2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_aff_private.h>
20 #include <isl_config.h>
23 * The implementation of parametric integer linear programming in this file
24 * was inspired by the paper "Parametric Integer Programming" and the
25 * report "Solving systems of affine (in)equalities" by Paul Feautrier
28 * The strategy used for obtaining a feasible solution is different
29 * from the one used in isl_tab.c. In particular, in isl_tab.c,
30 * upon finding a constraint that is not yet satisfied, we pivot
31 * in a row that increases the constant term of the row holding the
32 * constraint, making sure the sample solution remains feasible
33 * for all the constraints it already satisfied.
34 * Here, we always pivot in the row holding the constraint,
35 * choosing a column that induces the lexicographically smallest
36 * increment to the sample solution.
38 * By starting out from a sample value that is lexicographically
39 * smaller than any integer point in the problem space, the first
40 * feasible integer sample point we find will also be the lexicographically
41 * smallest. If all variables can be assumed to be non-negative,
42 * then the initial sample value may be chosen equal to zero.
43 * However, we will not make this assumption. Instead, we apply
44 * the "big parameter" trick. Any variable x is then not directly
45 * used in the tableau, but instead it is represented by another
46 * variable x' = M + x, where M is an arbitrarily large (positive)
47 * value. x' is therefore always non-negative, whatever the value of x.
48 * Taking as initial sample value x' = 0 corresponds to x = -M,
49 * which is always smaller than any possible value of x.
51 * The big parameter trick is used in the main tableau and
52 * also in the context tableau if isl_context_lex is used.
53 * In this case, each tableaus has its own big parameter.
54 * Before doing any real work, we check if all the parameters
55 * happen to be non-negative. If so, we drop the column corresponding
56 * to M from the initial context tableau.
57 * If isl_context_gbr is used, then the big parameter trick is only
58 * used in the main tableau.
62 struct isl_context_op
{
63 /* detect nonnegative parameters in context and mark them in tab */
64 struct isl_tab
*(*detect_nonnegative_parameters
)(
65 struct isl_context
*context
, struct isl_tab
*tab
);
66 /* return temporary reference to basic set representation of context */
67 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
68 /* return temporary reference to tableau representation of context */
69 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
70 /* add equality; check is 1 if eq may not be valid;
71 * update is 1 if we may want to call ineq_sign on context later.
73 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
74 int check
, int update
);
75 /* add inequality; check is 1 if ineq may not be valid;
76 * update is 1 if we may want to call ineq_sign on context later.
78 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
79 int check
, int update
);
80 /* check sign of ineq based on previous information.
81 * strict is 1 if saturation should be treated as a positive sign.
83 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
84 isl_int
*ineq
, int strict
);
85 /* check if inequality maintains feasibility */
86 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
87 /* return index of a div that corresponds to "div" */
88 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
90 /* add div "div" to context and return non-negativity */
91 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
92 int (*detect_equalities
)(struct isl_context
*context
,
94 /* return row index of "best" split */
95 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
96 /* check if context has already been determined to be empty */
97 int (*is_empty
)(struct isl_context
*context
);
98 /* check if context is still usable */
99 int (*is_ok
)(struct isl_context
*context
);
100 /* save a copy/snapshot of context */
101 void *(*save
)(struct isl_context
*context
);
102 /* restore saved context */
103 void (*restore
)(struct isl_context
*context
, void *);
104 /* invalidate context */
105 void (*invalidate
)(struct isl_context
*context
);
107 void (*free
)(struct isl_context
*context
);
111 struct isl_context_op
*op
;
114 struct isl_context_lex
{
115 struct isl_context context
;
119 struct isl_partial_sol
{
121 struct isl_basic_set
*dom
;
124 struct isl_partial_sol
*next
;
128 struct isl_sol_callback
{
129 struct isl_tab_callback callback
;
133 /* isl_sol is an interface for constructing a solution to
134 * a parametric integer linear programming problem.
135 * Every time the algorithm reaches a state where a solution
136 * can be read off from the tableau (including cases where the tableau
137 * is empty), the function "add" is called on the isl_sol passed
138 * to find_solutions_main.
140 * The context tableau is owned by isl_sol and is updated incrementally.
142 * There are currently two implementations of this interface,
143 * isl_sol_map, which simply collects the solutions in an isl_map
144 * and (optionally) the parts of the context where there is no solution
146 * isl_sol_for, which calls a user-defined function for each part of
155 struct isl_context
*context
;
156 struct isl_partial_sol
*partial
;
157 void (*add
)(struct isl_sol
*sol
,
158 struct isl_basic_set
*dom
, struct isl_mat
*M
);
159 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
160 void (*free
)(struct isl_sol
*sol
);
161 struct isl_sol_callback dec_level
;
164 static void sol_free(struct isl_sol
*sol
)
166 struct isl_partial_sol
*partial
, *next
;
169 for (partial
= sol
->partial
; partial
; partial
= next
) {
170 next
= partial
->next
;
171 isl_basic_set_free(partial
->dom
);
172 isl_mat_free(partial
->M
);
178 /* Push a partial solution represented by a domain and mapping M
179 * onto the stack of partial solutions.
181 static void sol_push_sol(struct isl_sol
*sol
,
182 struct isl_basic_set
*dom
, struct isl_mat
*M
)
184 struct isl_partial_sol
*partial
;
186 if (sol
->error
|| !dom
)
189 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
193 partial
->level
= sol
->level
;
196 partial
->next
= sol
->partial
;
198 sol
->partial
= partial
;
202 isl_basic_set_free(dom
);
206 /* Pop one partial solution from the partial solution stack and
207 * pass it on to sol->add or sol->add_empty.
209 static void sol_pop_one(struct isl_sol
*sol
)
211 struct isl_partial_sol
*partial
;
213 partial
= sol
->partial
;
214 sol
->partial
= partial
->next
;
217 sol
->add(sol
, partial
->dom
, partial
->M
);
219 sol
->add_empty(sol
, partial
->dom
);
223 /* Return a fresh copy of the domain represented by the context tableau.
225 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
227 struct isl_basic_set
*bset
;
232 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
233 bset
= isl_basic_set_update_from_tab(bset
,
234 sol
->context
->op
->peek_tab(sol
->context
));
239 /* Check whether two partial solutions have the same mapping, where n_div
240 * is the number of divs that the two partial solutions have in common.
242 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
248 if (!s1
->M
!= !s2
->M
)
253 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
255 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
256 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
257 s1
->M
->n_col
-1-dim
-n_div
) != -1)
259 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
260 s2
->M
->n_col
-1-dim
-n_div
) != -1)
262 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
268 /* Pop all solutions from the partial solution stack that were pushed onto
269 * the stack at levels that are deeper than the current level.
270 * If the two topmost elements on the stack have the same level
271 * and represent the same solution, then their domains are combined.
272 * This combined domain is the same as the current context domain
273 * as sol_pop is called each time we move back to a higher level.
275 static void sol_pop(struct isl_sol
*sol
)
277 struct isl_partial_sol
*partial
;
283 if (sol
->level
== 0) {
284 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
289 partial
= sol
->partial
;
293 if (partial
->level
<= sol
->level
)
296 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
297 n_div
= isl_basic_set_dim(
298 sol
->context
->op
->peek_basic_set(sol
->context
),
301 if (!same_solution(partial
, partial
->next
, n_div
)) {
305 struct isl_basic_set
*bset
;
307 bset
= sol_domain(sol
);
309 isl_basic_set_free(partial
->next
->dom
);
310 partial
->next
->dom
= bset
;
311 partial
->next
->level
= sol
->level
;
313 sol
->partial
= partial
->next
;
314 isl_basic_set_free(partial
->dom
);
315 isl_mat_free(partial
->M
);
322 static void sol_dec_level(struct isl_sol
*sol
)
332 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
334 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
336 sol_dec_level(callback
->sol
);
338 return callback
->sol
->error
? -1 : 0;
341 /* Move down to next level and push callback onto context tableau
342 * to decrease the level again when it gets rolled back across
343 * the current state. That is, dec_level will be called with
344 * the context tableau in the same state as it is when inc_level
347 static void sol_inc_level(struct isl_sol
*sol
)
355 tab
= sol
->context
->op
->peek_tab(sol
->context
);
356 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
360 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
364 if (isl_int_is_one(m
))
367 for (i
= 0; i
< n_row
; ++i
)
368 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
371 /* Add the solution identified by the tableau and the context tableau.
373 * The layout of the variables is as follows.
374 * tab->n_var is equal to the total number of variables in the input
375 * map (including divs that were copied from the context)
376 * + the number of extra divs constructed
377 * Of these, the first tab->n_param and the last tab->n_div variables
378 * correspond to the variables in the context, i.e.,
379 * tab->n_param + tab->n_div = context_tab->n_var
380 * tab->n_param is equal to the number of parameters and input
381 * dimensions in the input map
382 * tab->n_div is equal to the number of divs in the context
384 * If there is no solution, then call add_empty with a basic set
385 * that corresponds to the context tableau. (If add_empty is NULL,
388 * If there is a solution, then first construct a matrix that maps
389 * all dimensions of the context to the output variables, i.e.,
390 * the output dimensions in the input map.
391 * The divs in the input map (if any) that do not correspond to any
392 * div in the context do not appear in the solution.
393 * The algorithm will make sure that they have an integer value,
394 * but these values themselves are of no interest.
395 * We have to be careful not to drop or rearrange any divs in the
396 * context because that would change the meaning of the matrix.
398 * To extract the value of the output variables, it should be noted
399 * that we always use a big parameter M in the main tableau and so
400 * the variable stored in this tableau is not an output variable x itself, but
401 * x' = M + x (in case of minimization)
403 * x' = M - x (in case of maximization)
404 * If x' appears in a column, then its optimal value is zero,
405 * which means that the optimal value of x is an unbounded number
406 * (-M for minimization and M for maximization).
407 * We currently assume that the output dimensions in the original map
408 * are bounded, so this cannot occur.
409 * Similarly, when x' appears in a row, then the coefficient of M in that
410 * row is necessarily 1.
411 * If the row in the tableau represents
412 * d x' = c + d M + e(y)
413 * then, in case of minimization, the corresponding row in the matrix
416 * with a d = m, the (updated) common denominator of the matrix.
417 * In case of maximization, the row will be
420 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
422 struct isl_basic_set
*bset
= NULL
;
423 struct isl_mat
*mat
= NULL
;
428 if (sol
->error
|| !tab
)
431 if (tab
->empty
&& !sol
->add_empty
)
434 bset
= sol_domain(sol
);
437 sol_push_sol(sol
, bset
, NULL
);
443 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
444 1 + tab
->n_param
+ tab
->n_div
);
450 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
451 isl_int_set_si(mat
->row
[0][0], 1);
452 for (row
= 0; row
< sol
->n_out
; ++row
) {
453 int i
= tab
->n_param
+ row
;
456 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
457 if (!tab
->var
[i
].is_row
) {
459 isl_die(mat
->ctx
, isl_error_invalid
,
460 "unbounded optimum", goto error2
);
464 r
= tab
->var
[i
].index
;
466 isl_int_ne(tab
->mat
->row
[r
][2], tab
->mat
->row
[r
][0]))
467 isl_die(mat
->ctx
, isl_error_invalid
,
468 "unbounded optimum", goto error2
);
469 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
470 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
471 scale_rows(mat
, m
, 1 + row
);
472 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
473 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
474 for (j
= 0; j
< tab
->n_param
; ++j
) {
476 if (tab
->var
[j
].is_row
)
478 col
= tab
->var
[j
].index
;
479 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
480 tab
->mat
->row
[r
][off
+ col
]);
482 for (j
= 0; j
< tab
->n_div
; ++j
) {
484 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
486 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
487 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
488 tab
->mat
->row
[r
][off
+ col
]);
491 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
497 sol_push_sol(sol
, bset
, mat
);
502 isl_basic_set_free(bset
);
510 struct isl_set
*empty
;
513 static void sol_map_free(struct isl_sol_map
*sol_map
)
517 if (sol_map
->sol
.context
)
518 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
519 isl_map_free(sol_map
->map
);
520 isl_set_free(sol_map
->empty
);
524 static void sol_map_free_wrap(struct isl_sol
*sol
)
526 sol_map_free((struct isl_sol_map
*)sol
);
529 /* This function is called for parts of the context where there is
530 * no solution, with "bset" corresponding to the context tableau.
531 * Simply add the basic set to the set "empty".
533 static void sol_map_add_empty(struct isl_sol_map
*sol
,
534 struct isl_basic_set
*bset
)
538 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
540 sol
->empty
= isl_set_grow(sol
->empty
, 1);
541 bset
= isl_basic_set_simplify(bset
);
542 bset
= isl_basic_set_finalize(bset
);
543 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
546 isl_basic_set_free(bset
);
549 isl_basic_set_free(bset
);
553 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
554 struct isl_basic_set
*bset
)
556 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
559 /* Add bset to sol's empty, but only if we are actually collecting
562 static void sol_map_add_empty_if_needed(struct isl_sol_map
*sol
,
563 struct isl_basic_set
*bset
)
566 sol_map_add_empty(sol
, bset
);
568 isl_basic_set_free(bset
);
571 /* Given a basic map "dom" that represents the context and an affine
572 * matrix "M" that maps the dimensions of the context to the
573 * output variables, construct a basic map with the same parameters
574 * and divs as the context, the dimensions of the context as input
575 * dimensions and a number of output dimensions that is equal to
576 * the number of output dimensions in the input map.
578 * The constraints and divs of the context are simply copied
579 * from "dom". For each row
583 * is added, with d the common denominator of M.
