl_multi_aff *multi, int pos,
2578 __isl_take isl_aff *aff);
2580 =head3 Piecewise Expressions
2582 A piecewise expression is an expression that is described
2583 using zero or more base expression defined over the same
2584 number of cells in the domain space of the base expressions.
2585 All base expressions are defined over the same
2586 domain space and the cells are disjoint.
2587 The space of a piecewise expression is the same as
2588 that of the base expressions.
2589 If the union of the cells is a strict subset of the domain
2590 space, then the value of the piecewise expression outside
2591 this union is different for types derived from quasi-affine
2592 expressions and those derived from quasipolynomials.
2593 Piecewise expressions derived from quasi-affine expressions
2594 are considered to be undefined outside the union of their cells.
2595 Piecewise expressions derived from quasipolynomials
2596 are considered to be zero outside the union of their cells.
2598 Piecewise quasipolynomials are mainly used by the C<barvinok>
2599 library for representing the number of elements in a parametric set or map.
2600 For example, the piecewise quasipolynomial
2602 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
2604 represents the number of points in the map
2606 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
2608 The piecewise expression types defined by C<isl>
2609 are C<isl_pw_aff>, C<isl_pw_multi_aff>,
2610 C<isl_pw_qpolynomial> and C<isl_pw_qpolynomial_fold>.
2612 A piecewise expression with no cells can be created using
2613 the following functions.
2615 #include <isl/aff.h>
2616 __isl_give isl_pw_aff *isl_pw_aff_empty(
2617 __isl_take isl_space *space);
2618 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
2619 __isl_take isl_space *space);
2621 A piecewise expression with a single universe cell can be
2622 created using the following functions.
2624 #include <isl/aff.h>
2625 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2626 __isl_take isl_aff *aff);
2627 __isl_give isl_pw_multi_aff *
2628 isl_pw_multi_aff_from_multi_aff(
2629 __isl_take isl_multi_aff *ma);
2631 #include <isl/polynomial.h>
2632 __isl_give isl_pw_qpolynomial *
2633 isl_pw_qpolynomial_from_qpolynomial(
2634 __isl_take isl_qpolynomial *qp);
2636 A piecewise expression with a single specified cell can be
2637 created using the following functions.
2639 #include <isl/aff.h>
2640 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2641 __isl_take isl_set *set, __isl_take isl_aff *aff);
2642 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
2643 __isl_take isl_set *set,
2644 __isl_take isl_multi_aff *maff);
2646 #include <isl/polynomial.h>
2647 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
2648 __isl_take isl_set *set,
2649 __isl_take isl_qpolynomial *qp);
2651 The following convenience functions first create a base expression and
2652 then create a piecewise expression over a universe domain.
2654 #include <isl/aff.h>
2655 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
2656 __isl_take isl_local_space *ls);
2657 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
2658 __isl_take isl_local_space *ls,
2659 enum isl_dim_type type, unsigned pos);
2660 __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(
2661 __isl_take isl_local_space *ls);
2662 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(
2663 __isl_take isl_space *space);
2664 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
2665 __isl_take isl_space *space);
2666 __isl_give isl_pw_multi_aff *
2667 isl_pw_multi_aff_project_out_map(
2668 __isl_take isl_space *space,
2669 enum isl_dim_type type,
2670 unsigned first, unsigned n);
2672 #include <isl/polynomial.h>
2673 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
2674 __isl_take isl_space *space);
2676 The following convenience functions first create a base expression and
2677 then create a piecewise expression over a given domain.
2679 #include <isl/aff.h>
2680 __isl_give isl_pw_aff *isl_pw_aff_val_on_domain(
2681 __isl_take isl_set *domain,
2682 __isl_take isl_val *v);
2683 __isl_give isl_pw_multi_aff *
2684 isl_pw_multi_aff_multi_val_on_domain(
2685 __isl_take isl_set *domain,
2686 __isl_take isl_multi_val *mv);
2688 As a convenience, a piecewise multiple expression can
2689 also be created from a piecewise expression.
2690 Each multiple expression in the result is derived
2691 from the corresponding base expression.
2693 #include <isl/aff.h>
2694 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
2695 __isl_take isl_pw_aff *pa);
2697 Similarly, a piecewise quasipolynomial can be
2698 created from a piecewise quasi-affine expression using
2699 the following function.
2701 #include <isl/polynomial.h>
2702 __isl_give isl_pw_qpolynomial *
2703 isl_pw_qpolynomial_from_pw_aff(
2704 __isl_take isl_pw_aff *pwaff);
2706 Piecewise expressions can be copied and freed using the following functions.
2708 #include <isl/aff.h>
2709 __isl_give isl_pw_aff *isl_pw_aff_copy(
2710 __isl_keep isl_pw_aff *pwaff);
2711 __isl_null isl_pw_aff *isl_pw_aff_free(
2712 __isl_take isl_pw_aff *pwaff);
2713 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
2714 __isl_keep isl_pw_multi_aff *pma);
2715 __isl_null isl_pw_multi_aff *isl_pw_multi_aff_free(
2716 __isl_take isl_pw_multi_aff *pma);
2718 #include <isl/polynomial.h>
2719 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
2720 __isl_keep isl_pw_qpolynomial *pwqp);
2721 __isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free(
2722 __isl_take isl_pw_qpolynomial *pwqp);
2723 __isl_give isl_pw_qpolynomial_fold *
2724 isl_pw_qpolynomial_fold_copy(
2725 __isl_keep isl_pw_qpolynomial_fold *pwf);
2726 __isl_null isl_pw_qpolynomial_fold *
2727 isl_pw_qpolynomial_fold_free(
2728 __isl_take isl_pw_qpolynomial_fold *pwf);
2730 To iterate over the different cells of a piecewise expression,
2731 use the following functions.
2733 #include <isl/aff.h>
2734 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2735 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
2736 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2737 int (*fn)(__isl_take isl_set *set,
2738 __isl_take isl_aff *aff,
2739 void *user), void *user);
2740 int isl_pw_multi_aff_foreach_piece(
2741 __isl_keep isl_pw_multi_aff *pma,
2742 int (*fn)(__isl_take isl_set *set,
2743 __isl_take isl_multi_aff *maff,
2744 void *user), void *user);
2746 #include <isl/polynomial.h>
2747 int isl_pw_qpolynomial_foreach_piece(
2748 __isl_keep isl_pw_qpolynomial *pwqp,
2749 int (*fn)(__isl_take isl_set *set,
2750 __isl_take isl_qpolynomial *qp,
2751 void *user), void *user);
2752 int isl_pw_qpolynomial_foreach_lifted_piece(
2753 __isl_keep isl_pw_qpolynomial *pwqp,
2754 int (*fn)(__isl_take isl_set *set,
2755 __isl_take isl_qpolynomial *qp,
2756 void *user), void *user);
2757 int isl_pw_qpolynomial_fold_foreach_piece(
2758 __isl_keep isl_pw_qpolynomial_fold *pwf,
2759 int (*fn)(__isl_take isl_set *set,
2760 __isl_take isl_qpolynomial_fold *fold,
2761 void *user), void *user);
2762 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
2763 __isl_keep isl_pw_qpolynomial_fold *pwf,
2764 int (*fn)(__isl_take isl_set *set,
2765 __isl_take isl_qpolynomial_fold *fold,
2766 void *user), void *user);
2768 As usual, the function C<fn> should return C<0> on success
2769 and C<-1> on failure. The difference between
2770 C<isl_pw_qpolynomial_foreach_piece> and
2771 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
2772 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
2773 compute unique representations for all existentially quantified
2774 variables and then turn these existentially quantified variables
2775 into extra set variables, adapting the associated quasipolynomial
2776 accordingly. This means that the C<set> passed to C<fn>
2777 will not have any existentially quantified variables, but that
2778 the dimensions of the sets may be different for different
2779 invocations of C<fn>.
2780 Similarly for C<isl_pw_qpolynomial_fold_foreach_piece>
2781 and C<isl_pw_qpolynomial_fold_foreach_lifted_piece>.
2783 A piecewise expression consisting of the expressions at a given
2784 position of a piecewise multiple expression can be extracted
2785 using the following function.
2787 #include <isl/aff.h>
2788 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
2789 __isl_keep isl_pw_multi_aff *pma, int pos);
2791 These expressions can be replaced using the following function.
2793 #include <isl/aff.h>
2794 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
2795 __isl_take isl_pw_multi_aff *pma, unsigned pos,
2796 __isl_take isl_pw_aff *pa);
2798 Note that there is a difference between C<isl_multi_pw_aff> and
2799 C<isl_pw_multi_aff> objects. The first is a sequence of piecewise
2800 affine expressions, while the second is a piecewise sequence
2801 of affine expressions. In particular, each of the piecewise
2802 affine expressions in an C<isl_multi_pw_aff> may have a different
2803 domain, while all multiple expressions associated to a cell
2804 in an C<isl_pw_multi_aff> have the same domain.
2805 It is possible to convert between the two, but when converting
2806 an C<isl_multi_pw_aff> to an C<isl_pw_multi_aff>, the domain
2807 of the result is the intersection of the domains of the input.
2808 The reverse conversion is exact.
2810 #include <isl/aff.h>
2811 __isl_give isl_pw_multi_aff *
2812 isl_pw_multi_aff_from_multi_pw_aff(
2813 __isl_take isl_multi_pw_aff *mpa);
2814 __isl_give isl_multi_pw_aff *
2815 isl_multi_pw_aff_from_pw_multi_aff(
2816 __isl_take isl_pw_multi_aff *pma);
2818 =head3 Union Expressions
2820 A union expression collects base expressions defined
2821 over different domains. The space of a union expression
2822 is that of the shared parameter space.
2824 The union expression types defined by C<isl>
2825 are C<isl_union_pw_multi_aff>, C<isl_union_pw_qpolynomial> and
2826 C<isl_union_pw_qpolynomial_fold>.
2828 An empty union expression can be created using the following functions.
2830 #include <isl/aff.h>
2831 __isl_give isl_union_pw_multi_aff *
2832 isl_union_pw_multi_aff_empty(
2833 __isl_take isl_space *space);
2835 #include <isl/polynomial.h>
2836 __isl_give isl_union_pw_qpolynomial *
2837 isl_union_pw_qpolynomial_zero(
2838 __isl_take isl_space *space);
2840 A union expression containing a single base expression
2841 can be created using the following functions.
2843 #include <isl/aff.h>
2844 __isl_give isl_union_pw_multi_aff *
2845 isl_union_pw_multi_aff_from_pw_multi_aff(
2846 __isl_take isl_pw_multi_aff *pma);
2848 #include <isl/polynomial.h>
2849 __isl_give isl_union_pw_qpolynomial *
2850 isl_union_pw_qpolynomial_from_pw_qpolynomial(
2851 __isl_take isl_pw_qpolynomial *pwqp);
2853 The following function creates a base expression on each
2854 of the sets in the union set and collects the results.
2856 #include <isl/aff.h>
2857 __isl_give isl_union_pw_multi_aff *
2858 isl_union_pw_multi_aff_multi_val_on_domain(
2859 __isl_take isl_union_set *domain,
2860 __isl_take isl_multi_val *mv);
2862 A base expression can be added to a union expression using
2863 the following functions.
2865 #include <isl/aff.h>
2866 __isl_give isl_union_pw_multi_aff *
2867 isl_union_pw_multi_aff_add_pw_multi_aff(
2868 __isl_take isl_union_pw_multi_aff *upma,
2869 __isl_take isl_pw_multi_aff *pma);
2871 #include <isl/polynomial.h>
2872 __isl_give isl_union_pw_qpolynomial *
2873 isl_union_pw_qpolynomial_add_pw_qpolynomial(
2874 __isl_take isl_union_pw_qpolynomial *upwqp,
2875 __isl_take isl_pw_qpolynomial *pwqp);
2877 Union expressions can be copied and freed using
2878 the following functions.
2880 #include <isl/aff.h>
2881 __isl_give isl_union_pw_multi_aff *
2882 isl_union_pw_multi_aff_copy(
2883 __isl_keep isl_union_pw_multi_aff *upma);
2884 __isl_null isl_union_pw_multi_aff *
2885 isl_union_pw_multi_aff_free(
2886 __isl_take isl_union_pw_multi_aff *upma);
2888 #include <isl/polynomial.h>
2889 __isl_give isl_union_pw_qpolynomial *
2890 isl_union_pw_qpolynomial_copy(
2891 __isl_keep isl_union_pw_qpolynomial *upwqp);
2892 __isl_null isl_union_pw_qpolynomial *
2893 isl_union_pw_qpolynomial_free(
2894 __isl_take isl_union_pw_qpolynomial *upwqp);
2895 __isl_give isl_union_pw_qpolynomial_fold *
2896 isl_union_pw_qpolynomial_fold_copy(
2897 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2898 __isl_null isl_union_pw_qpolynomial_fold *
2899 isl_union_pw_qpolynomial_fold_free(
2900 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2902 To iterate over the base expressions in a union expression,
2903 use the following functions.
2905 #include <isl/aff.h>
2906 int isl_union_pw_multi_aff_foreach_pw_multi_aff(
2907 __isl_keep isl_union_pw_multi_aff *upma,
2908 int (*fn)(__isl_take isl_pw_multi_aff *pma,
2909 void *user), void *user);
2911 #include <isl/polynomial.h>
2912 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
2913 __isl_keep isl_union_pw_qpolynomial *upwqp,
2914 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp,
2915 void *user), void *user);
2916 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
2917 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
2918 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
2919 void *user), void *user);
2921 To extract the base expression in a given space from a union, use
2922 the following functions.
2924 #include <isl/aff.h>
2925 __isl_give isl_pw_multi_aff *
2926 isl_union_pw_multi_aff_extract_pw_multi_aff(
2927 __isl_keep isl_union_pw_multi_aff *upma,
2928 __isl_take isl_space *space);
2930 #include <isl/polynomial.h>
2931 __isl_give isl_pw_qpolynomial *
2932 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
2933 __isl_keep isl_union_pw_qpolynomial *upwqp,
2934 __isl_take isl_space *space);
2936 =head2 Input and Output
2938 For set and relation,
2939 C<isl> supports its own input/output format, which is similar
2940 to the C<Omega> format, but also supports the C<PolyLib> format
2942 For other object types, typically only an C<isl> format is supported.
2944 =head3 C<isl> format
2946 The C<isl> format is similar to that of C<Omega>, but has a different
2947 syntax for describing the parameters and allows for the definition
2948 of an existentially quantified variable as the integer division
2949 of an affine expression.
2950 For example, the set of integers C<i> between C<0> and C<n>
2951 such that C<i % 10 <= 6> can be described as
2953 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
2956 A set or relation can have several disjuncts, separated
2957 by the keyword C<or>. Each disjunct is either a conjunction
2958 of constraints or a projection (C<exists>) of a conjunction
2959 of constraints. The constraints are separated by the keyword
2962 =head3 C<PolyLib> format
2964 If the represented set is a union, then the first line
2965 contains a single number representing the number of disjuncts.
2966 Otherwise, a line containing the number C<1> is optional.
2968 Each disjunct is represented by a matrix of constraints.
2969 The first line contains two numbers representing
2970 the number of rows and columns,
2971 where the number of rows is equal to the number of constraints
2972 and the number of columns is equal to two plus the number of variables.
2973 The following lines contain the actual rows of the constraint matrix.
2974 In each row, the first column indicates whether the constraint
2975 is an equality (C<0>) or inequality (C<1>). The final column
2976 corresponds to the constant term.
2978 If the set is parametric, then the coefficients of the parameters
2979 appear in the last columns before the constant column.
2980 The coefficients of any existentially quantified variables appear
2981 between those of the set variables and those of the parameters.
2983 =head3 Extended C<PolyLib> format
2985 The extended C<PolyLib> format is nearly identical to the
2986 C<PolyLib> format. The only difference is that the line
2987 containing the number of rows and columns of a constraint matrix
2988 also contains four additional numbers:
2989 the number of output dimensions, the number of input dimensions,
2990 the number of local dimensions (i.e., the number of existentially
2991 quantified variables) and the number of parameters.
2992 For sets, the number of ``output'' dimensions is equal
2993 to the number of set dimensions, while the number of ``input''
2998 Objects can be read from input using the following functions.
3000 #include <isl/val.h>
3001 __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
3004 #include <isl/set.h>
3005 __isl_give isl_basic_set *isl_basic_set_read_from_file(
3006 isl_ctx *ctx, FILE *input);
3007 __isl_give isl_basic_set *isl_basic_set_read_from_str(
3008 isl_ctx *ctx, const char *str);
3009 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
3011 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
3014 #include <isl/map.h>
3015 __isl_give isl_basic_map *isl_basic_map_read_from_file(
3016 isl_ctx *ctx, FILE *input);
3017 __isl_give isl_basic_map *isl_basic_map_read_from_str(
3018 isl_ctx *ctx, const char *str);
3019 __isl_give isl_map *isl_map_read_from_file(
3020 isl_ctx *ctx, FILE *input);
3021 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
3024 #include <isl/union_set.h>
3025 __isl_give isl_union_set *isl_union_set_read_from_file(
3026 isl_ctx *ctx, FILE *input);
3027 __isl_give isl_union_set *isl_union_set_read_from_str(
3028 isl_ctx *ctx, const char *str);
3030 #include <isl/union_map.h>
3031 __isl_give isl_union_map *isl_union_map_read_from_file(
3032 isl_ctx *ctx, FILE *input);
3033 __isl_give isl_union_map *isl_union_map_read_from_str(
3034 isl_ctx *ctx, const char *str);
3036 #include <isl/aff.h>
3037 __isl_give isl_aff *isl_aff_read_from_str(
3038 isl_ctx *ctx, const char *str);
3039 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3040 isl_ctx *ctx, const char *str);
3041 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3042 isl_ctx *ctx, const char *str);
3043 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3044 isl_ctx *ctx, const char *str);
3045 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(
3046 isl_ctx *ctx, const char *str);
3047 __isl_give isl_union_pw_multi_aff *
3048 isl_union_pw_multi_aff_read_from_str(
3049 isl_ctx *ctx, const char *str);
3051 #include <isl/polynomial.h>
3052 __isl_give isl_union_pw_qpolynomial *
3053 isl_union_pw_qpolynomial_read_from_str(
3054 isl_ctx *ctx, const char *str);
3056 For sets and relations,
3057 the input format is autodetected and may be either the C<PolyLib> format
3058 or the C<isl> format.
3062 Before anything can be printed, an C<isl_printer> needs to
3065 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
3067 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
3068 __isl_null isl_printer *isl_printer_free(
3069 __isl_take isl_printer *printer);
3070 __isl_give char *isl_printer_get_str(
3071 __isl_keep isl_printer *printer);
3073 The printer can be inspected using the following functions.
3075 FILE *isl_printer_get_file(
3076 __isl_keep isl_printer *printer);
3077 int isl_printer_get_output_format(
3078 __isl_keep isl_printer *p);
3080 The behavior of the printer can be modified in various ways
3082 __isl_give isl_printer *isl_printer_set_output_format(
3083 __isl_take isl_printer *p, int output_format);
3084 __isl_give isl_printer *isl_printer_set_indent(
3085 __isl_take isl_printer *p, int indent);
3086 __isl_give isl_printer *isl_printer_set_indent_prefix(
3087 __isl_take isl_printer *p, const char *prefix);
3088 __isl_give isl_printer *isl_printer_indent(
3089 __isl_take isl_printer *p, int indent);
3090 __isl_give isl_printer *isl_printer_set_prefix(
3091 __isl_take isl_printer *p, const char *prefix);
3092 __isl_give isl_printer *isl_printer_set_suffix(
3093 __isl_take isl_printer *p, const char *suffix);
3095 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
3096 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
3097 and defaults to C<ISL_FORMAT_ISL>.
3098 Each line in the output is prefixed by C<indent_prefix>,
3099 indented by C<indent> (set by C<isl_printer_set_indent>) spaces
3100 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
3101 In the C<PolyLib> format output,
3102 the coefficients of the existentially quantified variables
3103 appear between those of the set variables and those
3105 The function C<isl_printer_indent> increases the indentation
3106 by the specified amount (which may be negative).
3108 To actually print something, use
3110 #include <isl/printer.h>
3111 __isl_give isl_printer *isl_printer_print_double(
3112 __isl_take isl_printer *p, double d);
3114 #include <isl/val.h>
3115 __isl_give isl_printer *isl_printer_print_val(
3116 __isl_take isl_printer *p, __isl_keep isl_val *v);
3118 #include <isl/set.h>
3119 __isl_give isl_printer *isl_printer_print_basic_set(
3120 __isl_take isl_printer *printer,
3121 __isl_keep isl_basic_set *bset);
3122 __isl_give isl_printer *isl_printer_print_set(
3123 __isl_take isl_printer *printer,
3124 __isl_keep isl_set *set);
3126 #include <isl/map.h>
3127 __isl_give isl_printer *isl_printer_print_basic_map(
3128 __isl_take isl_printer *printer,
3129 __isl_keep isl_basic_map *bmap);
3130 __isl_give isl_printer *isl_printer_print_map(
3131 __isl_take isl_printer *printer,
3132 __isl_keep isl_map *map);
3134 #include <isl/union_set.h>
3135 __isl_give isl_printer *isl_printer_print_union_set(
3136 __isl_take isl_printer *p,
3137 __isl_keep isl_union_set *uset);
3139 #include <isl/union_map.h>
3140 __isl_give isl_printer *isl_printer_print_union_map(
3141 __isl_take isl_printer *p,
3142 __isl_keep isl_union_map *umap);
3144 #include <isl/val.h>
3145 __isl_give isl_printer *isl_printer_print_multi_val(
3146 __isl_take isl_printer *p,
3147 __isl_keep isl_multi_val *mv);
3149 #include <isl/aff.h>
3150 __isl_give isl_printer *isl_printer_print_aff(
3151 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3152 __isl_give isl_printer *isl_printer_print_multi_aff(
3153 __isl_take isl_printer *p,
3154 __isl_keep isl_multi_aff *maff);
3155 __isl_give isl_printer *isl_printer_print_pw_aff(
3156 __isl_take isl_printer *p,
3157 __isl_keep isl_pw_aff *pwaff);
3158 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3159 __isl_take isl_printer *p,
3160 __isl_keep isl_pw_multi_aff *pma);
3161 __isl_give isl_printer *isl_printer_print_multi_pw_aff(
3162 __isl_take isl_printer *p,
3163 __isl_keep isl_multi_pw_aff *mpa);
3164 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
3165 __isl_take isl_printer *p,
3166 __isl_keep isl_union_pw_multi_aff *upma);
3168 #include <isl/polynomial.h>
3169 __isl_give isl_printer *isl_printer_print_qpolynomial(
3170 __isl_take isl_printer *p,
3171 __isl_keep isl_qpolynomial *qp);
3172 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3173 __isl_take isl_printer *p,
3174 __isl_keep isl_pw_qpolynomial *pwqp);
3175 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3176 __isl_take isl_printer *p,
3177 __isl_keep isl_union_pw_qpolynomial *upwqp);
3179 __isl_give isl_printer *
3180 isl_printer_print_pw_qpolynomial_fold(
3181 __isl_take isl_printer *p,
3182 __isl_keep isl_pw_qpolynomial_fold *pwf);
3183 __isl_give isl_printer *
3184 isl_printer_print_union_pw_qpolynomial_fold(
3185 __isl_take isl_printer *p,
3186 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3188 For C<isl_printer_print_qpolynomial>,
3189 C<isl_printer_print_pw_qpolynomial> and
3190 C<isl_printer_print_pw_qpolynomial_fold>,
3191 the output format of the printer
3192 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3193 For C<isl_printer_print_union_pw_qpolynomial> and
3194 C<isl_printer_print_union_pw_qpolynomial_fold>, only C<ISL_FORMAT_ISL>
3196 In case of printing in C<ISL_FORMAT_C>, the user may want
3197 to set the names of all dimensions first.
3199 When called on a file printer, the following function flushes
3200 the file. When called on a string printer, the buffer is cleared.
3202 __isl_give isl_printer *isl_printer_flush(
3203 __isl_take isl_printer *p);
3205 Alternatively, a string representation can be obtained
3206 directly using the following functions, which always print
3209 #include <isl/space.h>
3210 __isl_give char *isl_space_to_str(
3211 __isl_keep isl_space *space);
3213 #include <isl/val.h>
3214 __isl_give char *isl_val_to_str(__isl_keep isl_val *v);
3215 __isl_give char *isl_multi_val_to_str(
3216 __isl_keep isl_multi_val *mv);
3218 #include <isl/set.h>
3219 __isl_give char *isl_set_to_str(
3220 __isl_keep isl_set *set);
3222 #include <isl/union_set.h>
3223 __isl_give char *isl_union_set_to_str(
3224 __isl_keep isl_union_set *uset);
3226 #include <isl/map.h>
3227 __isl_give char *isl_map_to_str(
3228 __isl_keep isl_map *map);
3230 #include <isl/union_map.h>
3231 __isl_give char *isl_union_map_to_str(
3232 __isl_keep isl_union_map *umap);
3234 #include <isl/aff.h>
3235 __isl_give char *isl_multi_aff_to_str(
3236 __isl_keep isl_multi_aff *aff);
3237 __isl_give char *isl_union_pw_multi_aff_to_str(
3238 __isl_keep isl_union_pw_multi_aff *upma);
3242 =head3 Unary Properties
3248 The following functions test whether the given set or relation
3249 contains any integer points. The ``plain'' variants do not perform
3250 any computations, but simply check if the given set or relation
3251 is already known to be empty.
3253 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
3254 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
3255 int isl_set_plain_is_empty(__isl_keep isl_set *set);
3256 int isl_set_is_empty(__isl_keep isl_set *set);
3257 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
3258 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
3259 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
3260 int isl_map_plain_is_empty(__isl_keep isl_map *map);
3261 int isl_map_is_empty(__isl_keep isl_map *map);
3262 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
3264 =item * Universality
3266 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
3267 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
3268 int isl_set_plain_is_universe(__isl_keep isl_set *set);
3270 =item * Single-valuedness
3272 #include <isl/set.h>
3273 int isl_set_is_singleton(__isl_keep isl_set *set);
3275 #include <isl/map.h>
3276 int isl_basic_map_is_single_valued(
3277 __isl_keep isl_basic_map *bmap);
3278 int isl_map_plain_is_single_valued(
3279 __isl_keep isl_map *map);
3280 int isl_map_is_single_valued(__isl_keep isl_map *map);
3282 #include <isl/union_map.h>
3283 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
3287 int isl_map_plain_is_injective(__isl_keep isl_map *map);
3288 int isl_map_is_injective(__isl_keep isl_map *map);
3289 int isl_union_map_plain_is_injective(
3290 __isl_keep isl_union_map *umap);
3291 int isl_union_map_is_injective(
3292 __isl_keep isl_union_map *umap);
3296 int isl_map_is_bijective(__isl_keep isl_map *map);
3297 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
3301 __isl_give isl_val *
3302 isl_basic_map_plain_get_val_if_fixed(
3303 __isl_keep isl_basic_map *bmap,
3304 enum isl_dim_type type, unsigned pos);
3305 __isl_give isl_val *isl_set_plain_get_val_if_fixed(
3306 __isl_keep isl_set *set,
3307 enum isl_dim_type type, unsigned pos);
3308 __isl_give isl_val *isl_map_plain_get_val_if_fixed(
3309 __isl_keep isl_map *map,
3310 enum isl_dim_type type, unsigned pos);
3312 If the set or relation obviously lies on a hyperplane where the given dimension
3313 has a fixed value, then return that value.
