2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_bernstein.h>
26 struct bernstein_data
{
28 isl_qpolynomial
*poly
;
33 isl_qpolynomial_fold
*fold
;
34 isl_qpolynomial_fold
*fold_tight
;
35 isl_pw_qpolynomial_fold
*pwf
;
36 isl_pw_qpolynomial_fold
*pwf_tight
;
39 static int vertex_is_integral(__isl_keep isl_basic_set
*vertex
)
45 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
46 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
47 for (i
= 0; i
< nvar
; ++i
) {
49 if (!isl_int_is_one(vertex
->eq
[r
][1 + nparam
+ i
]) &&
50 !isl_int_is_negone(vertex
->eq
[r
][1 + nparam
+ i
]))
57 static __isl_give isl_qpolynomial
*vertex_coordinate(
58 __isl_keep isl_basic_set
*vertex
, int i
, __isl_take isl_space
*dim
)
66 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
67 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
71 isl_int_set(denom
, vertex
->eq
[r
][1 + nparam
+ i
]);
72 isl_assert(vertex
->ctx
, !isl_int_is_zero(denom
), goto error
);
74 if (isl_int_is_pos(denom
))
75 isl_seq_neg(vertex
->eq
[r
], vertex
->eq
[r
],
76 1 + isl_basic_set_total_dim(vertex
));
78 isl_int_neg(denom
, denom
);
80 v
= isl_qpolynomial_from_affine(dim
, vertex
->eq
[r
], denom
);
90 /* Check whether the bound associated to the selection "k" is tight,
91 * which is the case if we select exactly one vertex and if that vertex
92 * is integral for all values of the parameters.
94 static int is_tight(int *k
, int n
, int d
, isl_cell
*cell
)
98 for (i
= 0; i
< n
; ++i
) {
105 v
= cell
->ids
[n
- 1 - i
];
106 return vertex_is_integral(cell
->vertices
->v
[v
].vertex
);
112 static void add_fold(__isl_take isl_qpolynomial
*b
, __isl_keep isl_set
*dom
,
113 int *k
, int n
, int d
, struct bernstein_data
*data
)
115 isl_qpolynomial_fold
*fold
;
117 fold
= isl_qpolynomial_fold_alloc(data
->type
, b
);
119 if (data
->check_tight
&& is_tight(k
, n
, d
, data
->cell
))
120 data
->fold_tight
= isl_qpolynomial_fold_fold_on_domain(dom
,
121 data
->fold_tight
, fold
);
123 data
->fold
= isl_qpolynomial_fold_fold_on_domain(dom
,
127 /* Extract the coefficients of the Bernstein base polynomials and store
128 * them in data->fold and data->fold_tight.
130 * In particular, the coefficient of each monomial
131 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
132 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
134 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
135 * multinom[i] contains the partial multinomial coefficient.
137 static void extract_coefficients(isl_qpolynomial
*poly
,
138 __isl_keep isl_set
*dom
, struct bernstein_data
*data
)
144 isl_qpolynomial
**c
= NULL
;
147 isl_vec
*multinom
= NULL
;
152 ctx
= isl_qpolynomial_get_ctx(poly
);
153 n
= isl_qpolynomial_dim(poly
, isl_dim_in
);
154 d
= isl_qpolynomial_degree(poly
);
155 isl_assert(ctx
, n
>= 2, return);
157 c
= isl_calloc_array(ctx
, isl_qpolynomial
*, n
);
158 k
= isl_alloc_array(ctx
, int, n
);
159 left
= isl_alloc_array(ctx
, int, n
);
160 multinom
= isl_vec_alloc(ctx
, n
);
161 if (!c
|| !k
|| !left
|| !multinom
)
164 isl_int_set_si(multinom
->el
[0], 1);
165 for (k
[0] = d
; k
[0] >= 0; --k
[0]) {
167 isl_qpolynomial_free(c
[0]);
168 c
[0] = isl_qpolynomial_coeff(poly
, isl_dim_in
, n
- 1, k
[0]);
171 isl_int_set(multinom
->el
[1], multinom
->el
[0]);
178 for (j
= 2; j
<= left
[i
- 1]; ++j
)
179 isl_int_divexact_ui(multinom
->el
[i
],
181 b
= isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
182 n
- 1 - i
, left
[i
- 1]);
183 b
= isl_qpolynomial_project_domain_on_params(b
);
184 dim
= isl_qpolynomial_get_domain_space(b
);
185 f
= isl_qpolynomial_rat_cst_on_domain(dim
, ctx
->one
,
187 b
= isl_qpolynomial_mul(b
, f
);
188 k
[n
- 1] = left
[n
- 2];
189 add_fold(b
, dom
, k
, n
, d
, data
);
193 if (k
[i
] >= left
[i
- 1]) {
199 isl_int_divexact_ui(multinom
->el
[i
],
200 multinom
->el
[i
], k
[i
]);
201 isl_qpolynomial_free(c
[i
]);
202 c
[i
] = isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
204 left
[i
] = left
[i
- 1] - k
[i
];
206 isl_int_set(multinom
->el
[i
+ 1], multinom
->el
[i
]);
209 isl_int_mul_ui(multinom
->el
[0], multinom
->el
[0], k
[0]);
212 for (i
= 0; i
< n
; ++i
)
213 isl_qpolynomial_free(c
[i
]);
215 isl_vec_free(multinom
);
221 isl_vec_free(multinom
);
225 for (i
= 0; i
< n
; ++i
)
226 isl_qpolynomial_free(c
[i
]);
231 /* Perform bernstein expansion on the parametric vertices that are active
234 * data->poly has been homogenized in the calling function.
