2 * Copyright 2011 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl_space_private.h>
16 #include <isl/constraint.h>
17 #include <isl/schedule.h>
18 #include <isl_mat_private.h>
22 #include <isl_dim_map.h>
23 #include <isl_hmap_map_basic_set.h>
25 #include <isl_schedule_private.h>
26 #include <isl_band_private.h>
27 #include <isl_list_private.h>
28 #include <isl_options_private.h>
29 #include <isl_tarjan.h>
32 * The scheduling algorithm implemented in this file was inspired by
33 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
34 * Parallelization and Locality Optimization in the Polyhedral Model".
38 /* Internal information about a node that is used during the construction
40 * dim represents the space in which the domain lives
41 * sched is a matrix representation of the schedule being constructed
43 * sched_map is an isl_map representation of the same (partial) schedule
44 * sched_map may be NULL
45 * rank is the number of linearly independent rows in the linear part
47 * the columns of cmap represent a change of basis for the schedule
48 * coefficients; the first rank columns span the linear part of
50 * start is the first variable in the LP problem in the sequences that
51 * represents the schedule coefficients of this node
52 * nvar is the dimension of the domain
53 * nparam is the number of parameters or 0 if we are not constructing
54 * a parametric schedule
56 * scc is the index of SCC (or WCC) this node belongs to
58 * band contains the band index for each of the rows of the schedule.
59 * band_id is used to differentiate between separate bands at the same
60 * level within the same parent band, i.e., bands that are separated
61 * by the parent band or bands that are independent of each other.
62 * zero contains a boolean for each of the rows of the schedule,
63 * indicating whether the corresponding scheduling dimension results
64 * in zero dependence distances within its band and with respect
65 * to the proximity edges.
67 struct isl_sched_node
{
84 static int node_has_dim(const void *entry
, const void *val
)
86 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
87 isl_space
*dim
= (isl_space
*)val
;
89 return isl_space_is_equal(node
->dim
, dim
);
92 /* An edge in the dependence graph. An edge may be used to
93 * ensure validity of the generated schedule, to minimize the dependence
96 * map is the dependence relation
97 * src is the source node
98 * dst is the sink node
99 * validity is set if the edge is used to ensure correctness
100 * proximity is set if the edge is used to minimize dependence distances
102 * For validity edges, start and end mark the sequence of inequality
103 * constraints in the LP problem that encode the validity constraint
104 * corresponding to this edge.
106 struct isl_sched_edge
{
109 struct isl_sched_node
*src
;
110 struct isl_sched_node
*dst
;
120 isl_edge_validity
= 0,
121 isl_edge_first
= isl_edge_validity
,
123 isl_edge_last
= isl_edge_proximity
126 /* Internal information about the dependence graph used during
127 * the construction of the schedule.
129 * intra_hmap is a cache, mapping dependence relations to their dual,
130 * for dependences from a node to itself
131 * inter_hmap is a cache, mapping dependence relations to their dual,
132 * for dependences between distinct nodes
134 * n is the number of nodes
135 * node is the list of nodes
136 * maxvar is the maximal number of variables over all nodes
137 * max_row is the allocated number of rows in the schedule
138 * n_row is the current (maximal) number of linearly independent
139 * rows in the node schedules
140 * n_total_row is the current number of rows in the node schedules
141 * n_band is the current number of completed bands
142 * band_start is the starting row in the node schedules of the current band
143 * root is set if this graph is the original dependence graph,
144 * without any splitting
146 * sorted contains a list of node indices sorted according to the
147 * SCC to which a node belongs
149 * n_edge is the number of edges
150 * edge is the list of edges
151 * max_edge contains the maximal number of edges of each type;
152 * in particular, it contains the number of edges in the inital graph.
153 * edge_table contains pointers into the edge array, hashed on the source
154 * and sink spaces; there is one such table for each type;
155 * a given edge may be referenced from more than one table
156 * if the corresponding relation appears in more than of the
157 * sets of dependences
159 * node_table contains pointers into the node array, hashed on the space
161 * region contains a list of variable sequences that should be non-trivial
163 * lp contains the (I)LP problem used to obtain new schedule rows
165 * src_scc and dst_scc are the source and sink SCCs of an edge with
166 * conflicting constraints
168 * scc represents the number of components
170 struct isl_sched_graph
{
171 isl_hmap_map_basic_set
*intra_hmap
;
172 isl_hmap_map_basic_set
*inter_hmap
;
174 struct isl_sched_node
*node
;
188 struct isl_sched_edge
*edge
;
190 int max_edge
[isl_edge_last
+ 1];
191 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
193 struct isl_hash_table
*node_table
;
194 struct isl_region
*region
;
204 /* Initialize node_table based on the list of nodes.
206 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
210 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
211 if (!graph
->node_table
)
214 for (i
= 0; i
< graph
->n
; ++i
) {
215 struct isl_hash_table_entry
*entry
;
218 hash
= isl_space_get_hash(graph
->node
[i
].dim
);
219 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
221 graph
->node
[i
].dim
, 1);
224 entry
->data
= &graph
->node
[i
];
230 /* Return a pointer to the node that lives within the given space,
231 * or NULL if there is no such node.
233 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
234 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
236 struct isl_hash_table_entry
*entry
;
239 hash
= isl_space_get_hash(dim
);
240 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
241 &node_has_dim
, dim
, 0);
243 return entry
? entry
->data
: NULL
;
246 static int edge_has_src_and_dst(const void *entry
, const void *val
)
248 const struct isl_sched_edge
*edge
= entry
;
249 const struct isl_sched_edge
*temp
= val
;
251 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
254 /* Add the given edge to graph->edge_table[type].
256 static int graph_edge_table_add(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
257 enum isl_edge_type type
, struct isl_sched_edge
*edge
)
259 struct isl_hash_table_entry
*entry
;
262 hash
= isl_hash_init();
263 hash
= isl_hash_builtin(hash
, edge
->src
);
264 hash
= isl_hash_builtin(hash
, edge
->dst
);
265 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
266 &edge_has_src_and_dst
, edge
, 1);
274 /* Allocate the edge_tables based on the maximal number of edges of
277 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
281 for (i
= 0; i
<= isl_edge_last
; ++i
) {
282 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
284 if (!graph
->edge_table
[i
])
291 /* If graph->edge_table[type] contains an edge from the given source
292 * to the given destination, then return the hash table entry of this edge.
293 * Otherwise, return NULL.
295 static struct isl_hash_table_entry
*graph_find_edge_entry(
296 struct isl_sched_graph
*graph
,
297 enum isl_edge_type type
,
298 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
300 isl_ctx
*ctx
= isl_space_get_ctx(src
->dim
);
302 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
304 hash
= isl_hash_init();
305 hash
= isl_hash_builtin(hash
, temp
.src
);
306 hash
= isl_hash_builtin(hash
, temp
.dst
);
307 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
308 &edge_has_src_and_dst
, &temp
, 0);
312 /* If graph->edge_table[type] contains an edge from the given source
313 * to the given destination, then return this edge.
314 * Otherwise, return NULL.
316 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
317 enum isl_edge_type type
,
318 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
320 struct isl_hash_table_entry
*entry
;
322 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
329 /* Check whether the dependence graph has an edge of the give type
330 * between the given two nodes.
332 static int graph_has_edge(struct isl_sched_graph
*graph
,
333 enum isl_edge_type type
,
334 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
336 struct isl_sched_edge
*edge
;
339 edge
= graph_find_edge(graph
, type
, src
, dst
);
343 empty
= isl_map_plain_is_empty(edge
->map
);
350 /* If there is an edge from the given source to the given destination
351 * of any type then return this edge.
352 * Otherwise, return NULL.
354 static struct isl_sched_edge
*graph_find_any_edge(struct isl_sched_graph
*graph
,
355 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
357 enum isl_edge_type i
;
358 struct isl_sched_edge
*edge
;
360 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
361 edge
= graph_find_edge(graph
, i
, src
, dst
);
369 /* Remove the given edge from all the edge_tables that refer to it.
371 static void graph_remove_edge(struct isl_sched_graph
*graph
,
372 struct isl_sched_edge
*edge
)
374 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
375 enum isl_edge_type i
;
377 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
378 struct isl_hash_table_entry
*entry
;
380 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
383 if (entry
->data
!= edge
)
385 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
389 /* Check whether the dependence graph has any edge
390 * between the given two nodes.
392 static int graph_has_any_edge(struct isl_sched_graph
*graph
,
393 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
395 enum isl_edge_type i
;
398 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
399 r
= graph_has_edge(graph
, i
, src
, dst
);
407 /* Check whether the dependence graph has a validity edge
408 * between the given two nodes.
410 static int graph_has_validity_edge(struct isl_sched_graph
*graph
,
411 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
413 return graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
416 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
417 int n_node
, int n_edge
)
422 graph
->n_edge
= n_edge
;
423 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
424 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
425 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
426 graph
->edge
= isl_calloc_array(ctx
,
427 struct isl_sched_edge
, graph
->n_edge
);
429 graph
->intra_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
430 graph
->inter_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
432 if (!graph
->node
|| !graph
->region
|| !graph
->edge
|| !graph
->sorted
)
435 for(i
= 0; i
< graph
->n
; ++i
)
436 graph
->sorted
[i
] = i
;
441 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
445 isl_hmap_map_basic_set_free(ctx
, graph
->intra_hmap
);
446 isl_hmap_map_basic_set_free(ctx
, graph
->inter_hmap
);
448 for (i
= 0; i
< graph
->n
; ++i
) {
449 isl_space_free(graph
->node
[i
].dim
);
450 isl_mat_free(graph
->node
[i
].sched
);
451 isl_map_free(graph
->node
[i
].sched_map
);
452 isl_mat_free(graph
->node
[i
].cmap
);
454 free(graph
->node
[i
].band
);
455 free(graph
->node
[i
].band_id
);
456 free(graph
->node
[i
].zero
);
461 for (i
= 0; i
< graph
->n_edge
; ++i
)
462 isl_map_free(graph
->edge
[i
].map
);
465 for (i
= 0; i
<= isl_edge_last
; ++i
)
466 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
467 isl_hash_table_free(ctx
, graph
->node_table
);
468 isl_basic_set_free(graph
->lp
);
471 /* For each "set" on which this function is called, increment
472 * graph->n by one and update graph->maxvar.
474 static int init_n_maxvar(__isl_take isl_set
*set
, void *user
)
476 struct isl_sched_graph
*graph
= user
;
477 int nvar
= isl_set_dim(set
, isl_dim_set
);
480 if (nvar
> graph
->maxvar
)
481 graph
->maxvar
= nvar
;
488 /* Compute the number of rows that should be allocated for the schedule.