585 static void sol_map_add(struct isl_sol_map
*sol
,
586 struct isl_basic_set
*dom
, struct isl_mat
*M
)
589 struct isl_basic_map
*bmap
= NULL
;
597 if (sol
->sol
.error
|| !dom
|| !M
)
600 n_out
= sol
->sol
.n_out
;
601 n_eq
= dom
->n_eq
+ n_out
;
602 n_ineq
= dom
->n_ineq
;
604 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
605 total
= isl_map_dim(sol
->map
, isl_dim_all
);
606 bmap
= isl_basic_map_alloc_dim(isl_map_get_dim(sol
->map
),
607 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
610 if (sol
->sol
.rational
)
611 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
612 for (i
= 0; i
< dom
->n_div
; ++i
) {
613 int k
= isl_basic_map_alloc_div(bmap
);
616 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
617 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
618 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
619 dom
->div
[i
] + 1 + 1 + nparam
, i
);
621 for (i
= 0; i
< dom
->n_eq
; ++i
) {
622 int k
= isl_basic_map_alloc_equality(bmap
);
625 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
626 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
627 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
628 dom
->eq
[i
] + 1 + nparam
, n_div
);
630 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
631 int k
= isl_basic_map_alloc_inequality(bmap
);
634 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
635 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
636 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
637 dom
->ineq
[i
] + 1 + nparam
, n_div
);
639 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
640 int k
= isl_basic_map_alloc_equality(bmap
);
643 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
644 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
645 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
646 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
647 M
->row
[1 + i
] + 1 + nparam
, n_div
);
649 bmap
= isl_basic_map_simplify(bmap
);
650 bmap
= isl_basic_map_finalize(bmap
);
651 sol
->map
= isl_map_grow(sol
->map
, 1);
652 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
655 isl_basic_set_free(dom
);
659 isl_basic_set_free(dom
);
661 isl_basic_map_free(bmap
);
665 static void sol_map_add_wrap(struct isl_sol
*sol
,
666 struct isl_basic_set
*dom
, struct isl_mat
*M
)
668 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
672 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
673 * i.e., the constant term and the coefficients of all variables that
674 * appear in the context tableau.
675 * Note that the coefficient of the big parameter M is NOT copied.
676 * The context tableau may not have a big parameter and even when it
677 * does, it is a different big parameter.
679 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
682 unsigned off
= 2 + tab
->M
;
684 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
685 for (i
= 0; i
< tab
->n_param
; ++i
) {
686 if (tab
->var
[i
].is_row
)
687 isl_int_set_si(line
[1 + i
], 0);
689 int col
= tab
->var
[i
].index
;
690 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
693 for (i
= 0; i
< tab
->n_div
; ++i
) {
694 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
695 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
697 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
698 isl_int_set(line
[1 + tab
->n_param
+ i
],
699 tab
->mat
->row
[row
][off
+ col
]);
704 /* Check if rows "row1" and "row2" have identical "parametric constants",
705 * as explained above.
706 * In this case, we also insist that the coefficients of the big parameter
707 * be the same as the values of the constants will only be the same
708 * if these coefficients are also the same.
710 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
713 unsigned off
= 2 + tab
->M
;
715 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
718 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
719 tab
->mat
->row
[row2
][2]))
722 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
723 int pos
= i
< tab
->n_param
? i
:
724 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
727 if (tab
->var
[pos
].is_row
)
729 col
= tab
->var
[pos
].index
;
730 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
731 tab
->mat
->row
[row2
][off
+ col
]))
737 /* Return an inequality that expresses that the "parametric constant"
738 * should be non-negative.
739 * This function is only called when the coefficient of the big parameter
742 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
744 struct isl_vec
*ineq
;
746 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
750 get_row_parameter_line(tab
, row
, ineq
->el
);
752 ineq
= isl_vec_normalize(ineq
);
757 /* Return a integer division for use in a parametric cut based on the given row.
758 * In particular, let the parametric constant of the row be
762 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
763 * The div returned is equal to
765 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
767 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
771 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
775 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
776 get_row_parameter_line(tab
, row
, div
->el
+ 1);
777 div
= isl_vec_normalize(div
);
778 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
779 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
784 /* Return a integer division for use in transferring an integrality constraint
786 * In particular, let the parametric constant of the row be
790 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
791 * The the returned div is equal to
793 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
795 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
799 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
803 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
804 get_row_parameter_line(tab
, row
, div
->el
+ 1);
805 div
= isl_vec_normalize(div
);
806 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
811 /* Construct and return an inequality that expresses an upper bound
813 * In particular, if the div is given by
817 * then the inequality expresses
821 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
825 struct isl_vec
*ineq
;
830 total
= isl_basic_set_total_dim(bset
);
831 div_pos
= 1 + total
- bset
->n_div
+ div
;
833 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
837 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
838 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
842 /* Given a row in the tableau and a div that was created
843 * using get_row_split_div and that been constrained to equality, i.e.,
845 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
847 * replace the expression "\sum_i {a_i} y_i" in the row by d,
848 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
849 * The coefficients of the non-parameters in the tableau have been
850 * verified to be integral. We can therefore simply replace coefficient b
851 * by floor(b). For the coefficients of the parameters we have
852 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
855 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
857 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
858 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
860 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
862 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
863 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
865 isl_assert(tab
->mat
->ctx
,
866 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
867 isl_seq_combine(tab
->mat
->row
[row
] + 1,
868 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
869 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
870 1 + tab
->M
+ tab
->n_col
);
872 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
874 isl_int_set_si(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
883 /* Check if the (parametric) constant of the given row is obviously
884 * negative, meaning that we don't need to consult the context tableau.
885 * If there is a big parameter and its coefficient is non-zero,
886 * then this coefficient determines the outcome.
887 * Otherwise, we check whether the constant is negative and
888 * all non-zero coefficients of parameters are negative and
889 * belong to non-negative parameters.
891 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
895 unsigned off
= 2 + tab
->M
;
898 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
900 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
904 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
906 for (i
= 0; i
< tab
->n_param
; ++i
) {
907 /* Eliminated parameter */
908 if (tab
->var
[i
].is_row
)
910 col
= tab
->var
[i
].index
;
911 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
913 if (!tab
->var
[i
].is_nonneg
)
915 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
918 for (i
= 0; i
< tab
->n_div
; ++i
) {
919 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
921 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
922 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
924 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
926 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
932 /* Check if the (parametric) constant of the given row is obviously
933 * non-negative, meaning that we don't need to consult the context tableau.
934 * If there is a big parameter and its coefficient is non-zero,
935 * then this coefficient determines the outcome.
936 * Otherwise, we check whether the constant is non-negative and
937 * all non-zero coefficients of parameters are positive and
938 * belong to non-negative parameters.
940 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
944 unsigned off
= 2 + tab
->M
;
947 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
949 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
953 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
955 for (i
= 0; i
< tab
->n_param
; ++i
) {
956 /* Eliminated parameter */
957 if (tab
->var
[i
].is_row
)
959 col
= tab
->var
[i
].index
;
960 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
962 if (!tab
->var
[i
].is_nonneg
)
964 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
967 for (i
= 0; i
< tab
->n_div
; ++i
) {
968 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
970 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
971 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
973 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
975 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
981 /* Given a row r and two columns, return the column that would
982 * lead to the lexicographically smallest increment in the sample
983 * solution when leaving the basis in favor of the row.
984 * Pivoting with column c will increment the sample value by a non-negative
985 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
986 * corresponding to the non-parametric variables.
987 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
988 * with all other entries in this virtual row equal to zero.
989 * If variable v appears in a row, then a_{v,c} is the element in column c
992 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
993 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
994 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
995 * increment. Otherwise, it's c2.
997 static int lexmin_col_pair(struct isl_tab
*tab
,
998 int row
, int col1
, int col2
, isl_int tmp
)
1003 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1005 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1009 if (!tab
->var
[i
].is_row
) {
1010 if (tab
->var
[i
].index
== col1
)
1012 if (tab
->var
[i
].index
== col2
)
1017 if (tab
->var
[i
].index
== row
)
1020 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1021 s1
= isl_int_sgn(r
[col1
]);
1022 s2
= isl_int_sgn(r
[col2
]);
1023 if (s1
== 0 && s2
== 0)
1030 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1031 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1032 if (isl_int_is_pos(tmp
))
1034 if (isl_int_is_neg(tmp
))
1040 /* Given a row in the tableau, find and return the column that would
1041 * result in the lexicographically smallest, but positive, increment
1042 * in the sample point.
1043 * If there is no such column, then return tab->n_col.
1044 * If anything goes wrong, return -1.
1046 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1049 int col
= tab
->n_col
;
1053 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1057 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1058 if (tab
->col_var
[j
] >= 0 &&
1059 (tab
->col_var
[j
] < tab
->n_param
||
1060 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1063 if (!isl_int_is_pos(tr
[j
]))
1066 if (col
== tab
->n_col
)
1069 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1070 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1080 /* Return the first known violated constraint, i.e., a non-negative
1081 * constraint that currently has an either obviously negative value
1082 * or a previously determined to be negative value.
1084 * If any constraint has a negative coefficient for the big parameter,
1085 * if any, then we return one of these first.
1087 static int first_neg(struct isl_tab
*tab
)
1092 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1093 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1095 if (!isl_int_is_neg(tab
->mat
->row
[row
][2]))
1098 tab
->row_sign
[row
] = isl_tab_row_neg
;
1101 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1102 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1104 if (tab
->row_sign
) {
1105 if (tab
->row_sign
[row
] == 0 &&
1106 is_obviously_neg(tab
, row
))
1107 tab
->row_sign
[row
] = isl_tab_row_neg
;
1108 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1110 } else if (!is_obviously_neg(tab
, row
))
1117 /* Check whether the invariant that all columns are lexico-positive
1118 * is satisfied. This function is not called from the current code
1119 * but is useful during debugging.
1121 static void check_lexpos(struct isl_tab
*tab
) __attribute__ ((unused
));
1122 static void check_lexpos(struct isl_tab
*tab
)
1124 unsigned off
= 2 + tab
->M
;
1129 for (col
= tab
->n_dead
; col
< tab
->n_col
; ++col
) {
1130 if (tab
->col_var
[col
] >= 0 &&
1131 (tab
->col_var
[col
] < tab
->n_param
||
1132 tab
->col_var
[col
] >= tab
->n_var
- tab
->n_div
))
1134 for (var
= tab
->n_param
; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1135 if (!tab
->var
[var
].is_row
) {
1136 if (tab
->var
[var
].index
== col
)
1141 row
= tab
->var
[var
].index
;
1142 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1144 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
1146 fprintf(stderr
, "lexneg column %d (row %d)\n",
1149 if (var
>= tab
->n_var
- tab
->n_div
)
1150 fprintf(stderr
, "zero column %d\n", col
);
1154 /* Report to the caller that the given constraint is part of an encountered
1157 static int report_conflicting_constraint(struct isl_tab
*tab
, int con
)
1159 return tab
->conflict(con
, tab
->conflict_user
);
1162 /* Given a conflicting row in the tableau, report all constraints
1163 * involved in the row to the caller. That is, the row itself
1164 * (if represents a constraint) and all constraint columns with
1165 * non-zero (and therefore negative) coefficient.
1167 static int report_conflict(struct isl_tab
*tab
, int row
)
1175 if (tab
->row_var
[row
] < 0 &&
1176 report_conflicting_constraint(tab
, ~tab
->row_var
[row
]) < 0)
1179 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1181 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1182 if (tab
->col_var
[j
] >= 0 &&
1183 (tab
->col_var
[j
] < tab
->n_param
||
1184 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1187 if (!isl_int_is_neg(tr
[j
]))
1190 if (tab
->col_var
[j
] < 0 &&
1191 report_conflicting_constraint(tab
, ~tab
->col_var
[j
]) < 0)
1198 /* Resolve all known or obviously violated constraints through pivoting.
1199 * In particular, as long as we can find any violated constraint, we
1200 * look for a pivoting column that would result in the lexicographically
1201 * smallest increment in the sample point. If there is no such column
1202 * then the tableau is infeasible.
1204 static int restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1205 static int restore_lexmin(struct isl_tab
*tab
)
1213 while ((row
= first_neg(tab
)) != -1) {
1214 col
= lexmin_pivot_col(tab
, row
);
1215 if (col
>= tab
->n_col
) {
1216 if (report_conflict(tab
, row
) < 0)
1218 if (isl_tab_mark_empty(tab
) < 0)
1224 if (isl_tab_pivot(tab
, row
, col
) < 0)
1230 /* Given a row that represents an equality, look for an appropriate
1232 * In particular, if there are any non-zero coefficients among
1233 * the non-parameter variables, then we take the last of these
1234 * variables. Eliminating this variable in terms of the other
1235 * variables and/or parameters does not influence the property
1236 * that all column in the initial tableau are lexicographically
1237 * positive. The row corresponding to the eliminated variable
1238 * will only have non-zero entries below the diagonal of the
1239 * initial tableau. That is, we transform
1245 * If there is no such non-parameter variable, then we are dealing with
1246 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1247 * for elimination. This will ensure that the eliminated parameter
1248 * always has an integer value whenever all the other parameters are integral.
1249 * If there is no such parameter then we return -1.
1251 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1253 unsigned off
= 2 + tab
->M
;
1256 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1258 if (tab
->var
[i
].is_row
)
1260 col
= tab
->var
[i
].index
;
1261 if (col
<= tab
->n_dead
)
1263 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1266 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1267 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1269 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1275 /* Add an equality that is known to be valid to the tableau.
