2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
25 #include <isl_dim_map.h>
26 #include <isl/map_to_basic_set.h>
28 #include <isl_schedule_private.h>
29 #include <isl_options_private.h>
30 #include <isl_tarjan.h>
31 #include <isl_morph.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
40 isl_edge_validity
= 0,
41 isl_edge_first
= isl_edge_validity
,
44 isl_edge_conditional_validity
,
46 isl_edge_last
= isl_edge_proximity
49 /* The constraints that need to be satisfied by a schedule on "domain".
51 * "validity" constraints map domain elements i to domain elements
52 * that should be scheduled after i. (Hard constraint)
53 * "proximity" constraints map domain elements i to domains elements
54 * that should be scheduled as early as possible after i (or before i).
57 * "condition" and "conditional_validity" constraints map possibly "tagged"
58 * domain elements i -> s to "tagged" domain elements j -> t.
59 * The elements of the "conditional_validity" constraints, but without the
60 * tags (i.e., the elements i -> j) are treated as validity constraints,
61 * except that during the construction of a tilable band,
62 * the elements of the "conditional_validity" constraints may be violated
63 * provided that all adjacent elements of the "condition" constraints
64 * are local within the band.
65 * A dependence is local within a band if domain and range are mapped
66 * to the same schedule point by the band.
68 struct isl_schedule_constraints
{
69 isl_union_set
*domain
;
71 isl_union_map
*constraint
[isl_edge_last
+ 1];
74 __isl_give isl_schedule_constraints
*isl_schedule_constraints_copy(
75 __isl_keep isl_schedule_constraints
*sc
)
78 isl_schedule_constraints
*sc_copy
;
81 ctx
= isl_union_set_get_ctx(sc
->domain
);
82 sc_copy
= isl_calloc_type(ctx
, struct isl_schedule_constraints
);
86 sc_copy
->domain
= isl_union_set_copy(sc
->domain
);
88 return isl_schedule_constraints_free(sc_copy
);
90 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
91 sc_copy
->constraint
[i
] = isl_union_map_copy(sc
->constraint
[i
]);
92 if (!sc_copy
->constraint
[i
])
93 return isl_schedule_constraints_free(sc_copy
);
100 /* Construct an isl_schedule_constraints object for computing a schedule
101 * on "domain". The initial object does not impose any constraints.
103 __isl_give isl_schedule_constraints
*isl_schedule_constraints_on_domain(
104 __isl_take isl_union_set
*domain
)
108 isl_schedule_constraints
*sc
;
109 isl_union_map
*empty
;
110 enum isl_edge_type i
;
115 ctx
= isl_union_set_get_ctx(domain
);
116 sc
= isl_calloc_type(ctx
, struct isl_schedule_constraints
);
120 space
= isl_union_set_get_space(domain
);
122 empty
= isl_union_map_empty(space
);
123 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
124 sc
->constraint
[i
] = isl_union_map_copy(empty
);
125 if (!sc
->constraint
[i
])
126 sc
->domain
= isl_union_set_free(sc
->domain
);
128 isl_union_map_free(empty
);
131 return isl_schedule_constraints_free(sc
);
135 isl_union_set_free(domain
);
139 /* Replace the validity constraints of "sc" by "validity".
141 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_validity(
142 __isl_take isl_schedule_constraints
*sc
,
143 __isl_take isl_union_map
*validity
)
145 if (!sc
|| !validity
)
148 isl_union_map_free(sc
->constraint
[isl_edge_validity
]);
149 sc
->constraint
[isl_edge_validity
] = validity
;
153 isl_schedule_constraints_free(sc
);
154 isl_union_map_free(validity
);
158 /* Replace the coincidence constraints of "sc" by "coincidence".
160 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_coincidence(
161 __isl_take isl_schedule_constraints
*sc
,
162 __isl_take isl_union_map
*coincidence
)
164 if (!sc
|| !coincidence
)
167 isl_union_map_free(sc
->constraint
[isl_edge_coincidence
]);
168 sc
->constraint
[isl_edge_coincidence
] = coincidence
;
172 isl_schedule_constraints_free(sc
);
173 isl_union_map_free(coincidence
);
177 /* Replace the proximity constraints of "sc" by "proximity".
179 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_proximity(
180 __isl_take isl_schedule_constraints
*sc
,
181 __isl_take isl_union_map
*proximity
)
183 if (!sc
|| !proximity
)
186 isl_union_map_free(sc
->constraint
[isl_edge_proximity
]);
187 sc
->constraint
[isl_edge_proximity
] = proximity
;
191 isl_schedule_constraints_free(sc
);
192 isl_union_map_free(proximity
);
196 /* Replace the conditional validity constraints of "sc" by "condition"
199 __isl_give isl_schedule_constraints
*
200 isl_schedule_constraints_set_conditional_validity(
201 __isl_take isl_schedule_constraints
*sc
,
202 __isl_take isl_union_map
*condition
,
203 __isl_take isl_union_map
*validity
)
205 if (!sc
|| !condition
|| !validity
)
208 isl_union_map_free(sc
->constraint
[isl_edge_condition
]);
209 sc
->constraint
[isl_edge_condition
] = condition
;
210 isl_union_map_free(sc
->constraint
[isl_edge_conditional_validity
]);
211 sc
->constraint
[isl_edge_conditional_validity
] = validity
;
215 isl_schedule_constraints_free(sc
);
216 isl_union_map_free(condition
);
217 isl_union_map_free(validity
);
221 __isl_null isl_schedule_constraints
*isl_schedule_constraints_free(
222 __isl_take isl_schedule_constraints
*sc
)
224 enum isl_edge_type i
;
229 isl_union_set_free(sc
->domain
);
230 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
231 isl_union_map_free(sc
->constraint
[i
]);
238 isl_ctx
*isl_schedule_constraints_get_ctx(
239 __isl_keep isl_schedule_constraints
*sc
)
241 return sc
? isl_union_set_get_ctx(sc
->domain
) : NULL
;
244 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints
*sc
)
249 fprintf(stderr
, "domain: ");
250 isl_union_set_dump(sc
->domain
);
251 fprintf(stderr
, "validity: ");
252 isl_union_map_dump(sc
->constraint
[isl_edge_validity
]);
253 fprintf(stderr
, "proximity: ");
254 isl_union_map_dump(sc
->constraint
[isl_edge_proximity
]);
255 fprintf(stderr
, "coincidence: ");
256 isl_union_map_dump(sc
->constraint
[isl_edge_coincidence
]);
257 fprintf(stderr
, "condition: ");
258 isl_union_map_dump(sc
->constraint
[isl_edge_condition
]);
259 fprintf(stderr
, "conditional_validity: ");
260 isl_union_map_dump(sc
->constraint
[isl_edge_conditional_validity
]);
263 /* Align the parameters of the fields of "sc".
265 static __isl_give isl_schedule_constraints
*
266 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints
*sc
)
269 enum isl_edge_type i
;
274 space
= isl_union_set_get_space(sc
->domain
);
275 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
276 space
= isl_space_align_params(space
,
277 isl_union_map_get_space(sc
->constraint
[i
]));
279 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
280 sc
->constraint
[i
] = isl_union_map_align_params(
281 sc
->constraint
[i
], isl_space_copy(space
));
282 if (!sc
->constraint
[i
])
283 space
= isl_space_free(space
);
285 sc
->domain
= isl_union_set_align_params(sc
->domain
, space
);
287 return isl_schedule_constraints_free(sc
);
292 /* Return the total number of isl_maps in the constraints of "sc".
294 static __isl_give
int isl_schedule_constraints_n_map(
295 __isl_keep isl_schedule_constraints
*sc
)
297 enum isl_edge_type i
;
300 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
301 n
+= isl_union_map_n_map(sc
->constraint
[i
]);
306 /* Internal information about a node that is used during the construction
308 * space represents the space in which the domain lives
309 * sched is a matrix representation of the schedule being constructed
310 * for this node; if compressed is set, then this schedule is
311 * defined over the compressed domain space
312 * sched_map is an isl_map representation of the same (partial) schedule
313 * sched_map may be NULL; if compressed is set, then this map
314 * is defined over the uncompressed domain space
315 * rank is the number of linearly independent rows in the linear part
317 * the columns of cmap represent a change of basis for the schedule
318 * coefficients; the first rank columns span the linear part of
320 * cinv is the inverse of cmap.
321 * start is the first variable in the LP problem in the sequences that
322 * represents the schedule coefficients of this node
323 * nvar is the dimension of the domain
324 * nparam is the number of parameters or 0 if we are not constructing
325 * a parametric schedule
327 * If compressed is set, then hull represents the constraints
328 * that were used to derive the compression, while compress and
329 * decompress map the original space to the compressed space and
332 * scc is the index of SCC (or WCC) this node belongs to
334 * band contains the band index for each of the rows of the schedule.
335 * band_id is used to differentiate between separate bands at the same
336 * level within the same parent band, i.e., bands that are separated
337 * by the parent band or bands that are independent of each other.
338 * coincident contains a boolean for each of the rows of the schedule,
339 * indicating whether the corresponding scheduling dimension satisfies
340 * the coincidence constraints in the sense that the corresponding
341 * dependence distances are zero.
343 struct isl_sched_node
{
347 isl_multi_aff
*compress
;
348 isl_multi_aff
*decompress
;
365 static int node_has_space(const void *entry
, const void *val
)
367 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
368 isl_space
*dim
= (isl_space
*)val
;
370 return isl_space_is_equal(node
->space
, dim
);
373 /* An edge in the dependence graph. An edge may be used to
374 * ensure validity of the generated schedule, to minimize the dependence
377 * map is the dependence relation, with i -> j in the map if j depends on i
378 * tagged_condition and tagged_validity contain the union of all tagged
379 * condition or conditional validity dependence relations that
380 * specialize the dependence relation "map"; that is,
381 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
382 * or "tagged_validity", then i -> j is an element of "map".
383 * If these fields are NULL, then they represent the empty relation.
384 * src is the source node
385 * dst is the sink node
386 * validity is set if the edge is used to ensure correctness
387 * coincidence is used to enforce zero dependence distances
388 * proximity is set if the edge is used to minimize dependence distances
389 * condition is set if the edge represents a condition
390 * for a conditional validity schedule constraint
391 * local can only be set for condition edges and indicates that
392 * the dependence distance over the edge should be zero
393 * conditional_validity is set if the edge is used to conditionally
396 * For validity edges, start and end mark the sequence of inequality
397 * constraints in the LP problem that encode the validity constraint
398 * corresponding to this edge.
400 struct isl_sched_edge
{
402 isl_union_map
*tagged_condition
;
403 isl_union_map
*tagged_validity
;
405 struct isl_sched_node
*src
;
406 struct isl_sched_node
*dst
;
408 unsigned validity
: 1;
409 unsigned coincidence
: 1;
410 unsigned proximity
: 1;
412 unsigned condition
: 1;
413 unsigned conditional_validity
: 1;
419 /* Internal information about the dependence graph used during
420 * the construction of the schedule.
422 * intra_hmap is a cache, mapping dependence relations to their dual,
423 * for dependences from a node to itself
424 * inter_hmap is a cache, mapping dependence relations to their dual,
425 * for dependences between distinct nodes
426 * if compression is involved then the key for these maps
427 * it the original, uncompressed dependence relation, while
428 * the value is the dual of the compressed dependence relation.
430 * n is the number of nodes
431 * node is the list of nodes
432 * maxvar is the maximal number of variables over all nodes
433 * max_row is the allocated number of rows in the schedule
434 * n_row is the current (maximal) number of linearly independent
435 * rows in the node schedules
436 * n_total_row is the current number of rows in the node schedules
437 * n_band is the current number of completed bands
438 * band_start is the starting row in the node schedules of the current band
439 * root is set if this graph is the original dependence graph,
440 * without any splitting
442 * sorted contains a list of node indices sorted according to the
443 * SCC to which a node belongs
445 * n_edge is the number of edges
446 * edge is the list of edges
447 * max_edge contains the maximal number of edges of each type;
448 * in particular, it contains the number of edges in the inital graph.
449 * edge_table contains pointers into the edge array, hashed on the source
450 * and sink spaces; there is one such table for each type;
451 * a given edge may be referenced from more than one table
452 * if the corresponding relation appears in more than of the
453 * sets of dependences
455 * node_table contains pointers into the node array, hashed on the space
457 * region contains a list of variable sequences that should be non-trivial
459 * lp contains the (I)LP problem used to obtain new schedule rows
461 * src_scc and dst_scc are the source and sink SCCs of an edge with
462 * conflicting constraints
464 * scc represents the number of components
465 * weak is set if the components are weakly connected
467 struct isl_sched_graph
{
468 isl_map_to_basic_set
*intra_hmap
;
469 isl_map_to_basic_set
*inter_hmap
;
471 struct isl_sched_node
*node
;
485 struct isl_sched_edge
*edge
;
487 int max_edge
[isl_edge_last
+ 1];
488 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
490 struct isl_hash_table
*node_table
;
491 struct isl_region
*region
;
502 /* Initialize node_table based on the list of nodes.
504 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
508 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
509 if (!graph
->node_table
)
512 for (i
= 0; i
< graph
->n
; ++i
) {
513 struct isl_hash_table_entry
*entry
;
516 hash
= isl_space_get_hash(graph
->node
[i
].space
);
517 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
519 graph
->node
[i
].space
, 1);
522 entry
->data
= &graph
->node
[i
];
528 /* Return a pointer to the node that lives within the given space,
529 * or NULL if there is no such node.
