2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
28 isl_int
*t
= bmap
->eq
[a
];
29 bmap
->eq
[a
] = bmap
->eq
[b
];
33 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
36 isl_int
*t
= bmap
->ineq
[a
];
37 bmap
->ineq
[a
] = bmap
->ineq
[b
];
42 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
44 isl_seq_cpy(c
, c
+ n
, rem
);
45 isl_seq_clr(c
+ rem
, n
);
48 /* Drop n dimensions starting at first.
50 * In principle, this frees up some extra variables as the number
51 * of columns remains constant, but we would have to extend
52 * the div array too as the number of rows in this array is assumed
53 * to be equal to extra.
55 struct isl_basic_set
*isl_basic_set_drop_dims(
56 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
63 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
65 if (n
== 0 && !isl_space_get_tuple_name(bset
->dim
, isl_dim_set
))
68 bset
= isl_basic_set_cow(bset
);
72 for (i
= 0; i
< bset
->n_eq
; ++i
)
73 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
74 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
76 for (i
= 0; i
< bset
->n_ineq
; ++i
)
77 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
78 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
80 for (i
= 0; i
< bset
->n_div
; ++i
)
81 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
82 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
84 bset
->dim
= isl_space_drop_outputs(bset
->dim
, first
, n
);
88 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
89 bset
= isl_basic_set_simplify(bset
);
90 return isl_basic_set_finalize(bset
);
92 isl_basic_set_free(bset
);
96 struct isl_set
*isl_set_drop_dims(
97 struct isl_set
*set
, unsigned first
, unsigned n
)
104 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
106 if (n
== 0 && !isl_space_get_tuple_name(set
->dim
, isl_dim_set
))
108 set
= isl_set_cow(set
);
111 set
->dim
= isl_space_drop_outputs(set
->dim
, first
, n
);
115 for (i
= 0; i
< set
->n
; ++i
) {
116 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
121 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
128 /* Move "n" divs starting at "first" to the end of the list of divs.
130 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
131 unsigned first
, unsigned n
)
136 if (first
+ n
== bmap
->n_div
)
139 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
142 for (i
= 0; i
< n
; ++i
)
143 div
[i
] = bmap
->div
[first
+ i
];
144 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
145 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
146 for (i
= 0; i
< n
; ++i
)
147 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
151 isl_basic_map_free(bmap
);
155 /* Drop "n" dimensions of type "type" starting at "first".
157 * In principle, this frees up some extra variables as the number
158 * of columns remains constant, but we would have to extend
159 * the div array too as the number of rows in this array is assumed
160 * to be equal to extra.
162 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
163 enum isl_dim_type type
, unsigned first
, unsigned n
)
173 dim
= isl_basic_map_dim(bmap
, type
);
174 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
176 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
179 bmap
= isl_basic_map_cow(bmap
);
183 offset
= isl_basic_map_offset(bmap
, type
) + first
;
184 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
185 for (i
= 0; i
< bmap
->n_eq
; ++i
)
186 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
188 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
189 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
191 for (i
= 0; i
< bmap
->n_div
; ++i
)
192 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
194 if (type
== isl_dim_div
) {
195 bmap
= move_divs_last(bmap
, first
, n
);
198 isl_basic_map_free_div(bmap
, n
);
200 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
204 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
205 bmap
= isl_basic_map_simplify(bmap
);
206 return isl_basic_map_finalize(bmap
);
208 isl_basic_map_free(bmap
);
212 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
213 enum isl_dim_type type
, unsigned first
, unsigned n
)
215 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
219 struct isl_basic_map
*isl_basic_map_drop_inputs(
220 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
222 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
225 struct isl_map
*isl_map_drop(struct isl_map
*map
,
226 enum isl_dim_type type
, unsigned first
, unsigned n
)
233 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
235 if (n
== 0 && !isl_space_get_tuple_name(map
->dim
, type
))
237 map
= isl_map_cow(map
);
240 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
244 for (i
= 0; i
< map
->n
; ++i
) {
245 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
249 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
257 struct isl_set
*isl_set_drop(struct isl_set
*set
,
258 enum isl_dim_type type
, unsigned first
, unsigned n
)
260 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
263 struct isl_map
*isl_map_drop_inputs(
264 struct isl_map
*map
, unsigned first
, unsigned n
)
266 return isl_map_drop(map
, isl_dim_in
, first
, n
);
270 * We don't cow, as the div is assumed to be redundant.
272 static struct isl_basic_map
*isl_basic_map_drop_div(
273 struct isl_basic_map
*bmap
, unsigned div
)
281 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
283 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
285 for (i
= 0; i
< bmap
->n_eq
; ++i
)
286 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
288 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
289 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
290 isl_basic_map_drop_inequality(bmap
, i
);
294 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
297 for (i
= 0; i
< bmap
->n_div
; ++i
)
298 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
300 if (div
!= bmap
->n_div
- 1) {
302 isl_int
*t
= bmap
->div
[div
];
304 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
305 bmap
->div
[j
] = bmap
->div
[j
+1];
307 bmap
->div
[bmap
->n_div
- 1] = t
;
309 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
310 isl_basic_map_free_div(bmap
, 1);
314 isl_basic_map_free(bmap
);
318 struct isl_basic_map
*isl_basic_map_normalize_constraints(
319 struct isl_basic_map
*bmap
)
323 unsigned total
= isl_basic_map_total_dim(bmap
);
329 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
330 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
331 if (isl_int_is_zero(gcd
)) {
332 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
333 bmap
= isl_basic_map_set_to_empty(bmap
);
336 isl_basic_map_drop_equality(bmap
, i
);
339 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
340 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
341 if (isl_int_is_one(gcd
))
343 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
344 bmap
= isl_basic_map_set_to_empty(bmap
);
347 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
350 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
351 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
352 if (isl_int_is_zero(gcd
)) {
353 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
354 bmap
= isl_basic_map_set_to_empty(bmap
);
357 isl_basic_map_drop_inequality(bmap
, i
);
360 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
361 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
362 if (isl_int_is_one(gcd
))
364 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
365 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
372 struct isl_basic_set
*isl_basic_set_normalize_constraints(
373 struct isl_basic_set
*bset
)
375 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
376 (struct isl_basic_map
*)bset
);
379 /* Remove any common factor in numerator and denominator of the div expression,
380 * not taking into account the constant term.
381 * That is, if the div is of the form
383 * floor((a + m f(x))/(m d))
387 * floor((floor(a/m) + f(x))/d)
389 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
390 * and can therefore not influence the result of the floor.
392 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
394 unsigned total
= isl_basic_map_total_dim(bmap
);
395 isl_ctx
*ctx
= bmap
->ctx
;
397 if (isl_int_is_zero(bmap
->div
[div
][0]))
399 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
400 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
401 if (isl_int_is_one(ctx
->normalize_gcd
))
403 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
405 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
407 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
408 ctx
->normalize_gcd
, total
);
411 /* Remove any common factor in numerator and denominator of a div expression,
412 * not taking into account the constant term.
413 * That is, look for any div of the form
415 * floor((a + m f(x))/(m d))
419 * floor((floor(a/m) + f(x))/d)
421 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
422 * and can therefore not influence the result of the floor.
424 static __isl_give isl_basic_map
*normalize_div_expressions(
425 __isl_take isl_basic_map
*bmap
)
431 if (bmap
->n_div
== 0)
434 for (i
= 0; i
< bmap
->n_div
; ++i
)
435 normalize_div_expression(bmap
, i
);
440 /* Assumes divs have been ordered if keep_divs is set.
442 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
443 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
446 unsigned space_total
;
450 total
= isl_basic_map_total_dim(bmap
);
451 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
452 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
453 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
454 if (bmap
->eq
[k
] == eq
)
456 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
460 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
461 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
464 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
465 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
469 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
470 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
471 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
474 for (k
= 0; k
< bmap
->n_div
; ++k
) {
475 if (isl_int_is_zero(bmap
->div
[k
][0]))
477 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
481 /* We need to be careful about circular definitions,
482 * so for now we just remove the definition of div k
483 * if the equality contains any divs.
484 * If keep_divs is set, then the divs have been ordered
485 * and we can keep the definition as long as the result
488 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
489 isl_seq_elim(bmap
->div
[k
]+1, eq
,
490 1+pos
, 1+total
, &bmap
->div
[k
][0]);
491 normalize_div_expression(bmap
, k
);
493 isl_seq_clr(bmap
->div
[k
], 1 + total
);
494 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
498 /* Assumes divs have been ordered if keep_divs is set.
