2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
20 struct isl_basic_map
*isl_basic_map_implicit_equalities(
21 struct isl_basic_map
*bmap
)
28 bmap
= isl_basic_map_gauss(bmap
, NULL
);
29 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
31 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
33 if (bmap
->n_ineq
<= 1)
36 tab
= isl_tab_from_basic_map(bmap
);
37 if (isl_tab_detect_implicit_equalities(tab
) < 0)
39 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
41 bmap
= isl_basic_map_gauss(bmap
, NULL
);
42 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
46 isl_basic_map_free(bmap
);
50 struct isl_basic_set
*isl_basic_set_implicit_equalities(
51 struct isl_basic_set
*bset
)
53 return (struct isl_basic_set
*)
54 isl_basic_map_implicit_equalities((struct isl_basic_map
*)bset
);
57 struct isl_map
*isl_map_implicit_equalities(struct isl_map
*map
)
64 for (i
= 0; i
< map
->n
; ++i
) {
65 map
->p
[i
] = isl_basic_map_implicit_equalities(map
->p
[i
]);
76 /* Make eq[row][col] of both bmaps equal so we can add the row
77 * add the column to the common matrix.
78 * Note that because of the echelon form, the columns of row row
79 * after column col are zero.
81 static void set_common_multiple(
82 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
83 unsigned row
, unsigned col
)
87 if (isl_int_eq(bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]))
92 isl_int_lcm(m
, bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]);
93 isl_int_divexact(c
, m
, bset1
->eq
[row
][col
]);
94 isl_seq_scale(bset1
->eq
[row
], bset1
->eq
[row
], c
, col
+1);
95 isl_int_divexact(c
, m
, bset2
->eq
[row
][col
]);
96 isl_seq_scale(bset2
->eq
[row
], bset2
->eq
[row
], c
, col
+1);
101 /* Delete a given equality, moving all the following equalities one up.
103 static void delete_row(struct isl_basic_set
*bset
, unsigned row
)
110 for (r
= row
; r
< bset
->n_eq
; ++r
)
111 bset
->eq
[r
] = bset
->eq
[r
+1];
112 bset
->eq
[bset
->n_eq
] = t
;
115 /* Make first row entries in column col of bset1 identical to
116 * those of bset2, using the fact that entry bset1->eq[row][col]=a
117 * is non-zero. Initially, these elements of bset1 are all zero.
118 * For each row i < row, we set
119 * A[i] = a * A[i] + B[i][col] * A[row]
122 * A[i][col] = B[i][col] = a * old(B[i][col])
124 static void construct_column(
125 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
126 unsigned row
, unsigned col
)
135 total
= 1 + isl_basic_set_n_dim(bset1
);
136 for (r
= 0; r
< row
; ++r
) {
137 if (isl_int_is_zero(bset2
->eq
[r
][col
]))
139 isl_int_gcd(b
, bset2
->eq
[r
][col
], bset1
->eq
[row
][col
]);
140 isl_int_divexact(a
, bset1
->eq
[row
][col
], b
);
141 isl_int_divexact(b
, bset2
->eq
[r
][col
], b
);
142 isl_seq_combine(bset1
->eq
[r
], a
, bset1
->eq
[r
],
143 b
, bset1
->eq
[row
], total
);
144 isl_seq_scale(bset2
->eq
[r
], bset2
->eq
[r
], a
, total
);
148 delete_row(bset1
, row
);
151 /* Make first row entries in column col of bset1 identical to
152 * those of bset2, using only these entries of the two matrices.
153 * Let t be the last row with different entries.
154 * For each row i < t, we set
155 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
156 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
158 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
160 static int transform_column(
161 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
162 unsigned row
, unsigned col
)
168 for (t
= row
-1; t
>= 0; --t
)
169 if (isl_int_ne(bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]))
174 total
= 1 + isl_basic_set_n_dim(bset1
);
178 isl_int_sub(b
, bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]);
179 for (i
= 0; i
< t
; ++i
) {
180 isl_int_sub(a
, bset2
->eq
[i
][col
], bset1
->eq
[i
][col
]);
181 isl_int_gcd(g
, a
, b
);
182 isl_int_divexact(a
, a
, g
);
183 isl_int_divexact(g
, b
, g
);
184 isl_seq_combine(bset1
->eq
[i
], g
, bset1
->eq
[i
], a
, bset1
->eq
[t
],
186 isl_seq_combine(bset2
->eq
[i
], g
, bset2
->eq
[i
], a
, bset2
->eq
[t
],
192 delete_row(bset1
, t
);
193 delete_row(bset2
, t
);
197 /* The implementation is based on Section 5.2 of Michael Karr,
198 * "Affine Relationships Among Variables of a Program",
199 * except that the echelon form we use starts from the last column
200 * and that we are dealing with integer coefficients.