531 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
532 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
534 struct isl_hash_table_entry
*entry
;
537 hash
= isl_space_get_hash(dim
);
538 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
539 &node_has_space
, dim
, 0);
541 return entry
? entry
->data
: NULL
;
544 static int edge_has_src_and_dst(const void *entry
, const void *val
)
546 const struct isl_sched_edge
*edge
= entry
;
547 const struct isl_sched_edge
*temp
= val
;
549 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
552 /* Add the given edge to graph->edge_table[type].
554 static int graph_edge_table_add(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
555 enum isl_edge_type type
, struct isl_sched_edge
*edge
)
557 struct isl_hash_table_entry
*entry
;
560 hash
= isl_hash_init();
561 hash
= isl_hash_builtin(hash
, edge
->src
);
562 hash
= isl_hash_builtin(hash
, edge
->dst
);
563 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
564 &edge_has_src_and_dst
, edge
, 1);
572 /* Allocate the edge_tables based on the maximal number of edges of
575 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
579 for (i
= 0; i
<= isl_edge_last
; ++i
) {
580 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
582 if (!graph
->edge_table
[i
])
589 /* If graph->edge_table[type] contains an edge from the given source
590 * to the given destination, then return the hash table entry of this edge.
591 * Otherwise, return NULL.
593 static struct isl_hash_table_entry
*graph_find_edge_entry(
594 struct isl_sched_graph
*graph
,
595 enum isl_edge_type type
,
596 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
598 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
600 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
602 hash
= isl_hash_init();
603 hash
= isl_hash_builtin(hash
, temp
.src
);
604 hash
= isl_hash_builtin(hash
, temp
.dst
);
605 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
606 &edge_has_src_and_dst
, &temp
, 0);
610 /* If graph->edge_table[type] contains an edge from the given source
611 * to the given destination, then return this edge.
612 * Otherwise, return NULL.
614 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
615 enum isl_edge_type type
,
616 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
618 struct isl_hash_table_entry
*entry
;
620 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
627 /* Check whether the dependence graph has an edge of the given type
628 * between the given two nodes.
630 static int graph_has_edge(struct isl_sched_graph
*graph
,
631 enum isl_edge_type type
,
632 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
634 struct isl_sched_edge
*edge
;
637 edge
= graph_find_edge(graph
, type
, src
, dst
);
641 empty
= isl_map_plain_is_empty(edge
->map
);
648 /* Look for any edge with the same src, dst and map fields as "model".
650 * Return the matching edge if one can be found.
651 * Return "model" if no matching edge is found.
652 * Return NULL on error.
654 static struct isl_sched_edge
*graph_find_matching_edge(
655 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
657 enum isl_edge_type i
;
658 struct isl_sched_edge
*edge
;
660 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
663 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
666 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
676 /* Remove the given edge from all the edge_tables that refer to it.
678 static void graph_remove_edge(struct isl_sched_graph
*graph
,
679 struct isl_sched_edge
*edge
)
681 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
682 enum isl_edge_type i
;
684 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
685 struct isl_hash_table_entry
*entry
;
687 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
690 if (entry
->data
!= edge
)
692 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
696 /* Check whether the dependence graph has any edge
697 * between the given two nodes.
699 static int graph_has_any_edge(struct isl_sched_graph
*graph
,
700 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
702 enum isl_edge_type i
;
705 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
706 r
= graph_has_edge(graph
, i
, src
, dst
);
714 /* Check whether the dependence graph has a validity edge
715 * between the given two nodes.
717 * Conditional validity edges are essentially validity edges that
718 * can be ignored if the corresponding condition edges are iteration private.
719 * Here, we are only checking for the presence of validity
720 * edges, so we need to consider the conditional validity edges too.
721 * In particular, this function is used during the detection
722 * of strongly connected components and we cannot ignore
723 * conditional validity edges during this detection.
725 static int graph_has_validity_edge(struct isl_sched_graph
*graph
,
726 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
730 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
734 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
737 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
738 int n_node
, int n_edge
)
743 graph
->n_edge
= n_edge
;
744 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
745 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
746 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
747 graph
->edge
= isl_calloc_array(ctx
,
748 struct isl_sched_edge
, graph
->n_edge
);
750 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
751 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
753 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
757 for(i
= 0; i
< graph
->n
; ++i
)
758 graph
->sorted
[i
] = i
;
763 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
767 isl_map_to_basic_set_free(graph
->intra_hmap
);
768 isl_map_to_basic_set_free(graph
->inter_hmap
);
771 for (i
= 0; i
< graph
->n
; ++i
) {
772 isl_space_free(graph
->node
[i
].space
);
773 isl_set_free(graph
->node
[i
].hull
);
774 isl_multi_aff_free(graph
->node
[i
].compress
);
775 isl_multi_aff_free(graph
->node
[i
].decompress
);
776 isl_mat_free(graph
->node
[i
].sched
);
777 isl_map_free(graph
->node
[i
].sched_map
);
778 isl_mat_free(graph
->node
[i
].cmap
);
779 isl_mat_free(graph
->node
[i
].cinv
);
781 free(graph
->node
[i
].band
);
782 free(graph
->node
[i
].band_id
);
783 free(graph
->node
[i
].coincident
);
789 for (i
= 0; i
< graph
->n_edge
; ++i
) {
790 isl_map_free(graph
->edge
[i
].map
);
791 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
792 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
796 for (i
= 0; i
<= isl_edge_last
; ++i
)
797 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
798 isl_hash_table_free(ctx
, graph
->node_table
);
799 isl_basic_set_free(graph
->lp
);
802 /* For each "set" on which this function is called, increment
803 * graph->n by one and update graph->maxvar.
805 static int init_n_maxvar(__isl_take isl_set
*set
, void *user
)
807 struct isl_sched_graph
*graph
= user
;
808 int nvar
= isl_set_dim(set
, isl_dim_set
);
811 if (nvar
> graph
->maxvar
)
812 graph
->maxvar
= nvar
;
819 /* Add the number of basic maps in "map" to *n.
821 static int add_n_basic_map(__isl_take isl_map
*map
, void *user
)
825 *n
+= isl_map_n_basic_map(map
);
831 /* Compute the number of rows that should be allocated for the schedule.
832 * The graph can be split at most "n - 1" times, there can be at most
833 * one row for each dimension in the iteration domains plus two rows
834 * for each basic map in the dependences (in particular,
835 * we usually have one row, but it may be split by split_scaled),
836 * and there can be one extra row for ordering the statements.
837 * Note that if we have actually split "n - 1" times, then no ordering
838 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
839 * It is also practically impossible to exhaust both the number of dependences
840 * and the number of variables.
842 static int compute_max_row(struct isl_sched_graph
*graph
,
843 __isl_keep isl_schedule_constraints
*sc
)
845 enum isl_edge_type i
;
850 if (isl_union_set_foreach_set(sc
->domain
, &init_n_maxvar
, graph
) < 0)
853 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
854 if (isl_union_map_foreach_map(sc
->constraint
[i
],
855 &add_n_basic_map
, &n_edge
) < 0)
857 graph
->max_row
= graph
->n
+ 2 * n_edge
+ graph
->maxvar
;
862 /* Does "bset" have any defining equalities for its set variables?
864 static int has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
871 n
= isl_basic_set_dim(bset
, isl_dim_set
);
872 for (i
= 0; i
< n
; ++i
) {
875 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
884 /* Add a new node to the graph representing the given space.
885 * "nvar" is the (possibly compressed) number of variables and
886 * may be smaller than then number of set variables in "space"
887 * if "compressed" is set.
888 * If "compressed" is set, then "hull" represents the constraints
889 * that were used to derive the compression, while "compress" and
890 * "decompress" map the original space to the compressed space and
892 * If "compressed" is not set, then "hull", "compress" and "decompress"
895 static int add_node(struct isl_sched_graph
*graph
, __isl_take isl_space
*space
,
896 int nvar
, int compressed
, __isl_take isl_set
*hull
,
897 __isl_take isl_multi_aff
*compress
,
898 __isl_take isl_multi_aff
*decompress
)
903 int *band
, *band_id
, *coincident
;
908 ctx
= isl_space_get_ctx(space
);
909 nparam
= isl_space_dim(space
, isl_dim_param
);
910 if (!ctx
->opt
->schedule_parametric
)
912 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
913 graph
->node
[graph
->n
].space
= space
;
914 graph
->node
[graph
->n
].nvar
= nvar
;
915 graph
->node
[graph
->n
].nparam
= nparam
;
916 graph
->node
[graph
->n
].sched
= sched
;
917 graph
->node
[graph
->n
].sched_map
= NULL
;
918 band
= isl_alloc_array(ctx
, int, graph
->max_row
);
919 graph
->node
[graph
->n
].band
= band
;
920 band_id
= isl_calloc_array(ctx
, int, graph
->max_row
);
921 graph
->node
[graph
->n
].band_id
= band_id
;
922 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
923 graph
->node
[graph
->n
].coincident
= coincident
;
924 graph
->node
[graph
->n
].compressed
= compressed
;
925 graph
->node
[graph
->n
].hull
= hull
;
926 graph
->node
[graph
->n
].compress
= compress
;
927 graph
->node
[graph
->n
].decompress
= decompress
;
930 if (!space
|| !sched
||
931 (graph
->max_row
&& (!band
|| !band_id
|| !coincident
)))
933 if (compressed
&& (!hull
|| !compress
|| !decompress
))
939 /* Add a new node to the graph representing the given set.
941 * If any of the set variables is defined by an equality, then
942 * we perform variable compression such that we can perform
943 * the scheduling on the compressed domain.
945 static int extract_node(__isl_take isl_set
*set
, void *user
)
953 isl_multi_aff
*compress
, *decompress
;
954 struct isl_sched_graph
*graph
= user
;
956 space
= isl_set_get_space(set
);
957 hull
= isl_set_affine_hull(set
);
958 hull
= isl_basic_set_remove_divs(hull
);
959 nvar
= isl_space_dim(space
, isl_dim_set
);
960 has_equality
= has_any_defining_equality(hull
);
962 if (has_equality
< 0)
965 isl_basic_set_free(hull
);
966 return add_node(graph
, space
, nvar
, 0, NULL
, NULL
, NULL
);
969 morph
= isl_basic_set_variable_compression(hull
, isl_dim_set
);
970 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
971 compress
= isl_morph_get_var_multi_aff(morph
);
972 morph
= isl_morph_inverse(morph
);
973 decompress
= isl_morph_get_var_multi_aff(morph
);
974 isl_morph_free(morph
);
976 hull_set
= isl_set_from_basic_set(hull
);
977 return add_node(graph
, space
, nvar
, 1, hull_set
, compress
, decompress
);
979 isl_basic_set_free(hull
);
980 isl_space_free(space
);
984 struct isl_extract_edge_data
{
985 enum isl_edge_type type
;
986 struct isl_sched_graph
*graph
;
989 /* Merge edge2 into edge1, freeing the contents of edge2.
990 * "type" is the type of the schedule constraint from which edge2 was
992 * Return 0 on success and -1 on failure.
994 * edge1 and edge2 are assumed to have the same value for the map field.
996 static int merge_edge(enum isl_edge_type type
, struct isl_sched_edge
*edge1
,
997 struct isl_sched_edge
*edge2
)
999 edge1
->validity
|= edge2
->validity
;
1000 edge1
->coincidence
|= edge2
->coincidence
;
1001 edge1
->proximity
|= edge2
->proximity
;
1002 edge1
->condition
|= edge2
->condition
;
1003 edge1
->conditional_validity
|= edge2
->conditional_validity
;
1004 isl_map_free(edge2
->map
);
1006 if (type
== isl_edge_condition
) {
1007 if (!edge1
->tagged_condition
)
1008 edge1
->tagged_condition
= edge2
->tagged_condition
;
1010 edge1
->tagged_condition
=
1011 isl_union_map_union(edge1
->tagged_condition
,
1012 edge2
->tagged_condition
);
1015 if (type
== isl_edge_conditional_validity
) {
1016 if (!edge1
->tagged_validity
)
1017 edge1
->tagged_validity
= edge2
->tagged_validity
;
1019 edge1
->tagged_validity
=
1020 isl_union_map_union(edge1
->tagged_validity
,
1021 edge2
->tagged_validity
);
1024 if (type
== isl_edge_condition
&& !edge1
->tagged_condition
)
1026 if (type
== isl_edge_conditional_validity
&& !edge1
->tagged_validity
)
1032 /* Insert dummy tags in domain and range of "map".
1034 * In particular, if "map" is of the form
1040 * [A -> dummy_tag] -> [B -> dummy_tag]
1042 * where the dummy_tags are identical and equal to any dummy tags
1043 * introduced by any other call to this function.
1045 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1051 isl_set
*domain
, *range
;
1053 ctx
= isl_map_get_ctx(map
);
1055 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1056 space
= isl_space_params(isl_map_get_space(map
));
1057 space
= isl_space_set_from_params(space
);
1058 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1059 space
= isl_space_map_from_set(space
);
1061 domain
= isl_map_wrap(map
);
1062 range
= isl_map_wrap(isl_map_universe(space
));
1063 map
= isl_map_from_domain_and_range(domain
, range
);
1064 map
= isl_map_zip(map
);
1069 /* Given that at least one of "src" or "dst" is compressed, return
1070 * a map between the spaces of these nodes restricted to the affine
1071 * hull that was used in the compression.