489 * The graph can be split at most "n - 1" times, there can be at most
490 * two rows for each dimension in the iteration domains (in particular,
491 * we usually have one row, but it may be split by split_scaled),
492 * and there can be one extra row for ordering the statements.
493 * Note that if we have actually split "n - 1" times, then no ordering
494 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
496 static int compute_max_row(struct isl_sched_graph
*graph
,
497 __isl_keep isl_union_set
*domain
)
501 if (isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
) < 0)
503 graph
->max_row
= graph
->n
+ 2 * graph
->maxvar
;
508 /* Add a new node to the graph representing the given set.
510 static int extract_node(__isl_take isl_set
*set
, void *user
)
516 struct isl_sched_graph
*graph
= user
;
517 int *band
, *band_id
, *zero
;
519 ctx
= isl_set_get_ctx(set
);
520 dim
= isl_set_get_space(set
);
522 nvar
= isl_space_dim(dim
, isl_dim_set
);
523 nparam
= isl_space_dim(dim
, isl_dim_param
);
524 if (!ctx
->opt
->schedule_parametric
)
526 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
527 graph
->node
[graph
->n
].dim
= dim
;
528 graph
->node
[graph
->n
].nvar
= nvar
;
529 graph
->node
[graph
->n
].nparam
= nparam
;
530 graph
->node
[graph
->n
].sched
= sched
;
531 graph
->node
[graph
->n
].sched_map
= NULL
;
532 band
= isl_alloc_array(ctx
, int, graph
->max_row
);
533 graph
->node
[graph
->n
].band
= band
;
534 band_id
= isl_calloc_array(ctx
, int, graph
->max_row
);
535 graph
->node
[graph
->n
].band_id
= band_id
;
536 zero
= isl_calloc_array(ctx
, int, graph
->max_row
);
537 graph
->node
[graph
->n
].zero
= zero
;
540 if (!sched
|| !band
|| !band_id
|| !zero
)
546 struct isl_extract_edge_data
{
547 enum isl_edge_type type
;
548 struct isl_sched_graph
*graph
;
551 /* Add a new edge to the graph based on the given map
552 * and add it to data->graph->edge_table[data->type].
553 * If a dependence relation of a given type happens to be identical
554 * to one of the dependence relations of a type that was added before,
555 * then we don't create a new edge, but instead mark the original edge
556 * as also representing a dependence of the current type.
558 static int extract_edge(__isl_take isl_map
*map
, void *user
)
560 isl_ctx
*ctx
= isl_map_get_ctx(map
);
561 struct isl_extract_edge_data
*data
= user
;
562 struct isl_sched_graph
*graph
= data
->graph
;
563 struct isl_sched_node
*src
, *dst
;
565 struct isl_sched_edge
*edge
;
568 dim
= isl_space_domain(isl_map_get_space(map
));
569 src
= graph_find_node(ctx
, graph
, dim
);
571 dim
= isl_space_range(isl_map_get_space(map
));
572 dst
= graph_find_node(ctx
, graph
, dim
);
580 graph
->edge
[graph
->n_edge
].src
= src
;
581 graph
->edge
[graph
->n_edge
].dst
= dst
;
582 graph
->edge
[graph
->n_edge
].map
= map
;
583 if (data
->type
== isl_edge_validity
) {
584 graph
->edge
[graph
->n_edge
].validity
= 1;
585 graph
->edge
[graph
->n_edge
].proximity
= 0;
587 if (data
->type
== isl_edge_proximity
) {
588 graph
->edge
[graph
->n_edge
].validity
= 0;
589 graph
->edge
[graph
->n_edge
].proximity
= 1;
593 edge
= graph_find_any_edge(graph
, src
, dst
);
595 return graph_edge_table_add(ctx
, graph
, data
->type
,
596 &graph
->edge
[graph
->n_edge
- 1]);
597 is_equal
= isl_map_plain_is_equal(map
, edge
->map
);
601 return graph_edge_table_add(ctx
, graph
, data
->type
,
602 &graph
->edge
[graph
->n_edge
- 1]);
605 edge
->validity
|= graph
->edge
[graph
->n_edge
].validity
;
606 edge
->proximity
|= graph
->edge
[graph
->n_edge
].proximity
;
609 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
612 /* Check whether there is any dependence from node[j] to node[i]
613 * or from node[i] to node[j].
615 static int node_follows_weak(int i
, int j
, void *user
)
618 struct isl_sched_graph
*graph
= user
;
620 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
623 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
626 /* Check whether there is a validity dependence from node[j] to node[i],
627 * forcing node[i] to follow node[j].
629 static int node_follows_strong(int i
, int j
, void *user
)
631 struct isl_sched_graph
*graph
= user
;
633 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
636 /* Use Tarjan's algorithm for computing the strongly connected components
637 * in the dependence graph (only validity edges).
638 * If weak is set, we consider the graph to be undirected and
639 * we effectively compute the (weakly) connected components.
640 * Additionally, we also consider other edges when weak is set.
642 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
, int weak
)
645 struct isl_tarjan_graph
*g
= NULL
;
647 g
= isl_tarjan_graph_init(ctx
, graph
->n
,
648 weak
? &node_follows_weak
: &node_follows_strong
, graph
);
656 while (g
->order
[i
] != -1) {
657 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
665 isl_tarjan_graph_free(g
);
670 /* Apply Tarjan's algorithm to detect the strongly connected components
671 * in the dependence graph.
673 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
675 return detect_ccs(ctx
, graph
, 0);
678 /* Apply Tarjan's algorithm to detect the (weakly) connected components
679 * in the dependence graph.
681 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
683 return detect_ccs(ctx
, graph
, 1);
686 static int cmp_scc(const void *a
, const void *b
, void *data
)
688 struct isl_sched_graph
*graph
= data
;
692 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
695 /* Sort the elements of graph->sorted according to the corresponding SCCs.
697 static int sort_sccs(struct isl_sched_graph
*graph
)
699 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
702 /* Given a dependence relation R from a node to itself,
703 * construct the set of coefficients of valid constraints for elements
704 * in that dependence relation.
705 * In particular, the result contains tuples of coefficients
706 * c_0, c_n, c_x such that
708 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
712 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
714 * We choose here to compute the dual of delta R.
715 * Alternatively, we could have computed the dual of R, resulting
716 * in a set of tuples c_0, c_n, c_x, c_y, and then
717 * plugged in (c_0, c_n, c_x, -c_x).
719 static __isl_give isl_basic_set
*intra_coefficients(
720 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
722 isl_ctx
*ctx
= isl_map_get_ctx(map
);
726 if (isl_hmap_map_basic_set_has(ctx
, graph
->intra_hmap
, map
))
727 return isl_hmap_map_basic_set_get(ctx
, graph
->intra_hmap
, map
);
729 delta
= isl_set_remove_divs(isl_map_deltas(isl_map_copy(map
)));
730 coef
= isl_set_coefficients(delta
);
731 isl_hmap_map_basic_set_set(ctx
, graph
->intra_hmap
, map
,
732 isl_basic_set_copy(coef
));
737 /* Given a dependence relation R, * construct the set of coefficients
738 * of valid constraints for elements in that dependence relation.
739 * In particular, the result contains tuples of coefficients
740 * c_0, c_n, c_x, c_y such that
742 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
745 static __isl_give isl_basic_set
*inter_coefficients(
746 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
748 isl_ctx
*ctx
= isl_map_get_ctx(map
);
752 if (isl_hmap_map_basic_set_has(ctx
, graph
->inter_hmap
, map
))
753 return isl_hmap_map_basic_set_get(ctx
, graph
->inter_hmap
, map
);
755 set
= isl_map_wrap(isl_map_remove_divs(isl_map_copy(map
)));
756 coef
= isl_set_coefficients(set
);
757 isl_hmap_map_basic_set_set(ctx
, graph
->inter_hmap
, map
,
758 isl_basic_set_copy(coef
));
763 /* Add constraints to graph->lp that force validity for the given
764 * dependence from a node i to itself.
765 * That is, add constraints that enforce
767 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
768 * = c_i_x (y - x) >= 0
770 * for each (x,y) in R.
771 * We obtain general constraints on coefficients (c_0, c_n, c_x)
772 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
773 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
774 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
776 * Actually, we do not construct constraints for the c_i_x themselves,
777 * but for the coefficients of c_i_x written as a linear combination
778 * of the columns in node->cmap.
780 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
781 struct isl_sched_edge
*edge
)
784 isl_map
*map
= isl_map_copy(edge
->map
);
785 isl_ctx
*ctx
= isl_map_get_ctx(map
);
787 isl_dim_map
*dim_map
;
789 struct isl_sched_node
*node
= edge
->src
;
791 coef
= intra_coefficients(graph
, map
);
793 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
795 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
796 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
800 total
= isl_basic_set_total_dim(graph
->lp
);
801 dim_map
= isl_dim_map_alloc(ctx
, total
);
802 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
803 isl_space_dim(dim
, isl_dim_set
), 1,
805 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
806 isl_space_dim(dim
, isl_dim_set
), 1,
808 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
809 coef
->n_eq
, coef
->n_ineq
);
810 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
820 /* Add constraints to graph->lp that force validity for the given
821 * dependence from node i to node j.
822 * That is, add constraints that enforce
824 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
826 * for each (x,y) in R.
827 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
828 * of valid constraints for R and then plug in
829 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
830 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
831 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
832 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
834 * Actually, we do not construct constraints for the c_*_x themselves,
835 * but for the coefficients of c_*_x written as a linear combination
836 * of the columns in node->cmap.
838 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
839 struct isl_sched_edge
*edge
)
842 isl_map
*map
= isl_map_copy(edge
->map
);
843 isl_ctx
*ctx
= isl_map_get_ctx(map
);
845 isl_dim_map
*dim_map
;
847 struct isl_sched_node
*src
= edge
->src
;
848 struct isl_sched_node
*dst
= edge
->dst
;
850 coef
= inter_coefficients(graph
, map
);
852 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
854 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
855 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
856 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
857 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
858 isl_mat_copy(dst
->cmap
));
862 total
= isl_basic_set_total_dim(graph
->lp
);
863 dim_map
= isl_dim_map_alloc(ctx
, total
);
865 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
866 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
867 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
868 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
869 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
871 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
872 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
875 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
876 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
877 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
878 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
879 isl_space_dim(dim
, isl_dim_set
), 1,
881 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
882 isl_space_dim(dim
, isl_dim_set
), 1,
885 edge
->start
= graph
->lp
->n_ineq
;
886 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
887 coef
->n_eq
, coef
->n_ineq
);
888 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
891 edge
->end
= graph
->lp
->n_ineq
;
899 /* Add constraints to graph->lp that bound the dependence distance for the given
900 * dependence from a node i to itself.