500 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
501 unsigned div
, int keep_divs
)
503 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
505 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
507 isl_basic_map_drop_div(bmap
, div
);
510 /* Check if elimination of div "div" using equality "eq" would not
511 * result in a div depending on a later div.
513 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
518 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
519 unsigned pos
= space_total
+ div
;
521 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
522 if (last_div
< 0 || last_div
<= div
)
525 for (k
= 0; k
<= last_div
; ++k
) {
526 if (isl_int_is_zero(bmap
->div
[k
][0]))
528 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
535 /* Elimininate divs based on equalities
537 static struct isl_basic_map
*eliminate_divs_eq(
538 struct isl_basic_map
*bmap
, int *progress
)
545 bmap
= isl_basic_map_order_divs(bmap
);
550 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
552 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
553 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
554 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
555 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
557 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
561 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
562 isl_basic_map_drop_equality(bmap
, i
);
567 return eliminate_divs_eq(bmap
, progress
);
571 /* Elimininate divs based on inequalities
573 static struct isl_basic_map
*eliminate_divs_ineq(
574 struct isl_basic_map
*bmap
, int *progress
)
585 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
587 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
588 for (i
= 0; i
< bmap
->n_eq
; ++i
)
589 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
593 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
594 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
596 if (i
< bmap
->n_ineq
)
599 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
600 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
602 bmap
= isl_basic_map_drop_div(bmap
, d
);
609 struct isl_basic_map
*isl_basic_map_gauss(
610 struct isl_basic_map
*bmap
, int *progress
)
618 bmap
= isl_basic_map_order_divs(bmap
);
623 total
= isl_basic_map_total_dim(bmap
);
624 total_var
= total
- bmap
->n_div
;
626 last_var
= total
- 1;
627 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
628 for (; last_var
>= 0; --last_var
) {
629 for (k
= done
; k
< bmap
->n_eq
; ++k
)
630 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
638 swap_equality(bmap
, k
, done
);
639 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
640 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
642 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
645 if (last_var
>= total_var
&&
646 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
647 unsigned div
= last_var
- total_var
;
648 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
649 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
650 isl_int_set(bmap
->div
[div
][0],
651 bmap
->eq
[done
][1+last_var
]);
654 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
657 if (done
== bmap
->n_eq
)
659 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
660 if (isl_int_is_zero(bmap
->eq
[k
][0]))
662 return isl_basic_map_set_to_empty(bmap
);
664 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
668 struct isl_basic_set
*isl_basic_set_gauss(
669 struct isl_basic_set
*bset
, int *progress
)
671 return (struct isl_basic_set
*)isl_basic_map_gauss(
672 (struct isl_basic_map
*)bset
, progress
);
676 static unsigned int round_up(unsigned int v
)
687 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
688 struct isl_basic_map
*bmap
, int k
)
691 unsigned total
= isl_basic_map_total_dim(bmap
);
692 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
693 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
694 if (&bmap
->ineq
[k
] != index
[h
] &&
695 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
700 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
701 struct isl_basic_set
*bset
, int k
)
703 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
706 /* If we can eliminate more than one div, then we need to make
707 * sure we do it from last div to first div, in order not to
708 * change the position of the other divs that still need to
711 static struct isl_basic_map
*remove_duplicate_divs(
712 struct isl_basic_map
*bmap
, int *progress
)
724 bmap
= isl_basic_map_order_divs(bmap
);
725 if (!bmap
|| bmap
->n_div
<= 1)
728 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
729 total
= total_var
+ bmap
->n_div
;
732 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
733 if (!isl_int_is_zero(bmap
->div
[k
][0]))
738 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
739 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
740 bits
= ffs(size
) - 1;
741 index
= isl_calloc_array(ctx
, int, size
);
744 eq
= isl_blk_alloc(ctx
, 1+total
);
745 if (isl_blk_is_error(eq
))
748 isl_seq_clr(eq
.data
, 1+total
);
749 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
750 for (--k
; k
>= 0; --k
) {
753 if (isl_int_is_zero(bmap
->div
[k
][0]))
756 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
757 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
758 if (isl_seq_eq(bmap
->div
[k
],
759 bmap
->div
[index
[h
]-1], 2+total
))
768 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
772 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
773 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
774 eliminate_div(bmap
, eq
.data
, l
, 1);
775 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
776 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
779 isl_blk_free(ctx
, eq
);
786 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
791 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
792 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
793 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
797 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
803 /* Normalize divs that appear in equalities.
805 * In particular, we assume that bmap contains some equalities
810 * and we want to replace the set of e_i by a minimal set and
811 * such that the new e_i have a canonical representation in terms
813 * If any of the equalities involves more than one divs, then
814 * we currently simply bail out.
816 * Let us first additionally assume that all equalities involve
817 * a div. The equalities then express modulo constraints on the
818 * remaining variables and we can use "parameter compression"
819 * to find a minimal set of constraints. The result is a transformation
821 * x = T(x') = x_0 + G x'
823 * with G a lower-triangular matrix with all elements below the diagonal
824 * non-negative and smaller than the diagonal element on the same row.
825 * We first normalize x_0 by making the same property hold in the affine
827 * The rows i of G with a 1 on the diagonal do not impose any modulo
828 * constraint and simply express x_i = x'_i.
829 * For each of the remaining rows i, we introduce a div and a corresponding
830 * equality. In particular
832 * g_ii e_j = x_i - g_i(x')
834 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
835 * corresponding div (if g_kk != 1).
837 * If there are any equalities not involving any div, then we
838 * first apply a variable compression on the variables x:
840 * x = C x'' x'' = C_2 x
842 * and perform the above parameter compression on A C instead of on A.
843 * The resulting compression is then of the form
845 * x'' = T(x') = x_0 + G x'
847 * and in constructing the new divs and the corresponding equalities,
848 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
849 * by the corresponding row from C_2.
851 static struct isl_basic_map
*normalize_divs(
852 struct isl_basic_map
*bmap
, int *progress
)
859 struct isl_mat
*T
= NULL
;
860 struct isl_mat
*C
= NULL
;
861 struct isl_mat
*C2
= NULL
;
869 if (bmap
->n_div
== 0)
875 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
878 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
879 div_eq
= n_pure_div_eq(bmap
);
883 if (div_eq
< bmap
->n_eq
) {
884 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
885 bmap
->n_eq
- div_eq
, 0, 1 + total
);
886 C
= isl_mat_variable_compression(B
, &C2
);
890 bmap
= isl_basic_map_set_to_empty(bmap
);
897 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
900 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
901 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
903 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
905 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
908 B
= isl_mat_product(B
, C
);
912 T
= isl_mat_parameter_compression(B
, d
);
916 bmap
= isl_basic_map_set_to_empty(bmap
);
922 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
923 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
924 if (isl_int_is_zero(v
))
926 isl_mat_col_submul(T
, 0, v
, 1 + i
);
929 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
932 /* We have to be careful because dropping equalities may reorder them */
934 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
935 for (i
= 0; i
< bmap
->n_eq
; ++i
)
936 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
938 if (i
< bmap
->n_eq
) {
939 bmap
= isl_basic_map_drop_div(bmap
, j
);
940 isl_basic_map_drop_equality(bmap
, i
);
946 for (i
= 1; i
< T
->n_row
; ++i
) {
947 if (isl_int_is_one(T
->row
[i
][i
]))
952 if (needed
> dropped
) {
953 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
958 for (i
= 1; i
< T
->n_row
; ++i
) {
959 if (isl_int_is_one(T
->row
[i
][i
]))
961 k
= isl_basic_map_alloc_div(bmap
);
962 pos
[i
] = 1 + total
+ k
;
963 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
964 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
966 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
968 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
969 for (j
= 0; j
< i
; ++j
) {
970 if (isl_int_is_zero(T
->row
[i
][j
]))
972 if (pos
[j
] < T
->n_row
&& C2
)
973 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
974 C2
->row
[pos
[j
]], 1 + total
);
976 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
979 j
= isl_basic_map_alloc_equality(bmap
);
980 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
981 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
990 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1000 static struct isl_basic_map
*set_div_from_lower_bound(
1001 struct isl_basic_map
*bmap
, int div
, int ineq
)
1003 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1005 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1006 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1007 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1008 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1009 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1014 /* Check whether it is ok to define a div based on an inequality.
1015 * To avoid the introduction of circular definitions of divs, we
1016 * do not allow such a definition if the resulting expression would refer to
1017 * any other undefined divs or if any known div is defined in
1018 * terms of the unknown div.
1020 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
1024 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1026 /* Not defined in terms of unknown divs */
1027 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1030 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1032 if (isl_int_is_zero(bmap
->div
[j
][0]))
1036 /* No other div defined in terms of this one => avoid loops */
1037 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1040 if (isl_int_is_zero(bmap
->div
[j
][0]))
1042 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1049 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1050 * be a better expression than the current one?
