isl_scheduler.c: setup_lp: extract out count_bound_constant_constraints
[isl.git] / isl_scheduler.c
blob371d82b60b70c1d28c80d35a25dc7688cef71768
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_space_private.h>
17 #include <isl_aff_private.h>
18 #include <isl/hash.h>
19 #include <isl/constraint.h>
20 #include <isl/schedule.h>
21 #include <isl/schedule_node.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl/set.h>
25 #include <isl/union_set.h>
26 #include <isl_seq.h>
27 #include <isl_tab.h>
28 #include <isl_dim_map.h>
29 #include <isl/map_to_basic_set.h>
30 #include <isl_sort.h>
31 #include <isl_options_private.h>
32 #include <isl_tarjan.h>
33 #include <isl_morph.h>
36 * The scheduling algorithm implemented in this file was inspired by
37 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
38 * Parallelization and Locality Optimization in the Polyhedral Model".
41 enum isl_edge_type {
42 isl_edge_validity = 0,
43 isl_edge_first = isl_edge_validity,
44 isl_edge_coincidence,
45 isl_edge_condition,
46 isl_edge_conditional_validity,
47 isl_edge_proximity,
48 isl_edge_last = isl_edge_proximity,
49 isl_edge_local
52 /* The constraints that need to be satisfied by a schedule on "domain".
54 * "context" specifies extra constraints on the parameters.
56 * "validity" constraints map domain elements i to domain elements
57 * that should be scheduled after i. (Hard constraint)
58 * "proximity" constraints map domain elements i to domains elements
59 * that should be scheduled as early as possible after i (or before i).
60 * (Soft constraint)
62 * "condition" and "conditional_validity" constraints map possibly "tagged"
63 * domain elements i -> s to "tagged" domain elements j -> t.
64 * The elements of the "conditional_validity" constraints, but without the
65 * tags (i.e., the elements i -> j) are treated as validity constraints,
66 * except that during the construction of a tilable band,
67 * the elements of the "conditional_validity" constraints may be violated
68 * provided that all adjacent elements of the "condition" constraints
69 * are local within the band.
70 * A dependence is local within a band if domain and range are mapped
71 * to the same schedule point by the band.
73 struct isl_schedule_constraints {
74 isl_union_set *domain;
75 isl_set *context;
77 isl_union_map *constraint[isl_edge_last + 1];
80 __isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
81 __isl_keep isl_schedule_constraints *sc)
83 isl_ctx *ctx;
84 isl_schedule_constraints *sc_copy;
85 enum isl_edge_type i;
87 ctx = isl_union_set_get_ctx(sc->domain);
88 sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
89 if (!sc_copy)
90 return NULL;
92 sc_copy->domain = isl_union_set_copy(sc->domain);
93 sc_copy->context = isl_set_copy(sc->context);
94 if (!sc_copy->domain || !sc_copy->context)
95 return isl_schedule_constraints_free(sc_copy);
97 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
98 sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
99 if (!sc_copy->constraint[i])
100 return isl_schedule_constraints_free(sc_copy);
103 return sc_copy;
107 /* Construct an isl_schedule_constraints object for computing a schedule
108 * on "domain". The initial object does not impose any constraints.
110 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
111 __isl_take isl_union_set *domain)
113 isl_ctx *ctx;
114 isl_space *space;
115 isl_schedule_constraints *sc;
116 isl_union_map *empty;
117 enum isl_edge_type i;
119 if (!domain)
120 return NULL;
122 ctx = isl_union_set_get_ctx(domain);
123 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
124 if (!sc)
125 goto error;
127 space = isl_union_set_get_space(domain);
128 sc->domain = domain;
129 sc->context = isl_set_universe(isl_space_copy(space));
130 empty = isl_union_map_empty(space);
131 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
132 sc->constraint[i] = isl_union_map_copy(empty);
133 if (!sc->constraint[i])
134 sc->domain = isl_union_set_free(sc->domain);
136 isl_union_map_free(empty);
138 if (!sc->domain || !sc->context)
139 return isl_schedule_constraints_free(sc);
141 return sc;
142 error:
143 isl_union_set_free(domain);
144 return NULL;
147 /* Replace the context of "sc" by "context".
149 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_context(
150 __isl_take isl_schedule_constraints *sc, __isl_take isl_set *context)
152 if (!sc || !context)
153 goto error;
155 isl_set_free(sc->context);
156 sc->context = context;
158 return sc;
159 error:
160 isl_schedule_constraints_free(sc);
161 isl_set_free(context);
162 return NULL;
165 /* Replace the validity constraints of "sc" by "validity".
167 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
168 __isl_take isl_schedule_constraints *sc,
169 __isl_take isl_union_map *validity)
171 if (!sc || !validity)
172 goto error;
174 isl_union_map_free(sc->constraint[isl_edge_validity]);
175 sc->constraint[isl_edge_validity] = validity;
177 return sc;
178 error:
179 isl_schedule_constraints_free(sc);
180 isl_union_map_free(validity);
181 return NULL;
184 /* Replace the coincidence constraints of "sc" by "coincidence".
186 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
187 __isl_take isl_schedule_constraints *sc,
188 __isl_take isl_union_map *coincidence)
190 if (!sc || !coincidence)
191 goto error;
193 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
194 sc->constraint[isl_edge_coincidence] = coincidence;
196 return sc;
197 error:
198 isl_schedule_constraints_free(sc);
199 isl_union_map_free(coincidence);
200 return NULL;
203 /* Replace the proximity constraints of "sc" by "proximity".
205 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
206 __isl_take isl_schedule_constraints *sc,
207 __isl_take isl_union_map *proximity)
209 if (!sc || !proximity)
210 goto error;
212 isl_union_map_free(sc->constraint[isl_edge_proximity]);
213 sc->constraint[isl_edge_proximity] = proximity;
215 return sc;
216 error:
217 isl_schedule_constraints_free(sc);
218 isl_union_map_free(proximity);
219 return NULL;
222 /* Replace the conditional validity constraints of "sc" by "condition"
223 * and "validity".