1276 * We first check if we can eliminate a variable or a parameter.
1277 * If not, we add the equality as two inequalities.
1278 * In this case, the equality was a pure parameter equality and there
1279 * is no need to resolve any constraint violations.
1281 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1288 r
= isl_tab_add_row(tab
, eq
);
1292 r
= tab
->con
[r
].index
;
1293 i
= last_var_col_or_int_par_col(tab
, r
);
1295 tab
->con
[r
].is_nonneg
= 1;
1296 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1298 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1299 r
= isl_tab_add_row(tab
, eq
);
1302 tab
->con
[r
].is_nonneg
= 1;
1303 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1306 if (isl_tab_pivot(tab
, r
, i
) < 0)
1308 if (isl_tab_kill_col(tab
, i
) < 0)
1319 /* Check if the given row is a pure constant.
1321 static int is_constant(struct isl_tab
*tab
, int row
)
1323 unsigned off
= 2 + tab
->M
;
1325 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1326 tab
->n_col
- tab
->n_dead
) == -1;
1329 /* Add an equality that may or may not be valid to the tableau.
1330 * If the resulting row is a pure constant, then it must be zero.
1331 * Otherwise, the resulting tableau is empty.
1333 * If the row is not a pure constant, then we add two inequalities,
1334 * each time checking that they can be satisfied.
1335 * In the end we try to use one of the two constraints to eliminate
1338 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1339 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1343 struct isl_tab_undo
*snap
;
1347 snap
= isl_tab_snap(tab
);
1348 r1
= isl_tab_add_row(tab
, eq
);
1351 tab
->con
[r1
].is_nonneg
= 1;
1352 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1355 row
= tab
->con
[r1
].index
;
1356 if (is_constant(tab
, row
)) {
1357 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1358 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1359 if (isl_tab_mark_empty(tab
) < 0)
1363 if (isl_tab_rollback(tab
, snap
) < 0)
1368 if (restore_lexmin(tab
) < 0)
1373 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1375 r2
= isl_tab_add_row(tab
, eq
);
1378 tab
->con
[r2
].is_nonneg
= 1;
1379 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1382 if (restore_lexmin(tab
) < 0)
1387 if (!tab
->con
[r1
].is_row
) {
1388 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1390 } else if (!tab
->con
[r2
].is_row
) {
1391 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1396 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1397 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1399 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1400 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1401 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1402 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1411 /* Add an inequality to the tableau, resolving violations using
1414 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1421 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1422 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1427 r
= isl_tab_add_row(tab
, ineq
);
1430 tab
->con
[r
].is_nonneg
= 1;
1431 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1433 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1434 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1439 if (restore_lexmin(tab
) < 0)
1441 if (!tab
->empty
&& tab
->con
[r
].is_row
&&
1442 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1443 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1451 /* Check if the coefficients of the parameters are all integral.
1453 static int integer_parameter(struct isl_tab
*tab
, int row
)
1457 unsigned off
= 2 + tab
->M
;
1459 for (i
= 0; i
< tab
->n_param
; ++i
) {
1460 /* Eliminated parameter */
1461 if (tab
->var
[i
].is_row
)
1463 col
= tab
->var
[i
].index
;
1464 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1465 tab
->mat
->row
[row
][0]))
1468 for (i
= 0; i
< tab
->n_div
; ++i
) {
1469 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1471 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1472 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1473 tab
->mat
->row
[row
][0]))
1479 /* Check if the coefficients of the non-parameter variables are all integral.
1481 static int integer_variable(struct isl_tab
*tab
, int row
)
1484 unsigned off
= 2 + tab
->M
;
1486 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1487 if (tab
->col_var
[i
] >= 0 &&
1488 (tab
->col_var
[i
] < tab
->n_param
||
1489 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1491 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1492 tab
->mat
->row
[row
][0]))
1498 /* Check if the constant term is integral.
1500 static int integer_constant(struct isl_tab
*tab
, int row
)
1502 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1503 tab
->mat
->row
[row
][0]);
1506 #define I_CST 1 << 0
1507 #define I_PAR 1 << 1
1508 #define I_VAR 1 << 2
1510 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1511 * that is non-integer and therefore requires a cut and return
1512 * the index of the variable.
1513 * For parametric tableaus, there are three parts in a row,
1514 * the constant, the coefficients of the parameters and the rest.
1515 * For each part, we check whether the coefficients in that part
1516 * are all integral and if so, set the corresponding flag in *f.
1517 * If the constant and the parameter part are integral, then the
1518 * current sample value is integral and no cut is required
1519 * (irrespective of whether the variable part is integral).
1521 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1523 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1525 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1528 if (!tab
->var
[var
].is_row
)
1530 row
= tab
->var
[var
].index
;
1531 if (integer_constant(tab
, row
))
1532 ISL_FL_SET(flags
, I_CST
);
1533 if (integer_parameter(tab
, row
))
1534 ISL_FL_SET(flags
, I_PAR
);
1535 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1537 if (integer_variable(tab
, row
))
1538 ISL_FL_SET(flags
, I_VAR
);
1545 /* Check for first (non-parameter) variable that is non-integer and
1546 * therefore requires a cut and return the corresponding row.
1547 * For parametric tableaus, there are three parts in a row,
1548 * the constant, the coefficients of the parameters and the rest.
1549 * For each part, we check whether the coefficients in that part
1550 * are all integral and if so, set the corresponding flag in *f.
1551 * If the constant and the parameter part are integral, then the
1552 * current sample value is integral and no cut is required
1553 * (irrespective of whether the variable part is integral).
1555 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1557 int var
= next_non_integer_var(tab
, -1, f
);
1559 return var
< 0 ? -1 : tab
->var
[var
].index
;
1562 /* Add a (non-parametric) cut to cut away the non-integral sample
1563 * value of the given row.
1565 * If the row is given by
1567 * m r = f + \sum_i a_i y_i
1571 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1573 * The big parameter, if any, is ignored, since it is assumed to be big
1574 * enough to be divisible by any integer.
1575 * If the tableau is actually a parametric tableau, then this function
1576 * is only called when all coefficients of the parameters are integral.
1577 * The cut therefore has zero coefficients for the parameters.
1579 * The current value is known to be negative, so row_sign, if it
1580 * exists, is set accordingly.
1582 * Return the row of the cut or -1.
1584 static int add_cut(struct isl_tab
*tab
, int row
)
1589 unsigned off
= 2 + tab
->M
;
1591 if (isl_tab_extend_cons(tab
, 1) < 0)
1593 r
= isl_tab_allocate_con(tab
);
1597 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1598 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1599 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1600 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1601 isl_int_neg(r_row
[1], r_row
[1]);
1603 isl_int_set_si(r_row
[2], 0);
1604 for (i
= 0; i
< tab
->n_col
; ++i
)
1605 isl_int_fdiv_r(r_row
[off
+ i
],
1606 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1608 tab
->con
[r
].is_nonneg
= 1;
1609 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1612 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1614 return tab
->con
[r
].index
;
1617 /* Given a non-parametric tableau, add cuts until an integer
1618 * sample point is obtained or until the tableau is determined
1619 * to be integer infeasible.
1620 * As long as there is any non-integer value in the sample point,
1621 * we add appropriate cuts, if possible, for each of these
1622 * non-integer values and then resolve the violated
1623 * cut constraints using restore_lexmin.
1624 * If one of the corresponding rows is equal to an integral
1625 * combination of variables/constraints plus a non-integral constant,
1626 * then there is no way to obtain an integer point and we return
1627 * a tableau that is marked empty.
1629 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
)
1640 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1642 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1643 if (isl_tab_mark_empty(tab
) < 0)
1647 row
= tab
->var
[var
].index
;
1648 row
= add_cut(tab
, row
);
1651 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1652 if (restore_lexmin(tab
) < 0)
1663 /* Check whether all the currently active samples also satisfy the inequality
1664 * "ineq" (treated as an equality if eq is set).
1665 * Remove those samples that do not.
1667 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1675 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1676 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1677 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1680 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1682 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1683 1 + tab
->n_var
, &v
);
1684 sgn
= isl_int_sgn(v
);
1685 if (eq
? (sgn
== 0) : (sgn
>= 0))
1687 tab
= isl_tab_drop_sample(tab
, i
);
1699 /* Check whether the sample value of the tableau is finite,
1700 * i.e., either the tableau does not use a big parameter, or
1701 * all values of the variables are equal to the big parameter plus
1702 * some constant. This constant is the actual sample value.
1704 static int sample_is_finite(struct isl_tab
*tab
)
1711 for (i
= 0; i
< tab
->n_var
; ++i
) {
1713 if (!tab
->var
[i
].is_row
)
1715 row
= tab
->var
[i
].index
;
1716 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1722 /* Check if the context tableau of sol has any integer points.
1723 * Leave tab in empty state if no integer point can be found.
1724 * If an integer point can be found and if moreover it is finite,
1725 * then it is added to the list of sample values.
1727 * This function is only called when none of the currently active sample
1728 * values satisfies the most recently added constraint.
1730 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1732 struct isl_tab_undo
*snap
;
1737 snap
= isl_tab_snap(tab
);
1738 if (isl_tab_push_basis(tab
) < 0)
1741 tab
= cut_to_integer_lexmin(tab
);
1745 if (!tab
->empty
&& sample_is_finite(tab
)) {
1746 struct isl_vec
*sample
;
1748 sample
= isl_tab_get_sample_value(tab
);
1750 tab
= isl_tab_add_sample(tab
, sample
);
1753 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1762 /* Check if any of the currently active sample values satisfies
1763 * the inequality "ineq" (an equality if eq is set).
1765 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1773 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1774 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1775 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1778 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1780 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1781 1 + tab
->n_var
, &v
);
1782 sgn
= isl_int_sgn(v
);
1783 if (eq
? (sgn
== 0) : (sgn
>= 0))
1788 return i
< tab
->n_sample
;
1791 /* Add a div specified by "div" to the tableau "tab" and return
1792 * 1 if the div is obviously non-negative.
1794 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1795 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1799 struct isl_mat
*samples
;
1802 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1805 nonneg
= tab
->var
[r
].is_nonneg
;
1806 tab
->var
[r
].frozen
= 1;
1808 samples
= isl_mat_extend(tab
->samples
,
1809 tab
->n_sample
, 1 + tab
->n_var
);
1810 tab
->samples
= samples
;
1813 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1814 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1815 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1816 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1817 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1823 /* Add a div specified by "div" to both the main tableau and
1824 * the context tableau. In case of the main tableau, we only
1825 * need to add an extra div. In the context tableau, we also
1826 * need to express the meaning of the div.
1827 * Return the index of the div or -1 if anything went wrong.
1829 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1830 struct isl_vec
*div
)
1835 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1838 if (!context
->op
->is_ok(context
))
1841 if (isl_tab_extend_vars(tab
, 1) < 0)
1843 r
= isl_tab_allocate_var(tab
);
1847 tab
->var
[r
].is_nonneg
= 1;
1848 tab
->var
[r
].frozen
= 1;
1851 return tab
->n_div
- 1;
1853 context
->op
->invalidate(context
);
1857 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1860 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1862 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1863 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1865 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, 1 + total
))
1872 /* Return the index of a div that corresponds to "div".
1873 * We first check if we already have such a div and if not, we create one.
1875 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1876 struct isl_vec
*div
)
1879 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1884 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1888 return add_div(tab
, context
, div
);
1891 /* Add a parametric cut to cut away the non-integral sample value
1893 * Let a_i be the coefficients of the constant term and the parameters
1894 * and let b_i be the coefficients of the variables or constraints
1895 * in basis of the tableau.
1896 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1898 * The cut is expressed as
1900 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1902 * If q did not already exist in the context tableau, then it is added first.
1903 * If q is in a column of the main tableau then the "+ q" can be accomplished
1904 * by setting the corresponding entry to the denominator of the constraint.
1905 * If q happens to be in a row of the main tableau, then the corresponding
1906 * row needs to be added instead (taking care of the denominators).
1907 * Note that this is very unlikely, but perhaps not entirely impossible.
1909 * The current value of the cut is known to be negative (or at least
1910 * non-positive), so row_sign is set accordingly.
1912 * Return the row of the cut or -1.
1914 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1915 struct isl_context
*context
)
1917 struct isl_vec
*div
;
1924 unsigned off
= 2 + tab
->M
;
1929 div
= get_row_parameter_div(tab
, row
);
1934 d
= context
->op
->get_div(context
, tab
, div
);
1938 if (isl_tab_extend_cons(tab
, 1) < 0)
1940 r
= isl_tab_allocate_con(tab
);
1944 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1945 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1946 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1947 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1948 isl_int_neg(r_row
[1], r_row
[1]);
1950 isl_int_set_si(r_row
[2], 0);
1951 for (i
= 0; i
< tab
->n_param
; ++i
) {
1952 if (tab
->var
[i
].is_row
)
1954 col
= tab
->var
[i
].index
;
1955 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1956 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1957 tab
->mat
->row
[row
][0]);
1958 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1960 for (i
= 0; i
< tab
->n_div
; ++i
) {
1961 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1963 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1964 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1965 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1966 tab
->mat
->row
[row
][0]);
1967 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1969 for (i
= 0; i
< tab
->n_col
; ++i
) {
1970 if (tab
->col_var
[i
] >= 0 &&
1971 (tab
->col_var
[i
] < tab
->n_param
||
1972 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1974 isl_int_fdiv_r(r_row
[off
+ i
],
1975 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1977 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
1979 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1981 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
1982 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
1983 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
1984 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
1985 r_row
[0], tab
->mat
->row
[d_row
] + 1,
1986 off
- 1 + tab
->n_col
);
1987 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
1990 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1991 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
1994 tab
->con
[r
].is_nonneg
= 1;
1995 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1998 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
2002 row
= tab
->con
[r
].index
;
2004 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
2010 /* Construct a tableau for bmap that can be used for computing
2011 * the lexicographic minimum (or maximum) of bmap.