202 static struct isl_basic_set
*affine_hull(
203 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
209 if (!bset1
|| !bset2
)
212 total
= 1 + isl_basic_set_n_dim(bset1
);
215 for (col
= total
-1; col
>= 0; --col
) {
216 int is_zero1
= row
>= bset1
->n_eq
||
217 isl_int_is_zero(bset1
->eq
[row
][col
]);
218 int is_zero2
= row
>= bset2
->n_eq
||
219 isl_int_is_zero(bset2
->eq
[row
][col
]);
220 if (!is_zero1
&& !is_zero2
) {
221 set_common_multiple(bset1
, bset2
, row
, col
);
223 } else if (!is_zero1
&& is_zero2
) {
224 construct_column(bset1
, bset2
, row
, col
);
225 } else if (is_zero1
&& !is_zero2
) {
226 construct_column(bset2
, bset1
, row
, col
);
228 if (transform_column(bset1
, bset2
, row
, col
))
232 isl_assert(bset1
->ctx
, row
== bset1
->n_eq
, goto error
);
233 isl_basic_set_free(bset2
);
234 bset1
= isl_basic_set_normalize_constraints(bset1
);
237 isl_basic_set_free(bset1
);
238 isl_basic_set_free(bset2
);
242 /* Find an integer point in the set represented by "tab"
243 * that lies outside of the equality "eq" e(x) = 0.
244 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
245 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
246 * The point, if found, is returned.
247 * If no point can be found, a zero-length vector is returned.
249 * Before solving an ILP problem, we first check if simply
250 * adding the normal of the constraint to one of the known
251 * integer points in the basic set represented by "tab"
252 * yields another point inside the basic set.
254 * The caller of this function ensures that the tableau is bounded or
255 * that tab->basis and tab->n_unbounded have been set appropriately.
257 static struct isl_vec
*outside_point(struct isl_tab
*tab
, isl_int
*eq
, int up
)
260 struct isl_vec
*sample
= NULL
;
261 struct isl_tab_undo
*snap
;
269 sample
= isl_vec_alloc(ctx
, 1 + dim
);
272 isl_int_set_si(sample
->el
[0], 1);
273 isl_seq_combine(sample
->el
+ 1,
274 ctx
->one
, tab
->bmap
->sample
->el
+ 1,
275 up
? ctx
->one
: ctx
->negone
, eq
+ 1, dim
);
276 if (isl_basic_map_contains(tab
->bmap
, sample
))
278 isl_vec_free(sample
);
281 snap
= isl_tab_snap(tab
);
284 isl_seq_neg(eq
, eq
, 1 + dim
);
285 isl_int_sub_ui(eq
[0], eq
[0], 1);
287 if (isl_tab_extend_cons(tab
, 1) < 0)
289 if (isl_tab_add_ineq(tab
, eq
) < 0)
292 sample
= isl_tab_sample(tab
);
294 isl_int_add_ui(eq
[0], eq
[0], 1);
296 isl_seq_neg(eq
, eq
, 1 + dim
);
298 if (sample
&& isl_tab_rollback(tab
, snap
) < 0)
303 isl_vec_free(sample
);
307 struct isl_basic_set
*isl_basic_set_recession_cone(struct isl_basic_set
*bset
)
311 bset
= isl_basic_set_cow(bset
);
314 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
316 for (i
= 0; i
< bset
->n_eq
; ++i
)
317 isl_int_set_si(bset
->eq
[i
][0], 0);
319 for (i
= 0; i
< bset
->n_ineq
; ++i
)
320 isl_int_set_si(bset
->ineq
[i
][0], 0);
322 ISL_F_CLR(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
323 return isl_basic_set_implicit_equalities(bset
);
325 isl_basic_set_free(bset
);
329 __isl_give isl_set
*isl_set_recession_cone(__isl_take isl_set
*set
)
338 set
= isl_set_remove_divs(set
);
339 set
= isl_set_cow(set
);
343 for (i
= 0; i
< set
->n
; ++i
) {
344 set
->p
[i
] = isl_basic_set_recession_cone(set
->p
[i
]);
355 /* Extend an initial (under-)approximation of the affine hull of basic
356 * set represented by the tableau "tab"
357 * by looking for points that do not satisfy one of the equalities
358 * in the current approximation and adding them to that approximation
359 * until no such points can be found any more.