225 __isl_give isl_schedule_constraints *
226 isl_schedule_constraints_set_conditional_validity(
227 __isl_take isl_schedule_constraints *sc,
228 __isl_take isl_union_map *condition,
229 __isl_take isl_union_map *validity)
231 if (!sc || !condition || !validity)
232 goto error;
234 isl_union_map_free(sc->constraint[isl_edge_condition]);
235 sc->constraint[isl_edge_condition] = condition;
236 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
237 sc->constraint[isl_edge_conditional_validity] = validity;
239 return sc;
240 error:
241 isl_schedule_constraints_free(sc);
242 isl_union_map_free(condition);
243 isl_union_map_free(validity);
244 return NULL;
247 __isl_null isl_schedule_constraints *isl_schedule_constraints_free(
248 __isl_take isl_schedule_constraints *sc)
250 enum isl_edge_type i;
252 if (!sc)
253 return NULL;
255 isl_union_set_free(sc->domain);
256 isl_set_free(sc->context);
257 for (i = isl_edge_first; i <= isl_edge_last; ++i)
258 isl_union_map_free(sc->constraint[i]);
260 free(sc);
262 return NULL;
265 isl_ctx *isl_schedule_constraints_get_ctx(
266 __isl_keep isl_schedule_constraints *sc)
268 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
271 /* Return the domain of "sc".
273 __isl_give isl_union_set *isl_schedule_constraints_get_domain(
274 __isl_keep isl_schedule_constraints *sc)
276 if (!sc)
277 return NULL;
279 return isl_union_set_copy(sc->domain);
282 /* Return the validity constraints of "sc".
284 __isl_give isl_union_map *isl_schedule_constraints_get_validity(
285 __isl_keep isl_schedule_constraints *sc)
287 if (!sc)
288 return NULL;
290 return isl_union_map_copy(sc->constraint[isl_edge_validity]);
293 /* Return the coincidence constraints of "sc".
295 __isl_give isl_union_map *isl_schedule_constraints_get_coincidence(
296 __isl_keep isl_schedule_constraints *sc)
298 if (!sc)
299 return NULL;
301 return isl_union_map_copy(sc->constraint[isl_edge_coincidence]);
304 /* Return the proximity constraints of "sc".
306 __isl_give isl_union_map *isl_schedule_constraints_get_proximity(
307 __isl_keep isl_schedule_constraints *sc)
309 if (!sc)
310 return NULL;
312 return isl_union_map_copy(sc->constraint[isl_edge_proximity]);
315 /* Return the conditional validity constraints of "sc".
317 __isl_give isl_union_map *isl_schedule_constraints_get_conditional_validity(
318 __isl_keep isl_schedule_constraints *sc)
320 if (!sc)
321 return NULL;
323 return
324 isl_union_map_copy(sc->constraint[isl_edge_conditional_validity]);
327 /* Return the conditions for the conditional validity constraints of "sc".
329 __isl_give isl_union_map *
330 isl_schedule_constraints_get_conditional_validity_condition(
331 __isl_keep isl_schedule_constraints *sc)
333 if (!sc)
334 return NULL;
336 return isl_union_map_copy(sc->constraint[isl_edge_condition]);
339 /* Can a schedule constraint of type "type" be tagged?
341 static int may_be_tagged(enum isl_edge_type type)
343 if (type == isl_edge_condition || type == isl_edge_conditional_validity)
344 return 1;
345 return 0;
348 /* Apply "umap" to the domains of the wrapped relations
349 * inside the domain and range of "c".
351 * That is, for each map of the form
353 * [D -> S] -> [E -> T]
355 * in "c", apply "umap" to D and E.
357 * D is exposed by currying the relation to
359 * D -> [S -> [E -> T]]
361 * E is exposed by doing the same to the inverse of "c".
363 static __isl_give isl_union_map *apply_factor_domain(
364 __isl_take isl_union_map *c, __isl_keep isl_union_map *umap)
366 c = isl_union_map_curry(c);
367 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
368 c = isl_union_map_uncurry(c);
370 c = isl_union_map_reverse(c);
371 c = isl_union_map_curry(c);
372 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
373 c = isl_union_map_uncurry(c);
374 c = isl_union_map_reverse(c);
376 return c;
379 /* Apply "umap" to domain and range of "c".
380 * If "tag" is set, then "c" may contain tags and then "umap"
381 * needs to be applied to the domains of the wrapped relations
382 * inside the domain and range of "c".
384 static __isl_give isl_union_map *apply(__isl_take isl_union_map *c,
385 __isl_keep isl_union_map *umap, int tag)
387 isl_union_map *t;
389 if (tag)
390 t = isl_union_map_copy(c);
391 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
392 c = isl_union_map_apply_range(c, isl_union_map_copy(umap));
393 if (!tag)
394 return c;
395 t = apply_factor_domain(t, umap);
396 c = isl_union_map_union(c, t);
397 return c;
400 /* Apply "umap" to the domain of the schedule constraints "sc".
402 * The two sides of the various schedule constraints are adjusted
403 * accordingly.
405 __isl_give isl_schedule_constraints *isl_schedule_constraints_apply(
406 __isl_take isl_schedule_constraints *sc,
407 __isl_take isl_union_map *umap)
409 enum isl_edge_type i;
411 if (!sc || !umap)
412 goto error;
414 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
415 int tag = may_be_tagged(i);
417 sc->constraint[i] = apply(sc->constraint[i], umap, tag);
418 if (!sc->constraint[i])
419 goto error;
421 sc->domain = isl_union_set_apply(sc->domain, umap);
422 if (!sc->domain)
423 return isl_schedule_constraints_free(sc);
425 return sc;
426 error:
427 isl_schedule_constraints_free(sc);
428 isl_union_map_free(umap);
429 return NULL;
432 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
434 if (!sc)
435 return;
437 fprintf(stderr, "domain: ");
438 isl_union_set_dump(sc->domain);
439 fprintf(stderr, "context: ");
440 isl_set_dump(sc->context);
441 fprintf(stderr, "validity: ");
442 isl_union_map_dump(sc->constraint[isl_edge_validity]);
443 fprintf(stderr, "proximity: ");
444 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
445 fprintf(stderr, "coincidence: ");
446 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
447 fprintf(stderr, "condition: ");
448 isl_union_map_dump(sc->constraint[isl_edge_condition]);
449 fprintf(stderr, "conditional_validity: ");
450 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
453 /* Align the parameters of the fields of "sc".