1073 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1074 struct isl_sched_node
*dst
)
1078 if (src
->compressed
)
1079 dom
= isl_set_copy(src
->hull
);
1081 dom
= isl_set_universe(isl_space_copy(src
->space
));
1082 if (dst
->compressed
)
1083 ran
= isl_set_copy(dst
->hull
);
1085 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1087 return isl_map_from_domain_and_range(dom
, ran
);
1090 /* Intersect the domains of the nested relations in domain and range
1091 * of "tagged" with "map".
1093 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1094 __isl_keep isl_map
*map
)
1098 tagged
= isl_map_zip(tagged
);
1099 set
= isl_map_wrap(isl_map_copy(map
));
1100 tagged
= isl_map_intersect_domain(tagged
, set
);
1101 tagged
= isl_map_zip(tagged
);
1105 /* Add a new edge to the graph based on the given map
1106 * and add it to data->graph->edge_table[data->type].
1107 * If a dependence relation of a given type happens to be identical
1108 * to one of the dependence relations of a type that was added before,
1109 * then we don't create a new edge, but instead mark the original edge
1110 * as also representing a dependence of the current type.
1112 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1113 * may be specified as "tagged" dependence relations. That is, "map"
1114 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1115 * the dependence on iterations and a and b are tags.
1116 * edge->map is set to the relation containing the elements i -> j,
1117 * while edge->tagged_condition and edge->tagged_validity contain
1118 * the union of all the "map" relations
1119 * for which extract_edge is called that result in the same edge->map.
1121 * If the source or the destination node is compressed, then
1122 * intersect both "map" and "tagged" with the constraints that
1123 * were used to construct the compression.
1124 * This ensures that there are no schedule constraints defined
1125 * outside of these domains, while the scheduler no longer has
1126 * any control over those outside parts.
1128 static int extract_edge(__isl_take isl_map
*map
, void *user
)
1130 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1131 struct isl_extract_edge_data
*data
= user
;
1132 struct isl_sched_graph
*graph
= data
->graph
;
1133 struct isl_sched_node
*src
, *dst
;
1135 struct isl_sched_edge
*edge
;
1136 isl_map
*tagged
= NULL
;
1138 if (data
->type
== isl_edge_condition
||
1139 data
->type
== isl_edge_conditional_validity
) {
1140 if (isl_map_can_zip(map
)) {
1141 tagged
= isl_map_copy(map
);
1142 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1144 tagged
= insert_dummy_tags(isl_map_copy(map
));
1148 dim
= isl_space_domain(isl_map_get_space(map
));
1149 src
= graph_find_node(ctx
, graph
, dim
);
1150 isl_space_free(dim
);
1151 dim
= isl_space_range(isl_map_get_space(map
));
1152 dst
= graph_find_node(ctx
, graph
, dim
);
1153 isl_space_free(dim
);
1157 isl_map_free(tagged
);
1161 if (src
->compressed
|| dst
->compressed
) {
1163 hull
= extract_hull(src
, dst
);
1165 tagged
= map_intersect_domains(tagged
, hull
);
1166 map
= isl_map_intersect(map
, hull
);
1169 graph
->edge
[graph
->n_edge
].src
= src
;
1170 graph
->edge
[graph
->n_edge
].dst
= dst
;
1171 graph
->edge
[graph
->n_edge
].map
= map
;
1172 graph
->edge
[graph
->n_edge
].validity
= 0;
1173 graph
->edge
[graph
->n_edge
].coincidence
= 0;
1174 graph
->edge
[graph
->n_edge
].proximity
= 0;
1175 graph
->edge
[graph
->n_edge
].condition
= 0;
1176 graph
->edge
[graph
->n_edge
].local
= 0;
1177 graph
->edge
[graph
->n_edge
].conditional_validity
= 0;
1178 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1179 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1180 if (data
->type
== isl_edge_validity
)
1181 graph
->edge
[graph
->n_edge
].validity
= 1;
1182 if (data
->type
== isl_edge_coincidence
)
1183 graph
->edge
[graph
->n_edge
].coincidence
= 1;
1184 if (data
->type
== isl_edge_proximity
)
1185 graph
->edge
[graph
->n_edge
].proximity
= 1;
1186 if (data
->type
== isl_edge_condition
) {
1187 graph
->edge
[graph
->n_edge
].condition
= 1;
1188 graph
->edge
[graph
->n_edge
].tagged_condition
=
1189 isl_union_map_from_map(tagged
);
1191 if (data
->type
== isl_edge_conditional_validity
) {
1192 graph
->edge
[graph
->n_edge
].conditional_validity
= 1;
1193 graph
->edge
[graph
->n_edge
].tagged_validity
=
1194 isl_union_map_from_map(tagged
);
1197 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1202 if (edge
== &graph
->edge
[graph
->n_edge
])
1203 return graph_edge_table_add(ctx
, graph
, data
->type
,
1204 &graph
->edge
[graph
->n_edge
++]);
1206 if (merge_edge(data
->type
, edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1209 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1212 /* Check whether there is any dependence from node[j] to node[i]
1213 * or from node[i] to node[j].
1215 static int node_follows_weak(int i
, int j
, void *user
)
1218 struct isl_sched_graph
*graph
= user
;
1220 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1223 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1226 /* Check whether there is a (conditional) validity dependence from node[j]
1227 * to node[i], forcing node[i] to follow node[j].
1229 static int node_follows_strong(int i
, int j
, void *user
)
1231 struct isl_sched_graph
*graph
= user
;
1233 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1236 /* Use Tarjan's algorithm for computing the strongly connected components
1237 * in the dependence graph (only validity edges).
1238 * If weak is set, we consider the graph to be undirected and
1239 * we effectively compute the (weakly) connected components.
1240 * Additionally, we also consider other edges when weak is set.
1242 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
, int weak
)
1245 struct isl_tarjan_graph
*g
= NULL
;
1247 g
= isl_tarjan_graph_init(ctx
, graph
->n
,
1248 weak
? &node_follows_weak
: &node_follows_strong
, graph
);
1257 while (g
->order
[i
] != -1) {
1258 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1266 isl_tarjan_graph_free(g
);
1271 /* Apply Tarjan's algorithm to detect the strongly connected components
1272 * in the dependence graph.
1274 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1276 return detect_ccs(ctx
, graph
, 0);
1279 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1280 * in the dependence graph.
1282 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1284 return detect_ccs(ctx
, graph
, 1);
1287 static int cmp_scc(const void *a
, const void *b
, void *data
)
1289 struct isl_sched_graph
*graph
= data
;
1293 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1296 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1298 static int sort_sccs(struct isl_sched_graph
*graph
)
1300 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1303 /* Given a dependence relation R from "node" to itself,
1304 * construct the set of coefficients of valid constraints for elements
1305 * in that dependence relation.
1306 * In particular, the result contains tuples of coefficients
1307 * c_0, c_n, c_x such that
1309 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1313 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1315 * We choose here to compute the dual of delta R.
1316 * Alternatively, we could have computed the dual of R, resulting
1317 * in a set of tuples c_0, c_n, c_x, c_y, and then
1318 * plugged in (c_0, c_n, c_x, -c_x).
1320 * If "node" has been compressed, then the dependence relation
1321 * is also compressed before the set of coefficients is computed.
1323 static __isl_give isl_basic_set
*intra_coefficients(
1324 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1325 __isl_take isl_map
*map
)
1329 isl_basic_set
*coef
;
1331 if (isl_map_to_basic_set_has(graph
->intra_hmap
, map
))
1332 return isl_map_to_basic_set_get(graph
->intra_hmap
, map
);
1334 key
= isl_map_copy(map
);
1335 if (node
->compressed
) {
1336 map
= isl_map_preimage_domain_multi_aff(map
,
1337 isl_multi_aff_copy(node
->decompress
));
1338 map
= isl_map_preimage_range_multi_aff(map
,
1339 isl_multi_aff_copy(node
->decompress
));
1341 delta
= isl_set_remove_divs(isl_map_deltas(map
));
1342 coef
= isl_set_coefficients(delta
);
1343 graph
->intra_hmap
= isl_map_to_basic_set_set(graph
->intra_hmap
, key
,
1344 isl_basic_set_copy(coef
));
1349 /* Given a dependence relation R, construct the set of coefficients
1350 * of valid constraints for elements in that dependence relation.
1351 * In particular, the result contains tuples of coefficients
1352 * c_0, c_n, c_x, c_y such that
1354 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1356 * If the source or destination nodes of "edge" have been compressed,
1357 * then the dependence relation is also compressed before
1358 * the set of coefficients is computed.
1360 static __isl_give isl_basic_set
*inter_coefficients(
1361 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1362 __isl_take isl_map
*map
)
1366 isl_basic_set
*coef
;
1368 if (isl_map_to_basic_set_has(graph
->inter_hmap
, map
))
1369 return isl_map_to_basic_set_get(graph
->inter_hmap
, map
);
1371 key
= isl_map_copy(map
);
1372 if (edge
->src
->compressed
)
1373 map
= isl_map_preimage_domain_multi_aff(map
,
1374 isl_multi_aff_copy(edge
->src
->decompress
));
1375 if (edge
->dst
->compressed
)
1376 map
= isl_map_preimage_range_multi_aff(map
,
1377 isl_multi_aff_copy(edge
->dst
->decompress
));
1378 set
= isl_map_wrap(isl_map_remove_divs(map
));
1379 coef
= isl_set_coefficients(set
);
1380 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1381 isl_basic_set_copy(coef
));
1386 /* Add constraints to graph->lp that force validity for the given
1387 * dependence from a node i to itself.
1388 * That is, add constraints that enforce
1390 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1391 * = c_i_x (y - x) >= 0
1393 * for each (x,y) in R.
1394 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1395 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1396 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1397 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1399 * Actually, we do not construct constraints for the c_i_x themselves,
1400 * but for the coefficients of c_i_x written as a linear combination
1401 * of the columns in node->cmap.
1403 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1404 struct isl_sched_edge
*edge
)
1407 isl_map
*map
= isl_map_copy(edge
->map
);
1408 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1410 isl_dim_map
*dim_map
;
1411 isl_basic_set
*coef
;
1412 struct isl_sched_node
*node
= edge
->src
;
1414 coef
= intra_coefficients(graph
, node
, map
);
1416 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1418 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1419 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
1423 total
= isl_basic_set_total_dim(graph
->lp
);
1424 dim_map
= isl_dim_map_alloc(ctx
, total
);
1425 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1426 isl_space_dim(dim
, isl_dim_set
), 1,
1428 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1429 isl_space_dim(dim
, isl_dim_set
), 1,
1431 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1432 coef
->n_eq
, coef
->n_ineq
);
1433 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1435 isl_space_free(dim
);
1439 isl_space_free(dim
);
1443 /* Add constraints to graph->lp that force validity for the given
1444 * dependence from node i to node j.
1445 * That is, add constraints that enforce
1447 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1449 * for each (x,y) in R.
1450 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1451 * of valid constraints for R and then plug in
1452 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1453 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1454 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1455 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1457 * Actually, we do not construct constraints for the c_*_x themselves,
1458 * but for the coefficients of c_*_x written as a linear combination
1459 * of the columns in node->cmap.
1461 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1462 struct isl_sched_edge
*edge
)
1465 isl_map
*map
= isl_map_copy(edge
->map
);
1466 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1468 isl_dim_map
*dim_map
;
1469 isl_basic_set
*coef
;
1470 struct isl_sched_node
*src
= edge
->src
;
1471 struct isl_sched_node
*dst
= edge
->dst
;
1473 coef
= inter_coefficients(graph
, edge
, map
);
1475 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1477 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1478 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1479 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1480 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1481 isl_mat_copy(dst
->cmap
));
1485 total
= isl_basic_set_total_dim(graph
->lp
);
1486 dim_map
= isl_dim_map_alloc(ctx
, total
);
1488 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
1489 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
1490 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
1491 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1492 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1494 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1495 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1498 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
1499 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
1500 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
1501 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1502 isl_space_dim(dim
, isl_dim_set
), 1,
1504 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1505 isl_space_dim(dim
, isl_dim_set
), 1,
1508 edge
->start
= graph
->lp
->n_ineq
;
1509 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1510 coef
->n_eq
, coef
->n_ineq
);
1511 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1515 isl_space_free(dim
);
1516 edge
->end
= graph
->lp
->n_ineq
;
1520 isl_space_free(dim
);
1524 /* Add constraints to graph->lp that bound the dependence distance for the given
1525 * dependence from a node i to itself.
1526 * If s = 1, we add the constraint
1528 * c_i_x (y - x) <= m_0 + m_n n
1532 * -c_i_x (y - x) + m_0 + m_n n >= 0
1534 * for each (x,y) in R.
1535 * If s = -1, we add the constraint
1537 * -c_i_x (y - x) <= m_0 + m_n n
1541 * c_i_x (y - x) + m_0 + m_n n >= 0
1543 * for each (x,y) in R.
1544 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1545 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1546 * with each coefficient (except m_0) represented as a pair of non-negative
1549 * Actually, we do not construct constraints for the c_i_x themselves,
1550 * but for the coefficients of c_i_x written as a linear combination
1551 * of the columns in node->cmap.
