isl_cat: read generic objects
[isl.git] / isl_affine_hull.c
blobdcb3d18b97884bddba8ca8058c5574fe83057156
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_ctx.h"
11 #include "isl_seq.h"
12 #include "isl_set.h"
13 #include "isl_lp.h"
14 #include "isl_map.h"
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
18 #include "isl_tab.h"
20 struct isl_basic_map *isl_basic_map_implicit_equalities(
21 struct isl_basic_map *bmap)
23 struct isl_tab *tab;
25 if (!bmap)
26 return bmap;
28 bmap = isl_basic_map_gauss(bmap, NULL);
29 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
30 return bmap;
31 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
32 return bmap;
33 if (bmap->n_ineq <= 1)
34 return bmap;
36 tab = isl_tab_from_basic_map(bmap);
37 if (isl_tab_detect_implicit_equalities(tab) < 0)
38 goto error;
39 bmap = isl_basic_map_update_from_tab(bmap, tab);
40 isl_tab_free(tab);
41 bmap = isl_basic_map_gauss(bmap, NULL);
42 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
43 return bmap;
44 error:
45 isl_tab_free(tab);
46 isl_basic_map_free(bmap);
47 return NULL;
50 struct isl_basic_set *isl_basic_set_implicit_equalities(
51 struct isl_basic_set *bset)
53 return (struct isl_basic_set *)
54 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
57 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
59 int i;
61 if (!map)
62 return map;
64 for (i = 0; i < map->n; ++i) {
65 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
66 if (!map->p[i])
67 goto error;
70 return map;
71 error:
72 isl_map_free(map);
73 return NULL;
76 /* Make eq[row][col] of both bmaps equal so we can add the row
77 * add the column to the common matrix.
78 * Note that because of the echelon form, the columns of row row
79 * after column col are zero.
81 static void set_common_multiple(
82 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
83 unsigned row, unsigned col)
85 isl_int m, c;
87 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
88 return;
90 isl_int_init(c);
91 isl_int_init(m);
92 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
93 isl_int_divexact(c, m, bset1->eq[row][col]);
94 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
95 isl_int_divexact(c, m, bset2->eq[row][col]);
96 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
97 isl_int_clear(c);
98 isl_int_clear(m);
101 /* Delete a given equality, moving all the following equalities one up.
103 static void delete_row(struct isl_basic_set *bset, unsigned row)
105 isl_int *t;
106 int r;
108 t = bset->eq[row];
109 bset->n_eq--;
110 for (r = row; r < bset->n_eq; ++r)
111 bset->eq[r] = bset->eq[r+1];
112 bset->eq[bset->n_eq] = t;
115 /* Make first row entries in column col of bset1 identical to
116 * those of bset2, using the fact that entry bset1->eq[row][col]=a
117 * is non-zero. Initially, these elements of bset1 are all zero.
118 * For each row i < row, we set
119 * A[i] = a * A[i] + B[i][col] * A[row]
120 * B[i] = a * B[i]
121 * so that
122 * A[i][col] = B[i][col] = a * old(B[i][col])
124 static void construct_column(
125 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
126 unsigned row, unsigned col)
128 int r;
129 isl_int a;
130 isl_int b;
131 unsigned total;
133 isl_int_init(a);
134 isl_int_init(b);
135 total = 1 + isl_basic_set_n_dim(bset1);
136 for (r = 0; r < row; ++r) {
137 if (isl_int_is_zero(bset2->eq[r][col]))
138 continue;
139 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
140 isl_int_divexact(a, bset1->eq[row][col], b);
141 isl_int_divexact(b, bset2->eq[r][col], b);
142 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
143 b, bset1->eq[row], total);
144 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
146 isl_int_clear(a);
147 isl_int_clear(b);
148 delete_row(bset1, row);
151 /* Make first row entries in column col of bset1 identical to
152 * those of bset2, using only these entries of the two matrices.