455 static __isl_give isl_schedule_constraints *
456 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
458 isl_space *space;
459 enum isl_edge_type i;
461 if (!sc)
462 return NULL;
464 space = isl_union_set_get_space(sc->domain);
465 space = isl_space_align_params(space, isl_set_get_space(sc->context));
466 for (i = isl_edge_first; i <= isl_edge_last; ++i)
467 space = isl_space_align_params(space,
468 isl_union_map_get_space(sc->constraint[i]));
470 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
471 sc->constraint[i] = isl_union_map_align_params(
472 sc->constraint[i], isl_space_copy(space));
473 if (!sc->constraint[i])
474 space = isl_space_free(space);
476 sc->context = isl_set_align_params(sc->context, isl_space_copy(space));
477 sc->domain = isl_union_set_align_params(sc->domain, space);
478 if (!sc->context || !sc->domain)
479 return isl_schedule_constraints_free(sc);
481 return sc;
484 /* Return the total number of isl_maps in the constraints of "sc".
486 static __isl_give int isl_schedule_constraints_n_map(
487 __isl_keep isl_schedule_constraints *sc)
489 enum isl_edge_type i;
490 int n = 0;
492 for (i = isl_edge_first; i <= isl_edge_last; ++i)
493 n += isl_union_map_n_map(sc->constraint[i]);
495 return n;
498 /* Internal information about a node that is used during the construction
499 * of a schedule.
500 * space represents the space in which the domain lives
501 * sched is a matrix representation of the schedule being constructed
502 * for this node; if compressed is set, then this schedule is
503 * defined over the compressed domain space
504 * sched_map is an isl_map representation of the same (partial) schedule
505 * sched_map may be NULL; if compressed is set, then this map
506 * is defined over the uncompressed domain space
507 * rank is the number of linearly independent rows in the linear part
508 * of sched
509 * the columns of cmap represent a change of basis for the schedule
510 * coefficients; the first rank columns span the linear part of
511 * the schedule rows
512 * cinv is the inverse of cmap.
513 * ctrans is the transpose of cmap.
514 * start is the first variable in the LP problem in the sequences that
515 * represents the schedule coefficients of this node
516 * nvar is the dimension of the domain
517 * nparam is the number of parameters or 0 if we are not constructing
518 * a parametric schedule
520 * If compressed is set, then hull represents the constraints
521 * that were used to derive the compression, while compress and
522 * decompress map the original space to the compressed space and
523 * vice versa.
525 * scc is the index of SCC (or WCC) this node belongs to
527 * "cluster" is only used inside extract_clusters and identifies
528 * the cluster of SCCs that the node belongs to.
530 * coincident contains a boolean for each of the rows of the schedule,
531 * indicating whether the corresponding scheduling dimension satisfies
532 * the coincidence constraints in the sense that the corresponding
533 * dependence distances are zero.
535 struct isl_sched_node {
536 isl_space *space;
537 int compressed;
538 isl_set *hull;
539 isl_multi_aff *compress;
540 isl_multi_aff *decompress;
541 isl_mat *sched;
542 isl_map *sched_map;
543 int rank;
544 isl_mat *cmap;
545 isl_mat *cinv;
546 isl_mat *ctrans;
547 int start;
548 int nvar;
549 int nparam;
551 int scc;
552 int cluster;
554 int *coincident;
557 static int node_has_space(const void *entry, const void *val)
559 struct isl_sched_node *node = (struct isl_sched_node *)entry;
560 isl_space *dim = (isl_space *)val;
562 return isl_space_is_equal(node->space, dim);
565 static int node_scc_exactly(struct isl_sched_node *node, int scc)
567 return node->scc == scc;
570 static int node_scc_at_most(struct isl_sched_node *node, int scc)
572 return node->scc <= scc;
575 static int node_scc_at_least(struct isl_sched_node *node, int scc)
577 return node->scc >= scc;
580 /* An edge in the dependence graph. An edge may be used to
581 * ensure validity of the generated schedule, to minimize the dependence
582 * distance or both
584 * map is the dependence relation, with i -> j in the map if j depends on i
585 * tagged_condition and tagged_validity contain the union of all tagged
586 * condition or conditional validity dependence relations that
587 * specialize the dependence relation "map"; that is,
588 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
589 * or "tagged_validity", then i -> j is an element of "map".
590 * If these fields are NULL, then they represent the empty relation.
591 * src is the source node
592 * dst is the sink node
594 * types is a bit vector containing the types of this edge.
595 * validity is set if the edge is used to ensure correctness
596 * coincidence is used to enforce zero dependence distances
597 * proximity is set if the edge is used to minimize dependence distances
598 * condition is set if the edge represents a condition
599 * for a conditional validity schedule constraint
600 * local can only be set for condition edges and indicates that
601 * the dependence distance over the edge should be zero
602 * conditional_validity is set if the edge is used to conditionally
603 * ensure correctness
605 * For validity edges, start and end mark the sequence of inequality
606 * constraints in the LP problem that encode the validity constraint
607 * corresponding to this edge.
609 * During clustering, an edge may be marked "no_merge" if it should
610 * not be used to merge clusters.
611 * The weight is also only used during clustering and it is
612 * an indication of how many schedule dimensions on either side
613 * of the schedule constraints can be aligned.
614 * If the weight is negative, then this means that this edge was postponed
615 * by has_bounded_distances or any_no_merge. The original weight can
616 * be retrieved by adding 1 + graph->max_weight, with "graph"
617 * the graph containing this edge.
619 struct isl_sched_edge {
620 isl_map *map;
621 isl_union_map *tagged_condition;
622 isl_union_map *tagged_validity;
624 struct isl_sched_node *src;
625 struct isl_sched_node *dst;
627 unsigned types;
629 int start;
630 int end;
632 int no_merge;
633 int weight;
636 /* Is "edge" marked as being of type "type"?
638 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
640 return ISL_FL_ISSET(edge->types, 1 << type);
643 /* Mark "edge" as being of type "type".
645 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
647 ISL_FL_SET(edge->types, 1 << type);
650 /* No longer mark "edge" as being of type "type"?