901 * If s = 1, we add the constraint
903 * c_i_x (y - x) <= m_0 + m_n n
907 * -c_i_x (y - x) + m_0 + m_n n >= 0
909 * for each (x,y) in R.
910 * If s = -1, we add the constraint
912 * -c_i_x (y - x) <= m_0 + m_n n
916 * c_i_x (y - x) + m_0 + m_n n >= 0
918 * for each (x,y) in R.
919 * We obtain general constraints on coefficients (c_0, c_n, c_x)
920 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
921 * with each coefficient (except m_0) represented as a pair of non-negative
924 * Actually, we do not construct constraints for the c_i_x themselves,
925 * but for the coefficients of c_i_x written as a linear combination
926 * of the columns in node->cmap.
928 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
929 struct isl_sched_edge
*edge
, int s
)
933 isl_map
*map
= isl_map_copy(edge
->map
);
934 isl_ctx
*ctx
= isl_map_get_ctx(map
);
936 isl_dim_map
*dim_map
;
938 struct isl_sched_node
*node
= edge
->src
;
940 coef
= intra_coefficients(graph
, map
);
942 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
944 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
945 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
949 nparam
= isl_space_dim(node
->dim
, isl_dim_param
);
950 total
= isl_basic_set_total_dim(graph
->lp
);
951 dim_map
= isl_dim_map_alloc(ctx
, total
);
952 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
953 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
954 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
955 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
956 isl_space_dim(dim
, isl_dim_set
), 1,
958 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
959 isl_space_dim(dim
, isl_dim_set
), 1,
961 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
962 coef
->n_eq
, coef
->n_ineq
);
963 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
973 /* Add constraints to graph->lp that bound the dependence distance for the given
974 * dependence from node i to node j.
975 * If s = 1, we add the constraint
977 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
982 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
985 * for each (x,y) in R.
986 * If s = -1, we add the constraint
988 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
993 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
996 * for each (x,y) in R.
997 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
998 * of valid constraints for R and then plug in
999 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1001 * with each coefficient (except m_0, c_j_0 and c_i_0)
1002 * represented as a pair of non-negative coefficients.
1004 * Actually, we do not construct constraints for the c_*_x themselves,
1005 * but for the coefficients of c_*_x written as a linear combination
1006 * of the columns in node->cmap.
1008 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
1009 struct isl_sched_edge
*edge
, int s
)
1013 isl_map
*map
= isl_map_copy(edge
->map
);
1014 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1016 isl_dim_map
*dim_map
;
1017 isl_basic_set
*coef
;
1018 struct isl_sched_node
*src
= edge
->src
;
1019 struct isl_sched_node
*dst
= edge
->dst
;
1021 coef
= inter_coefficients(graph
, map
);
1023 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1025 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1026 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1027 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1028 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1029 isl_mat_copy(dst
->cmap
));
1033 nparam
= isl_space_dim(src
->dim
, isl_dim_param
);
1034 total
= isl_basic_set_total_dim(graph
->lp
);
1035 dim_map
= isl_dim_map_alloc(ctx
, total
);
1037 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1038 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1039 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1041 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
1042 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
1043 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
1044 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1045 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1047 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1048 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1051 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
1052 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
1053 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
1054 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1055 isl_space_dim(dim
, isl_dim_set
), 1,
1057 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1058 isl_space_dim(dim
, isl_dim_set
), 1,
1061 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1062 coef
->n_eq
, coef
->n_ineq
);
1063 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1065 isl_space_free(dim
);
1069 isl_space_free(dim
);
1073 static int add_all_validity_constraints(struct isl_sched_graph
*graph
)
1077 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1078 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1079 if (!edge
->validity
)
1081 if (edge
->src
!= edge
->dst
)
1083 if (add_intra_validity_constraints(graph
, edge
) < 0)
1087 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1088 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1089 if (!edge
->validity
)
1091 if (edge
->src
== edge
->dst
)
1093 if (add_inter_validity_constraints(graph
, edge
) < 0)
1100 /* Add constraints to graph->lp that bound the dependence distance
1101 * for all dependence relations.
1102 * If a given proximity dependence is identical to a validity
1103 * dependence, then the dependence distance is already bounded
1104 * from below (by zero), so we only need to bound the distance
1106 * Otherwise, we need to bound the distance both from above and from below.
1108 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
)
1112 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1113 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1114 if (!edge
->proximity
)
1116 if (edge
->src
== edge
->dst
&&
1117 add_intra_proximity_constraints(graph
, edge
, 1) < 0)
1119 if (edge
->src
!= edge
->dst
&&
1120 add_inter_proximity_constraints(graph
, edge
, 1) < 0)
1124 if (edge
->src
== edge
->dst
&&
1125 add_intra_proximity_constraints(graph
, edge
, -1) < 0)
1127 if (edge
->src
!= edge
->dst
&&
1128 add_inter_proximity_constraints(graph
, edge
, -1) < 0)
1135 /* Compute a basis for the rows in the linear part of the schedule
1136 * and extend this basis to a full basis. The remaining rows
1137 * can then be used to force linear independence from the rows
1140 * In particular, given the schedule rows S, we compute
1144 * with H the Hermite normal form of S. That is, all but the
1145 * first rank columns of Q are zero and so each row in S is
1146 * a linear combination of the first rank rows of Q.
1147 * The matrix Q is then transposed because we will write the
1148 * coefficients of the next schedule row as a column vector s
1149 * and express this s as a linear combination s = Q c of the
1152 static int node_update_cmap(struct isl_sched_node
*node
)
1155 int n_row
= isl_mat_rows(node
->sched
);
1157 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1158 1 + node
->nparam
, node
->nvar
);
1160 H
= isl_mat_left_hermite(H
, 0, NULL
, &Q
);
1161 isl_mat_free(node
->cmap
);
1162 node
->cmap
= isl_mat_transpose(Q
);
1163 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1166 if (!node
->cmap
|| node
->rank
< 0)
1171 /* Count the number of equality and inequality constraints
1172 * that will be added for the given map.
1173 * If carry is set, then we are counting the number of (validity)
1174 * constraints that will be added in setup_carry_lp and we count
1175 * each edge exactly once. Otherwise, we count as follows
1176 * validity -> 1 (>= 0)
1177 * validity+proximity -> 2 (>= 0 and upper bound)
1178 * proximity -> 2 (lower and upper bound)
1180 static int count_map_constraints(struct isl_sched_graph
*graph
,
1181 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
1182 int *n_eq
, int *n_ineq
, int carry
)
1184 isl_basic_set
*coef
;
1185 int f
= carry
? 1 : edge
->proximity
? 2 : 1;
1187 if (carry
&& !edge
->validity
) {
1192 if (edge
->src
== edge
->dst
)
1193 coef
= intra_coefficients(graph
, map
);
1195 coef
= inter_coefficients(graph
, map
);
1198 *n_eq
+= f
* coef
->n_eq
;
1199 *n_ineq
+= f
* coef
->n_ineq
;
1200 isl_basic_set_free(coef
);
1205 /* Count the number of equality and inequality constraints
1206 * that will be added to the main lp problem.
1207 * We count as follows
1208 * validity -> 1 (>= 0)
1209 * validity+proximity -> 2 (>= 0 and upper bound)
1210 * proximity -> 2 (lower and upper bound)
1212 static int count_constraints(struct isl_sched_graph
*graph
,
1213 int *n_eq
, int *n_ineq
)
1217 *n_eq
= *n_ineq
= 0;
1218 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1219 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1220 isl_map
*map
= isl_map_copy(edge
->map
);
1222 if (count_map_constraints(graph
, edge
, map
,
1223 n_eq
, n_ineq
, 0) < 0)
1230 /* Add constraints that bound the values of the variable and parameter
1231 * coefficients of the schedule.
1233 * The maximal value of the coefficients is defined by the option
1234 * 'schedule_max_coefficient'.
1236 static int add_bound_coefficient_constraints(isl_ctx
*ctx
,
1237 struct isl_sched_graph
*graph
)
1240 int max_coefficient
;
1243 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1245 if (max_coefficient
== -1)
1248 total
= isl_basic_set_total_dim(graph
->lp
);
1250 for (i
= 0; i
< graph
->n
; ++i
) {
1251 struct isl_sched_node
*node
= &graph
->node
[i
];
1252 for (j
= 0; j
< 2 * node
->nparam
+ 2 * node
->nvar
; ++j
) {
1254 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1257 dim
= 1 + node
->start
+ 1 + j
;
1258 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
1259 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
1260 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_coefficient
);
1267 /* Construct an ILP problem for finding schedule coefficients
1268 * that result in non-negative, but small dependence distances
1269 * over all dependences.
1270 * In particular, the dependence distances over proximity edges
1271 * are bounded by m_0 + m_n n and we compute schedule coefficients
1272 * with small values (preferably zero) of m_n and m_0.
1274 * All variables of the ILP are non-negative. The actual coefficients
1275 * may be negative, so each coefficient is represented as the difference
1276 * of two non-negative variables. The negative part always appears
1277 * immediately before the positive part.
1278 * Other than that, the variables have the following order
1280 * - sum of positive and negative parts of m_n coefficients
1282 * - sum of positive and negative parts of all c_n coefficients
1283 * (unconstrained when computing non-parametric schedules)
1284 * - sum of positive and negative parts of all c_x coefficients
1285 * - positive and negative parts of m_n coefficients
1288 * - positive and negative parts of c_i_n (if parametric)
1289 * - positive and negative parts of c_i_x
1291 * The c_i_x are not represented directly, but through the columns of
1292 * node->cmap. That is, the computed values are for variable t_i_x
1293 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1295 * The constraints are those from the edges plus two or three equalities
1296 * to express the sums.
1298 * If force_zero is set, then we add equalities to ensure that
1299 * the sum of the m_n coefficients and m_0 are both zero.
