2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_map_private.h>
12 #include <isl_morph.h>
14 #include <isl_mat_private.h>
15 #include <isl_dim_private.h>
16 #include <isl_equalities.h>
18 __isl_give isl_morph
*isl_morph_alloc(
19 __isl_take isl_basic_set
*dom
, __isl_take isl_basic_set
*ran
,
20 __isl_take isl_mat
*map
, __isl_take isl_mat
*inv
)
24 if (!dom
|| !ran
|| !map
|| !inv
)
27 morph
= isl_alloc_type(dom
->ctx
, struct isl_morph
);
39 isl_basic_set_free(dom
);
40 isl_basic_set_free(ran
);
46 __isl_give isl_morph
*isl_morph_copy(__isl_keep isl_morph
*morph
)
55 __isl_give isl_morph
*isl_morph_dup(__isl_keep isl_morph
*morph
)
60 return isl_morph_alloc(isl_basic_set_copy(morph
->dom
),
61 isl_basic_set_copy(morph
->ran
),
62 isl_mat_copy(morph
->map
), isl_mat_copy(morph
->inv
));
65 __isl_give isl_morph
*isl_morph_cow(__isl_take isl_morph
*morph
)
73 return isl_morph_dup(morph
);
76 void isl_morph_free(__isl_take isl_morph
*morph
)
84 isl_basic_set_free(morph
->dom
);
85 isl_basic_set_free(morph
->ran
);
86 isl_mat_free(morph
->map
);
87 isl_mat_free(morph
->inv
);
91 __isl_give isl_dim
*isl_morph_get_ran_dim(__isl_keep isl_morph
*morph
)
96 return isl_dim_copy(morph
->ran
->dim
);
99 unsigned isl_morph_dom_dim(__isl_keep isl_morph
*morph
, enum isl_dim_type type
)
104 return isl_basic_set_dim(morph
->dom
, type
);
107 unsigned isl_morph_ran_dim(__isl_keep isl_morph
*morph
, enum isl_dim_type type
)
112 return isl_basic_set_dim(morph
->ran
, type
);
115 __isl_give isl_morph
*isl_morph_remove_dom_dims(__isl_take isl_morph
*morph
,
116 enum isl_dim_type type
, unsigned first
, unsigned n
)
123 morph
= isl_morph_cow(morph
);
127 dom_offset
= 1 + isl_dim_offset(morph
->dom
->dim
, type
);
129 morph
->dom
= isl_basic_set_remove_dims(morph
->dom
, type
, first
, n
);
131 morph
->map
= isl_mat_drop_cols(morph
->map
, dom_offset
+ first
, n
);
133 morph
->inv
= isl_mat_drop_rows(morph
->inv
, dom_offset
+ first
, n
);
135 if (morph
->dom
&& morph
->ran
&& morph
->map
&& morph
->inv
)
138 isl_morph_free(morph
);
142 __isl_give isl_morph
*isl_morph_remove_ran_dims(__isl_take isl_morph
*morph
,
143 enum isl_dim_type type
, unsigned first
, unsigned n
)
150 morph
= isl_morph_cow(morph
);
154 ran_offset
= 1 + isl_dim_offset(morph
->ran
->dim
, type
);
156 morph
->ran
= isl_basic_set_remove_dims(morph
->ran
, type
, first
, n
);
158 morph
->map
= isl_mat_drop_rows(morph
->map
, ran_offset
+ first
, n
);
160 morph
->inv
= isl_mat_drop_cols(morph
->inv
, ran_offset
+ first
, n
);
162 if (morph
->dom
&& morph
->ran
&& morph
->map
&& morph
->inv
)
165 isl_morph_free(morph
);
169 void isl_morph_dump(__isl_take isl_morph
*morph
, FILE *out
)
174 isl_basic_set_print(morph
->dom
, out
, 0, "", "", ISL_FORMAT_ISL
);
175 isl_basic_set_print(morph
->ran
, out
, 0, "", "", ISL_FORMAT_ISL
);
176 isl_mat_print_internal(morph
->map
, out
, 4);
177 isl_mat_print_internal(morph
->inv
, out
, 4);
180 __isl_give isl_morph
*isl_morph_identity(__isl_keep isl_basic_set
*bset
)
183 isl_basic_set
*universe
;
189 total
= isl_basic_set_total_dim(bset