652 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
654 ISL_FL_CLR(edge->types, 1 << type);
657 /* Is "edge" marked as a validity edge?
659 static int is_validity(struct isl_sched_edge *edge)
661 return is_type(edge, isl_edge_validity);
664 /* Mark "edge" as a validity edge.
666 static void set_validity(struct isl_sched_edge *edge)
668 set_type(edge, isl_edge_validity);
671 /* Is "edge" marked as a proximity edge?
673 static int is_proximity(struct isl_sched_edge *edge)
675 return is_type(edge, isl_edge_proximity);
678 /* Is "edge" marked as a local edge?
680 static int is_local(struct isl_sched_edge *edge)
682 return is_type(edge, isl_edge_local);
685 /* Mark "edge" as a local edge.
687 static void set_local(struct isl_sched_edge *edge)
689 set_type(edge, isl_edge_local);
692 /* No longer mark "edge" as a local edge.
694 static void clear_local(struct isl_sched_edge *edge)
696 clear_type(edge, isl_edge_local);
699 /* Is "edge" marked as a coincidence edge?
701 static int is_coincidence(struct isl_sched_edge *edge)
703 return is_type(edge, isl_edge_coincidence);
706 /* Is "edge" marked as a condition edge?
708 static int is_condition(struct isl_sched_edge *edge)
710 return is_type(edge, isl_edge_condition);
713 /* Is "edge" marked as a conditional validity edge?
715 static int is_conditional_validity(struct isl_sched_edge *edge)
717 return is_type(edge, isl_edge_conditional_validity);
720 /* Internal information about the dependence graph used during
721 * the construction of the schedule.
723 * intra_hmap is a cache, mapping dependence relations to their dual,
724 * for dependences from a node to itself
725 * inter_hmap is a cache, mapping dependence relations to their dual,
726 * for dependences between distinct nodes
727 * if compression is involved then the key for these maps
728 * is the original, uncompressed dependence relation, while
729 * the value is the dual of the compressed dependence relation.
731 * n is the number of nodes
732 * node is the list of nodes
733 * maxvar is the maximal number of variables over all nodes
734 * max_row is the allocated number of rows in the schedule
735 * n_row is the current (maximal) number of linearly independent
736 * rows in the node schedules
737 * n_total_row is the current number of rows in the node schedules
738 * band_start is the starting row in the node schedules of the current band
739 * root is set if this graph is the original dependence graph,
740 * without any splitting
742 * sorted contains a list of node indices sorted according to the
743 * SCC to which a node belongs
745 * n_edge is the number of edges
746 * edge is the list of edges
747 * max_edge contains the maximal number of edges of each type;
748 * in particular, it contains the number of edges in the inital graph.
749 * edge_table contains pointers into the edge array, hashed on the source
750 * and sink spaces; there is one such table for each type;
751 * a given edge may be referenced from more than one table
752 * if the corresponding relation appears in more than one of the
753 * sets of dependences; however, for each type there is only
754 * a single edge between a given pair of source and sink space
755 * in the entire graph
757 * node_table contains pointers into the node array, hashed on the space
759 * region contains a list of variable sequences that should be non-trivial
761 * lp contains the (I)LP problem used to obtain new schedule rows
763 * src_scc and dst_scc are the source and sink SCCs of an edge with
764 * conflicting constraints
766 * scc represents the number of components
767 * weak is set if the components are weakly connected
769 * max_weight is used during clustering and represents the maximal
770 * weight of the relevant proximity edges.
772 struct isl_sched_graph {
773 isl_map_to_basic_set *intra_hmap;
774 isl_map_to_basic_set *inter_hmap;
776 struct isl_sched_node *node;
777 int n;
778 int maxvar;
779 int max_row;
780 int n_row;
782 int *sorted;
784 int n_total_row;
785 int band_start;
787 int root;
789 struct isl_sched_edge *edge;
790 int n_edge;
791 int max_edge[isl_edge_last + 1];
792 struct isl_hash_table *edge_table[isl_edge_last + 1];
794 struct isl_hash_table *node_table;
795 struct isl_region *region;
797 isl_basic_set *lp;
799 int src_scc;
800 int dst_scc;
802 int scc;
803 int weak;
805 int max_weight;
808 /* Initialize node_table based on the list of nodes.
810 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
812 int i;
814 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
815 if (!graph->node_table)
816 return -1;
818 for (i = 0; i < graph->n; ++i) {
819 struct isl_hash_table_entry *entry;
820 uint32_t hash;
822 hash = isl_space_get_hash(graph->node[i].space);
823 entry = isl_hash_table_find(ctx, graph->node_table, hash,
824 &node_has_space,
825 graph->node[i].space, 1);
826 if (!entry)
827 return -1;
828 entry->data = &graph->node[i];
831 return 0;
834 /* Return a pointer to the node that lives within the given space,
835 * or NULL if there is no such node.
837 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
838 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
840 struct isl_hash_table_entry *entry;
841 uint32_t hash;
843 hash = isl_space_get_hash(dim);
844 entry = isl_hash_table_find(ctx, graph->node_table, hash,
845 &node_has_space, dim, 0);
847 return entry ? entry->data : NULL;
850 static int edge_has_src_and_dst(const void *entry, const void *val)
852 const struct isl_sched_edge *edge = entry;
853 const struct isl_sched_edge *temp = val;
855 return edge->src == temp->src && edge->dst == temp->dst;
858 /* Add the given edge to graph->edge_table[type].
860 static isl_stat graph_edge_table_add(isl_ctx *ctx,
861 struct isl_sched_graph *graph, enum isl_edge_type type,
862 struct isl_sched_edge *edge)
864 struct isl_hash_table_entry *entry;
865 uint32_t hash;
867 hash = isl_hash_init();
868 hash = isl_hash_builtin(hash, edge->src);
869 hash = isl_hash_builtin(hash, edge->dst);
870 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
871 &edge_has_src_and_dst, edge, 1);
872 if (!entry)
873 return isl_stat_error;
874 entry->data = edge;
876 return isl_stat_ok;
879 /* Allocate the edge_tables based on the maximal number of edges of
880 * each type.