1052 * If we do not have any expression yet, then any expression would be better.
1053 * Otherwise we check if the last variable involved in the inequality
1054 * (disregarding the div that it would define) is in an earlier position
1055 * than the last variable involved in the current div expression.
1057 static int better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1060 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1064 if (isl_int_is_zero(bmap
->div
[div
][0]))
1067 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1068 bmap
->n_div
- (div
+ 1)) >= 0)
1071 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1072 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1073 total
+ bmap
->n_div
);
1075 return last_ineq
< last_div
;
1078 /* Given two constraints "k" and "l" that are opposite to each other,
1079 * except for the constant term, check if we can use them
1080 * to obtain an expression for one of the hitherto unknown divs or
1081 * a "better" expression for a div for which we already have an expression.
1082 * "sum" is the sum of the constant terms of the constraints.
1083 * If this sum is strictly smaller than the coefficient of one
1084 * of the divs, then this pair can be used define the div.
1085 * To avoid the introduction of circular definitions of divs, we
1086 * do not use the pair if the resulting expression would refer to
1087 * any other undefined divs or if any known div is defined in
1088 * terms of the unknown div.
1090 static struct isl_basic_map
*check_for_div_constraints(
1091 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
1094 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1096 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1097 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1099 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1101 if (!better_div_constraint(bmap
, i
, k
))
1103 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1105 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1106 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1108 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1116 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1117 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1123 unsigned total
= isl_basic_map_total_dim(bmap
);
1127 if (!bmap
|| bmap
->n_ineq
<= 1)
1130 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1131 bits
= ffs(size
) - 1;
1132 ctx
= isl_basic_map_get_ctx(bmap
);
1133 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1137 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1138 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1139 h
= hash_index(index
, size
, bits
, bmap
, k
);
1141 index
[h
] = &bmap
->ineq
[k
];
1146 l
= index
[h
] - &bmap
->ineq
[0];
1147 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1148 swap_inequality(bmap
, k
, l
);
1149 isl_basic_map_drop_inequality(bmap
, k
);
1153 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1154 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1155 h
= hash_index(index
, size
, bits
, bmap
, k
);
1156 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1159 l
= index
[h
] - &bmap
->ineq
[0];
1160 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1161 if (isl_int_is_pos(sum
)) {
1163 bmap
= check_for_div_constraints(bmap
, k
, l
,
1167 if (isl_int_is_zero(sum
)) {
1168 /* We need to break out of the loop after these
1169 * changes since the contents of the hash
1170 * will no longer be valid.
1171 * Plus, we probably we want to regauss first.
1175 isl_basic_map_drop_inequality(bmap
, l
);
1176 isl_basic_map_inequality_to_equality(bmap
, k
);
1178 bmap
= isl_basic_map_set_to_empty(bmap
);
1187 /* Detect all pairs of inequalities that form an equality.
1189 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1190 * Call it repeatedly while it is making progress.
1192 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1193 __isl_take isl_basic_map
*bmap
, int *progress
)
1199 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1201 if (progress
&& duplicate
)
1203 } while (duplicate
);
1208 /* Eliminate knowns divs from constraints where they appear with
1209 * a (positive or negative) unit coefficient.
1213 * floor(e/m) + f >= 0
1221 * -floor(e/m) + f >= 0
1225 * -e + m f + m - 1 >= 0
1227 * The first conversion is valid because floor(e/m) >= -f is equivalent
1228 * to e/m >= -f because -f is an integral expression.
1229 * The second conversion follows from the fact that
1231 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1234 * Note that one of the div constraints may have been eliminated
1235 * due to being redundant with respect to the constraint that is
1236 * being modified by this function. The modified constraint may
1237 * no longer imply this div constraint, so we add it back to make
1238 * sure we do not lose any information.
1240 * We skip integral divs, i.e., those with denominator 1, as we would
1241 * risk eliminating the div from the div constraints. We do not need
1242 * to handle those divs here anyway since the div constraints will turn
1243 * out to form an equality and this equality can then be use to eliminate
1244 * the div from all constraints.
1246 static __isl_give isl_basic_map
*eliminate_unit_divs(
1247 __isl_take isl_basic_map
*bmap
, int *progress
)
1256 ctx
= isl_basic_map_get_ctx(bmap
);
1257 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1259 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1260 if (isl_int_is_zero(bmap
->div
[i
][0]))
1262 if (isl_int_is_one(bmap
->div
[i
][0]))
1264 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1267 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1268 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1273 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1274 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1276 isl_seq_combine(bmap
->ineq
[j
],
1277 ctx
->negone
, bmap
->div
[i
] + 1,
1278 bmap
->div
[i
][0], bmap
->ineq
[j
],
1279 total
+ bmap
->n_div
);
1281 isl_seq_combine(bmap
->ineq
[j
],
1282 ctx
->one
, bmap
->div
[i
] + 1,
1283 bmap
->div
[i
][0], bmap
->ineq
[j
],
1284 total
+ bmap
->n_div
);
1286 isl_int_add(bmap
->ineq
[j
][0],
1287 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1288 isl_int_sub_ui(bmap
->ineq
[j
][0],
1289 bmap
->ineq
[j
][0], 1);
1292 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1293 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1294 return isl_basic_map_free(bmap
);
1301 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1310 if (isl_basic_map_plain_is_empty(bmap
))
1312 bmap
= isl_basic_map_normalize_constraints(bmap
);
1313 bmap
= normalize_div_expressions(bmap
);
1314 bmap
= remove_duplicate_divs(bmap
, &progress
);
1315 bmap
= eliminate_unit_divs(bmap
, &progress
);
1316 bmap
= eliminate_divs_eq(bmap
, &progress
);
1317 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1318 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1319 /* requires equalities in normal form */
1320 bmap
= normalize_divs(bmap
, &progress
);
1321 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1323 if (bmap
&& progress
)
1324 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1329 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1331 return (struct isl_basic_set
*)
1332 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1336 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1337 isl_int
*constraint
, unsigned div
)
1344 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1346 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1348 isl_int_sub(bmap
->div
[div
][1],
1349 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1350 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1351 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1352 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1353 isl_int_add(bmap
->div
[div
][1],
1354 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1357 if (isl_seq_first_non_zero(constraint
+pos
+1,
1358 bmap
->n_div
-div
-1) != -1)
1360 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1361 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1363 if (isl_seq_first_non_zero(constraint
+pos
+1,
1364 bmap
->n_div
-div
-1) != -1)
1372 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1373 isl_int
*constraint
, unsigned div
)
1375 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1379 /* If the only constraints a div d=floor(f/m)
1380 * appears in are its two defining constraints
1383 * -(f - (m - 1)) + m d >= 0
1385 * then it can safely be removed.
1387 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1390 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1392 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1393 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1396 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1397 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1399 if (!isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
))
1403 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1404 if (isl_int_is_zero(bmap
->div
[i
][0]))
1406 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1414 * Remove divs that don't occur in any of the constraints or other divs.
1415 * These can arise when dropping constraints from a basic map or
1416 * when the divs of a basic map have been temporarily aligned
1417 * with the divs of another basic map.
1419 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1426 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1427 if (!div_is_redundant(bmap
, i
))
1429 bmap
= isl_basic_map_drop_div(bmap
, i
);
1434 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1436 bmap
= remove_redundant_divs(bmap
);
1439 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1443 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1445 return (struct isl_basic_set
*)
1446 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1449 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1455 for (i
= 0; i
< set
->n
; ++i
) {
1456 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1466 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1472 for (i
= 0; i
< map
->n
; ++i
) {
1473 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1477 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1485 /* Remove definition of any div that is defined in terms of the given variable.
1486 * The div itself is not removed. Functions such as
1487 * eliminate_divs_ineq depend on the other divs remaining in place.
1489 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1497 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1498 if (isl_int_is_zero(bmap
->div
[i
][0]))
1500 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1502 isl_int_set_si(bmap
->div
[i
][0], 0);
1507 /* Eliminate the specified variables from the constraints using
1508 * Fourier-Motzkin. The variables themselves are not removed.