2012 * If not NULL, then dom is the domain where the minimum
2013 * should be computed. In this case, we set up a parametric
2014 * tableau with row signs (initialized to "unknown").
2015 * If M is set, then the tableau will use a big parameter.
2016 * If max is set, then a maximum should be computed instead of a minimum.
2017 * This means that for each variable x, the tableau will contain the variable
2018 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2019 * of the variables in all constraints are negated prior to adding them
2022 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
2023 struct isl_basic_set
*dom
, unsigned M
, int max
)
2026 struct isl_tab
*tab
;
2028 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
2029 isl_basic_map_total_dim(bmap
), M
);
2033 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2035 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
2036 tab
->n_div
= dom
->n_div
;
2037 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
2038 enum isl_tab_row_sign
, tab
->mat
->n_row
);
2042 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2043 if (isl_tab_mark_empty(tab
) < 0)
2048 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
2049 tab
->var
[i
].is_nonneg
= 1;
2050 tab
->var
[i
].frozen
= 1;
2052 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2054 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2055 bmap
->eq
[i
] + 1 + tab
->n_param
,
2056 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2057 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
2059 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2060 bmap
->eq
[i
] + 1 + tab
->n_param
,
2061 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2062 if (!tab
|| tab
->empty
)
2065 if (bmap
->n_eq
&& restore_lexmin(tab
) < 0)
2067 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2069 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2070 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2071 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2072 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
2074 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2075 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2076 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2077 if (!tab
|| tab
->empty
)
2086 /* Given a main tableau where more than one row requires a split,
2087 * determine and return the "best" row to split on.
2089 * Given two rows in the main tableau, if the inequality corresponding
2090 * to the first row is redundant with respect to that of the second row
2091 * in the current tableau, then it is better to split on the second row,
2092 * since in the positive part, both row will be positive.
2093 * (In the negative part a pivot will have to be performed and just about
2094 * anything can happen to the sign of the other row.)
2096 * As a simple heuristic, we therefore select the row that makes the most
2097 * of the other rows redundant.
2099 * Perhaps it would also be useful to look at the number of constraints
2100 * that conflict with any given constraint.
2102 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2104 struct isl_tab_undo
*snap
;
2110 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2113 snap
= isl_tab_snap(context_tab
);
2115 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2116 struct isl_tab_undo
*snap2
;
2117 struct isl_vec
*ineq
= NULL
;
2121 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2123 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2126 ineq
= get_row_parameter_ineq(tab
, split
);
2129 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2134 snap2
= isl_tab_snap(context_tab
);
2136 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2137 struct isl_tab_var
*var
;
2141 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2143 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2146 ineq
= get_row_parameter_ineq(tab
, row
);
2149 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2153 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2154 if (!context_tab
->empty
&&
2155 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2157 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2160 if (best
== -1 || r
> best_r
) {
2164 if (isl_tab_rollback(context_tab
, snap
) < 0)
2171 static struct isl_basic_set
*context_lex_peek_basic_set(
2172 struct isl_context
*context
)
2174 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2177 return isl_tab_peek_bset(clex
->tab
);
2180 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2182 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2186 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2187 int check
, int update
)
2189 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2190 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2192 if (add_lexmin_eq(clex
->tab
, eq
) < 0)
2195 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2199 clex
->tab
= check_integer_feasible(clex
->tab
);
2202 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2205 isl_tab_free(clex
->tab
);
2209 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2210 int check
, int update
)
2212 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2213 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2215 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2217 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2221 clex
->tab
= check_integer_feasible(clex
->tab
);
2224 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2227 isl_tab_free(clex
->tab
);
2231 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2233 struct isl_context
*context
= (struct isl_context
*)user
;
2234 context_lex_add_ineq(context
, ineq
, 0, 0);
2235 return context
->op
->is_ok(context
) ? 0 : -1;
2238 /* Check which signs can be obtained by "ineq" on all the currently
2239 * active sample values. See row_sign for more information.
2241 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2247 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
2249 isl_assert(tab
->mat
->ctx
, tab
->samples
, return isl_tab_row_unknown
);
2250 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
,
2251 return isl_tab_row_unknown
);
2254 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2255 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2256 1 + tab
->n_var
, &tmp
);
2257 sgn
= isl_int_sgn(tmp
);
2258 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2259 if (res
== isl_tab_row_unknown
)
2260 res
= isl_tab_row_pos
;
2261 if (res
== isl_tab_row_neg
)
2262 res
= isl_tab_row_any
;
2265 if (res
== isl_tab_row_unknown
)
2266 res
= isl_tab_row_neg
;
2267 if (res
== isl_tab_row_pos
)
2268 res
= isl_tab_row_any
;
2270 if (res
== isl_tab_row_any
)
2278 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2279 isl_int
*ineq
, int strict
)
2281 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2282 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2285 /* Check whether "ineq" can be added to the tableau without rendering
2288 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2290 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2291 struct isl_tab_undo
*snap
;
2297 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2300 snap
= isl_tab_snap(clex
->tab
);
2301 if (isl_tab_push_basis(clex
->tab
) < 0)
2303 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2304 clex
->tab
= check_integer_feasible(clex
->tab
);
2307 feasible
= !clex
->tab
->empty
;
2308 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2314 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2315 struct isl_vec
*div
)
2317 return get_div(tab
, context
, div
);
2320 /* Add a div specified by "div" to the context tableau and return
2321 * 1 if the div is obviously non-negative.
2322 * context_tab_add_div will always return 1, because all variables
2323 * in a isl_context_lex tableau are non-negative.
2324 * However, if we are using a big parameter in the context, then this only
2325 * reflects the non-negativity of the variable used to _encode_ the
2326 * div, i.e., div' = M + div, so we can't draw any conclusions.
2328 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2330 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2332 nonneg
= context_tab_add_div(clex
->tab
, div
,
2333 context_lex_add_ineq_wrap
, context
);
2341 static int context_lex_detect_equalities(struct isl_context
*context
,
2342 struct isl_tab
*tab
)
2347 static int context_lex_best_split(struct isl_context
*context
,
2348 struct isl_tab
*tab
)
2350 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2351 struct isl_tab_undo
*snap
;
2354 snap
= isl_tab_snap(clex
->tab
);
2355 if (isl_tab_push_basis(clex
->tab
) < 0)
2357 r
= best_split(tab
, clex
->tab
);
2359 if (r
>= 0 && isl_tab_rollback(clex
->tab
, snap
) < 0)
2365 static int context_lex_is_empty(struct isl_context
*context
)
2367 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2370 return clex
->tab
->empty
;
2373 static void *context_lex_save(struct isl_context
*context
)
2375 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2376 struct isl_tab_undo
*snap
;
2378 snap
= isl_tab_snap(clex
->tab
);
2379 if (isl_tab_push_basis(clex
->tab
) < 0)
2381 if (isl_tab_save_samples(clex
->tab
) < 0)
2387 static void context_lex_restore(struct isl_context
*context
, void *save
)
2389 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2390 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2391 isl_tab_free(clex
->tab
);
2396 static int context_lex_is_ok(struct isl_context
*context
)
2398 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2402 /* For each variable in the context tableau, check if the variable can
2403 * only attain non-negative values. If so, mark the parameter as non-negative
2404 * in the main tableau. This allows for a more direct identification of some
2405 * cases of violated constraints.
2407 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2408 struct isl_tab
*context_tab
)
2411 struct isl_tab_undo
*snap
;
2412 struct isl_vec
*ineq
= NULL
;
2413 struct isl_tab_var
*var
;
2416 if (context_tab
->n_var
== 0)
2419 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2423 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2426 snap
= isl_tab_snap(context_tab
);
2429 isl_seq_clr(ineq
->el
, ineq
->size
);
2430 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2431 isl_int_set_si(ineq
->el
[1 + i
], 1);
2432 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2434 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2435 if (!context_tab
->empty
&&
2436 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2438 if (i
>= tab
->n_param
)
2439 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2440 tab
->var
[j
].is_nonneg
= 1;
2443 isl_int_set_si(ineq
->el
[1 + i
], 0);
2444 if (isl_tab_rollback(context_tab
, snap
) < 0)
2448 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2449 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2461 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2462 struct isl_context
*context
, struct isl_tab
*tab
)
2464 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2465 struct isl_tab_undo
*snap
;
2470 snap
= isl_tab_snap(clex
->tab
);
2471 if (isl_tab_push_basis(clex
->tab
) < 0)
2474 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2476 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2485 static void context_lex_invalidate(struct isl_context
*context
)
2487 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2488 isl_tab_free(clex
->tab
);
2492 static void context_lex_free(struct isl_context
*context
)
2494 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2495 isl_tab_free(clex
->tab
);
2499 struct isl_context_op isl_context_lex_op
= {
2500 context_lex_detect_nonnegative_parameters
,
2501 context_lex_peek_basic_set
,
2502 context_lex_peek_tab
,
2504 context_lex_add_ineq
,
2505 context_lex_ineq_sign
,
2506 context_lex_test_ineq
,
2507 context_lex_get_div
,
2508 context_lex_add_div
,
2509 context_lex_detect_equalities
,
2510 context_lex_best_split
,
2511 context_lex_is_empty
,
2514 context_lex_restore
,
2515 context_lex_invalidate
,
2519 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2521 struct isl_tab
*tab
;
2523 bset
= isl_basic_set_cow(bset
);
2526 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2529 if (isl_tab_track_bset(tab
, bset
) < 0)
2531 tab
= isl_tab_init_samples(tab
);
2534 isl_basic_set_free(bset
);
2538 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2540 struct isl_context_lex
*clex
;
2545 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2549 clex
->context
.op
= &isl_context_lex_op
;
2551 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2552 if (restore_lexmin(clex
->tab
) < 0)
2554 clex
->tab
= check_integer_feasible(clex
->tab
);
2558 return &clex
->context
;
2560 clex
->context
.op
->free(&clex
->context
);
2564 struct isl_context_gbr
{
2565 struct isl_context context
;
2566 struct isl_tab
*tab
;
2567 struct isl_tab
*shifted
;
2568 struct isl_tab
*cone
;
2571 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2572 struct isl_context
*context
, struct isl_tab
*tab
)
2574 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2577 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2580 static struct isl_basic_set
*context_gbr_peek_basic_set(
2581 struct isl_context
*context
)
2583 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2586 return isl_tab_peek_bset(cgbr
->tab
);
2589 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2591 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2595 /* Initialize the "shifted" tableau of the context, which
2596 * contains the constraints of the original tableau shifted
2597 * by the sum of all negative coefficients. This ensures
2598 * that any rational point in the shifted tableau can
2599 * be rounded up to yield an integer point in the original tableau.
2601 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2604 struct isl_vec
*cst
;
2605 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2606 unsigned dim
= isl_basic_set_total_dim(bset
);
2608 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2612 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2613 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2614 for (j
= 0; j
< dim
; ++j
) {
2615 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2617 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2618 bset
->ineq
[i
][1 + j
]);
2622 cgbr
->shifted
= isl_tab_from_basic_set(bset
);
2624 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2625 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2630 /* Check if the shifted tableau is non-empty, and if so
2631 * use the sample point to construct an integer point
2632 * of the context tableau.