153 * Let t be the last row with different entries.
154 * For each row i < t, we set
155 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
156 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
157 * so that
158 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
160 static int transform_column(
161 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
162 unsigned row, unsigned col)
164 int i, t;
165 isl_int a, b, g;
166 unsigned total;
168 for (t = row-1; t >= 0; --t)
169 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
170 break;
171 if (t < 0)
172 return 0;
174 total = 1 + isl_basic_set_n_dim(bset1);
175 isl_int_init(a);
176 isl_int_init(b);
177 isl_int_init(g);
178 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
179 for (i = 0; i < t; ++i) {
180 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
181 isl_int_gcd(g, a, b);
182 isl_int_divexact(a, a, g);
183 isl_int_divexact(g, b, g);
184 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
185 total);
186 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
187 total);
189 isl_int_clear(a);
190 isl_int_clear(b);
191 isl_int_clear(g);
192 delete_row(bset1, t);
193 delete_row(bset2, t);
194 return 1;
197 /* The implementation is based on Section 5.2 of Michael Karr,
198 * "Affine Relationships Among Variables of a Program",
199 * except that the echelon form we use starts from the last column
200 * and that we are dealing with integer coefficients.
202 static struct isl_basic_set *affine_hull(
203 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
205 unsigned total;
206 int col;
207 int row;
209 if (!bset1 || !bset2)
210 goto error;
212 total = 1 + isl_basic_set_n_dim(bset1);
214 row = 0;
215 for (col = total-1; col >= 0; --col) {
216 int is_zero1 = row >= bset1->n_eq ||
217 isl_int_is_zero(bset1->eq[row][col]);
218 int is_zero2 = row >= bset2->n_eq ||
219 isl_int_is_zero(bset2->eq[row][col]);
220 if (!is_zero1 && !is_zero2) {
221 set_common_multiple(bset1, bset2, row, col);
222 ++row;
223 } else if (!is_zero1 && is_zero2) {
224 construct_column(bset1, bset2, row, col);
225 } else if (is_zero1 && !is_zero2) {
226 construct_column(bset2, bset1, row, col);
227 } else {
228 if (transform_column(bset1, bset2, row, col))
229 --row;
232 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
233 isl_basic_set_free(bset2);
234 bset1 = isl_basic_set_normalize_constraints(bset1);
235 return bset1;
236 error:
237 isl_basic_set_free(bset1);
238 isl_basic_set_free(bset2);
239 return NULL;
242 /* Find an integer point in the set represented by "tab"
243 * that lies outside of the equality "eq" e(x) = 0.
244 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
245 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
246 * The point, if found, is returned.
247 * If no point can be found, a zero-length vector is returned.
249 * Before solving an ILP problem, we first check if simply
250 * adding the normal of the constraint to one of the known
251 * integer points in the basic set represented by "tab"
252 * yields another point inside the basic set.
254 * The caller of this function ensures that the tableau is bounded or
255 * that tab->basis and tab->n_unbounded have been set appropriately.