);
190 id
= isl_mat_identity(bset
->ctx
, 1 + total
);
191 universe
= isl_basic_set_universe(isl_dim_copy(bset
->dim
));
193 return isl_morph_alloc(universe
, isl_basic_set_copy(universe
),
194 id
, isl_mat_copy(id
));
197 /* Create a(n identity) morphism between empty sets of the same dimension
200 __isl_give isl_morph
*isl_morph_empty(__isl_keep isl_basic_set
*bset
)
203 isl_basic_set
*empty
;
209 total
= isl_basic_set_total_dim(bset
);
210 id
= isl_mat_identity(bset
->ctx
, 1 + total
);
211 empty
= isl_basic_set_empty(isl_dim_copy(bset
->dim
));
213 return isl_morph_alloc(empty
, isl_basic_set_copy(empty
),
214 id
, isl_mat_copy(id
));
217 /* Given a matrix that maps a (possibly) parametric domain to
218 * a parametric domain, add in rows that map the "nparam" parameters onto
221 static __isl_give isl_mat
*insert_parameter_rows(__isl_take isl_mat
*mat
,
231 mat
= isl_mat_insert_rows(mat
, 1, nparam
);
235 for (i
= 0; i
< nparam
; ++i
) {
236 isl_seq_clr(mat
->row
[1 + i
], mat
->n_col
);
237 isl_int_set(mat
->row
[1 + i
][1 + i
], mat
->row
[0][0]);
243 /* Construct a basic set described by the "n" equalities of "bset" starting
246 static __isl_give isl_basic_set
*copy_equalities(__isl_keep isl_basic_set
*bset
,
247 unsigned first
, unsigned n
)
253 isl_assert(bset
->ctx
, bset
->n_div
== 0, return NULL
);
255 total
= isl_basic_set_total_dim(bset
);
256 eq
= isl_basic_set_alloc_dim(isl_dim_copy(bset
->dim
), 0, n
, 0);
259 for (i
= 0; i
< n
; ++i
) {
260 k
= isl_basic_set_alloc_equality(eq
);
263 isl_seq_cpy(eq
->eq
[k
], bset
->eq
[first
+ k
], 1 + total
);
268 isl_basic_set_free(eq
);
272 /* Given a basic set, exploit the equalties in the a basic set to construct
273 * a morphishm that maps the basic set to a lower-dimensional space.
274 * Specifically, the morphism reduces the number of dimensions of type "type".
276 * This function is a slight generalization of isl_mat_variable_compression
277 * in that it allows the input to be parametric and that it allows for the
278 * compression of either parameters or set variables.
280 * We first select the equalities of interest, that is those that involve
281 * variables of type "type" and no later variables.
282 * Denote those equalities as
286 * where C(p) depends on the parameters if type == isl_dim_set and
287 * is a constant if type == isl_dim_param.
289 * First compute the (left) Hermite normal form of M,
291 * M [U1 U2] = M U = H = [H1 0]
293 * M = H Q = [H1 0] [Q1]
296 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
297 * Define the transformed variables as
299 * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
302 * The equalities then become
304 * -C(p) + H1 x1' = 0 or x1' = H1^{-1} C(p) = C'(p)
306 * If the denominator of the constant term does not divide the
307 * the common denominator of the parametric terms, then every
308 * integer point is mapped to a non-integer point and then the original set has no
309 * integer solutions (since the x' are a unimodular transformation
310 * of the x). In this case, an empty morphism is returned.