3314 Otherwise return NaN.
3318 int isl_set_dim_residue_class_val(
3319 __isl_keep isl_set *set,
3320 int pos, __isl_give isl_val **modulo,
3321 __isl_give isl_val **residue);
3323 Check if the values of the given set dimension are equal to a fixed
3324 value modulo some integer value. If so, assign the modulo to C<*modulo>
3325 and the fixed value to C<*residue>. If the given dimension attains only
3326 a single value, then assign C<0> to C<*modulo> and the fixed value to
3328 If the dimension does not attain only a single value and if no modulo
3329 can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.
3333 To check whether the description of a set, relation or function depends
3334 on one or more given dimensions,
3335 the following functions can be used.
3337 #include <isl/constraint.h>
3338 int isl_constraint_involves_dims(
3339 __isl_keep isl_constraint *constraint,
3340 enum isl_dim_type type, unsigned first, unsigned n);
3342 #include <isl/set.h>
3343 int isl_basic_set_involves_dims(
3344 __isl_keep isl_basic_set *bset,
3345 enum isl_dim_type type, unsigned first, unsigned n);
3346 int isl_set_involves_dims(__isl_keep isl_set *set,
3347 enum isl_dim_type type, unsigned first, unsigned n);
3349 #include <isl/map.h>
3350 int isl_basic_map_involves_dims(
3351 __isl_keep isl_basic_map *bmap,
3352 enum isl_dim_type type, unsigned first, unsigned n);
3353 int isl_map_involves_dims(__isl_keep isl_map *map,
3354 enum isl_dim_type type, unsigned first, unsigned n);
3356 #include <isl/union_map.h>
3357 int isl_union_map_involves_dims(
3358 __isl_keep isl_union_map *umap,
3359 enum isl_dim_type type, unsigned first, unsigned n);
3361 #include <isl/aff.h>
3362 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
3363 enum isl_dim_type type, unsigned first, unsigned n);
3364 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
3365 enum isl_dim_type type, unsigned first, unsigned n);
3366 int isl_multi_aff_involves_dims(
3367 __isl_keep isl_multi_aff *ma,
3368 enum isl_dim_type type, unsigned first, unsigned n);
3369 int isl_multi_pw_aff_involves_dims(
3370 __isl_keep isl_multi_pw_aff *mpa,
3371 enum isl_dim_type type, unsigned first, unsigned n);
3373 Similarly, the following functions can be used to check whether
3374 a given dimension is involved in any lower or upper bound.
3376 #include <isl/set.h>
3377 int isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set,
3378 enum isl_dim_type type, unsigned pos);
3379 int isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set,
3380 enum isl_dim_type type, unsigned pos);
3382 Note that these functions return true even if there is a bound on
3383 the dimension on only some of the basic sets of C<set>.
3384 To check if they have a bound for all of the basic sets in C<set>,
3385 use the following functions instead.
3387 #include <isl/set.h>
3388 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
3389 enum isl_dim_type type, unsigned pos);
3390 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
3391 enum isl_dim_type type, unsigned pos);
3395 To check whether a set is a parameter domain, use this function:
3397 int isl_set_is_params(__isl_keep isl_set *set);
3398 int isl_union_set_is_params(
3399 __isl_keep isl_union_set *uset);
3403 The following functions check whether the space of the given
3404 (basic) set or relation range is a wrapped relation.
3406 #include <isl/space.h>
3407 int isl_space_is_wrapping(
3408 __isl_keep isl_space *space);
3409 int isl_space_domain_is_wrapping(
3410 __isl_keep isl_space *space);
3411 int isl_space_range_is_wrapping(
3412 __isl_keep isl_space *space);
3414 #include <isl/set.h>
3415 int isl_basic_set_is_wrapping(
3416 __isl_keep isl_basic_set *bset);
3417 int isl_set_is_wrapping(__isl_keep isl_set *set);
3419 #include <isl/map.h>
3420 int isl_map_domain_is_wrapping(
3421 __isl_keep isl_map *map);
3422 int isl_map_range_is_wrapping(
3423 __isl_keep isl_map *map);
3425 #include <isl/val.h>
3426 int isl_multi_val_range_is_wrapping(
3427 __isl_keep isl_multi_val *mv);
3429 #include <isl/aff.h>
3430 int isl_multi_aff_range_is_wrapping(
3431 __isl_keep isl_multi_aff *ma);
3432 int isl_multi_pw_aff_range_is_wrapping(
3433 __isl_keep isl_multi_pw_aff *mpa);
3435 The input to C<isl_space_is_wrapping> should
3436 be the space of a set, while that of
3437 C<isl_space_domain_is_wrapping> and
3438 C<isl_space_range_is_wrapping> should be the space of a relation.
3440 =item * Internal Product
3442 int isl_basic_map_can_zip(
3443 __isl_keep isl_basic_map *bmap);
3444 int isl_map_can_zip(__isl_keep isl_map *map);
3446 Check whether the product of domain and range of the given relation
3448 i.e., whether both domain and range are nested relations.
3452 int isl_basic_map_can_curry(
3453 __isl_keep isl_basic_map *bmap);
3454 int isl_map_can_curry(__isl_keep isl_map *map);
3456 Check whether the domain of the (basic) relation is a wrapped relation.
3458 int isl_basic_map_can_uncurry(
3459 __isl_keep isl_basic_map *bmap);
3460 int isl_map_can_uncurry(__isl_keep isl_map *map);
3462 Check whether the range of the (basic) relation is a wrapped relation.
3464 =item * Special Values
3466 #include <isl/aff.h>
3467 int isl_aff_is_cst(__isl_keep isl_aff *aff);
3468 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
3470 Check whether the given expression is a constant.
3472 #include <isl/aff.h>
3473 int isl_aff_is_nan(__isl_keep isl_aff *aff);
3474 int isl_pw_aff_involves_nan(__isl_keep isl_pw_aff *pa);
3476 Check whether the given expression is equal to or involves NaN.
3478 #include <isl/aff.h>
3479 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
3481 Check whether the affine expression is obviously zero.
3485 =head3 Binary Properties
3491 The following functions check whether two objects
3492 represent the same set, relation or function.
3493 The C<plain> variants only return true if the objects
3494 are obviously the same. That is, they may return false
3495 even if the objects are the same, but they will never
3496 return true if the objects are not the same.
3498 #include <isl/set.h>
3499 int isl_basic_set_plain_is_equal(
3500 __isl_keep isl_basic_set *bset1,
3501 __isl_keep isl_basic_set *bset2);
3502 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
3503 __isl_keep isl_set *set2);
3504 int isl_set_is_equal(__isl_keep isl_set *set1,
3505 __isl_keep isl_set *set2);
3507 #include <isl/map.h>
3508 int isl_basic_map_is_equal(
3509 __isl_keep isl_basic_map *bmap1,
3510 __isl_keep isl_basic_map *bmap2);
3511 int isl_map_is_equal(__isl_keep isl_map *map1,
3512 __isl_keep isl_map *map2);
3513 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
3514 __isl_keep isl_map *map2);
3516 #include <isl/union_set.h>
3517 int isl_union_set_is_equal(
3518 __isl_keep isl_union_set *uset1,
3519 __isl_keep isl_union_set *uset2);
3521 #include <isl/union_map.h>
3522 int isl_union_map_is_equal(
3523 __isl_keep isl_union_map *umap1,
3524 __isl_keep isl_union_map *umap2);
3526 #include <isl/aff.h>
3527 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
3528 __isl_keep isl_aff *aff2);
3529 int isl_multi_aff_plain_is_equal(
3530 __isl_keep isl_multi_aff *maff1,
3531 __isl_keep isl_multi_aff *maff2);
3532 int isl_pw_aff_plain_is_equal(
3533 __isl_keep isl_pw_aff *pwaff1,
3534 __isl_keep isl_pw_aff *pwaff2);
3535 int isl_pw_multi_aff_plain_is_equal(
3536 __isl_keep isl_pw_multi_aff *pma1,
3537 __isl_keep isl_pw_multi_aff *pma2);
3538 int isl_multi_pw_aff_plain_is_equal(
3539 __isl_keep isl_multi_pw_aff *mpa1,
3540 __isl_keep isl_multi_pw_aff *mpa2);
3541 int isl_multi_pw_aff_is_equal(
3542 __isl_keep isl_multi_pw_aff *mpa1,
3543 __isl_keep isl_multi_pw_aff *mpa2);
3544 int isl_union_pw_multi_aff_plain_is_equal(
3545 __isl_keep isl_union_pw_multi_aff *upma1,
3546 __isl_keep isl_union_pw_multi_aff *upma2);
3548 #include <isl/polynomial.h>
3549 int isl_union_pw_qpolynomial_plain_is_equal(
3550 __isl_keep isl_union_pw_qpolynomial *upwqp1,
3551 __isl_keep isl_union_pw_qpolynomial *upwqp2);
3552 int isl_union_pw_qpolynomial_fold_plain_is_equal(
3553 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
3554 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
3556 =item * Disjointness
3558 int isl_basic_set_is_disjoint(
3559 __isl_keep isl_basic_set *bset1,
3560 __isl_keep isl_basic_set *bset2);
3561 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
3562 __isl_keep isl_set *set2);
3563 int isl_set_is_disjoint(__isl_keep isl_set *set1,
3564 __isl_keep isl_set *set2);
3565 int isl_basic_map_is_disjoint(
3566 __isl_keep isl_basic_map *bmap1,
3567 __isl_keep isl_basic_map *bmap2);
3568 int isl_map_is_disjoint(__isl_keep isl_map *map1,
3569 __isl_keep isl_map *map2);
3573 int isl_basic_set_is_subset(
3574 __isl_keep isl_basic_set *bset1,
3575 __isl_keep isl_basic_set *bset2);
3576 int isl_set_is_subset(__isl_keep isl_set *set1,
3577 __isl_keep isl_set *set2);
3578 int isl_set_is_strict_subset(
3579 __isl_keep isl_set *set1,
3580 __isl_keep isl_set *set2);
3581 int isl_union_set_is_subset(
3582 __isl_keep isl_union_set *uset1,
3583 __isl_keep isl_union_set *uset2);
3584 int isl_union_set_is_strict_subset(
3585 __isl_keep isl_union_set *uset1,
3586 __isl_keep isl_union_set *uset2);
3587 int isl_basic_map_is_subset(
3588 __isl_keep isl_basic_map *bmap1,
3589 __isl_keep isl_basic_map *bmap2);
3590 int isl_basic_map_is_strict_subset(
3591 __isl_keep isl_basic_map *bmap1,
3592 __isl_keep isl_basic_map *bmap2);
3593 int isl_map_is_subset(
3594 __isl_keep isl_map *map1,
3595 __isl_keep isl_map *map2);
3596 int isl_map_is_strict_subset(
3597 __isl_keep isl_map *map1,
3598 __isl_keep isl_map *map2);
3599 int isl_union_map_is_subset(
3600 __isl_keep isl_union_map *umap1,
3601 __isl_keep isl_union_map *umap2);
3602 int isl_union_map_is_strict_subset(
3603 __isl_keep isl_union_map *umap1,
3604 __isl_keep isl_union_map *umap2);
3606 Check whether the first argument is a (strict) subset of the
3611 Every comparison function returns a negative value if the first
3612 argument is considered smaller than the second, a positive value
3613 if the first argument is considered greater and zero if the two
3614 constraints are considered the same by the comparison criterion.
3616 #include <isl/constraint.h>
3617 int isl_constraint_plain_cmp(
3618 __isl_keep isl_constraint *c1,
3619 __isl_keep isl_constraint *c2);
3621 This function is useful for sorting C<isl_constraint>s.
3622 The order depends on the internal representation of the inputs.
3623 The order is fixed over different calls to the function (assuming
3624 the internal representation of the inputs has not changed), but may
3625 change over different versions of C<isl>.
3627 #include <isl/constraint.h>
3628 int isl_constraint_cmp_last_non_zero(
3629 __isl_keep isl_constraint *c1,
3630 __isl_keep isl_constraint *c2);
3632 This function can be used to sort constraints that live in the same
3633 local space. Constraints that involve ``earlier'' dimensions or
3634 that have a smaller coefficient for the shared latest dimension
3635 are considered smaller than other constraints.
3636 This function only defines a B<partial> order.
3638 #include <isl/set.h>
3639 int isl_set_plain_cmp(__isl_keep isl_set *set1,
3640 __isl_keep isl_set *set2);
3642 This function is useful for sorting C<isl_set>s.
3643 The order depends on the internal representation of the inputs.
3644 The order is fixed over different calls to the function (assuming
3645 the internal representation of the inputs has not changed), but may
3646 change over different versions of C<isl>.
3648 #include <isl/aff.h>
3649 int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
3650 __isl_keep isl_pw_aff *pa2);
3652 The function C<isl_pw_aff_plain_cmp> can be used to sort
3653 C<isl_pw_aff>s. The order is not strictly defined.
3654 The current order sorts expressions that only involve
3655 earlier dimensions before those that involve later dimensions.
3659 =head2 Unary Operations
3665 __isl_give isl_set *isl_set_complement(
3666 __isl_take isl_set *set);
3667 __isl_give isl_map *isl_map_complement(
3668 __isl_take isl_map *map);
3672 #include <isl/space.h>
3673 __isl_give isl_space *isl_space_reverse(
3674 __isl_take isl_space *space);
3676 #include <isl/map.h>
3677 __isl_give isl_basic_map *isl_basic_map_reverse(
3678 __isl_take isl_basic_map *bmap);
3679 __isl_give isl_map *isl_map_reverse(
3680 __isl_take isl_map *map);
3682 #include <isl/union_map.h>
3683 __isl_give isl_union_map *isl_union_map_reverse(
3684 __isl_take isl_union_map *umap);
3688 #include <isl/space.h>
3689 __isl_give isl_space *isl_space_domain(
3690 __isl_take isl_space *space);
3691 __isl_give isl_space *isl_space_range(
3692 __isl_take isl_space *space);
3693 __isl_give isl_space *isl_space_params(
3694 __isl_take isl_space *space);
3696 #include <isl/local_space.h>
3697 __isl_give isl_local_space *isl_local_space_domain(
3698 __isl_take isl_local_space *ls);
3699 __isl_give isl_local_space *isl_local_space_range(
3700 __isl_take isl_local_space *ls);
3702 #include <isl/set.h>
3703 __isl_give isl_basic_set *isl_basic_set_project_out(
3704 __isl_take isl_basic_set *bset,
3705 enum isl_dim_type type, unsigned first, unsigned n);
3706 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
3707 enum isl_dim_type type, unsigned first, unsigned n);
3708 __isl_give isl_basic_set *isl_basic_set_params(
3709 __isl_take isl_basic_set *bset);
3710 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
3712 #include <isl/map.h>
3713 __isl_give isl_basic_map *isl_basic_map_project_out(
3714 __isl_take isl_basic_map *bmap,
3715 enum isl_dim_type type, unsigned first, unsigned n);
3716 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
3717 enum isl_dim_type type, unsigned first, unsigned n);
3718 __isl_give isl_basic_set *isl_basic_map_domain(
3719 __isl_take isl_basic_map *bmap);
3720 __isl_give isl_basic_set *isl_basic_map_range(
3721 __isl_take isl_basic_map *bmap);
3722 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
3723 __isl_give isl_set *isl_map_domain(
3724 __isl_take isl_map *bmap);
3725 __isl_give isl_set *isl_map_range(
3726 __isl_take isl_map *map);
3728 #include <isl/union_set.h>
3729 __isl_give isl_set *isl_union_set_params(
3730 __isl_take isl_union_set *uset);
3732 #include <isl/union_map.h>
3733 __isl_give isl_union_map *isl_union_map_project_out(
3734 __isl_take isl_union_map *umap,
3735 enum isl_dim_type type, unsigned first, unsigned n);
3736 __isl_give isl_set *isl_union_map_params(
3737 __isl_take isl_union_map *umap);
3738 __isl_give isl_union_set *isl_union_map_domain(
3739 __isl_take isl_union_map *umap);
3740 __isl_give isl_union_set *isl_union_map_range(
3741 __isl_take isl_union_map *umap);
3743 The function C<isl_union_map_project_out> can only project out
3746 #include <isl/aff.h>
3747 __isl_give isl_aff *isl_aff_project_domain_on_params(
3748 __isl_take isl_aff *aff);
3749 __isl_give isl_pw_multi_aff *
3750 isl_pw_multi_aff_project_domain_on_params(
3751 __isl_take isl_pw_multi_aff *pma);
3752 __isl_give isl_set *isl_pw_aff_domain(
3753 __isl_take isl_pw_aff *pwaff);
3754 __isl_give isl_set *isl_pw_multi_aff_domain(
3755 __isl_take isl_pw_multi_aff *pma);
3756 __isl_give isl_set *isl_multi_pw_aff_domain(
3757 __isl_take isl_multi_pw_aff *mpa);
3758 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
3759 __isl_take isl_union_pw_multi_aff *upma);
3760 __isl_give isl_set *isl_pw_aff_params(
3761 __isl_take isl_pw_aff *pwa);
3763 #include <isl/polynomial.h>
3764 __isl_give isl_qpolynomial *
3765 isl_qpolynomial_project_domain_on_params(
3766 __isl_take isl_qpolynomial *qp);
3767 __isl_give isl_pw_qpolynomial *
3768 isl_pw_qpolynomial_project_domain_on_params(
3769 __isl_take isl_pw_qpolynomial *pwqp);
3770 __isl_give isl_pw_qpolynomial_fold *
3771 isl_pw_qpolynomial_fold_project_domain_on_params(
3772 __isl_take isl_pw_qpolynomial_fold *pwf);
3773 __isl_give isl_set *isl_pw_qpolynomial_domain(
3774 __isl_take isl_pw_qpolynomial *pwqp);
3775 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
3776 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3777 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3778 __isl_take isl_union_pw_qpolynomial *upwqp);
3780 #include <isl/space.h>
3781 __isl_give isl_space *isl_space_domain_map(
3782 __isl_take isl_space *space);
3783 __isl_give isl_space *isl_space_range_map(
3784 __isl_take isl_space *space);
3786 #include <isl/map.h>
3787 __isl_give isl_map *isl_set_wrapped_domain_map(
3788 __isl_take isl_set *set);
3789 __isl_give isl_basic_map *isl_basic_map_domain_map(
3790 __isl_take isl_basic_map *bmap);
3791 __isl_give isl_basic_map *isl_basic_map_range_map(
3792 __isl_take isl_basic_map *bmap);
3793 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
3794 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
3796 #include <isl/union_map.h>
3797 __isl_give isl_union_map *isl_union_map_domain_map(
3798 __isl_take isl_union_map *umap);
3799 __isl_give isl_union_map *isl_union_map_range_map(
3800 __isl_take isl_union_map *umap);
3801 __isl_give isl_union_map *
3802 isl_union_set_wrapped_domain_map(
3803 __isl_take isl_union_set *uset);
3805 The functions above construct a (basic, regular or union) relation
3806 that maps (a wrapped version of) the input relation to its domain or range.
3807 C<isl_set_wrapped_domain_map> maps the input set to the domain
3808 of its wrapped relation.
3812 __isl_give isl_basic_set *isl_basic_set_eliminate(
3813 __isl_take isl_basic_set *bset,
3814 enum isl_dim_type type,
3815 unsigned first, unsigned n);
3816 __isl_give isl_set *isl_set_eliminate(
3817 __isl_take isl_set *set, enum isl_dim_type type,
3818 unsigned first, unsigned n);
3819 __isl_give isl_basic_map *isl_basic_map_eliminate(
3820 __isl_take isl_basic_map *bmap,
3821 enum isl_dim_type type,
3822 unsigned first, unsigned n);
3823 __isl_give isl_map *isl_map_eliminate(
3824 __isl_take isl_map *map, enum isl_dim_type type,
3825 unsigned first, unsigned n);
3827 Eliminate the coefficients for the given dimensions from the constraints,
3828 without removing the dimensions.
3830 =item * Constructing a set from a parameter domain
3832 A zero-dimensional space or (basic) set can be constructed
3833 on a given parameter domain using the following functions.
3835 #include <isl/space.h>
3836 __isl_give isl_space *isl_space_set_from_params(
3837 __isl_take isl_space *space);
3839 #include <isl/set.h>
3840 __isl_give isl_basic_set *isl_basic_set_from_params(
3841 __isl_take isl_basic_set *bset);
3842 __isl_give isl_set *isl_set_from_params(
3843 __isl_take isl_set *set);
3845 =item * Constructing a relation from a set
3847 Create a relation with the given set as domain or range.
3848 The range or domain of the created relation is a zero-dimensional
3849 flat anonymous space.
3851 #include <isl/space.h>
3852 __isl_give isl_space *isl_space_from_domain(
3853 __isl_take isl_space *space);
3854 __isl_give isl_space *isl_space_from_range(
3855 __isl_take isl_space *space);
3856 __isl_give isl_space *isl_space_map_from_set(
3857 __isl_take isl_space *space);
3858 __isl_give isl_space *isl_space_map_from_domain_and_range(
3859 __isl_take isl_space *domain,
3860 __isl_take isl_space *range);
3862 #include <isl/local_space.h>
3863 __isl_give isl_local_space *isl_local_space_from_domain(
3864 __isl_take isl_local_space *ls);
3866 #include <isl/map.h>
3867 __isl_give isl_map *isl_map_from_domain(
3868 __isl_take isl_set *set);
3869 __isl_give isl_map *isl_map_from_range(
3870 __isl_take isl_set *set);
3872 #include <isl/val.h>
3873 __isl_give isl_multi_val *isl_multi_val_from_range(
3874 __isl_take isl_multi_val *mv);
3876 #include <isl/aff.h>
3877 __isl_give isl_multi_aff *isl_multi_aff_from_range(
3878 __isl_take isl_multi_aff *ma);
3879 __isl_give isl_pw_aff *isl_pw_aff_from_range(
3880 __isl_take isl_pw_aff *pwa);
3881 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range(
3882 __isl_take isl_multi_pw_aff *mpa);
3883 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
3884 __isl_take isl_set *set);
3885 __isl_give isl_union_pw_multi_aff *
3886 isl_union_pw_multi_aff_from_domain(
3887 __isl_take isl_union_set *uset);
3891 #include <isl/set.h>
3892 __isl_give isl_basic_set *isl_basic_set_fix_si(
3893 __isl_take isl_basic_set *bset,
3894 enum isl_dim_type type, unsigned pos, int value);
3895 __isl_give isl_basic_set *isl_basic_set_fix_val(
3896 __isl_take isl_basic_set *bset,
3897 enum isl_dim_type type, unsigned pos,
3898 __isl_take isl_val *v);
3899 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
3900 enum isl_dim_type type, unsigned pos, int value);
3901 __isl_give isl_set *isl_set_fix_val(
3902 __isl_take isl_set *set,
3903 enum isl_dim_type type, unsigned pos,
3904 __isl_take isl_val *v);
3906 #include <isl/map.h>
3907 __isl_give isl_basic_map *isl_basic_map_fix_si(
3908 __isl_take isl_basic_map *bmap,
3909 enum isl_dim_type type, unsigned pos, int value);
3910 __isl_give isl_basic_map *isl_basic_map_fix_val(
3911 __isl_take isl_basic_map *bmap,
3912 enum isl_dim_type type, unsigned pos,
3913 __isl_take isl_val *v);
3914 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
3915 enum isl_dim_type type, unsigned pos, int value);
3916 __isl_give isl_map *isl_map_fix_val(
3917 __isl_take isl_map *map,
3918 enum isl_dim_type type, unsigned pos,
3919 __isl_take isl_val *v);
3921 #include <isl/aff.h>
3922 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si(
3923 __isl_take isl_pw_multi_aff *pma,
3924 enum isl_dim_type type, unsigned pos, int value);
3926 #include <isl/polynomial.h>
3927 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
3928 __isl_take isl_pw_qpolynomial *pwqp,
3929 enum isl_dim_type type, unsigned n,
3930 __isl_take isl_val *v);
3932 Intersect the set, relation or function domain
3933 with the hyperplane where the given
3934 dimension has the fixed given value.
3936 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
3937 __isl_take isl_basic_map *bmap,
3938 enum isl_dim_type type, unsigned pos, int value);
3939 __isl_give isl_basic_map *isl_basic_map_upper_bound_si(
3940 __isl_take isl_basic_map *bmap,
3941 enum isl_dim_type type, unsigned pos, int value);
3942 __isl_give isl_set *isl_set_lower_bound_si(
3943 __isl_take isl_set *set,
3944 enum isl_dim_type type, unsigned pos, int value);
3945 __isl_give isl_set *isl_set_lower_bound_val(
3946 __isl_take isl_set *set,
3947 enum isl_dim_type type, unsigned pos,
3948 __isl_take isl_val *value);
3949 __isl_give isl_map *isl_map_lower_bound_si(
3950 __isl_take isl_map *map,
3951 enum isl_dim_type type, unsigned pos, int value);
3952 __isl_give isl_set *isl_set_upper_bound_si(
3953 __isl_take isl_set *set,
3954 enum isl_dim_type type, unsigned pos, int value);
3955 __isl_give isl_set *isl_set_upper_bound_val(
3956 __isl_take isl_set *set,
3957 enum isl_dim_type type, unsigned pos,
3958 __isl_take isl_val *value);
3959 __isl_give isl_map *isl_map_upper_bound_si(
3960 __isl_take isl_map *map,
3961 enum isl_dim_type type, unsigned pos, int value);
3963 Intersect the set or relation with the half-space where the given
3964 dimension has a value bounded by the fixed given integer value.
3966 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
3967 enum isl_dim_type type1, int pos1,
3968 enum isl_dim_type type2, int pos2);
3969 __isl_give isl_basic_map *isl_basic_map_equate(
3970 __isl_take isl_basic_map *bmap,
3971 enum isl_dim_type type1, int pos1,
3972 enum isl_dim_type type2, int pos2);
3973 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
3974 enum isl_dim_type type1, int pos1,
3975 enum isl_dim_type type2, int pos2);
3977 Intersect the set or relation with the hyperplane where the given
3978 dimensions are equal to each other.
3980 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
3981 enum isl_dim_type type1, int pos1,
3982 enum isl_dim_type type2, int pos2);
3984 Intersect the relation with the hyperplane where the given
3985 dimensions have opposite values.
3987 __isl_give isl_map *isl_map_order_le(
3988 __isl_take isl_map *map,
3989 enum isl_dim_type type1, int pos1,
3990 enum isl_dim_type type2, int pos2);
3991 __isl_give isl_basic_map *isl_basic_map_order_ge(
3992 __isl_take isl_basic_map *bmap,
3993 enum isl_dim_type type1, int pos1,
3994 enum isl_dim_type type2, int pos2);
3995 __isl_give isl_map *isl_map_order_ge(
3996 __isl_take isl_map *map,
3997 enum isl_dim_type type1, int pos1,
3998 enum isl_dim_type type2, int pos2);
3999 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
4000 enum isl_dim_type type1, int pos1,
4001 enum isl_dim_type type2, int pos2);
4002 __isl_give isl_basic_map *isl_basic_map_order_gt(
4003 __isl_take isl_basic_map *bmap,
4004 enum isl_dim_type type1, int pos1,
4005 enum isl_dim_type type2, int pos2);
4006 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
4007 enum isl_dim_type type1, int pos1,
4008 enum isl_dim_type type2, int pos2);
4010 Intersect the relation with the half-space where the given
4011 dimensions satisfy the given ordering.