882 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
884 int i;
886 for (i = 0; i <= isl_edge_last; ++i) {
887 graph->edge_table[i] = isl_hash_table_alloc(ctx,
888 graph->max_edge[i]);
889 if (!graph->edge_table[i])
890 return -1;
893 return 0;
896 /* If graph->edge_table[type] contains an edge from the given source
897 * to the given destination, then return the hash table entry of this edge.
898 * Otherwise, return NULL.
900 static struct isl_hash_table_entry *graph_find_edge_entry(
901 struct isl_sched_graph *graph,
902 enum isl_edge_type type,
903 struct isl_sched_node *src, struct isl_sched_node *dst)
905 isl_ctx *ctx = isl_space_get_ctx(src->space);
906 uint32_t hash;
907 struct isl_sched_edge temp = { .src = src, .dst = dst };
909 hash = isl_hash_init();
910 hash = isl_hash_builtin(hash, temp.src);
911 hash = isl_hash_builtin(hash, temp.dst);
912 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
913 &edge_has_src_and_dst, &temp, 0);
917 /* If graph->edge_table[type] contains an edge from the given source
918 * to the given destination, then return this edge.
919 * Otherwise, return NULL.
921 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
922 enum isl_edge_type type,
923 struct isl_sched_node *src, struct isl_sched_node *dst)
925 struct isl_hash_table_entry *entry;
927 entry = graph_find_edge_entry(graph, type, src, dst);
928 if (!entry)
929 return NULL;
931 return entry->data;
934 /* Check whether the dependence graph has an edge of the given type
935 * between the given two nodes.
937 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
938 enum isl_edge_type type,
939 struct isl_sched_node *src, struct isl_sched_node *dst)
941 struct isl_sched_edge *edge;
942 isl_bool empty;
944 edge = graph_find_edge(graph, type, src, dst);
945 if (!edge)
946 return 0;
948 empty = isl_map_plain_is_empty(edge->map);
949 if (empty < 0)
950 return isl_bool_error;
952 return !empty;
955 /* Look for any edge with the same src, dst and map fields as "model".
957 * Return the matching edge if one can be found.
958 * Return "model" if no matching edge is found.
959 * Return NULL on error.
961 static struct isl_sched_edge *graph_find_matching_edge(
962 struct isl_sched_graph *graph, struct isl_sched_edge *model)
964 enum isl_edge_type i;
965 struct isl_sched_edge *edge;
967 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
968 int is_equal;
970 edge = graph_find_edge(graph, i, model->src, model->dst);
971 if (!edge)
972 continue;
973 is_equal = isl_map_plain_is_equal(model->map, edge->map);
974 if (is_equal < 0)
975 return NULL;
976 if (is_equal)
977 return edge;
980 return model;
983 /* Remove the given edge from all the edge_tables that refer to it.
985 static void graph_remove_edge(struct isl_sched_graph *graph,
986 struct isl_sched_edge *edge)
988 isl_ctx *ctx = isl_map_get_ctx(edge->map);
989 enum isl_edge_type i;
991 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
992 struct isl_hash_table_entry *entry;
994 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
995 if (!entry)
996 continue;
997 if (entry->data != edge)
998 continue;
999 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
1003 /* Check whether the dependence graph has any edge
1004 * between the given two nodes.
1006 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
1007 struct isl_sched_node *src, struct isl_sched_node *dst)
1009 enum isl_edge_type i;
1010 isl_bool r;
1012 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1013 r = graph_has_edge(graph, i, src, dst);
1014 if (r < 0 || r)
1015 return r;
1018 return r;
1021 /* Check whether the dependence graph has a validity edge
1022 * between the given two nodes.
1024 * Conditional validity edges are essentially validity edges that
1025 * can be ignored if the corresponding condition edges are iteration private.
1026 * Here, we are only checking for the presence of validity
1027 * edges, so we need to consider the conditional validity edges too.
1028 * In particular, this function is used during the detection
1029 * of strongly connected components and we cannot ignore
1030 * conditional validity edges during this detection.
1032 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
1033 struct isl_sched_node *src, struct isl_sched_node *dst)
1035 isl_bool r;
1037 r = graph_has_edge(graph, isl_edge_validity, src, dst);
1038 if (r < 0 || r)
1039 return r;
1041 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
1044 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
1045 int n_node, int n_edge)
1047 int i;
1049 graph->n = n_node;
1050 graph->n_edge = n_edge;
1051 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
1052 graph->sorted = isl_calloc_array(ctx, int, graph->n);
1053 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
1054 graph->edge = isl_calloc_array(ctx,
1055 struct isl_sched_edge, graph->n_edge);
1057 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
1058 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
1060 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
1061 !graph->sorted)
1062 return -1;
1064 for(i = 0; i < graph->n; ++i)
1065 graph->sorted[i] = i;
1067 return 0;
1070 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
1072 int i;
1074 isl_map_to_basic_set_free(graph->intra_hmap);
1075 isl_map_to_basic_set_free(graph->inter_hmap);
1077 if (graph->node)
1078 for (i = 0; i < graph->n; ++i) {
1079 isl_space_free(graph->node[i].space);
1080 isl_set_free(graph->node[i].hull);
1081 isl_multi_aff_free(graph->node[i].compress);
1082 isl_multi_aff_free(graph->node[i].decompress);
1083 isl_mat_free(graph->node[i].sched);
1084 isl_map_free(graph->node[i].sched_map);
1085 isl_mat_free(graph->node[i].cmap);
1086 isl_mat_free(graph->node[i].cinv);
1087 isl_mat_free(graph->node[i].ctrans);
1088 if (graph->root)
1089 free(graph->node[i].coincident);
1091 free(graph->node);
1092 free(graph->sorted);
1093 if (graph->edge)
1094 for (i = 0; i < graph->n_edge; ++i) {
1095 isl_map_free(graph->edge[i].map);
1096 isl_union_map_free(graph->edge[i].tagged_condition);
1097 isl_union_map_free(graph->edge[i].tagged_validity);
1099 free(graph->edge);
1100 free(graph->region);
1101 for (i = 0; i <= isl_edge_last; ++i)
1102 isl_hash_table_free(ctx, graph->edge_table[i]);
1103 isl_hash_table_free(ctx, graph->node_table);
1104 isl_basic_set_free(graph->lp);
1107 /* For each "set" on which this function is called, increment
1108 * graph->n by one and update graph->maxvar.