1554 * If "local" is set, then we add constraints
1556 * c_i_x (y - x) <= 0
1560 * -c_i_x (y - x) <= 0
1562 * instead, forcing the dependence distance to be (less than or) equal to 0.
1563 * That is, we plug in (0, 0, -s * c_i_x),
1564 * Note that dependences marked local are treated as validity constraints
1565 * by add_all_validity_constraints and therefore also have
1566 * their distances bounded by 0 from below.
1568 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
1569 struct isl_sched_edge
*edge
, int s
, int local
)
1573 isl_map
*map
= isl_map_copy(edge
->map
);
1574 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1576 isl_dim_map
*dim_map
;
1577 isl_basic_set
*coef
;
1578 struct isl_sched_node
*node
= edge
->src
;
1580 coef
= intra_coefficients(graph
, node
, map
);
1582 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1584 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1585 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
1589 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
1590 total
= isl_basic_set_total_dim(graph
->lp
);
1591 dim_map
= isl_dim_map_alloc(ctx
, total
);
1594 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1595 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1596 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1598 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1599 isl_space_dim(dim
, isl_dim_set
), 1,
1601 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1602 isl_space_dim(dim
, isl_dim_set
), 1,
1604 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1605 coef
->n_eq
, coef
->n_ineq
);
1606 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1608 isl_space_free(dim
);
1612 isl_space_free(dim
);
1616 /* Add constraints to graph->lp that bound the dependence distance for the given
1617 * dependence from node i to node j.
1618 * If s = 1, we add the constraint
1620 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1625 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1628 * for each (x,y) in R.
1629 * If s = -1, we add the constraint
1631 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1636 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1639 * for each (x,y) in R.
1640 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1641 * of valid constraints for R and then plug in
1642 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1644 * with each coefficient (except m_0, c_j_0 and c_i_0)
1645 * represented as a pair of non-negative coefficients.
1647 * Actually, we do not construct constraints for the c_*_x themselves,
1648 * but for the coefficients of c_*_x written as a linear combination
1649 * of the columns in node->cmap.
1652 * If "local" is set, then we add constraints
1654 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1658 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1660 * instead, forcing the dependence distance to be (less than or) equal to 0.
1661 * That is, we plug in
1662 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1663 * Note that dependences marked local are treated as validity constraints
1664 * by add_all_validity_constraints and therefore also have
1665 * their distances bounded by 0 from below.
1667 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
1668 struct isl_sched_edge
*edge
, int s
, int local
)
1672 isl_map
*map
= isl_map_copy(edge
->map
);
1673 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1675 isl_dim_map
*dim_map
;
1676 isl_basic_set
*coef
;
1677 struct isl_sched_node
*src
= edge
->src
;
1678 struct isl_sched_node
*dst
= edge
->dst
;
1680 coef
= inter_coefficients(graph
, edge
, map
);
1682 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1684 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1685 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1686 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1687 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1688 isl_mat_copy(dst
->cmap
));
1692 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
1693 total
= isl_basic_set_total_dim(graph
->lp
);
1694 dim_map
= isl_dim_map_alloc(ctx
, total
);
1697 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1698 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1699 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1702 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
1703 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
1704 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
1705 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1706 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1708 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1709 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1712 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
1713 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
1714 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
1715 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1716 isl_space_dim(dim
, isl_dim_set
), 1,
1718 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1719 isl_space_dim(dim
, isl_dim_set
), 1,
1722 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1723 coef
->n_eq
, coef
->n_ineq
);
1724 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1726 isl_space_free(dim
);
1730 isl_space_free(dim
);
1734 /* Add all validity constraints to graph->lp.
1736 * An edge that is forced to be local needs to have its dependence
1737 * distances equal to zero. We take care of bounding them by 0 from below
1738 * here. add_all_proximity_constraints takes care of bounding them by 0
1741 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1742 * Otherwise, we ignore them.
1744 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
1745 int use_coincidence
)
1749 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1750 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1753 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1754 if (!edge
->validity
&& !local
)
1756 if (edge
->src
!= edge
->dst
)
1758 if (add_intra_validity_constraints(graph
, edge
) < 0)
1762 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1763 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1766 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1767 if (!edge
->validity
&& !local
)
1769 if (edge
->src
== edge
->dst
)
1771 if (add_inter_validity_constraints(graph
, edge
) < 0)
1778 /* Add constraints to graph->lp that bound the dependence distance
1779 * for all dependence relations.
1780 * If a given proximity dependence is identical to a validity
1781 * dependence, then the dependence distance is already bounded
1782 * from below (by zero), so we only need to bound the distance
1783 * from above. (This includes the case of "local" dependences
1784 * which are treated as validity dependence by add_all_validity_constraints.)
1785 * Otherwise, we need to bound the distance both from above and from below.
1787 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1788 * Otherwise, we ignore them.
1790 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
1791 int use_coincidence
)
1795 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1796 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1799 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1800 if (!edge
->proximity
&& !local
)
1802 if (edge
->src
== edge
->dst
&&
1803 add_intra_proximity_constraints(graph
, edge
, 1, local
) < 0)
1805 if (edge
->src
!= edge
->dst
&&
1806 add_inter_proximity_constraints(graph
, edge
, 1, local
) < 0)
1808 if (edge
->validity
|| local
)
1810 if (edge
->src
== edge
->dst
&&
1811 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
1813 if (edge
->src
!= edge
->dst
&&
1814 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
1821 /* Compute a basis for the rows in the linear part of the schedule
1822 * and extend this basis to a full basis. The remaining rows
1823 * can then be used to force linear independence from the rows
1826 * In particular, given the schedule rows S, we compute
1831 * with H the Hermite normal form of S. That is, all but the
1832 * first rank columns of H are zero and so each row in S is
1833 * a linear combination of the first rank rows of Q.
1834 * The matrix Q is then transposed because we will write the
1835 * coefficients of the next schedule row as a column vector s
1836 * and express this s as a linear combination s = Q c of the
1838 * Similarly, the matrix U is transposed such that we can
1839 * compute the coefficients c = U s from a schedule row s.
1841 static int node_update_cmap(struct isl_sched_node
*node
)
1844 int n_row
= isl_mat_rows(node
->sched
);
1846 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1847 1 + node
->nparam
, node
->nvar
);
1849 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
1850 isl_mat_free(node
->cmap
);
1851 isl_mat_free(node
->cinv
);
1852 node
->cmap
= isl_mat_transpose(Q
);
1853 node
->cinv
= isl_mat_transpose(U
);
1854 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1857 if (!node
->cmap
|| !node
->cinv
|| node
->rank
< 0)
1862 /* How many times should we count the constraints in "edge"?
1864 * If carry is set, then we are counting the number of
1865 * (validity or conditional validity) constraints that will be added
1866 * in setup_carry_lp and we count each edge exactly once.
1868 * Otherwise, we count as follows
1869 * validity -> 1 (>= 0)
1870 * validity+proximity -> 2 (>= 0 and upper bound)
1871 * proximity -> 2 (lower and upper bound)
1872 * local(+any) -> 2 (>= 0 and <= 0)
1874 * If an edge is only marked conditional_validity then it counts
1875 * as zero since it is only checked afterwards.
1877 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1878 * Otherwise, we ignore them.
1880 static int edge_multiplicity(struct isl_sched_edge
*edge
, int carry
,
1881 int use_coincidence
)
1883 if (carry
&& !edge
->validity
&& !edge
->conditional_validity
)
1887 if (edge
->proximity
|| edge
->local
)
1889 if (use_coincidence
&& edge
->coincidence
)
1896 /* Count the number of equality and inequality constraints
1897 * that will be added for the given map.
1899 * "use_coincidence" is set if we should take into account coincidence edges.
1901 static int count_map_constraints(struct isl_sched_graph
*graph
,
1902 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
1903 int *n_eq
, int *n_ineq
, int carry
, int use_coincidence
)
1905 isl_basic_set
*coef
;
1906 int f
= edge_multiplicity(edge
, carry
, use_coincidence
);
1913 if (edge
->src
== edge
->dst
)
1914 coef
= intra_coefficients(graph
, edge
->src
, map
);
1916 coef
= inter_coefficients(graph
, edge
, map
);
1919 *n_eq
+= f
* coef
->n_eq
;
1920 *n_ineq
+= f
* coef
->n_ineq
;
1921 isl_basic_set_free(coef
);
1926 /* Count the number of equality and inequality constraints
1927 * that will be added to the main lp problem.
1928 * We count as follows
1929 * validity -> 1 (>= 0)
1930 * validity+proximity -> 2 (>= 0 and upper bound)
1931 * proximity -> 2 (lower and upper bound)
1932 * local(+any) -> 2 (>= 0 and <= 0)
1934 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1935 * Otherwise, we ignore them.
1937 static int count_constraints(struct isl_sched_graph
*graph
,
1938 int *n_eq
, int *n_ineq
, int use_coincidence
)
1942 *n_eq
= *n_ineq
= 0;
1943 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1944 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1945 isl_map
*map
= isl_map_copy(edge
->map
);
1947 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
1948 0, use_coincidence
) < 0)
1955 /* Count the number of constraints that will be added by
1956 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1959 * In practice, add_bound_coefficient_constraints only adds inequalities.
1961 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
1962 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
1966 if (ctx
->opt
->schedule_max_coefficient
== -1)
1969 for (i
= 0; i
< graph
->n
; ++i
)
1970 *n_ineq
+= 2 * graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
1975 /* Add constraints that bound the values of the variable and parameter
1976 * coefficients of the schedule.
1978 * The maximal value of the coefficients is defined by the option
1979 * 'schedule_max_coefficient'.
1981 static int add_bound_coefficient_constraints(isl_ctx
*ctx
,
1982 struct isl_sched_graph
*graph
)
1985 int max_coefficient
;
1988 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1990 if (max_coefficient
== -1)
1993 total
= isl_basic_set_total_dim(graph
->lp
);
1995 for (i
= 0; i
< graph
->n
; ++i
) {
1996 struct isl_sched_node
*node
= &graph
->node
[i
];
1997 for (j
= 0; j
< 2 * node
->nparam
+ 2 * node
->nvar
; ++j
) {
1999 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2002 dim
= 1 + node
->start
+ 1 + j
;
2003 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2004 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2005 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_coefficient
);
2012 /* Construct an ILP problem for finding schedule coefficients
2013 * that result in non-negative, but small dependence distances
2014 * over all dependences.
2015 * In particular, the dependence distances over proximity edges
2016 * are bounded by m_0 + m_n n and we compute schedule coefficients
2017 * with small values (preferably zero) of m_n and m_0.
2019 * All variables of the ILP are non-negative. The actual coefficients
2020 * may be negative, so each coefficient is represented as the difference
2021 * of two non-negative variables. The negative part always appears
2022 * immediately before the positive part.
2023 * Other than that, the variables have the following order
2025 * - sum of positive and negative parts of m_n coefficients
2027 * - sum of positive and negative parts of all c_n coefficients
2028 * (unconstrained when computing non-parametric schedules)
2029 * - sum of positive and negative parts of all c_x coefficients
2030 * - positive and negative parts of m_n coefficients
2033 * - positive and negative parts of c_i_n (if parametric)
2034 * - positive and negative parts of c_i_x
2036 * The c_i_x are not represented directly, but through the columns of
2037 * node->cmap. That is, the computed values are for variable t_i_x
2038 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2040 * The constraints are those from the edges plus two or three equalities
2041 * to express the sums.
2043 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2044 * Otherwise, we ignore them.
2046 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2047 int use_coincidence
)
2057 int max_constant_term
;
2059 max_constant_term
= ctx
->opt
->schedule_max_constant_term
;
2061 parametric
= ctx
->opt
->schedule_parametric
;
2062 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2064 total
= param_pos
+ 2 * nparam
;
2065 for (i
= 0; i
< graph
->n
; ++i
) {
2066 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2067 if (node_update_cmap(node
) < 0)
2069 node
->start
= total
;
2070 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2073 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2075 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2078 dim
= isl_space_set_alloc(ctx
, 0, total
);
2079 isl_basic_set_free(graph
->lp
);
2080 n_eq
+= 2 + parametric
;
2081 if (max_constant_term
!= -1)
2084 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2086 k
= isl_basic_set_alloc_equality(graph
->lp
);
2089 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2090 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
2091 for (i
= 0; i
< 2 * nparam
; ++i
)
2092 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
2095 k
= isl_basic_set_alloc_equality(graph
->lp
);
2098 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2099 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2100 for (i
= 0; i
< graph
->n
; ++i
) {
2101 int pos
= 1 + graph
->node
[i
].start
+ 1;
2103 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2104 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2108 k
= isl_basic_set_alloc_equality(graph
->lp
);
2111 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2112 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
2113 for (i
= 0; i
< graph
->n
; ++i
) {
2114 struct isl_sched_node
*node
= &graph
->node
[i
];
2115 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2117 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2118 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2121 if (max_constant_term
!= -1)
2122 for (i
= 0; i
< graph
->n
; ++i
) {
2123 struct isl_sched_node
*node
= &graph
->node
[i
];
2124 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2127 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2128 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
2129 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_constant_term
);
2132 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2134 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2136 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2142 /* Analyze the conflicting constraint found by
2143 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2144 * constraint of one of the edges between distinct nodes, living, moreover
2145 * in distinct SCCs, then record the source and sink SCC as this may
2146 * be a good place to cut between SCCs.