1510 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1511 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1522 total
= isl_basic_map_total_dim(bmap
);
1524 bmap
= isl_basic_map_cow(bmap
);
1525 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1526 bmap
= remove_dependent_vars(bmap
, d
);
1530 for (d
= pos
+ n
- 1;
1531 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1532 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1533 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1534 int n_lower
, n_upper
;
1537 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1538 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1540 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1541 isl_basic_map_drop_equality(bmap
, i
);
1549 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1550 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1552 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1555 bmap
= isl_basic_map_extend_constraints(bmap
,
1556 0, n_lower
* n_upper
);
1559 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1561 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1564 for (j
= 0; j
< i
; ++j
) {
1565 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1568 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1569 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1571 k
= isl_basic_map_alloc_inequality(bmap
);
1574 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1576 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1577 1+d
, 1+total
, NULL
);
1579 isl_basic_map_drop_inequality(bmap
, i
);
1582 if (n_lower
> 0 && n_upper
> 0) {
1583 bmap
= isl_basic_map_normalize_constraints(bmap
);
1584 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1586 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1587 bmap
= isl_basic_map_remove_redundancies(bmap
);
1591 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1595 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1597 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1600 isl_basic_map_free(bmap
);
1604 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1605 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1607 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1608 (struct isl_basic_map
*)bset
, pos
, n
);
1611 /* Eliminate the specified n dimensions starting at first from the
1612 * constraints, without removing the dimensions from the space.
1613 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1614 * Otherwise, they are projected out and the original space is restored.
1616 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1617 __isl_take isl_basic_map
*bmap
,
1618 enum isl_dim_type type
, unsigned first
, unsigned n
)
1627 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1628 isl_die(bmap
->ctx
, isl_error_invalid
,
1629 "index out of bounds", goto error
);
1631 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1632 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1633 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1634 return isl_basic_map_finalize(bmap
);
1637 space
= isl_basic_map_get_space(bmap
);
1638 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1639 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1640 bmap
= isl_basic_map_reset_space(bmap
, space
);
1643 isl_basic_map_free(bmap
);
1647 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1648 __isl_take isl_basic_set
*bset
,
1649 enum isl_dim_type type
, unsigned first
, unsigned n
)
1651 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1654 /* Don't assume equalities are in order, because align_divs
1655 * may have changed the order of the divs.
1657 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1662 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1663 for (d
= 0; d
< total
; ++d
)
1665 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1666 for (d
= total
- 1; d
>= 0; --d
) {
1667 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1675 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1677 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1680 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1681 struct isl_basic_map
*bmap
, int *elim
)
1687 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1688 for (d
= total
- 1; d
>= 0; --d
) {
1689 if (isl_int_is_zero(src
[1+d
]))
1694 isl_seq_cpy(dst
, src
, 1 + total
);
1697 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1702 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1703 struct isl_basic_set
*bset
, int *elim
)
1705 return reduced_using_equalities(dst
, src
,
1706 (struct isl_basic_map
*)bset
, elim
);
1709 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1710 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1715 if (!bset
|| !context
)
1718 if (context
->n_eq
== 0) {
1719 isl_basic_set_free(context
);
1723 bset
= isl_basic_set_cow(bset
);
1727 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1730 set_compute_elimination_index(context
, elim
);
1731 for (i
= 0; i
< bset
->n_eq
; ++i
)
1732 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1734 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1735 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1737 isl_basic_set_free(context
);
1739 bset
= isl_basic_set_simplify(bset
);
1740 bset
= isl_basic_set_finalize(bset
);
1743 isl_basic_set_free(bset
);
1744 isl_basic_set_free(context
);
1748 static struct isl_basic_set
*remove_shifted_constraints(
1749 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1760 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1761 bits
= ffs(size
) - 1;
1762 ctx
= isl_basic_set_get_ctx(bset
);
1763 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1767 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1768 h
= set_hash_index(index
, size
, bits
, context
, k
);
1769 index
[h
] = &context
->ineq
[k
];
1771 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1772 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1775 l
= index
[h
] - &context
->ineq
[0];
1776 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1778 bset
= isl_basic_set_cow(bset
);
1781 isl_basic_set_drop_inequality(bset
, k
);
1791 /* Remove constraints from "bmap" that are identical to constraints
1792 * in "context" or that are more relaxed (greater constant term).
1794 * We perform the test for shifted copies on the pure constraints
1795 * in remove_shifted_constraints.
1797 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
1798 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
1800 isl_basic_set
*bset
, *bset_context
;
1802 if (!bmap
|| !context
)
1805 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
1806 isl_basic_map_free(context
);
1810 context
= isl_basic_map_align_divs(context
, bmap
);
1811 bmap
= isl_basic_map_align_divs(bmap
, context
);
1813 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1814 bset_context
= isl_basic_map_underlying_set(context
);
1815 bset
= remove_shifted_constraints(bset
, bset_context
);
1816 isl_basic_set_free(bset_context
);
1818 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
1822 isl_basic_map_free(bmap
);
1823 isl_basic_map_free(context
);
1827 /* Does the (linear part of a) constraint "c" involve any of the "len"
1828 * "relevant" dimensions?
1830 static int is_related(isl_int
*c
, int len
, int *relevant
)
1834 for (i
= 0; i
< len
; ++i
) {
1837 if (!isl_int_is_zero(c
[i
]))
1844 /* Drop constraints from "bset" that do not involve any of
1845 * the dimensions marked "relevant".
1847 static __isl_give isl_basic_set
*drop_unrelated_constraints(
1848 __isl_take isl_basic_set
*bset
, int *relevant
)
1852 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1853 for (i
= 0; i
< dim
; ++i
)
1859 for (i
= bset
->n_eq
- 1; i
>= 0; --i
)
1860 if (!is_related(bset
->eq
[i
] + 1, dim
, relevant
))
1861 isl_basic_set_drop_equality(bset
, i
);
1863 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
)
1864 if (!is_related(bset
->ineq
[i
] + 1, dim
, relevant
))
1865 isl_basic_set_drop_inequality(bset
, i
);
1870 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1872 * In particular, for any variable involved in the constraint,
1873 * find the actual group id from before and replace the group
1874 * of the corresponding variable by the minimal group of all
1875 * the variables involved in the constraint considered so far
1876 * (if this minimum is smaller) or replace the minimum by this group
1877 * (if the minimum is larger).
1879 * At the end, all the variables in "c" will (indirectly) point
1880 * to the minimal of the groups that they referred to originally.
1882 static void update_groups(int dim
, int *group
, isl_int
*c
)
1887 for (j
= 0; j
< dim
; ++j
) {
1888 if (isl_int_is_zero(c
[j
]))
1890 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
1891 group
[j
] = group
[group
[j
]];
1892 if (group
[j
] == min
)
1894 if (group
[j
] < min
) {
1895 if (min
>= 0 && min
< dim
)
1896 group
[min
] = group
[j
];
1899 group
[group
[j
]] = min
;
1903 /* Drop constraints from "context" that are irrelevant for computing
1904 * the gist of "bset".
1906 * In particular, drop constraints in variables that are not related
1907 * to any of the variables involved in the constraints of "bset"
1908 * in the sense that there is no sequence of constraints that connects them.
1910 * We construct groups of variables that collect variables that
1911 * (indirectly) appear in some common constraint of "context".
1912 * Each group is identified by the first variable in the group,
1913 * except for the special group of variables that appear in "bset"
1914 * (or are related to those variables), which is identified by -1.
1915 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1916 * otherwise the group of i is the group of group[i].
1918 * We first initialize the -1 group with the variables that appear in "bset".
1919 * Then we initialize groups for the remaining variables.
1920 * Then we iterate over the constraints of "context" and update the
1921 * group of the variables in the constraint by the smallest group.
1922 * Finally, we resolve indirect references to groups by running over
1925 * After computing the groups, we drop constraints that do not involve
1926 * any variables in the -1 group.
1928 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
1929 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
1937 if (!context
|| !bset
)
1938 return isl_basic_set_free(context
);
1940 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1941 ctx
= isl_basic_set_get_ctx(bset
);
1942 group
= isl_calloc_array(ctx
, int, dim
);
1947 for (i
= 0; i
< dim
; ++i
) {
1948 for (j
= 0; j
< bset
->n_eq
; ++j
)
1949 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
1951 if (j
< bset
->n_eq
) {
1955 for (j
= 0; j
< bset
->n_ineq
; ++j
)
1956 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
1958 if (j
< bset
->n_ineq
)
1963 for (i
= 0; i
< dim
; ++i
)
1965 last
= group
[i
] = i
;
1971 for (i
= 0; i
< context
->n_eq
; ++i
)
1972 update_groups(dim
, group
, context
->eq
[i
] + 1);
1973 for (i
= 0; i
< context
->n_ineq
; ++i
)
1974 update_groups(dim
, group
, context
->ineq
[i
] + 1);
1976 for (i
= 0; i
< dim
; ++i
)
1978 group
[i
] = group
[group
[i
]];
1980 for (i
= 0; i
< dim
; ++i
)
1981 group
[i
] = group
[i
] == -1;
1983 context
= drop_unrelated_constraints(context
, group
);
1989 return isl_basic_set_free(context
);
1992 /* Remove all information from bset that is redundant in the context
1993 * of context. Both bset and context are assumed to be full-dimensional.