1301 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1312 int max_constant_term
;
1313 int max_coefficient
;
1315 max_constant_term
= ctx
->opt
->schedule_max_constant_term
;
1316 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1318 parametric
= ctx
->opt
->schedule_parametric
;
1319 nparam
= isl_space_dim(graph
->node
[0].dim
, isl_dim_param
);
1321 total
= param_pos
+ 2 * nparam
;
1322 for (i
= 0; i
< graph
->n
; ++i
) {
1323 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
1324 if (node_update_cmap(node
) < 0)
1326 node
->start
= total
;
1327 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
1330 if (count_constraints(graph
, &n_eq
, &n_ineq
) < 0)
1333 dim
= isl_space_set_alloc(ctx
, 0, total
);
1334 isl_basic_set_free(graph
->lp
);
1335 n_eq
+= 2 + parametric
+ force_zero
;
1336 if (max_constant_term
!= -1)
1338 if (max_coefficient
!= -1)
1339 for (i
= 0; i
< graph
->n
; ++i
)
1340 n_ineq
+= 2 * graph
->node
[i
].nparam
+
1341 2 * graph
->node
[i
].nvar
;
1343 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
1345 k
= isl_basic_set_alloc_equality(graph
->lp
);
1348 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1350 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
1351 for (i
= 0; i
< 2 * nparam
; ++i
)
1352 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
1355 k
= isl_basic_set_alloc_equality(graph
->lp
);
1358 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1359 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
1363 k
= isl_basic_set_alloc_equality(graph
->lp
);
1366 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1367 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
1368 for (i
= 0; i
< graph
->n
; ++i
) {
1369 int pos
= 1 + graph
->node
[i
].start
+ 1;
1371 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
1372 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1376 k
= isl_basic_set_alloc_equality(graph
->lp
);
1379 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1380 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
1381 for (i
= 0; i
< graph
->n
; ++i
) {
1382 struct isl_sched_node
*node
= &graph
->node
[i
];
1383 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
1385 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
1386 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1389 if (max_constant_term
!= -1)
1390 for (i
= 0; i
< graph
->n
; ++i
) {
1391 struct isl_sched_node
*node
= &graph
->node
[i
];
1392 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1395 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
1396 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
1397 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_constant_term
);
1400 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
1402 if (add_all_validity_constraints(graph
) < 0)
1404 if (add_all_proximity_constraints(graph
) < 0)
1410 /* Analyze the conflicting constraint found by
1411 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1412 * constraint of one of the edges between distinct nodes, living, moreover
1413 * in distinct SCCs, then record the source and sink SCC as this may
1414 * be a good place to cut between SCCs.
1416 static int check_conflict(int con
, void *user
)
1419 struct isl_sched_graph
*graph
= user
;
1421 if (graph
->src_scc
>= 0)
1424 con
-= graph
->lp
->n_eq
;
1426 if (con
>= graph
->lp
->n_ineq
)
1429 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1430 if (!graph
->edge
[i
].validity
)
1432 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
1434 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
1436 if (graph
->edge
[i
].start
> con
)
1438 if (graph
->edge
[i
].end
<= con
)
1440 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
1441 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
1447 /* Check whether the next schedule row of the given node needs to be
1448 * non-trivial. Lower-dimensional domains may have some trivial rows,
1449 * but as soon as the number of remaining required non-trivial rows
1450 * is as large as the number or remaining rows to be computed,
1451 * all remaining rows need to be non-trivial.
1453 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
1455 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
1458 /* Solve the ILP problem constructed in setup_lp.
1459 * For each node such that all the remaining rows of its schedule
1460 * need to be non-trivial, we construct a non-triviality region.
1461 * This region imposes that the next row is independent of previous rows.
1462 * In particular the coefficients c_i_x are represented by t_i_x
1463 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1464 * its first columns span the rows of the previously computed part
1465 * of the schedule. The non-triviality region enforces that at least
1466 * one of the remaining components of t_i_x is non-zero, i.e.,
1467 * that the new schedule row depends on at least one of the remaining
1470 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
1476 for (i
= 0; i
< graph
->n
; ++i
) {
1477 struct isl_sched_node
*node
= &graph
->node
[i
];
1478 int skip
= node
->rank
;
1479 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
1480 if (needs_row(graph
, node
))
1481 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
1483 graph
->region
[i
].len
= 0;
1485 lp
= isl_basic_set_copy(graph
->lp
);
1486 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
1487 graph
->region
, &check_conflict
, graph
);
1491 /* Update the schedules of all nodes based on the given solution
1492 * of the LP problem.
1493 * The new row is added to the current band.
1494 * All possibly negative coefficients are encoded as a difference
1495 * of two non-negative variables, so we need to perform the subtraction
1496 * here. Moreover, if use_cmap is set, then the solution does
1497 * not refer to the actual coefficients c_i_x, but instead to variables
1498 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1499 * In this case, we then also need to perform this multiplication
1500 * to obtain the values of c_i_x.
1502 * If check_zero is set, then the first two coordinates of sol are
1503 * assumed to correspond to the dependence distance. If these two
1504 * coordinates are zero, then the corresponding scheduling dimension
1505 * is marked as being zero distance.
1507 static int update_schedule(struct isl_sched_graph
*graph
,
1508 __isl_take isl_vec
*sol
, int use_cmap
, int check_zero
)
1512 isl_vec
*csol
= NULL
;
1517 isl_die(sol
->ctx
, isl_error_internal
,
1518 "no solution found", goto error
);
1519 if (graph
->n_total_row
>= graph
->max_row
)
1520 isl_die(sol
->ctx
, isl_error_internal
,
1521 "too many schedule rows", goto error
);
1524 zero
= isl_int_is_zero(sol
->el
[1]) &&
1525 isl_int_is_zero(sol
->el
[2]);
1527 for (i
= 0; i
< graph
->n
; ++i
) {
1528 struct isl_sched_node
*node
= &graph
->node
[i
];
1529 int pos
= node
->start
;
1530 int row
= isl_mat_rows(node
->sched
);
1533 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
1537 isl_map_free(node
->sched_map
);
1538 node
->sched_map
= NULL
;
1539 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1542 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
1544 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
1545 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1546 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1547 sol
->el
[1 + pos
+ 1 + 2 * j
]);
1548 for (j
= 0; j
< node
->nparam
; ++j
)
1549 node
->sched
= isl_mat_set_element(node
->sched
,
1550 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
1551 for (j
= 0; j
< node
->nvar
; ++j
)
1552 isl_int_set(csol
->el
[j
],
1553 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
1555 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
1559 for (j
= 0; j
< node
->nvar
; ++j
)
1560 node
->sched
= isl_mat_set_element(node
->sched
,
1561 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
1562 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1563 node
->zero
[graph
->n_total_row
] = zero
;
1569 graph
->n_total_row
++;
1578 /* Convert node->sched into a multi_aff and return this multi_aff.
1580 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
1581 struct isl_sched_node
*node
)
1585 isl_local_space
*ls
;
1591 nrow
= isl_mat_rows(node
->sched
);
1592 ncol
= isl_mat_cols(node
->sched
) - 1;
1593 space
= isl_space_from_domain(isl_space_copy(node
->dim
));
1594 space
= isl_space_add_dims(space
, isl_dim_out
, nrow
);
1595 ma
= isl_multi_aff_zero(space
);
1596 ls
= isl_local_space_from_space(isl_space_copy(node
->dim
));
1600 for (i
= 0; i
< nrow
; ++i
) {
1601 aff
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1602 isl_mat_get_element(node
->sched
, i
, 0, &v
);
1603 aff
= isl_aff_set_constant(aff
, v
);
1604 for (j
= 0; j
< node
->nparam
; ++j
) {
1605 isl_mat_get_element(node
->sched
, i
, 1 + j
, &v
);
1606 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
1608 for (j
= 0; j
< node
->nvar
; ++j
) {
1609 isl_mat_get_element(node
->sched
,
1610 i
, 1 + node
->nparam
+ j
, &v
);
1611 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
1613 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
1618 isl_local_space_free(ls
);
1623 /* Convert node->sched into a map and return this map.
1625 * The result is cached in node->sched_map, which needs to be released
1626 * whenever node->sched is updated.
1628 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
1630 if (!node
->sched_map
) {
1633 ma
= node_extract_schedule_multi_aff(node
);
1634 node
->sched_map
= isl_map_from_multi_aff(ma
);
1637 return isl_map_copy(node
->sched_map
);
1640 /* Update the given dependence relation based on the current schedule.
1641 * That is, intersect the dependence relation with a map expressing
1642 * that source and sink are executed within the same iteration of
1643 * the current schedule.
1644 * This is not the most efficient way, but this shouldn't be a critical
1647 static __isl_give isl_map
*specialize(__isl_take isl_map
*map
,
1648 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
1650 isl_map
*src_sched
, *dst_sched
, *id
;
1652 src_sched
= node_extract_schedule(src
);
1653 dst_sched
= node_extract_schedule(dst
);
1654 id
= isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
1655 return isl_map_intersect(map
, id
);
1658 /* Update the dependence relations of all edges based on the current schedule.
1659 * If a dependence is carried completely by the current schedule, then
1660 * it is removed from the edge_tables. It is kept in the list of edges
1661 * as otherwise all edge_tables would have to be recomputed.
1663 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1667 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
1668 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1669 edge
->map
= specialize(edge
->map
, edge
->src
, edge
->dst
);
1673 if (isl_map_plain_is_empty(edge
->map
))
1674 graph_remove_edge(graph
, edge
);
1680 static void next_band(struct isl_sched_graph
*graph
)
1682 graph
->band_start
= graph
->n_total_row
;
1686 /* Topologically sort statements mapped to the same schedule iteration
1687 * and add a row to the schedule corresponding to this order.
1689 static int sort_statements(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1696 if (update_edges(ctx
, graph
) < 0)
1699 if (graph
->n_edge
== 0)
1702 if (detect_sccs(ctx
, graph
) < 0)
1705 if (graph
->n_total_row
>= graph
->max_row
)
1706 isl_die(ctx
, isl_error_internal
,
1707 "too many schedule rows", return -1);
1709 for (i
= 0; i
< graph
->n
; ++i
) {
1710 struct isl_sched_node
*node
= &graph
->node
[i
];
1711 int row
= isl_mat_rows(node
->sched
);
1712 int cols
= isl_mat_cols(node
->sched
);
1714 isl_map_free(node
->sched_map
);
1715 node
->sched_map
= NULL
;
1716 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1719 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
1721 for (j
= 1; j
< cols
; ++j
)
1722 node
->sched
= isl_mat_set_element_si(node
->sched
,
1724 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1727 graph
->n_total_row
++;
1733 /* Construct an isl_schedule based on the computed schedule stored
1734 * in graph and with parameters specified by dim.