236 * We plug in the barycentric coordinates for the set variables
238 * \vec x = \sum_i \alpha_i v_i(\vec p)
240 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
241 * Next, we extract the coefficients of the Bernstein base polynomials.
243 static int bernstein_coefficients_cell(__isl_take isl_cell
*cell
, void *user
)
246 struct bernstein_data
*data
= (struct bernstein_data
*)user
;
247 isl_space
*dim_param
;
249 isl_qpolynomial
*poly
= data
->poly
;
252 isl_qpolynomial
**subs
;
253 isl_pw_qpolynomial_fold
*pwf
;
260 nvar
= isl_qpolynomial_dim(poly
, isl_dim_in
) - 1;
261 n_vertices
= cell
->n_vertices
;
263 ctx
= isl_qpolynomial_get_ctx(poly
);
264 if (n_vertices
> nvar
+ 1 && ctx
->opt
->bernstein_triangulate
)
265 return isl_cell_foreach_simplex(cell
,
266 &bernstein_coefficients_cell
, user
);
268 subs
= isl_alloc_array(ctx
, isl_qpolynomial
*, 1 + nvar
);
272 dim_param
= isl_basic_set_get_space(cell
->dom
);
273 dim_dst
= isl_qpolynomial_get_domain_space(poly
);
274 dim_dst
= isl_space_add_dims(dim_dst
, isl_dim_set
, n_vertices
);
276 for (i
= 0; i
< 1 + nvar
; ++i
)
277 subs
[i
] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst
));
279 for (i
= 0; i
< n_vertices
; ++i
) {
281 c
= isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst
), isl_dim_set
,
283 for (j
= 0; j
< nvar
; ++j
) {
284 int k
= cell
->ids
[i
];
286 v
= vertex_coordinate(cell
->vertices
->v
[k
].vertex
, j
,
287 isl_space_copy(dim_param
));
288 v
= isl_qpolynomial_add_dims(v
, isl_dim_in
,
289 1 + nvar
+ n_vertices
);
290 v
= isl_qpolynomial_mul(v
, isl_qpolynomial_copy(c
));
291 subs
[1 + j
] = isl_qpolynomial_add(subs
[1 + j
], v
);
293 subs
[0] = isl_qpolynomial_add(subs
[0], c
);
295 isl_space_free(dim_dst
);
297 poly
= isl_qpolynomial_copy(poly
);
299 poly
= isl_qpolynomial_add_dims(poly
, isl_dim_in
, n_vertices
);
300 poly
= isl_qpolynomial_substitute(poly
, isl_dim_in
, 0, 1 + nvar
, subs
);
301 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_in
, 0, 1 + nvar
);
304 dom
= isl_set_from_basic_set(isl_basic_set_copy(cell
->dom
));
305 data
->fold
= isl_qpolynomial_fold_empty(data
->type
, isl_space_copy(dim_param
));
306 data
->fold_tight
= isl_qpolynomial_fold_empty(data
->type
, dim_param
);
307 extract_coefficients(poly
, dom
, data
);
309 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, isl_set_copy(dom
),
311 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, pwf
);
312 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, data
->fold_tight
);
313 data
->pwf_tight
= isl_pw_qpolynomial_fold_fold(data
->pwf_tight
, pwf
);
315 isl_qpolynomial_free(poly
);
317 for (i
= 0; i
< 1 + nvar
; ++i
)
318 isl_qpolynomial_free(subs
[i
]);
326 /* Base case of applying bernstein expansion.
328 * We compute the chamber decomposition of the parametric polytope "bset"
329 * and then perform bernstein expansion on the parametric vertices
330 * that are active on each chamber.