257 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
259 struct isl_ctx *ctx;
260 struct isl_vec *sample = NULL;
261 struct isl_tab_undo *snap;
262 unsigned dim;
264 if (!tab)
265 return NULL;
266 ctx = tab->mat->ctx;
268 dim = tab->n_var;
269 sample = isl_vec_alloc(ctx, 1 + dim);
270 if (!sample)
271 return NULL;
272 isl_int_set_si(sample->el[0], 1);
273 isl_seq_combine(sample->el + 1,
274 ctx->one, tab->bmap->sample->el + 1,
275 up ? ctx->one : ctx->negone, eq + 1, dim);
276 if (isl_basic_map_contains(tab->bmap, sample))
277 return sample;
278 isl_vec_free(sample);
279 sample = NULL;
281 snap = isl_tab_snap(tab);
283 if (!up)
284 isl_seq_neg(eq, eq, 1 + dim);
285 isl_int_sub_ui(eq[0], eq[0], 1);
287 if (isl_tab_extend_cons(tab, 1) < 0)
288 goto error;
289 if (isl_tab_add_ineq(tab, eq) < 0)
290 goto error;
292 sample = isl_tab_sample(tab);
294 isl_int_add_ui(eq[0], eq[0], 1);
295 if (!up)
296 isl_seq_neg(eq, eq, 1 + dim);
298 if (sample && isl_tab_rollback(tab, snap) < 0)
299 goto error;
301 return sample;
302 error:
303 isl_vec_free(sample);
304 return NULL;
307 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
309 int i;
311 bset = isl_basic_set_cow(bset);
312 if (!bset)
313 return NULL;
314 isl_assert(bset->ctx, bset->n_div == 0, goto error);
316 for (i = 0; i < bset->n_eq; ++i)
317 isl_int_set_si(bset->eq[i][0], 0);
319 for (i = 0; i < bset->n_ineq; ++i)
320 isl_int_set_si(bset->ineq[i][0], 0);
322 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
323 return isl_basic_set_implicit_equalities(bset);
324 error:
325 isl_basic_set_free(bset);
326 return NULL;
329 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
331 int i;
333 if (!set)
334 return NULL;
335 if (set->n == 0)
336 return set;
338 set = isl_set_remove_divs(set);
339 set = isl_set_cow(set);
340 if (!set)
341 return NULL;
343 for (i = 0; i < set->n; ++i) {
344 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
345 if (!set->p[i])
346 goto error;
349 return set;
350 error:
351 isl_set_free(set);
352 return NULL;
355 /* Extend an initial (under-)approximation of the affine hull of basic
356 * set represented by the tableau "tab"
357 * by looking for points that do not satisfy one of the equalities
358 * in the current approximation and adding them to that approximation
359 * until no such points can be found any more.
361 * The caller of this function ensures that "tab" is bounded or
362 * that tab->basis and tab->n_unbounded have been set appropriately.
364 static struct isl_basic_set *extend_affine_hull(struct isl_tab *tab,
365 struct isl_basic_set *hull)
367 int i, j;
368 unsigned dim;
370 if (!tab || !hull)
371 goto error;
373 dim = tab->n_var;
375 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
376 goto error;
378 for (i = 0; i < dim; ++i) {
379 struct isl_vec *sample;
380 struct isl_basic_set *point;
381 for (j = 0; j < hull->n_eq; ++j) {
382 sample = outside_point(tab, hull->eq[j], 1);
383 if (!sample)
384 goto error;
385 if (sample->size > 0)
386 break;
387 isl_vec_free(sample);
388 sample = outside_point(tab, hull->eq[j], 0);
389 if (!sample)
390 goto error;
391 if (sample->size > 0)
392 break;
393 isl_vec_free(sample);
395 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
396 goto error;
398 if (j == hull->n_eq)
399 break;
400 if (tab->samples)
401 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
402 if (!tab)
403 goto error;
404 point = isl_basic_set_from_vec(sample);
405 hull = affine_hull(hull, point);
406 if (!hull)
407 return NULL;
410 return hull;
411 error:
412 isl_basic_set_free(hull);
413 return NULL;
416 /* Drop all constraints in bset that involve any of the dimensions
417 * first to first+n-1.
419 static struct isl_basic_set *drop_constraints_involving
420 (struct isl_basic_set *bset, unsigned first, unsigned n)
422 int i;
424 if (!bset)
425 return NULL;
427 bset = isl_basic_set_cow(bset);
429 for (i = bset->n_eq - 1; i >= 0; --i) {
430 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
431 continue;
432 isl_basic_set_drop_equality(bset, i);
435 for (i = bset->n_ineq - 1; i >= 0; --i) {
436 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
437 continue;
438 isl_basic_set_drop_inequality(bset, i);
441 return bset;
444 /* Look for all equalities satisfied by the integer points in bset,
445 * which is assumed to be bounded.