4015 #include <isl/aff.h>
4016 __isl_give isl_basic_set *isl_aff_zero_basic_set(
4017 __isl_take isl_aff *aff);
4018 __isl_give isl_basic_set *isl_aff_neg_basic_set(
4019 __isl_take isl_aff *aff);
4020 __isl_give isl_set *isl_pw_aff_nonneg_set(
4021 __isl_take isl_pw_aff *pwaff);
4022 __isl_give isl_set *isl_pw_aff_zero_set(
4023 __isl_take isl_pw_aff *pwaff);
4024 __isl_give isl_set *isl_pw_aff_non_zero_set(
4025 __isl_take isl_pw_aff *pwaff);
4027 The function C<isl_aff_neg_basic_set> returns a basic set
4028 containing those elements in the domain space
4029 of C<aff> where C<aff> is negative.
4030 The function C<isl_pw_aff_nonneg_set> returns a set
4031 containing those elements in the domain
4032 of C<pwaff> where C<pwaff> is non-negative.
4036 __isl_give isl_map *isl_set_identity(
4037 __isl_take isl_set *set);
4038 __isl_give isl_union_map *isl_union_set_identity(
4039 __isl_take isl_union_set *uset);
4041 Construct an identity relation on the given (union) set.
4043 =item * Function Extraction
4045 A piecewise quasi affine expression that is equal to 1 on a set
4046 and 0 outside the set can be created using the following function.
4048 #include <isl/aff.h>
4049 __isl_give isl_pw_aff *isl_set_indicator_function(
4050 __isl_take isl_set *set);
4052 A piecewise multiple quasi affine expression can be extracted
4053 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
4054 and the C<isl_map> is single-valued.
4055 In case of a conversion from an C<isl_union_map>
4056 to an C<isl_union_pw_multi_aff>, these properties need to hold
4057 in each domain space.
4059 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
4060 __isl_take isl_set *set);
4061 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
4062 __isl_take isl_map *map);
4064 __isl_give isl_union_pw_multi_aff *
4065 isl_union_pw_multi_aff_from_union_set(
4066 __isl_take isl_union_set *uset);
4067 __isl_give isl_union_pw_multi_aff *
4068 isl_union_pw_multi_aff_from_union_map(
4069 __isl_take isl_union_map *umap);
4073 __isl_give isl_basic_set *isl_basic_map_deltas(
4074 __isl_take isl_basic_map *bmap);
4075 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
4076 __isl_give isl_union_set *isl_union_map_deltas(
4077 __isl_take isl_union_map *umap);
4079 These functions return a (basic) set containing the differences
4080 between image elements and corresponding domain elements in the input.
4082 __isl_give isl_basic_map *isl_basic_map_deltas_map(
4083 __isl_take isl_basic_map *bmap);
4084 __isl_give isl_map *isl_map_deltas_map(
4085 __isl_take isl_map *map);
4086 __isl_give isl_union_map *isl_union_map_deltas_map(
4087 __isl_take isl_union_map *umap);
4089 The functions above construct a (basic, regular or union) relation
4090 that maps (a wrapped version of) the input relation to its delta set.
4094 Simplify the representation of a set, relation or functions by trying
4095 to combine pairs of basic sets or relations into a single
4096 basic set or relation.
4098 #include <isl/set.h>
4099 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
4101 #include <isl/map.h>
4102 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
4104 #include <isl/union_set.h>
4105 __isl_give isl_union_set *isl_union_set_coalesce(
4106 __isl_take isl_union_set *uset);
4108 #include <isl/union_map.h>
4109 __isl_give isl_union_map *isl_union_map_coalesce(
4110 __isl_take isl_union_map *umap);
4112 #include <isl/aff.h>
4113 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
4114 __isl_take isl_pw_aff *pwqp);
4115 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
4116 __isl_take isl_pw_multi_aff *pma);
4117 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce(
4118 __isl_take isl_multi_pw_aff *mpa);
4119 __isl_give isl_union_pw_multi_aff *
4120 isl_union_pw_multi_aff_coalesce(
4121 __isl_take isl_union_pw_multi_aff *upma);
4123 #include <isl/polynomial.h>
4124 __isl_give isl_pw_qpolynomial_fold *
4125 isl_pw_qpolynomial_fold_coalesce(
4126 __isl_take isl_pw_qpolynomial_fold *pwf);
4127 __isl_give isl_union_pw_qpolynomial *
4128 isl_union_pw_qpolynomial_coalesce(
4129 __isl_take isl_union_pw_qpolynomial *upwqp);
4130 __isl_give isl_union_pw_qpolynomial_fold *
4131 isl_union_pw_qpolynomial_fold_coalesce(
4132 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4134 One of the methods for combining pairs of basic sets or relations
4135 can result in coefficients that are much larger than those that appear
4136 in the constraints of the input. By default, the coefficients are
4137 not allowed to grow larger, but this can be changed by unsetting
4138 the following option.
4140 int isl_options_set_coalesce_bounded_wrapping(
4141 isl_ctx *ctx, int val);
4142 int isl_options_get_coalesce_bounded_wrapping(
4145 =item * Detecting equalities
4147 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
4148 __isl_take isl_basic_set *bset);
4149 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
4150 __isl_take isl_basic_map *bmap);
4151 __isl_give isl_set *isl_set_detect_equalities(
4152 __isl_take isl_set *set);
4153 __isl_give isl_map *isl_map_detect_equalities(
4154 __isl_take isl_map *map);
4155 __isl_give isl_union_set *isl_union_set_detect_equalities(
4156 __isl_take isl_union_set *uset);
4157 __isl_give isl_union_map *isl_union_map_detect_equalities(
4158 __isl_take isl_union_map *umap);
4160 Simplify the representation of a set or relation by detecting implicit
4163 =item * Removing redundant constraints
4165 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
4166 __isl_take isl_basic_set *bset);
4167 __isl_give isl_set *isl_set_remove_redundancies(
4168 __isl_take isl_set *set);
4169 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
4170 __isl_take isl_basic_map *bmap);
4171 __isl_give isl_map *isl_map_remove_redundancies(
4172 __isl_take isl_map *map);
4176 __isl_give isl_basic_set *isl_set_convex_hull(
4177 __isl_take isl_set *set);
4178 __isl_give isl_basic_map *isl_map_convex_hull(
4179 __isl_take isl_map *map);
4181 If the input set or relation has any existentially quantified
4182 variables, then the result of these operations is currently undefined.
4186 #include <isl/set.h>
4187 __isl_give isl_basic_set *
4188 isl_set_unshifted_simple_hull(
4189 __isl_take isl_set *set);
4190 __isl_give isl_basic_set *isl_set_simple_hull(
4191 __isl_take isl_set *set);
4192 __isl_give isl_basic_set *
4193 isl_set_unshifted_simple_hull_from_set_list(
4194 __isl_take isl_set *set,
4195 __isl_take isl_set_list *list);
4197 #include <isl/map.h>
4198 __isl_give isl_basic_map *
4199 isl_map_unshifted_simple_hull(
4200 __isl_take isl_map *map);
4201 __isl_give isl_basic_map *isl_map_simple_hull(
4202 __isl_take isl_map *map);
4204 #include <isl/union_map.h>
4205 __isl_give isl_union_map *isl_union_map_simple_hull(
4206 __isl_take isl_union_map *umap);
4208 These functions compute a single basic set or relation
4209 that contains the whole input set or relation.
4210 In particular, the output is described by translates
4211 of the constraints describing the basic sets or relations in the input.
4212 In case of C<isl_set_unshifted_simple_hull>, only the original
4213 constraints are used, without any translation.
4214 In case of C<isl_set_unshifted_simple_hull_from_set_list>, the
4215 constraints are taken from the elements of the second argument.
4219 (See \autoref{s:simple hull}.)
4225 __isl_give isl_basic_set *isl_basic_set_affine_hull(
4226 __isl_take isl_basic_set *bset);
4227 __isl_give isl_basic_set *isl_set_affine_hull(
4228 __isl_take isl_set *set);
4229 __isl_give isl_union_set *isl_union_set_affine_hull(
4230 __isl_take isl_union_set *uset);
4231 __isl_give isl_basic_map *isl_basic_map_affine_hull(
4232 __isl_take isl_basic_map *bmap);
4233 __isl_give isl_basic_map *isl_map_affine_hull(
4234 __isl_take isl_map *map);
4235 __isl_give isl_union_map *isl_union_map_affine_hull(
4236 __isl_take isl_union_map *umap);
4238 In case of union sets and relations, the affine hull is computed
4241 =item * Polyhedral hull
4243 __isl_give isl_basic_set *isl_set_polyhedral_hull(
4244 __isl_take isl_set *set);
4245 __isl_give isl_basic_map *isl_map_polyhedral_hull(
4246 __isl_take isl_map *map);
4247 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
4248 __isl_take isl_union_set *uset);
4249 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
4250 __isl_take isl_union_map *umap);
4252 These functions compute a single basic set or relation
4253 not involving any existentially quantified variables
4254 that contains the whole input set or relation.
4255 In case of union sets and relations, the polyhedral hull is computed
4258 =item * Other approximations
4260 #include <isl/set.h>
4261 __isl_give isl_basic_set *
4262 isl_basic_set_drop_constraints_involving_dims(
4263 __isl_take isl_basic_set *bset,
4264 enum isl_dim_type type,
4265 unsigned first, unsigned n);
4266 __isl_give isl_basic_set *
4267 isl_basic_set_drop_constraints_not_involving_dims(
4268 __isl_take isl_basic_set *bset,
4269 enum isl_dim_type type,
4270 unsigned first, unsigned n);
4271 __isl_give isl_set *
4272 isl_set_drop_constraints_involving_dims(
4273 __isl_take isl_set *set,
4274 enum isl_dim_type type,
4275 unsigned first, unsigned n);
4277 #include <isl/map.h>
4278 __isl_give isl_basic_map *
4279 isl_basic_map_drop_constraints_involving_dims(
4280 __isl_take isl_basic_map *bmap,
4281 enum isl_dim_type type,
4282 unsigned first, unsigned n);
4283 __isl_give isl_map *
4284 isl_map_drop_constraints_involving_dims(
4285 __isl_take isl_map *map,
4286 enum isl_dim_type type,
4287 unsigned first, unsigned n);
4289 These functions drop any constraints (not) involving the specified dimensions.
4290 Note that the result depends on the representation of the input.
4292 #include <isl/polynomial.h>
4293 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4294 __isl_take isl_pw_qpolynomial *pwqp, int sign);
4295 __isl_give isl_union_pw_qpolynomial *
4296 isl_union_pw_qpolynomial_to_polynomial(
4297 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
4299 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
4300 the polynomial will be an overapproximation. If C<sign> is negative,
4301 it will be an underapproximation. If C<sign> is zero, the approximation
4302 will lie somewhere in between.
4306 __isl_give isl_basic_set *isl_basic_set_sample(
4307 __isl_take isl_basic_set *bset);
4308 __isl_give isl_basic_set *isl_set_sample(
4309 __isl_take isl_set *set);
4310 __isl_give isl_basic_map *isl_basic_map_sample(
4311 __isl_take isl_basic_map *bmap);
4312 __isl_give isl_basic_map *isl_map_sample(
4313 __isl_take isl_map *map);
4315 If the input (basic) set or relation is non-empty, then return
4316 a singleton subset of the input. Otherwise, return an empty set.
4318 =item * Optimization
4320 #include <isl/ilp.h>
4321 __isl_give isl_val *isl_basic_set_max_val(
4322 __isl_keep isl_basic_set *bset,
4323 __isl_keep isl_aff *obj);
4324 __isl_give isl_val *isl_set_min_val(
4325 __isl_keep isl_set *set,
4326 __isl_keep isl_aff *obj);
4327 __isl_give isl_val *isl_set_max_val(
4328 __isl_keep isl_set *set,
4329 __isl_keep isl_aff *obj);
4331 Compute the minimum or maximum of the integer affine expression C<obj>
4332 over the points in C<set>, returning the result in C<opt>.
4333 The result is C<NULL> in case of an error, the optimal value in case
4334 there is one, negative infinity or infinity if the problem is unbounded and
4335 NaN if the problem is empty.
4337 =item * Parametric optimization
4339 __isl_give isl_pw_aff *isl_set_dim_min(
4340 __isl_take isl_set *set, int pos);
4341 __isl_give isl_pw_aff *isl_set_dim_max(
4342 __isl_take isl_set *set, int pos);
4343 __isl_give isl_pw_aff *isl_map_dim_max(
4344 __isl_take isl_map *map, int pos);
4346 Compute the minimum or maximum of the given set or output dimension
4347 as a function of the parameters (and input dimensions), but independently
4348 of the other set or output dimensions.
4349 For lexicographic optimization, see L<"Lexicographic Optimization">.
4353 The following functions compute either the set of (rational) coefficient
4354 values of valid constraints for the given set or the set of (rational)
4355 values satisfying the constraints with coefficients from the given set.
4356 Internally, these two sets of functions perform essentially the
4357 same operations, except that the set of coefficients is assumed to
4358 be a cone, while the set of values may be any polyhedron.
4359 The current implementation is based on the Farkas lemma and
4360 Fourier-Motzkin elimination, but this may change or be made optional
4361 in future. In particular, future implementations may use different
4362 dualization algorithms or skip the elimination step.
4364 __isl_give isl_basic_set *isl_basic_set_coefficients(
4365 __isl_take isl_basic_set *bset);
4366 __isl_give isl_basic_set *isl_set_coefficients(
4367 __isl_take isl_set *set);
4368 __isl_give isl_union_set *isl_union_set_coefficients(
4369 __isl_take isl_union_set *bset);
4370 __isl_give isl_basic_set *isl_basic_set_solutions(
4371 __isl_take isl_basic_set *bset);
4372 __isl_give isl_basic_set *isl_set_solutions(
4373 __isl_take isl_set *set);
4374 __isl_give isl_union_set *isl_union_set_solutions(
4375 __isl_take isl_union_set *bset);
4379 __isl_give isl_map *isl_map_fixed_power_val(
4380 __isl_take isl_map *map,
4381 __isl_take isl_val *exp);
4382 __isl_give isl_union_map *
4383 isl_union_map_fixed_power_val(
4384 __isl_take isl_union_map *umap,
4385 __isl_take isl_val *exp);
4387 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
4388 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
4389 of C<map> is computed.
4391 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
4393 __isl_give isl_union_map *isl_union_map_power(
4394 __isl_take isl_union_map *umap, int *exact);
4396 Compute a parametric representation for all positive powers I<k> of C<map>.
4397 The result maps I<k> to a nested relation corresponding to the
4398 I<k>th power of C<map>.
4399 The result may be an overapproximation. If the result is known to be exact,
4400 then C<*exact> is set to C<1>.
4402 =item * Transitive closure
4404 __isl_give isl_map *isl_map_transitive_closure(
4405 __isl_take isl_map *map, int *exact);
4406 __isl_give isl_union_map *isl_union_map_transitive_closure(
4407 __isl_take isl_union_map *umap, int *exact);
4409 Compute the transitive closure of C<map>.
4410 The result may be an overapproximation. If the result is known to be exact,
4411 then C<*exact> is set to C<1>.
4413 =item * Reaching path lengths
4415 __isl_give isl_map *isl_map_reaching_path_lengths(
4416 __isl_take isl_map *map, int *exact);
4418 Compute a relation that maps each element in the range of C<map>
4419 to the lengths of all paths composed of edges in C<map> that
4420 end up in the given element.
4421 The result may be an overapproximation. If the result is known to be exact,
4422 then C<*exact> is set to C<1>.
4423 To compute the I<maximal> path length, the resulting relation
4424 should be postprocessed by C<isl_map_lexmax>.
4425 In particular, if the input relation is a dependence relation
4426 (mapping sources to sinks), then the maximal path length corresponds
4427 to the free schedule.
4428 Note, however, that C<isl_map_lexmax> expects the maximum to be
4429 finite, so if the path lengths are unbounded (possibly due to
4430 the overapproximation), then you will get an error message.
4434 #include <isl/space.h>
4435 __isl_give isl_space *isl_space_wrap(
4436 __isl_take isl_space *space);
4437 __isl_give isl_space *isl_space_unwrap(
4438 __isl_take isl_space *space);
4440 #include <isl/set.h>
4441 __isl_give isl_basic_map *isl_basic_set_unwrap(
4442 __isl_take isl_basic_set *bset);
4443 __isl_give isl_map *isl_set_unwrap(
4444 __isl_take isl_set *set);
4446 #include <isl/map.h>
4447 __isl_give isl_basic_set *isl_basic_map_wrap(
4448 __isl_take isl_basic_map *bmap);
4449 __isl_give isl_set *isl_map_wrap(
4450 __isl_take isl_map *map);
4452 #include <isl/union_set.h>
4453 __isl_give isl_union_map *isl_union_set_unwrap(
4454 __isl_take isl_union_set *uset);
4456 #include <isl/union_map.h>
4457 __isl_give isl_union_set *isl_union_map_wrap(
4458 __isl_take isl_union_map *umap);
4460 The input to C<isl_space_unwrap> should
4461 be the space of a set, while that of
4462 C<isl_space_wrap> should be the space of a relation.
4463 Conversely, the output of C<isl_space_unwrap> is the space
4464 of a relation, while that of C<isl_space_wrap> is the space of a set.
4468 Remove any internal structure of domain (and range) of the given
4469 set or relation. If there is any such internal structure in the input,
4470 then the name of the space is also removed.
4472 #include <isl/local_space.h>
4473 __isl_give isl_local_space *
4474 isl_local_space_flatten_domain(
4475 __isl_take isl_local_space *ls);
4476 __isl_give isl_local_space *
4477 isl_local_space_flatten_range(
4478 __isl_take isl_local_space *ls);
4480 #include <isl/set.h>
4481 __isl_give isl_basic_set *isl_basic_set_flatten(
4482 __isl_take isl_basic_set *bset);
4483 __isl_give isl_set *isl_set_flatten(
4484 __isl_take isl_set *set);
4486 #include <isl/map.h>
4487 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
4488 __isl_take isl_basic_map *bmap);
4489 __isl_give isl_basic_map *isl_basic_map_flatten_range(
4490 __isl_take isl_basic_map *bmap);
4491 __isl_give isl_map *isl_map_flatten_range(
4492 __isl_take isl_map *map);
4493 __isl_give isl_map *isl_map_flatten_domain(
4494 __isl_take isl_map *map);
4495 __isl_give isl_basic_map *isl_basic_map_flatten(
4496 __isl_take isl_basic_map *bmap);
4497 __isl_give isl_map *isl_map_flatten(
4498 __isl_take isl_map *map);
4500 #include <isl/val.h>
4501 __isl_give isl_multi_val *isl_multi_val_flatten_range(
4502 __isl_take isl_multi_val *mv);
4504 #include <isl/aff.h>
4505 __isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
4506 __isl_take isl_multi_aff *ma);
4507 __isl_give isl_multi_aff *isl_multi_aff_flatten_range(
4508 __isl_take isl_multi_aff *ma);
4509 __isl_give isl_multi_pw_aff *
4510 isl_multi_pw_aff_flatten_range(
4511 __isl_take isl_multi_pw_aff *mpa);
4513 #include <isl/map.h>
4514 __isl_give isl_map *isl_set_flatten_map(
4515 __isl_take isl_set *set);
4517 The function above constructs a relation
4518 that maps the input set to a flattened version of the set.
4522 Lift the input set to a space with extra dimensions corresponding
4523 to the existentially quantified variables in the input.
4524 In particular, the result lives in a wrapped map where the domain
4525 is the original space and the range corresponds to the original
4526 existentially quantified variables.
4528 #include <isl/set.h>
4529 __isl_give isl_basic_set *isl_basic_set_lift(
4530 __isl_take isl_basic_set *bset);
4531 __isl_give isl_set *isl_set_lift(
4532 __isl_take isl_set *set);
4533 __isl_give isl_union_set *isl_union_set_lift(
4534 __isl_take isl_union_set *uset);
4536 Given a local space that contains the existentially quantified
4537 variables of a set, a basic relation that, when applied to
4538 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
4539 can be constructed using the following function.
4541 #include <isl/local_space.h>
4542 __isl_give isl_basic_map *isl_local_space_lifting(
4543 __isl_take isl_local_space *ls);
4545 #include <isl/aff.h>
4546 __isl_give isl_multi_aff *isl_multi_aff_lift(
4547 __isl_take isl_multi_aff *maff,
4548 __isl_give isl_local_space **ls);
4550 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
4551 then it is assigned the local space that lies at the basis of
4552 the lifting applied.
4554 =item * Internal Product
4556 #include <isl/space.h>
4557 __isl_give isl_space *isl_space_zip(
4558 __isl_take isl_space *space);
4560 #include <isl/map.h>
4561 __isl_give isl_basic_map *isl_basic_map_zip(
4562 __isl_take isl_basic_map *bmap);
4563 __isl_give isl_map *isl_map_zip(
4564 __isl_take isl_map *map);
4566 #include <isl/union_map.h>
4567 __isl_give isl_union_map *isl_union_map_zip(
4568 __isl_take isl_union_map *umap);
4570 Given a relation with nested relations for domain and range,
4571 interchange the range of the domain with the domain of the range.
4575 #include <isl/space.h>
4576 __isl_give isl_space *isl_space_curry(
4577 __isl_take isl_space *space);
4578 __isl_give isl_space *isl_space_uncurry(
4579 __isl_take isl_space *space);
4581 #include <isl/map.h>
4582 __isl_give isl_basic_map *isl_basic_map_curry(
4583 __isl_take isl_basic_map *bmap);
4584 __isl_give isl_basic_map *isl_basic_map_uncurry(
4585 __isl_take isl_basic_map *bmap);
4586 __isl_give isl_map *isl_map_curry(
4587 __isl_take isl_map *map);
4588 __isl_give isl_map *isl_map_uncurry(
4589 __isl_take isl_map *map);
4591 #include <isl/union_map.h>
4592 __isl_give isl_union_map *isl_union_map_curry(
4593 __isl_take isl_union_map *umap);
4594 __isl_give isl_union_map *isl_union_map_uncurry(
4595 __isl_take isl_union_map *umap);
4597 Given a relation with a nested relation for domain,
4598 the C<curry> functions
4599 move the range of the nested relation out of the domain
4600 and use it as the domain of a nested relation in the range,
4601 with the original range as range of this nested relation.
4602 The C<uncurry> functions perform the inverse operation.
4604 =item * Aligning parameters
4606 Change the order of the parameters of the given set, relation
4608 such that the first parameters match those of C<model>.
4609 This may involve the introduction of extra parameters.
4610 All parameters need to be named.
4612 #include <isl/space.h>
4613 __isl_give isl_space *isl_space_align_params(
4614 __isl_take isl_space *space1,
4615 __isl_take isl_space *space2)
4617 #include <isl/set.h>
4618 __isl_give isl_basic_set *isl_basic_set_align_params(
4619 __isl_take isl_basic_set *bset,
4620 __isl_take isl_space *model);
4621 __isl_give isl_set *isl_set_align_params(
4622 __isl_take isl_set *set,
4623 __isl_take isl_space *model);
4625 #include <isl/map.h>
4626 __isl_give isl_basic_map *isl_basic_map_align_params(
4627 __isl_take isl_basic_map *bmap,
4628 __isl_take isl_space *model);
4629 __isl_give isl_map *isl_map_align_params(
4630 __isl_take isl_map *map,
4631 __isl_take isl_space *model);
4633 #include <isl/val.h>
4634 __isl_give isl_multi_val *isl_multi_val_align_params(
4635 __isl_take isl_multi_val *mv,
4636 __isl_take isl_space *model);
4638 #include <isl/aff.h>
4639 __isl_give isl_aff *isl_aff_align_params(
4640 __isl_take isl_aff *aff,
4641 __isl_take isl_space *model);
4642 __isl_give isl_multi_aff *isl_multi_aff_align_params(
4643 __isl_take isl_multi_aff *multi,
4644 __isl_take isl_space *model);
4645 __isl_give isl_pw_aff *isl_pw_aff_align_params(
4646 __isl_take isl_pw_aff *pwaff,
4647 __isl_take isl_space *model);
4648 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
4649 __isl_take isl_pw_multi_aff *pma,
4650 __isl_take isl_space *model);
4651 __isl_give isl_union_pw_multi_aff *
4652 isl_union_pw_multi_aff_align_params(
4653 __isl_take isl_union_pw_multi_aff *upma,
4654 __isl_take isl_space *model);
4656 #include <isl/polynomial.h>
4657 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4658 __isl_take isl_qpolynomial *qp,
4659 __isl_take isl_space *model);
4661 =item * Unary Arithmethic Operations
4663 #include <isl/aff.h>
4664 __isl_give isl_aff *isl_aff_neg(
4665 __isl_take isl_aff *aff);
4666 __isl_give isl_pw_aff *isl_pw_aff_neg(
4667 __isl_take isl_pw_aff *pwaff);
4668 __isl_give isl_aff *isl_aff_ceil(
4669 __isl_take isl_aff *aff);
4670 __isl_give isl_pw_aff *isl_pw_aff_ceil(
4671 __isl_take isl_pw_aff *pwaff);
4672 __isl_give isl_aff *isl_aff_floor(
4673 __isl_take isl_aff *aff);
4674 __isl_give isl_multi_aff *isl_multi_aff_floor(
4675 __isl_take isl_multi_aff *ma);
4676 __isl_give isl_pw_aff *isl_pw_aff_floor(
4677 __isl_take isl_pw_aff *pwaff);
4679 #include <isl/aff.h>
4680 __isl_give isl_pw_aff *isl_pw_aff_list_min(
4681 __isl_take isl_pw_aff_list *list);
4682 __isl_give isl_pw_aff *isl_pw_aff_list_max(
4683 __isl_take isl_pw_aff_list *list);
4685 #include <isl/polynomial.h>
4686 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
4687 __isl_take isl_qpolynomial *qp);
4688 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
4689 __isl_take isl_pw_qpolynomial *pwqp);
4690 __isl_give isl_union_pw_qpolynomial *
4691 isl_union_pw_qpolynomial_neg(
4692 __isl_take isl_union_pw_qpolynomial *upwqp);