1736 static __isl_give isl_schedule
*extract_schedule(struct isl_sched_graph
*graph
,
1737 __isl_take isl_space
*dim
)
1741 isl_schedule
*sched
= NULL
;
1746 ctx
= isl_space_get_ctx(dim
);
1747 sched
= isl_calloc(ctx
, struct isl_schedule
,
1748 sizeof(struct isl_schedule
) +
1749 (graph
->n
- 1) * sizeof(struct isl_schedule_node
));
1754 sched
->n
= graph
->n
;
1755 sched
->n_band
= graph
->n_band
;
1756 sched
->n_total_row
= graph
->n_total_row
;
1758 for (i
= 0; i
< sched
->n
; ++i
) {
1760 int *band_end
, *band_id
, *zero
;
1762 sched
->node
[i
].sched
=
1763 node_extract_schedule_multi_aff(&graph
->node
[i
]);
1764 if (!sched
->node
[i
].sched
)
1767 sched
->node
[i
].n_band
= graph
->n_band
;
1768 if (graph
->n_band
== 0)
1771 band_end
= isl_alloc_array(ctx
, int, graph
->n_band
);
1772 band_id
= isl_alloc_array(ctx
, int, graph
->n_band
);
1773 zero
= isl_alloc_array(ctx
, int, graph
->n_total_row
);
1774 sched
->node
[i
].band_end
= band_end
;
1775 sched
->node
[i
].band_id
= band_id
;
1776 sched
->node
[i
].zero
= zero
;
1777 if (!band_end
|| !band_id
|| !zero
)
1780 for (r
= 0; r
< graph
->n_total_row
; ++r
)
1781 zero
[r
] = graph
->node
[i
].zero
[r
];
1782 for (r
= b
= 0; r
< graph
->n_total_row
; ++r
) {
1783 if (graph
->node
[i
].band
[r
] == b
)
1786 if (graph
->node
[i
].band
[r
] == -1)
1789 if (r
== graph
->n_total_row
)
1791 sched
->node
[i
].n_band
= b
;
1792 for (--b
; b
>= 0; --b
)
1793 band_id
[b
] = graph
->node
[i
].band_id
[b
];
1800 isl_space_free(dim
);
1801 isl_schedule_free(sched
);
1805 /* Copy nodes that satisfy node_pred from the src dependence graph
1806 * to the dst dependence graph.
1808 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
1809 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1814 for (i
= 0; i
< src
->n
; ++i
) {
1815 if (!node_pred(&src
->node
[i
], data
))
1817 dst
->node
[dst
->n
].dim
= isl_space_copy(src
->node
[i
].dim
);
1818 dst
->node
[dst
->n
].nvar
= src
->node
[i
].nvar
;
1819 dst
->node
[dst
->n
].nparam
= src
->node
[i
].nparam
;
1820 dst
->node
[dst
->n
].sched
= isl_mat_copy(src
->node
[i
].sched
);
1821 dst
->node
[dst
->n
].sched_map
=
1822 isl_map_copy(src
->node
[i
].sched_map
);
1823 dst
->node
[dst
->n
].band
= src
->node
[i
].band
;
1824 dst
->node
[dst
->n
].band_id
= src
->node
[i
].band_id
;
1825 dst
->node
[dst
->n
].zero
= src
->node
[i
].zero
;
1832 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1833 * to the dst dependence graph.
1834 * If the source or destination node of the edge is not in the destination
1835 * graph, then it must be a backward proximity edge and it should simply
1838 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
1839 struct isl_sched_graph
*src
,
1840 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
1843 enum isl_edge_type t
;
1846 for (i
= 0; i
< src
->n_edge
; ++i
) {
1847 struct isl_sched_edge
*edge
= &src
->edge
[i
];
1849 struct isl_sched_node
*dst_src
, *dst_dst
;
1851 if (!edge_pred(edge
, data
))
1854 if (isl_map_plain_is_empty(edge
->map
))
1857 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->dim
);
1858 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->dim
);
1859 if (!dst_src
|| !dst_dst
) {
1861 isl_die(ctx
, isl_error_internal
,
1862 "backward validity edge", return -1);
1866 map
= isl_map_copy(edge
->map
);
1868 dst
->edge
[dst
->n_edge
].src
= dst_src
;
1869 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
1870 dst
->edge
[dst
->n_edge
].map
= map
;
1871 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
1872 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
1875 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
1877 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
1879 if (graph_edge_table_add(ctx
, dst
, t
,
1880 &dst
->edge
[dst
->n_edge
- 1]) < 0)
1888 /* Given a "src" dependence graph that contains the nodes from "dst"
1889 * that satisfy node_pred, copy the schedule computed in "src"
1890 * for those nodes back to "dst".
1892 static int copy_schedule(struct isl_sched_graph
*dst
,
1893 struct isl_sched_graph
*src
,
1894 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1899 for (i
= 0; i
< dst
->n
; ++i
) {
1900 if (!node_pred(&dst
->node
[i
], data
))
1902 isl_mat_free(dst
->node
[i
].sched
);
1903 isl_map_free(dst
->node
[i
].sched_map
);
1904 dst
->node
[i
].sched
= isl_mat_copy(src
->node
[src
->n
].sched
);
1905 dst
->node
[i
].sched_map
=
1906 isl_map_copy(src
->node
[src
->n
].sched_map
);
1910 dst
->max_row
= src
->max_row
;
1911 dst
->n_total_row
= src
->n_total_row
;
1912 dst
->n_band
= src
->n_band
;
1917 /* Compute the maximal number of variables over all nodes.
1918 * This is the maximal number of linearly independent schedule
1919 * rows that we need to compute.
1920 * Just in case we end up in a part of the dependence graph
1921 * with only lower-dimensional domains, we make sure we will
1922 * compute the required amount of extra linearly independent rows.
1924 static int compute_maxvar(struct isl_sched_graph
*graph
)
1929 for (i
= 0; i
< graph
->n
; ++i
) {
1930 struct isl_sched_node
*node
= &graph
->node
[i
];
1933 if (node_update_cmap(node
) < 0)
1935 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
1936 if (nvar
> graph
->maxvar
)
1937 graph
->maxvar
= nvar
;
1943 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1944 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1946 /* Compute a schedule for a subgraph of "graph". In particular, for
1947 * the graph composed of nodes that satisfy node_pred and edges that
1948 * that satisfy edge_pred. The caller should precompute the number
1949 * of nodes and edges that satisfy these predicates and pass them along
1950 * as "n" and "n_edge".
1951 * If the subgraph is known to consist of a single component, then wcc should
1952 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1953 * Otherwise, we call compute_schedule, which will check whether the subgraph
1956 static int compute_sub_schedule(isl_ctx
*ctx
,
1957 struct isl_sched_graph
*graph
, int n
, int n_edge
,
1958 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
1959 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
1962 struct isl_sched_graph split
= { 0 };
1965 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
1967 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
1969 if (graph_init_table(ctx
, &split
) < 0)
1971 for (t
= 0; t
<= isl_edge_last
; ++t
)
1972 split
.max_edge
[t
] = graph
->max_edge
[t
];
1973 if (graph_init_edge_tables(ctx
, &split
) < 0)
1975 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
1977 split
.n_row
= graph
->n_row
;
1978 split
.max_row
= graph
->max_row
;
1979 split
.n_total_row
= graph
->n_total_row
;
1980 split
.n_band
= graph
->n_band
;
1981 split
.band_start
= graph
->band_start
;
1983 if (wcc
&& compute_schedule_wcc(ctx
, &split
) < 0)
1985 if (!wcc
&& compute_schedule(ctx
, &split
) < 0)
1988 copy_schedule(graph
, &split
, node_pred
, data
);
1990 graph_free(ctx
, &split
);
1993 graph_free(ctx
, &split
);
1997 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
1999 return node
->scc
== scc
;
2002 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
2004 return node
->scc
<= scc
;
2007 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
2009 return node
->scc
>= scc
;
2012 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
2014 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
2017 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
2019 return edge
->dst
->scc
<= scc
;
2022 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
2024 return edge
->src
->scc
>= scc
;
2027 /* Pad the schedules of all nodes with zero rows such that in the end
2028 * they all have graph->n_total_row rows.
2029 * The extra rows don't belong to any band, so they get assigned band number -1.
2031 static int pad_schedule(struct isl_sched_graph
*graph
)
2035 for (i
= 0; i
< graph
->n
; ++i
) {
2036 struct isl_sched_node
*node
= &graph
->node
[i
];
2037 int row
= isl_mat_rows(node
->sched
);
2038 if (graph
->n_total_row
> row
) {
2039 isl_map_free(node
->sched_map
);
2040 node
->sched_map
= NULL
;
2042 node
->sched
= isl_mat_add_zero_rows(node
->sched
,
2043 graph
->n_total_row
- row
);
2046 for (j
= row
; j
< graph
->n_total_row
; ++j
)
2053 /* Split the current graph into two parts and compute a schedule for each
2054 * part individually. In particular, one part consists of all SCCs up
2055 * to and including graph->src_scc, while the other part contains the other
2058 * The split is enforced in the schedule by constant rows with two different
2059 * values (0 and 1). These constant rows replace the previously computed rows
2060 * in the current band.
2061 * It would be possible to reuse them as the first rows in the next
2062 * band, but recomputing them may result in better rows as we are looking
2063 * at a smaller part of the dependence graph.
2064 * compute_split_schedule is only called when no zero-distance schedule row
2065 * could be found on the entire graph, so we wark the splitting row as
2066 * non zero-distance.
2068 * The band_id of the second group is set to n, where n is the number
2069 * of nodes in the first group. This ensures that the band_ids over
2070 * the two groups remain disjoint, even if either or both of the two
2071 * groups contain independent components.