2148 static int check_conflict(int con
, void *user
)
2151 struct isl_sched_graph
*graph
= user
;
2153 if (graph
->src_scc
>= 0)
2156 con
-= graph
->lp
->n_eq
;
2158 if (con
>= graph
->lp
->n_ineq
)
2161 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2162 if (!graph
->edge
[i
].validity
)
2164 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2166 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2168 if (graph
->edge
[i
].start
> con
)
2170 if (graph
->edge
[i
].end
<= con
)
2172 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2173 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2179 /* Check whether the next schedule row of the given node needs to be
2180 * non-trivial. Lower-dimensional domains may have some trivial rows,
2181 * but as soon as the number of remaining required non-trivial rows
2182 * is as large as the number or remaining rows to be computed,
2183 * all remaining rows need to be non-trivial.
2185 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2187 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2190 /* Solve the ILP problem constructed in setup_lp.
2191 * For each node such that all the remaining rows of its schedule
2192 * need to be non-trivial, we construct a non-triviality region.
2193 * This region imposes that the next row is independent of previous rows.
2194 * In particular the coefficients c_i_x are represented by t_i_x
2195 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2196 * its first columns span the rows of the previously computed part
2197 * of the schedule. The non-triviality region enforces that at least
2198 * one of the remaining components of t_i_x is non-zero, i.e.,
2199 * that the new schedule row depends on at least one of the remaining
2202 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
2208 for (i
= 0; i
< graph
->n
; ++i
) {
2209 struct isl_sched_node
*node
= &graph
->node
[i
];
2210 int skip
= node
->rank
;
2211 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
2212 if (needs_row(graph
, node
))
2213 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
2215 graph
->region
[i
].len
= 0;
2217 lp
= isl_basic_set_copy(graph
->lp
);
2218 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2219 graph
->region
, &check_conflict
, graph
);
2223 /* Update the schedules of all nodes based on the given solution
2224 * of the LP problem.
2225 * The new row is added to the current band.
2226 * All possibly negative coefficients are encoded as a difference
2227 * of two non-negative variables, so we need to perform the subtraction
2228 * here. Moreover, if use_cmap is set, then the solution does
2229 * not refer to the actual coefficients c_i_x, but instead to variables
2230 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2231 * In this case, we then also need to perform this multiplication
2232 * to obtain the values of c_i_x.
2234 * If coincident is set, then the caller guarantees that the new
2235 * row satisfies the coincidence constraints.
2237 static int update_schedule(struct isl_sched_graph
*graph
,
2238 __isl_take isl_vec
*sol
, int use_cmap
, int coincident
)
2241 isl_vec
*csol
= NULL
;
2246 isl_die(sol
->ctx
, isl_error_internal
,
2247 "no solution found", goto error
);
2248 if (graph
->n_total_row
>= graph
->max_row
)
2249 isl_die(sol
->ctx
, isl_error_internal
,
2250 "too many schedule rows", goto error
);
2252 for (i
= 0; i
< graph
->n
; ++i
) {
2253 struct isl_sched_node
*node
= &graph
->node
[i
];
2254 int pos
= node
->start
;
2255 int row
= isl_mat_rows(node
->sched
);
2258 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
2262 isl_map_free(node
->sched_map
);
2263 node
->sched_map
= NULL
;
2264 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2267 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
2269 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
2270 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
2271 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
2272 sol
->el
[1 + pos
+ 1 + 2 * j
]);
2273 for (j
= 0; j
< node
->nparam
; ++j
)
2274 node
->sched
= isl_mat_set_element(node
->sched
,
2275 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
2276 for (j
= 0; j
< node
->nvar
; ++j
)
2277 isl_int_set(csol
->el
[j
],
2278 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
2280 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
2284 for (j
= 0; j
< node
->nvar
; ++j
)
2285 node
->sched
= isl_mat_set_element(node
->sched
,
2286 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2287 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2288 node
->coincident
[graph
->n_total_row
] = coincident
;
2294 graph
->n_total_row
++;
2303 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2304 * and return this isl_aff.
2306 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
2307 struct isl_sched_node
*node
, int row
)
2315 aff
= isl_aff_zero_on_domain(ls
);
2316 isl_mat_get_element(node
->sched
, row
, 0, &v
);
2317 aff
= isl_aff_set_constant(aff
, v
);
2318 for (j
= 0; j
< node
->nparam
; ++j
) {
2319 isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
);
2320 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
2322 for (j
= 0; j
< node
->nvar
; ++j
) {
2323 isl_mat_get_element(node
->sched
, row
, 1 + node
->nparam
+ j
, &v
);
2324 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
2332 /* Convert node->sched into a multi_aff and return this multi_aff.
2334 * The result is defined over the uncompressed node domain.
2336 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
2337 struct isl_sched_node
*node
)
2341 isl_local_space
*ls
;
2346 nrow
= isl_mat_rows(node
->sched
);
2347 ncol
= isl_mat_cols(node
->sched
) - 1;
2348 if (node
->compressed
)
2349 space
= isl_multi_aff_get_domain_space(node
->decompress
);
2351 space
= isl_space_copy(node
->space
);
2352 ls
= isl_local_space_from_space(isl_space_copy(space
));
2353 space
= isl_space_from_domain(space
);
2354 space
= isl_space_add_dims(space
, isl_dim_out
, nrow
);
2355 ma
= isl_multi_aff_zero(space
);
2357 for (i
= 0; i
< nrow
; ++i
) {
2358 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
2359 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
2362 isl_local_space_free(ls
);
2364 if (node
->compressed
)
2365 ma
= isl_multi_aff_pullback_multi_aff(ma
,
2366 isl_multi_aff_copy(node
->compress
));
2371 /* Convert node->sched into a map and return this map.
2373 * The result is cached in node->sched_map, which needs to be released
2374 * whenever node->sched is updated.
2375 * It is defined over the uncompressed node domain.
2377 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
2379 if (!node
->sched_map
) {
2382 ma
= node_extract_schedule_multi_aff(node
);
2383 node
->sched_map
= isl_map_from_multi_aff(ma
);
2386 return isl_map_copy(node
->sched_map
);
2389 /* Construct a map that can be used to update a dependence relation
2390 * based on the current schedule.
2391 * That is, construct a map expressing that source and sink
2392 * are executed within the same iteration of the current schedule.
2393 * This map can then be intersected with the dependence relation.
2394 * This is not the most efficient way, but this shouldn't be a critical
2397 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
2398 struct isl_sched_node
*dst
)
2400 isl_map
*src_sched
, *dst_sched
;
2402 src_sched
= node_extract_schedule(src
);
2403 dst_sched
= node_extract_schedule(dst
);
2404 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
2407 /* Intersect the domains of the nested relations in domain and range
2408 * of "umap" with "map".
2410 static __isl_give isl_union_map
*intersect_domains(
2411 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
2413 isl_union_set
*uset
;
2415 umap
= isl_union_map_zip(umap
);
2416 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
2417 umap
= isl_union_map_intersect_domain(umap
, uset
);
2418 umap
= isl_union_map_zip(umap
);
2422 /* Update the dependence relation of the given edge based
2423 * on the current schedule.
2424 * If the dependence is carried completely by the current schedule, then
2425 * it is removed from the edge_tables. It is kept in the list of edges
2426 * as otherwise all edge_tables would have to be recomputed.
2428 static int update_edge(struct isl_sched_graph
*graph
,
2429 struct isl_sched_edge
*edge
)
2433 id
= specializer(edge
->src
, edge
->dst
);
2434 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
2438 if (edge
->tagged_condition
) {
2439 edge
->tagged_condition
=
2440 intersect_domains(edge
->tagged_condition
, id
);
2441 if (!edge
->tagged_condition
)
2444 if (edge
->tagged_validity
) {
2445 edge
->tagged_validity
=
2446 intersect_domains(edge
->tagged_validity
, id
);
2447 if (!edge
->tagged_validity
)
2452 if (isl_map_plain_is_empty(edge
->map
))
2453 graph_remove_edge(graph
, edge
);
2461 /* Update the dependence relations of all edges based on the current schedule.
2463 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2467 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
2468 if (update_edge(graph
, &graph
->edge
[i
]) < 0)
2475 static void next_band(struct isl_sched_graph
*graph
)
2477 graph
->band_start
= graph
->n_total_row
;
2481 /* Topologically sort statements mapped to the same schedule iteration
2482 * and add a row to the schedule corresponding to this order.
2484 static int sort_statements(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2491 if (update_edges(ctx
, graph
) < 0)
2494 if (graph
->n_edge
== 0)
2497 if (detect_sccs(ctx
, graph
) < 0)
2500 if (graph
->n_total_row
>= graph
->max_row
)
2501 isl_die(ctx
, isl_error_internal
,
2502 "too many schedule rows", return -1);
2504 for (i
= 0; i
< graph
->n
; ++i
) {
2505 struct isl_sched_node
*node
= &graph
->node
[i
];
2506 int row
= isl_mat_rows(node
->sched
);
2507 int cols
= isl_mat_cols(node
->sched
);
2509 isl_map_free(node
->sched_map
);
2510 node
->sched_map
= NULL
;
2511 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2514 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2516 for (j
= 1; j
< cols
; ++j
)
2517 node
->sched
= isl_mat_set_element_si(node
->sched
,
2519 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2522 graph
->n_total_row
++;
2528 /* Construct an isl_schedule based on the computed schedule stored
2529 * in graph and with parameters specified by dim.
2531 static __isl_give isl_schedule
*extract_schedule(struct isl_sched_graph
*graph
,
2532 __isl_take isl_space
*dim
)
2536 isl_schedule
*sched
= NULL
;
2541 ctx
= isl_space_get_ctx(dim
);
2542 sched
= isl_calloc(ctx
, struct isl_schedule
,
2543 sizeof(struct isl_schedule
) +
2545 sizeof(struct isl_schedule_domain_node
));
2550 sched
->leaf
.ctx
= ctx
;
2552 sched
->n
= graph
->n
;
2553 sched
->n_band
= graph
->n_band
;
2554 sched
->n_total_row
= graph
->n_total_row
;
2556 for (i
= 0; i
< sched
->n
; ++i
) {
2558 int *band_end
, *band_id
, *coincident
;
2560 sched
->node
[i
].sched
=
2561 node_extract_schedule_multi_aff(&graph
->node
[i
]);
2562 if (!sched
->node
[i
].sched
)
2565 sched
->node
[i
].n_band
= graph
->n_band
;
2566 if (graph
->n_band
== 0)
2569 band_end
= isl_alloc_array(ctx
, int, graph
->n_band
);
2570 band_id
= isl_alloc_array(ctx
, int, graph
->n_band
);
2571 coincident
= isl_alloc_array(ctx
, int, graph
->n_total_row
);
2572 sched
->node
[i
].band_end
= band_end
;
2573 sched
->node
[i
].band_id
= band_id
;
2574 sched
->node
[i
].coincident
= coincident
;
2575 if (!band_end
|| !band_id
|| !coincident
)
2578 for (r
= 0; r
< graph
->n_total_row
; ++r
)
2579 coincident
[r
] = graph
->node
[i
].coincident
[r
];
2580 for (r
= b
= 0; r
< graph
->n_total_row
; ++r
) {
2581 if (graph
->node
[i
].band
[r
] == b
)
2584 if (graph
->node
[i
].band
[r
] == -1)
2587 if (r
== graph
->n_total_row
)
2589 sched
->node
[i
].n_band
= b
;
2590 for (--b
; b
>= 0; --b
)
2591 band_id
[b
] = graph
->node
[i
].band_id
[b
];
2598 isl_space_free(dim
);
2599 isl_schedule_free(sched
);
2603 /* Copy nodes that satisfy node_pred from the src dependence graph
2604 * to the dst dependence graph.
2606 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
2607 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
2612 for (i
= 0; i
< src
->n
; ++i
) {
2615 if (!node_pred(&src
->node
[i
], data
))
2619 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
2620 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
2621 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
2622 dst
->node
[j
].compress
=
2623 isl_multi_aff_copy(src
->node
[i
].compress
);
2624 dst
->node
[j
].decompress
=
2625 isl_multi_aff_copy(src
->node
[i
].decompress
);
2626 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
2627 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
2628 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
2629 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
2630 dst
->node
[j
].band
= src
->node
[i
].band
;
2631 dst
->node
[j
].band_id
= src
->node
[i
].band_id
;
2632 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
2635 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
2637 if (dst
->node
[j
].compressed
&&
2638 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
2639 !dst
->node
[j
].decompress
))
2646 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2647 * to the dst dependence graph.