1110 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
1112 struct isl_sched_graph *graph = user;
1113 int nvar = isl_set_dim(set, isl_dim_set);
1115 graph->n++;
1116 if (nvar > graph->maxvar)
1117 graph->maxvar = nvar;
1119 isl_set_free(set);
1121 return isl_stat_ok;
1124 /* Add the number of basic maps in "map" to *n.
1126 static isl_stat add_n_basic_map(__isl_take isl_map *map, void *user)
1128 int *n = user;
1130 *n += isl_map_n_basic_map(map);
1131 isl_map_free(map);
1133 return isl_stat_ok;
1136 /* Compute the number of rows that should be allocated for the schedule.
1137 * In particular, we need one row for each variable or one row
1138 * for each basic map in the dependences.
1139 * Note that it is practically impossible to exhaust both
1140 * the number of dependences and the number of variables.
1142 static int compute_max_row(struct isl_sched_graph *graph,
1143 __isl_keep isl_schedule_constraints *sc)
1145 enum isl_edge_type i;
1146 int n_edge;
1148 graph->n = 0;
1149 graph->maxvar = 0;
1150 if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0)
1151 return -1;
1152 n_edge = 0;
1153 for (i = isl_edge_first; i <= isl_edge_last; ++i)
1154 if (isl_union_map_foreach_map(sc->constraint[i],
1155 &add_n_basic_map, &n_edge) < 0)
1156 return -1;
1157 graph->max_row = n_edge + graph->maxvar;
1159 return 0;
1162 /* Does "bset" have any defining equalities for its set variables?
1164 static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
1166 int i, n;
1168 if (!bset)
1169 return -1;
1171 n = isl_basic_set_dim(bset, isl_dim_set);
1172 for (i = 0; i < n; ++i) {
1173 int has;
1175 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
1176 NULL);
1177 if (has < 0 || has)
1178 return has;
1181 return 0;
1184 /* Add a new node to the graph representing the given space.
1185 * "nvar" is the (possibly compressed) number of variables and
1186 * may be smaller than then number of set variables in "space"
1187 * if "compressed" is set.
1188 * If "compressed" is set, then "hull" represents the constraints
1189 * that were used to derive the compression, while "compress" and
1190 * "decompress" map the original space to the compressed space and
1191 * vice versa.
1192 * If "compressed" is not set, then "hull", "compress" and "decompress"
1193 * should be NULL.
1195 static isl_stat add_node(struct isl_sched_graph *graph,
1196 __isl_take isl_space *space, int nvar, int compressed,
1197 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
1198 __isl_take isl_multi_aff *decompress)
1200 int nparam;
1201 isl_ctx *ctx;
1202 isl_mat *sched;
1203 int *coincident;
1205 if (!space)
1206 return isl_stat_error;
1208 ctx = isl_space_get_ctx(space);
1209 nparam = isl_space_dim(space, isl_dim_param);
1210 if (!ctx->opt->schedule_parametric)
1211 nparam = 0;
1212 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
1213 graph->node[graph->n].space = space;
1214 graph->node[graph->n].nvar = nvar;
1215 graph->node[graph->n].nparam = nparam;
1216 graph->node[graph->n].sched = sched;
1217 graph->node[graph->n].sched_map = NULL;
1218 coincident = isl_calloc_array(ctx, int, graph->max_row);
1219 graph->node[graph->n].coincident = coincident;
1220 graph->node[graph->n].compressed = compressed;
1221 graph->node[graph->n].hull = hull;
1222 graph->node[graph->n].compress = compress;
1223 graph->node[graph->n].decompress = decompress;
1224 graph->n++;
1226 if (!space || !sched || (graph->max_row && !coincident))
1227 return isl_stat_error;
1228 if (compressed && (!hull || !compress || !decompress))
1229 return isl_stat_error;
1231 return isl_stat_ok;
1234 /* Add a new node to the graph representing the given set.
1236 * If any of the set variables is defined by an equality, then
1237 * we perform variable compression such that we can perform
1238 * the scheduling on the compressed domain.
1240 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1242 int nvar;
1243 int has_equality;
1244 isl_space *space;
1245 isl_basic_set *hull;
1246 isl_set *hull_set;
1247 isl_morph *morph;
1248 isl_multi_aff *compress, *decompress;
1249 struct isl_sched_graph *graph = user;
1251 space = isl_set_get_space(set);
1252 hull = isl_set_affine_hull(set);
1253 hull = isl_basic_set_remove_divs(hull);
1254 nvar = isl_space_dim(space, isl_dim_set);
1255 has_equality = has_any_defining_equality(hull);
1257 if (has_equality < 0)
1258 goto error;
1259 if (!has_equality) {
1260 isl_basic_set_free(hull);
1261 return add_node(graph, space, nvar, 0, NULL, NULL, NULL);
1264 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
1265 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1266 compress = isl_morph_get_var_multi_aff(morph);
1267 morph = isl_morph_inverse(morph);
1268 decompress = isl_morph_get_var_multi_aff(morph);
1269 isl_morph_free(morph);
1271 hull_set = isl_set_from_basic_set(hull);
1272 return add_node(graph, space, nvar, 1, hull_set, compress, decompress);
1273 error:
1274 isl_basic_set_free(hull);
1275 isl_space_free(space);
1276 return isl_stat_error;
1279 struct isl_extract_edge_data {
1280 enum isl_edge_type type;
1281 struct isl_sched_graph *graph;
1284 /* Merge edge2 into edge1, freeing the contents of edge2.
1285 * Return 0 on success and -1 on failure.
1287 * edge1 and edge2 are assumed to have the same value for the map field.
1289 static int merge_edge(struct isl_sched_edge *edge1,
1290 struct isl_sched_edge *edge2)
1292 edge1->types |= edge2->types;
1293 isl_map_free(edge2->map);
1295 if (is_condition(edge2)) {
1296 if (!edge1->tagged_condition)
1297 edge1->tagged_condition = edge2->tagged_condition;
1298 else
1299 edge1->tagged_condition =
1300 isl_union_map_union(edge1->tagged_condition,
1301 edge2->tagged_condition);
1304 if (is_conditional_validity(edge2)) {
1305 if (!edge1->tagged_validity)
1306 edge1->tagged_validity = edge2->tagged_validity;
1307 else
1308 edge1->tagged_validity =
1309 isl_union_map_union(edge1->tagged_validity,
1310 edge2->tagged_validity);
1313 if (is_condition(edge2) && !edge1->tagged_condition)
1314 return -1;
1315 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1316 return -1;
1318 return 0;
1321 /* Insert dummy tags in domain and range of "map".