2634 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2636 struct isl_vec
*sample
;
2639 gbr_init_shifted(cgbr
);
2642 if (cgbr
->shifted
->empty
)
2643 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2645 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2646 sample
= isl_vec_ceil(sample
);
2651 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2658 for (i
= 0; i
< bset
->n_eq
; ++i
)
2659 isl_int_set_si(bset
->eq
[i
][0], 0);
2661 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2662 isl_int_set_si(bset
->ineq
[i
][0], 0);
2667 static int use_shifted(struct isl_context_gbr
*cgbr
)
2669 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2672 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2674 struct isl_basic_set
*bset
;
2675 struct isl_basic_set
*cone
;
2677 if (isl_tab_sample_is_integer(cgbr
->tab
))
2678 return isl_tab_get_sample_value(cgbr
->tab
);
2680 if (use_shifted(cgbr
)) {
2681 struct isl_vec
*sample
;
2683 sample
= gbr_get_shifted_sample(cgbr
);
2684 if (!sample
|| sample
->size
> 0)
2687 isl_vec_free(sample
);
2691 bset
= isl_tab_peek_bset(cgbr
->tab
);
2692 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2695 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
2698 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2701 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2702 struct isl_vec
*sample
;
2703 struct isl_tab_undo
*snap
;
2705 if (cgbr
->tab
->basis
) {
2706 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2707 isl_mat_free(cgbr
->tab
->basis
);
2708 cgbr
->tab
->basis
= NULL
;
2710 cgbr
->tab
->n_zero
= 0;
2711 cgbr
->tab
->n_unbounded
= 0;
2714 snap
= isl_tab_snap(cgbr
->tab
);
2716 sample
= isl_tab_sample(cgbr
->tab
);
2718 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2719 isl_vec_free(sample
);
2726 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2727 cone
= drop_constant_terms(cone
);
2728 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2729 cone
= isl_basic_set_underlying_set(cone
);
2730 cone
= isl_basic_set_gauss(cone
, NULL
);
2732 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2733 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2734 bset
= isl_basic_set_underlying_set(bset
);
2735 bset
= isl_basic_set_gauss(bset
, NULL
);
2737 return isl_basic_set_sample_with_cone(bset
, cone
);
2740 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2742 struct isl_vec
*sample
;
2747 if (cgbr
->tab
->empty
)
2750 sample
= gbr_get_sample(cgbr
);
2754 if (sample
->size
== 0) {
2755 isl_vec_free(sample
);
2756 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2761 cgbr
->tab
= isl_tab_add_sample(cgbr
->tab
, sample
);
2765 isl_tab_free(cgbr
->tab
);
2769 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2774 if (isl_tab_extend_cons(tab
, 2) < 0)
2777 if (isl_tab_add_eq(tab
, eq
) < 0)
2786 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2787 int check
, int update
)
2789 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2791 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2793 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2794 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2796 if (isl_tab_add_eq(cgbr
->cone
, eq
) < 0)
2801 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2805 check_gbr_integer_feasible(cgbr
);
2808 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2811 isl_tab_free(cgbr
->tab
);
2815 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2820 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2823 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2826 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2829 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2831 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2834 for (i
= 0; i
< dim
; ++i
) {
2835 if (!isl_int_is_neg(ineq
[1 + i
]))
2837 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2840 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2843 for (i
= 0; i
< dim
; ++i
) {
2844 if (!isl_int_is_neg(ineq
[1 + i
]))
2846 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2850 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2851 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2853 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2859 isl_tab_free(cgbr
->tab
);
2863 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2864 int check
, int update
)
2866 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2868 add_gbr_ineq(cgbr
, ineq
);
2873 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2877 check_gbr_integer_feasible(cgbr
);
2880 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2883 isl_tab_free(cgbr
->tab
);
2887 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2889 struct isl_context
*context
= (struct isl_context
*)user
;
2890 context_gbr_add_ineq(context
, ineq
, 0, 0);
2891 return context
->op
->is_ok(context
) ? 0 : -1;
2894 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2895 isl_int
*ineq
, int strict
)
2897 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2898 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2901 /* Check whether "ineq" can be added to the tableau without rendering
2904 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2906 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2907 struct isl_tab_undo
*snap
;
2908 struct isl_tab_undo
*shifted_snap
= NULL
;
2909 struct isl_tab_undo
*cone_snap
= NULL
;
2915 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2918 snap
= isl_tab_snap(cgbr
->tab
);
2920 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
2922 cone_snap
= isl_tab_snap(cgbr
->cone
);
2923 add_gbr_ineq(cgbr
, ineq
);
2924 check_gbr_integer_feasible(cgbr
);
2927 feasible
= !cgbr
->tab
->empty
;
2928 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
2931 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
2933 } else if (cgbr
->shifted
) {
2934 isl_tab_free(cgbr
->shifted
);
2935 cgbr
->shifted
= NULL
;
2938 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
2940 } else if (cgbr
->cone
) {
2941 isl_tab_free(cgbr
->cone
);
2948 /* Return the column of the last of the variables associated to
2949 * a column that has a non-zero coefficient.
2950 * This function is called in a context where only coefficients
2951 * of parameters or divs can be non-zero.
2953 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
2958 if (tab
->n_var
== 0)
2961 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
2962 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
2964 if (tab
->var
[i
].is_row
)
2966 col
= tab
->var
[i
].index
;
2967 if (!isl_int_is_zero(p
[col
]))
2974 /* Look through all the recently added equalities in the context
2975 * to see if we can propagate any of them to the main tableau.
2977 * The newly added equalities in the context are encoded as pairs
2978 * of inequalities starting at inequality "first".
2980 * We tentatively add each of these equalities to the main tableau
2981 * and if this happens to result in a row with a final coefficient
2982 * that is one or negative one, we use it to kill a column
2983 * in the main tableau. Otherwise, we discard the tentatively
2986 static void propagate_equalities(struct isl_context_gbr
*cgbr
,
2987 struct isl_tab
*tab
, unsigned first
)
2990 struct isl_vec
*eq
= NULL
;
2992 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2996 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
2999 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
3000 tab
->n_var
- tab
->n_param
- tab
->n_div
);
3001 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
3004 struct isl_tab_undo
*snap
;
3005 snap
= isl_tab_snap(tab
);
3007 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
3008 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
3009 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
3012 r
= isl_tab_add_row(tab
, eq
->el
);
3015 r
= tab
->con
[r
].index
;
3016 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
3017 if (j
< 0 || j
< tab
->n_dead
||
3018 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
3019 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
3020 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
3021 if (isl_tab_rollback(tab
, snap
) < 0)
3025 if (isl_tab_pivot(tab
, r
, j
) < 0)
3027 if (isl_tab_kill_col(tab
, j
) < 0)
3030 if (restore_lexmin(tab
) < 0)
3039 isl_tab_free(cgbr
->tab
);
3043 static int context_gbr_detect_equalities(struct isl_context
*context
,
3044 struct isl_tab
*tab
)
3046 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3047 struct isl_ctx
*ctx
;
3050 ctx
= cgbr
->tab
->mat
->ctx
;
3053 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
3054 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
3057 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
3060 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
3063 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
3064 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
3065 if (cgbr
->tab
&& cgbr
->tab
->bmap
->n_ineq
> n_ineq
)
3066 propagate_equalities(cgbr
, tab
, n_ineq
);
3070 isl_tab_free(cgbr
->tab
);
3075 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
3076 struct isl_vec
*div
)
3078 return get_div(tab
, context
, div
);
3081 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
3083 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3087 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3089 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3091 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3094 cgbr
->cone
->bmap
= isl_basic_map_extend_dim(cgbr
->cone
->bmap
,
3095 isl_basic_map_get_dim(cgbr
->cone
->bmap
), 1, 0, 2);
3096 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3099 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3100 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3103 return context_tab_add_div(cgbr
->tab
, div
,
3104 context_gbr_add_ineq_wrap
, context
);
3107 static int context_gbr_best_split(struct isl_context
*context
,
3108 struct isl_tab
*tab
)
3110 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3111 struct isl_tab_undo
*snap
;
3114 snap
= isl_tab_snap(cgbr
->tab
);
3115 r
= best_split(tab
, cgbr
->tab
);
3117 if (r
>= 0 && isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3123 static int context_gbr_is_empty(struct isl_context
*context
)
3125 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3128 return cgbr
->tab
->empty
;
3131 struct isl_gbr_tab_undo
{
3132 struct isl_tab_undo
*tab_snap
;
3133 struct isl_tab_undo
*shifted_snap
;
3134 struct isl_tab_undo
*cone_snap
;
3137 static void *context_gbr_save(struct isl_context
*context
)
3139 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3140 struct isl_gbr_tab_undo
*snap
;
3142 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3146 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3147 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3151 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3153 snap
->shifted_snap
= NULL
;
3156 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3158 snap
->cone_snap
= NULL
;
3166 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3168 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3169 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3172 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0) {
3173 isl_tab_free(cgbr
->tab
);
3177 if (snap
->shifted_snap
) {
3178 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3180 } else if (cgbr
->shifted
) {
3181 isl_tab_free(cgbr
->shifted
);
3182 cgbr
->shifted
= NULL
;
3185 if (snap
->cone_snap
) {
3186 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3188 } else if (cgbr
->cone
) {
3189 isl_tab_free(cgbr
->cone
);
3198 isl_tab_free(cgbr
->tab
);
3202 static int context_gbr_is_ok(struct isl_context
*context
)
3204 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3208 static void context_gbr_invalidate(struct isl_context
*context
)
3210 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3211 isl_tab_free(cgbr
->tab
);
3215 static void context_gbr_free(struct isl_context
*context
)
3217 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3218 isl_tab_free(cgbr
->tab
);
3219 isl_tab_free(cgbr
->shifted
);
3220 isl_tab_free(cgbr
->cone
);
3224 struct isl_context_op isl_context_gbr_op
= {
3225 context_gbr_detect_nonnegative_parameters
,
3226 context_gbr_peek_basic_set
,
3227 context_gbr_peek_tab
,
3229 context_gbr_add_ineq
,
3230 context_gbr_ineq_sign
,
3231 context_gbr_test_ineq
,
3232 context_gbr_get_div
,
3233 context_gbr_add_div
,
3234 context_gbr_detect_equalities
,
3235 context_gbr_best_split
,
3236 context_gbr_is_empty
,
3239 context_gbr_restore
,
3240 context_gbr_invalidate
,
3244 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3246 struct isl_context_gbr
*cgbr
;
3251 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3255 cgbr
->context
.op
= &isl_context_gbr_op
;
3257 cgbr
->shifted
= NULL
;
3259 cgbr
->tab
= isl_tab_from_basic_set(dom
);
3260 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3263 if (isl_tab_track_bset(cgbr
->tab
,
3264 isl_basic_set_cow(isl_basic_set_copy(dom
))) < 0)
3266 check_gbr_integer_feasible(cgbr
);
3268 return &cgbr
->context
;
3270 cgbr
->context
.op
->free(&cgbr
->context
);
3274 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3279 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3280 return isl_context_lex_alloc(dom
);
3282 return isl_context_gbr_alloc(dom
);
3285 /* Construct an isl_sol_map structure for accumulating the solution.
3286 * If track_empty is set, then we also keep track of the parts
3287 * of the context where there is no solution.
3288 * If max is set, then we are solving a maximization, rather than
3289 * a minimization problem, which means that the variables in the
3290 * tableau have value "M - x" rather than "M + x".
3292 static struct isl_sol_map
*sol_map_init(struct isl_basic_map
*bmap
,
3293 struct isl_basic_set
*dom
, int track_empty
, int max
)
3295 struct isl_sol_map
*sol_map
= NULL
;
3300 sol_map
= isl_calloc_type(bmap
->ctx
, struct isl_sol_map
);
3304 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3305 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3306 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3307 sol_map
->sol
.max
= max
;
3308 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3309 sol_map
->sol
.add
= &sol_map_add_wrap
;
3310 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3311 sol_map
->sol
.free
= &sol_map_free_wrap
;
3312 sol_map
->map
= isl_map_alloc_dim(isl_basic_map_get_dim(bmap
), 1,
3317 sol_map
->sol
.context
= isl_context_alloc(dom
);
3318 if (!sol_map
->sol
.context
)
3322 sol_map
->empty
= isl_set_alloc_dim(isl_basic_set_get_dim(dom
),
3323 1, ISL_SET_DISJOINT
);
3324 if (!sol_map
->empty
)
3328 isl_basic_set_free(dom
);
3331 isl_basic_set_free(dom
);
3332 sol_map_free(sol_map
);
3336 /* Check whether all coefficients of (non-parameter) variables
3337 * are non-positive, meaning that no pivots can be performed on the row.
3339 static int is_critical(struct isl_tab
*tab
, int row
)
3342 unsigned off
= 2 + tab
->M
;
3344 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3345 if (tab
->col_var
[j
] >= 0 &&
3346 (tab
->col_var
[j
] < tab
->n_param
||
3347 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3350 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3357 /* Check whether the inequality represented by vec is strict over the integers,
3358 * i.e., there are no integer values satisfying the constraint with
3359 * equality. This happens if the gcd of the coefficients is not a divisor
3360 * of the constant term. If so, scale the constraint down by the gcd
3361 * of the coefficients.
3363 static int is_strict(struct isl_vec
*vec
)
3369 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3370 if (!isl_int_is_one(gcd
)) {
3371 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3372 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3373 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3380 /* Determine the sign of the given row of the main tableau.
3381 * The result is one of
3382 * isl_tab_row_pos: always non-negative; no pivot needed
3383 * isl_tab_row_neg: always non-positive; pivot
3384 * isl_tab_row_any: can be both positive and negative; split
3386 * We first handle some simple cases
3387 * - the row sign may be known already
3388 * - the row may be obviously non-negative
3389 * - the parametric constant may be equal to that of another row
3390 * for which we know the sign. This sign will be either "pos" or
3391 * "any". If it had been "neg" then we would have pivoted before.
3393 * If none of these cases hold, we check the value of the row for each
3394 * of the currently active samples. Based on the signs of these values
3395 * we make an initial determination of the sign of the row.
3397 * all zero -> unk(nown)
3398 * all non-negative -> pos
3399 * all non-positive -> neg
3400 * both negative and positive -> all
3402 * If we end up with "all", we are done.
3403 * Otherwise, we perform a check for positive and/or negative
3404 * values as follows.
3406 * samples neg unk pos
3412 * There is no special sign for "zero", because we can usually treat zero
3413 * as either non-negative or non-positive, whatever works out best.
3414 * However, if the row is "critical", meaning that pivoting is impossible
3415 * then we don't want to limp zero with the non-positive case, because
3416 * then we we would lose the solution for those values of the parameters
3417 * where the value of the row is zero. Instead, we treat 0 as non-negative
3418 * ensuring a split if the row can attain both zero and negative values.
3419 * The same happens when the original constraint was one that could not
3420 * be satisfied with equality by any integer values of the parameters.
3421 * In this case, we normalize the constraint, but then a value of zero
3422 * for the normalized constraint is actually a positive value for the
3423 * original constraint, so again we need to treat zero as non-negative.