2648 * If the source or destination node of the edge is not in the destination
2649 * graph, then it must be a backward proximity edge and it should simply
2652 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
2653 struct isl_sched_graph
*src
,
2654 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
2657 enum isl_edge_type t
;
2660 for (i
= 0; i
< src
->n_edge
; ++i
) {
2661 struct isl_sched_edge
*edge
= &src
->edge
[i
];
2663 isl_union_map
*tagged_condition
;
2664 isl_union_map
*tagged_validity
;
2665 struct isl_sched_node
*dst_src
, *dst_dst
;
2667 if (!edge_pred(edge
, data
))
2670 if (isl_map_plain_is_empty(edge
->map
))
2673 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
2674 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
2675 if (!dst_src
|| !dst_dst
) {
2676 if (edge
->validity
|| edge
->conditional_validity
)
2677 isl_die(ctx
, isl_error_internal
,
2678 "backward (conditional) validity edge",
2683 map
= isl_map_copy(edge
->map
);
2684 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
2685 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
2687 dst
->edge
[dst
->n_edge
].src
= dst_src
;
2688 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
2689 dst
->edge
[dst
->n_edge
].map
= map
;
2690 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
2691 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
2692 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
2693 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
2694 dst
->edge
[dst
->n_edge
].coincidence
= edge
->coincidence
;
2695 dst
->edge
[dst
->n_edge
].condition
= edge
->condition
;
2696 dst
->edge
[dst
->n_edge
].conditional_validity
=
2697 edge
->conditional_validity
;
2700 if (edge
->tagged_condition
&& !tagged_condition
)
2702 if (edge
->tagged_validity
&& !tagged_validity
)
2705 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
2707 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
2709 if (graph_edge_table_add(ctx
, dst
, t
,
2710 &dst
->edge
[dst
->n_edge
- 1]) < 0)
2718 /* Given a "src" dependence graph that contains the nodes from "dst"
2719 * that satisfy node_pred, copy the schedule computed in "src"
2720 * for those nodes back to "dst".
2722 static int copy_schedule(struct isl_sched_graph
*dst
,
2723 struct isl_sched_graph
*src
,
2724 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
2729 for (i
= 0; i
< dst
->n
; ++i
) {
2730 if (!node_pred(&dst
->node
[i
], data
))
2732 isl_mat_free(dst
->node
[i
].sched
);
2733 isl_map_free(dst
->node
[i
].sched_map
);
2734 dst
->node
[i
].sched
= isl_mat_copy(src
->node
[src
->n
].sched
);
2735 dst
->node
[i
].sched_map
=
2736 isl_map_copy(src
->node
[src
->n
].sched_map
);
2740 dst
->max_row
= src
->max_row
;
2741 dst
->n_total_row
= src
->n_total_row
;
2742 dst
->n_band
= src
->n_band
;
2747 /* Compute the maximal number of variables over all nodes.
2748 * This is the maximal number of linearly independent schedule
2749 * rows that we need to compute.
2750 * Just in case we end up in a part of the dependence graph
2751 * with only lower-dimensional domains, we make sure we will
2752 * compute the required amount of extra linearly independent rows.
2754 static int compute_maxvar(struct isl_sched_graph
*graph
)
2759 for (i
= 0; i
< graph
->n
; ++i
) {
2760 struct isl_sched_node
*node
= &graph
->node
[i
];
2763 if (node_update_cmap(node
) < 0)
2765 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
2766 if (nvar
> graph
->maxvar
)
2767 graph
->maxvar
= nvar
;
2773 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
2774 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
2776 /* Compute a schedule for a subgraph of "graph". In particular, for
2777 * the graph composed of nodes that satisfy node_pred and edges that
2778 * that satisfy edge_pred. The caller should precompute the number
2779 * of nodes and edges that satisfy these predicates and pass them along
2780 * as "n" and "n_edge".
2781 * If the subgraph is known to consist of a single component, then wcc should
2782 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2783 * Otherwise, we call compute_schedule, which will check whether the subgraph
2786 static int compute_sub_schedule(isl_ctx
*ctx
,
2787 struct isl_sched_graph
*graph
, int n
, int n_edge
,
2788 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
2789 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
2792 struct isl_sched_graph split
= { 0 };
2795 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
2797 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
2799 if (graph_init_table(ctx
, &split
) < 0)
2801 for (t
= 0; t
<= isl_edge_last
; ++t
)
2802 split
.max_edge
[t
] = graph
->max_edge
[t
];
2803 if (graph_init_edge_tables(ctx
, &split
) < 0)
2805 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
2807 split
.n_row
= graph
->n_row
;
2808 split
.max_row
= graph
->max_row
;
2809 split
.n_total_row
= graph
->n_total_row
;
2810 split
.n_band
= graph
->n_band
;
2811 split
.band_start
= graph
->band_start
;
2813 if (wcc
&& compute_schedule_wcc(ctx
, &split
) < 0)
2815 if (!wcc
&& compute_schedule(ctx
, &split
) < 0)
2818 copy_schedule(graph
, &split
, node_pred
, data
);
2820 graph_free(ctx
, &split
);
2823 graph_free(ctx
, &split
);
2827 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
2829 return node
->scc
== scc
;
2832 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
2834 return node
->scc
<= scc
;
2837 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
2839 return node
->scc
>= scc
;
2842 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
2844 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
2847 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
2849 return edge
->dst
->scc
<= scc
;
2852 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
2854 return edge
->src
->scc
>= scc
;
2857 /* Pad the schedules of all nodes with zero rows such that in the end
2858 * they all have graph->n_total_row rows.
2859 * The extra rows don't belong to any band, so they get assigned band number -1.
2861 static int pad_schedule(struct isl_sched_graph
*graph
)
2865 for (i
= 0; i
< graph
->n
; ++i
) {
2866 struct isl_sched_node
*node
= &graph
->node
[i
];
2867 int row
= isl_mat_rows(node
->sched
);
2868 if (graph
->n_total_row
> row
) {
2869 isl_map_free(node
->sched_map
);
2870 node
->sched_map
= NULL
;
2872 node
->sched
= isl_mat_add_zero_rows(node
->sched
,
2873 graph
->n_total_row
- row
);
2876 for (j
= row
; j
< graph
->n_total_row
; ++j
)
2883 /* Reset the current band by dropping all its schedule rows.
2885 static int reset_band(struct isl_sched_graph
*graph
)
2890 drop
= graph
->n_total_row
- graph
->band_start
;
2891 graph
->n_total_row
-= drop
;
2892 graph
->n_row
-= drop
;
2894 for (i
= 0; i
< graph
->n
; ++i
) {
2895 struct isl_sched_node
*node
= &graph
->node
[i
];
2897 isl_map_free(node
->sched_map
);
2898 node
->sched_map
= NULL
;
2900 node
->sched
= isl_mat_drop_rows(node
->sched
,
2901 graph
->band_start
, drop
);
2910 /* Split the current graph into two parts and compute a schedule for each
2911 * part individually. In particular, one part consists of all SCCs up
2912 * to and including graph->src_scc, while the other part contains the other
2915 * The split is enforced in the schedule by constant rows with two different
2916 * values (0 and 1). These constant rows replace the previously computed rows
2917 * in the current band.
2918 * It would be possible to reuse them as the first rows in the next
2919 * band, but recomputing them may result in better rows as we are looking
2920 * at a smaller part of the dependence graph.
2922 * Since we do not enforce coincidence, we conservatively mark the
2923 * splitting row as not coincident.
2925 * The band_id of the second group is set to n, where n is the number
2926 * of nodes in the first group. This ensures that the band_ids over
2927 * the two groups remain disjoint, even if either or both of the two
2928 * groups contain independent components.
2930 static int compute_split_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2932 int i
, j
, n
, e1
, e2
;
2933 int n_total_row
, orig_total_row
;
2934 int n_band
, orig_band
;
2936 if (graph
->n_total_row
>= graph
->max_row
)
2937 isl_die(ctx
, isl_error_internal
,
2938 "too many schedule rows", return -1);
2940 if (reset_band(graph
) < 0)
2944 for (i
= 0; i
< graph
->n
; ++i
) {
2945 struct isl_sched_node
*node
= &graph
->node
[i
];
2946 int row
= isl_mat_rows(node
->sched
);
2947 int cols
= isl_mat_cols(node
->sched
);
2948 int before
= node
->scc
<= graph
->src_scc
;
2953 isl_map_free(node
->sched_map
);
2954 node
->sched_map
= NULL
;
2955 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2958 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2960 for (j
= 1; j
< cols
; ++j
)
2961 node
->sched
= isl_mat_set_element_si(node
->sched
,
2963 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2964 node
->coincident
[graph
->n_total_row
] = 0;
2968 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2969 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
2971 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
2975 graph
->n_total_row
++;
2978 for (i
= 0; i
< graph
->n
; ++i
) {
2979 struct isl_sched_node
*node
= &graph
->node
[i
];
2980 if (node
->scc
> graph
->src_scc
)
2981 node
->band_id
[graph
->n_band
] = n
;
2984 orig_total_row
= graph
->n_total_row
;
2985 orig_band
= graph
->n_band
;
2986 if (compute_sub_schedule(ctx
, graph
, n
, e1
,
2987 &node_scc_at_most
, &edge_dst_scc_at_most
,
2988 graph
->src_scc
, 0) < 0)
2990 n_total_row
= graph
->n_total_row
;
2991 graph
->n_total_row
= orig_total_row
;
2992 n_band
= graph
->n_band
;
2993 graph
->n_band
= orig_band
;
2994 if (compute_sub_schedule(ctx
, graph
, graph
->n
- n
, e2
,
2995 &node_scc_at_least
, &edge_src_scc_at_least
,
2996 graph
->src_scc
+ 1, 0) < 0)
2998 if (n_total_row
> graph
->n_total_row
)
2999 graph
->n_total_row
= n_total_row
;
3000 if (n_band
> graph
->n_band
)
3001 graph
->n_band
= n_band
;
3003 return pad_schedule(graph
);
3006 /* Compute the next band of the schedule after updating the dependence
3007 * relations based on the the current schedule.
3009 static int compute_next_band(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3011 if (update_edges(ctx
, graph
) < 0)
3015 return compute_schedule(ctx
, graph
);
3018 /* Add constraints to graph->lp that force the dependence "map" (which
3019 * is part of the dependence relation of "edge")
3020 * to be respected and attempt to carry it, where the edge is one from
3021 * a node j to itself. "pos" is the sequence number of the given map.
3022 * That is, add constraints that enforce
3024 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3025 * = c_j_x (y - x) >= e_i
3027 * for each (x,y) in R.
3028 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3029 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3030 * with each coefficient in c_j_x represented as a pair of non-negative
3033 static int add_intra_constraints(struct isl_sched_graph
*graph
,
3034 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3037 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3039 isl_dim_map
*dim_map
;
3040 isl_basic_set
*coef
;
3041 struct isl_sched_node
*node
= edge
->src
;
3043 coef
= intra_coefficients(graph
, node
, map
);
3047 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
3049 total
= isl_basic_set_total_dim(graph
->lp
);
3050 dim_map
= isl_dim_map_alloc(ctx
, total
);
3051 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3052 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
3053 isl_space_dim(dim
, isl_dim_set
), 1,
3055 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
3056 isl_space_dim(dim
, isl_dim_set
), 1,
3058 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3059 coef
->n_eq
, coef
->n_ineq
);
3060 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3062 isl_space_free(dim
);
3067 /* Add constraints to graph->lp that force the dependence "map" (which
3068 * is part of the dependence relation of "edge")
3069 * to be respected and attempt to carry it, where the edge is one from
3070 * node j to node k. "pos" is the sequence number of the given map.
3071 * That is, add constraints that enforce
3073 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3075 * for each (x,y) in R.
3076 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3077 * of valid constraints for R and then plug in
3078 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3079 * with each coefficient (except e_i, c_k_0 and c_j_0)
3080 * represented as a pair of non-negative coefficients.
3082 static int add_inter_constraints(struct isl_sched_graph
*graph
,
3083 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3086 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3088 isl_dim_map
*dim_map
;
3089 isl_basic_set
*coef
;
3090 struct isl_sched_node
*src
= edge
->src
;
3091 struct isl_sched_node
*dst
= edge
->dst
;
3093 coef
= inter_coefficients(graph
, edge
, map
);
3097 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
3099 total
= isl_basic_set_total_dim(graph
->lp
);
3100 dim_map
= isl_dim_map_alloc(ctx
, total
);
3102 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3104 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
3105 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
3106 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
3107 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
3108 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
3110 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
3111 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
3114 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
3115 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
3116 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
3117 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
3118 isl_space_dim(dim
, isl_dim_set
), 1,
3120 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
3121 isl_space_dim(dim
, isl_dim_set
), 1,
3124 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3125 coef
->n_eq
, coef
->n_ineq
);
3126 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3128 isl_space_free(dim
);
3133 /* Add constraints to graph->lp that force all (conditional) validity
3134 * dependences to be respected and attempt to carry them.
3136 static int add_all_constraints(struct isl_sched_graph
*graph
)
3142 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3143 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3145 if (!edge
->validity
&& !edge
->conditional_validity
)
3148 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3149 isl_basic_map
*bmap
;
3152 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3153 map
= isl_map_from_basic_map(bmap
);
3155 if (edge
->src
== edge
->dst
&&
3156 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
3158 if (edge
->src
!= edge
->dst
&&
3159 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
3168 /* Count the number of equality and inequality constraints
3169 * that will be added to the carry_lp problem.
3170 * We count each edge exactly once.
3172 static int count_all_constraints(struct isl_sched_graph
*graph
,
3173 int *n_eq
, int *n_ineq
)
3177 *n_eq
= *n_ineq
= 0;
3178 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3179 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3180 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3181 isl_basic_map
*bmap
;
3184 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3185 map
= isl_map_from_basic_map(bmap
);
3187 if (count_map_constraints(graph
, edge
, map
,
3188 n_eq
, n_ineq
, 1, 0) < 0)
3196 /* Construct an LP problem for finding schedule coefficients
3197 * such that the schedule carries as many dependences as possible.