4693 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
4694 __isl_take isl_qpolynomial *qp,
4696 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
4697 __isl_take isl_pw_qpolynomial *pwqp,
4702 The following functions evaluate a function in a point.
4704 #include <isl/polynomial.h>
4705 __isl_give isl_val *isl_pw_qpolynomial_eval(
4706 __isl_take isl_pw_qpolynomial *pwqp,
4707 __isl_take isl_point *pnt);
4708 __isl_give isl_val *isl_pw_qpolynomial_fold_eval(
4709 __isl_take isl_pw_qpolynomial_fold *pwf,
4710 __isl_take isl_point *pnt);
4711 __isl_give isl_val *isl_union_pw_qpolynomial_eval(
4712 __isl_take isl_union_pw_qpolynomial *upwqp,
4713 __isl_take isl_point *pnt);
4714 __isl_give isl_val *isl_union_pw_qpolynomial_fold_eval(
4715 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4716 __isl_take isl_point *pnt);
4718 =item * Dimension manipulation
4720 It is usually not advisable to directly change the (input or output)
4721 space of a set or a relation as this removes the name and the internal
4722 structure of the space. However, the functions below can be useful
4723 to add new parameters, assuming
4724 C<isl_set_align_params> and C<isl_map_align_params>
4727 #include <isl/space.h>
4728 __isl_give isl_space *isl_space_add_dims(
4729 __isl_take isl_space *space,
4730 enum isl_dim_type type, unsigned n);
4731 __isl_give isl_space *isl_space_insert_dims(
4732 __isl_take isl_space *space,
4733 enum isl_dim_type type, unsigned pos, unsigned n);
4734 __isl_give isl_space *isl_space_drop_dims(
4735 __isl_take isl_space *space,
4736 enum isl_dim_type type, unsigned first, unsigned n);
4737 __isl_give isl_space *isl_space_move_dims(
4738 __isl_take isl_space *space,
4739 enum isl_dim_type dst_type, unsigned dst_pos,
4740 enum isl_dim_type src_type, unsigned src_pos,
4743 #include <isl/local_space.h>
4744 __isl_give isl_local_space *isl_local_space_add_dims(
4745 __isl_take isl_local_space *ls,
4746 enum isl_dim_type type, unsigned n);
4747 __isl_give isl_local_space *isl_local_space_insert_dims(
4748 __isl_take isl_local_space *ls,
4749 enum isl_dim_type type, unsigned first, unsigned n);
4750 __isl_give isl_local_space *isl_local_space_drop_dims(
4751 __isl_take isl_local_space *ls,
4752 enum isl_dim_type type, unsigned first, unsigned n);
4754 #include <isl/set.h>
4755 __isl_give isl_basic_set *isl_basic_set_add_dims(
4756 __isl_take isl_basic_set *bset,
4757 enum isl_dim_type type, unsigned n);
4758 __isl_give isl_set *isl_set_add_dims(
4759 __isl_take isl_set *set,
4760 enum isl_dim_type type, unsigned n);
4761 __isl_give isl_basic_set *isl_basic_set_insert_dims(
4762 __isl_take isl_basic_set *bset,
4763 enum isl_dim_type type, unsigned pos,
4765 __isl_give isl_set *isl_set_insert_dims(
4766 __isl_take isl_set *set,
4767 enum isl_dim_type type, unsigned pos, unsigned n);
4768 __isl_give isl_basic_set *isl_basic_set_move_dims(
4769 __isl_take isl_basic_set *bset,
4770 enum isl_dim_type dst_type, unsigned dst_pos,
4771 enum isl_dim_type src_type, unsigned src_pos,
4773 __isl_give isl_set *isl_set_move_dims(
4774 __isl_take isl_set *set,
4775 enum isl_dim_type dst_type, unsigned dst_pos,
4776 enum isl_dim_type src_type, unsigned src_pos,
4779 #include <isl/map.h>
4780 __isl_give isl_map *isl_map_add_dims(
4781 __isl_take isl_map *map,
4782 enum isl_dim_type type, unsigned n);
4783 __isl_give isl_basic_map *isl_basic_map_insert_dims(
4784 __isl_take isl_basic_map *bmap,
4785 enum isl_dim_type type, unsigned pos,
4787 __isl_give isl_map *isl_map_insert_dims(
4788 __isl_take isl_map *map,
4789 enum isl_dim_type type, unsigned pos, unsigned n);
4790 __isl_give isl_basic_map *isl_basic_map_move_dims(
4791 __isl_take isl_basic_map *bmap,
4792 enum isl_dim_type dst_type, unsigned dst_pos,
4793 enum isl_dim_type src_type, unsigned src_pos,
4795 __isl_give isl_map *isl_map_move_dims(
4796 __isl_take isl_map *map,
4797 enum isl_dim_type dst_type, unsigned dst_pos,
4798 enum isl_dim_type src_type, unsigned src_pos,
4801 #include <isl/val.h>
4802 __isl_give isl_multi_val *isl_multi_val_insert_dims(
4803 __isl_take isl_multi_val *mv,
4804 enum isl_dim_type type, unsigned first, unsigned n);
4805 __isl_give isl_multi_val *isl_multi_val_add_dims(
4806 __isl_take isl_multi_val *mv,
4807 enum isl_dim_type type, unsigned n);
4808 __isl_give isl_multi_val *isl_multi_val_drop_dims(
4809 __isl_take isl_multi_val *mv,
4810 enum isl_dim_type type, unsigned first, unsigned n);
4812 #include <isl/aff.h>
4813 __isl_give isl_aff *isl_aff_insert_dims(
4814 __isl_take isl_aff *aff,
4815 enum isl_dim_type type, unsigned first, unsigned n);
4816 __isl_give isl_multi_aff *isl_multi_aff_insert_dims(
4817 __isl_take isl_multi_aff *ma,
4818 enum isl_dim_type type, unsigned first, unsigned n);
4819 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
4820 __isl_take isl_pw_aff *pwaff,
4821 enum isl_dim_type type, unsigned first, unsigned n);
4822 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
4823 __isl_take isl_multi_pw_aff *mpa,
4824 enum isl_dim_type type, unsigned first, unsigned n);
4825 __isl_give isl_aff *isl_aff_add_dims(
4826 __isl_take isl_aff *aff,
4827 enum isl_dim_type type, unsigned n);
4828 __isl_give isl_multi_aff *isl_multi_aff_add_dims(
4829 __isl_take isl_multi_aff *ma,
4830 enum isl_dim_type type, unsigned n);
4831 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
4832 __isl_take isl_pw_aff *pwaff,
4833 enum isl_dim_type type, unsigned n);
4834 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
4835 __isl_take isl_multi_pw_aff *mpa,
4836 enum isl_dim_type type, unsigned n);
4837 __isl_give isl_aff *isl_aff_drop_dims(
4838 __isl_take isl_aff *aff,
4839 enum isl_dim_type type, unsigned first, unsigned n);
4840 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
4841 __isl_take isl_multi_aff *maff,
4842 enum isl_dim_type type, unsigned first, unsigned n);
4843 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
4844 __isl_take isl_pw_aff *pwaff,
4845 enum isl_dim_type type, unsigned first, unsigned n);
4846 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
4847 __isl_take isl_pw_multi_aff *pma,
4848 enum isl_dim_type type, unsigned first, unsigned n);
4849 __isl_give isl_aff *isl_aff_move_dims(
4850 __isl_take isl_aff *aff,
4851 enum isl_dim_type dst_type, unsigned dst_pos,
4852 enum isl_dim_type src_type, unsigned src_pos,
4854 __isl_give isl_multi_aff *isl_multi_aff_move_dims(
4855 __isl_take isl_multi_aff *ma,
4856 enum isl_dim_type dst_type, unsigned dst_pos,
4857 enum isl_dim_type src_type, unsigned src_pos,
4859 __isl_give isl_pw_aff *isl_pw_aff_move_dims(
4860 __isl_take isl_pw_aff *pa,
4861 enum isl_dim_type dst_type, unsigned dst_pos,
4862 enum isl_dim_type src_type, unsigned src_pos,
4864 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims(
4865 __isl_take isl_multi_pw_aff *pma,
4866 enum isl_dim_type dst_type, unsigned dst_pos,
4867 enum isl_dim_type src_type, unsigned src_pos,
4872 =head2 Binary Operations
4874 The two arguments of a binary operation not only need to live
4875 in the same C<isl_ctx>, they currently also need to have
4876 the same (number of) parameters.
4878 =head3 Basic Operations
4882 =item * Intersection
4884 #include <isl/local_space.h>
4885 __isl_give isl_local_space *isl_local_space_intersect(
4886 __isl_take isl_local_space *ls1,
4887 __isl_take isl_local_space *ls2);
4889 #include <isl/set.h>
4890 __isl_give isl_basic_set *isl_basic_set_intersect_params(
4891 __isl_take isl_basic_set *bset1,
4892 __isl_take isl_basic_set *bset2);
4893 __isl_give isl_basic_set *isl_basic_set_intersect(
4894 __isl_take isl_basic_set *bset1,
4895 __isl_take isl_basic_set *bset2);
4896 __isl_give isl_basic_set *isl_basic_set_list_intersect(
4897 __isl_take struct isl_basic_set_list *list);
4898 __isl_give isl_set *isl_set_intersect_params(
4899 __isl_take isl_set *set,
4900 __isl_take isl_set *params);
4901 __isl_give isl_set *isl_set_intersect(
4902 __isl_take isl_set *set1,
4903 __isl_take isl_set *set2);
4905 #include <isl/map.h>
4906 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
4907 __isl_take isl_basic_map *bmap,
4908 __isl_take isl_basic_set *bset);
4909 __isl_give isl_basic_map *isl_basic_map_intersect_range(
4910 __isl_take isl_basic_map *bmap,
4911 __isl_take isl_basic_set *bset);
4912 __isl_give isl_basic_map *isl_basic_map_intersect(
4913 __isl_take isl_basic_map *bmap1,
4914 __isl_take isl_basic_map *bmap2);
4915 __isl_give isl_map *isl_map_intersect_params(
4916 __isl_take isl_map *map,
4917 __isl_take isl_set *params);
4918 __isl_give isl_map *isl_map_intersect_domain(
4919 __isl_take isl_map *map,
4920 __isl_take isl_set *set);
4921 __isl_give isl_map *isl_map_intersect_range(
4922 __isl_take isl_map *map,
4923 __isl_take isl_set *set);
4924 __isl_give isl_map *isl_map_intersect(
4925 __isl_take isl_map *map1,
4926 __isl_take isl_map *map2);
4928 #include <isl/union_set.h>
4929 __isl_give isl_union_set *isl_union_set_intersect_params(
4930 __isl_take isl_union_set *uset,
4931 __isl_take isl_set *set);
4932 __isl_give isl_union_set *isl_union_set_intersect(
4933 __isl_take isl_union_set *uset1,
4934 __isl_take isl_union_set *uset2);
4936 #include <isl/union_map.h>
4937 __isl_give isl_union_map *isl_union_map_intersect_params(
4938 __isl_take isl_union_map *umap,
4939 __isl_take isl_set *set);
4940 __isl_give isl_union_map *isl_union_map_intersect_domain(
4941 __isl_take isl_union_map *umap,
4942 __isl_take isl_union_set *uset);
4943 __isl_give isl_union_map *isl_union_map_intersect_range(
4944 __isl_take isl_union_map *umap,
4945 __isl_take isl_union_set *uset);
4946 __isl_give isl_union_map *isl_union_map_intersect(
4947 __isl_take isl_union_map *umap1,
4948 __isl_take isl_union_map *umap2);
4950 #include <isl/aff.h>
4951 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
4952 __isl_take isl_pw_aff *pa,
4953 __isl_take isl_set *set);
4954 __isl_give isl_multi_pw_aff *
4955 isl_multi_pw_aff_intersect_domain(
4956 __isl_take isl_multi_pw_aff *mpa,
4957 __isl_take isl_set *domain);
4958 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
4959 __isl_take isl_pw_multi_aff *pma,
4960 __isl_take isl_set *set);
4961 __isl_give isl_union_pw_multi_aff *
4962 isl_union_pw_multi_aff_intersect_domain(
4963 __isl_take isl_union_pw_multi_aff *upma,
4964 __isl_take isl_union_set *uset);
4965 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
4966 __isl_take isl_pw_aff *pa,
4967 __isl_take isl_set *set);
4968 __isl_give isl_multi_pw_aff *
4969 isl_multi_pw_aff_intersect_params(
4970 __isl_take isl_multi_pw_aff *mpa,
4971 __isl_take isl_set *set);
4972 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
4973 __isl_take isl_pw_multi_aff *pma,
4974 __isl_take isl_set *set);
4975 __isl_give isl_union_pw_multi_aff *
4976 isl_union_pw_multi_aff_intersect_params(
4977 __isl_take isl_union_pw_multi_aff *upma,
4978 __isl_take isl_set *set);
4980 #include <isl/polynomial.h>
4981 __isl_give isl_pw_qpolynomial *
4982 isl_pw_qpolynomial_intersect_domain(
4983 __isl_take isl_pw_qpolynomial *pwpq,
4984 __isl_take isl_set *set);
4985 __isl_give isl_union_pw_qpolynomial *
4986 isl_union_pw_qpolynomial_intersect_domain(
4987 __isl_take isl_union_pw_qpolynomial *upwpq,
4988 __isl_take isl_union_set *uset);
4989 __isl_give isl_union_pw_qpolynomial_fold *
4990 isl_union_pw_qpolynomial_fold_intersect_domain(
4991 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4992 __isl_take isl_union_set *uset);
4993 __isl_give isl_pw_qpolynomial *
4994 isl_pw_qpolynomial_intersect_params(
4995 __isl_take isl_pw_qpolynomial *pwpq,
4996 __isl_take isl_set *set);
4997 __isl_give isl_pw_qpolynomial_fold *
4998 isl_pw_qpolynomial_fold_intersect_params(
4999 __isl_take isl_pw_qpolynomial_fold *pwf,
5000 __isl_take isl_set *set);
5001 __isl_give isl_union_pw_qpolynomial *
5002 isl_union_pw_qpolynomial_intersect_params(
5003 __isl_take isl_union_pw_qpolynomial *upwpq,
5004 __isl_take isl_set *set);
5005 __isl_give isl_union_pw_qpolynomial_fold *
5006 isl_union_pw_qpolynomial_fold_intersect_params(
5007 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5008 __isl_take isl_set *set);
5010 The second argument to the C<_params> functions needs to be
5011 a parametric (basic) set. For the other functions, a parametric set
5012 for either argument is only allowed if the other argument is
5013 a parametric set as well.
5014 The list passed to C<isl_basic_set_list_intersect> needs to have
5015 at least one element and all elements need to live in the same space.
5019 __isl_give isl_set *isl_basic_set_union(
5020 __isl_take isl_basic_set *bset1,
5021 __isl_take isl_basic_set *bset2);
5022 __isl_give isl_map *isl_basic_map_union(
5023 __isl_take isl_basic_map *bmap1,
5024 __isl_take isl_basic_map *bmap2);
5025 __isl_give isl_set *isl_set_union(
5026 __isl_take isl_set *set1,
5027 __isl_take isl_set *set2);
5028 __isl_give isl_map *isl_map_union(
5029 __isl_take isl_map *map1,
5030 __isl_take isl_map *map2);
5031 __isl_give isl_union_set *isl_union_set_union(
5032 __isl_take isl_union_set *uset1,
5033 __isl_take isl_union_set *uset2);
5034 __isl_give isl_union_map *isl_union_map_union(
5035 __isl_take isl_union_map *umap1,
5036 __isl_take isl_union_map *umap2);
5038 =item * Set difference
5040 __isl_give isl_set *isl_set_subtract(
5041 __isl_take isl_set *set1,
5042 __isl_take isl_set *set2);
5043 __isl_give isl_map *isl_map_subtract(
5044 __isl_take isl_map *map1,
5045 __isl_take isl_map *map2);
5046 __isl_give isl_map *isl_map_subtract_domain(
5047 __isl_take isl_map *map,
5048 __isl_take isl_set *dom);
5049 __isl_give isl_map *isl_map_subtract_range(
5050 __isl_take isl_map *map,
5051 __isl_take isl_set *dom);
5052 __isl_give isl_union_set *isl_union_set_subtract(
5053 __isl_take isl_union_set *uset1,
5054 __isl_take isl_union_set *uset2);
5055 __isl_give isl_union_map *isl_union_map_subtract(
5056 __isl_take isl_union_map *umap1,
5057 __isl_take isl_union_map *umap2);
5058 __isl_give isl_union_map *isl_union_map_subtract_domain(
5059 __isl_take isl_union_map *umap,
5060 __isl_take isl_union_set *dom);
5061 __isl_give isl_union_map *isl_union_map_subtract_range(
5062 __isl_take isl_union_map *umap,
5063 __isl_take isl_union_set *dom);
5067 #include <isl/space.h>
5068 __isl_give isl_space *isl_space_join(
5069 __isl_take isl_space *left,
5070 __isl_take isl_space *right);
5072 #include <isl/map.h>
5073 __isl_give isl_basic_set *isl_basic_set_apply(
5074 __isl_take isl_basic_set *bset,
5075 __isl_take isl_basic_map *bmap);
5076 __isl_give isl_set *isl_set_apply(
5077 __isl_take isl_set *set,
5078 __isl_take isl_map *map);
5079 __isl_give isl_union_set *isl_union_set_apply(
5080 __isl_take isl_union_set *uset,
5081 __isl_take isl_union_map *umap);
5082 __isl_give isl_basic_map *isl_basic_map_apply_domain(
5083 __isl_take isl_basic_map *bmap1,
5084 __isl_take isl_basic_map *bmap2);
5085 __isl_give isl_basic_map *isl_basic_map_apply_range(
5086 __isl_take isl_basic_map *bmap1,
5087 __isl_take isl_basic_map *bmap2);
5088 __isl_give isl_map *isl_map_apply_domain(
5089 __isl_take isl_map *map1,
5090 __isl_take isl_map *map2);
5091 __isl_give isl_map *isl_map_apply_range(
5092 __isl_take isl_map *map1,
5093 __isl_take isl_map *map2);
5095 #include <isl/union_map.h>
5096 __isl_give isl_union_map *isl_union_map_apply_domain(
5097 __isl_take isl_union_map *umap1,
5098 __isl_take isl_union_map *umap2);
5099 __isl_give isl_union_map *isl_union_map_apply_range(
5100 __isl_take isl_union_map *umap1,
5101 __isl_take isl_union_map *umap2);
5103 #include <isl/polynomial.h>
5104 __isl_give isl_pw_qpolynomial_fold *
5105 isl_set_apply_pw_qpolynomial_fold(
5106 __isl_take isl_set *set,
5107 __isl_take isl_pw_qpolynomial_fold *pwf,
5109 __isl_give isl_pw_qpolynomial_fold *
5110 isl_map_apply_pw_qpolynomial_fold(
5111 __isl_take isl_map *map,
5112 __isl_take isl_pw_qpolynomial_fold *pwf,
5114 __isl_give isl_union_pw_qpolynomial_fold *
5115 isl_union_set_apply_union_pw_qpolynomial_fold(
5116 __isl_take isl_union_set *uset,
5117 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5119 __isl_give isl_union_pw_qpolynomial_fold *
5120 isl_union_map_apply_union_pw_qpolynomial_fold(
5121 __isl_take isl_union_map *umap,
5122 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5125 The functions taking a map
5126 compose the given map with the given piecewise quasipolynomial reduction.
5127 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
5128 over all elements in the intersection of the range of the map
5129 and the domain of the piecewise quasipolynomial reduction
5130 as a function of an element in the domain of the map.
5131 The functions taking a set compute a bound over all elements in the
5132 intersection of the set and the domain of the
5133 piecewise quasipolynomial reduction.
5137 #include <isl/set.h>
5138 __isl_give isl_basic_set *
5139 isl_basic_set_preimage_multi_aff(
5140 __isl_take isl_basic_set *bset,
5141 __isl_take isl_multi_aff *ma);
5142 __isl_give isl_set *isl_set_preimage_multi_aff(
5143 __isl_take isl_set *set,
5144 __isl_take isl_multi_aff *ma);
5145 __isl_give isl_set *isl_set_preimage_pw_multi_aff(
5146 __isl_take isl_set *set,
5147 __isl_take isl_pw_multi_aff *pma);
5148 __isl_give isl_set *isl_set_preimage_multi_pw_aff(
5149 __isl_take isl_set *set,
5150 __isl_take isl_multi_pw_aff *mpa);
5152 #include <isl/union_set.h>
5153 __isl_give isl_union_set *
5154 isl_union_set_preimage_multi_aff(
5155 __isl_take isl_union_set *uset,
5156 __isl_take isl_multi_aff *ma);
5157 __isl_give isl_union_set *
5158 isl_union_set_preimage_pw_multi_aff(
5159 __isl_take isl_union_set *uset,
5160 __isl_take isl_pw_multi_aff *pma);
5161 __isl_give isl_union_set *
5162 isl_union_set_preimage_union_pw_multi_aff(
5163 __isl_take isl_union_set *uset,
5164 __isl_take isl_union_pw_multi_aff *upma);
5166 #include <isl/map.h>
5167 __isl_give isl_basic_map *
5168 isl_basic_map_preimage_domain_multi_aff(
5169 __isl_take isl_basic_map *bmap,
5170 __isl_take isl_multi_aff *ma);
5171 __isl_give isl_map *isl_map_preimage_domain_multi_aff(
5172 __isl_take isl_map *map,
5173 __isl_take isl_multi_aff *ma);
5174 __isl_give isl_map *isl_map_preimage_range_multi_aff(
5175 __isl_take isl_map *map,
5176 __isl_take isl_multi_aff *ma);
5177 __isl_give isl_map *
5178 isl_map_preimage_domain_pw_multi_aff(
5179 __isl_take isl_map *map,
5180 __isl_take isl_pw_multi_aff *pma);
5181 __isl_give isl_map *
5182 isl_map_preimage_range_pw_multi_aff(
5183 __isl_take isl_map *map,
5184 __isl_take isl_pw_multi_aff *pma);
5185 __isl_give isl_map *
5186 isl_map_preimage_domain_multi_pw_aff(
5187 __isl_take isl_map *map,
5188 __isl_take isl_multi_pw_aff *mpa);
5189 __isl_give isl_basic_map *
5190 isl_basic_map_preimage_range_multi_aff(
5191 __isl_take isl_basic_map *bmap,
5192 __isl_take isl_multi_aff *ma);
5194 #include <isl/union_map.h>
5195 __isl_give isl_union_map *
5196 isl_union_map_preimage_domain_multi_aff(
5197 __isl_take isl_union_map *umap,
5198 __isl_take isl_multi_aff *ma);
5199 __isl_give isl_union_map *
5200 isl_union_map_preimage_range_multi_aff(
5201 __isl_take isl_union_map *umap,
5202 __isl_take isl_multi_aff *ma);
5203 __isl_give isl_union_map *
5204 isl_union_map_preimage_domain_pw_multi_aff(
5205 __isl_take isl_union_map *umap,
5206 __isl_take isl_pw_multi_aff *pma);
5207 __isl_give isl_union_map *
5208 isl_union_map_preimage_range_pw_multi_aff(
5209 __isl_take isl_union_map *umap,
5210 __isl_take isl_pw_multi_aff *pma);
5211 __isl_give isl_union_map *
5212 isl_union_map_preimage_domain_union_pw_multi_aff(
5213 __isl_take isl_union_map *umap,
5214 __isl_take isl_union_pw_multi_aff *upma);
5215 __isl_give isl_union_map *
5216 isl_union_map_preimage_range_union_pw_multi_aff(
5217 __isl_take isl_union_map *umap,
5218 __isl_take isl_union_pw_multi_aff *upma);
5220 These functions compute the preimage of the given set or map domain/range under
5221 the given function. In other words, the expression is plugged
5222 into the set description or into the domain/range of the map.
5226 #include <isl/aff.h>
5227 __isl_give isl_aff *isl_aff_pullback_aff(
5228 __isl_take isl_aff *aff1,
5229 __isl_take isl_aff *aff2);
5230 __isl_give isl_aff *isl_aff_pullback_multi_aff(
5231 __isl_take isl_aff *aff,
5232 __isl_take isl_multi_aff *ma);
5233 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
5234 __isl_take isl_pw_aff *pa,
5235 __isl_take isl_multi_aff *ma);
5236 __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
5237 __isl_take isl_pw_aff *pa,
5238 __isl_take isl_pw_multi_aff *pma);
5239 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
5240 __isl_take isl_pw_aff *pa,
5241 __isl_take isl_multi_pw_aff *mpa);
5242 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
5243 __isl_take isl_multi_aff *ma1,
5244 __isl_take isl_multi_aff *ma2);
5245 __isl_give isl_pw_multi_aff *
5246 isl_pw_multi_aff_pullback_multi_aff(
5247 __isl_take isl_pw_multi_aff *pma,
5248 __isl_take isl_multi_aff *ma);
5249 __isl_give isl_multi_pw_aff *
5250 isl_multi_pw_aff_pullback_multi_aff(
5251 __isl_take isl_multi_pw_aff *mpa,
5252 __isl_take isl_multi_aff *ma);
5253 __isl_give isl_pw_multi_aff *
5254 isl_pw_multi_aff_pullback_pw_multi_aff(
5255 __isl_take isl_pw_multi_aff *pma1,
5256 __isl_take isl_pw_multi_aff *pma2);
5257 __isl_give isl_multi_pw_aff *
5258 isl_multi_pw_aff_pullback_pw_multi_aff(
5259 __isl_take isl_multi_pw_aff *mpa,
5260 __isl_take isl_pw_multi_aff *pma);
5261 __isl_give isl_multi_pw_aff *
5262 isl_multi_pw_aff_pullback_multi_pw_aff(
5263 __isl_take isl_multi_pw_aff *mpa1,
5264 __isl_take isl_multi_pw_aff *mpa2);
5266 These functions precompose the first expression by the second function.
5267 In other words, the second function is plugged
5268 into the first expression.
5272 #include <isl/aff.h>
5273 __isl_give isl_basic_set *isl_aff_le_basic_set(
5274 __isl_take isl_aff *aff1,
5275 __isl_take isl_aff *aff2);
5276 __isl_give isl_basic_set *isl_aff_ge_basic_set(
5277 __isl_take isl_aff *aff1,
5278 __isl_take isl_aff *aff2);
5279 __isl_give isl_set *isl_pw_aff_eq_set(
5280 __isl_take isl_pw_aff *pwaff1,
5281 __isl_take isl_pw_aff *pwaff2);
5282 __isl_give isl_set *isl_pw_aff_ne_set(
5283 __isl_take isl_pw_aff *pwaff1,
5284 __isl_take isl_pw_aff *pwaff2);
5285 __isl_give isl_set *isl_pw_aff_le_set(
5286 __isl_take isl_pw_aff *pwaff1,
5287 __isl_take isl_pw_aff *pwaff2);
5288 __isl_give isl_set *isl_pw_aff_lt_set(
5289 __isl_take isl_pw_aff *pwaff1,
5290 __isl_take isl_pw_aff *pwaff2);
5291 __isl_give isl_set *isl_pw_aff_ge_set(
5292 __isl_take isl_pw_aff *pwaff1,
5293 __isl_take isl_pw_aff *pwaff2);
5294 __isl_give isl_set *isl_pw_aff_gt_set(
5295 __isl_take isl_pw_aff *pwaff1,
5296 __isl_take isl_pw_aff *pwaff2);
5298 __isl_give isl_set *isl_multi_aff_lex_le_set(
5299 __isl_take isl_multi_aff *ma1,
5300 __isl_take isl_multi_aff *ma2);
5301 __isl_give isl_set *isl_multi_aff_lex_ge_set(
5302 __isl_take isl_multi_aff *ma1,
5303 __isl_take isl_multi_aff *ma2);
5305 __isl_give isl_set *isl_pw_aff_list_eq_set(
5306 __isl_take isl_pw_aff_list *list1,
5307 __isl_take isl_pw_aff_list *list2);
5308 __isl_give isl_set *isl_pw_aff_list_ne_set(
5309 __isl_take isl_pw_aff_list *list1,
5310 __isl_take isl_pw_aff_list *list2);
5311 __isl_give isl_set *isl_pw_aff_list_le_set(
5312 __isl_take isl_pw_aff_list *list1,
5313 __isl_take isl_pw_aff_list *list2);
5314 __isl_give isl_set *isl_pw_aff_list_lt_set(
5315 __isl_take isl_pw_aff_list *list1,
5316 __isl_take isl_pw_aff_list *list2);
5317 __isl_give isl_set *isl_pw_aff_list_ge_set(
5318 __isl_take isl_pw_aff_list *list1,
5319 __isl_take isl_pw_aff_list *list2);
5320 __isl_give isl_set *isl_pw_aff_list_gt_set(
5321 __isl_take isl_pw_aff_list *list1,
5322 __isl_take isl_pw_aff_list *list2);
5324 The function C<isl_aff_ge_basic_set> returns a basic set
5325 containing those elements in the shared space
5326 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
5327 The function C<isl_pw_aff_ge_set> returns a set
5328 containing those elements in the shared domain
5329 of C<pwaff1> and C<pwaff2> where C<pwaff1> is
5330 greater than or equal to C<pwaff2>.