361 * The caller of this function ensures that "tab" is bounded or
362 * that tab->basis and tab->n_unbounded have been set appropriately.
364 static struct isl_basic_set
*extend_affine_hull(struct isl_tab
*tab
,
365 struct isl_basic_set
*hull
)
375 if (isl_tab_extend_cons(tab
, 2 * dim
+ 1) < 0)
378 for (i
= 0; i
< dim
; ++i
) {
379 struct isl_vec
*sample
;
380 struct isl_basic_set
*point
;
381 for (j
= 0; j
< hull
->n_eq
; ++j
) {
382 sample
= outside_point(tab
, hull
->eq
[j
], 1);
385 if (sample
->size
> 0)
387 isl_vec_free(sample
);
388 sample
= outside_point(tab
, hull
->eq
[j
], 0);
391 if (sample
->size
> 0)
393 isl_vec_free(sample
);
395 if (isl_tab_add_eq(tab
, hull
->eq
[j
]) < 0)
401 tab
= isl_tab_add_sample(tab
, isl_vec_copy(sample
));
404 point
= isl_basic_set_from_vec(sample
);
405 hull
= affine_hull(hull
, point
);
412 isl_basic_set_free(hull
);
416 /* Drop all constraints in bset that involve any of the dimensions
417 * first to first+n-1.
419 static struct isl_basic_set
*drop_constraints_involving
420 (struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
427 bset
= isl_basic_set_cow(bset
);
429 for (i
= bset
->n_eq
- 1; i
>= 0; --i
) {
430 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + first
, n
) == -1)
432 isl_basic_set_drop_equality(bset
, i
);
435 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
436 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
438 isl_basic_set_drop_inequality(bset
, i
);
444 /* Look for all equalities satisfied by the integer points in bset,
445 * which is assumed to be bounded.
447 * The equalities are obtained by successively looking for
448 * a point that is affinely independent of the points found so far.
449 * In particular, for each equality satisfied by the points so far,
450 * we check if there is any point on a hyperplane parallel to the
451 * corresponding hyperplane shifted by at least one (in either direction).
453 static struct isl_basic_set
*uset_affine_hull_bounded(struct isl_basic_set
*bset
)
455 struct isl_vec
*sample
= NULL
;
456 struct isl_basic_set
*hull
;
457 struct isl_tab
*tab
= NULL
;
460 if (isl_basic_set_fast_is_empty(bset
))
463 dim
= isl_basic_set_n_dim(bset
);
465 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
466 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
472 sample
= isl_vec_copy(bset
->sample
);
474 isl_vec_free(bset
->sample
);
479 tab
= isl_tab_from_basic_set(bset
);
484 isl_vec_free(sample
);
485 return isl_basic_set_set_to_empty(bset
);
487 if (isl_tab_track_bset(tab
, isl_basic_set_copy(bset
)) < 0)
491 struct isl_tab_undo
*snap
;
492 snap
= isl_tab_snap(tab
);
493 sample
= isl_tab_sample(tab
);
494 if (isl_tab_rollback(tab
, snap
) < 0)
496 isl_vec_free(tab
->bmap
->sample
);
497 tab
->bmap
->sample
= isl_vec_copy(sample
);
502 if (sample
->size
== 0) {
504 isl_vec_free(sample
);
505 return isl_basic_set_set_to_empty(bset
);
508 hull
= isl_basic_set_from_vec(sample
);
510 isl_basic_set_free(bset
);
511 hull
= extend_affine_hull(tab
, hull
);
516 isl_vec_free(sample
);
518 isl_basic_set_free(bset
);
522 /* Given an unbounded tableau and an integer point satisfying the tableau,
523 * construct an intial affine hull containing the recession cone
524 * shifted to the given point.
526 * The unbounded directions are taken from the last rows of the basis,
527 * which is assumed to have been initialized appropriately.