1995 * We first remove the inequalities from "bset"
1996 * that are obviously redundant with respect to some inequality in "context".
1997 * Then we remove those constraints from "context" that have become
1998 * irrelevant for computing the gist of "bset".
1999 * Note that this removal of constraints cannot be replaced by
2000 * a factorization because factors in "bset" may still be connected
2001 * to each other through constraints in "context".
2003 * If there are any inequalities left, we construct a tableau for
2004 * the context and then add the inequalities of "bset".
2005 * Before adding these inequalities, we freeze all constraints such that
2006 * they won't be considered redundant in terms of the constraints of "bset".
2007 * Then we detect all redundant constraints (among the
2008 * constraints that weren't frozen), first by checking for redundancy in the
2009 * the tableau and then by checking if replacing a constraint by its negation
2010 * would lead to an empty set. This last step is fairly expensive
2011 * and could be optimized by more reuse of the tableau.
2012 * Finally, we update bset according to the results.
2014 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2015 __isl_take isl_basic_set
*context
)
2018 isl_basic_set
*combined
= NULL
;
2019 struct isl_tab
*tab
= NULL
;
2020 unsigned context_ineq
;
2023 if (!bset
|| !context
)
2026 if (isl_basic_set_is_universe(bset
)) {
2027 isl_basic_set_free(context
);
2031 if (isl_basic_set_is_universe(context
)) {
2032 isl_basic_set_free(context
);
2036 bset
= remove_shifted_constraints(bset
, context
);
2039 if (bset
->n_ineq
== 0)
2042 context
= drop_irrelevant_constraints(context
, bset
);
2045 if (isl_basic_set_is_universe(context
)) {
2046 isl_basic_set_free(context
);
2050 context_ineq
= context
->n_ineq
;
2051 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2052 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2053 tab
= isl_tab_from_basic_set(combined
, 0);
2054 for (i
= 0; i
< context_ineq
; ++i
)
2055 if (isl_tab_freeze_constraint(tab
, i
) < 0)
2057 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2059 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2060 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
2062 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
2066 if (isl_tab_detect_redundant(tab
) < 0)
2068 total
= isl_basic_set_total_dim(bset
);
2069 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
2071 if (tab
->con
[i
].is_redundant
)
2073 tab
->con
[i
].is_redundant
= 1;
2074 combined
= isl_basic_set_dup(bset
);
2075 combined
= isl_basic_set_update_from_tab(combined
, tab
);
2076 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
2077 k
= isl_basic_set_alloc_inequality(combined
);
2080 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
2081 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
2082 is_empty
= isl_basic_set_is_empty(combined
);
2085 isl_basic_set_free(combined
);
2088 tab
->con
[i
].is_redundant
= 0;
2090 for (i
= 0; i
< context_ineq
; ++i
)
2091 tab
->con
[i
].is_redundant
= 1;
2092 bset
= isl_basic_set_update_from_tab(bset
, tab
);
2094 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2095 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2100 bset
= isl_basic_set_simplify(bset
);
2101 bset
= isl_basic_set_finalize(bset
);
2102 isl_basic_set_free(context
);
2106 isl_basic_set_free(combined
);
2107 isl_basic_set_free(context
);
2108 isl_basic_set_free(bset
);
2112 /* Remove all information from bset that is redundant in the context
2113 * of context. In particular, equalities that are linear combinations
2114 * of those in context are removed. Then the inequalities that are
2115 * redundant in the context of the equalities and inequalities of
2116 * context are removed.
2118 * First of all, we drop those constraints from "context"
2119 * that are irrelevant for computing the gist of "bset".
2120 * Alternatively, we could factorize the intersection of "context" and "bset".
2122 * We first compute the integer affine hull of the intersection,
2123 * compute the gist inside this affine hull and then add back
2124 * those equalities that are not implied by the context.
2126 * If two constraints are mutually redundant, then uset_gist_full
2127 * will remove the second of those constraints. We therefore first
2128 * sort the constraints so that constraints not involving existentially
2129 * quantified variables are given precedence over those that do.
2130 * We have to perform this sorting before the variable compression,
2131 * because that may effect the order of the variables.
2133 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2134 __isl_take isl_basic_set
*context
)
2139 isl_basic_set
*aff_context
;
2142 if (!bset
|| !context
)
2145 context
= drop_irrelevant_constraints(context
, bset
);
2147 aff
= isl_basic_set_copy(bset
);
2148 aff
= isl_basic_set_intersect(aff
, isl_basic_set_copy(context
));
2149 aff
= isl_basic_set_affine_hull(aff
);
2152 if (isl_basic_set_plain_is_empty(aff
)) {
2153 isl_basic_set_free(bset
);
2154 isl_basic_set_free(context
);
2157 bset
= isl_basic_set_sort_constraints(bset
);
2158 if (aff
->n_eq
== 0) {
2159 isl_basic_set_free(aff
);
2160 return uset_gist_full(bset
, context
);
2162 total
= isl_basic_set_total_dim(bset
);
2163 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2164 eq
= isl_mat_cow(eq
);
2165 T
= isl_mat_variable_compression(eq
, &T2
);
2166 if (T
&& T
->n_col
== 0) {
2169 isl_basic_set_free(context
);
2170 isl_basic_set_free(aff
);
2171 return isl_basic_set_set_to_empty(bset
);
2174 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2176 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
2177 context
= isl_basic_set_preimage(context
, T
);
2179 bset
= uset_gist_full(bset
, context
);
2180 bset
= isl_basic_set_preimage(bset
, T2
);
2181 bset
= isl_basic_set_intersect(bset
, aff
);
2182 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2185 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2186 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2191 isl_basic_set_free(bset
);
2192 isl_basic_set_free(context
);
2196 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2197 * We simply add the equalities in context to bmap and then do a regular
2198 * div normalizations. Better results can be obtained by normalizing
2199 * only the divs in bmap than do not also appear in context.
2200 * We need to be careful to reduce the divs using the equalities
2201 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2202 * spurious constraints.
2204 static struct isl_basic_map
*normalize_divs_in_context(
2205 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
2208 unsigned total_context
;
2211 div_eq
= n_pure_div_eq(bmap
);
2215 bmap
= isl_basic_map_cow(bmap
);
2216 if (context
->n_div
> 0)
2217 bmap
= isl_basic_map_align_divs(bmap
, context
);
2219 total_context
= isl_basic_map_total_dim(context
);
2220 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
2221 for (i
= 0; i
< context
->n_eq
; ++i
) {
2223 k
= isl_basic_map_alloc_equality(bmap
);
2225 return isl_basic_map_free(bmap
);
2226 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
2227 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
2228 isl_basic_map_total_dim(bmap
) - total_context
);
2230 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2231 bmap
= normalize_divs(bmap
, NULL
);
2232 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2236 /* Return a basic map that has the same intersection with "context" as "bmap"
2237 * and that is as "simple" as possible.
2239 * The core computation is performed on the pure constraints.
2240 * When we add back the meaning of the integer divisions, we need
2241 * to (re)introduce the div constraints. If we happen to have
2242 * discovered that some of these integer divisions are equal to
2243 * some affine combination of other variables, then these div
2244 * constraints may end up getting simplified in terms of the equalities,
2245 * resulting in extra inequalities on the other variables that
2246 * may have been removed already or that may not even have been
2247 * part of the input. We try and remove those constraints of
2248 * this form that are most obviously redundant with respect to
2249 * the context. We also remove those div constraints that are
2250 * redundant with respect to the other constraints in the result.