5331 The function C<isl_multi_aff_lex_le_set> returns a set
5332 containing those elements in the shared domain space
5333 where C<ma1> is lexicographically smaller than or
5335 The functions operating on C<isl_pw_aff_list> apply the corresponding
5336 C<isl_pw_aff> function to each pair of elements in the two lists.
5338 =item * Cartesian Product
5340 #include <isl/space.h>
5341 __isl_give isl_space *isl_space_product(
5342 __isl_take isl_space *space1,
5343 __isl_take isl_space *space2);
5344 __isl_give isl_space *isl_space_domain_product(
5345 __isl_take isl_space *space1,
5346 __isl_take isl_space *space2);
5347 __isl_give isl_space *isl_space_range_product(
5348 __isl_take isl_space *space1,
5349 __isl_take isl_space *space2);
5352 C<isl_space_product>, C<isl_space_domain_product>
5353 and C<isl_space_range_product> take pairs or relation spaces and
5354 produce a single relations space, where either the domain, the range
5355 or both domain and range are wrapped spaces of relations between
5356 the domains and/or ranges of the input spaces.
5357 If the product is only constructed over the domain or the range
5358 then the ranges or the domains of the inputs should be the same.
5359 The function C<isl_space_product> also accepts a pair of set spaces,
5360 in which case it returns a wrapped space of a relation between the
5363 #include <isl/set.h>
5364 __isl_give isl_set *isl_set_product(
5365 __isl_take isl_set *set1,
5366 __isl_take isl_set *set2);
5368 #include <isl/map.h>
5369 __isl_give isl_basic_map *isl_basic_map_domain_product(
5370 __isl_take isl_basic_map *bmap1,
5371 __isl_take isl_basic_map *bmap2);
5372 __isl_give isl_basic_map *isl_basic_map_range_product(
5373 __isl_take isl_basic_map *bmap1,
5374 __isl_take isl_basic_map *bmap2);
5375 __isl_give isl_basic_map *isl_basic_map_product(
5376 __isl_take isl_basic_map *bmap1,
5377 __isl_take isl_basic_map *bmap2);
5378 __isl_give isl_map *isl_map_domain_product(
5379 __isl_take isl_map *map1,
5380 __isl_take isl_map *map2);
5381 __isl_give isl_map *isl_map_range_product(
5382 __isl_take isl_map *map1,
5383 __isl_take isl_map *map2);
5384 __isl_give isl_map *isl_map_product(
5385 __isl_take isl_map *map1,
5386 __isl_take isl_map *map2);
5388 #include <isl/union_set.h>
5389 __isl_give isl_union_set *isl_union_set_product(
5390 __isl_take isl_union_set *uset1,
5391 __isl_take isl_union_set *uset2);
5393 #include <isl/union_map.h>
5394 __isl_give isl_union_map *isl_union_map_domain_product(
5395 __isl_take isl_union_map *umap1,
5396 __isl_take isl_union_map *umap2);
5397 __isl_give isl_union_map *isl_union_map_range_product(
5398 __isl_take isl_union_map *umap1,
5399 __isl_take isl_union_map *umap2);
5400 __isl_give isl_union_map *isl_union_map_product(
5401 __isl_take isl_union_map *umap1,
5402 __isl_take isl_union_map *umap2);
5404 #include <isl/val.h>
5405 __isl_give isl_multi_val *isl_multi_val_range_product(
5406 __isl_take isl_multi_val *mv1,
5407 __isl_take isl_multi_val *mv2);
5408 __isl_give isl_multi_val *isl_multi_val_product(
5409 __isl_take isl_multi_val *mv1,
5410 __isl_take isl_multi_val *mv2);
5412 #include <isl/aff.h>
5413 __isl_give isl_multi_aff *isl_multi_aff_range_product(
5414 __isl_take isl_multi_aff *ma1,
5415 __isl_take isl_multi_aff *ma2);
5416 __isl_give isl_multi_aff *isl_multi_aff_product(
5417 __isl_take isl_multi_aff *ma1,
5418 __isl_take isl_multi_aff *ma2);
5419 __isl_give isl_multi_pw_aff *
5420 isl_multi_pw_aff_range_product(
5421 __isl_take isl_multi_pw_aff *mpa1,
5422 __isl_take isl_multi_pw_aff *mpa2);
5423 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_product(
5424 __isl_take isl_multi_pw_aff *mpa1,
5425 __isl_take isl_multi_pw_aff *mpa2);
5426 __isl_give isl_pw_multi_aff *
5427 isl_pw_multi_aff_range_product(
5428 __isl_take isl_pw_multi_aff *pma1,
5429 __isl_take isl_pw_multi_aff *pma2);
5430 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
5431 __isl_take isl_pw_multi_aff *pma1,
5432 __isl_take isl_pw_multi_aff *pma2);
5434 The above functions compute the cross product of the given
5435 sets, relations or functions. The domains and ranges of the results
5436 are wrapped maps between domains and ranges of the inputs.
5437 To obtain a ``flat'' product, use the following functions
5440 #include <isl/set.h>
5441 __isl_give isl_basic_set *isl_basic_set_flat_product(
5442 __isl_take isl_basic_set *bset1,
5443 __isl_take isl_basic_set *bset2);
5444 __isl_give isl_set *isl_set_flat_product(
5445 __isl_take isl_set *set1,
5446 __isl_take isl_set *set2);
5448 #include <isl/map.h>
5449 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
5450 __isl_take isl_basic_map *bmap1,
5451 __isl_take isl_basic_map *bmap2);
5452 __isl_give isl_map *isl_map_flat_domain_product(
5453 __isl_take isl_map *map1,
5454 __isl_take isl_map *map2);
5455 __isl_give isl_map *isl_map_flat_range_product(
5456 __isl_take isl_map *map1,
5457 __isl_take isl_map *map2);
5458 __isl_give isl_basic_map *isl_basic_map_flat_product(
5459 __isl_take isl_basic_map *bmap1,
5460 __isl_take isl_basic_map *bmap2);
5461 __isl_give isl_map *isl_map_flat_product(
5462 __isl_take isl_map *map1,
5463 __isl_take isl_map *map2);
5465 #include <isl/union_map.h>
5466 __isl_give isl_union_map *
5467 isl_union_map_flat_range_product(
5468 __isl_take isl_union_map *umap1,
5469 __isl_take isl_union_map *umap2);
5471 #include <isl/val.h>
5472 __isl_give isl_multi_val *isl_multi_val_flat_range_product(
5473 __isl_take isl_multi_val *mv1,
5474 __isl_take isl_multi_aff *mv2);
5476 #include <isl/aff.h>
5477 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
5478 __isl_take isl_multi_aff *ma1,
5479 __isl_take isl_multi_aff *ma2);
5480 __isl_give isl_pw_multi_aff *
5481 isl_pw_multi_aff_flat_range_product(
5482 __isl_take isl_pw_multi_aff *pma1,
5483 __isl_take isl_pw_multi_aff *pma2);
5484 __isl_give isl_multi_pw_aff *
5485 isl_multi_pw_aff_flat_range_product(
5486 __isl_take isl_multi_pw_aff *mpa1,
5487 __isl_take isl_multi_pw_aff *mpa2);
5488 __isl_give isl_union_pw_multi_aff *
5489 isl_union_pw_multi_aff_flat_range_product(
5490 __isl_take isl_union_pw_multi_aff *upma1,
5491 __isl_take isl_union_pw_multi_aff *upma2);
5493 #include <isl/space.h>
5494 __isl_give isl_space *isl_space_factor_domain(
5495 __isl_take isl_space *space);
5496 __isl_give isl_space *isl_space_factor_range(
5497 __isl_take isl_space *space);
5498 __isl_give isl_space *isl_space_domain_factor_domain(
5499 __isl_take isl_space *space);
5500 __isl_give isl_space *isl_space_domain_factor_range(
5501 __isl_take isl_space *space);
5502 __isl_give isl_space *isl_space_range_factor_domain(
5503 __isl_take isl_space *space);
5504 __isl_give isl_space *isl_space_range_factor_range(
5505 __isl_take isl_space *space);
5507 The functions C<isl_space_range_factor_domain> and
5508 C<isl_space_range_factor_range> extract the two arguments from
5509 the result of a call to C<isl_space_range_product>.
5511 The arguments of a call to C<isl_map_range_product> can be extracted
5512 from the result using the following functions.
5514 #include <isl/map.h>
5515 __isl_give isl_map *isl_map_factor_domain(
5516 __isl_take isl_map *map);
5517 __isl_give isl_map *isl_map_factor_range(
5518 __isl_take isl_map *map);
5519 __isl_give isl_map *isl_map_domain_factor_domain(
5520 __isl_take isl_map *map);
5521 __isl_give isl_map *isl_map_domain_factor_range(
5522 __isl_take isl_map *map);
5523 __isl_give isl_map *isl_map_range_factor_domain(
5524 __isl_take isl_map *map);
5525 __isl_give isl_map *isl_map_range_factor_range(
5526 __isl_take isl_map *map);
5528 #include <isl/union_map.h>
5529 __isl_give isl_union_map *isl_union_map_factor_domain(
5530 __isl_take isl_union_map *umap);
5531 __isl_give isl_union_map *isl_union_map_factor_range(
5532 __isl_take isl_union_map *umap);
5533 __isl_give isl_union_map *
5534 isl_union_map_domain_factor_domain(
5535 __isl_take isl_union_map *umap);
5536 __isl_give isl_union_map *
5537 isl_union_map_domain_factor_range(
5538 __isl_take isl_union_map *umap);
5539 __isl_give isl_union_map *
5540 isl_union_map_range_factor_range(
5541 __isl_take isl_union_map *umap);
5543 #include <isl/val.h>
5544 __isl_give isl_multi_val *
5545 isl_multi_val_range_factor_domain(
5546 __isl_take isl_multi_val *mv);
5547 __isl_give isl_multi_val *
5548 isl_multi_val_range_factor_range(
5549 __isl_take isl_multi_val *mv);
5551 #include <isl/aff.h>
5552 __isl_give isl_multi_aff *
5553 isl_multi_aff_range_factor_domain(
5554 __isl_take isl_multi_aff *ma);
5555 __isl_give isl_multi_aff *
5556 isl_multi_aff_range_factor_range(
5557 __isl_take isl_multi_aff *ma);
5558 __isl_give isl_multi_pw_aff *
5559 isl_multi_pw_aff_range_factor_domain(
5560 __isl_take isl_multi_pw_aff *mpa);
5561 __isl_give isl_multi_pw_aff *
5562 isl_multi_pw_aff_range_factor_range(
5563 __isl_take isl_multi_pw_aff *mpa);
5565 The splice functions are a generalization of the flat product functions,
5566 where the second argument may be inserted at any position inside
5567 the first argument rather than being placed at the end.
5569 #include <isl/val.h>
5570 __isl_give isl_multi_val *isl_multi_val_range_splice(
5571 __isl_take isl_multi_val *mv1, unsigned pos,
5572 __isl_take isl_multi_val *mv2);
5574 #include <isl/aff.h>
5575 __isl_give isl_multi_aff *isl_multi_aff_range_splice(
5576 __isl_take isl_multi_aff *ma1, unsigned pos,
5577 __isl_take isl_multi_aff *ma2);
5578 __isl_give isl_multi_aff *isl_multi_aff_splice(
5579 __isl_take isl_multi_aff *ma1,
5580 unsigned in_pos, unsigned out_pos,
5581 __isl_take isl_multi_aff *ma2);
5582 __isl_give isl_multi_pw_aff *
5583 isl_multi_pw_aff_range_splice(
5584 __isl_take isl_multi_pw_aff *mpa1, unsigned pos,
5585 __isl_take isl_multi_pw_aff *mpa2);
5586 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
5587 __isl_take isl_multi_pw_aff *mpa1,
5588 unsigned in_pos, unsigned out_pos,
5589 __isl_take isl_multi_pw_aff *mpa2);
5591 =item * Simplification
5593 When applied to a set or relation,
5594 the gist operation returns a set or relation that has the
5595 same intersection with the context as the input set or relation.
5596 Any implicit equality in the intersection is made explicit in the result,
5597 while all inequalities that are redundant with respect to the intersection
5599 In case of union sets and relations, the gist operation is performed
5602 When applied to a function,
5603 the gist operation applies the set gist operation to each of
5604 the cells in the domain of the input piecewise expression.
5605 The context is also exploited
5606 to simplify the expression associated to each cell.
5608 #include <isl/set.h>
5609 __isl_give isl_basic_set *isl_basic_set_gist(
5610 __isl_take isl_basic_set *bset,
5611 __isl_take isl_basic_set *context);
5612 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
5613 __isl_take isl_set *context);
5614 __isl_give isl_set *isl_set_gist_params(
5615 __isl_take isl_set *set,
5616 __isl_take isl_set *context);
5618 #include <isl/map.h>
5619 __isl_give isl_basic_map *isl_basic_map_gist(
5620 __isl_take isl_basic_map *bmap,
5621 __isl_take isl_basic_map *context);
5622 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
5623 __isl_take isl_map *context);
5624 __isl_give isl_map *isl_map_gist_params(
5625 __isl_take isl_map *map,
5626 __isl_take isl_set *context);
5627 __isl_give isl_map *isl_map_gist_domain(
5628 __isl_take isl_map *map,
5629 __isl_take isl_set *context);
5630 __isl_give isl_map *isl_map_gist_range(
5631 __isl_take isl_map *map,
5632 __isl_take isl_set *context);
5634 #include <isl/union_set.h>
5635 __isl_give isl_union_set *isl_union_set_gist(
5636 __isl_take isl_union_set *uset,
5637 __isl_take isl_union_set *context);
5638 __isl_give isl_union_set *isl_union_set_gist_params(
5639 __isl_take isl_union_set *uset,
5640 __isl_take isl_set *set);
5642 #include <isl/union_map.h>
5643 __isl_give isl_union_map *isl_union_map_gist(
5644 __isl_take isl_union_map *umap,
5645 __isl_take isl_union_map *context);
5646 __isl_give isl_union_map *isl_union_map_gist_params(
5647 __isl_take isl_union_map *umap,
5648 __isl_take isl_set *set);
5649 __isl_give isl_union_map *isl_union_map_gist_domain(
5650 __isl_take isl_union_map *umap,
5651 __isl_take isl_union_set *uset);
5652 __isl_give isl_union_map *isl_union_map_gist_range(
5653 __isl_take isl_union_map *umap,
5654 __isl_take isl_union_set *uset);
5656 #include <isl/aff.h>
5657 __isl_give isl_aff *isl_aff_gist_params(
5658 __isl_take isl_aff *aff,
5659 __isl_take isl_set *context);
5660 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
5661 __isl_take isl_set *context);
5662 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
5663 __isl_take isl_multi_aff *maff,
5664 __isl_take isl_set *context);
5665 __isl_give isl_multi_aff *isl_multi_aff_gist(
5666 __isl_take isl_multi_aff *maff,
5667 __isl_take isl_set *context);
5668 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
5669 __isl_take isl_pw_aff *pwaff,
5670 __isl_take isl_set *context);
5671 __isl_give isl_pw_aff *isl_pw_aff_gist(
5672 __isl_take isl_pw_aff *pwaff,
5673 __isl_take isl_set *context);
5674 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
5675 __isl_take isl_pw_multi_aff *pma,
5676 __isl_take isl_set *set);
5677 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
5678 __isl_take isl_pw_multi_aff *pma,
5679 __isl_take isl_set *set);
5680 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params(
5681 __isl_take isl_multi_pw_aff *mpa,
5682 __isl_take isl_set *set);
5683 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist(
5684 __isl_take isl_multi_pw_aff *mpa,
5685 __isl_take isl_set *set);
5686 __isl_give isl_union_pw_multi_aff *
5687 isl_union_pw_multi_aff_gist_params(
5688 __isl_take isl_union_pw_multi_aff *upma,
5689 __isl_take isl_set *context);
5690 __isl_give isl_union_pw_multi_aff *
5691 isl_union_pw_multi_aff_gist(
5692 __isl_take isl_union_pw_multi_aff *upma,
5693 __isl_take isl_union_set *context);
5695 #include <isl/polynomial.h>
5696 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
5697 __isl_take isl_qpolynomial *qp,
5698 __isl_take isl_set *context);
5699 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
5700 __isl_take isl_qpolynomial *qp,
5701 __isl_take isl_set *context);
5702 __isl_give isl_qpolynomial_fold *
5703 isl_qpolynomial_fold_gist_params(
5704 __isl_take isl_qpolynomial_fold *fold,
5705 __isl_take isl_set *context);
5706 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
5707 __isl_take isl_qpolynomial_fold *fold,
5708 __isl_take isl_set *context);
5709 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
5710 __isl_take isl_pw_qpolynomial *pwqp,
5711 __isl_take isl_set *context);
5712 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
5713 __isl_take isl_pw_qpolynomial *pwqp,
5714 __isl_take isl_set *context);
5715 __isl_give isl_pw_qpolynomial_fold *
5716 isl_pw_qpolynomial_fold_gist(
5717 __isl_take isl_pw_qpolynomial_fold *pwf,
5718 __isl_take isl_set *context);
5719 __isl_give isl_pw_qpolynomial_fold *
5720 isl_pw_qpolynomial_fold_gist_params(
5721 __isl_take isl_pw_qpolynomial_fold *pwf,
5722 __isl_take isl_set *context);
5723 __isl_give isl_union_pw_qpolynomial *
5724 isl_union_pw_qpolynomial_gist_params(
5725 __isl_take isl_union_pw_qpolynomial *upwqp,
5726 __isl_take isl_set *context);
5727 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
5728 __isl_take isl_union_pw_qpolynomial *upwqp,
5729 __isl_take isl_union_set *context);
5730 __isl_give isl_union_pw_qpolynomial_fold *
5731 isl_union_pw_qpolynomial_fold_gist(
5732 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5733 __isl_take isl_union_set *context);
5734 __isl_give isl_union_pw_qpolynomial_fold *
5735 isl_union_pw_qpolynomial_fold_gist_params(
5736 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5737 __isl_take isl_set *context);
5739 =item * Binary Arithmethic Operations
5741 #include <isl/aff.h>
5742 __isl_give isl_aff *isl_aff_add(
5743 __isl_take isl_aff *aff1,
5744 __isl_take isl_aff *aff2);
5745 __isl_give isl_multi_aff *isl_multi_aff_add(
5746 __isl_take isl_multi_aff *maff1,
5747 __isl_take isl_multi_aff *maff2);
5748 __isl_give isl_pw_aff *isl_pw_aff_add(
5749 __isl_take isl_pw_aff *pwaff1,
5750 __isl_take isl_pw_aff *pwaff2);
5751 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
5752 __isl_take isl_pw_multi_aff *pma1,
5753 __isl_take isl_pw_multi_aff *pma2);
5754 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
5755 __isl_take isl_union_pw_multi_aff *upma1,
5756 __isl_take isl_union_pw_multi_aff *upma2);
5757 __isl_give isl_pw_aff *isl_pw_aff_min(
5758 __isl_take isl_pw_aff *pwaff1,
5759 __isl_take isl_pw_aff *pwaff2);
5760 __isl_give isl_pw_aff *isl_pw_aff_max(
5761 __isl_take isl_pw_aff *pwaff1,
5762 __isl_take isl_pw_aff *pwaff2);
5763 __isl_give isl_aff *isl_aff_sub(
5764 __isl_take isl_aff *aff1,
5765 __isl_take isl_aff *aff2);
5766 __isl_give isl_multi_aff *isl_multi_aff_sub(
5767 __isl_take isl_multi_aff *ma1,
5768 __isl_take isl_multi_aff *ma2);
5769 __isl_give isl_pw_aff *isl_pw_aff_sub(
5770 __isl_take isl_pw_aff *pwaff1,
5771 __isl_take isl_pw_aff *pwaff2);
5772 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
5773 __isl_take isl_pw_multi_aff *pma1,
5774 __isl_take isl_pw_multi_aff *pma2);
5775 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
5776 __isl_take isl_union_pw_multi_aff *upma1,
5777 __isl_take isl_union_pw_multi_aff *upma2);
5779 C<isl_aff_sub> subtracts the second argument from the first.
5781 #include <isl/polynomial.h>
5782 __isl_give isl_qpolynomial *isl_qpolynomial_add(
5783 __isl_take isl_qpolynomial *qp1,
5784 __isl_take isl_qpolynomial *qp2);
5785 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
5786 __isl_take isl_pw_qpolynomial *pwqp1,
5787 __isl_take isl_pw_qpolynomial *pwqp2);
5788 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
5789 __isl_take isl_pw_qpolynomial *pwqp1,
5790 __isl_take isl_pw_qpolynomial *pwqp2);
5791 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
5792 __isl_take isl_pw_qpolynomial_fold *pwf1,
5793 __isl_take isl_pw_qpolynomial_fold *pwf2);
5794 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
5795 __isl_take isl_union_pw_qpolynomial *upwqp1,
5796 __isl_take isl_union_pw_qpolynomial *upwqp2);
5797 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
5798 __isl_take isl_qpolynomial *qp1,
5799 __isl_take isl_qpolynomial *qp2);
5800 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
5801 __isl_take isl_pw_qpolynomial *pwqp1,
5802 __isl_take isl_pw_qpolynomial *pwqp2);
5803 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
5804 __isl_take isl_union_pw_qpolynomial *upwqp1,
5805 __isl_take isl_union_pw_qpolynomial *upwqp2);
5806 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
5807 __isl_take isl_pw_qpolynomial_fold *pwf1,
5808 __isl_take isl_pw_qpolynomial_fold *pwf2);
5809 __isl_give isl_union_pw_qpolynomial_fold *
5810 isl_union_pw_qpolynomial_fold_fold(
5811 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
5812 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
5814 #include <isl/aff.h>
5815 __isl_give isl_pw_aff *isl_pw_aff_union_add(
5816 __isl_take isl_pw_aff *pwaff1,
5817 __isl_take isl_pw_aff *pwaff2);
5818 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
5819 __isl_take isl_pw_multi_aff *pma1,
5820 __isl_take isl_pw_multi_aff *pma2);
5821 __isl_give isl_union_pw_multi_aff *
5822 isl_union_pw_multi_aff_union_add(
5823 __isl_take isl_union_pw_multi_aff *upma1,
5824 __isl_take isl_union_pw_multi_aff *upma2);
5825 __isl_give isl_pw_aff *isl_pw_aff_union_min(
5826 __isl_take isl_pw_aff *pwaff1,
5827 __isl_take isl_pw_aff *pwaff2);
5828 __isl_give isl_pw_aff *isl_pw_aff_union_max(
5829 __isl_take isl_pw_aff *pwaff1,
5830 __isl_take isl_pw_aff *pwaff2);
5832 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
5833 expression with a domain that is the union of those of C<pwaff1> and
5834 C<pwaff2> and such that on each cell, the quasi-affine expression is
5835 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
5836 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
5837 associated expression is the defined one.
5838 This in contrast to the C<isl_pw_aff_max> function, which is
5839 only defined on the shared definition domain of the arguments.
5841 #include <isl/val.h>
5842 __isl_give isl_multi_val *isl_multi_val_add_val(
5843 __isl_take isl_multi_val *mv,
5844 __isl_take isl_val *v);
5845 __isl_give isl_multi_val *isl_multi_val_mod_val(
5846 __isl_take isl_multi_val *mv,
5847 __isl_take isl_val *v);
5848 __isl_give isl_multi_val *isl_multi_val_scale_val(
5849 __isl_take isl_multi_val *mv,
5850 __isl_take isl_val *v);
5851 __isl_give isl_multi_val *isl_multi_val_scale_down_val(
5852 __isl_take isl_multi_val *mv,
5853 __isl_take isl_val *v);
5855 #include <isl/aff.h>
5856 __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
5857 __isl_take isl_val *mod);
5858 __isl_give isl_pw_aff *isl_pw_aff_mod_val(
5859 __isl_take isl_pw_aff *pa,
5860 __isl_take isl_val *mod);
5861 __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
5862 __isl_take isl_val *v);
5863 __isl_give isl_multi_aff *isl_multi_aff_scale_val(
5864 __isl_take isl_multi_aff *ma,
5865 __isl_take isl_val *v);
5866 __isl_give isl_pw_aff *isl_pw_aff_scale_val(
5867 __isl_take isl_pw_aff *pa, __isl_take isl_val *v);
5868 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
5869 __isl_take isl_multi_pw_aff *mpa,
5870 __isl_take isl_val *v);
5871 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
5872 __isl_take isl_pw_multi_aff *pma,
5873 __isl_take isl_val *v);
5874 __isl_give isl_union_pw_multi_aff *
5875 isl_union_pw_multi_aff_scale_val(
5876 __isl_take isl_union_pw_multi_aff *upma,
5877 __isl_take isl_val *val);
5878 __isl_give isl_aff *isl_aff_scale_down_ui(
5879 __isl_take isl_aff *aff, unsigned f);
5880 __isl_give isl_aff *isl_aff_scale_down_val(
5881 __isl_take isl_aff *aff, __isl_take isl_val *v);
5882 __isl_give isl_multi_aff *isl_multi_aff_scale_down_val(
5883 __isl_take isl_multi_aff *ma,
5884 __isl_take isl_val *v);
5885 __isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
5886 __isl_take isl_pw_aff *pa,
5887 __isl_take isl_val *f);
5888 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_down_val(
5889 __isl_take isl_multi_pw_aff *mpa,
5890 __isl_take isl_val *v);
5891 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val(
5892 __isl_take isl_pw_multi_aff *pma,
5893 __isl_take isl_val *v);
5894 __isl_give isl_union_pw_multi_aff *
5895 isl_union_pw_multi_aff_scale_down_val(
5896 __isl_take isl_union_pw_multi_aff *upma,
5897 __isl_take isl_val *val);
5899 #include <isl/polynomial.h>
5900 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
5901 __isl_take isl_qpolynomial *qp,
5902 __isl_take isl_val *v);
5903 __isl_give isl_qpolynomial_fold *
5904 isl_qpolynomial_fold_scale_val(
5905 __isl_take isl_qpolynomial_fold *fold,
5906 __isl_take isl_val *v);
5907 __isl_give isl_pw_qpolynomial *
5908 isl_pw_qpolynomial_scale_val(
5909 __isl_take isl_pw_qpolynomial *pwqp,
5910 __isl_take isl_val *v);
5911 __isl_give isl_pw_qpolynomial_fold *
5912 isl_pw_qpolynomial_fold_scale_val(
5913 __isl_take isl_pw_qpolynomial_fold *pwf,
5914 __isl_take isl_val *v);
5915 __isl_give isl_union_pw_qpolynomial *
5916 isl_union_pw_qpolynomial_scale_val(
5917 __isl_take isl_union_pw_qpolynomial *upwqp,
5918 __isl_take isl_val *v);
5919 __isl_give isl_union_pw_qpolynomial_fold *
5920 isl_union_pw_qpolynomial_fold_scale_val(
5921 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5922 __isl_take isl_val *v);
5923 __isl_give isl_qpolynomial *
5924 isl_qpolynomial_scale_down_val(
5925 __isl_take isl_qpolynomial *qp,
5926 __isl_take isl_val *v);
5927 __isl_give isl_qpolynomial_fold *
5928 isl_qpolynomial_fold_scale_down_val(
5929 __isl_take isl_qpolynomial_fold *fold,
5930 __isl_take isl_val *v);
5931 __isl_give isl_pw_qpolynomial *
5932 isl_pw_qpolynomial_scale_down_val(
5933 __isl_take isl_pw_qpolynomial *pwqp,
5934 __isl_take isl_val *v);
5935 __isl_give isl_pw_qpolynomial_fold *
5936 isl_pw_qpolynomial_fold_scale_down_val(
5937 __isl_take isl_pw_qpolynomial_fold *pwf,
5938 __isl_take isl_val *v);
5939 __isl_give isl_union_pw_qpolynomial *
5940 isl_union_pw_qpolynomial_scale_down_val(
5941 __isl_take isl_union_pw_qpolynomial *upwqp,
5942 __isl_take isl_val *v);
5943 __isl_give isl_union_pw_qpolynomial_fold *
5944 isl_union_pw_qpolynomial_fold_scale_down_val(
5945 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5946 __isl_take isl_val *v);
5948 #include <isl/val.h>
5949 __isl_give isl_multi_val *isl_multi_val_scale_multi_val(
5950 __isl_take isl_multi_val *mv1,
5951 __isl_take isl_multi_val *mv2);
5952 __isl_give isl_multi_val *
5953 isl_multi_val_scale_down_multi_val(
5954 __isl_take isl_multi_val *mv1,
5955 __isl_take isl_multi_val *mv2);
5957 #include <isl/aff.h>
5958 __isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
5959 __isl_take isl_multi_aff *ma,
5960 __isl_take isl_multi_val *mv);
5961 __isl_give isl_pw_multi_aff *
5962 isl_pw_multi_aff_scale_multi_val(
5963 __isl_take isl_pw_multi_aff *pma,
5964 __isl_take isl_multi_val *mv);
5965 __isl_give isl_multi_pw_aff *
5966 isl_multi_pw_aff_scale_multi_val(
5967 __isl_take isl_multi_pw_aff *mpa,
5968 __isl_take isl_multi_val *mv);
5969 __isl_give isl_union_pw_multi_aff *
5970 isl_union_pw_multi_aff_scale_multi_val(
5971 __isl_take isl_union_pw_multi_aff *upma,
5972 __isl_take isl_multi_val *mv);
5973 __isl_give isl_multi_aff *
5974 isl_multi_aff_scale_down_multi_val(
5975 __isl_take isl_multi_aff *ma,
5976 __isl_take isl_multi_val *mv);
5977 __isl_give isl_multi_pw_aff *
5978 isl_multi_pw_aff_scale_down_multi_val(
5979 __isl_take isl_multi_pw_aff *mpa,
5980 __isl_take isl_multi_val *mv);
5982 C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
5983 by the corresponding elements of C<mv>.