311 * Otherwise, the transformation is given by
313 * x = U1 H1^{-1} C(p) + U2 x2'
315 * The inverse transformation is simply
319 * Both matrices are extended to map the full original space to the full
322 __isl_give isl_morph
*isl_basic_set_variable_compression(
323 __isl_keep isl_basic_set
*bset
, enum isl_dim_type type
)
332 isl_mat
*H
, *U
, *Q
, *C
= NULL
, *H1
, *U1
, *U2
;
333 isl_basic_set
*dom
, *ran
;
338 if (isl_basic_set_plain_is_empty(bset
))
339 return isl_morph_empty(bset
);
341 isl_assert(bset
->ctx
, bset
->n_div
== 0, return NULL
);
343 otype
= 1 + isl_dim_offset(bset
->dim
, type
);
344 ntype
= isl_basic_set_dim(bset
, type
);
345 orest
= otype
+ ntype
;
346 nrest
= isl_basic_set_total_dim(bset
) - (orest
- 1);
348 for (f_eq
= 0; f_eq
< bset
->n_eq
; ++f_eq
)
349 if (isl_seq_first_non_zero(bset
->eq
[f_eq
] + orest
, nrest
) == -1)
351 for (n_eq
= 0; f_eq
+ n_eq
< bset
->n_eq
; ++n_eq
)
352 if (isl_seq_first_non_zero(bset
->eq
[f_eq
+ n_eq
] + otype
, ntype
) == -1)
355 return isl_morph_identity(bset
);
357 H
= isl_mat_sub_alloc6(bset
->ctx
, bset
->eq
, f_eq
, n_eq
, otype
, ntype
);
358 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
361 Q
= isl_mat_drop_rows(Q
, 0, n_eq
);
362 Q
= isl_mat_diagonal(isl_mat_identity(bset
->ctx
, otype
), Q
);
363 Q
= isl_mat_diagonal(Q
, isl_mat_identity(bset
->ctx
, nrest
));
364 C
= isl_mat_alloc(bset
->ctx
, 1 + n_eq
, otype
);
367 isl_int_set_si(C
->row
[0][0], 1);
368 isl_seq_clr(C
->row
[0] + 1, otype
- 1);
369 isl_mat_sub_neg(C
->ctx
, C
->row
+ 1, bset
->eq
+ f_eq
, n_eq
, 0, 0, otype
);
370 H1
= isl_mat_sub_alloc(H
, 0, H
->n_row
, 0, H
->n_row
);
371 H1
= isl_mat_lin_to_aff(H1
);
372 C
= isl_mat_inverse_product(H1
, C
);
377 if (!isl_int_is_one(C
->row
[0][0])) {
382 for (i
= 0; i
< n_eq
; ++i
) {
383 isl_seq_gcd(C
->row
[1 + i
] + 1, otype
- 1, &g
);
384 isl_int_gcd(g
, g
, C
->row
[0][0]);
385 if (!isl_int_is_divisible_by(C
->row
[1 + i
][0], g
))
394 return isl_morph_empty(bset
);
397 C
= isl_mat_normalize(C
);
400 U1
= isl_mat_sub_alloc(U
, 0, U
->n_row
, 0, n_eq
);
401 U1
= isl_mat_lin_to_aff(U1
);
402 U2
= isl_mat_sub_alloc(U
, 0, U
->n_row
, n_eq
, U
->n_row
- n_eq
);
403 U2
= isl_mat_lin_to_aff(U2
);
406 C
= isl_mat_product(U1
, C
);
407 C
= isl_mat_aff_direct_sum(C
, U2
);
408 C
= insert_parameter_rows(C
, otype
- 1);
409 C
= isl_mat_diagonal(C
, isl_mat_identity(bset
->ctx
, nrest
));
411 dim
= isl_dim_copy(bset
->dim
);
412 dim
= isl_dim_drop(dim
, type
, 0, ntype
);
413 dim
= isl_dim_add(dim
, type
, ntype
- n_eq
);
414 ran
= isl_basic_set_universe(dim
);
415 dom
= copy_equalities(bset
, f_eq
, n_eq
);
417 return isl_morph_alloc(dom
, ran
, Q
, C
);
426 /* Construct a parameter compression for "bset".
427 * We basically just call isl_mat_parameter_compression with the right input
428 * and then extend the resulting matrix to include the variables.
430 * Let the equalities be given as
434 * and let [H 0] be the Hermite Normal Form of A, then
438 * needs to be integer, so we impose that each row is divisible by
441 __isl_give isl_morph
*isl_basic_set_parameter_compression(
442 __isl_keep isl_basic_set
*bset
)
450 isl_basic_set
*dom
, *ran
;
455 if (isl_basic_set_plain_is_empty(bset
))
456 return isl_morph_empty(bset
);
458 return isl_morph_identity(bset
);
460 isl_assert(bset
->ctx
, bset
->n_div
== 0, return NULL
);
463 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
464 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
466 isl_assert(bset
->ctx
, n_eq
<= nvar
, return NULL
);
468 d
= isl_vec_alloc(bset
->ctx
, n_eq
);
469 B
= isl_mat_sub_alloc6(bset
->ctx
, bset
->eq
, 0, n_eq
, 0, 1 + nparam
);
470 H
= isl_mat_sub_alloc6(bset
->ctx
, bset
->eq
, 0, n_eq
, 1 + nparam
, nvar
);
471 H
= isl_mat_left_hermite(H
, 0, NULL
, NULL
);
472 H
= isl_mat_drop_cols(H
, n_eq
, nvar
- n_eq
);
473 H
= isl_mat_lin_to_aff(H
);
474 H
= isl_mat_right_inverse(H
);
477 isl_seq_set(d
->el
, H
->row
[0][0], d
->size
);
478 H
= isl_mat_drop_rows(H
, 0, 1);
479 H
= isl_mat_drop_cols(H
, 0, 1);
480 B
= isl_mat_product(H
, B
);
481 inv