2073 static int compute_split_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2075 int i
, j
, n
, e1
, e2
;
2076 int n_total_row
, orig_total_row
;
2077 int n_band
, orig_band
;
2080 if (graph
->n_total_row
>= graph
->max_row
)
2081 isl_die(ctx
, isl_error_internal
,
2082 "too many schedule rows", return -1);
2084 drop
= graph
->n_total_row
- graph
->band_start
;
2085 graph
->n_total_row
-= drop
;
2086 graph
->n_row
-= drop
;
2089 for (i
= 0; i
< graph
->n
; ++i
) {
2090 struct isl_sched_node
*node
= &graph
->node
[i
];
2091 int row
= isl_mat_rows(node
->sched
) - drop
;
2092 int cols
= isl_mat_cols(node
->sched
);
2093 int before
= node
->scc
<= graph
->src_scc
;
2098 isl_map_free(node
->sched_map
);
2099 node
->sched_map
= NULL
;
2100 node
->sched
= isl_mat_drop_rows(node
->sched
,
2101 graph
->band_start
, drop
);
2102 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2105 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2107 for (j
= 1; j
< cols
; ++j
)
2108 node
->sched
= isl_mat_set_element_si(node
->sched
,
2110 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2111 node
->zero
[graph
->n_total_row
] = 0;
2115 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2116 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
2118 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
2122 graph
->n_total_row
++;
2125 for (i
= 0; i
< graph
->n
; ++i
) {
2126 struct isl_sched_node
*node
= &graph
->node
[i
];
2127 if (node
->scc
> graph
->src_scc
)
2128 node
->band_id
[graph
->n_band
] = n
;
2131 orig_total_row
= graph
->n_total_row
;
2132 orig_band
= graph
->n_band
;
2133 if (compute_sub_schedule(ctx
, graph
, n
, e1
,
2134 &node_scc_at_most
, &edge_dst_scc_at_most
,
2135 graph
->src_scc
, 0) < 0)
2137 n_total_row
= graph
->n_total_row
;
2138 graph
->n_total_row
= orig_total_row
;
2139 n_band
= graph
->n_band
;
2140 graph
->n_band
= orig_band
;
2141 if (compute_sub_schedule(ctx
, graph
, graph
->n
- n
, e2
,
2142 &node_scc_at_least
, &edge_src_scc_at_least
,
2143 graph
->src_scc
+ 1, 0) < 0)
2145 if (n_total_row
> graph
->n_total_row
)
2146 graph
->n_total_row
= n_total_row
;
2147 if (n_band
> graph
->n_band
)
2148 graph
->n_band
= n_band
;
2150 return pad_schedule(graph
);
2153 /* Compute the next band of the schedule after updating the dependence
2154 * relations based on the the current schedule.
2156 static int compute_next_band(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2158 if (update_edges(ctx
, graph
) < 0)
2162 return compute_schedule(ctx
, graph
);
2165 /* Add constraints to graph->lp that force the dependence "map" (which
2166 * is part of the dependence relation of "edge")
2167 * to be respected and attempt to carry it, where the edge is one from
2168 * a node j to itself. "pos" is the sequence number of the given map.
2169 * That is, add constraints that enforce
2171 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2172 * = c_j_x (y - x) >= e_i
2174 * for each (x,y) in R.
2175 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2176 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2177 * with each coefficient in c_j_x represented as a pair of non-negative
2180 static int add_intra_constraints(struct isl_sched_graph
*graph
,
2181 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
2184 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2186 isl_dim_map
*dim_map
;
2187 isl_basic_set
*coef
;
2188 struct isl_sched_node
*node
= edge
->src
;
2190 coef
= intra_coefficients(graph
, map
);
2192 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2194 total
= isl_basic_set_total_dim(graph
->lp
);
2195 dim_map
= isl_dim_map_alloc(ctx
, total
);
2196 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2197 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
2198 isl_space_dim(dim
, isl_dim_set
), 1,
2200 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
2201 isl_space_dim(dim
, isl_dim_set
), 1,
2203 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2204 coef
->n_eq
, coef
->n_ineq
);
2205 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2207 isl_space_free(dim
);
2212 /* Add constraints to graph->lp that force the dependence "map" (which
2213 * is part of the dependence relation of "edge")
2214 * to be respected and attempt to carry it, where the edge is one from
2215 * node j to node k. "pos" is the sequence number of the given map.
2216 * That is, add constraints that enforce
2218 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2220 * for each (x,y) in R.
2221 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2222 * of valid constraints for R and then plug in
2223 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2224 * with each coefficient (except e_i, c_k_0 and c_j_0)
2225 * represented as a pair of non-negative coefficients.
2227 static int add_inter_constraints(struct isl_sched_graph
*graph
,
2228 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
2231 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2233 isl_dim_map
*dim_map
;
2234 isl_basic_set
*coef
;
2235 struct isl_sched_node
*src
= edge
->src
;
2236 struct isl_sched_node
*dst
= edge
->dst
;
2238 coef
= inter_coefficients(graph
, map
);
2240 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2242 total
= isl_basic_set_total_dim(graph
->lp
);
2243 dim_map
= isl_dim_map_alloc(ctx
, total
);
2245 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2247 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
2248 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
2249 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
2250 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
2251 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2253 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
2254 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2257 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
2258 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
2259 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
2260 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
2261 isl_space_dim(dim
, isl_dim_set
), 1,
2263 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
2264 isl_space_dim(dim
, isl_dim_set
), 1,
2267 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2268 coef
->n_eq
, coef
->n_ineq
);
2269 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2271 isl_space_free(dim
);
2276 /* Add constraints to graph->lp that force all validity dependences
2277 * to be respected and attempt to carry them.
2279 static int add_all_constraints(struct isl_sched_graph
*graph
)
2285 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2286 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2288 if (!edge
->validity
)
2291 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2292 isl_basic_map
*bmap
;
2295 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2296 map
= isl_map_from_basic_map(bmap
);
2298 if (edge
->src
== edge
->dst
&&
2299 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
2301 if (edge
->src
!= edge
->dst
&&
2302 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
2311 /* Count the number of equality and inequality constraints
2312 * that will be added to the carry_lp problem.
2313 * We count each edge exactly once.
2315 static int count_all_constraints(struct isl_sched_graph
*graph
,
2316 int *n_eq
, int *n_ineq
)
2320 *n_eq
= *n_ineq
= 0;
2321 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2322 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2323 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2324 isl_basic_map
*bmap
;
2327 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2328 map
= isl_map_from_basic_map(bmap
);
2330 if (count_map_constraints(graph
, edge
, map
,
2331 n_eq
, n_ineq
, 1) < 0)
2339 /* Construct an LP problem for finding schedule coefficients
2340 * such that the schedule carries as many dependences as possible.
2341 * In particular, for each dependence i, we bound the dependence distance
2342 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2343 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2344 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2345 * Note that if the dependence relation is a union of basic maps,
2346 * then we have to consider each basic map individually as it may only
2347 * be possible to carry the dependences expressed by some of those
2348 * basic maps and not all off them.
2349 * Below, we consider each of those basic maps as a separate "edge".
2351 * All variables of the LP are non-negative. The actual coefficients
2352 * may be negative, so each coefficient is represented as the difference
2353 * of two non-negative variables. The negative part always appears
2354 * immediately before the positive part.
2355 * Other than that, the variables have the following order
2357 * - sum of (1 - e_i) over all edges
2358 * - sum of positive and negative parts of all c_n coefficients
2359 * (unconstrained when computing non-parametric schedules)
2360 * - sum of positive and negative parts of all c_x coefficients
2365 * - positive and negative parts of c_i_n (if parametric)
2366 * - positive and negative parts of c_i_x
2368 * The constraints are those from the (validity) edges plus three equalities
2369 * to express the sums and n_edge inequalities to express e_i <= 1.
2371 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2381 for (i
= 0; i
< graph
->n_edge
; ++i
)
2382 n_edge
+= graph
->edge
[i
].map
->n
;
2385 for (i
= 0; i
< graph
->n
; ++i
) {
2386 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2387 node
->start
= total
;
2388 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2391 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
2394 dim
= isl_space_set_alloc(ctx
, 0, total
);
2395 isl_basic_set_free(graph
->lp
);
2398 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2399 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
2401 k
= isl_basic_set_alloc_equality(graph
->lp
);
2404 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2405 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
2406 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
2407 for (i
= 0; i
< n_edge
; ++i
)
2408 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
2410 k
= isl_basic_set_alloc_equality(graph
->lp
);
2413 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2414 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
2415 for (i
= 0; i
< graph
->n
; ++i
) {
2416 int pos
= 1 + graph
->node
[i
].start
+ 1;
2418 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2419 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2422 k
= isl_basic_set_alloc_equality(graph
->lp
);
2425 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2426 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2427 for (i
= 0; i
< graph
->n
; ++i
) {
2428 struct isl_sched_node
*node
= &graph
->node
[i
];
2429 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2431 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2432 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2435 for (i
= 0; i
< n_edge
; ++i
) {
2436 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2439 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2440 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
2441 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
2444 if (add_all_constraints(graph
) < 0)
2450 /* If the schedule_split_scaled option is set and if the linear
2451 * parts of the scheduling rows for all nodes in the graphs have
2452 * non-trivial common divisor, then split off the constant term
2453 * from the linear part.
2454 * The constant term is then placed in a separate band and
2455 * the linear part is reduced.
2457 static int split_scaled(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2463 if (!ctx
->opt
->schedule_split_scaled
)
2468 if (graph
->n_total_row
>= graph
->max_row
)
2469 isl_die(ctx
, isl_error_internal
,
2470 "too many schedule rows", return -1);
2473 isl_int_init(gcd_i
);
2475 isl_int_set_si(gcd
, 0);
2477 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
2479 for (i
= 0; i
< graph
->n
; ++i
) {
2480 struct isl_sched_node
*node
= &graph
->node
[i
];
2481 int cols
= isl_mat_cols(node
->sched
);
2483 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
2484 isl_int_gcd(gcd
, gcd
, gcd_i
);
2487 isl_int_clear(gcd_i
);
2489 if (isl_int_cmp_si(gcd
, 1) <= 0) {
2496 for (i
= 0; i
< graph
->n
; ++i
) {
2497 struct isl_sched_node
*node
= &graph
->node
[i
];
2499 isl_map_free(node
->sched_map
);
2500 node
->sched_map
= NULL
;
2501 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2504 isl_int_fdiv_r(node
->sched
->row
[row
+ 1][0],
2505 node
->sched
->row
[row
][0], gcd
);
2506 isl_int_fdiv_q(node
->sched
->row
[row
][0],
2507 node
->sched
->row
[row
][0], gcd
);
2508 isl_int_mul(node
->sched
->row
[row
][0],
2509 node
->sched
->row
[row
][0], gcd
);
2510 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
2513 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2516 graph
->n_total_row
++;
2525 static int compute_component_schedule(isl_ctx
*ctx
,
2526 struct isl_sched_graph
*graph
);
2528 /* Is the schedule row "sol" trivial on node "node"?
2529 * That is, is the solution zero on the dimensions orthogonal to
2530 * the previously found solutions?
2531 * Each coefficient is represented as the difference between
2532 * two non-negative values in "sol". The coefficient is then
2533 * zero if those two values are equal to each other.