5985 #include <isl/aff.h>
5986 __isl_give isl_aff *isl_aff_mul(
5987 __isl_take isl_aff *aff1,
5988 __isl_take isl_aff *aff2);
5989 __isl_give isl_aff *isl_aff_div(
5990 __isl_take isl_aff *aff1,
5991 __isl_take isl_aff *aff2);
5992 __isl_give isl_pw_aff *isl_pw_aff_mul(
5993 __isl_take isl_pw_aff *pwaff1,
5994 __isl_take isl_pw_aff *pwaff2);
5995 __isl_give isl_pw_aff *isl_pw_aff_div(
5996 __isl_take isl_pw_aff *pa1,
5997 __isl_take isl_pw_aff *pa2);
5998 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
5999 __isl_take isl_pw_aff *pa1,
6000 __isl_take isl_pw_aff *pa2);
6001 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
6002 __isl_take isl_pw_aff *pa1,
6003 __isl_take isl_pw_aff *pa2);
6005 When multiplying two affine expressions, at least one of the two needs
6006 to be a constant. Similarly, when dividing an affine expression by another,
6007 the second expression needs to be a constant.
6008 C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
6009 rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
6012 #include <isl/polynomial.h>
6013 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
6014 __isl_take isl_qpolynomial *qp1,
6015 __isl_take isl_qpolynomial *qp2);
6016 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
6017 __isl_take isl_pw_qpolynomial *pwqp1,
6018 __isl_take isl_pw_qpolynomial *pwqp2);
6019 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
6020 __isl_take isl_union_pw_qpolynomial *upwqp1,
6021 __isl_take isl_union_pw_qpolynomial *upwqp2);
6025 =head3 Lexicographic Optimization
6027 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
6028 the following functions
6029 compute a set that contains the lexicographic minimum or maximum
6030 of the elements in C<set> (or C<bset>) for those values of the parameters
6031 that satisfy C<dom>.
6032 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
6033 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
6035 In other words, the union of the parameter values
6036 for which the result is non-empty and of C<*empty>
6039 #include <isl/set.h>
6040 __isl_give isl_set *isl_basic_set_partial_lexmin(
6041 __isl_take isl_basic_set *bset,
6042 __isl_take isl_basic_set *dom,
6043 __isl_give isl_set **empty);
6044 __isl_give isl_set *isl_basic_set_partial_lexmax(
6045 __isl_take isl_basic_set *bset,
6046 __isl_take isl_basic_set *dom,
6047 __isl_give isl_set **empty);
6048 __isl_give isl_set *isl_set_partial_lexmin(
6049 __isl_take isl_set *set, __isl_take isl_set *dom,
6050 __isl_give isl_set **empty);
6051 __isl_give isl_set *isl_set_partial_lexmax(
6052 __isl_take isl_set *set, __isl_take isl_set *dom,
6053 __isl_give isl_set **empty);
6055 Given a (basic) set C<set> (or C<bset>), the following functions simply
6056 return a set containing the lexicographic minimum or maximum
6057 of the elements in C<set> (or C<bset>).
6058 In case of union sets, the optimum is computed per space.
6060 #include <isl/set.h>
6061 __isl_give isl_set *isl_basic_set_lexmin(
6062 __isl_take isl_basic_set *bset);
6063 __isl_give isl_set *isl_basic_set_lexmax(
6064 __isl_take isl_basic_set *bset);
6065 __isl_give isl_set *isl_set_lexmin(
6066 __isl_take isl_set *set);
6067 __isl_give isl_set *isl_set_lexmax(
6068 __isl_take isl_set *set);
6069 __isl_give isl_union_set *isl_union_set_lexmin(
6070 __isl_take isl_union_set *uset);
6071 __isl_give isl_union_set *isl_union_set_lexmax(
6072 __isl_take isl_union_set *uset);
6074 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
6075 the following functions
6076 compute a relation that maps each element of C<dom>
6077 to the single lexicographic minimum or maximum
6078 of the elements that are associated to that same
6079 element in C<map> (or C<bmap>).
6080 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
6081 that contains the elements in C<dom> that do not map
6082 to any elements in C<map> (or C<bmap>).
6083 In other words, the union of the domain of the result and of C<*empty>
6086 #include <isl/map.h>
6087 __isl_give isl_map *isl_basic_map_partial_lexmax(
6088 __isl_take isl_basic_map *bmap,
6089 __isl_take isl_basic_set *dom,
6090 __isl_give isl_set **empty);
6091 __isl_give isl_map *isl_basic_map_partial_lexmin(
6092 __isl_take isl_basic_map *bmap,
6093 __isl_take isl_basic_set *dom,
6094 __isl_give isl_set **empty);
6095 __isl_give isl_map *isl_map_partial_lexmax(
6096 __isl_take isl_map *map, __isl_take isl_set *dom,
6097 __isl_give isl_set **empty);
6098 __isl_give isl_map *isl_map_partial_lexmin(
6099 __isl_take isl_map *map, __isl_take isl_set *dom,
6100 __isl_give isl_set **empty);
6102 Given a (basic) map C<map> (or C<bmap>), the following functions simply
6103 return a map mapping each element in the domain of
6104 C<map> (or C<bmap>) to the lexicographic minimum or maximum
6105 of all elements associated to that element.
6106 In case of union relations, the optimum is computed per space.
6108 #include <isl/map.h>
6109 __isl_give isl_map *isl_basic_map_lexmin(
6110 __isl_take isl_basic_map *bmap);
6111 __isl_give isl_map *isl_basic_map_lexmax(
6112 __isl_take isl_basic_map *bmap);
6113 __isl_give isl_map *isl_map_lexmin(
6114 __isl_take isl_map *map);
6115 __isl_give isl_map *isl_map_lexmax(
6116 __isl_take isl_map *map);
6117 __isl_give isl_union_map *isl_union_map_lexmin(
6118 __isl_take isl_union_map *umap);
6119 __isl_give isl_union_map *isl_union_map_lexmax(
6120 __isl_take isl_union_map *umap);
6122 The following functions return their result in the form of
6123 a piecewise multi-affine expression,
6124 but are otherwise equivalent to the corresponding functions
6125 returning a basic set or relation.
6127 #include <isl/set.h>
6128 __isl_give isl_pw_multi_aff *
6129 isl_basic_set_partial_lexmin_pw_multi_aff(
6130 __isl_take isl_basic_set *bset,
6131 __isl_take isl_basic_set *dom,
6132 __isl_give isl_set **empty);
6133 __isl_give isl_pw_multi_aff *
6134 isl_basic_set_partial_lexmax_pw_multi_aff(
6135 __isl_take isl_basic_set *bset,
6136 __isl_take isl_basic_set *dom,
6137 __isl_give isl_set **empty);
6138 __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
6139 __isl_take isl_set *set);
6140 __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
6141 __isl_take isl_set *set);
6143 #include <isl/map.h>
6144 __isl_give isl_pw_multi_aff *
6145 isl_basic_map_lexmin_pw_multi_aff(
6146 __isl_take isl_basic_map *bmap);
6147 __isl_give isl_pw_multi_aff *
6148 isl_basic_map_partial_lexmin_pw_multi_aff(
6149 __isl_take isl_basic_map *bmap,
6150 __isl_take isl_basic_set *dom,
6151 __isl_give isl_set **empty);
6152 __isl_give isl_pw_multi_aff *
6153 isl_basic_map_partial_lexmax_pw_multi_aff(
6154 __isl_take isl_basic_map *bmap,
6155 __isl_take isl_basic_set *dom,
6156 __isl_give isl_set **empty);
6157 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
6158 __isl_take isl_map *map);
6159 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
6160 __isl_take isl_map *map);
6162 The following functions return the lexicographic minimum or maximum
6163 on the shared domain of the inputs and the single defined function
6164 on those parts of the domain where only a single function is defined.
6166 #include <isl/aff.h>
6167 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
6168 __isl_take isl_pw_multi_aff *pma1,
6169 __isl_take isl_pw_multi_aff *pma2);
6170 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
6171 __isl_take isl_pw_multi_aff *pma1,
6172 __isl_take isl_pw_multi_aff *pma2);
6174 =head2 Ternary Operations
6176 #include <isl/aff.h>
6177 __isl_give isl_pw_aff *isl_pw_aff_cond(
6178 __isl_take isl_pw_aff *cond,
6179 __isl_take isl_pw_aff *pwaff_true,
6180 __isl_take isl_pw_aff *pwaff_false);
6182 The function C<isl_pw_aff_cond> performs a conditional operator
6183 and returns an expression that is equal to C<pwaff_true>
6184 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
6185 where C<cond> is zero.
6189 Lists are defined over several element types, including
6190 C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_constraint>,
6191 C<isl_basic_set>, C<isl_set>, C<isl_ast_expr> and C<isl_ast_node>.
6192 Here we take lists of C<isl_set>s as an example.
6193 Lists can be created, copied, modified and freed using the following functions.
6195 #include <isl/set.h>
6196 __isl_give isl_set_list *isl_set_list_from_set(
6197 __isl_take isl_set *el);
6198 __isl_give isl_set_list *isl_set_list_alloc(
6199 isl_ctx *ctx, int n);
6200 __isl_give isl_set_list *isl_set_list_copy(
6201 __isl_keep isl_set_list *list);
6202 __isl_give isl_set_list *isl_set_list_insert(
6203 __isl_take isl_set_list *list, unsigned pos,
6204 __isl_take isl_set *el);
6205 __isl_give isl_set_list *isl_set_list_add(
6206 __isl_take isl_set_list *list,
6207 __isl_take isl_set *el);
6208 __isl_give isl_set_list *isl_set_list_drop(
6209 __isl_take isl_set_list *list,
6210 unsigned first, unsigned n);
6211 __isl_give isl_set_list *isl_set_list_set_set(
6212 __isl_take isl_set_list *list, int index,
6213 __isl_take isl_set *set);
6214 __isl_give isl_set_list *isl_set_list_concat(
6215 __isl_take isl_set_list *list1,
6216 __isl_take isl_set_list *list2);
6217 __isl_give isl_set_list *isl_set_list_sort(
6218 __isl_take isl_set_list *list,
6219 int (*cmp)(__isl_keep isl_set *a,
6220 __isl_keep isl_set *b, void *user),
6222 __isl_null isl_set_list *isl_set_list_free(
6223 __isl_take isl_set_list *list);
6225 C<isl_set_list_alloc> creates an empty list with a capacity for
6226 C<n> elements. C<isl_set_list_from_set> creates a list with a single
6229 Lists can be inspected using the following functions.
6231 #include <isl/set.h>
6232 int isl_set_list_n_set(__isl_keep isl_set_list *list);
6233 __isl_give isl_set *isl_set_list_get_set(
6234 __isl_keep isl_set_list *list, int index);
6235 int isl_set_list_foreach(__isl_keep isl_set_list *list,
6236 int (*fn)(__isl_take isl_set *el, void *user),
6238 int isl_set_list_foreach_scc(__isl_keep isl_set_list *list,
6239 int (*follows)(__isl_keep isl_set *a,
6240 __isl_keep isl_set *b, void *user),
6242 int (*fn)(__isl_take isl_set *el, void *user),
6245 The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
6246 strongly connected components of the graph with as vertices the elements
6247 of C<list> and a directed edge from vertex C<b> to vertex C<a>
6248 iff C<follows(a, b)> returns C<1>. The callbacks C<follows> and C<fn>
6249 should return C<-1> on error.
6251 Lists can be printed using
6253 #include <isl/set.h>
6254 __isl_give isl_printer *isl_printer_print_set_list(
6255 __isl_take isl_printer *p,
6256 __isl_keep isl_set_list *list);
6258 =head2 Associative arrays
6260 Associative arrays map isl objects of a specific type to isl objects
6261 of some (other) specific type. They are defined for several pairs
6262 of types, including (C<isl_map>, C<isl_basic_set>),
6263 (C<isl_id>, C<isl_ast_expr>) and.
6264 (C<isl_id>, C<isl_pw_aff>).
6265 Here, we take associative arrays that map C<isl_id>s to C<isl_ast_expr>s
6268 Associative arrays can be created, copied and freed using
6269 the following functions.
6271 #include <isl/id_to_ast_expr.h>
6272 __isl_give id_to_ast_expr *isl_id_to_ast_expr_alloc(
6273 isl_ctx *ctx, int min_size);
6274 __isl_give id_to_ast_expr *isl_id_to_ast_expr_copy(
6275 __isl_keep id_to_ast_expr *id2expr);
6276 __isl_null id_to_ast_expr *isl_id_to_ast_expr_free(
6277 __isl_take id_to_ast_expr *id2expr);
6279 The C<min_size> argument to C<isl_id_to_ast_expr_alloc> can be used
6280 to specify the expected size of the associative array.
6281 The associative array will be grown automatically as needed.
6283 Associative arrays can be inspected using the following functions.
6285 #include <isl/id_to_ast_expr.h>
6286 int isl_id_to_ast_expr_has(
6287 __isl_keep id_to_ast_expr *id2expr,
6288 __isl_keep isl_id *key);
6289 __isl_give isl_ast_expr *isl_id_to_ast_expr_get(
6290 __isl_keep id_to_ast_expr *id2expr,
6291 __isl_take isl_id *key);
6292 int isl_id_to_ast_expr_foreach(
6293 __isl_keep id_to_ast_expr *id2expr,
6294 int (*fn)(__isl_take isl_id *key,
6295 __isl_take isl_ast_expr *val, void *user),
6298 They can be modified using the following function.
6300 #include <isl/id_to_ast_expr.h>
6301 __isl_give id_to_ast_expr *isl_id_to_ast_expr_set(
6302 __isl_take id_to_ast_expr *id2expr,
6303 __isl_take isl_id *key,
6304 __isl_take isl_ast_expr *val);
6305 __isl_give id_to_ast_expr *isl_id_to_ast_expr_drop(
6306 __isl_take id_to_ast_expr *id2expr,
6307 __isl_take isl_id *key);
6309 Associative arrays can be printed using the following function.
6311 #include <isl/id_to_ast_expr.h>
6312 __isl_give isl_printer *isl_printer_print_id_to_ast_expr(
6313 __isl_take isl_printer *p,
6314 __isl_keep id_to_ast_expr *id2expr);
6318 Vectors can be created, copied and freed using the following functions.
6320 #include <isl/vec.h>
6321 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
6323 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
6324 __isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec);
6326 Note that the elements of a newly created vector may have arbitrary values.
6327 The elements can be changed and inspected using the following functions.
6329 int isl_vec_size(__isl_keep isl_vec *vec);
6330 __isl_give isl_val *isl_vec_get_element_val(
6331 __isl_keep isl_vec *vec, int pos);
6332 __isl_give isl_vec *isl_vec_set_element_si(
6333 __isl_take isl_vec *vec, int pos, int v);
6334 __isl_give isl_vec *isl_vec_set_element_val(
6335 __isl_take isl_vec *vec, int pos,
6336 __isl_take isl_val *v);
6337 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
6339 __isl_give isl_vec *isl_vec_set_val(
6340 __isl_take isl_vec *vec, __isl_take isl_val *v);
6341 int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
6342 __isl_keep isl_vec *vec2, int pos);
6344 C<isl_vec_get_element> will return a negative value if anything went wrong.
6345 In that case, the value of C<*v> is undefined.
6347 The following function can be used to concatenate two vectors.
6349 __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
6350 __isl_take isl_vec *vec2);
6354 Matrices can be created, copied and freed using the following functions.
6356 #include <isl/mat.h>
6357 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
6358 unsigned n_row, unsigned n_col);
6359 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
6360 __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat);
6362 Note that the elements of a newly created matrix may have arbitrary values.
6363 The elements can be changed and inspected using the following functions.
6365 int isl_mat_rows(__isl_keep isl_mat *mat);
6366 int isl_mat_cols(__isl_keep isl_mat *mat);
6367 __isl_give isl_val *isl_mat_get_element_val(
6368 __isl_keep isl_mat *mat, int row, int col);
6369 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
6370 int row, int col, int v);
6371 __isl_give isl_mat *isl_mat_set_element_val(
6372 __isl_take isl_mat *mat, int row, int col,
6373 __isl_take isl_val *v);
6375 C<isl_mat_get_element> will return a negative value if anything went wrong.
6376 In that case, the value of C<*v> is undefined.
6378 The following function can be used to compute the (right) inverse
6379 of a matrix, i.e., a matrix such that the product of the original
6380 and the inverse (in that order) is a multiple of the identity matrix.
6381 The input matrix is assumed to be of full row-rank.
6383 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
6385 The following function can be used to compute the (right) kernel
6386 (or null space) of a matrix, i.e., a matrix such that the product of
6387 the original and the kernel (in that order) is the zero matrix.
6389 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
6391 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
6393 The following functions determine
6394 an upper or lower bound on a quasipolynomial over its domain.
6396 __isl_give isl_pw_qpolynomial_fold *
6397 isl_pw_qpolynomial_bound(
6398 __isl_take isl_pw_qpolynomial *pwqp,
6399 enum isl_fold type, int *tight);
6401 __isl_give isl_union_pw_qpolynomial_fold *
6402 isl_union_pw_qpolynomial_bound(
6403 __isl_take isl_union_pw_qpolynomial *upwqp,
6404 enum isl_fold type, int *tight);
6406 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
6407 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
6408 is the returned bound is known be tight, i.e., for each value
6409 of the parameters there is at least
6410 one element in the domain that reaches the bound.
6411 If the domain of C<pwqp> is not wrapping, then the bound is computed
6412 over all elements in that domain and the result has a purely parametric
6413 domain. If the domain of C<pwqp> is wrapping, then the bound is
6414 computed over the range of the wrapped relation. The domain of the
6415 wrapped relation becomes the domain of the result.
6417 =head2 Parametric Vertex Enumeration
6419 The parametric vertex enumeration described in this section
6420 is mainly intended to be used internally and by the C<barvinok>
6423 #include <isl/vertices.h>
6424 __isl_give isl_vertices *isl_basic_set_compute_vertices(
6425 __isl_keep isl_basic_set *bset);
6427 The function C<isl_basic_set_compute_vertices> performs the
6428 actual computation of the parametric vertices and the chamber
6429 decomposition and store the result in an C<isl_vertices> object.
6430 This information can be queried by either iterating over all
6431 the vertices or iterating over all the chambers or cells
6432 and then iterating over all vertices that are active on the chamber.
6434 int isl_vertices_foreach_vertex(
6435 __isl_keep isl_vertices *vertices,
6436 int (*fn)(__isl_take isl_vertex *vertex, void *user),
6439 int isl_vertices_foreach_cell(
6440 __isl_keep isl_vertices *vertices,
6441 int (*fn)(__isl_take isl_cell *cell, void *user),
6443 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
6444 int (*fn)(__isl_take isl_vertex *vertex, void *user),
6447 Other operations that can be performed on an C<isl_vertices> object are
6450 int isl_vertices_get_n_vertices(
6451 __isl_keep isl_vertices *vertices);
6452 void isl_vertices_free(__isl_take isl_vertices *vertices);
6454 Vertices can be inspected and destroyed using the following functions.
6456 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
6457 __isl_give isl_basic_set *isl_vertex_get_domain(
6458 __isl_keep isl_vertex *vertex);
6459 __isl_give isl_multi_aff *isl_vertex_get_expr(
6460 __isl_keep isl_vertex *vertex);
6461 void isl_vertex_free(__isl_take isl_vertex *vertex);
6463 C<isl_vertex_get_expr> returns a multiple quasi-affine expression
6464 describing the vertex in terms of the parameters,
6465 while C<isl_vertex_get_domain> returns the activity domain
6468 Chambers can be inspected and destroyed using the following functions.
6470 __isl_give isl_basic_set *isl_cell_get_domain(
6471 __isl_keep isl_cell *cell);
6472 void isl_cell_free(__isl_take isl_cell *cell);
6474 =head1 Polyhedral Compilation Library
6476 This section collects functionality in C<isl> that has been specifically
6477 designed for use during polyhedral compilation.
6479 =head2 Dependence Analysis
6481 C<isl> contains specialized functionality for performing
6482 array dataflow analysis. That is, given a I<sink> access relation
6483 and a collection of possible I<source> access relations,
6484 C<isl> can compute relations that describe
6485 for each iteration of the sink access, which iteration
6486 of which of the source access relations was the last
6487 to access the same data element before the given iteration
6489 The resulting dependence relations map source iterations
6490 to the corresponding sink iterations.
6491 To compute standard flow dependences, the sink should be
6492 a read, while the sources should be writes.
6493 If any of the source accesses are marked as being I<may>
6494 accesses, then there will be a dependence from the last
6495 I<must> access B<and> from any I<may> access that follows
6496 this last I<must> access.
6497 In particular, if I<all> sources are I<may> accesses,
6498 then memory based dependence analysis is performed.
6499 If, on the other hand, all sources are I<must> accesses,
6500 then value based dependence analysis is performed.
6502 #include <isl/flow.h>
6504 typedef int (*isl_access_level_before)(void *first, void *second);
6506 __isl_give isl_access_info *isl_access_info_alloc(
6507 __isl_take isl_map *sink,
6508 void *sink_user, isl_access_level_before fn,
6510 __isl_give isl_access_info *isl_access_info_add_source(
6511 __isl_take isl_access_info *acc,
6512 __isl_take isl_map *source, int must,
6514 __isl_null isl_access_info *isl_access_info_free(
6515 __isl_take isl_access_info *acc);
6517 __isl_give isl_flow *isl_access_info_compute_flow(
6518 __isl_take isl_access_info *acc);
6520 int isl_flow_foreach(__isl_keep isl_flow *deps,
6521 int (*fn)(__isl_take isl_map *dep, int must,
6522 void *dep_user, void *user),
6524 __isl_give isl_map *isl_flow_get_no_source(
6525 __isl_keep isl_flow *deps, int must);
6526 void isl_flow_free(__isl_take isl_flow *deps);
6528 The function C<isl_access_info_compute_flow> performs the actual
6529 dependence analysis. The other functions are used to construct
6530 the input for this function or to read off the output.
6532 The input is collected in an C<isl_access_info>, which can
6533 be created through a call to C<isl_access_info_alloc>.
6534 The arguments to this functions are the sink access relation
6535 C<sink>, a token C<sink_user> used to identify the sink
6536 access to the user, a callback function for specifying the
6537 relative order of source and sink accesses, and the number
6538 of source access relations that will be added.
6539 The callback function has type C<int (*)(void *first, void *second)>.
6540 The function is called with two user supplied tokens identifying
6541 either a source or the sink and it should return the shared nesting
6542 level and the relative order of the two accesses.
6543 In particular, let I<n> be the number of loops shared by
6544 the two accesses. If C<first> precedes C<second> textually,
6545 then the function should return I<2 * n + 1>; otherwise,
6546 it should return I<2 * n>.
6547 The sources can be added to the C<isl_access_info> by performing
6548 (at most) C<max_source> calls to C<isl_access_info_add_source>.
6549 C<must> indicates whether the source is a I<must> access
6550 or a I<may> access. Note that a multi-valued access relation
6551 should only be marked I<must> if every iteration in the domain
6552 of the relation accesses I<all> elements in its image.
6553 The C<source_user> token is again used to identify
6554 the source access. The range of the source access relation
6555 C<source> should have the same dimension as the range
6556 of the sink access relation.
6557 The C<isl_access_info_free> function should usually not be
6558 called explicitly, because it is called implicitly by
6559 C<isl_access_info_compute_flow>.
6561 The result of the dependence analysis is collected in an
6562 C<isl_flow>. There may be elements of
6563 the sink access for which no preceding source access could be
6564 found or for which all preceding sources are I<may> accesses.
6565 The relations containing these elements can be obtained through
6566 calls to C<isl_flow_get_no_source>, the first with C<must> set
6567 and the second with C<must> unset.
6568 In the case of standard flow dependence analysis,
6569 with the sink a read and the sources I<must> writes,
6570 the first relation corresponds to the reads from uninitialized
6571 array elements and the second relation is empty.
6572 The actual flow dependences can be extracted using
6573 C<isl_flow_foreach>. This function will call the user-specified
6574 callback function C<fn> for each B<non-empty> dependence between
6575 a source and the sink. The callback function is called
6576 with four arguments, the actual flow dependence relation
6577 mapping source iterations to sink iterations, a boolean that
6578 indicates whether it is a I<must> or I<may> dependence, a token
6579 identifying the source and an additional C<void *> with value
6580 equal to the third argument of the C<isl_flow_foreach> call.
6581 A dependence is marked I<must> if it originates from a I<must>
6582 source and if it is not followed by any I<may> sources.