2252 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
2253 struct isl_basic_map
*context
)
2255 isl_basic_set
*bset
, *eq
;
2256 isl_basic_map
*eq_bmap
;
2257 unsigned n_div
, n_eq
, n_ineq
;
2259 if (!bmap
|| !context
)
2262 if (isl_basic_map_is_universe(bmap
)) {
2263 isl_basic_map_free(context
);
2266 if (isl_basic_map_plain_is_empty(context
)) {
2267 isl_space
*space
= isl_basic_map_get_space(bmap
);
2268 isl_basic_map_free(bmap
);
2269 isl_basic_map_free(context
);
2270 return isl_basic_map_universe(space
);
2272 if (isl_basic_map_plain_is_empty(bmap
)) {
2273 isl_basic_map_free(context
);
2277 bmap
= isl_basic_map_remove_redundancies(bmap
);
2278 context
= isl_basic_map_remove_redundancies(context
);
2283 bmap
= normalize_divs_in_context(bmap
, context
);
2285 context
= isl_basic_map_align_divs(context
, bmap
);
2286 bmap
= isl_basic_map_align_divs(bmap
, context
);
2287 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2289 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
2290 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
2292 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
2293 isl_basic_set_plain_is_empty(bset
)) {
2294 isl_basic_map_free(context
);
2295 return isl_basic_map_overlying_set(bset
, bmap
);
2299 n_ineq
= bset
->n_ineq
;
2300 eq
= isl_basic_set_copy(bset
);
2301 eq
= isl_basic_set_cow(bset
);
2302 if (isl_basic_set_free_inequality(eq
, n_ineq
) < 0)
2303 eq
= isl_basic_set_free(eq
);
2304 if (isl_basic_set_free_equality(bset
, n_eq
) < 0)
2305 bset
= isl_basic_set_free(bset
);
2307 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
2308 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
2309 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
2310 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
2311 bmap
= isl_basic_map_remove_redundancies(bmap
);
2315 isl_basic_map_free(bmap
);
2316 isl_basic_map_free(context
);
2321 * Assumes context has no implicit divs.
2323 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
2324 __isl_take isl_basic_map
*context
)
2328 if (!map
|| !context
)
2331 if (isl_basic_map_plain_is_empty(context
)) {
2332 isl_space
*space
= isl_map_get_space(map
);
2334 isl_basic_map_free(context
);
2335 return isl_map_universe(space
);
2338 context
= isl_basic_map_remove_redundancies(context
);
2339 map
= isl_map_cow(map
);
2340 if (!map
|| !context
)
2342 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
2343 map
= isl_map_compute_divs(map
);
2346 for (i
= map
->n
- 1; i
>= 0; --i
) {
2347 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
2348 isl_basic_map_copy(context
));
2351 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
2352 isl_basic_map_free(map
->p
[i
]);
2353 if (i
!= map
->n
- 1)
2354 map
->p
[i
] = map
->p
[map
->n
- 1];
2358 isl_basic_map_free(context
);
2359 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2363 isl_basic_map_free(context
);
2367 /* Return a map that has the same intersection with "context" as "map"
2368 * and that is as "simple" as possible.
2370 * If "map" is already the universe, then we cannot make it any simpler.
2371 * Similarly, if "context" is the universe, then we cannot exploit it
2373 * If "map" and "context" are identical to each other, then we can
2374 * return the corresponding universe.
2376 * If none of these cases apply, we have to work a bit harder.
2377 * During this computation, we make use of a single disjunct context,
2378 * so if the original context consists of more than one disjunct
2379 * then we need to approximate the context by a single disjunct set.
2380 * Simply taking the simple hull may drop constraints that are
2381 * only implicitly available in each disjunct. We therefore also
2382 * look for constraints among those defining "map" that are valid
2383 * for the context. These can then be used to simplify away
2384 * the corresponding constraints in "map".
2386 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
2387 __isl_take isl_map
*context
)
2391 isl_basic_map
*hull
;
2393 is_universe
= isl_map_plain_is_universe(map
);
2394 if (is_universe
>= 0 && !is_universe
)
2395 is_universe
= isl_map_plain_is_universe(context
);
2396 if (is_universe
< 0)
2399 isl_map_free(context
);
2403 equal
= isl_map_plain_is_equal(map
, context
);
2407 isl_map
*res
= isl_map_universe(isl_map_get_space(map
));
2409 isl_map_free(context
);
2413 context
= isl_map_compute_divs(context
);
2416 if (isl_map_n_basic_map(context
) == 1) {
2417 hull
= isl_map_simple_hull(context
);
2422 ctx
= isl_map_get_ctx(map
);
2423 list
= isl_map_list_alloc(ctx
, 2);
2424 list
= isl_map_list_add(list
, isl_map_copy(context
));
2425 list
= isl_map_list_add(list
, isl_map_copy(map
));
2426 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
2429 return isl_map_gist_basic_map(map
, hull
);
2432 isl_map_free(context
);
2436 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
2437 __isl_take isl_map
*context
)
2439 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
2442 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
2443 struct isl_basic_set
*context
)
2445 return (struct isl_basic_set
*)isl_basic_map_gist(
2446 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
2449 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
2450 __isl_take isl_basic_set
*context
)
2452 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
2453 (struct isl_basic_map
*)context
);
2456 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
2457 __isl_take isl_basic_set
*context
)
2459 isl_space
*space
= isl_set_get_space(set
);
2460 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
2461 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
2462 return isl_set_gist_basic_set(set
, dom_context
);
2465 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
2466 __isl_take isl_set
*context
)
2468 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
2469 (struct isl_map
*)context
);
2472 /* Compute the gist of "bmap" with respect to the constraints "context"
2475 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
2476 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
2478 isl_space
*space
= isl_basic_map_get_space(bmap
);
2479 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
2481 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
2482 return isl_basic_map_gist(bmap
, bmap_context
);
2485 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
2486 __isl_take isl_set
*context
)
2488 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2489 map_context
= isl_map_intersect_domain(map_context
, context
);
2490 return isl_map_gist(map
, map_context
);
2493 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
2494 __isl_take isl_set
*context
)
2496 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2497 map_context
= isl_map_intersect_range(map_context
, context
);
2498 return isl_map_gist(map
, map_context
);
2501 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
2502 __isl_take isl_set
*context
)
2504 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2505 map_context
= isl_map_intersect_params(map_context
, context
);
2506 return isl_map_gist(map
, map_context
);
2509 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
2510 __isl_take isl_set
*context
)
2512 return isl_map_gist_params(set
, context
);
2515 /* Quick check to see if two basic maps are disjoint.
2516 * In particular, we reduce the equalities and inequalities of
2517 * one basic map in the context of the equalities of the other
2518 * basic map and check if we get a contradiction.
2520 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2521 __isl_keep isl_basic_map
*bmap2
)
2523 struct isl_vec
*v
= NULL
;
2528 if (!bmap1
|| !bmap2
)
2530 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
2532 if (bmap1
->n_div
|| bmap2
->n_div
)
2534 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
2537 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
2540 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
2543 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
2546 compute_elimination_index(bmap1
, elim
);
2547 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
2549 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
2551 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
2552 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2555 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
2557 reduced
= reduced_using_equalities(v
->block
.data
,
2558 bmap2
->ineq
[i
], bmap1
, elim
);
2559 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2560 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2563 compute_elimination_index(bmap2
, elim
);
2564 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
2566 reduced
= reduced_using_equalities(v
->block
.data
,
2567 bmap1
->ineq
[i
], bmap2
, elim
);
2568 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2569 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2585 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2586 __isl_keep isl_basic_set
*bset2
)
2588 return isl_basic_map_plain_is_disjoint((struct isl_basic_map
*)bset1
,
2589 (struct isl_basic_map
*)bset2
);
2592 /* Are "map1" and "map2" obviously disjoint?
2594 * If one of them is empty or if they live in different spaces (ignoring
2595 * parameters), then they are clearly disjoint.
2597 * If they have different parameters, then we skip any further tests.
2599 * If they are obviously equal, but not obviously empty, then we will
2600 * not be able to detect if they are disjoint.
2602 * Otherwise we check if each basic map in "map1" is obviously disjoint
2603 * from each basic map in "map2".
2605 int isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
2606 __isl_keep isl_map
*map2
)
2616 disjoint
= isl_map_plain_is_empty(map1
);
2617 if (disjoint
< 0 || disjoint
)
2620 disjoint
= isl_map_plain_is_empty(map2
);
2621 if (disjoint
< 0 || disjoint
)
2624 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_in
,
2625 map2
->dim
, isl_dim_in
);
2626 if (match
< 0 || !match
)
2627 return match
< 0 ? -1 : 1;
2629 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_out
,
2630 map2
->dim
, isl_dim_out
);
2631 if (match
< 0 || !match
)
2632 return match
< 0 ? -1 : 1;
2634 match
= isl_space_match(map1
->dim
, isl_dim_param
,
2635 map2
->dim
, isl_dim_param
);
2636 if (match
< 0 || !match
)
2637 return match
< 0 ? -1 : 0;
2639 intersect
= isl_map_plain_is_equal(map1
, map2
);
2640 if (intersect
< 0 || intersect
)
2641 return intersect
< 0 ? -1 : 0;
2643 for (i
= 0; i
< map1
->n
; ++i
) {
2644 for (j
= 0; j
< map2
->n
; ++j
) {
2645 int d
= isl_basic_map_plain_is_disjoint(map1
->p
[i
],
2654 /* Are "map1" and "map2" disjoint?