529 static __isl_give isl_basic_set
*initial_hull(struct isl_tab
*tab
,
530 __isl_take isl_vec
*vec
)
534 struct isl_basic_set
*bset
= NULL
;
541 isl_assert(ctx
, vec
->size
!= 0, goto error
);
543 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
546 dim
= isl_basic_set_n_dim(bset
) - tab
->n_unbounded
;
547 for (i
= 0; i
< dim
; ++i
) {
548 k
= isl_basic_set_alloc_equality(bset
);
551 isl_seq_cpy(bset
->eq
[k
] + 1, tab
->basis
->row
[1 + i
] + 1,
553 isl_seq_inner_product(bset
->eq
[k
] + 1, vec
->el
+1,
554 vec
->size
- 1, &bset
->eq
[k
][0]);
555 isl_int_neg(bset
->eq
[k
][0], bset
->eq
[k
][0]);
558 bset
= isl_basic_set_gauss(bset
, NULL
);
562 isl_basic_set_free(bset
);
567 /* Given a tableau of a set and a tableau of the corresponding
568 * recession cone, detect and add all equalities to the tableau.
569 * If the tableau is bounded, then we can simply keep the
570 * tableau in its state after the return from extend_affine_hull.
571 * However, if the tableau is unbounded, then
572 * isl_tab_set_initial_basis_with_cone will add some additional
573 * constraints to the tableau that have to be removed again.
574 * In this case, we therefore rollback to the state before
575 * any constraints were added and then add the eqaulities back in.
577 struct isl_tab
*isl_tab_detect_equalities(struct isl_tab
*tab
,
578 struct isl_tab
*tab_cone
)
581 struct isl_vec
*sample
;
582 struct isl_basic_set
*hull
;
583 struct isl_tab_undo
*snap
;
585 if (!tab
|| !tab_cone
)
588 snap
= isl_tab_snap(tab
);
590 isl_mat_free(tab
->basis
);
593 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
594 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
595 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
596 isl_assert(tab
->mat
->ctx
, tab
->n_sample
> tab
->n_outside
, goto error
);
598 if (isl_tab_set_initial_basis_with_cone(tab
, tab_cone
) < 0)
601 sample
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
605 isl_seq_cpy(sample
->el
, tab
->samples
->row
[tab
->n_outside
], sample
->size
);
607 isl_vec_free(tab
->bmap
->sample
);
608 tab
->bmap
->sample
= isl_vec_copy(sample
);
610 if (tab
->n_unbounded
== 0)
611 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
613 hull
= initial_hull(tab
, isl_vec_copy(sample
));
615 for (j
= tab
->n_outside
+ 1; j
< tab
->n_sample
; ++j
) {
616 isl_seq_cpy(sample
->el
, tab
->samples
->row
[j
], sample
->size
);
617 hull
= affine_hull(hull
,
618 isl_basic_set_from_vec(isl_vec_copy(sample
)));
621 isl_vec_free(sample
);
623 hull
= extend_affine_hull(tab
, hull
);
627 if (tab
->n_unbounded
== 0) {
628 isl_basic_set_free(hull
);
632 if (isl_tab_rollback(tab
, snap
) < 0)
635 if (hull
->n_eq
> tab
->n_zero
) {
636 for (j
= 0; j
< hull
->n_eq
; ++j
) {
637 isl_seq_normalize(tab
->mat
->ctx
, hull
->eq
[j
], 1 + tab
->n_var
);
638 if (isl_tab_add_eq(tab
, hull
->eq
[j
]) < 0)
643 isl_basic_set_free(hull
);
651 /* Compute the affine hull of "bset", where "cone" is the recession cone
654 * We first compute a unimodular transformation that puts the unbounded
655 * directions in the last dimensions. In particular, we take a transformation
656 * that maps all equalities to equalities (in HNF) on the first dimensions.
657 * Let x be the original dimensions and y the transformed, with y_1 bounded
660 * [ y_1 ] [ y_1 ] [ Q_1 ]
661 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
663 * Let's call the input basic set S. We compute S' = preimage(S, U)
664 * and drop the final dimensions including any constraints involving them.
665 * This results in set S''.
666 * Then we compute the affine hull A'' of S''.
667 * Let F y_1 >= g be the constraint system of A''. In the transformed
668 * space the y_2 are unbounded, so we can add them back without any constraints,
672 * [ F 0 ] [ y_2 ] >= g
675 * [ F 0 ] [ Q_2 ] x >= g
679 * The affine hull in the original space is then obtained as
680 * A = preimage(A'', Q_1).