6584 After finishing with an C<isl_flow>, the user should call
6585 C<isl_flow_free> to free all associated memory.
6587 A higher-level interface to dependence analysis is provided
6588 by the following function.
6590 #include <isl/flow.h>
6592 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
6593 __isl_take isl_union_map *must_source,
6594 __isl_take isl_union_map *may_source,
6595 __isl_take isl_union_map *schedule,
6596 __isl_give isl_union_map **must_dep,
6597 __isl_give isl_union_map **may_dep,
6598 __isl_give isl_union_map **must_no_source,
6599 __isl_give isl_union_map **may_no_source);
6601 The arrays are identified by the tuple names of the ranges
6602 of the accesses. The iteration domains by the tuple names
6603 of the domains of the accesses and of the schedule.
6604 The relative order of the iteration domains is given by the
6605 schedule. The relations returned through C<must_no_source>
6606 and C<may_no_source> are subsets of C<sink>.
6607 Any of C<must_dep>, C<may_dep>, C<must_no_source>
6608 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
6609 any of the other arguments is treated as an error.
6611 =head3 Interaction with Dependence Analysis
6613 During the dependence analysis, we frequently need to perform
6614 the following operation. Given a relation between sink iterations
6615 and potential source iterations from a particular source domain,
6616 what is the last potential source iteration corresponding to each
6617 sink iteration. It can sometimes be convenient to adjust
6618 the set of potential source iterations before or after each such operation.
6619 The prototypical example is fuzzy array dataflow analysis,
6620 where we need to analyze if, based on data-dependent constraints,
6621 the sink iteration can ever be executed without one or more of
6622 the corresponding potential source iterations being executed.
6623 If so, we can introduce extra parameters and select an unknown
6624 but fixed source iteration from the potential source iterations.
6625 To be able to perform such manipulations, C<isl> provides the following
6628 #include <isl/flow.h>
6630 typedef __isl_give isl_restriction *(*isl_access_restrict)(
6631 __isl_keep isl_map *source_map,
6632 __isl_keep isl_set *sink, void *source_user,
6634 __isl_give isl_access_info *isl_access_info_set_restrict(
6635 __isl_take isl_access_info *acc,
6636 isl_access_restrict fn, void *user);
6638 The function C<isl_access_info_set_restrict> should be called
6639 before calling C<isl_access_info_compute_flow> and registers a callback function
6640 that will be called any time C<isl> is about to compute the last
6641 potential source. The first argument is the (reverse) proto-dependence,
6642 mapping sink iterations to potential source iterations.
6643 The second argument represents the sink iterations for which
6644 we want to compute the last source iteration.
6645 The third argument is the token corresponding to the source
6646 and the final argument is the token passed to C<isl_access_info_set_restrict>.
6647 The callback is expected to return a restriction on either the input or
6648 the output of the operation computing the last potential source.
6649 If the input needs to be restricted then restrictions are needed
6650 for both the source and the sink iterations. The sink iterations
6651 and the potential source iterations will be intersected with these sets.
6652 If the output needs to be restricted then only a restriction on the source
6653 iterations is required.
6654 If any error occurs, the callback should return C<NULL>.
6655 An C<isl_restriction> object can be created, freed and inspected
6656 using the following functions.
6658 #include <isl/flow.h>
6660 __isl_give isl_restriction *isl_restriction_input(
6661 __isl_take isl_set *source_restr,
6662 __isl_take isl_set *sink_restr);
6663 __isl_give isl_restriction *isl_restriction_output(
6664 __isl_take isl_set *source_restr);
6665 __isl_give isl_restriction *isl_restriction_none(
6666 __isl_take isl_map *source_map);
6667 __isl_give isl_restriction *isl_restriction_empty(
6668 __isl_take isl_map *source_map);
6669 __isl_null isl_restriction *isl_restriction_free(
6670 __isl_take isl_restriction *restr);
6672 C<isl_restriction_none> and C<isl_restriction_empty> are special
6673 cases of C<isl_restriction_input>. C<isl_restriction_none>
6674 is essentially equivalent to
6676 isl_restriction_input(isl_set_universe(
6677 isl_space_range(isl_map_get_space(source_map))),
6679 isl_space_domain(isl_map_get_space(source_map))));
6681 whereas C<isl_restriction_empty> is essentially equivalent to
6683 isl_restriction_input(isl_set_empty(
6684 isl_space_range(isl_map_get_space(source_map))),
6686 isl_space_domain(isl_map_get_space(source_map))));
6690 B<The functionality described in this section is fairly new
6691 and may be subject to change.>
6693 #include <isl/schedule.h>
6694 __isl_give isl_schedule *
6695 isl_schedule_constraints_compute_schedule(
6696 __isl_take isl_schedule_constraints *sc);
6697 __isl_null isl_schedule *isl_schedule_free(
6698 __isl_take isl_schedule *sched);
6700 The function C<isl_schedule_constraints_compute_schedule> can be
6701 used to compute a schedule that satisfies the given schedule constraints.
6702 These schedule constraints include the iteration domain for which
6703 a schedule should be computed and dependences between pairs of
6704 iterations. In particular, these dependences include
6705 I<validity> dependences and I<proximity> dependences.
6706 By default, the algorithm used to construct the schedule is similar
6707 to that of C<Pluto>.
6708 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
6710 The generated schedule respects all validity dependences.
6711 That is, all dependence distances over these dependences in the
6712 scheduled space are lexicographically positive.
6713 The default algorithm tries to ensure that the dependence distances
6714 over coincidence constraints are zero and to minimize the
6715 dependence distances over proximity dependences.
6716 Moreover, it tries to obtain sequences (bands) of schedule dimensions
6717 for groups of domains where the dependence distances over validity
6718 dependences have only non-negative values.
6719 When using Feautrier's algorithm, the coincidence and proximity constraints
6720 are only taken into account during the extension to a
6721 full-dimensional schedule.
6723 An C<isl_schedule_constraints> object can be constructed
6724 and manipulated using the following functions.
6726 #include <isl/schedule.h>
6727 __isl_give isl_schedule_constraints *
6728 isl_schedule_constraints_copy(
6729 __isl_keep isl_schedule_constraints *sc);
6730 __isl_give isl_schedule_constraints *
6731 isl_schedule_constraints_on_domain(
6732 __isl_take isl_union_set *domain);
6733 __isl_give isl_schedule_constraints *
6734 isl_schedule_constraints_set_validity(
6735 __isl_take isl_schedule_constraints *sc,
6736 __isl_take isl_union_map *validity);
6737 __isl_give isl_schedule_constraints *
6738 isl_schedule_constraints_set_coincidence(
6739 __isl_take isl_schedule_constraints *sc,
6740 __isl_take isl_union_map *coincidence);
6741 __isl_give isl_schedule_constraints *
6742 isl_schedule_constraints_set_proximity(
6743 __isl_take isl_schedule_constraints *sc,
6744 __isl_take isl_union_map *proximity);
6745 __isl_give isl_schedule_constraints *
6746 isl_schedule_constraints_set_conditional_validity(
6747 __isl_take isl_schedule_constraints *sc,
6748 __isl_take isl_union_map *condition,
6749 __isl_take isl_union_map *validity);
6750 __isl_null isl_schedule_constraints *
6751 isl_schedule_constraints_free(
6752 __isl_take isl_schedule_constraints *sc);
6754 The initial C<isl_schedule_constraints> object created by
6755 C<isl_schedule_constraints_on_domain> does not impose any constraints.
6756 That is, it has an empty set of dependences.
6757 The function C<isl_schedule_constraints_set_validity> replaces the
6758 validity dependences, mapping domain elements I<i> to domain
6759 elements that should be scheduled after I<i>.
6760 The function C<isl_schedule_constraints_set_coincidence> replaces the
6761 coincidence dependences, mapping domain elements I<i> to domain
6762 elements that should be scheduled together with I<I>, if possible.
6763 The function C<isl_schedule_constraints_set_proximity> replaces the
6764 proximity dependences, mapping domain elements I<i> to domain
6765 elements that should be scheduled either before I<I>
6766 or as early as possible after I<i>.
6768 The function C<isl_schedule_constraints_set_conditional_validity>
6769 replaces the conditional validity constraints.
6770 A conditional validity constraint is only imposed when any of the corresponding
6771 conditions is satisfied, i.e., when any of them is non-zero.
6772 That is, the scheduler ensures that within each band if the dependence
6773 distances over the condition constraints are not all zero
6774 then all corresponding conditional validity constraints are respected.
6775 A conditional validity constraint corresponds to a condition
6776 if the two are adjacent, i.e., if the domain of one relation intersect
6777 the range of the other relation.
6778 The typical use case of conditional validity constraints is
6779 to allow order constraints between live ranges to be violated
6780 as long as the live ranges themselves are local to the band.
6781 To allow more fine-grained control over which conditions correspond
6782 to which conditional validity constraints, the domains and ranges
6783 of these relations may include I<tags>. That is, the domains and
6784 ranges of those relation may themselves be wrapped relations
6785 where the iteration domain appears in the domain of those wrapped relations
6786 and the range of the wrapped relations can be arbitrarily chosen
6787 by the user. Conditions and conditional validity constraints are only
6788 considered adjacent to each other if the entire wrapped relation matches.
6789 In particular, a relation with a tag will never be considered adjacent
6790 to a relation without a tag.
6792 The following function computes a schedule directly from
6793 an iteration domain and validity and proximity dependences
6794 and is implemented in terms of the functions described above.
6795 The use of C<isl_union_set_compute_schedule> is discouraged.
6797 #include <isl/schedule.h>
6798 __isl_give isl_schedule *isl_union_set_compute_schedule(
6799 __isl_take isl_union_set *domain,
6800 __isl_take isl_union_map *validity,
6801 __isl_take isl_union_map *proximity);
6803 A mapping from the domains to the scheduled space can be obtained
6804 from an C<isl_schedule> using the following function.
6806 __isl_give isl_union_map *isl_schedule_get_map(
6807 __isl_keep isl_schedule *sched);
6809 A representation of the schedule can be printed using
6811 __isl_give isl_printer *isl_printer_print_schedule(
6812 __isl_take isl_printer *p,
6813 __isl_keep isl_schedule *schedule);
6815 A representation of the schedule as a forest of bands can be obtained
6816 using the following function.
6818 __isl_give isl_band_list *isl_schedule_get_band_forest(
6819 __isl_keep isl_schedule *schedule);
6821 The individual bands can be visited in depth-first post-order
6822 using the following function.
6824 #include <isl/schedule.h>
6825 int isl_schedule_foreach_band(
6826 __isl_keep isl_schedule *sched,
6827 int (*fn)(__isl_keep isl_band *band, void *user),
6830 The list can be manipulated as explained in L<"Lists">.
6831 The bands inside the list can be copied and freed using the following
6834 #include <isl/band.h>
6835 __isl_give isl_band *isl_band_copy(
6836 __isl_keep isl_band *band);
6837 __isl_null isl_band *isl_band_free(
6838 __isl_take isl_band *band);
6840 Each band contains zero or more scheduling dimensions.
6841 These are referred to as the members of the band.
6842 The section of the schedule that corresponds to the band is
6843 referred to as the partial schedule of the band.
6844 For those nodes that participate in a band, the outer scheduling
6845 dimensions form the prefix schedule, while the inner scheduling
6846 dimensions form the suffix schedule.
6847 That is, if we take a cut of the band forest, then the union of
6848 the concatenations of the prefix, partial and suffix schedules of
6849 each band in the cut is equal to the entire schedule (modulo
6850 some possible padding at the end with zero scheduling dimensions).
6851 The properties of a band can be inspected using the following functions.
6853 #include <isl/band.h>
6854 int isl_band_has_children(__isl_keep isl_band *band);
6855 __isl_give isl_band_list *isl_band_get_children(
6856 __isl_keep isl_band *band);
6858 __isl_give isl_union_map *isl_band_get_prefix_schedule(
6859 __isl_keep isl_band *band);
6860 __isl_give isl_union_map *isl_band_get_partial_schedule(
6861 __isl_keep isl_band *band);
6862 __isl_give isl_union_map *isl_band_get_suffix_schedule(
6863 __isl_keep isl_band *band);
6865 int isl_band_n_member(__isl_keep isl_band *band);
6866 int isl_band_member_is_coincident(
6867 __isl_keep isl_band *band, int pos);
6869 int isl_band_list_foreach_band(
6870 __isl_keep isl_band_list *list,
6871 int (*fn)(__isl_keep isl_band *band, void *user),
6874 Note that a scheduling dimension is considered to be ``coincident''
6875 if it satisfies the coincidence constraints within its band.
6876 That is, if the dependence distances of the coincidence
6877 constraints are all zero in that direction (for fixed
6878 iterations of outer bands).
6879 Like C<isl_schedule_foreach_band>,
6880 the function C<isl_band_list_foreach_band> calls C<fn> on the bands
6881 in depth-first post-order.
6883 A band can be tiled using the following function.
6885 #include <isl/band.h>
6886 int isl_band_tile(__isl_keep isl_band *band,
6887 __isl_take isl_vec *sizes);
6889 int isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
6891 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
6892 int isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
6894 int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);
6896 The C<isl_band_tile> function tiles the band using the given tile sizes
6897 inside its schedule.
6898 A new child band is created to represent the point loops and it is
6899 inserted between the modified band and its children.
6900 The C<tile_scale_tile_loops> option specifies whether the tile
6901 loops iterators should be scaled by the tile sizes.
6902 If the C<tile_shift_point_loops> option is set, then the point loops
6903 are shifted to start at zero.
6905 A band can be split into two nested bands using the following function.
6907 int isl_band_split(__isl_keep isl_band *band, int pos);
6909 The resulting outer band contains the first C<pos> dimensions of C<band>
6910 while the inner band contains the remaining dimensions.
6912 A representation of the band can be printed using
6914 #include <isl/band.h>
6915 __isl_give isl_printer *isl_printer_print_band(
6916 __isl_take isl_printer *p,
6917 __isl_keep isl_band *band);
6921 #include <isl/schedule.h>
6922 int isl_options_set_schedule_max_coefficient(
6923 isl_ctx *ctx, int val);
6924 int isl_options_get_schedule_max_coefficient(
6926 int isl_options_set_schedule_max_constant_term(
6927 isl_ctx *ctx, int val);
6928 int isl_options_get_schedule_max_constant_term(
6930 int isl_options_set_schedule_fuse(isl_ctx *ctx, int val);
6931 int isl_options_get_schedule_fuse(isl_ctx *ctx);
6932 int isl_options_set_schedule_maximize_band_depth(
6933 isl_ctx *ctx, int val);
6934 int isl_options_get_schedule_maximize_band_depth(
6936 int isl_options_set_schedule_outer_coincidence(
6937 isl_ctx *ctx, int val);
6938 int isl_options_get_schedule_outer_coincidence(
6940 int isl_options_set_schedule_split_scaled(
6941 isl_ctx *ctx, int val);
6942 int isl_options_get_schedule_split_scaled(
6944 int isl_options_set_schedule_algorithm(
6945 isl_ctx *ctx, int val);
6946 int isl_options_get_schedule_algorithm(
6948 int isl_options_set_schedule_separate_components(
6949 isl_ctx *ctx, int val);
6950 int isl_options_get_schedule_separate_components(
6955 =item * schedule_max_coefficient
6957 This option enforces that the coefficients for variable and parameter
6958 dimensions in the calculated schedule are not larger than the specified value.
6959 This option can significantly increase the speed of the scheduling calculation
6960 and may also prevent fusing of unrelated dimensions. A value of -1 means that
6961 this option does not introduce bounds on the variable or parameter
6964 =item * schedule_max_constant_term
6966 This option enforces that the constant coefficients in the calculated schedule
6967 are not larger than the maximal constant term. This option can significantly
6968 increase the speed of the scheduling calculation and may also prevent fusing of
6969 unrelated dimensions. A value of -1 means that this option does not introduce
6970 bounds on the constant coefficients.
6972 =item * schedule_fuse
6974 This option controls the level of fusion.
6975 If this option is set to C<ISL_SCHEDULE_FUSE_MIN>, then loops in the
6976 resulting schedule will be distributed as much as possible.
6977 If this option is set to C<ISL_SCHEDULE_FUSE_MAX>, then C<isl> will
6978 try to fuse loops in the resulting schedule.
6980 =item * schedule_maximize_band_depth
6982 If this option is set, we do not split bands at the point
6983 where we detect splitting is necessary. Instead, we
6984 backtrack and split bands as early as possible. This
6985 reduces the number of splits and maximizes the width of
6986 the bands. Wider bands give more possibilities for tiling.
6987 Note that if the C<schedule_fuse> option is set to C<ISL_SCHEDULE_FUSE_MIN>,
6988 then bands will be split as early as possible, even if there is no need.
6989 The C<schedule_maximize_band_depth> option therefore has no effect in this case.
6991 =item * schedule_outer_coincidence
6993 If this option is set, then we try to construct schedules
6994 where the outermost scheduling dimension in each band
6995 satisfies the coincidence constraints.
6997 =item * schedule_split_scaled
6999 If this option is set, then we try to construct schedules in which the
7000 constant term is split off from the linear part if the linear parts of
7001 the scheduling rows for all nodes in the graphs have a common non-trivial
7003 The constant term is then placed in a separate band and the linear
7006 =item * schedule_algorithm
7008 Selects the scheduling algorithm to be used.
7009 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
7010 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
7012 =item * schedule_separate_components
7014 If at any point the dependence graph contains any (weakly connected) components,
7015 then these components are scheduled separately.
7016 If this option is not set, then some iterations of the domains
7017 in these components may be scheduled together.
7018 If this option is set, then the components are given consecutive
7023 =head2 AST Generation
7025 This section describes the C<isl> functionality for generating
7026 ASTs that visit all the elements
7027 in a domain in an order specified by a schedule.
7028 In particular, given a C<isl_union_map>, an AST is generated
7029 that visits all the elements in the domain of the C<isl_union_map>
7030 according to the lexicographic order of the corresponding image
7031 element(s). If the range of the C<isl_union_map> consists of
7032 elements in more than one space, then each of these spaces is handled
7033 separately in an arbitrary order.
7034 It should be noted that the image elements only specify the I<order>
7035 in which the corresponding domain elements should be visited.
7036 No direct relation between the image elements and the loop iterators
7037 in the generated AST should be assumed.
7039 Each AST is generated within a build. The initial build
7040 simply specifies the constraints on the parameters (if any)
7041 and can be created, inspected, copied and freed using the following functions.
7043 #include <isl/ast_build.h>
7044 __isl_give isl_ast_build *isl_ast_build_from_context(
7045 __isl_take isl_set *set);
7046 __isl_give isl_ast_build *isl_ast_build_copy(
7047 __isl_keep isl_ast_build *build);
7048 __isl_null isl_ast_build *isl_ast_build_free(
7049 __isl_take isl_ast_build *build);
7051 The C<set> argument is usually a parameter set with zero or more parameters.
7052 More C<isl_ast_build> functions are described in L</"Nested AST Generation">
7053 and L</"Fine-grained Control over AST Generation">.
7054 Finally, the AST itself can be constructed using the following
7057 #include <isl/ast_build.h>
7058 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
7059 __isl_keep isl_ast_build *build,
7060 __isl_take isl_union_map *schedule);
7062 =head3 Inspecting the AST
7064 The basic properties of an AST node can be obtained as follows.
7066 #include <isl/ast.h>
7067 enum isl_ast_node_type isl_ast_node_get_type(
7068 __isl_keep isl_ast_node *node);
7070 The type of an AST node is one of
7071 C<isl_ast_node_for>,
7073 C<isl_ast_node_block> or
7074 C<isl_ast_node_user>.
7075 An C<isl_ast_node_for> represents a for node.
7076 An C<isl_ast_node_if> represents an if node.
7077 An C<isl_ast_node_block> represents a compound node.
7078 An C<isl_ast_node_user> represents an expression statement.
7079 An expression statement typically corresponds to a domain element, i.e.,
7080 one of the elements that is visited by the AST.
7082 Each type of node has its own additional properties.
7084 #include <isl/ast.h>
7085 __isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
7086 __isl_keep isl_ast_node *node);
7087 __isl_give isl_ast_expr *isl_ast_node_for_get_init(
7088 __isl_keep isl_ast_node *node);
7089 __isl_give isl_ast_expr *isl_ast_node_for_get_cond(
7090 __isl_keep isl_ast_node *node);
7091 __isl_give isl_ast_expr *isl_ast_node_for_get_inc(
7092 __isl_keep isl_ast_node *node);
7093 __isl_give isl_ast_node *isl_ast_node_for_get_body(
7094 __isl_keep isl_ast_node *node);
7095 int isl_ast_node_for_is_degenerate(
7096 __isl_keep isl_ast_node *node);
7098 An C<isl_ast_for> is considered degenerate if it is known to execute
7101 #include <isl/ast.h>
7102 __isl_give isl_ast_expr *isl_ast_node_if_get_cond(
7103 __isl_keep isl_ast_node *node);
7104 __isl_give isl_ast_node *isl_ast_node_if_get_then(
7105 __isl_keep isl_ast_node *node);
7106 int isl_ast_node_if_has_else(
7107 __isl_keep isl_ast_node *node);
7108 __isl_give isl_ast_node *isl_ast_node_if_get_else(
7109 __isl_keep isl_ast_node *node);
7111 __isl_give isl_ast_node_list *
7112 isl_ast_node_block_get_children(
7113 __isl_keep isl_ast_node *node);
7115 __isl_give isl_ast_expr *isl_ast_node_user_get_expr(
7116 __isl_keep isl_ast_node *node);
7118 Each of the returned C<isl_ast_expr>s can in turn be inspected using
7119 the following functions.
7121 #include <isl/ast.h>
7122 enum isl_ast_expr_type isl_ast_expr_get_type(
7123 __isl_keep isl_ast_expr *expr);
7125 The type of an AST expression is one of
7127 C<isl_ast_expr_id> or
7128 C<isl_ast_expr_int>.
7129 An C<isl_ast_expr_op> represents the result of an operation.
7130 An C<isl_ast_expr_id> represents an identifier.
7131 An C<isl_ast_expr_int> represents an integer value.
7133 Each type of expression has its own additional properties.
7135 #include <isl/ast.h>
7136 enum isl_ast_op_type isl_ast_expr_get_op_type(
7137 __isl_keep isl_ast_expr *expr);
7138 int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
7139 __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
7140 __isl_keep isl_ast_expr *expr, int pos);
7141 int isl_ast_node_foreach_ast_op_type(
7142 __isl_keep isl_ast_node *node,
7143 int (*fn)(enum isl_ast_op_type type, void *user),
7146 C<isl_ast_expr_get_op_type> returns the type of the operation
7147 performed. C<isl_ast_expr_get_op_n_arg> returns the number of
7148 arguments. C<isl_ast_expr_get_op_arg> returns the specified
7150 C<isl_ast_node_foreach_ast_op_type> calls C<fn> for each distinct
7151 C<isl_ast_op_type> that appears in C<node>.
7152 The operation type is one of the following.
7156 =item C<isl_ast_op_and>
7158 Logical I<and> of two arguments.
7159 Both arguments can be evaluated.
7161 =item C<isl_ast_op_and_then>
7163 Logical I<and> of two arguments.
7164 The second argument can only be evaluated if the first evaluates to true.
7166 =item C<isl_ast_op_or>
7168 Logical I<or> of two arguments.
7169 Both arguments can be evaluated.
7171 =item C<isl_ast_op_or_else>
7173 Logical I<or> of two arguments.
7174 The second argument can only be evaluated if the first evaluates to false.
7176 =item C<isl_ast_op_max>
7178 Maximum of two or more arguments.
7180 =item C<isl_ast_op_min>
7182 Minimum of two or more arguments.
7184 =item C<isl_ast_op_minus>
7188 =item C<isl_ast_op_add>
7190 Sum of two arguments.
7192 =item C<isl_ast_op_sub>
7194 Difference of two arguments.
7196 =item C<isl_ast_op_mul>
7198 Product of two arguments.
7200 =item C<isl_ast_op_div>
7202 Exact division. That is, the result is known to be an integer.
7204 =item C<isl_ast_op_fdiv_q>
7206 Result of integer division, rounded towards negative
7209 =item C<isl_ast_op_pdiv_q>
7211 Result of integer division, where dividend is known to be non-negative.
7213 =item C<isl_ast_op_pdiv_r>
7215 Remainder of integer division, where dividend is known to be non-negative.
7217 =item C<isl_ast_op_zdiv_r>
7219 Equal to zero iff the remainder on integer division is zero.
7221 =item C<isl_ast_op_cond>
7223 Conditional operator defined on three arguments.
7224 If the first argument evaluates to true, then the result
7225 is equal to the second argument. Otherwise, the result
7226 is equal to the third argument.
7227 The second and third argument may only be evaluated if
7228 the first argument evaluates to true and false, respectively.
7229 Corresponds to C<a ? b : c> in C.
7231 =item C<isl_ast_op_select>
7233 Conditional operator defined on three arguments.
7234 If the first argument evaluates to true, then the result
7235 is equal to the second argument. Otherwise, the result
7236 is equal to the third argument.
7237 The second and third argument may be evaluated independently
7238 of the value of the first argument.
7239 Corresponds to C<a * b + (1 - a) * c> in C.
7241 =item C<isl_ast_op_eq>
7245 =item C<isl_ast_op_le>
7247 Less than or equal relation.
7249 =item C<isl_ast_op_lt>
7253 =item C<isl_ast_op_ge>
7255 Greater than or equal relation.
7257 =item C<isl_ast_op_gt>
7259 Greater than relation.
7261 =item C<isl_ast_op_call>
7264 The number of arguments of the C<isl_ast_expr> is one more than
7265 the number of arguments in the function call, the first argument
7266 representing the function being called.
7268 =item C<isl_ast_op_access>
7271 The number of arguments of the C<isl_ast_expr> is one more than
7272 the number of index expressions in the array access, the first argument
7273 representing the array being accessed.
7275 =item C<isl_ast_op_member>
7278 This operation has two arguments, a structure and the name of
7279 the member of the structure being accessed.
7283 #include <isl/ast.h>
7284 __isl_give isl_id *isl_ast_expr_get_id(
7285 __isl_keep isl_ast_expr *expr);
7287 Return the identifier represented by the AST expression.
7289 #include <isl/ast.h>
7290 __isl_give isl_val *isl_ast_expr_get_val(
7291 __isl_keep isl_ast_expr *expr);
7293 Return the integer represented by the AST expression.
7295 =head3 Properties of ASTs
7297 #include <isl/ast.h>
7298 int isl_ast_expr_is_equal(__isl_keep isl_ast_expr *expr1,
7299 __isl_keep isl_ast_expr *expr2);
7301 Check if two C<isl_ast_expr>s are equal to each other.
7303 =head3 Manipulating and printing the AST
7305 AST nodes can be copied and freed using the following functions.
7307 #include <isl/ast.h>
7308 __isl_give isl_ast_node *isl_ast_node_copy(
7309 __isl_keep isl_ast_node *node);
7310 __isl_null isl_ast_node *isl_ast_node_free(
7311 __isl_take isl_ast_node *node);
7313 AST expressions can be copied and freed using the following functions.
7315 #include <isl/ast.h>
7316 __isl_give isl_ast_expr *isl_ast_expr_copy(
7317 __isl_keep isl_ast_expr *expr);
7318 __isl_null isl_ast_expr *isl_ast_expr_free(
7319 __isl_take isl_ast_expr *expr);
7321 New AST expressions can be created either directly or within
7322 the context of an C<isl_ast_build>.