447 * The equalities are obtained by successively looking for
448 * a point that is affinely independent of the points found so far.
449 * In particular, for each equality satisfied by the points so far,
450 * we check if there is any point on a hyperplane parallel to the
451 * corresponding hyperplane shifted by at least one (in either direction).
453 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
455 struct isl_vec *sample = NULL;
456 struct isl_basic_set *hull;
457 struct isl_tab *tab = NULL;
458 unsigned dim;
460 if (isl_basic_set_fast_is_empty(bset))
461 return bset;
463 dim = isl_basic_set_n_dim(bset);
465 if (bset->sample && bset->sample->size == 1 + dim) {
466 int contains = isl_basic_set_contains(bset, bset->sample);
467 if (contains < 0)
468 goto error;
469 if (contains) {
470 if (dim == 0)
471 return bset;
472 sample = isl_vec_copy(bset->sample);
473 } else {
474 isl_vec_free(bset->sample);
475 bset->sample = NULL;
479 tab = isl_tab_from_basic_set(bset);
480 if (!tab)
481 goto error;
482 if (tab->empty) {
483 isl_tab_free(tab);
484 isl_vec_free(sample);
485 return isl_basic_set_set_to_empty(bset);
487 if (isl_tab_track_bset(tab, isl_basic_set_copy(bset)) < 0)
488 goto error;
490 if (!sample) {
491 struct isl_tab_undo *snap;
492 snap = isl_tab_snap(tab);
493 sample = isl_tab_sample(tab);
494 if (isl_tab_rollback(tab, snap) < 0)
495 goto error;
496 isl_vec_free(tab->bmap->sample);
497 tab->bmap->sample = isl_vec_copy(sample);
500 if (!sample)
501 goto error;
502 if (sample->size == 0) {
503 isl_tab_free(tab);
504 isl_vec_free(sample);
505 return isl_basic_set_set_to_empty(bset);
508 hull = isl_basic_set_from_vec(sample);
510 isl_basic_set_free(bset);
511 hull = extend_affine_hull(tab, hull);
512 isl_tab_free(tab);
514 return hull;
515 error:
516 isl_vec_free(sample);
517 isl_tab_free(tab);
518 isl_basic_set_free(bset);
519 return NULL;
522 /* Given an unbounded tableau and an integer point satisfying the tableau,
523 * construct an intial affine hull containing the recession cone
524 * shifted to the given point.
526 * The unbounded directions are taken from the last rows of the basis,
527 * which is assumed to have been initialized appropriately.
529 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
530 __isl_take isl_vec *vec)
532 int i;
533 int k;
534 struct isl_basic_set *bset = NULL;
535 struct isl_ctx *ctx;
536 unsigned dim;
538 if (!vec || !tab)
539 return NULL;
540 ctx = vec->ctx;
541 isl_assert(ctx, vec->size != 0, goto error);
543 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
544 if (!bset)
545 goto error;
546 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
547 for (i = 0; i < dim; ++i) {
548 k = isl_basic_set_alloc_equality(bset);
549 if (k < 0)
550 goto error;
551 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
552 vec->size - 1);
553 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
554 vec->size - 1, &bset->eq[k][0]);
555 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
557 bset->sample = vec;
558 bset = isl_basic_set_gauss(bset, NULL);
560 return bset;
561 error:
562 isl_basic_set_free(bset);
563 isl_vec_free(vec);
564 return NULL;
567 /* Given a tableau of a set and a tableau of the corresponding
568 * recession cone, detect and add all equalities to the tableau.
569 * If the tableau is bounded, then we can simply keep the
570 * tableau in its state after the return from extend_affine_hull.
571 * However, if the tableau is unbounded, then
572 * isl_tab_set_initial_basis_with_cone will add some additional
573 * constraints to the tableau that have to be removed again.
574 * In this case, we therefore rollback to the state before
575 * any constraints were added and then add the eqaulities back in.