3424 * In both these cases, we have the following decision tree instead:
3426 * all non-negative -> pos
3427 * all negative -> neg
3428 * both negative and non-negative -> all
3436 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3437 struct isl_sol
*sol
, int row
)
3439 struct isl_vec
*ineq
= NULL
;
3440 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
3445 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3446 return tab
->row_sign
[row
];
3447 if (is_obviously_nonneg(tab
, row
))
3448 return isl_tab_row_pos
;
3449 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3450 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3452 if (identical_parameter_line(tab
, row
, row2
))
3453 return tab
->row_sign
[row2
];
3456 critical
= is_critical(tab
, row
);
3458 ineq
= get_row_parameter_ineq(tab
, row
);
3462 strict
= is_strict(ineq
);
3464 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3465 critical
|| strict
);
3467 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3468 /* test for negative values */
3470 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3471 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3473 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3477 res
= isl_tab_row_pos
;
3479 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3481 if (res
== isl_tab_row_neg
) {
3482 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3483 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3487 if (res
== isl_tab_row_neg
) {
3488 /* test for positive values */
3490 if (!critical
&& !strict
)
3491 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3493 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3497 res
= isl_tab_row_any
;
3504 return isl_tab_row_unknown
;
3507 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3509 /* Find solutions for values of the parameters that satisfy the given
3512 * We currently take a snapshot of the context tableau that is reset
3513 * when we return from this function, while we make a copy of the main
3514 * tableau, leaving the original main tableau untouched.
3515 * These are fairly arbitrary choices. Making a copy also of the context
3516 * tableau would obviate the need to undo any changes made to it later,
3517 * while taking a snapshot of the main tableau could reduce memory usage.
3518 * If we were to switch to taking a snapshot of the main tableau,
3519 * we would have to keep in mind that we need to save the row signs
3520 * and that we need to do this before saving the current basis
3521 * such that the basis has been restore before we restore the row signs.
3523 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3529 saved
= sol
->context
->op
->save(sol
->context
);
3531 tab
= isl_tab_dup(tab
);
3535 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3537 find_solutions(sol
, tab
);
3540 sol
->context
->op
->restore(sol
->context
, saved
);
3546 /* Record the absence of solutions for those values of the parameters
3547 * that do not satisfy the given inequality with equality.
3549 static void no_sol_in_strict(struct isl_sol
*sol
,
3550 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3555 if (!sol
->context
|| sol
->error
)
3557 saved
= sol
->context
->op
->save(sol
->context
);
3559 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3561 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3570 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3572 sol
->context
->op
->restore(sol
->context
, saved
);
3578 /* Compute the lexicographic minimum of the set represented by the main
3579 * tableau "tab" within the context "sol->context_tab".
3580 * On entry the sample value of the main tableau is lexicographically
3581 * less than or equal to this lexicographic minimum.
3582 * Pivots are performed until a feasible point is found, which is then
3583 * necessarily equal to the minimum, or until the tableau is found to
3584 * be infeasible. Some pivots may need to be performed for only some
3585 * feasible values of the context tableau. If so, the context tableau
3586 * is split into a part where the pivot is needed and a part where it is not.
3588 * Whenever we enter the main loop, the main tableau is such that no
3589 * "obvious" pivots need to be performed on it, where "obvious" means
3590 * that the given row can be seen to be negative without looking at
3591 * the context tableau. In particular, for non-parametric problems,
3592 * no pivots need to be performed on the main tableau.
3593 * The caller of find_solutions is responsible for making this property
3594 * hold prior to the first iteration of the loop, while restore_lexmin
3595 * is called before every other iteration.
3597 * Inside the main loop, we first examine the signs of the rows of
3598 * the main tableau within the context of the context tableau.
3599 * If we find a row that is always non-positive for all values of
3600 * the parameters satisfying the context tableau and negative for at
3601 * least one value of the parameters, we perform the appropriate pivot
3602 * and start over. An exception is the case where no pivot can be
3603 * performed on the row. In this case, we require that the sign of
3604 * the row is negative for all values of the parameters (rather than just
3605 * non-positive). This special case is handled inside row_sign, which
3606 * will say that the row can have any sign if it determines that it can
3607 * attain both negative and zero values.
3609 * If we can't find a row that always requires a pivot, but we can find
3610 * one or more rows that require a pivot for some values of the parameters
3611 * (i.e., the row can attain both positive and negative signs), then we split
3612 * the context tableau into two parts, one where we force the sign to be
3613 * non-negative and one where we force is to be negative.
3614 * The non-negative part is handled by a recursive call (through find_in_pos).
3615 * Upon returning from this call, we continue with the negative part and
3616 * perform the required pivot.
3618 * If no such rows can be found, all rows are non-negative and we have
3619 * found a (rational) feasible point. If we only wanted a rational point
3621 * Otherwise, we check if all values of the sample point of the tableau
3622 * are integral for the variables. If so, we have found the minimal
3623 * integral point and we are done.
3624 * If the sample point is not integral, then we need to make a distinction
3625 * based on whether the constant term is non-integral or the coefficients
3626 * of the parameters. Furthermore, in order to decide how to handle
3627 * the non-integrality, we also need to know whether the coefficients
3628 * of the other columns in the tableau are integral. This leads
3629 * to the following table. The first two rows do not correspond
3630 * to a non-integral sample point and are only mentioned for completeness.
3632 * constant parameters other
3635 * int int rat | -> no problem
3637 * rat int int -> fail
3639 * rat int rat -> cut
3642 * rat rat rat | -> parametric cut
3645 * rat rat int | -> split context
3647 * If the parametric constant is completely integral, then there is nothing
3648 * to be done. If the constant term is non-integral, but all the other
3649 * coefficient are integral, then there is nothing that can be done
3650 * and the tableau has no integral solution.
3651 * If, on the other hand, one or more of the other columns have rational
3652 * coefficients, but the parameter coefficients are all integral, then
3653 * we can perform a regular (non-parametric) cut.
3654 * Finally, if there is any parameter coefficient that is non-integral,
3655 * then we need to involve the context tableau. There are two cases here.
3656 * If at least one other column has a rational coefficient, then we
3657 * can perform a parametric cut in the main tableau by adding a new
3658 * integer division in the context tableau.
3659 * If all other columns have integral coefficients, then we need to
3660 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3661 * is always integral. We do this by introducing an integer division
3662 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3663 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3664 * Since q is expressed in the tableau as
3665 * c + \sum a_i y_i - m q >= 0
3666 * -c - \sum a_i y_i + m q + m - 1 >= 0
3667 * it is sufficient to add the inequality
3668 * -c - \sum a_i y_i + m q >= 0
3669 * In the part of the context where this inequality does not hold, the
3670 * main tableau is marked as being empty.
3672 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3674 struct isl_context
*context
;
3677 if (!tab
|| sol
->error
)
3680 context
= sol
->context
;
3684 if (context
->op
->is_empty(context
))
3687 for (r
= 0; r
>= 0 && tab
&& !tab
->empty
; r
= restore_lexmin(tab
)) {
3690 enum isl_tab_row_sign sgn
;
3694 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3695 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3697 sgn
= row_sign(tab
, sol
, row
);
3700 tab
->row_sign
[row
] = sgn
;
3701 if (sgn
== isl_tab_row_any
)
3703 if (sgn
== isl_tab_row_any
&& split
== -1)
3705 if (sgn
== isl_tab_row_neg
)
3708 if (row
< tab
->n_row
)
3711 struct isl_vec
*ineq
;
3713 split
= context
->op
->best_split(context
, tab
);
3716 ineq
= get_row_parameter_ineq(tab
, split
);
3720 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3721 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3723 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3724 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3726 tab
->row_sign
[split
] = isl_tab_row_pos
;
3728 find_in_pos(sol
, tab
, ineq
->el
);
3729 tab
->row_sign
[split
] = isl_tab_row_neg
;
3731 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3732 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3734 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3742 row
= first_non_integer_row(tab
, &flags
);
3745 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3746 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3747 if (isl_tab_mark_empty(tab
) < 0)
3751 row
= add_cut(tab
, row
);
3752 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3753 struct isl_vec
*div
;
3754 struct isl_vec
*ineq
;
3756 div
= get_row_split_div(tab
, row
);
3759 d
= context
->op
->get_div(context
, tab
, div
);
3763 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3767 no_sol_in_strict(sol
, tab
, ineq
);
3768 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3769 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3771 if (sol
->error
|| !context
->op
->is_ok(context
))
3773 tab
= set_row_cst_to_div(tab
, row
, d
);
3774 if (context
->op
->is_empty(context
))
3777 row
= add_parametric_cut(tab
, row
, context
);
3792 /* Compute the lexicographic minimum of the set represented by the main
3793 * tableau "tab" within the context "sol->context_tab".
3795 * As a preprocessing step, we first transfer all the purely parametric
3796 * equalities from the main tableau to the context tableau, i.e.,
3797 * parameters that have been pivoted to a row.
3798 * These equalities are ignored by the main algorithm, because the
3799 * corresponding rows may not be marked as being non-negative.
3800 * In parts of the context where the added equality does not hold,
3801 * the main tableau is marked as being empty.
3803 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3812 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3816 if (tab
->row_var
[row
] < 0)
3818 if (tab
->row_var
[row
] >= tab
->n_param
&&
3819 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3821 if (tab
->row_var
[row
] < tab
->n_param
)
3822 p
= tab
->row_var
[row
];
3824 p
= tab
->row_var
[row
]
3825 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3827 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3830 get_row_parameter_line(tab
, row
, eq
->el
);
3831 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3832 eq
= isl_vec_normalize(eq
);
3835 no_sol_in_strict(sol
, tab
, eq
);
3837 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3839 no_sol_in_strict(sol
, tab
, eq
);
3840 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3842 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3846 if (isl_tab_mark_redundant(tab
, row
) < 0)
3849 if (sol
->context
->op
->is_empty(sol
->context
))
3852 row
= tab
->n_redundant
- 1;
3855 find_solutions(sol
, tab
);
3866 static void sol_map_find_solutions(struct isl_sol_map
*sol_map
,
3867 struct isl_tab
*tab
)
3869 find_solutions_main(&sol_map
->sol
, tab
);
3872 /* Check if integer division "div" of "dom" also occurs in "bmap".
3873 * If so, return its position within the divs.
3874 * If not, return -1.
3876 static int find_context_div(struct isl_basic_map
*bmap
,
3877 struct isl_basic_set
*dom
, unsigned div
)
3880 unsigned b_dim
= isl_dim_total(bmap
->dim
);
3881 unsigned d_dim
= isl_dim_total(dom
->dim
);
3883 if (isl_int_is_zero(dom
->div
[div
][0]))
3885 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
3888 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3889 if (isl_int_is_zero(bmap
->div
[i
][0]))
3891 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
3892 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
3894 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
3900 /* The correspondence between the variables in the main tableau,
3901 * the context tableau, and the input map and domain is as follows.
3902 * The first n_param and the last n_div variables of the main tableau
3903 * form the variables of the context tableau.
3904 * In the basic map, these n_param variables correspond to the
3905 * parameters and the input dimensions. In the domain, they correspond
3906 * to the parameters and the set dimensions.
3907 * The n_div variables correspond to the integer divisions in the domain.
3908 * To ensure that everything lines up, we may need to copy some of the
3909 * integer divisions of the domain to the map. These have to be placed
3910 * in the same order as those in the context and they have to be placed
3911 * after any other integer divisions that the map may have.
3912 * This function performs the required reordering.
3914 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
3915 struct isl_basic_set
*dom
)
3921 for (i
= 0; i
< dom
->n_div
; ++i
)
3922 if (find_context_div(bmap
, dom
, i
) != -1)
3924 other
= bmap
->n_div
- common
;
3925 if (dom
->n_div
- common
> 0) {
3926 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
3927 dom
->n_div
- common
, 0, 0);
3931 for (i
= 0; i
< dom
->n_div
; ++i
) {
3932 int pos
= find_context_div(bmap
, dom
, i
);
3934 pos
= isl_basic_map_alloc_div(bmap
);
3937 isl_int_set_si(bmap
->div
[pos
][0], 0);
3939 if (pos
!= other
+ i
)
3940 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
3944 isl_basic_map_free(bmap
);
3948 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3949 * some obvious symmetries.
3951 * We make sure the divs in the domain are properly ordered,
3952 * because they will be added one by one in the given order
3953 * during the construction of the solution map.
3955 static __isl_give isl_map
*basic_map_partial_lexopt_base(
3956 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
3957 __isl_give isl_set
**empty
, int max
)
3959 isl_map
*result
= NULL
;
3960 struct isl_tab
*tab
;
3961 struct isl_sol_map
*sol_map
= NULL
;
3962 struct isl_context
*context
;
3965 dom
= isl_basic_set_order_divs(dom
);
3966 bmap
= align_context_divs(bmap
, dom
);
3968 sol_map
= sol_map_init(bmap
, dom
, !!empty
, max
);
3972 context
= sol_map
->sol
.context
;
3973 if (isl_basic_set_plain_is_empty(context
->op
->peek_basic_set(context
)))
3975 else if (isl_basic_map_plain_is_empty(bmap
))
3976 sol_map_add_empty_if_needed(sol_map
,
3977 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
3979 tab
= tab_for_lexmin(bmap
,
3980 context
->op
->peek_basic_set(context
), 1, max
);
3981 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
3982 sol_map_find_solutions(sol_map
, tab
);
3984 if (sol_map
->sol
.error
)
3987 result
= isl_map_copy(sol_map
->map
);
3989 *empty
= isl_set_copy(sol_map
->empty
);
3990 sol_free(&sol_map
->sol
);
3991 isl_basic_map_free(bmap
);
3994 sol_free(&sol_map
->sol
);
3995 isl_basic_map_free(bmap
);
3999 /* Structure used during detection of parallel constraints.