682 static struct isl_basic_set
*affine_hull_with_cone(struct isl_basic_set
*bset
,
683 struct isl_basic_set
*cone
)
687 struct isl_basic_set
*hull
;
688 struct isl_mat
*M
, *U
, *Q
;
693 total
= isl_basic_set_total_dim(cone
);
694 cone_dim
= total
- cone
->n_eq
;
696 M
= isl_mat_sub_alloc(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
697 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
702 U
= isl_mat_lin_to_aff(U
);
703 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
705 bset
= drop_constraints_involving(bset
, total
- cone_dim
, cone_dim
);
706 bset
= isl_basic_set_drop_dims(bset
, total
- cone_dim
, cone_dim
);
708 Q
= isl_mat_lin_to_aff(Q
);
709 Q
= isl_mat_drop_rows(Q
, 1 + total
- cone_dim
, cone_dim
);
711 if (bset
&& bset
->sample
&& bset
->sample
->size
== 1 + total
)
712 bset
->sample
= isl_mat_vec_product(isl_mat_copy(Q
), bset
->sample
);
714 hull
= uset_affine_hull_bounded(bset
);
719 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
720 U
= isl_mat_drop_cols(U
, 1 + total
- cone_dim
, cone_dim
);
721 if (sample
&& sample
->size
> 0)
722 sample
= isl_mat_vec_product(U
, sample
);
725 hull
= isl_basic_set_preimage(hull
, Q
);
727 isl_vec_free(hull
->sample
);
728 hull
->sample
= sample
;
730 isl_vec_free(sample
);
733 isl_basic_set_free(cone
);
737 isl_basic_set_free(bset
);
738 isl_basic_set_free(cone
);
742 /* Look for all equalities satisfied by the integer points in bset,
743 * which is assumed not to have any explicit equalities.
745 * The equalities are obtained by successively looking for
746 * a point that is affinely independent of the points found so far.
747 * In particular, for each equality satisfied by the points so far,
748 * we check if there is any point on a hyperplane parallel to the
749 * corresponding hyperplane shifted by at least one (in either direction).
751 * Before looking for any outside points, we first compute the recession
752 * cone. The directions of this recession cone will always be part
753 * of the affine hull, so there is no need for looking for any points
754 * in these directions.
755 * In particular, if the recession cone is full-dimensional, then
756 * the affine hull is simply the whole universe.
758 static struct isl_basic_set
*uset_affine_hull(struct isl_basic_set
*bset
)
760 struct isl_basic_set
*cone
;
762 if (isl_basic_set_fast_is_empty(bset
))
765 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
768 if (cone
->n_eq
== 0) {
769 struct isl_basic_set
*hull
;
770 isl_basic_set_free(cone
);
771 hull
= isl_basic_set_universe_like(bset
);
772 isl_basic_set_free(bset
);
776 if (cone
->n_eq
< isl_basic_set_total_dim(cone
))
777 return affine_hull_with_cone(bset
, cone
);
779 isl_basic_set_free(cone
);
780 return uset_affine_hull_bounded(bset
);
782 isl_basic_set_free(bset
);
786 /* Look for all equalities satisfied by the integer points in bmap
787 * that are independent of the equalities already explicitly available
790 * We first remove all equalities already explicitly available,
791 * then look for additional equalities in the reduced space
792 * and then transform the result to the original space.
793 * The original equalities are _not_ added to this set. This is
794 * the responsibility of the calling function.
795 * The resulting basic set has all meaning about the dimensions removed.
796 * In particular, dimensions that correspond to existential variables
797 * in bmap and that are found to be fixed are not removed.