577 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
578 struct isl_tab *tab_cone)
580 int j;
581 struct isl_vec *sample;
582 struct isl_basic_set *hull;
583 struct isl_tab_undo *snap;
585 if (!tab || !tab_cone)
586 goto error;
588 snap = isl_tab_snap(tab);
590 isl_mat_free(tab->basis);
591 tab->basis = NULL;
593 isl_assert(tab->mat->ctx, tab->bmap, goto error);
594 isl_assert(tab->mat->ctx, tab->samples, goto error);
595 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
596 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
598 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
599 goto error;
601 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
602 if (!sample)
603 goto error;
605 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
607 isl_vec_free(tab->bmap->sample);
608 tab->bmap->sample = isl_vec_copy(sample);
610 if (tab->n_unbounded == 0)
611 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
612 else
613 hull = initial_hull(tab, isl_vec_copy(sample));
615 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
616 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
617 hull = affine_hull(hull,
618 isl_basic_set_from_vec(isl_vec_copy(sample)));
621 isl_vec_free(sample);
623 hull = extend_affine_hull(tab, hull);
624 if (!hull)
625 goto error;
627 if (tab->n_unbounded == 0) {
628 isl_basic_set_free(hull);
629 return tab;
632 if (isl_tab_rollback(tab, snap) < 0)
633 goto error;
635 if (hull->n_eq > tab->n_zero) {
636 for (j = 0; j < hull->n_eq; ++j) {
637 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
638 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
639 goto error;
643 isl_basic_set_free(hull);
645 return tab;
646 error:
647 isl_tab_free(tab);
648 return NULL;
651 /* Compute the affine hull of "bset", where "cone" is the recession cone
652 * of "bset".
654 * We first compute a unimodular transformation that puts the unbounded
655 * directions in the last dimensions. In particular, we take a transformation
656 * that maps all equalities to equalities (in HNF) on the first dimensions.
657 * Let x be the original dimensions and y the transformed, with y_1 bounded
658 * and y_2 unbounded.
660 * [ y_1 ] [ y_1 ] [ Q_1 ]
661 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
663 * Let's call the input basic set S. We compute S' = preimage(S, U)
664 * and drop the final dimensions including any constraints involving them.
665 * This results in set S''.
666 * Then we compute the affine hull A'' of S''.
667 * Let F y_1 >= g be the constraint system of A''. In the transformed
668 * space the y_2 are unbounded, so we can add them back without any constraints,
669 * resulting in
671 * [ y_1 ]
672 * [ F 0 ] [ y_2 ] >= g
673 * or
674 * [ Q_1 ]
675 * [ F 0 ] [ Q_2 ] x >= g
676 * or
677 * F Q_1 x >= g
679 * The affine hull in the original space is then obtained as
680 * A = preimage(A'', Q_1).
682 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
683 struct isl_basic_set *cone)
685 unsigned total;
686 unsigned cone_dim;
687 struct isl_basic_set *hull;
688 struct isl_mat *M, *U, *Q;
690 if (!bset || !cone)
691 goto error;
693 total = isl_basic_set_total_dim(cone);
694 cone_dim = total - cone->n_eq;
696 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
697 M = isl_mat_left_hermite(M, 0, &U, &Q);
698 if (!M)
699 goto error;
700 isl_mat_free(M);
702 U = isl_mat_lin_to_aff(U);
703 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
705 bset = drop_constraints_involving(bset, total - cone_dim, cone_dim);
706 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
708 Q = isl_mat_lin_to_aff(Q);
709 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
711 if (bset && bset->sample && bset->sample->size == 1 + total)
712 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
714 hull = uset_affine_hull_bounded(bset);
716 if (!hull)
717 isl_mat_free(U);
718 else {
719 struct isl_vec *sample = isl_vec_copy(hull->sample);
720 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
721 if (sample && sample->size > 0)
722 sample = isl_mat_vec_product(U, sample);
723 else
724 isl_mat_free(U);
725 hull = isl_basic_set_preimage(hull, Q);
726 if (hull) {
727 isl_vec_free(hull->sample);
728 hull->sample = sample;
729 } else
730 isl_vec_free(sample);
733 isl_basic_set_free(cone);
735 return hull;
736 error:
737 isl_basic_set_free(bset);
738 isl_basic_set_free(cone);
739 return NULL;
742 /* Look for all equalities satisfied by the integer points in bset,
743 * which is assumed not to have any explicit equalities.