4000 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4001 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4002 * val: the coefficients of the output variables
4004 struct isl_constraint_equal_info
{
4005 isl_basic_map
*bmap
;
4011 /* Check whether the coefficients of the output variables
4012 * of the constraint in "entry" are equal to info->val.
4014 static int constraint_equal(const void *entry
, const void *val
)
4016 isl_int
**row
= (isl_int
**)entry
;
4017 const struct isl_constraint_equal_info
*info
= val
;
4019 return isl_seq_eq((*row
) + 1 + info
->n_in
, info
->val
, info
->n_out
);
4022 /* Check whether "bmap" has a pair of constraints that have
4023 * the same coefficients for the output variables.
4024 * Note that the coefficients of the existentially quantified
4025 * variables need to be zero since the existentially quantified
4026 * of the result are usually not the same as those of the input.
4027 * the isl_dim_out and isl_dim_div dimensions.
4028 * If so, return 1 and return the row indices of the two constraints
4029 * in *first and *second.
4031 static int parallel_constraints(__isl_keep isl_basic_map
*bmap
,
4032 int *first
, int *second
)
4035 isl_ctx
*ctx
= isl_basic_map_get_ctx(bmap
);
4036 struct isl_hash_table
*table
= NULL
;
4037 struct isl_hash_table_entry
*entry
;
4038 struct isl_constraint_equal_info info
;
4042 ctx
= isl_basic_map_get_ctx(bmap
);
4043 table
= isl_hash_table_alloc(ctx
, bmap
->n_ineq
);
4047 info
.n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4048 isl_basic_map_dim(bmap
, isl_dim_in
);
4050 n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4051 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4052 info
.n_out
= n_out
+ n_div
;
4053 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4056 info
.val
= bmap
->ineq
[i
] + 1 + info
.n_in
;
4057 if (isl_seq_first_non_zero(info
.val
, n_out
) < 0)
4059 if (isl_seq_first_non_zero(info
.val
+ n_out
, n_div
) >= 0)
4061 hash
= isl_seq_get_hash(info
.val
, info
.n_out
);
4062 entry
= isl_hash_table_find(ctx
, table
, hash
,
4063 constraint_equal
, &info
, 1);
4068 entry
->data
= &bmap
->ineq
[i
];
4071 if (i
< bmap
->n_ineq
) {
4072 *first
= ((isl_int
**)entry
->data
) - bmap
->ineq
;
4076 isl_hash_table_free(ctx
, table
);
4078 return i
< bmap
->n_ineq
;
4080 isl_hash_table_free(ctx
, table
);
4084 /* Given a set of upper bounds on the last "input" variable m,
4085 * construct a set that assigns the minimal upper bound to m, i.e.,
4086 * construct a set that divides the space into cells where one
4087 * of the upper bounds is smaller than all the others and assign
4088 * this upper bound to m.
4090 * In particular, if there are n bounds b_i, then the result
4091 * consists of n basic sets, each one of the form
4094 * b_i <= b_j for j > i
4095 * b_i < b_j for j < i
4097 static __isl_give isl_set
*set_minimum(__isl_take isl_dim
*dim
,
4098 __isl_take isl_mat
*var
)
4101 isl_basic_set
*bset
= NULL
;
4103 isl_set
*set
= NULL
;
4108 ctx
= isl_dim_get_ctx(dim
);
4109 set
= isl_set_alloc_dim(isl_dim_copy(dim
),
4110 var
->n_row
, ISL_SET_DISJOINT
);
4112 for (i
= 0; i
< var
->n_row
; ++i
) {
4113 bset
= isl_basic_set_alloc_dim(isl_dim_copy(dim
), 0,
4115 k
= isl_basic_set_alloc_equality(bset
);
4118 isl_seq_cpy(bset
->eq
[k
], var
->row
[i
], var
->n_col
);
4119 isl_int_set_si(bset
->eq
[k
][var
->n_col
], -1);
4120 for (j
= 0; j
< var
->n_row
; ++j
) {
4123 k
= isl_basic_set_alloc_inequality(bset
);
4126 isl_seq_combine(bset
->ineq
[k
], ctx
->one
, var
->row
[j
],
4127 ctx
->negone
, var
->row
[i
],
4129 isl_int_set_si(bset
->ineq
[k
][var
->n_col
], 0);
4131 isl_int_sub_ui(bset
->ineq
[k
][0],
4132 bset
->ineq
[k
][0], 1);
4134 bset
= isl_basic_set_finalize(bset
);
4135 set
= isl_set_add_basic_set(set
, bset
);
4142 isl_basic_set_free(bset
);
4149 /* Given that the last input variable of "bmap" represents the minimum
4150 * of the bounds in "cst", check whether we need to split the domain
4151 * based on which bound attains the minimum.
4153 * A split is needed when the minimum appears in an integer division
4154 * or in an equality. Otherwise, it is only needed if it appears in
4155 * an upper bound that is different from the upper bounds on which it
4158 static int need_split_map(__isl_keep isl_basic_map
*bmap
,
4159 __isl_keep isl_mat
*cst
)
4165 pos
= cst
->n_col
- 1;
4166 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4168 for (i
= 0; i
< bmap
->n_div
; ++i
)
4169 if (!isl_int_is_zero(bmap
->div
[i
][2 + pos
]))
4172 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4173 if (!isl_int_is_zero(bmap
->eq
[i
][1 + pos
]))
4176 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4177 if (isl_int_is_nonneg(bmap
->ineq
[i
][1 + pos
]))
4179 if (!isl_int_is_negone(bmap
->ineq
[i
][1 + pos
]))
4181 if (isl_seq_first_non_zero(bmap
->ineq
[i
] + 1 + pos
+ 1,
4182 total
- pos
- 1) >= 0)
4185 for (j
= 0; j
< cst
->n_row
; ++j
)
4186 if (isl_seq_eq(bmap
->ineq
[i
], cst
->row
[j
], cst
->n_col
))
4188 if (j
>= cst
->n_row
)
4195 static int need_split_set(__isl_keep isl_basic_set
*bset
,
4196 __isl_keep isl_mat
*cst
)
4198 return need_split_map((isl_basic_map
*)bset
, cst
);
4201 /* Given a set of which the last set variable is the minimum
4202 * of the bounds in "cst", split each basic set in the set
4203 * in pieces where one of the bounds is (strictly) smaller than the others.
4204 * This subdivision is given in "min_expr".
4205 * The variable is subsequently projected out.
4207 * We only do the split when it is needed.
4208 * For example if the last input variable m = min(a,b) and the only
4209 * constraints in the given basic set are lower bounds on m,
4210 * i.e., l <= m = min(a,b), then we can simply project out m
4211 * to obtain l <= a and l <= b, without having to split on whether
4212 * m is equal to a or b.
4214 static __isl_give isl_set
*split(__isl_take isl_set
*empty
,
4215 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4222 if (!empty
|| !min_expr
|| !cst
)
4225 n_in
= isl_set_dim(empty
, isl_dim_set
);
4226 dim
= isl_set_get_dim(empty
);
4227 dim
= isl_dim_drop(dim
, isl_dim_set
, n_in
- 1, 1);
4228 res
= isl_set_empty(dim
);
4230 for (i
= 0; i
< empty
->n
; ++i
) {
4233 set
= isl_set_from_basic_set(isl_basic_set_copy(empty
->p
[i
]));
4234 if (need_split_set(empty
->p
[i
], cst
))
4235 set
= isl_set_intersect(set
, isl_set_copy(min_expr
));
4236 set
= isl_set_remove_dims(set
, isl_dim_set
, n_in
- 1, 1);
4238 res
= isl_set_union_disjoint(res
, set
);
4241 isl_set_free(empty
);
4242 isl_set_free(min_expr
);
4246 isl_set_free(empty
);
4247 isl_set_free(min_expr
);
4252 /* Given a map of which the last input variable is the minimum
4253 * of the bounds in "cst", split each basic set in the set
4254 * in pieces where one of the bounds is (strictly) smaller than the others.
4255 * This subdivision is given in "min_expr".
4256 * The variable is subsequently projected out.
4258 * The implementation is essentially the same as that of "split".
4260 static __isl_give isl_map
*split_domain(__isl_take isl_map
*opt
,
4261 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4268 if (!opt
|| !min_expr
|| !cst
)
4271 n_in
= isl_map_dim(opt
, isl_dim_in
);
4272 dim
= isl_map_get_dim(opt
);
4273 dim
= isl_dim_drop(dim
, isl_dim_in
, n_in
- 1, 1);
4274 res
= isl_map_empty(dim
);
4276 for (i
= 0; i
< opt
->n
; ++i
) {
4279 map
= isl_map_from_basic_map(isl_basic_map_copy(opt
->p
[i
]));
4280 if (need_split_map(opt
->p
[i
], cst
))
4281 map
= isl_map_intersect_domain(map
,
4282 isl_set_copy(min_expr
));
4283 map
= isl_map_remove_dims(map
, isl_dim_in
, n_in
- 1, 1);
4285 res
= isl_map_union_disjoint(res
, map
);
4289 isl_set_free(min_expr
);
4294 isl_set_free(min_expr
);
4299 static __isl_give isl_map
*basic_map_partial_lexopt(
4300 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4301 __isl_give isl_set
**empty
, int max
);
4303 /* Given a basic map with at least two parallel constraints (as found
4304 * by the function parallel_constraints), first look for more constraints
4305 * parallel to the two constraint and replace the found list of parallel
4306 * constraints by a single constraint with as "input" part the minimum
4307 * of the input parts of the list of constraints. Then, recursively call
4308 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4309 * and plug in the definition of the minimum in the result.
4311 * More specifically, given a set of constraints
4315 * Replace this set by a single constraint
4319 * with u a new parameter with constraints
4323 * Any solution to the new system is also a solution for the original system
4326 * a x >= -u >= -b_i(p)
4328 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4329 * therefore be plugged into the solution.
4331 static __isl_give isl_map
*basic_map_partial_lexopt_symm(
4332 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4333 __isl_give isl_set
**empty
, int max
, int first
, int second
)
4337 unsigned n_in
, n_out
, n_div
;
4339 isl_vec
*var
= NULL
;
4340 isl_mat
*cst
= NULL
;
4343 isl_dim
*map_dim
, *set_dim
;
4345 map_dim
= isl_basic_map_get_dim(bmap
);
4346 set_dim
= empty
? isl_basic_set_get_dim(dom
) : NULL
;
4348 n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4349 isl_basic_map_dim(bmap
, isl_dim_in
);
4350 n_out
= isl_basic_map_dim(bmap
, isl_dim_all
) - n_in
;
4352 ctx
= isl_basic_map_get_ctx(bmap
);
4353 list
= isl_alloc_array(ctx
, int, bmap
->n_ineq
);
4354 var
= isl_vec_alloc(ctx
, n_out
);
4360 isl_seq_cpy(var
->el
, bmap
->ineq
[first
] + 1 + n_in
, n_out
);
4361 for (i
= second
+ 1, n
= 2; i
< bmap
->n_ineq
; ++i
) {
4362 if (isl_seq_eq(var
->el
, bmap
->ineq
[i
] + 1 + n_in
, n_out
))
4366 cst
= isl_mat_alloc(ctx
, n
, 1 + n_in
);
4370 for (i
= 0; i
< n
; ++i
)
4371 isl_seq_cpy(cst
->row
[i
], bmap
->ineq
[list
[i
]], 1 + n_in
);
4373 bmap
= isl_basic_map_cow(bmap
);
4376 for (i
= n
- 1; i
>= 0; --i
)
4377 if (isl_basic_map_drop_inequality(bmap
, list
[i
]) < 0)
4380 bmap
= isl_basic_map_add(bmap
, isl_dim_in
, 1);
4381 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
4382 k
= isl_basic_map_alloc_inequality(bmap
);
4385 isl_seq_clr(bmap
->ineq
[k
], 1 + n_in
);
4386 isl_int_set_si(bmap
->ineq
[k
][1 + n_in
], 1);
4387 isl_seq_cpy(bmap
->ineq
[k
] + 1 + n_in
+ 1, var
->el
, n_out
);
4388 bmap
= isl_basic_map_finalize(bmap
);
4390 n_div
= isl_basic_set_dim(dom
, isl_dim_div
);
4391 dom
= isl_basic_set_add(dom
, isl_dim_set
, 1);
4392 dom
= isl_basic_set_extend_constraints(dom
, 0, n
);
4393 for (i
= 0; i
< n
; ++i
) {
4394 k
= isl_basic_set_alloc_inequality(dom
);
4397 isl_seq_cpy(dom
->ineq
[k
], cst
->row
[i
], 1 + n_in
);
4398 isl_int_set_si(dom
->ineq
[k
][1 + n_in
], -1);
4399 isl_seq_clr(dom
->ineq
[k
] + 1 + n_in
+ 1, n_div
);
4402 min_expr
= set_minimum(isl_basic_set_get_dim(dom
), isl_mat_copy(cst
));
4407 opt
= basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4410 *empty
= split(*empty
,
4411 isl_set_copy(min_expr
), isl_mat_copy(cst
));
4412 *empty
= isl_set_reset_dim(*empty
, set_dim
);
4415 opt
= split_domain(opt
, min_expr
, cst
);
4416 opt
= isl_map_reset_dim(opt
, map_dim
);
4420 isl_dim_free(map_dim
);
4421 isl_dim_free(set_dim
);
4425 isl_basic_set_free(dom
);
4426 isl_basic_map_free(bmap
);
4430 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4431 * equalities and removing redundant constraints.
4433 * We first check if there are any parallel constraints (left).
4434 * If not, we are in the base case.