2535 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
2541 pos
= 1 + node
->start
+ 1 + 2 * (node
->nparam
+ node
->rank
);
2542 len
= 2 * (node
->nvar
- node
->rank
);
2547 for (i
= 0; i
< len
; i
+= 2)
2548 if (isl_int_ne(sol
->el
[pos
+ i
], sol
->el
[pos
+ i
+ 1]))
2554 /* Is the schedule row "sol" trivial on any node where it should
2557 static int is_any_trivial(struct isl_sched_graph
*graph
,
2558 __isl_keep isl_vec
*sol
)
2562 for (i
= 0; i
< graph
->n
; ++i
) {
2563 struct isl_sched_node
*node
= &graph
->node
[i
];
2565 if (!needs_row(graph
, node
))
2567 if (is_trivial(node
, sol
))
2574 /* Construct a schedule row for each node such that as many dependences
2575 * as possible are carried and then continue with the next band.
2577 * If the computed schedule row turns out to be trivial on one or
2578 * more nodes where it should not be trivial, then we throw it away
2579 * and try again on each component separately.
2581 static int carry_dependences(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2589 for (i
= 0; i
< graph
->n_edge
; ++i
)
2590 n_edge
+= graph
->edge
[i
].map
->n
;
2592 if (setup_carry_lp(ctx
, graph
) < 0)
2595 lp
= isl_basic_set_copy(graph
->lp
);
2596 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
2600 if (sol
->size
== 0) {
2602 isl_die(ctx
, isl_error_internal
,
2603 "error in schedule construction", return -1);
2606 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
2608 isl_die(ctx
, isl_error_unknown
,
2609 "unable to carry dependences", return -1);
2612 if (is_any_trivial(graph
, sol
)) {
2615 return compute_component_schedule(ctx
, graph
);
2616 isl_die(ctx
, isl_error_unknown
,
2617 "unable to construct non-trivial solution", return -1);
2620 if (update_schedule(graph
, sol
, 0, 0) < 0)
2623 if (split_scaled(ctx
, graph
) < 0)
2626 return compute_next_band(ctx
, graph
);
2629 /* Are there any (non-empty) validity edges in the graph?
2631 static int has_validity_edges(struct isl_sched_graph
*graph
)
2635 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2638 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
2643 if (graph
->edge
[i
].validity
)
2650 /* Should we apply a Feautrier step?
2651 * That is, did the user request the Feautrier algorithm and are
2652 * there any validity dependences (left)?
2654 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2656 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
2659 return has_validity_edges(graph
);
2662 /* Compute a schedule for a connected dependence graph using Feautrier's
2663 * multi-dimensional scheduling algorithm.
2664 * The original algorithm is described in [1].
2665 * The main idea is to minimize the number of scheduling dimensions, by
2666 * trying to satisfy as many dependences as possible per scheduling dimension.
2668 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2669 * Problem, Part II: Multi-Dimensional Time.
2670 * In Intl. Journal of Parallel Programming, 1992.
2672 static int compute_schedule_wcc_feautrier(isl_ctx
*ctx
,
2673 struct isl_sched_graph
*graph
)
2675 return carry_dependences(ctx
, graph
);
2678 /* Compute a schedule for a connected dependence graph.
2679 * We try to find a sequence of as many schedule rows as possible that result
2680 * in non-negative dependence distances (independent of the previous rows
2681 * in the sequence, i.e., such that the sequence is tilable).
2682 * If we can't find any more rows we either
2683 * - split between SCCs and start over (assuming we found an interesting
2684 * pair of SCCs between which to split)
2685 * - continue with the next band (assuming the current band has at least
2687 * - try to carry as many dependences as possible and continue with the next
2690 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2691 * as many validity dependences as possible. When all validity dependences
2692 * are satisfied we extend the schedule to a full-dimensional schedule.
2694 * If we manage to complete the schedule, we finish off by topologically
2695 * sorting the statements based on the remaining dependences.
2697 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2698 * outermost dimension in the current band to be zero distance. If this
2699 * turns out to be impossible, we fall back on the general scheme above
2700 * and try to carry as many dependences as possible.
2702 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2706 if (detect_sccs(ctx
, graph
) < 0)
2708 if (sort_sccs(graph
) < 0)
2711 if (compute_maxvar(graph
) < 0)
2714 if (need_feautrier_step(ctx
, graph
))
2715 return compute_schedule_wcc_feautrier(ctx
, graph
);
2717 if (ctx
->opt
->schedule_outer_zero_distance
)
2720 while (graph
->n_row
< graph
->maxvar
) {
2723 graph
->src_scc
= -1;
2724 graph
->dst_scc
= -1;
2726 if (setup_lp(ctx
, graph
, force_zero
) < 0)
2728 sol
= solve_lp(graph
);
2731 if (sol
->size
== 0) {
2733 if (!ctx
->opt
->schedule_maximize_band_depth
&&
2734 graph
->n_total_row
> graph
->band_start
)
2735 return compute_next_band(ctx
, graph
);
2736 if (graph
->src_scc
>= 0)
2737 return compute_split_schedule(ctx
, graph
);
2738 if (graph
->n_total_row
> graph
->band_start
)
2739 return compute_next_band(ctx
, graph
);
2740 return carry_dependences(ctx
, graph
);
2742 if (update_schedule(graph
, sol
, 1, 1) < 0)
2747 if (graph
->n_total_row
> graph
->band_start
)
2749 return sort_statements(ctx
, graph
);
2752 /* Add a row to the schedules that separates the SCCs and move
2755 static int split_on_scc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2759 if (graph
->n_total_row
>= graph
->max_row
)
2760 isl_die(ctx
, isl_error_internal
,
2761 "too many schedule rows", return -1);
2763 for (i
= 0; i
< graph
->n
; ++i
) {
2764 struct isl_sched_node
*node
= &graph
->node
[i
];
2765 int row
= isl_mat_rows(node
->sched
);
2767 isl_map_free(node
->sched_map
);
2768 node
->sched_map
= NULL
;
2769 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2770 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2774 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2777 graph
->n_total_row
++;
2783 /* Compute a schedule for each component (identified by node->scc)
2784 * of the dependence graph separately and then combine the results.
2785 * Depending on the setting of schedule_fuse, a component may be
2786 * either weakly or strongly connected.
2788 * The band_id is adjusted such that each component has a separate id.
2789 * Note that the band_id may have already been set to a value different
2790 * from zero by compute_split_schedule.
2792 static int compute_component_schedule(isl_ctx
*ctx
,
2793 struct isl_sched_graph
*graph
)
2797 int n_total_row
, orig_total_row
;
2798 int n_band
, orig_band
;
2800 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
||
2801 ctx
->opt
->schedule_separate_components
)
2802 if (split_on_scc(ctx
, graph
) < 0)
2806 orig_total_row
= graph
->n_total_row
;
2808 orig_band
= graph
->n_band
;
2809 for (i
= 0; i
< graph
->n
; ++i
)
2810 graph
->node
[i
].band_id
[graph
->n_band
] += graph
->node
[i
].scc
;
2811 for (wcc
= 0; wcc
< graph
->scc
; ++wcc
) {
2813 for (i
= 0; i
< graph
->n
; ++i
)
2814 if (graph
->node
[i
].scc
== wcc
)
2817 for (i
= 0; i
< graph
->n_edge
; ++i
)
2818 if (graph
->edge
[i
].src
->scc
== wcc
&&
2819 graph
->edge
[i
].dst
->scc
== wcc
)
2822 if (compute_sub_schedule(ctx
, graph
, n
, n_edge
,
2824 &edge_scc_exactly
, wcc
, 1) < 0)
2826 if (graph
->n_total_row
> n_total_row
)
2827 n_total_row
= graph
->n_total_row
;
2828 graph
->n_total_row
= orig_total_row
;
2829 if (graph
->n_band
> n_band
)
2830 n_band
= graph
->n_band
;
2831 graph
->n_band
= orig_band
;
2834 graph
->n_total_row
= n_total_row
;
2835 graph
->n_band
= n_band
;
2837 return pad_schedule(graph
);
2840 /* Compute a schedule for the given dependence graph.
2841 * We first check if the graph is connected (through validity dependences)
2842 * and, if not, compute a schedule for each component separately.
2843 * If schedule_fuse is set to minimal fusion, then we check for strongly
2844 * connected components instead and compute a separate schedule for
2845 * each such strongly connected component.
2847 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2849 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
) {
2850 if (detect_sccs(ctx
, graph
) < 0)
2853 if (detect_wccs(ctx
, graph
) < 0)
2858 return compute_component_schedule(ctx
, graph
);
2860 return compute_schedule_wcc(ctx
, graph
);
2863 /* Compute a schedule for the given union of domains that respects
2864 * all the validity dependences.
2865 * If the default isl scheduling algorithm is used, it tries to minimize
2866 * the dependence distances over the proximity dependences.