745 * The equalities are obtained by successively looking for
746 * a point that is affinely independent of the points found so far.
747 * In particular, for each equality satisfied by the points so far,
748 * we check if there is any point on a hyperplane parallel to the
749 * corresponding hyperplane shifted by at least one (in either direction).
751 * Before looking for any outside points, we first compute the recession
752 * cone. The directions of this recession cone will always be part
753 * of the affine hull, so there is no need for looking for any points
754 * in these directions.
755 * In particular, if the recession cone is full-dimensional, then
756 * the affine hull is simply the whole universe.
758 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
760 struct isl_basic_set *cone;
762 if (isl_basic_set_fast_is_empty(bset))
763 return bset;
765 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
766 if (!cone)
767 goto error;
768 if (cone->n_eq == 0) {
769 struct isl_basic_set *hull;
770 isl_basic_set_free(cone);
771 hull = isl_basic_set_universe_like(bset);
772 isl_basic_set_free(bset);
773 return hull;
776 if (cone->n_eq < isl_basic_set_total_dim(cone))
777 return affine_hull_with_cone(bset, cone);
779 isl_basic_set_free(cone);
780 return uset_affine_hull_bounded(bset);
781 error:
782 isl_basic_set_free(bset);
783 return NULL;
786 /* Look for all equalities satisfied by the integer points in bmap
787 * that are independent of the equalities already explicitly available
788 * in bmap.
790 * We first remove all equalities already explicitly available,
791 * then look for additional equalities in the reduced space
792 * and then transform the result to the original space.
793 * The original equalities are _not_ added to this set. This is
794 * the responsibility of the calling function.
795 * The resulting basic set has all meaning about the dimensions removed.
796 * In particular, dimensions that correspond to existential variables
797 * in bmap and that are found to be fixed are not removed.
799 static struct isl_basic_set *equalities_in_underlying_set(
800 struct isl_basic_map *bmap)
802 struct isl_mat *T1 = NULL;
803 struct isl_mat *T2 = NULL;
804 struct isl_basic_set *bset = NULL;
805 struct isl_basic_set *hull = NULL;
807 bset = isl_basic_map_underlying_set(bmap);
808 if (!bset)
809 return NULL;
810 if (bset->n_eq)
811 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
812 if (!bset)
813 goto error;
815 hull = uset_affine_hull(bset);
816 if (!T2)
817 return hull;
819 if (!hull) {
820 isl_mat_free(T1);
821 isl_mat_free(T2);
822 } else {
823 struct isl_vec *sample = isl_vec_copy(hull->sample);
824 if (sample && sample->size > 0)
825 sample = isl_mat_vec_product(T1, sample);
826 else
827 isl_mat_free(T1);
828 hull = isl_basic_set_preimage(hull, T2);
829 if (hull) {
830 isl_vec_free(hull->sample);
831 hull->sample = sample;
832 } else
833 isl_vec_free(sample);
836 return hull;
837 error:
838 isl_mat_free(T2);
839 isl_basic_set_free(bset);
840 isl_basic_set_free(hull);
841 return NULL;
844 /* Detect and make explicit all equalities satisfied by the (integer)
845 * points in bmap.