4435 * If there are parallel constraints, we replace them by a single
4436 * constraint in basic_map_partial_lexopt_symm and then call
4437 * this function recursively to look for more parallel constraints.
4439 static __isl_give isl_map
*basic_map_partial_lexopt(
4440 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4441 __isl_give isl_set
**empty
, int max
)
4449 if (bmap
->ctx
->opt
->pip_symmetry
)
4450 par
= parallel_constraints(bmap
, &first
, &second
);
4454 return basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
);
4456 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
4459 isl_basic_set_free(dom
);
4460 isl_basic_map_free(bmap
);
4464 /* Compute the lexicographic minimum (or maximum if "max" is set)
4465 * of "bmap" over the domain "dom" and return the result as a map.
4466 * If "empty" is not NULL, then *empty is assigned a set that
4467 * contains those parts of the domain where there is no solution.
4468 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4469 * then we compute the rational optimum. Otherwise, we compute
4470 * the integral optimum.
4472 * We perform some preprocessing. As the PILP solver does not
4473 * handle implicit equalities very well, we first make sure all
4474 * the equalities are explicitly available.
4476 * We also add context constraints to the basic map and remove
4477 * redundant constraints. This is only needed because of the
4478 * way we handle simple symmetries. In particular, we currently look
4479 * for symmetries on the constraints, before we set up the main tableau.
4480 * It is then no good to look for symmetries on possibly redundant constraints.
4482 struct isl_map
*isl_tab_basic_map_partial_lexopt(
4483 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
4484 struct isl_set
**empty
, int max
)
4491 isl_assert(bmap
->ctx
,
4492 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
4494 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
4495 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4497 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
4498 bmap
= isl_basic_map_detect_equalities(bmap
);
4499 bmap
= isl_basic_map_remove_redundancies(bmap
);
4501 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4503 isl_basic_set_free(dom
);
4504 isl_basic_map_free(bmap
);
4508 struct isl_sol_for
{
4510 int (*fn
)(__isl_take isl_basic_set
*dom
,
4511 __isl_take isl_aff_list
*list
, void *user
);
4515 static void sol_for_free(struct isl_sol_for
*sol_for
)
4517 if (sol_for
->sol
.context
)
4518 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
4522 static void sol_for_free_wrap(struct isl_sol
*sol
)
4524 sol_for_free((struct isl_sol_for
*)sol
);
4527 /* Add the solution identified by the tableau and the context tableau.
4529 * See documentation of sol_add for more details.
4531 * Instead of constructing a basic map, this function calls a user
4532 * defined function with the current context as a basic set and
4533 * a list of affine expressions representing the relation between
4534 * the input and output. The space over which the affine expressions
4535 * are defined is the same as that of the domain. The number of
4536 * affine expressions in the list is equal to the number of output variables.
4538 static void sol_for_add(struct isl_sol_for
*sol
,
4539 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4543 isl_local_space
*ls
;
4547 if (sol
->sol
.error
|| !dom
|| !M
)
4550 ctx
= isl_basic_set_get_ctx(dom
);
4551 ls
= isl_basic_set_get_local_space(dom
);
4552 list
= isl_aff_list_alloc(ctx
, M
->n_row
- 1);
4553 for (i
= 1; i
< M
->n_row
; ++i
) {
4554 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
4556 isl_int_set_si(aff
->v
->el
[0], 1);
4557 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
4559 list
= isl_aff_list_add(list
, aff
);
4561 isl_local_space_free(ls
);
4563 dom
= isl_basic_set_finalize(dom
);
4565 if (sol
->fn(isl_basic_set_copy(dom
), list
, sol
->user
) < 0)
4568 isl_basic_set_free(dom
);
4572 isl_basic_set_free(dom
);
4577 static void sol_for_add_wrap(struct isl_sol
*sol
,
4578 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4580 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
4583 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
4584 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4588 struct isl_sol_for
*sol_for
= NULL
;
4589 struct isl_dim
*dom_dim
;
4590 struct isl_basic_set
*dom
= NULL
;
4592 sol_for
= isl_calloc_type(bmap
->ctx
, struct isl_sol_for
);
4596 dom_dim
= isl_dim_domain(isl_dim_copy(bmap
->dim
));
4597 dom
= isl_basic_set_universe(dom_dim
);
4599 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
4600 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
4601 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
4603 sol_for
->user
= user
;
4604 sol_for
->sol
.max
= max
;
4605 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4606 sol_for
->sol
.add
= &sol_for_add_wrap
;
4607 sol_for
->sol
.add_empty
= NULL
;
4608 sol_for
->sol
.free
= &sol_for_free_wrap
;
4610 sol_for
->sol
.context
= isl_context_alloc(dom
);
4611 if (!sol_for
->sol
.context
)
4614 isl_basic_set_free(dom
);
4617 isl_basic_set_free(dom
);
4618 sol_for_free(sol_for
);
4622 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4623 struct isl_tab
*tab
)
4625 find_solutions_main(&sol_for
->sol
, tab
);
4628 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4629 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4633 struct isl_sol_for
*sol_for
= NULL
;
4635 bmap
= isl_basic_map_copy(bmap
);
4639 bmap
= isl_basic_map_detect_equalities(bmap
);
4640 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4642 if (isl_basic_map_plain_is_empty(bmap
))
4645 struct isl_tab
*tab
;
4646 struct isl_context
*context
= sol_for
->sol
.context
;
4647 tab
= tab_for_lexmin(bmap
,
4648 context
->op
->peek_basic_set(context
), 1, max
);
4649 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4650 sol_for_find_solutions(sol_for
, tab
);
4651 if (sol_for
->sol
.error
)
4655 sol_free(&sol_for
->sol
);
4656 isl_basic_map_free(bmap
);
4659 sol_free(&sol_for
->sol
);
4660 isl_basic_map_free(bmap
);
4664 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map
*bmap
,
4665 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4669 return isl_basic_map_foreach_lexopt(bmap
, 0, fn
, user
);
4672 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map
*bmap
,
4673 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4677 return isl_basic_map_foreach_lexopt(bmap
, 1, fn
, user
);
4680 int isl_basic_set_foreach_lexmax(__isl_keep isl_basic_set
*bset
,
4681 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4685 return isl_basic_map_foreach_lexmax(bset
, fn
, user
);
4688 /* Check if the given sequence of len variables starting at pos
4689 * represents a trivial (i.e., zero) solution.
4690 * The variables are assumed to be non-negative and to come in pairs,
4691 * with each pair representing a variable of unrestricted sign.
4692 * The solution is trivial if each such pair in the sequence consists
4693 * of two identical values, meaning that the variable being represented
4696 static int region_is_trivial(struct isl_tab
*tab
, int pos
, int len
)
4703 for (i
= 0; i
< len
; i
+= 2) {
4707 neg_row
= tab
->var
[pos
+ i
].is_row
?
4708 tab
->var
[pos
+ i
].index
: -1;
4709 pos_row
= tab
->var
[pos
+ i
+ 1].is_row
?
4710 tab
->var
[pos
+ i
+ 1].index
: -1;
4713 isl_int_is_zero(tab
->mat
->row
[neg_row
][1])) &&
4715 isl_int_is_zero(tab
->mat
->row
[pos_row
][1])))
4718 if (neg_row
< 0 || pos_row
< 0)
4720 if (isl_int_ne(tab
->mat
->row
[neg_row
][1],
4721 tab
->mat
->row
[pos_row
][1]))
4728 /* Return the index of the first trivial region or -1 if all regions
4731 static int first_trivial_region(struct isl_tab
*tab
,
4732 int n_region
, struct isl_region
*region
)
4736 for (i
= 0; i
< n_region
; ++i
) {
4737 if (region_is_trivial(tab
, region
[i
].pos
, region
[i
].len
))
4744 /* Check if the solution is optimal, i.e., whether the first
4745 * n_op entries are zero.
4747 static int is_optimal(__isl_keep isl_vec
*sol
, int n_op
)
4751 for (i
= 0; i
< n_op
; ++i
)
4752 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4757 /* Add constraints to "tab" that ensure that any solution is significantly
4758 * better that that represented by "sol". That is, find the first
4759 * relevant (within first n_op) non-zero coefficient and force it (along
4760 * with all previous coefficients) to be zero.
4761 * If the solution is already optimal (all relevant coefficients are zero),
4762 * then just mark the table as empty.
4764 static int force_better_solution(struct isl_tab
*tab
,
4765 __isl_keep isl_vec
*sol
, int n_op
)
4774 for (i
= 0; i
< n_op
; ++i
)
4775 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4779 if (isl_tab_mark_empty(tab
) < 0)
4784 ctx
= isl_vec_get_ctx(sol
);
4785 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
4789 for (; i
>= 0; --i
) {
4791 isl_int_set_si(v
->el
[1 + i
], -1);
4792 if (add_lexmin_eq(tab
, v
->el
) < 0)
4803 struct isl_trivial
{
4807 struct isl_tab_undo
*snap
;
4810 /* Return the lexicographically smallest non-trivial solution of the
4811 * given ILP problem.
4813 * All variables are assumed to be non-negative.
4815 * n_op is the number of initial coordinates to optimize.
4816 * That is, once a solution has been found, we will only continue looking
4817 * for solution that result in significantly better values for those
4818 * initial coordinates. That is, we only continue looking for solutions
4819 * that increase the number of initial zeros in this sequence.
4821 * A solution is non-trivial, if it is non-trivial on each of the
4822 * specified regions. Each region represents a sequence of pairs
4823 * of variables. A solution is non-trivial on such a region if
4824 * at least one of these pairs consists of different values, i.e.,
4825 * such that the non-negative variable represented by the pair is non-zero.
4827 * Whenever a conflict is encountered, all constraints involved are
4828 * reported to the caller through a call to "conflict".
4830 * We perform a simple branch-and-bound backtracking search.
4831 * Each level in the search represents initially trivial region that is forced
4832 * to be non-trivial.
4833 * At each level we consider n cases, where n is the length of the region.
4834 * In terms of the n/2 variables of unrestricted signs being encoded by
4835 * the region, we consider the cases
4838 * x_0 = 0 and x_1 >= 1
4839 * x_0 = 0 and x_1 <= -1
4840 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4841 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4843 * The cases are considered in this order, assuming that each pair
4844 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4845 * That is, x_0 >= 1 is enforced by adding the constraint
4846 * x_0_b - x_0_a >= 1
4848 __isl_give isl_vec
*isl_tab_basic_set_non_trivial_lexmin(
4849 __isl_take isl_basic_set
*bset
, int n_op
, int n_region
,
4850 struct isl_region
*region
,
4851 int (*conflict
)(int con
, void *user
), void *user
)
4855 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
4857 isl_vec
*sol
= isl_vec_alloc(ctx
, 0);
4858 struct isl_tab
*tab
;
4859 struct isl_trivial
*triv
= NULL
;
4862 tab
= tab_for_lexmin(isl_basic_map_from_range(bset
), NULL
, 0, 0);
4865 tab
->conflict
= conflict
;
4866 tab
->conflict_user
= user
;
4868 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
4869 triv
= isl_calloc_array(ctx
, struct isl_trivial
, n_region
);
4876 while (level
>= 0) {
4880 tab
= cut_to_integer_lexmin(tab
);
4885 r
= first_trivial_region(tab
, n_region
, region
);
4887 for (i
= 0; i
< level
; ++i
)
4890 sol
= isl_tab_get_sample_value(tab
);
4893 if (is_optimal(sol
, n_op
))
4897 if (level
>= n_region
)
4898 isl_die(ctx
, isl_error_internal
,
4899 "nesting level too deep", goto error
);
4900 if (isl_tab_extend_cons(tab
,
4901 2 * region
[r
].len
+ 2 * n_op
) < 0)
4903 triv
[level
].region
= r
;
4904 triv
[level
].side
= 0;
4907 r
= triv
[level
].region
;
4908 side
= triv
[level
].side
;
4909 base
= 2 * (side
/2);
4911 if (side
>= region
[r
].len
) {
4916 if (isl_tab_rollback(tab
, triv
[level
].snap
) < 0)
4921 if (triv
[level
].update
) {
4922 if (force_better_solution(tab
, sol
, n_op
) < 0)
4924 triv
[level
].update
= 0;
4927 if (side
== base
&& base
>= 2) {
4928 for (j
= base
- 2; j
< base
; ++j
) {
4930 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ j
], 1);
4931 if (add_lexmin_eq(tab
, v
->el
) < 0)
4936 triv
[level
].snap
= isl_tab_snap(tab
);
4937 if (isl_tab_push_basis(tab
) < 0)
4941 isl_int_set_si(v
->el
[0], -1);
4942 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ side
], -1);
4943 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ (side
^ 1)], 1);
4944 tab
= add_lexmin_ineq(tab
, v
->el
);
4954 isl_basic_set_free(bset
);
4961 isl_basic_set_free(bset
);
4966 /* Return the lexicographically smallest rational point in "bset",
4967 * assuming that all variables are non-negative.
4968 * If "bset" is empty, then return a zero-length vector.
4970 __isl_give isl_vec
*isl_tab_basic_set_non_neg_lexmin(
4971 __isl_take isl_basic_set
*bset
)
4973 struct isl_tab
*tab
;
4974 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
4977 tab
= tab_for_lexmin(isl_basic_map_from_range(bset
), NULL
, 0, 0);
4981 sol
= isl_vec_alloc(ctx
, 0);
4983 sol
= isl_tab_get_sample_value(tab
);
4985 isl_basic_set_free(bset
);
4989 isl_basic_set_free(bset
);