1323 * In particular, if "map" is of the form
1325 * A -> B
1327 * then return
1329 * [A -> dummy_tag] -> [B -> dummy_tag]
1331 * where the dummy_tags are identical and equal to any dummy tags
1332 * introduced by any other call to this function.
1334 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1336 static char dummy;
1337 isl_ctx *ctx;
1338 isl_id *id;
1339 isl_space *space;
1340 isl_set *domain, *range;
1342 ctx = isl_map_get_ctx(map);
1344 id = isl_id_alloc(ctx, NULL, &dummy);
1345 space = isl_space_params(isl_map_get_space(map));
1346 space = isl_space_set_from_params(space);
1347 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1348 space = isl_space_map_from_set(space);
1350 domain = isl_map_wrap(map);
1351 range = isl_map_wrap(isl_map_universe(space));
1352 map = isl_map_from_domain_and_range(domain, range);
1353 map = isl_map_zip(map);
1355 return map;
1358 /* Given that at least one of "src" or "dst" is compressed, return
1359 * a map between the spaces of these nodes restricted to the affine
1360 * hull that was used in the compression.
1362 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1363 struct isl_sched_node *dst)
1365 isl_set *dom, *ran;
1367 if (src->compressed)
1368 dom = isl_set_copy(src->hull);
1369 else
1370 dom = isl_set_universe(isl_space_copy(src->space));
1371 if (dst->compressed)
1372 ran = isl_set_copy(dst->hull);
1373 else
1374 ran = isl_set_universe(isl_space_copy(dst->space));
1376 return isl_map_from_domain_and_range(dom, ran);
1379 /* Intersect the domains of the nested relations in domain and range
1380 * of "tagged" with "map".
1382 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1383 __isl_keep isl_map *map)
1385 isl_set *set;
1387 tagged = isl_map_zip(tagged);
1388 set = isl_map_wrap(isl_map_copy(map));
1389 tagged = isl_map_intersect_domain(tagged, set);
1390 tagged = isl_map_zip(tagged);
1391 return tagged;
1394 /* Return a pointer to the node that lives in the domain space of "map"
1395 * or NULL if there is no such node.
1397 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1398 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1400 struct isl_sched_node *node;
1401 isl_space *space;
1403 space = isl_space_domain(isl_map_get_space(map));
1404 node = graph_find_node(ctx, graph, space);
1405 isl_space_free(space);
1407 return node;
1410 /* Return a pointer to the node that lives in the range space of "map"
1411 * or NULL if there is no such node.
1413 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1414 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1416 struct isl_sched_node *node;
1417 isl_space *space;
1419 space = isl_space_range(isl_map_get_space(map));
1420 node = graph_find_node(ctx, graph, space);
1421 isl_space_free(space);
1423 return node;
1426 /* Add a new edge to the graph based on the given map
1427 * and add it to data->graph->edge_table[data->type].
1428 * If a dependence relation of a given type happens to be identical
1429 * to one of the dependence relations of a type that was added before,
1430 * then we don't create a new edge, but instead mark the original edge
1431 * as also representing a dependence of the current type.
1433 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1434 * may be specified as "tagged" dependence relations. That is, "map"
1435 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1436 * the dependence on iterations and a and b are tags.
1437 * edge->map is set to the relation containing the elements i -> j,
1438 * while edge->tagged_condition and edge->tagged_validity contain
1439 * the union of all the "map" relations
1440 * for which extract_edge is called that result in the same edge->map.
1442 * If the source or the destination node is compressed, then
1443 * intersect both "map" and "tagged" with the constraints that
1444 * were used to construct the compression.
1445 * This ensures that there are no schedule constraints defined
1446 * outside of these domains, while the scheduler no longer has
1447 * any control over those outside parts.
1449 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1451 isl_ctx *ctx = isl_map_get_ctx(map);
1452 struct isl_extract_edge_data *data = user;
1453 struct isl_sched_graph *graph = data->graph;
1454 struct isl_sched_node *src, *dst;
1455 struct isl_sched_edge *edge;
1456 isl_map *tagged = NULL;
1458 if (data->type == isl_edge_condition ||
1459 data->type == isl_edge_conditional_validity) {
1460 if (isl_map_can_zip(map)) {
1461 tagged = isl_map_copy(map);
1462 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1463 } else {
1464 tagged = insert_dummy_tags(isl_map_copy(map));
1468 src = find_domain_node(ctx, graph, map);
1469 dst = find_range_node(ctx, graph, map);
1471 if (!src || !dst) {
1472 isl_map_free(map);
1473 isl_map_free(tagged);
1474 return isl_stat_ok;
1477 if (src->compressed || dst->compressed) {
1478 isl_map *hull;
1479 hull = extract_hull(src, dst);
1480 if (tagged)
1481 tagged = map_intersect_domains(tagged, hull);
1482 map = isl_map_intersect(map, hull);
1485 graph->edge[graph->n_edge].src = src;
1486 graph->edge[graph->n_edge].dst = dst;
1487 graph->edge[graph->n_edge].map = map;
1488 graph->edge[graph->n_edge].types = 0;
1489 graph->edge[graph->n_edge].tagged_condition = NULL;
1490 graph->edge[graph->n_edge].tagged_validity = NULL;
1491 set_type(&graph->edge[graph->n_edge], data->type);
1492 if (data->type == isl_edge_condition)
1493 graph->edge[graph->n_edge].tagged_condition =
1494 isl_union_map_from_map(tagged);
1495 if (data->type == isl_edge_conditional_validity)
1496 graph->edge[graph->n_edge].tagged_validity =
1497 isl_union_map_from_map(tagged);
1499 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1500 if (!edge) {
1501 graph->n_edge++;
1502 return isl_stat_error;
1504 if (edge == &graph->edge[graph->n_edge])
1505 return graph_edge_table_add(ctx, graph, data->type,
1506 &graph->edge[graph->n_edge++]);
1508 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1509 return -1;
1511 return graph_edge_table_add(ctx, graph, data->type, edge);
1514 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1516 * The context is included in the domain before the nodes of
1517 * the graphs are extracted in order to be able to exploit
1518 * any possible additional equalities.