847 struct isl_basic_map *isl_basic_map_detect_equalities(
848 struct isl_basic_map *bmap)
850 int i, j;
851 struct isl_basic_set *hull = NULL;
853 if (!bmap)
854 return NULL;
855 if (bmap->n_ineq == 0)
856 return bmap;
857 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
858 return bmap;
859 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
860 return bmap;
861 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
862 return isl_basic_map_implicit_equalities(bmap);
864 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
865 if (!hull)
866 goto error;
867 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
868 isl_basic_set_free(hull);
869 return isl_basic_map_set_to_empty(bmap);
871 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
872 hull->n_eq, 0);
873 for (i = 0; i < hull->n_eq; ++i) {
874 j = isl_basic_map_alloc_equality(bmap);
875 if (j < 0)
876 goto error;
877 isl_seq_cpy(bmap->eq[j], hull->eq[i],
878 1 + isl_basic_set_total_dim(hull));
880 isl_vec_free(bmap->sample);
881 bmap->sample = isl_vec_copy(hull->sample);
882 isl_basic_set_free(hull);
883 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
884 bmap = isl_basic_map_simplify(bmap);
885 return isl_basic_map_finalize(bmap);
886 error:
887 isl_basic_set_free(hull);
888 isl_basic_map_free(bmap);
889 return NULL;
892 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
893 __isl_take isl_basic_set *bset)
895 return (isl_basic_set *)
896 isl_basic_map_detect_equalities((isl_basic_map *)bset);
899 struct isl_map *isl_map_detect_equalities(struct isl_map *map)
901 struct isl_basic_map *bmap;
902 int i;
904 if (!map)
905 return NULL;
907 for (i = 0; i < map->n; ++i) {
908 bmap = isl_basic_map_copy(map->p[i]);
909 bmap = isl_basic_map_detect_equalities(bmap);
910 if (!bmap)
911 goto error;
912 isl_basic_map_free(map->p[i]);
913 map->p[i] = bmap;
916 return map;
917 error:
918 isl_map_free(map);
919 return NULL;
922 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
924 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
927 /* After computing the rational affine hull (by detecting the implicit
928 * equalities), we compute the additional equalities satisfied by
929 * the integer points (if any) and add the original equalities back in.
931 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
933 bmap = isl_basic_map_detect_equalities(bmap);
934 bmap = isl_basic_map_cow(bmap);
935 if (bmap)
936 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
937 return bmap;
940 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
942 return (struct isl_basic_set *)
943 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
946 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
948 int i;
949 struct isl_basic_map *model = NULL;
950 struct isl_basic_map *hull = NULL;
951 struct isl_set *set;
953 map = isl_map_detect_equalities(map);
954 map = isl_map_align_divs(map);
956 if (!map)
957 return NULL;
959 if (map->n == 0) {
960 hull = isl_basic_map_empty_like_map(map);
961 isl_map_free(map);
962 return hull;
965 model = isl_basic_map_copy(map->p[0]);
966 set = isl_map_underlying_set(map);
967 set = isl_set_cow(set);
968 if (!set)
969 goto error;
971 for (i = 0; i < set->n; ++i) {
972 set->p[i] = isl_basic_set_cow(set->p[i]);
973 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
974 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
975 if (!set->p[i])
976 goto error;
978 set = isl_set_remove_empty_parts(set);
979 if (set->n == 0) {
980 hull = isl_basic_map_empty_like(model);
981 isl_basic_map_free(model);
982 } else {
983 struct isl_basic_set *bset;
984 while (set->n > 1) {
985 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
986 if (!set->p[0])
987 goto error;
989 bset = isl_basic_set_copy(set->p[0]);
990 hull = isl_basic_map_overlying_set(bset, model);
992 isl_set_free(set);
993 hull = isl_basic_map_simplify(hull);
994 return isl_basic_map_finalize(hull);
995 error:
996 isl_basic_map_free(model);
997 isl_set_free(set);
998 return NULL;
1001 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1003 return (struct isl_basic_set *)
1004 isl_map_affine_hull((struct isl_map *)set);