= isl_mat_parameter_compression(B
, d
);
482 inv
= isl_mat_diagonal(inv
, isl_mat_identity(bset
->ctx
, nvar
));
483 map
= isl_mat_right_inverse(isl_mat_copy(inv
));
485 dom
= isl_basic_set_universe(isl_dim_copy(bset
->dim
));
486 ran
= isl_basic_set_universe(isl_dim_copy(bset
->dim
));
488 return isl_morph_alloc(dom
, ran
, map
, inv
);
496 /* Add stride constraints to "bset" based on the inverse mapping
497 * that was plugged in. In particular, if morph maps x' to x,
498 * the the constraints of the original input
502 * have been rewritten to
506 * However, this substitution may loose information on the integrality of x',
507 * so we need to impose that
511 * is integral. If inv = B/d, this means that we need to impose that
517 * exists alpha in Z^m: B x = d alpha
520 static __isl_give isl_basic_set
*add_strides(__isl_take isl_basic_set
*bset
,
521 __isl_keep isl_morph
*morph
)
526 if (isl_int_is_one(morph
->inv
->row
[0][0]))
531 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
) {
532 isl_seq_gcd(morph
->inv
->row
[1 + i
], morph
->inv
->n_col
, &gcd
);
533 if (isl_int_is_divisible_by(gcd
, morph
->inv
->row
[0][0]))
535 div
= isl_basic_set_alloc_div(bset
);
538 k
= isl_basic_set_alloc_equality(bset
);
541 isl_seq_cpy(bset
->eq
[k
], morph
->inv
->row
[1 + i
],
543 isl_seq_clr(bset
->eq
[k
] + morph
->inv
->n_col
, bset
->n_div
);
544 isl_int_set(bset
->eq
[k
][morph
->inv
->n_col
+ div
],
545 morph
->inv
->row
[0][0]);
553 isl_basic_set_free(bset
);
557 /* Apply the morphism to the basic set.
558 * We basically just compute the preimage of "bset" under the inverse mapping
559 * in morph, add in stride constraints and intersect with the range
562 __isl_give isl_basic_set
*isl_morph_basic_set(__isl_take isl_morph
*morph
,
563 __isl_take isl_basic_set
*bset
)
565 isl_basic_set
*res
= NULL
;
573 isl_assert(bset
->ctx
, isl_dim_equal(bset
->dim
, morph
->dom
->dim
),
576 max_stride
= morph
->inv
->n_row
- 1;
577 if (isl_int_is_one(morph
->inv
->row
[0][0]))
579 res
= isl_basic_set_alloc_dim(isl_dim_copy(morph
->ran
->dim
),
580 bset
->n_div
+ max_stride
, bset
->n_eq
+ max_stride
, bset
->n_ineq
);
582 for (i
= 0; i
< bset
->n_div
; ++i
)
583 if (isl_basic_set_alloc_div(res
) < 0)
586 mat
= isl_mat_sub_alloc6(bset
->ctx
, bset
->eq
, 0, bset
->n_eq
,
587 0, morph
->inv
->n_row
);
588 mat
= isl_mat_product(mat
, isl_mat_copy(morph
->inv
));
591 for (i
= 0; i
< bset
->n_eq
; ++i
) {
592 k
= isl_basic_set_alloc_equality(res
);
595 isl_seq_cpy(res
->eq
[k
], mat
->row
[i
], mat
->n_col
);
596 isl_seq_scale(res
->eq
[k
] + mat
->n_col
, bset
->eq
[i
] + mat
->n_col
,
597 morph
->inv
->row
[0][0], bset
->n_div
);
601 mat
= isl_mat_sub_alloc6(bset
->ctx
, bset
->ineq
, 0, bset
->n_ineq
,
602 0, morph
->inv
->n_row
);
603 mat
= isl_mat_product(mat
, isl_mat_copy(morph
->inv
));
606 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
607 k
= isl_basic_set_alloc_inequality(res
);
610 isl_seq_cpy(res
->ineq
[k
], mat
->row
[i
], mat
->n_col
);
611 isl_seq_scale(res
->ineq
[k
] + mat
->n_col
,
612 bset
->ineq
[i
] + mat
->n_col
,
613 morph
->inv
->row
[0][0], bset
->n_div
);
617 mat
= isl_mat_sub_alloc6(bset
->ctx
, bset
->div
, 0, bset
->n_div
,
618 1, morph
->inv
->n_row
);
619 mat
= isl_mat_product(mat
, isl_mat_copy(morph
->inv
));
622 for (i
= 0; i
< bset
->n_div
; ++i
) {
623 isl_int_mul(res
->div
[i
][0],
624 morph
->inv
->row
[0][0], bset
->div
[i
][0]);
625 isl_seq_cpy(res
->div
[i
] + 1, mat
->row
[i
], mat
->n_col
);
626 isl_seq_scale(res
->div
[i
] + 1 + mat
->n_col
,
627 bset
->div
[i
] + 1 + mat
->n_col
,
628 morph
->inv
->row
[0][0], bset
->n_div
);
632 res
= add_strides(res
, morph
);
634 if (isl_basic_set_is_rational(bset
))
635 res
= isl_basic_set_set_rational(res
);
637 res
= isl_basic_set_simplify(res
);
638 res
= isl_basic_set_finalize(res
);
640 res
= isl_basic_set_intersect(res
, isl_basic_set_copy(morph
->ran
));
642 isl_morph_free(morph
);
643 isl_basic_set_free(bset
);
647 isl_morph_free(morph
);
648 isl_basic_set_free(bset
);
649 isl_basic_set_free(res
);
653 /* Apply the morphism to the set.