7324 #include <isl/ast.h>
7325 __isl_give isl_ast_expr *isl_ast_expr_from_val(
7326 __isl_take isl_val *v);
7327 __isl_give isl_ast_expr *isl_ast_expr_from_id(
7328 __isl_take isl_id *id);
7329 __isl_give isl_ast_expr *isl_ast_expr_neg(
7330 __isl_take isl_ast_expr *expr);
7331 __isl_give isl_ast_expr *isl_ast_expr_address_of(
7332 __isl_take isl_ast_expr *expr);
7333 __isl_give isl_ast_expr *isl_ast_expr_add(
7334 __isl_take isl_ast_expr *expr1,
7335 __isl_take isl_ast_expr *expr2);
7336 __isl_give isl_ast_expr *isl_ast_expr_sub(
7337 __isl_take isl_ast_expr *expr1,
7338 __isl_take isl_ast_expr *expr2);
7339 __isl_give isl_ast_expr *isl_ast_expr_mul(
7340 __isl_take isl_ast_expr *expr1,
7341 __isl_take isl_ast_expr *expr2);
7342 __isl_give isl_ast_expr *isl_ast_expr_div(
7343 __isl_take isl_ast_expr *expr1,
7344 __isl_take isl_ast_expr *expr2);
7345 __isl_give isl_ast_expr *isl_ast_expr_and(
7346 __isl_take isl_ast_expr *expr1,
7347 __isl_take isl_ast_expr *expr2)
7348 __isl_give isl_ast_expr *isl_ast_expr_or(
7349 __isl_take isl_ast_expr *expr1,
7350 __isl_take isl_ast_expr *expr2)
7351 __isl_give isl_ast_expr *isl_ast_expr_eq(
7352 __isl_take isl_ast_expr *expr1,
7353 __isl_take isl_ast_expr *expr2);
7354 __isl_give isl_ast_expr *isl_ast_expr_le(
7355 __isl_take isl_ast_expr *expr1,
7356 __isl_take isl_ast_expr *expr2);
7357 __isl_give isl_ast_expr *isl_ast_expr_lt(
7358 __isl_take isl_ast_expr *expr1,
7359 __isl_take isl_ast_expr *expr2);
7360 __isl_give isl_ast_expr *isl_ast_expr_ge(
7361 __isl_take isl_ast_expr *expr1,
7362 __isl_take isl_ast_expr *expr2);
7363 __isl_give isl_ast_expr *isl_ast_expr_gt(
7364 __isl_take isl_ast_expr *expr1,
7365 __isl_take isl_ast_expr *expr2);
7366 __isl_give isl_ast_expr *isl_ast_expr_access(
7367 __isl_take isl_ast_expr *array,
7368 __isl_take isl_ast_expr_list *indices);
7370 The function C<isl_ast_expr_address_of> can be applied to an
7371 C<isl_ast_expr> of type C<isl_ast_op_access> only. It is meant
7372 to represent the address of the C<isl_ast_expr_access>.
7374 #include <isl/ast_build.h>
7375 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
7376 __isl_keep isl_ast_build *build,
7377 __isl_take isl_pw_aff *pa);
7378 __isl_give isl_ast_expr *
7379 isl_ast_build_access_from_pw_multi_aff(
7380 __isl_keep isl_ast_build *build,
7381 __isl_take isl_pw_multi_aff *pma);
7382 __isl_give isl_ast_expr *
7383 isl_ast_build_access_from_multi_pw_aff(
7384 __isl_keep isl_ast_build *build,
7385 __isl_take isl_multi_pw_aff *mpa);
7386 __isl_give isl_ast_expr *
7387 isl_ast_build_call_from_pw_multi_aff(
7388 __isl_keep isl_ast_build *build,
7389 __isl_take isl_pw_multi_aff *pma);
7390 __isl_give isl_ast_expr *
7391 isl_ast_build_call_from_multi_pw_aff(
7392 __isl_keep isl_ast_build *build,
7393 __isl_take isl_multi_pw_aff *mpa);
7395 The domains of C<pa>, C<mpa> and C<pma> should correspond
7396 to the schedule space of C<build>.
7397 The tuple id of C<mpa> or C<pma> is used as the array being accessed or
7398 the function being called.
7399 If the accessed space is a nested relation, then it is taken
7400 to represent an access of the member specified by the range
7401 of this nested relation of the structure specified by the domain
7402 of the nested relation.
7404 The following functions can be used to modify an C<isl_ast_expr>.
7406 #include <isl/ast.h>
7407 __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(
7408 __isl_take isl_ast_expr *expr, int pos,
7409 __isl_take isl_ast_expr *arg);
7411 Replace the argument of C<expr> at position C<pos> by C<arg>.
7413 #include <isl/ast.h>
7414 __isl_give isl_ast_expr *isl_ast_expr_substitute_ids(
7415 __isl_take isl_ast_expr *expr,
7416 __isl_take isl_id_to_ast_expr *id2expr);
7418 The function C<isl_ast_expr_substitute_ids> replaces the
7419 subexpressions of C<expr> of type C<isl_ast_expr_id>
7420 by the corresponding expression in C<id2expr>, if there is any.
7423 User specified data can be attached to an C<isl_ast_node> and obtained
7424 from the same C<isl_ast_node> using the following functions.
7426 #include <isl/ast.h>
7427 __isl_give isl_ast_node *isl_ast_node_set_annotation(
7428 __isl_take isl_ast_node *node,
7429 __isl_take isl_id *annotation);
7430 __isl_give isl_id *isl_ast_node_get_annotation(
7431 __isl_keep isl_ast_node *node);
7433 Basic printing can be performed using the following functions.
7435 #include <isl/ast.h>
7436 __isl_give isl_printer *isl_printer_print_ast_expr(
7437 __isl_take isl_printer *p,
7438 __isl_keep isl_ast_expr *expr);
7439 __isl_give isl_printer *isl_printer_print_ast_node(
7440 __isl_take isl_printer *p,
7441 __isl_keep isl_ast_node *node);
7442 __isl_give char *isl_ast_expr_to_str(
7443 __isl_keep isl_ast_expr *expr);
7445 More advanced printing can be performed using the following functions.
7447 #include <isl/ast.h>
7448 __isl_give isl_printer *isl_ast_op_type_print_macro(
7449 enum isl_ast_op_type type,
7450 __isl_take isl_printer *p);
7451 __isl_give isl_printer *isl_ast_node_print_macros(
7452 __isl_keep isl_ast_node *node,
7453 __isl_take isl_printer *p);
7454 __isl_give isl_printer *isl_ast_node_print(
7455 __isl_keep isl_ast_node *node,
7456 __isl_take isl_printer *p,
7457 __isl_take isl_ast_print_options *options);
7458 __isl_give isl_printer *isl_ast_node_for_print(
7459 __isl_keep isl_ast_node *node,
7460 __isl_take isl_printer *p,
7461 __isl_take isl_ast_print_options *options);
7462 __isl_give isl_printer *isl_ast_node_if_print(
7463 __isl_keep isl_ast_node *node,
7464 __isl_take isl_printer *p,
7465 __isl_take isl_ast_print_options *options);
7467 While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
7468 C<isl> may print out an AST that makes use of macros such
7469 as C<floord>, C<min> and C<max>.
7470 C<isl_ast_op_type_print_macro> prints out the macro
7471 corresponding to a specific C<isl_ast_op_type>.
7472 C<isl_ast_node_print_macros> scans the C<isl_ast_node>
7473 for expressions where these macros would be used and prints
7474 out the required macro definitions.
7475 Essentially, C<isl_ast_node_print_macros> calls
7476 C<isl_ast_node_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
7477 as function argument.
7478 C<isl_ast_node_print>, C<isl_ast_node_for_print> and
7479 C<isl_ast_node_if_print> print an C<isl_ast_node>
7480 in C<ISL_FORMAT_C>, but allow for some extra control
7481 through an C<isl_ast_print_options> object.
7482 This object can be created using the following functions.
7484 #include <isl/ast.h>
7485 __isl_give isl_ast_print_options *
7486 isl_ast_print_options_alloc(isl_ctx *ctx);
7487 __isl_give isl_ast_print_options *
7488 isl_ast_print_options_copy(
7489 __isl_keep isl_ast_print_options *options);
7490 __isl_null isl_ast_print_options *
7491 isl_ast_print_options_free(
7492 __isl_take isl_ast_print_options *options);
7494 __isl_give isl_ast_print_options *
7495 isl_ast_print_options_set_print_user(
7496 __isl_take isl_ast_print_options *options,
7497 __isl_give isl_printer *(*print_user)(
7498 __isl_take isl_printer *p,
7499 __isl_take isl_ast_print_options *options,
7500 __isl_keep isl_ast_node *node, void *user),
7502 __isl_give isl_ast_print_options *
7503 isl_ast_print_options_set_print_for(
7504 __isl_take isl_ast_print_options *options,
7505 __isl_give isl_printer *(*print_for)(
7506 __isl_take isl_printer *p,
7507 __isl_take isl_ast_print_options *options,
7508 __isl_keep isl_ast_node *node, void *user),
7511 The callback set by C<isl_ast_print_options_set_print_user>
7512 is called whenever a node of type C<isl_ast_node_user> needs to
7514 The callback set by C<isl_ast_print_options_set_print_for>
7515 is called whenever a node of type C<isl_ast_node_for> needs to
7517 Note that C<isl_ast_node_for_print> will I<not> call the
7518 callback set by C<isl_ast_print_options_set_print_for> on the node
7519 on which C<isl_ast_node_for_print> is called, but only on nested
7520 nodes of type C<isl_ast_node_for>. It is therefore safe to
7521 call C<isl_ast_node_for_print> from within the callback set by
7522 C<isl_ast_print_options_set_print_for>.
7524 The following option determines the type to be used for iterators
7525 while printing the AST.
7527 int isl_options_set_ast_iterator_type(
7528 isl_ctx *ctx, const char *val);
7529 const char *isl_options_get_ast_iterator_type(
7532 The AST printer only prints body nodes as blocks if these
7533 blocks cannot be safely omitted.
7534 For example, a C<for> node with one body node will not be
7535 surrounded with braces in C<ISL_FORMAT_C>.
7536 A block will always be printed by setting the following option.
7538 int isl_options_set_ast_always_print_block(isl_ctx *ctx,
7540 int isl_options_get_ast_always_print_block(isl_ctx *ctx);
7544 #include <isl/ast_build.h>
7545 int isl_options_set_ast_build_atomic_upper_bound(
7546 isl_ctx *ctx, int val);
7547 int isl_options_get_ast_build_atomic_upper_bound(
7549 int isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
7551 int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
7552 int isl_options_set_ast_build_exploit_nested_bounds(
7553 isl_ctx *ctx, int val);
7554 int isl_options_get_ast_build_exploit_nested_bounds(
7556 int isl_options_set_ast_build_group_coscheduled(
7557 isl_ctx *ctx, int val);
7558 int isl_options_get_ast_build_group_coscheduled(
7560 int isl_options_set_ast_build_scale_strides(
7561 isl_ctx *ctx, int val);
7562 int isl_options_get_ast_build_scale_strides(
7564 int isl_options_set_ast_build_allow_else(isl_ctx *ctx,
7566 int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
7567 int isl_options_set_ast_build_allow_or(isl_ctx *ctx,
7569 int isl_options_get_ast_build_allow_or(isl_ctx *ctx);
7573 =item * ast_build_atomic_upper_bound
7575 Generate loop upper bounds that consist of the current loop iterator,
7576 an operator and an expression not involving the iterator.
7577 If this option is not set, then the current loop iterator may appear
7578 several times in the upper bound.
7579 For example, when this option is turned off, AST generation
7582 [n] -> { A[i] -> [i] : 0 <= i <= 100, n }
7586 for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
7589 When the option is turned on, the following AST is generated
7591 for (int c0 = 0; c0 <= min(100, n); c0 += 1)
7594 =item * ast_build_prefer_pdiv
7596 If this option is turned off, then the AST generation will
7597 produce ASTs that may only contain C<isl_ast_op_fdiv_q>
7598 operators, but no C<isl_ast_op_pdiv_q> or
7599 C<isl_ast_op_pdiv_r> operators.
7600 If this options is turned on, then C<isl> will try to convert
7601 some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
7602 C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
7604 =item * ast_build_exploit_nested_bounds
7606 Simplify conditions based on bounds of nested for loops.
7607 In particular, remove conditions that are implied by the fact
7608 that one or more nested loops have at least one iteration,
7609 meaning that the upper bound is at least as large as the lower bound.
7610 For example, when this option is turned off, AST generation
7613 [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
7619 for (int c0 = 0; c0 <= N; c0 += 1)
7620 for (int c1 = 0; c1 <= M; c1 += 1)
7623 When the option is turned on, the following AST is generated
7625 for (int c0 = 0; c0 <= N; c0 += 1)
7626 for (int c1 = 0; c1 <= M; c1 += 1)
7629 =item * ast_build_group_coscheduled
7631 If two domain elements are assigned the same schedule point, then
7632 they may be executed in any order and they may even appear in different
7633 loops. If this options is set, then the AST generator will make
7634 sure that coscheduled domain elements do not appear in separate parts
7635 of the AST. This is useful in case of nested AST generation
7636 if the outer AST generation is given only part of a schedule
7637 and the inner AST generation should handle the domains that are
7638 coscheduled by this initial part of the schedule together.
7639 For example if an AST is generated for a schedule
7641 { A[i] -> [0]; B[i] -> [0] }
7643 then the C<isl_ast_build_set_create_leaf> callback described
7644 below may get called twice, once for each domain.
7645 Setting this option ensures that the callback is only called once
7646 on both domains together.
7648 =item * ast_build_separation_bounds
7650 This option specifies which bounds to use during separation.
7651 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
7652 then all (possibly implicit) bounds on the current dimension will
7653 be used during separation.
7654 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
7655 then only those bounds that are explicitly available will
7656 be used during separation.
7658 =item * ast_build_scale_strides
7660 This option specifies whether the AST generator is allowed
7661 to scale down iterators of strided loops.
7663 =item * ast_build_allow_else
7665 This option specifies whether the AST generator is allowed
7666 to construct if statements with else branches.
7668 =item * ast_build_allow_or
7670 This option specifies whether the AST generator is allowed
7671 to construct if conditions with disjunctions.
7675 =head3 Fine-grained Control over AST Generation
7677 Besides specifying the constraints on the parameters,
7678 an C<isl_ast_build> object can be used to control
7679 various aspects of the AST generation process.
7680 The most prominent way of control is through ``options'',
7681 which can be set using the following function.
7683 #include <isl/ast_build.h>
7684 __isl_give isl_ast_build *
7685 isl_ast_build_set_options(
7686 __isl_take isl_ast_build *control,
7687 __isl_take isl_union_map *options);
7689 The options are encoded in an C<isl_union_map>.
7690 The domain of this union relation refers to the schedule domain,
7691 i.e., the range of the schedule passed to C<isl_ast_build_ast_from_schedule>.
7692 In the case of nested AST generation (see L</"Nested AST Generation">),
7693 the domain of C<options> should refer to the extra piece of the schedule.
7694 That is, it should be equal to the range of the wrapped relation in the
7695 range of the schedule.
7696 The range of the options can consist of elements in one or more spaces,
7697 the names of which determine the effect of the option.
7698 The values of the range typically also refer to the schedule dimension
7699 to which the option applies. In case of nested AST generation
7700 (see L</"Nested AST Generation">), these values refer to the position
7701 of the schedule dimension within the innermost AST generation.
7702 The constraints on the domain elements of
7703 the option should only refer to this dimension and earlier dimensions.
7704 We consider the following spaces.
7708 =item C<separation_class>
7710 This space is a wrapped relation between two one dimensional spaces.
7711 The input space represents the schedule dimension to which the option
7712 applies and the output space represents the separation class.
7713 While constructing a loop corresponding to the specified schedule
7714 dimension(s), the AST generator will try to generate separate loops
7715 for domain elements that are assigned different classes.
7716 If only some of the elements are assigned a class, then those elements
7717 that are not assigned any class will be treated as belonging to a class
7718 that is separate from the explicitly assigned classes.
7719 The typical use case for this option is to separate full tiles from
7721 The other options, described below, are applied after the separation
7724 As an example, consider the separation into full and partial tiles
7725 of a tiling of a triangular domain.
7726 Take, for example, the domain
7728 { A[i,j] : 0 <= i,j and i + j <= 100 }
7730 and a tiling into tiles of 10 by 10. The input to the AST generator
7731 is then the schedule
7733 { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
7736 Without any options, the following AST is generated
7738 for (int c0 = 0; c0 <= 10; c0 += 1)
7739 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
7740 for (int c2 = 10 * c0;
7741 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
7743 for (int c3 = 10 * c1;
7744 c3 <= min(10 * c1 + 9, -c2 + 100);
7748 Separation into full and partial tiles can be obtained by assigning
7749 a class, say C<0>, to the full tiles. The full tiles are represented by those
7750 values of the first and second schedule dimensions for which there are
7751 values of the third and fourth dimensions to cover an entire tile.
7752 That is, we need to specify the following option
7754 { [a,b,c,d] -> separation_class[[0]->[0]] :
7755 exists b': 0 <= 10a,10b' and
7756 10a+9+10b'+9 <= 100;
7757 [a,b,c,d] -> separation_class[[1]->[0]] :
7758 0 <= 10a,10b and 10a+9+10b+9 <= 100 }
7762 { [a, b, c, d] -> separation_class[[1] -> [0]] :
7763 a >= 0 and b >= 0 and b <= 8 - a;
7764 [a, b, c, d] -> separation_class[[0] -> [0]] :
7767 With this option, the generated AST is as follows
7770 for (int c0 = 0; c0 <= 8; c0 += 1) {
7771 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
7772 for (int c2 = 10 * c0;
7773 c2 <= 10 * c0 + 9; c2 += 1)
7774 for (int c3 = 10 * c1;
7775 c3 <= 10 * c1 + 9; c3 += 1)
7777 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
7778 for (int c2 = 10 * c0;
7779 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
7781 for (int c3 = 10 * c1;
7782 c3 <= min(-c2 + 100, 10 * c1 + 9);
7786 for (int c0 = 9; c0 <= 10; c0 += 1)
7787 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
7788 for (int c2 = 10 * c0;
7789 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
7791 for (int c3 = 10 * c1;
7792 c3 <= min(10 * c1 + 9, -c2 + 100);
7799 This is a single-dimensional space representing the schedule dimension(s)
7800 to which ``separation'' should be applied. Separation tries to split
7801 a loop into several pieces if this can avoid the generation of guards
7803 See also the C<atomic> option.
7807 This is a single-dimensional space representing the schedule dimension(s)
7808 for which the domains should be considered ``atomic''. That is, the
7809 AST generator will make sure that any given domain space will only appear
7810 in a single loop at the specified level.
7812 Consider the following schedule
7814 { a[i] -> [i] : 0 <= i < 10;
7815 b[i] -> [i+1] : 0 <= i < 10 }
7817 If the following option is specified
7819 { [i] -> separate[x] }
7821 then the following AST will be generated
7825 for (int c0 = 1; c0 <= 9; c0 += 1) {
7832 If, on the other hand, the following option is specified
7834 { [i] -> atomic[x] }
7836 then the following AST will be generated
7838 for (int c0 = 0; c0 <= 10; c0 += 1) {
7845 If neither C<atomic> nor C<separate> is specified, then the AST generator
7846 may produce either of these two results or some intermediate form.
7850 This is a single-dimensional space representing the schedule dimension(s)
7851 that should be I<completely> unrolled.
7852 To obtain a partial unrolling, the user should apply an additional
7853 strip-mining to the schedule and fully unroll the inner loop.
7857 Additional control is available through the following functions.
7859 #include <isl/ast_build.h>
7860 __isl_give isl_ast_build *
7861 isl_ast_build_set_iterators(
7862 __isl_take isl_ast_build *control,
7863 __isl_take isl_id_list *iterators);
7865 The function C<isl_ast_build_set_iterators> allows the user to
7866 specify a list of iterator C<isl_id>s to be used as iterators.
7867 If the input schedule is injective, then
7868 the number of elements in this list should be as large as the dimension
7869 of the schedule space, but no direct correspondence should be assumed
7870 between dimensions and elements.
7871 If the input schedule is not injective, then an additional number
7872 of C<isl_id>s equal to the largest dimension of the input domains
7874 If the number of provided C<isl_id>s is insufficient, then additional
7875 names are automatically generated.
7877 #include <isl/ast_build.h>
7878 __isl_give isl_ast_build *
7879 isl_ast_build_set_create_leaf(
7880 __isl_take isl_ast_build *control,
7881 __isl_give isl_ast_node *(*fn)(
7882 __isl_take isl_ast_build *build,
7883 void *user), void *user);
7886 C<isl_ast_build_set_create_leaf> function allows for the
7887 specification of a callback that should be called whenever the AST
7888 generator arrives at an element of the schedule domain.
7889 The callback should return an AST node that should be inserted
7890 at the corresponding position of the AST. The default action (when
7891 the callback is not set) is to continue generating parts of the AST to scan
7892 all the domain elements associated to the schedule domain element
7893 and to insert user nodes, ``calling'' the domain element, for each of them.
7894 The C<build> argument contains the current state of the C<isl_ast_build>.
7895 To ease nested AST generation (see L</"Nested AST Generation">),
7896 all control information that is
7897 specific to the current AST generation such as the options and
7898 the callbacks has been removed from this C<isl_ast_build>.
7899 The callback would typically return the result of a nested
7901 user defined node created using the following function.
7903 #include <isl/ast.h>
7904 __isl_give isl_ast_node *isl_ast_node_alloc_user(
7905 __isl_take isl_ast_expr *expr);
7907 #include <isl/ast_build.h>
7908 __isl_give isl_ast_build *
7909 isl_ast_build_set_at_each_domain(
7910 __isl_take isl_ast_build *build,
7911 __isl_give isl_ast_node *(*fn)(
7912 __isl_take isl_ast_node *node,
7913 __isl_keep isl_ast_build *build,
7914 void *user), void *user);
7915 __isl_give isl_ast_build *
7916 isl_ast_build_set_before_each_for(
7917 __isl_take isl_ast_build *build,
7918 __isl_give isl_id *(*fn)(
7919 __isl_keep isl_ast_build *build,
7920 void *user), void *user);
7921 __isl_give isl_ast_build *
7922 isl_ast_build_set_after_each_for(
7923 __isl_take isl_ast_build *build,
7924 __isl_give isl_ast_node *(*fn)(
7925 __isl_take isl_ast_node *node,
7926 __isl_keep isl_ast_build *build,
7927 void *user), void *user);
7929 The callback set by C<isl_ast_build_set_at_each_domain> will
7930 be called for each domain AST node.
7931 The callbacks set by C<isl_ast_build_set_before_each_for>
7932 and C<isl_ast_build_set_after_each_for> will be called
7933 for each for AST node. The first will be called in depth-first
7934 pre-order, while the second will be called in depth-first post-order.
7935 Since C<isl_ast_build_set_before_each_for> is called before the for
7936 node is actually constructed, it is only passed an C<isl_ast_build>.
7937 The returned C<isl_id> will be added as an annotation (using
7938 C<isl_ast_node_set_annotation>) to the constructed for node.
7939 In particular, if the user has also specified an C<after_each_for>
7940 callback, then the annotation can be retrieved from the node passed to
7941 that callback using C<isl_ast_node_get_annotation>.
7942 All callbacks should C<NULL> on failure.
7943 The given C<isl_ast_build> can be used to create new
7944 C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
7945 or C<isl_ast_build_call_from_pw_multi_aff>.
7947 =head3 Nested AST Generation
7949 C<isl> allows the user to create an AST within the context
7950 of another AST. These nested ASTs are created using the
7951 same C<isl_ast_build_ast_from_schedule> function that is used to create the
7952 outer AST. The C<build> argument should be an C<isl_ast_build>
7953 passed to a callback set by
7954 C<isl_ast_build_set_create_leaf>.
7955 The space of the range of the C<schedule> argument should refer
7956 to this build. In particular, the space should be a wrapped
7957 relation and the domain of this wrapped relation should be the
7958 same as that of the range of the schedule returned by
7959 C<isl_ast_build_get_schedule> below.
7960 In practice, the new schedule is typically
7961 created by calling C<isl_union_map_range_product> on the old schedule
7962 and some extra piece of the schedule.
7963 The space of the schedule domain is also available from
7964 the C<isl_ast_build>.
7966 #include <isl/ast_build.h>
7967 __isl_give isl_union_map *isl_ast_build_get_schedule(
7968 __isl_keep isl_ast_build *build);
7969 __isl_give isl_space *isl_ast_build_get_schedule_space(
7970 __isl_keep isl_ast_build *build);
7971 __isl_give isl_ast_build *isl_ast_build_restrict(
7972 __isl_take isl_ast_build *build,
7973 __isl_take isl_set *set);
7975 The C<isl_ast_build_get_schedule> function returns a (partial)
7976 schedule for the domains elements for which part of the AST still needs to
7977 be generated in the current build.
7978 In particular, the domain elements are mapped to those iterations of the loops
7979 enclosing the current point of the AST generation inside which
7980 the domain elements are executed.
7981 No direct correspondence between
7982 the input schedule and this schedule should be assumed.
7983 The space obtained from C<isl_ast_build_get_schedule_space> can be used
7984 to create a set for C<isl_ast_build_restrict> to intersect
7985 with the current build. In particular, the set passed to
7986 C<isl_ast_build_restrict> can have additional parameters.
7987 The ids of the set dimensions in the space returned by
7988 C<isl_ast_build_get_schedule_space> correspond to the
7989 iterators of the already generated loops.
7990 The user should not rely on the ids of the output dimensions
7991 of the relations in the union relation returned by
7992 C<isl_ast_build_get_schedule> having any particular value.
7996 Although C<isl> is mainly meant to be used as a library,
7997 it also contains some basic applications that use some
7998 of the functionality of C<isl>.
7999 The input may be specified in either the L<isl format>
8000 or the L<PolyLib format>.
8002 =head2 C<isl_polyhedron_sample>
8004 C<isl_polyhedron_sample> takes a polyhedron as input and prints
8005 an integer element of the polyhedron, if there is any.
8006 The first column in the output is the denominator and is always
8007 equal to 1. If the polyhedron contains no integer points,
8008 then a vector of length zero is printed.
8012 C<isl_pip> takes the same input as the C<example> program
8013 from the C<piplib> distribution, i.e., a set of constraints
8014 on the parameters, a line containing only -1 and finally a set
8015 of constraints on a parametric polyhedron.
8016 The coefficients of the parameters appear in the last columns
8017 (but before the final constant column).
8018 The output is the lexicographic minimum of the parametric polyhedron.
8019 As C<isl> currently does not have its own output format, the output
8020 is just a dump of the internal state.
8022 =head2 C<isl_polyhedron_minimize>
8024 C<isl_polyhedron_minimize> computes the minimum of some linear
8025 or affine objective function over the integer points in a polyhedron.
8026 If an affine objective function
8027 is given, then the constant should appear in the last column.
8029 =head2 C<isl_polytope_scan>
8031 Given a polytope, C<isl_polytope_scan> prints
8032 all integer points in the polytope.
8034 =head2 C<isl_codegen>
8036 Given a schedule, a context set and an options relation,
8037 C<isl_codegen> prints out an AST that scans the domain elements
8038 of the schedule in the order of their image(s) taking into account
8039 the constraints in the context set.