2656 * They are disjoint if they are "obviously disjoint" or if one of them
2657 * is empty. Otherwise, they are not disjoint if one of them is universal.
2658 * If none of these cases apply, we compute the intersection and see if
2659 * the result is empty.
2661 int isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
2667 disjoint
= isl_map_plain_is_disjoint(map1
, map2
);
2668 if (disjoint
< 0 || disjoint
)
2671 disjoint
= isl_map_is_empty(map1
);
2672 if (disjoint
< 0 || disjoint
)
2675 disjoint
= isl_map_is_empty(map2
);
2676 if (disjoint
< 0 || disjoint
)
2679 intersect
= isl_map_plain_is_universe(map1
);
2680 if (intersect
< 0 || intersect
)
2681 return intersect
< 0 ? -1 : 0;
2683 intersect
= isl_map_plain_is_universe(map2
);
2684 if (intersect
< 0 || intersect
)
2685 return intersect
< 0 ? -1 : 0;
2687 test
= isl_map_intersect(isl_map_copy(map1
), isl_map_copy(map2
));
2688 disjoint
= isl_map_is_empty(test
);
2694 /* Are "bmap1" and "bmap2" disjoint?
2696 * They are disjoint if they are "obviously disjoint" or if one of them
2697 * is empty. Otherwise, they are not disjoint if one of them is universal.
2698 * If none of these cases apply, we compute the intersection and see if
2699 * the result is empty.
2701 int isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2702 __isl_keep isl_basic_map
*bmap2
)
2706 isl_basic_map
*test
;
2708 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
2709 if (disjoint
< 0 || disjoint
)
2712 disjoint
= isl_basic_map_is_empty(bmap1
);
2713 if (disjoint
< 0 || disjoint
)
2716 disjoint
= isl_basic_map_is_empty(bmap2
);
2717 if (disjoint
< 0 || disjoint
)
2720 intersect
= isl_basic_map_is_universe(bmap1
);
2721 if (intersect
< 0 || intersect
)
2722 return intersect
< 0 ? -1 : 0;
2724 intersect
= isl_basic_map_is_universe(bmap2
);
2725 if (intersect
< 0 || intersect
)
2726 return intersect
< 0 ? -1 : 0;
2728 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
2729 isl_basic_map_copy(bmap2
));
2730 disjoint
= isl_basic_map_is_empty(test
);
2731 isl_basic_map_free(test
);
2736 /* Are "bset1" and "bset2" disjoint?
2738 int isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2739 __isl_keep isl_basic_set
*bset2
)
2741 return isl_basic_map_is_disjoint(bset1
, bset2
);
2744 int isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
2745 __isl_keep isl_set
*set2
)
2747 return isl_map_plain_is_disjoint((struct isl_map
*)set1
,
2748 (struct isl_map
*)set2
);
2751 /* Are "set1" and "set2" disjoint?
2753 int isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2755 return isl_map_is_disjoint(set1
, set2
);
2758 int isl_set_fast_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2760 return isl_set_plain_is_disjoint(set1
, set2
);
2763 /* Check if we can combine a given div with lower bound l and upper
2764 * bound u with some other div and if so return that other div.
2765 * Otherwise return -1.
2767 * We first check that
2768 * - the bounds are opposites of each other (except for the constant
2770 * - the bounds do not reference any other div
2771 * - no div is defined in terms of this div
2773 * Let m be the size of the range allowed on the div by the bounds.
2774 * That is, the bounds are of the form
2776 * e <= a <= e + m - 1
2778 * with e some expression in the other variables.
2779 * We look for another div b such that no third div is defined in terms
2780 * of this second div b and such that in any constraint that contains
2781 * a (except for the given lower and upper bound), also contains b
2782 * with a coefficient that is m times that of b.
2783 * That is, all constraints (execpt for the lower and upper bound)
2786 * e + f (a + m b) >= 0
2788 * If so, we return b so that "a + m b" can be replaced by
2789 * a single div "c = a + m b".
2791 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2792 unsigned div
, unsigned l
, unsigned u
)
2798 if (bmap
->n_div
<= 1)
2800 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2801 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2803 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2804 bmap
->n_div
- div
- 1) != -1)
2806 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2810 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2811 if (isl_int_is_zero(bmap
->div
[i
][0]))
2813 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2817 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2818 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2819 isl_int_sub(bmap
->ineq
[l
][0],
2820 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2821 bmap
= isl_basic_map_copy(bmap
);
2822 bmap
= isl_basic_map_set_to_empty(bmap
);
2823 isl_basic_map_free(bmap
);
2826 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2827 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2832 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2833 if (isl_int_is_zero(bmap
->div
[j
][0]))
2835 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2838 if (j
< bmap
->n_div
)
2840 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2842 if (j
== l
|| j
== u
)
2844 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2846 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2848 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2849 bmap
->ineq
[j
][1 + dim
+ div
],
2851 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2852 bmap
->ineq
[j
][1 + dim
+ i
]);
2853 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2854 bmap
->ineq
[j
][1 + dim
+ div
],
2859 if (j
< bmap
->n_ineq
)
2864 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2865 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2869 /* Given a lower and an upper bound on div i, construct an inequality
2870 * that when nonnegative ensures that this pair of bounds always allows
2871 * for an integer value of the given div.
2872 * The lower bound is inequality l, while the upper bound is inequality u.
2873 * The constructed inequality is stored in ineq.
2874 * g, fl, fu are temporary scalars.
2876 * Let the upper bound be
2880 * and the lower bound
2884 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2887 * - f_u e_l <= f_u f_l g a <= f_l e_u
2889 * Since all variables are integer valued, this is equivalent to
2891 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2893 * If this interval is at least f_u f_l g, then it contains at least
2894 * one integer value for a.
2895 * That is, the test constraint is
2897 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2899 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2900 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2903 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2905 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2906 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2907 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2908 isl_int_neg(fu
, fu
);
2909 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2910 1 + dim
+ bmap
->n_div
);
2911 isl_int_add(ineq
[0], ineq
[0], fl
);
2912 isl_int_add(ineq
[0], ineq
[0], fu
);
2913 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2914 isl_int_mul(g
, g
, fl
);
2915 isl_int_mul(g
, g
, fu
);
2916 isl_int_sub(ineq
[0], ineq
[0], g
);
2919 /* Remove more kinds of divs that are not strictly needed.
2920 * In particular, if all pairs of lower and upper bounds on a div
2921 * are such that they allow at least one integer value of the div,
2922 * the we can eliminate the div using Fourier-Motzkin without
2923 * introducing any spurious solutions.
2925 static struct isl_basic_map
*drop_more_redundant_divs(
2926 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2928 struct isl_tab
*tab
= NULL
;
2929 struct isl_vec
*vec
= NULL
;
2941 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2942 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2946 tab
= isl_tab_from_basic_map(bmap
, 0);
2951 enum isl_lp_result res
;
2953 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2956 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2962 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2963 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2965 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2966 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2968 construct_test_ineq(bmap
, i
, l
, u
,
2969 vec
->el
, g
, fl
, fu
);
2970 res
= isl_tab_min(tab
, vec
->el
,
2971 bmap
->ctx
->one
, &g
, NULL
, 0);
2972 if (res
== isl_lp_error
)
2974 if (res
== isl_lp_empty
) {
2975 bmap
= isl_basic_map_set_to_empty(bmap
);
2978 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2981 if (u
< bmap
->n_ineq
)
2984 if (l
== bmap
->n_ineq
) {
3004 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
3005 return isl_basic_map_drop_redundant_divs(bmap
);
3008 isl_basic_map_free(bmap
);
3017 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
3018 * and the upper bound u, div1 always occurs together with div2 in the form
3019 * (div1 + m div2), where m is the constant range on the variable div1
3020 * allowed by l and u, replace the pair div1 and div2 by a single
3021 * div that is equal to div1 + m div2.
3023 * The new div will appear in the location that contains div2.
3024 * We need to modify all constraints that contain
3025 * div2 = (div - div1) / m
3026 * (If a constraint does not contain div2, it will also not contain div1.)
3027 * If the constraint also contains div1, then we know they appear
3028 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
3029 * i.e., the coefficient of div is f.
3031 * Otherwise, we first need to introduce div1 into the constraint.
3040 * A lower bound on div2
3044 * can be replaced by
3046 * (n * (m div 2 + div1) + m t + n f)/g >= 0
3048 * with g = gcd(m,n).
3053 * can be replaced by
3055 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3057 * These constraint are those that we would obtain from eliminating
3058 * div1 using Fourier-Motzkin.