2867 * If Feautrier's scheduling algorithm is used, the proximity dependence
2868 * distances are only minimized during the extension to a full-dimensional
2871 __isl_give isl_schedule
*isl_union_set_compute_schedule(
2872 __isl_take isl_union_set
*domain
,
2873 __isl_take isl_union_map
*validity
,
2874 __isl_take isl_union_map
*proximity
)
2876 isl_ctx
*ctx
= isl_union_set_get_ctx(domain
);
2878 struct isl_sched_graph graph
= { 0 };
2879 isl_schedule
*sched
;
2880 struct isl_extract_edge_data data
;
2882 domain
= isl_union_set_align_params(domain
,
2883 isl_union_map_get_space(validity
));
2884 domain
= isl_union_set_align_params(domain
,
2885 isl_union_map_get_space(proximity
));
2886 dim
= isl_union_set_get_space(domain
);
2887 validity
= isl_union_map_align_params(validity
, isl_space_copy(dim
));
2888 proximity
= isl_union_map_align_params(proximity
, dim
);
2893 graph
.n
= isl_union_set_n_set(domain
);
2896 if (graph_alloc(ctx
, &graph
, graph
.n
,
2897 isl_union_map_n_map(validity
) + isl_union_map_n_map(proximity
)) < 0)
2899 if (compute_max_row(&graph
, domain
) < 0)
2903 if (isl_union_set_foreach_set(domain
, &extract_node
, &graph
) < 0)
2905 if (graph_init_table(ctx
, &graph
) < 0)
2907 graph
.max_edge
[isl_edge_validity
] = isl_union_map_n_map(validity
);
2908 graph
.max_edge
[isl_edge_proximity
] = isl_union_map_n_map(proximity
);
2909 if (graph_init_edge_tables(ctx
, &graph
) < 0)
2912 data
.graph
= &graph
;
2913 data
.type
= isl_edge_validity
;
2914 if (isl_union_map_foreach_map(validity
, &extract_edge
, &data
) < 0)
2916 data
.type
= isl_edge_proximity
;
2917 if (isl_union_map_foreach_map(proximity
, &extract_edge
, &data
) < 0)
2920 if (compute_schedule(ctx
, &graph
) < 0)
2924 sched
= extract_schedule(&graph
, isl_union_set_get_space(domain
));
2926 graph_free(ctx
, &graph
);
2927 isl_union_set_free(domain
);
2928 isl_union_map_free(validity
);
2929 isl_union_map_free(proximity
);
2933 graph_free(ctx
, &graph
);
2934 isl_union_set_free(domain
);
2935 isl_union_map_free(validity
);
2936 isl_union_map_free(proximity
);
2940 void *isl_schedule_free(__isl_take isl_schedule
*sched
)
2946 if (--sched
->ref
> 0)
2949 for (i
= 0; i
< sched
->n
; ++i
) {
2950 isl_multi_aff_free(sched
->node
[i
].sched
);
2951 free(sched
->node
[i
].band_end
);
2952 free(sched
->node
[i
].band_id
);
2953 free(sched
->node
[i
].zero
);
2955 isl_space_free(sched
->dim
);
2956 isl_band_list_free(sched
->band_forest
);
2961 isl_ctx
*isl_schedule_get_ctx(__isl_keep isl_schedule
*schedule
)
2963 return schedule
? isl_space_get_ctx(schedule
->dim
) : NULL
;
2966 /* Return an isl_union_map of the schedule. If we have already constructed
2967 * a band forest, then this band forest may have been modified so we need
2968 * to extract the isl_union_map from the forest rather than from
2969 * the originally computed schedule.
2971 __isl_give isl_union_map
*isl_schedule_get_map(__isl_keep isl_schedule
*sched
)
2974 isl_union_map
*umap
;
2979 if (sched
->band_forest
)
2980 return isl_band_list_get_suffix_schedule(sched
->band_forest
);
2982 umap
= isl_union_map_empty(isl_space_copy(sched
->dim
));
2983 for (i
= 0; i
< sched
->n
; ++i
) {
2986 ma
= isl_multi_aff_copy(sched
->node
[i
].sched
);
2987 umap
= isl_union_map_add_map(umap
, isl_map_from_multi_aff(ma
));
2993 static __isl_give isl_band_list
*construct_band_list(
2994 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
2995 int band_nr
, int *parent_active
, int n_active
);
2997 /* Construct an isl_band structure for the band in the given schedule
2998 * with sequence number band_nr for the n_active nodes marked by active.
2999 * If the nodes don't have a band with the given sequence number,
3000 * then a band without members is created.
3002 * Because of the way the schedule is constructed, we know that
3003 * the position of the band inside the schedule of a node is the same
3004 * for all active nodes.
3006 static __isl_give isl_band
*construct_band(__isl_keep isl_schedule
*schedule
,
3007 __isl_keep isl_band
*parent
,
3008 int band_nr
, int *active
, int n_active
)
3011 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3013 unsigned start
, end
;
3015 band
= isl_band_alloc(ctx
);
3019 band
->schedule
= schedule
;
3020 band
->parent
= parent
;
3022 for (i
= 0; i
< schedule
->n
; ++i
)
3023 if (active
[i
] && schedule
->node
[i
].n_band
> band_nr
+ 1)
3026 if (i
< schedule
->n
) {
3027 band
->children
= construct_band_list(schedule
, band
,
3028 band_nr
+ 1, active
, n_active
);
3029 if (!band
->children
)
3033 for (i
= 0; i
< schedule
->n
; ++i
)
3037 if (i
>= schedule
->n
)
3038 isl_die(ctx
, isl_error_internal
,
3039 "band without active statements", goto error
);
3041 start
= band_nr
? schedule
->node
[i
].band_end
[band_nr
- 1] : 0;
3042 end
= band_nr
< schedule
->node
[i
].n_band
?
3043 schedule
->node
[i
].band_end
[band_nr
] : start
;
3044 band
->n
= end
- start
;
3046 band
->zero
= isl_alloc_array(ctx
, int, band
->n
);
3050 for (j
= 0; j
< band
->n
; ++j
)
3051 band
->zero
[j
] = schedule
->node
[i
].zero
[start
+ j
];
3053 band
->pma
= isl_union_pw_multi_aff_empty(isl_space_copy(schedule
->dim
));
3054 for (i
= 0; i
< schedule
->n
; ++i
) {
3056 isl_pw_multi_aff
*pma
;
3062 ma
= isl_multi_aff_copy(schedule
->node
[i
].sched
);
3063 n_out
= isl_multi_aff_dim(ma
, isl_dim_out
);
3064 ma
= isl_multi_aff_drop_dims(ma
, isl_dim_out
, end
, n_out
- end
);
3065 ma
= isl_multi_aff_drop_dims(ma
, isl_dim_out
, 0, start
);
3066 pma
= isl_pw_multi_aff_from_multi_aff(ma
);
3067 band
->pma
= isl_union_pw_multi_aff_add_pw_multi_aff(band
->pma
,
3075 isl_band_free(band
);
3079 /* Construct a list of bands that start at the same position (with
3080 * sequence number band_nr) in the schedules of the nodes that
3081 * were active in the parent band.
3083 * A separate isl_band structure is created for each band_id
3084 * and for each node that does not have a band with sequence
3085 * number band_nr. In the latter case, a band without members
3087 * This ensures that if a band has any children, then each node
3088 * that was active in the band is active in exactly one of the children.
3090 static __isl_give isl_band_list
*construct_band_list(
3091 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
3092 int band_nr
, int *parent_active
, int n_active
)
3095 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3098 isl_band_list
*list
;
3101 for (i
= 0; i
< n_active
; ++i
) {
3102 for (j
= 0; j
< schedule
->n
; ++j
) {
3103 if (!parent_active
[j
])
3105 if (schedule
->node
[j
].n_band
<= band_nr
)
3107 if (schedule
->node
[j
].band_id
[band_nr
] == i
) {
3113 for (j
= 0; j
< schedule
->n
; ++j
)
3114 if (schedule
->node
[j
].n_band
<= band_nr
)
3119 list
= isl_band_list_alloc(ctx
, n_band
);
3120 band
= construct_band(schedule
, parent
, band_nr
,
3121 parent_active
, n_active
);
3122 return isl_band_list_add(list
, band
);
3125 active
= isl_alloc_array(ctx
, int, schedule
->n
);
3129 list
= isl_band_list_alloc(ctx
, n_band
);
3131 for (i
= 0; i
< n_active
; ++i
) {
3135 for (j
= 0; j
< schedule
->n
; ++j
) {
3136 active
[j
] = parent_active
[j
] &&
3137 schedule
->node
[j
].n_band
> band_nr
&&
3138 schedule
->node
[j
].band_id
[band_nr
] == i
;
3145 band
= construct_band(schedule
, parent
, band_nr
, active
, n
);
3147 list
= isl_band_list_add(list
, band
);
3149 for (i
= 0; i
< schedule
->n
; ++i
) {
3151 if (!parent_active
[i
])
3153 if (schedule
->node
[i
].n_band
> band_nr
)
3155 for (j
= 0; j
< schedule
->n
; ++j
)
3157 band
= construct_band(schedule
, parent
, band_nr
, active
, 1);
3158 list
= isl_band_list_add(list
, band
);
3166 /* Construct a band forest representation of the schedule and
3167 * return the list of roots.
3169 static __isl_give isl_band_list
*construct_forest(
3170 __isl_keep isl_schedule
*schedule
)
3173 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3174 isl_band_list
*forest
;
3177 active
= isl_alloc_array(ctx
, int, schedule
->n
);
3181 for (i
= 0; i
< schedule
->n
; ++i
)
3184 forest
= construct_band_list(schedule
, NULL
, 0, active
, schedule
->n
);
3191 /* Return the roots of a band forest representation of the schedule.
3193 __isl_give isl_band_list
*isl_schedule_get_band_forest(
3194 __isl_keep isl_schedule
*schedule
)
3198 if (!schedule
->band_forest
)
3199 schedule
->band_forest
= construct_forest(schedule
);
3200 return isl_band_list_dup(schedule
->band_forest
);
3203 /* Call "fn" on each band in the schedule in depth-first post-order.
3205 int isl_schedule_foreach_band(__isl_keep isl_schedule
*sched
,
3206 int (*fn
)(__isl_keep isl_band
*band
, void *user
), void *user
)
3209 isl_band_list
*forest
;
3214 forest
= isl_schedule_get_band_forest(sched
);
3215 r
= isl_band_list_foreach_band(forest
, fn
, user
);
3216 isl_band_list_free(forest
);
3221 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
3222 __isl_keep isl_band_list
*list
);
3224 static __isl_give isl_printer
*print_band(__isl_take isl_printer
*p
,
3225 __isl_keep isl_band
*band
)
3227 isl_band_list
*children
;
3229 p
= isl_printer_start_line(p
);
3230 p
= isl_printer_print_union_pw_multi_aff(p
, band
->pma
);
3231 p
= isl_printer_end_line(p
);
3233 if (!isl_band_has_children(band
))
3236 children
= isl_band_get_children(band
);
3238 p
= isl_printer_indent(p
, 4);
3239 p
= print_band_list(p
, children
);
3240 p
= isl_printer_indent(p
, -4);
3242 isl_band_list_free(children
);
3247 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
3248 __isl_keep isl_band_list
*list
)
3252 n
= isl_band_list_n_band(list
);
3253 for (i
= 0; i
< n
; ++i
) {
3255 band
= isl_band_list_get_band(list
, i
);
3256 p
= print_band(p
, band
);
3257 isl_band_free(band
);
3263 __isl_give isl_printer
*isl_printer_print_schedule(__isl_take isl_printer
*p
,
3264 __isl_keep isl_schedule
*schedule
)
3266 isl_band_list
*forest
;
3268 forest
= isl_schedule_get_band_forest(schedule
);
3270 p
= print_band_list(p
, forest
);
3272 isl_band_list_free(forest
);
3277 void isl_schedule_dump(__isl_keep isl_schedule
*schedule
)
3279 isl_printer
*printer
;
3284 printer
= isl_printer_to_file(isl_schedule_get_ctx(schedule
), stderr
);
3285 printer
= isl_printer_print_schedule(printer
, schedule
);
3287 isl_printer_free(printer
);