3198 * In particular, for each dependence i, we bound the dependence distance
3199 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3200 * of all e_i's. Dependence with e_i = 0 in the solution are simply
3201 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3202 * Note that if the dependence relation is a union of basic maps,
3203 * then we have to consider each basic map individually as it may only
3204 * be possible to carry the dependences expressed by some of those
3205 * basic maps and not all off them.
3206 * Below, we consider each of those basic maps as a separate "edge".
3208 * All variables of the LP are non-negative. The actual coefficients
3209 * may be negative, so each coefficient is represented as the difference
3210 * of two non-negative variables. The negative part always appears
3211 * immediately before the positive part.
3212 * Other than that, the variables have the following order
3214 * - sum of (1 - e_i) over all edges
3215 * - sum of positive and negative parts of all c_n coefficients
3216 * (unconstrained when computing non-parametric schedules)
3217 * - sum of positive and negative parts of all c_x coefficients
3222 * - positive and negative parts of c_i_n (if parametric)
3223 * - positive and negative parts of c_i_x
3225 * The constraints are those from the (validity) edges plus three equalities
3226 * to express the sums and n_edge inequalities to express e_i <= 1.
3228 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3238 for (i
= 0; i
< graph
->n_edge
; ++i
)
3239 n_edge
+= graph
->edge
[i
].map
->n
;
3242 for (i
= 0; i
< graph
->n
; ++i
) {
3243 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
3244 node
->start
= total
;
3245 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
3248 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
3250 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
3253 dim
= isl_space_set_alloc(ctx
, 0, total
);
3254 isl_basic_set_free(graph
->lp
);
3257 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
3258 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
3260 k
= isl_basic_set_alloc_equality(graph
->lp
);
3263 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3264 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
3265 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
3266 for (i
= 0; i
< n_edge
; ++i
)
3267 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
3269 k
= isl_basic_set_alloc_equality(graph
->lp
);
3272 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3273 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
3274 for (i
= 0; i
< graph
->n
; ++i
) {
3275 int pos
= 1 + graph
->node
[i
].start
+ 1;
3277 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
3278 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
3281 k
= isl_basic_set_alloc_equality(graph
->lp
);
3284 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3285 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
3286 for (i
= 0; i
< graph
->n
; ++i
) {
3287 struct isl_sched_node
*node
= &graph
->node
[i
];
3288 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
3290 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
3291 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
3294 for (i
= 0; i
< n_edge
; ++i
) {
3295 k
= isl_basic_set_alloc_inequality(graph
->lp
);
3298 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
3299 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
3300 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
3303 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
3305 if (add_all_constraints(graph
) < 0)
3311 static int compute_component_schedule(isl_ctx
*ctx
,
3312 struct isl_sched_graph
*graph
, int wcc
);
3314 /* Comparison function for sorting the statements based on
3315 * the corresponding value in "r".
3317 static int smaller_value(const void *a
, const void *b
, void *data
)
3323 return isl_int_cmp(r
->el
[*i1
], r
->el
[*i2
]);
3326 /* If the schedule_split_scaled option is set and if the linear
3327 * parts of the scheduling rows for all nodes in the graphs have
3328 * a non-trivial common divisor, then split off the remainder of the
3329 * constant term modulo this common divisor from the linear part.
3330 * Otherwise, continue with the construction of the schedule.
3332 * If a non-trivial common divisor is found, then
3333 * the linear part is reduced and the remainder is enforced
3334 * by a piecewise constant schedule based on the order of these remainders.
3335 * In particular, we assign an scc index based on the remainder and
3336 * then rely on compute_component_schedule to insert the schedule row and
3337 * to continue the schedule construction on each part.
3339 static int split_scaled(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3348 if (!ctx
->opt
->schedule_split_scaled
)
3349 return compute_next_band(ctx
, graph
);
3351 return compute_next_band(ctx
, graph
);
3354 isl_int_init(gcd_i
);
3356 isl_int_set_si(gcd
, 0);
3358 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
3360 for (i
= 0; i
< graph
->n
; ++i
) {
3361 struct isl_sched_node
*node
= &graph
->node
[i
];
3362 int cols
= isl_mat_cols(node
->sched
);
3364 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
3365 isl_int_gcd(gcd
, gcd
, gcd_i
);
3368 isl_int_clear(gcd_i
);
3370 if (isl_int_cmp_si(gcd
, 1) <= 0) {
3372 return compute_next_band(ctx
, graph
);
3375 r
= isl_vec_alloc(ctx
, graph
->n
);
3376 order
= isl_calloc_array(ctx
, int, graph
->n
);
3380 for (i
= 0; i
< graph
->n
; ++i
) {
3381 struct isl_sched_node
*node
= &graph
->node
[i
];
3384 isl_int_fdiv_r(r
->el
[i
], node
->sched
->row
[row
][0], gcd
);
3385 isl_int_fdiv_q(node
->sched
->row
[row
][0],
3386 node
->sched
->row
[row
][0], gcd
);
3387 isl_int_mul(node
->sched
->row
[row
][0],
3388 node
->sched
->row
[row
][0], gcd
);
3389 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
3394 if (isl_sort(order
, graph
->n
, sizeof(order
[0]), &smaller_value
, r
) < 0)
3398 for (i
= 0; i
< graph
->n
; ++i
) {
3399 if (i
> 0 && isl_int_ne(r
->el
[order
[i
- 1]], r
->el
[order
[i
]]))
3401 graph
->node
[order
[i
]].scc
= scc
;
3410 if (update_edges(ctx
, graph
) < 0)
3414 return compute_component_schedule(ctx
, graph
, 0);
3420 /* Is the schedule row "sol" trivial on node "node"?
3421 * That is, is the solution zero on the dimensions orthogonal to
3422 * the previously found solutions?
3423 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3425 * Each coefficient is represented as the difference between
3426 * two non-negative values in "sol". "sol" has been computed
3427 * in terms of the original iterators (i.e., without use of cmap).
3428 * We construct the schedule row s and write it as a linear
3429 * combination of (linear combinations of) previously computed schedule rows.
3430 * s = Q c or c = U s.
3431 * If the final entries of c are all zero, then the solution is trivial.
3433 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
3443 if (node
->nvar
== node
->rank
)
3446 ctx
= isl_vec_get_ctx(sol
);
3447 node_sol
= isl_vec_alloc(ctx
, node
->nvar
);
3451 pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
3453 for (i
= 0; i
< node
->nvar
; ++i
)
3454 isl_int_sub(node_sol
->el
[i
],
3455 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
3457 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->cinv
), node_sol
);
3462 trivial
= isl_seq_first_non_zero(node_sol
->el
+ node
->rank
,
3463 node
->nvar
- node
->rank
) == -1;
3465 isl_vec_free(node_sol
);
3470 /* Is the schedule row "sol" trivial on any node where it should
3472 * "sol" has been computed in terms of the original iterators
3473 * (i.e., without use of cmap).
3474 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3476 static int is_any_trivial(struct isl_sched_graph
*graph
,
3477 __isl_keep isl_vec
*sol
)
3481 for (i
= 0; i
< graph
->n
; ++i
) {
3482 struct isl_sched_node
*node
= &graph
->node
[i
];
3485 if (!needs_row(graph
, node
))
3487 trivial
= is_trivial(node
, sol
);
3488 if (trivial
< 0 || trivial
)
3495 /* Construct a schedule row for each node such that as many dependences
3496 * as possible are carried and then continue with the next band.
3498 * If the computed schedule row turns out to be trivial on one or
3499 * more nodes where it should not be trivial, then we throw it away
3500 * and try again on each component separately.
3502 * If there is only one component, then we accept the schedule row anyway,
3503 * but we do not consider it as a complete row and therefore do not
3504 * increment graph->n_row. Note that the ranks of the nodes that
3505 * do get a non-trivial schedule part will get updated regardless and
3506 * graph->maxvar is computed based on these ranks. The test for
3507 * whether more schedule rows are required in compute_schedule_wcc
3508 * is therefore not affected.
3510 * Continue with the construction of the schedule in split_scaled
3511 * after optionally checking for non-trivial common divisors.
3513 static int carry_dependences(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3522 for (i
= 0; i
< graph
->n_edge
; ++i
)
3523 n_edge
+= graph
->edge
[i
].map
->n
;
3525 if (setup_carry_lp(ctx
, graph
) < 0)
3528 lp
= isl_basic_set_copy(graph
->lp
);
3529 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
3533 if (sol
->size
== 0) {
3535 isl_die(ctx
, isl_error_internal
,
3536 "error in schedule construction", return -1);
3539 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
3540 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
3542 isl_die(ctx
, isl_error_unknown
,
3543 "unable to carry dependences", return -1);
3546 trivial
= is_any_trivial(graph
, sol
);
3548 sol
= isl_vec_free(sol
);
3549 } else if (trivial
&& graph
->scc
> 1) {
3551 return compute_component_schedule(ctx
, graph
, 1);
3554 if (update_schedule(graph
, sol
, 0, 0) < 0)
3559 return split_scaled(ctx
, graph
);
3562 /* Are there any (non-empty) (conditional) validity edges in the graph?
3564 static int has_validity_edges(struct isl_sched_graph
*graph
)
3568 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3571 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
3576 if (graph
->edge
[i
].validity
||
3577 graph
->edge
[i
].conditional_validity
)
3584 /* Should we apply a Feautrier step?
3585 * That is, did the user request the Feautrier algorithm and are
3586 * there any validity dependences (left)?
3588 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3590 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
3593 return has_validity_edges(graph
);
3596 /* Compute a schedule for a connected dependence graph using Feautrier's
3597 * multi-dimensional scheduling algorithm.
3598 * The original algorithm is described in [1].
3599 * The main idea is to minimize the number of scheduling dimensions, by
3600 * trying to satisfy as many dependences as possible per scheduling dimension.
3602 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3603 * Problem, Part II: Multi-Dimensional Time.
3604 * In Intl. Journal of Parallel Programming, 1992.
3606 static int compute_schedule_wcc_feautrier(isl_ctx
*ctx
,
3607 struct isl_sched_graph
*graph
)
3609 return carry_dependences(ctx
, graph
);
3612 /* Turn off the "local" bit on all (condition) edges.
3614 static void clear_local_edges(struct isl_sched_graph
*graph
)
3618 for (i
= 0; i
< graph
->n_edge
; ++i
)
3619 if (graph
->edge
[i
].condition
)
3620 graph
->edge
[i
].local
= 0;
3623 /* Does "graph" have both condition and conditional validity edges?
3625 static int need_condition_check(struct isl_sched_graph
*graph
)
3628 int any_condition
= 0;
3629 int any_conditional_validity
= 0;
3631 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3632 if (graph
->edge
[i
].condition
)
3634 if (graph
->edge
[i
].conditional_validity
)
3635 any_conditional_validity
= 1;
3638 return any_condition
&& any_conditional_validity
;
3641 /* Does "graph" contain any coincidence edge?
3643 static int has_any_coincidence(struct isl_sched_graph
*graph
)
3647 for (i
= 0; i
< graph
->n_edge
; ++i
)
3648 if (graph
->edge
[i
].coincidence
)
3654 /* Extract the final schedule row as a map with the iteration domain
3655 * of "node" as domain.
3657 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
3659 isl_local_space
*ls
;
3663 row
= isl_mat_rows(node
->sched
) - 1;
3664 ls
= isl_local_space_from_space(isl_space_copy(node
->space
));
3665 aff
= extract_schedule_row(ls
, node
, row
);
3666 return isl_map_from_aff(aff
);
3669 /* Is the conditional validity dependence in the edge with index "edge_index"
3670 * violated by the latest (i.e., final) row of the schedule?
3671 * That is, is i scheduled after j
3672 * for any conditional validity dependence i -> j?
3674 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
3676 isl_map
*src_sched
, *dst_sched
, *map
;
3677 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
3680 src_sched
= final_row(edge
->src
);
3681 dst_sched
= final_row(edge
->dst
);
3682 map
= isl_map_copy(edge
->map
);
3683 map
= isl_map_apply_domain(map
, src_sched
);
3684 map
= isl_map_apply_range(map
, dst_sched
);
3685 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
3686 empty
= isl_map_is_empty(map
);
3695 /* Does the domain of "umap" intersect "uset"?
3697 static int domain_intersects(__isl_keep isl_union_map
*umap
,
3698 __isl_keep isl_union_set
*uset
)
3702 umap
= isl_union_map_copy(umap
);
3703 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
3704 empty
= isl_union_map_is_empty(umap
);
3705 isl_union_map_free(umap
);
3707 return empty
< 0 ? -1 : !empty
;
3710 /* Does the range of "umap" intersect "uset"?
3712 static int range_intersects(__isl_keep isl_union_map
*umap
,
3713 __isl_keep isl_union_set
*uset
)
3717 umap
= isl_union_map_copy(umap
);
3718 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
3719 empty
= isl_union_map_is_empty(umap
);
3720 isl_union_map_free(umap
);
3722 return empty
< 0 ? -1 : !empty
;
3725 /* Are the condition dependences of "edge" local with respect to
3726 * the current schedule?
3728 * That is, are domain and range of the condition dependences mapped
3729 * to the same point?
3731 * In other words, is the condition false?