3060 * After all constraints have been modified, we drop the lower and upper
3061 * bound and then drop div1.
3063 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
3064 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
3069 unsigned dim
, total
;
3072 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3073 total
= 1 + dim
+ bmap
->n_div
;
3078 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3079 isl_int_add_ui(m
, m
, 1);
3081 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3082 if (i
== l
|| i
== u
)
3084 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
3086 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
3087 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
3088 isl_int_divexact(a
, m
, b
);
3089 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
3090 if (isl_int_is_pos(b
)) {
3091 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
3092 b
, bmap
->ineq
[l
], total
);
3095 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
3096 b
, bmap
->ineq
[u
], total
);
3099 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
3100 bmap
->ineq
[i
][1 + dim
+ div1
]);
3101 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
3108 isl_basic_map_drop_inequality(bmap
, l
);
3109 isl_basic_map_drop_inequality(bmap
, u
);
3111 isl_basic_map_drop_inequality(bmap
, u
);
3112 isl_basic_map_drop_inequality(bmap
, l
);
3114 bmap
= isl_basic_map_drop_div(bmap
, div1
);
3118 /* First check if we can coalesce any pair of divs and
3119 * then continue with dropping more redundant divs.
3121 * We loop over all pairs of lower and upper bounds on a div
3122 * with coefficient 1 and -1, respectively, check if there
3123 * is any other div "c" with which we can coalesce the div
3124 * and if so, perform the coalescing.
3126 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
3127 struct isl_basic_map
*bmap
, int *pairs
, int n
)
3132 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3134 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3137 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
3138 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
3140 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
3143 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
3145 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
3149 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
3150 return isl_basic_map_drop_redundant_divs(bmap
);
3155 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
3158 return drop_more_redundant_divs(bmap
, pairs
, n
);
3161 /* Remove divs that are not strictly needed.
3162 * In particular, if a div only occurs positively (or negatively)
3163 * in constraints, then it can simply be dropped.
3164 * Also, if a div occurs in only two constraints and if moreover
3165 * those two constraints are opposite to each other, except for the constant
3166 * term and if the sum of the constant terms is such that for any value
3167 * of the other values, there is always at least one integer value of the
3168 * div, i.e., if one plus this sum is greater than or equal to
3169 * the (absolute value) of the coefficent of the div in the constraints,
3170 * then we can also simply drop the div.
3172 * We skip divs that appear in equalities or in the definition of other divs.
3173 * Divs that appear in the definition of other divs usually occur in at least
3174 * 4 constraints, but the constraints may have been simplified.
3176 * If any divs are left after these simple checks then we move on
3177 * to more complicated cases in drop_more_redundant_divs.
3179 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
3180 struct isl_basic_map
*bmap
)
3189 if (bmap
->n_div
== 0)
3192 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3193 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
3197 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3199 int last_pos
, last_neg
;
3203 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
3204 for (j
= i
; j
< bmap
->n_div
; ++j
)
3205 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
3207 if (j
< bmap
->n_div
)
3209 for (j
= 0; j
< bmap
->n_eq
; ++j
)
3210 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
3216 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
3217 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
3221 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
3226 pairs
[i
] = pos
* neg
;
3227 if (pairs
[i
] == 0) {
3228 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
3229 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
3230 isl_basic_map_drop_inequality(bmap
, j
);
3231 bmap
= isl_basic_map_drop_div(bmap
, i
);
3233 return isl_basic_map_drop_redundant_divs(bmap
);
3237 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
3238 bmap
->ineq
[last_neg
] + 1,
3242 isl_int_add(bmap
->ineq
[last_pos
][0],
3243 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3244 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
3245 bmap
->ineq
[last_pos
][0], 1);
3246 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
3247 bmap
->ineq
[last_pos
][1+off
+i
]);
3248 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
3249 bmap
->ineq
[last_pos
][0], 1);
3250 isl_int_sub(bmap
->ineq
[last_pos
][0],
3251 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3254 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
3259 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
3260 bmap
= isl_basic_map_simplify(bmap
);
3262 return isl_basic_map_drop_redundant_divs(bmap
);
3264 if (last_pos
> last_neg
) {
3265 isl_basic_map_drop_inequality(bmap
, last_pos
);
3266 isl_basic_map_drop_inequality(bmap
, last_neg
);
3268 isl_basic_map_drop_inequality(bmap
, last_neg
);
3269 isl_basic_map_drop_inequality(bmap
, last_pos
);
3271 bmap
= isl_basic_map_drop_div(bmap
, i
);
3273 return isl_basic_map_drop_redundant_divs(bmap
);
3277 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
3283 isl_basic_map_free(bmap
);
3287 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
3288 struct isl_basic_set
*bset
)
3290 return (struct isl_basic_set
*)
3291 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
3294 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
3300 for (i
= 0; i
< map
->n
; ++i
) {
3301 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
3305 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3312 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
3314 return (struct isl_set
*)
3315 isl_map_drop_redundant_divs((struct isl_map
*)set
);
3318 /* Does "bmap" satisfy any equality that involves more than 2 variables
3319 * and/or has coefficients different from -1 and 1?
3321 static int has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
3326 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3328 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
3331 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
3334 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
3335 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
3339 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
3343 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
3344 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
3348 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
3356 /* Remove any common factor g from the constraint coefficients in "v".
3357 * The constant term is stored in the first position and is replaced
3358 * by floor(c/g). If any common factor is removed and if this results
3359 * in a tightening of the constraint, then set *tightened.
3361 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
3368 ctx
= isl_vec_get_ctx(v
);
3369 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
3370 if (isl_int_is_zero(ctx
->normalize_gcd
))
3372 if (isl_int_is_one(ctx
->normalize_gcd
))
3377 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
3379 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
3380 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
3385 /* If "bmap" is an integer set that satisfies any equality involving
3386 * more than 2 variables and/or has coefficients different from -1 and 1,
3387 * then use variable compression to reduce the coefficients by removing
3388 * any (hidden) common factor.
3389 * In particular, apply the variable compression to each constraint,
3390 * factor out any common factor in the non-constant coefficients and
3391 * then apply the inverse of the compression.
3392 * At the end, we mark the basic map as having reduced constants.
3393 * If this flag is still set on the next invocation of this function,
3394 * then we skip the computation.
3396 * Removing a common factor may result in a tightening of some of
3397 * the constraints. If this happens, then we may end up with two
3398 * opposite inequalities that can be replaced by an equality.
3399 * We therefore call isl_basic_map_detect_inequality_pairs,
3400 * which checks for such pairs of inequalities as well as eliminate_divs_eq
3401 * if such a pair was found.
3403 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
3404 __isl_take isl_basic_map
*bmap
)
3409 isl_mat
*eq
, *T
, *T2
;
3415 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
3417 if (isl_basic_map_is_rational(bmap
))
3419 if (bmap
->n_eq
== 0)
3421 if (!has_multiple_var_equality(bmap
))
3424 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3425 ctx
= isl_basic_map_get_ctx(bmap
);
3426 v
= isl_vec_alloc(ctx
, 1 + total
);
3428 return isl_basic_map_free(bmap
);
3430 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
3431 T
= isl_mat_variable_compression(eq
, &T2
);
3434 if (T
->n_col
== 0) {
3438 return isl_basic_map_set_to_empty(bmap
);
3442 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3443 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
3444 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
3445 v
= normalize_constraint(v
, &tightened
);
3446 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
3449 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
3456 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
3461 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
3463 bmap
= eliminate_divs_eq(bmap
, &progress
);
3471 return isl_basic_map_free(bmap
);
3474 /* Shift the integer division at position "div" of "bmap" by "shift".
3476 * That is, if the integer division has the form
3480 * then replace it by
3482 * floor((f(x) + shift * d)/d) - shift
3484 __isl_give isl_basic_map
*isl_basic_map_shift_div(
3485 __isl_take isl_basic_map
*bmap
, int div
, isl_int shift
)
3493 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3494 total
-= isl_basic_map_dim(bmap
, isl_dim_div
);
3496 isl_int_addmul(bmap
->div
[div
][1], shift
, bmap
->div
[div
][0]);
3498 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
3499 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
3501 isl_int_submul(bmap
->eq
[i
][0],
3502 shift
, bmap
->eq
[i
][1 + total
+ div
]);
3504 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3505 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
3507 isl_int_submul(bmap
->ineq
[i
][0],
3508 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
3510 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3511 if (isl_int_is_zero(bmap
->div
[i
][0]))
3513 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
3515 isl_int_submul(bmap
->div
[i
][1],
3516 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);