332 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_base(
333 __isl_take isl_basic_set
*bset
,
334 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
338 isl_pw_qpolynomial_fold
*pwf
;
339 isl_vertices
*vertices
;
342 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
345 isl_qpolynomial_fold
*fold
;
347 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
348 dom
= isl_set_from_basic_set(bset
);
351 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
352 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
355 if (isl_qpolynomial_is_zero(poly
)) {
357 isl_qpolynomial_fold
*fold
;
358 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
359 dom
= isl_set_from_basic_set(bset
);
360 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
363 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
366 dim
= isl_basic_set_get_space(bset
);
367 dim
= isl_space_params(dim
);
368 dim
= isl_space_from_domain(dim
);
369 dim
= isl_space_add_dims(dim
, isl_dim_set
, 1);
370 data
->pwf
= isl_pw_qpolynomial_fold_zero(isl_space_copy(dim
), data
->type
);
371 data
->pwf_tight
= isl_pw_qpolynomial_fold_zero(dim
, data
->type
);
372 data
->poly
= isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly
));
373 vertices
= isl_basic_set_compute_vertices(bset
);
374 isl_vertices_foreach_disjoint_cell(vertices
,
375 &bernstein_coefficients_cell
, data
);
376 isl_vertices_free(vertices
);
377 isl_qpolynomial_free(data
->poly
);
379 isl_basic_set_free(bset
);
380 isl_qpolynomial_free(poly
);
382 covers
= isl_pw_qpolynomial_fold_covers(data
->pwf_tight
, data
->pwf
);
390 isl_pw_qpolynomial_fold_free(data
->pwf
);
391 return data
->pwf_tight
;
394 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, data
->pwf_tight
);
398 isl_pw_qpolynomial_fold_free(data
->pwf_tight
);
399 isl_pw_qpolynomial_fold_free(data
->pwf
);
403 /* Apply bernstein expansion recursively by working in on len[i]
404 * set variables at a time, with i ranging from n_group - 1 to 0.
406 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_recursive(
407 __isl_take isl_pw_qpolynomial
*pwqp
,
408 int n_group
, int *len
, struct bernstein_data
*data
, int *tight
)
413 isl_pw_qpolynomial_fold
*pwf
;
418 nparam
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_param
);
419 nvar
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_in
);
421 pwqp
= isl_pw_qpolynomial_move_dims(pwqp
, isl_dim_param
, nparam
,
422 isl_dim_in
, 0, nvar
- len
[n_group
- 1]);
423 pwf
= isl_pw_qpolynomial_bound(pwqp
, data
->type
, tight
);
425 for (i
= n_group
- 2; i
>= 0; --i
) {
426 nparam
= isl_pw_qpolynomial_fold_dim(pwf
, isl_dim_param
);
427 pwf
= isl_pw_qpolynomial_fold_move_dims(pwf
, isl_dim_in
, 0,
428 isl_dim_param
, nparam
- len
[i
], len
[i
]);
429 if (tight
&& !*tight
)
431 pwf
= isl_pw_qpolynomial_fold_bound(pwf
, tight
);
437 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_factors(
438 __isl_take isl_basic_set
*bset
,
439 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
443 isl_pw_qpolynomial
*pwqp
;
444 isl_pw_qpolynomial_fold
*pwf
;
446 f
= isl_basic_set_factorizer(bset
);
449 if (f
->n_group
== 0) {
450 isl_factorizer_free(f
);
451 return bernstein_coefficients_base(bset
, poly
, data
, tight
);
454 set
= isl_set_from_basic_set(bset
);
455 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
456 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, isl_morph_copy(f
->morph
));
458 pwf
= bernstein_coefficients_recursive(pwqp
, f
->n_group
, f
->len
, data
,
461 isl_factorizer_free(f
);
465 isl_basic_set_free(bset
);
466 isl_qpolynomial_free(poly
);
470 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_full_recursive(
471 __isl_take isl_basic_set
*bset
,
472 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
477 isl_pw_qpolynomial_fold
*pwf
;
479 isl_pw_qpolynomial
*pwqp
;
484 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
486 len
= isl_alloc_array(bset
->ctx
, int, nvar
);
490 for (i
= 0; i
< nvar
; ++i
)
493 set
= isl_set_from_basic_set(bset
);
494 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
496 pwf
= bernstein_coefficients_recursive(pwqp
, nvar
, len
, data
, tight
);
502 isl_basic_set_free(bset
);
503 isl_qpolynomial_free(poly
);
507 /* Compute a bound on the polynomial defined over the parametric polytope
508 * using bernstein expansion and store the result
509 * in bound->pwf and bound->pwf_tight.
511 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
512 * the polytope can be factorized and apply bernstein expansion recursively
514 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
515 * bernstein expansion recursively on each dimension.
516 * Otherwise, we apply bernstein expansion on the entire polytope.
518 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set
*bset
,
519 __isl_take isl_qpolynomial
*poly
, struct isl_bound
*bound
)
521 struct bernstein_data data
;
522 isl_pw_qpolynomial_fold
*pwf
;
525 int *tp
= bound
->check_tight
? &tight
: NULL
;
530 data
.type
= bound
->type
;
531 data
.check_tight
= bound
->check_tight
;
533 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
535 if (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_FACTORS
)
536 pwf
= bernstein_coefficients_factors(bset
, poly
, &data
, tp
);
538 (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_INTERVALS
))
539 pwf
= bernstein_coefficients_full_recursive(bset
, poly
, &data
, tp
);
541 pwf
= bernstein_coefficients_base(bset
, poly
, &data
, tp
);
544 bound
->pwf_tight
= isl_pw_qpolynomial_fold_fold(bound
->pwf_tight
, pwf
);
546 bound
->pwf
= isl_pw_qpolynomial_fold_fold(bound
->pwf
, pwf
);
550 isl_basic_set_free(bset
);
551 isl_qpolynomial_free(poly
);