3733 static int is_condition_false(struct isl_sched_edge
*edge
)
3735 isl_union_map
*umap
;
3736 isl_map
*map
, *sched
, *test
;
3739 umap
= isl_union_map_copy(edge
->tagged_condition
);
3740 umap
= isl_union_map_zip(umap
);
3741 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
3742 map
= isl_map_from_union_map(umap
);
3744 sched
= node_extract_schedule(edge
->src
);
3745 map
= isl_map_apply_domain(map
, sched
);
3746 sched
= node_extract_schedule(edge
->dst
);
3747 map
= isl_map_apply_range(map
, sched
);
3749 test
= isl_map_identity(isl_map_get_space(map
));
3750 local
= isl_map_is_subset(map
, test
);
3757 /* Does "graph" have any satisfied condition edges that
3758 * are adjacent to the conditional validity constraint with
3759 * domain "conditional_source" and range "conditional_sink"?
3761 * A satisfied condition is one that is not local.
3762 * If a condition was forced to be local already (i.e., marked as local)
3763 * then there is no need to check if it is in fact local.
3765 * Additionally, mark all adjacent condition edges found as local.
3767 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
3768 __isl_keep isl_union_set
*conditional_source
,
3769 __isl_keep isl_union_set
*conditional_sink
)
3774 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3775 int adjacent
, local
;
3776 isl_union_map
*condition
;
3778 if (!graph
->edge
[i
].condition
)
3780 if (graph
->edge
[i
].local
)
3783 condition
= graph
->edge
[i
].tagged_condition
;
3784 adjacent
= domain_intersects(condition
, conditional_sink
);
3785 if (adjacent
>= 0 && !adjacent
)
3786 adjacent
= range_intersects(condition
,
3787 conditional_source
);
3793 graph
->edge
[i
].local
= 1;
3795 local
= is_condition_false(&graph
->edge
[i
]);
3805 /* Are there any violated conditional validity dependences with
3806 * adjacent condition dependences that are not local with respect
3807 * to the current schedule?
3808 * That is, is the conditional validity constraint violated?
3810 * Additionally, mark all those adjacent condition dependences as local.
3811 * We also mark those adjacent condition dependences that were not marked
3812 * as local before, but just happened to be local already. This ensures
3813 * that they remain local if the schedule is recomputed.
3815 * We first collect domain and range of all violated conditional validity
3816 * dependences and then check if there are any adjacent non-local
3817 * condition dependences.
3819 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
3820 struct isl_sched_graph
*graph
)
3824 isl_union_set
*source
, *sink
;
3826 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3827 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3828 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3829 isl_union_set
*uset
;
3830 isl_union_map
*umap
;
3833 if (!graph
->edge
[i
].conditional_validity
)
3836 violated
= is_violated(graph
, i
);
3844 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
3845 uset
= isl_union_map_domain(umap
);
3846 source
= isl_union_set_union(source
, uset
);
3847 source
= isl_union_set_coalesce(source
);
3849 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
3850 uset
= isl_union_map_range(umap
);
3851 sink
= isl_union_set_union(sink
, uset
);
3852 sink
= isl_union_set_coalesce(sink
);
3856 any
= has_adjacent_true_conditions(graph
, source
, sink
);
3858 isl_union_set_free(source
);
3859 isl_union_set_free(sink
);
3862 isl_union_set_free(source
);
3863 isl_union_set_free(sink
);
3867 /* Compute a schedule for a connected dependence graph.
3868 * We try to find a sequence of as many schedule rows as possible that result
3869 * in non-negative dependence distances (independent of the previous rows
3870 * in the sequence, i.e., such that the sequence is tilable), with as
3871 * many of the initial rows as possible satisfying the coincidence constraints.
3872 * If we can't find any more rows we either
3873 * - split between SCCs and start over (assuming we found an interesting
3874 * pair of SCCs between which to split)
3875 * - continue with the next band (assuming the current band has at least
3877 * - try to carry as many dependences as possible and continue with the next
3880 * If Feautrier's algorithm is selected, we first recursively try to satisfy
3881 * as many validity dependences as possible. When all validity dependences
3882 * are satisfied we extend the schedule to a full-dimensional schedule.
3884 * If we manage to complete the schedule, we finish off by topologically
3885 * sorting the statements based on the remaining dependences.
3887 * If ctx->opt->schedule_outer_coincidence is set, then we force the
3888 * outermost dimension to satisfy the coincidence constraints. If this
3889 * turns out to be impossible, we fall back on the general scheme above
3890 * and try to carry as many dependences as possible.
3892 * If "graph" contains both condition and conditional validity dependences,
3893 * then we need to check that that the conditional schedule constraint
3894 * is satisfied, i.e., there are no violated conditional validity dependences
3895 * that are adjacent to any non-local condition dependences.
3896 * If there are, then we mark all those adjacent condition dependences
3897 * as local and recompute the current band. Those dependences that
3898 * are marked local will then be forced to be local.
3899 * The initial computation is performed with no dependences marked as local.
3900 * If we are lucky, then there will be no violated conditional validity
3901 * dependences adjacent to any non-local condition dependences.
3902 * Otherwise, we mark some additional condition dependences as local and
3903 * recompute. We continue this process until there are no violations left or
3904 * until we are no longer able to compute a schedule.
3905 * Since there are only a finite number of dependences,
3906 * there will only be a finite number of iterations.
3908 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3910 int has_coincidence
;
3911 int use_coincidence
;
3912 int force_coincidence
= 0;
3913 int check_conditional
;
3915 if (detect_sccs(ctx
, graph
) < 0)
3917 if (sort_sccs(graph
) < 0)
3920 if (compute_maxvar(graph
) < 0)
3923 if (need_feautrier_step(ctx
, graph
))
3924 return compute_schedule_wcc_feautrier(ctx
, graph
);
3926 clear_local_edges(graph
);
3927 check_conditional
= need_condition_check(graph
);
3928 has_coincidence
= has_any_coincidence(graph
);
3930 if (ctx
->opt
->schedule_outer_coincidence
)
3931 force_coincidence
= 1;
3933 use_coincidence
= has_coincidence
;
3934 while (graph
->n_row
< graph
->maxvar
) {
3939 graph
->src_scc
= -1;
3940 graph
->dst_scc
= -1;
3942 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
3944 sol
= solve_lp(graph
);
3947 if (sol
->size
== 0) {
3948 int empty
= graph
->n_total_row
== graph
->band_start
;
3951 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
3952 use_coincidence
= 0;
3955 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
3956 return compute_next_band(ctx
, graph
);
3957 if (graph
->src_scc
>= 0)
3958 return compute_split_schedule(ctx
, graph
);
3960 return compute_next_band(ctx
, graph
);
3961 return carry_dependences(ctx
, graph
);
3963 coincident
= !has_coincidence
|| use_coincidence
;
3964 if (update_schedule(graph
, sol
, 1, coincident
) < 0)
3967 if (!check_conditional
)
3969 violated
= has_violated_conditional_constraint(ctx
, graph
);
3974 if (reset_band(graph
) < 0)
3976 use_coincidence
= has_coincidence
;
3979 if (graph
->n_total_row
> graph
->band_start
)
3981 return sort_statements(ctx
, graph
);
3984 /* Add a row to the schedules that separates the SCCs and move
3987 static int split_on_scc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3991 if (graph
->n_total_row
>= graph
->max_row
)
3992 isl_die(ctx
, isl_error_internal
,
3993 "too many schedule rows", return -1);
3995 for (i
= 0; i
< graph
->n
; ++i
) {
3996 struct isl_sched_node
*node
= &graph
->node
[i
];
3997 int row
= isl_mat_rows(node
->sched
);
3999 isl_map_free(node
->sched_map
);
4000 node
->sched_map
= NULL
;
4001 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
4002 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
4006 node
->band
[graph
->n_total_row
] = graph
->n_band
;
4009 graph
->n_total_row
++;
4015 /* Compute a schedule for each group of nodes identified by node->scc
4016 * separately and then combine the results.
4017 * If "wcc" is set then each of these groups belongs to a single
4018 * weakly connected component in the dependence graph so that
4019 * there is no need for compute_sub_schedule to look for weakly
4020 * connected components.
4022 * An extra schedule row is added first to separate the groups
4023 * unless the groups represent weakly connected components
4024 * (graph->weak is set) and the option schedule_separate_components
4027 * The band_id is adjusted such that each component has a separate id.
4028 * Note that the band_id may have already been set to a value different
4029 * from zero by compute_split_schedule.
4031 static int compute_component_schedule(isl_ctx
*ctx
,
4032 struct isl_sched_graph
*graph
, int wcc
)
4036 int n_total_row
, orig_total_row
;
4037 int n_band
, orig_band
;
4039 if (!graph
->weak
|| ctx
->opt
->schedule_separate_components
)
4040 if (split_on_scc(ctx
, graph
) < 0)
4044 orig_total_row
= graph
->n_total_row
;
4046 orig_band
= graph
->n_band
;
4047 for (i
= 0; i
< graph
->n
; ++i
)
4048 graph
->node
[i
].band_id
[graph
->n_band
] += graph
->node
[i
].scc
;
4049 for (component
= 0; component
< graph
->scc
; ++component
) {
4051 for (i
= 0; i
< graph
->n
; ++i
)
4052 if (graph
->node
[i
].scc
== component
)
4055 for (i
= 0; i
< graph
->n_edge
; ++i
)
4056 if (graph
->edge
[i
].src
->scc
== component
&&
4057 graph
->edge
[i
].dst
->scc
== component
)
4060 if (compute_sub_schedule(ctx
, graph
, n
, n_edge
,
4062 &edge_scc_exactly
, component
, wcc
) < 0)
4064 if (graph
->n_total_row
> n_total_row
)
4065 n_total_row
= graph
->n_total_row
;
4066 graph
->n_total_row
= orig_total_row
;
4067 if (graph
->n_band
> n_band
)
4068 n_band
= graph
->n_band
;
4069 graph
->n_band
= orig_band
;
4072 graph
->n_total_row
= n_total_row
;
4073 graph
->n_band
= n_band
;
4075 return pad_schedule(graph
);
4078 /* Compute a schedule for the given dependence graph.
4079 * We first check if the graph is connected (through validity and conditional
4080 * validity dependences) and, if not, compute a schedule
4081 * for each component separately.
4082 * If schedule_fuse is set to minimal fusion, then we check for strongly
4083 * connected components instead and compute a separate schedule for
4084 * each such strongly connected component.
4086 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
4088 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
) {
4089 if (detect_sccs(ctx
, graph
) < 0)
4092 if (detect_wccs(ctx
, graph
) < 0)
4097 return compute_component_schedule(ctx
, graph
, 1);
4099 return compute_schedule_wcc(ctx
, graph
);
4102 /* Compute a schedule on sc->domain that respects the given schedule
4105 * In particular, the schedule respects all the validity dependences.
4106 * If the default isl scheduling algorithm is used, it tries to minimize
4107 * the dependence distances over the proximity dependences.
4108 * If Feautrier's scheduling algorithm is used, the proximity dependence
4109 * distances are only minimized during the extension to a full-dimensional
4112 * If there are any condition and conditional validity dependences,
4113 * then the conditional validity dependences may be violated inside
4114 * a tilable band, provided they have no adjacent non-local
4115 * condition dependences.
4117 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
4118 __isl_take isl_schedule_constraints
*sc
)
4120 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
4121 struct isl_sched_graph graph
= { 0 };
4122 isl_schedule
*sched
;
4123 struct isl_extract_edge_data data
;
4124 enum isl_edge_type i
;
4126 sc
= isl_schedule_constraints_align_params(sc
);
4130 graph
.n
= isl_union_set_n_set(sc
->domain
);
4133 if (graph_alloc(ctx
, &graph
, graph
.n
,
4134 isl_schedule_constraints_n_map(sc
)) < 0)
4136 if (compute_max_row(&graph
, sc
) < 0)
4140 if (isl_union_set_foreach_set(sc
->domain
, &extract_node
, &graph
) < 0)
4142 if (graph_init_table(ctx
, &graph
) < 0)
4144 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
4145 graph
.max_edge
[i
] = isl_union_map_n_map(sc
->constraint
[i
]);
4146 if (graph_init_edge_tables(ctx
, &graph
) < 0)
4149 data
.graph
= &graph
;
4150 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
4152 if (isl_union_map_foreach_map(sc
->constraint
[i
],
4153 &extract_edge
, &data
) < 0)
4157 if (compute_schedule(ctx
, &graph
) < 0)
4161 sched
= extract_schedule(&graph
, isl_union_set_get_space(sc
->domain
));
4163 graph_free(ctx
, &graph
);
4164 isl_schedule_constraints_free(sc
);
4168 graph_free(ctx
, &graph
);
4169 isl_schedule_constraints_free(sc
);
4173 /* Compute a schedule for the given union of domains that respects
4174 * all the validity dependences and minimizes
4175 * the dependence distances over the proximity dependences.
4177 * This function is kept for backward compatibility.
4179 __isl_give isl_schedule
*isl_union_set_compute_schedule(
4180 __isl_take isl_union_set
*domain
,
4181 __isl_take isl_union_map
*validity
,
4182 __isl_take isl_union_map
*proximity
)
4184 isl_schedule_constraints
*sc
;
4186 sc
= isl_schedule_constraints_on_domain(domain
);
4187 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
4188 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
4190 return isl_schedule_constraints_compute_schedule(sc
);