655 __isl_give isl_set
*isl_morph_set(__isl_take isl_morph
*morph
,
656 __isl_take isl_set
*set
)
663 isl_assert(set
->ctx
, isl_dim_equal(set
->dim
, morph
->dom
->dim
), goto error
);
665 set
= isl_set_cow(set
);
669 isl_dim_free(set
->dim
);
670 set
->dim
= isl_dim_copy(morph
->ran
->dim
);
674 for (i
= 0; i
< set
->n
; ++i
) {
675 set
->p
[i
] = isl_morph_basic_set(isl_morph_copy(morph
), set
->p
[i
]);
680 isl_morph_free(morph
);
682 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
687 isl_morph_free(morph
);
691 /* Construct a morphism that first does morph2 and then morph1.
693 __isl_give isl_morph
*isl_morph_compose(__isl_take isl_morph
*morph1
,
694 __isl_take isl_morph
*morph2
)
697 isl_basic_set
*dom
, *ran
;
699 if (!morph1
|| !morph2
)
702 map
= isl_mat_product(isl_mat_copy(morph1
->map
), isl_mat_copy(morph2
->map
));
703 inv
= isl_mat_product(isl_mat_copy(morph2
->inv
), isl_mat_copy(morph1
->inv
));
704 dom
= isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2
)),
705 isl_basic_set_copy(morph1
->dom
));
706 dom
= isl_basic_set_intersect(dom
, isl_basic_set_copy(morph2
->dom
));
707 ran
= isl_morph_basic_set(isl_morph_copy(morph1
),
708 isl_basic_set_copy(morph2
->ran
));
709 ran
= isl_basic_set_intersect(ran
, isl_basic_set_copy(morph1
->ran
));
711 isl_morph_free(morph1
);
712 isl_morph_free(morph2
);
714 return isl_morph_alloc(dom
, ran
, map
, inv
);
716 isl_morph_free(morph1
);
717 isl_morph_free(morph2
);
721 __isl_give isl_morph
*isl_morph_inverse(__isl_take isl_morph
*morph
)
726 morph
= isl_morph_cow(morph
);
731 morph
->dom
= morph
->ran
;
735 morph
->map
= morph
->inv
;
741 __isl_give isl_morph
*isl_basic_set_full_compression(
742 __isl_keep isl_basic_set
*bset
)
744 isl_morph
*morph
, *morph2
;
746 bset
= isl_basic_set_copy(bset
);
748 morph
= isl_basic_set_variable_compression(bset
, isl_dim_param
);
749 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
751 morph2
= isl_basic_set_parameter_compression(bset
);
752 bset
= isl_morph_basic_set(isl_morph_copy(morph2
), bset
);
754 morph
= isl_morph_compose(morph2
, morph
);
756 morph2
= isl_basic_set_variable_compression(bset
, isl_dim_set
);
757 isl_basic_set_free(bset
);
759 morph
= isl_morph_compose(morph2
, morph
);
764 __isl_give isl_vec
*isl_morph_vec(__isl_take isl_morph
*morph
,
765 __isl_take isl_vec
*vec
)
770 vec
= isl_mat_vec_product(isl_mat_copy(morph
->map
), vec
);
772 isl_morph_free(morph
);
775 isl_morph_free(morph
);