799 static struct isl_basic_set
*equalities_in_underlying_set(
800 struct isl_basic_map
*bmap
)
802 struct isl_mat
*T1
= NULL
;
803 struct isl_mat
*T2
= NULL
;
804 struct isl_basic_set
*bset
= NULL
;
805 struct isl_basic_set
*hull
= NULL
;
807 bset
= isl_basic_map_underlying_set(bmap
);
811 bset
= isl_basic_set_remove_equalities(bset
, &T1
, &T2
);
815 hull
= uset_affine_hull(bset
);
823 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
824 if (sample
&& sample
->size
> 0)
825 sample
= isl_mat_vec_product(T1
, sample
);
828 hull
= isl_basic_set_preimage(hull
, T2
);
830 isl_vec_free(hull
->sample
);
831 hull
->sample
= sample
;
833 isl_vec_free(sample
);
839 isl_basic_set_free(bset
);
840 isl_basic_set_free(hull
);
844 /* Detect and make explicit all equalities satisfied by the (integer)
847 struct isl_basic_map
*isl_basic_map_detect_equalities(
848 struct isl_basic_map
*bmap
)
851 struct isl_basic_set
*hull
= NULL
;
855 if (bmap
->n_ineq
== 0)
857 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
859 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_ALL_EQUALITIES
))
861 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
862 return isl_basic_map_implicit_equalities(bmap
);
864 hull
= equalities_in_underlying_set(isl_basic_map_copy(bmap
));
867 if (ISL_F_ISSET(hull
, ISL_BASIC_SET_EMPTY
)) {
868 isl_basic_set_free(hull
);
869 return isl_basic_map_set_to_empty(bmap
);
871 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
), 0,
873 for (i
= 0; i
< hull
->n_eq
; ++i
) {
874 j
= isl_basic_map_alloc_equality(bmap
);
877 isl_seq_cpy(bmap
->eq
[j
], hull
->eq
[i
],
878 1 + isl_basic_set_total_dim(hull
));
880 isl_vec_free(bmap
->sample
);
881 bmap
->sample
= isl_vec_copy(hull
->sample
);
882 isl_basic_set_free(hull
);
883 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
| ISL_BASIC_MAP_ALL_EQUALITIES
);
884 bmap
= isl_basic_map_simplify(bmap
);
885 return isl_basic_map_finalize(bmap
);
887 isl_basic_set_free(hull
);
888 isl_basic_map_free(bmap
);
892 __isl_give isl_basic_set
*isl_basic_set_detect_equalities(
893 __isl_take isl_basic_set
*bset
)
895 return (isl_basic_set
*)
896 isl_basic_map_detect_equalities((isl_basic_map
*)bset
);
899 struct isl_map
*isl_map_detect_equalities(struct isl_map
*map
)
901 struct isl_basic_map
*bmap
;
907 for (i
= 0; i
< map
->n
; ++i
) {
908 bmap
= isl_basic_map_copy(map
->p
[i
]);
909 bmap
= isl_basic_map_detect_equalities(bmap
);
912 isl_basic_map_free(map
->p
[i
]);
922 __isl_give isl_set
*isl_set_detect_equalities(__isl_take isl_set
*set
)
924 return (isl_set
*)isl_map_detect_equalities((isl_map
*)set
);
927 /* After computing the rational affine hull (by detecting the implicit
928 * equalities), we compute the additional equalities satisfied by
929 * the integer points (if any) and add the original equalities back in.
931 struct isl_basic_map
*isl_basic_map_affine_hull(struct isl_basic_map
*bmap
)
933 bmap
= isl_basic_map_detect_equalities(bmap
);
934 bmap
= isl_basic_map_cow(bmap
);
936 isl_basic_map_free_inequality(bmap
, bmap
->n_ineq
);
940 struct isl_basic_set
*isl_basic_set_affine_hull(struct isl_basic_set
*bset
)
942 return (struct isl_basic_set
*)
943 isl_basic_map_affine_hull((struct isl_basic_map
*)bset
);
946 struct isl_basic_map
*isl_map_affine_hull(struct isl_map
*map
)
949 struct isl_basic_map
*model
= NULL
;
950 struct isl_basic_map
*hull
= NULL
;
953 map
= isl_map_detect_equalities(map
);
954 map
= isl_map_align_divs(map
);
960 hull
= isl_basic_map_empty_like_map(map
);
965 model
= isl_basic_map_copy(map
->p
[0]);
966 set
= isl_map_underlying_set(map
);
967 set
= isl_set_cow(set
);
971 for (i
= 0; i
< set
->n
; ++i
) {
972 set
->p
[i
] = isl_basic_set_cow(set
->p
[i
]);
973 set
->p
[i
] = isl_basic_set_affine_hull(set
->p
[i
]);
974 set
->p
[i
] = isl_basic_set_gauss(set
->p
[i
], NULL
);
978 set
= isl_set_remove_empty_parts(set
);
980 hull
= isl_basic_map_empty_like(model
);
981 isl_basic_map_free(model
);
983 struct isl_basic_set
*bset
;
985 set
->p
[0] = affine_hull(set
->p
[0], set
->p
[--set
->n
]);
989 bset
= isl_basic_set_copy(set
->p
[0]);
990 hull
= isl_basic_map_overlying_set(bset
, model
);
993 hull
= isl_basic_map_simplify(hull
);
994 return isl_basic_map_finalize(hull
);
996 isl_basic_map_free(model
);
1001 struct isl_basic_set
*isl_set_affine_hull(struct isl_set
*set
)
1003 return (struct isl_basic_set
*)
1004 isl_map_affine_hull((struct isl_map
*)set
);