1519 * Note that this intersection is only performed locally here.
1521 static isl_stat graph_init(struct isl_sched_graph *graph,
1522 __isl_keep isl_schedule_constraints *sc)
1524 isl_ctx *ctx;
1525 isl_union_set *domain;
1526 struct isl_extract_edge_data data;
1527 enum isl_edge_type i;
1528 isl_stat r;
1530 if (!sc)
1531 return isl_stat_error;
1533 ctx = isl_schedule_constraints_get_ctx(sc);
1535 domain = isl_schedule_constraints_get_domain(sc);
1536 graph->n = isl_union_set_n_set(domain);
1537 isl_union_set_free(domain);
1539 if (graph_alloc(ctx, graph, graph->n,
1540 isl_schedule_constraints_n_map(sc)) < 0)
1541 return isl_stat_error;
1543 if (compute_max_row(graph, sc) < 0)
1544 return isl_stat_error;
1545 graph->root = 1;
1546 graph->n = 0;
1547 domain = isl_schedule_constraints_get_domain(sc);
1548 domain = isl_union_set_intersect_params(domain,
1549 isl_set_copy(sc->context));
1550 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1551 isl_union_set_free(domain);
1552 if (r < 0)
1553 return isl_stat_error;
1554 if (graph_init_table(ctx, graph) < 0)
1555 return isl_stat_error;
1556 for (i = isl_edge_first; i <= isl_edge_last; ++i)
1557 graph->max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
1558 if (graph_init_edge_tables(ctx, graph) < 0)
1559 return isl_stat_error;
1560 graph->n_edge = 0;
1561 data.graph = graph;
1562 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1563 data.type = i;
1564 if (isl_union_map_foreach_map(sc->constraint[i],
1565 &extract_edge, &data) < 0)
1566 return isl_stat_error;
1569 return isl_stat_ok;
1572 /* Check whether there is any dependence from node[j] to node[i]
1573 * or from node[i] to node[j].
1575 static isl_bool node_follows_weak(int i, int j, void *user)
1577 isl_bool f;
1578 struct isl_sched_graph *graph = user;
1580 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1581 if (f < 0 || f)
1582 return f;
1583 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1586 /* Check whether there is a (conditional) validity dependence from node[j]
1587 * to node[i], forcing node[i] to follow node[j].
1589 static isl_bool node_follows_strong(int i, int j, void *user)
1591 struct isl_sched_graph *graph = user;
1593 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1596 /* Use Tarjan's algorithm for computing the strongly connected components
1597 * in the dependence graph only considering those edges defined by "follows".
1599 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1600 isl_bool (*follows)(int i, int j, void *user))
1602 int i, n;
1603 struct isl_tarjan_graph *g = NULL;
1605 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1606 if (!g)
1607 return -1;
1609 graph->scc = 0;
1610 i = 0;
1611 n = graph->n;
1612 while (n) {
1613 while (g->order[i] != -1) {
1614 graph->node[g->order[i]].scc = graph->scc;
1615 --n;
1616 ++i;
1618 ++i;
1619 graph->scc++;
1622 isl_tarjan_graph_free(g);
1624 return 0;
1627 /* Apply Tarjan's algorithm to detect the strongly connected components
1628 * in the dependence graph.
1629 * Only consider the (conditional) validity dependences and clear "weak".
1631 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1633 graph->weak = 0;
1634 return detect_ccs(ctx, graph, &node_follows_strong);
1637 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1638 * in the dependence graph.
1639 * Consider all dependences and set "weak".
1641 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1643 graph->weak = 1;
1644 return detect_ccs(ctx, graph, &node_follows_weak);
1647 static int cmp_scc(const void *a, const void *b, void *data)
1649 struct isl_sched_graph *graph = data;
1650 const int *i1 = a;
1651 const int *i2 = b;
1653 return graph->node[*i1].scc - graph->node[*i2].scc;
1656 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1658 static int sort_sccs(struct isl_sched_graph *graph)
1660 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1663 /* Given a dependence relation R from "node" to itself,
1664 * construct the set of coefficients of valid constraints for elements
1665 * in that dependence relation.
1666 * In particular, the result contains tuples of coefficients
1667 * c_0, c_n, c_x such that
1669 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1671 * or, equivalently,
1673 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1675 * We choose here to compute the dual of delta R.
1676 * Alternatively, we could have computed the dual of R, resulting
1677 * in a set of tuples c_0, c_n, c_x, c_y, and then
1678 * plugged in (c_0, c_n, c_x, -c_x).
1680 * If "node" has been compressed, then the dependence relation
1681 * is also compressed before the set of coefficients is computed.
1683 static __isl_give isl_basic_set *intra_coefficients(
1684 struct isl_sched_graph *graph, struct isl_sched_node *node,
1685 __isl_take isl_map *map)
1687 isl_set *delta;
1688 isl_map *key;
1689 isl_basic_set *coef;
1690 isl_maybe_isl_basic_set m;
1692 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1693 if (m.valid < 0 || m.valid) {
1694 isl_map_free(map);
1695 return m.value;
1698 key = isl_map_copy(map);
1699 if (node->compressed) {
1700 map = isl_map_preimage_domain_multi_aff(map,
1701 isl_multi_aff_copy(node->decompress));
1702 map = isl_map_preimage_range_multi_aff(map,
1703 isl_multi_aff_copy(node->decompress));
1705 delta = isl_set_remove_divs(isl_map_deltas(map));
1706 coef = isl_set_coefficients(delta);
1707 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1708 isl_basic_set_copy(coef));
1710 return coef;
1713 /* Given a dependence relation R, construct the set of coefficients
1714 * of valid constraints for elements in that dependence relation.
1715 * In particular, the result contains tuples of coefficients
1716 * c_0, c_n, c_x, c_y such that
1718 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1720 * If the source or destination nodes of "edge" have been compressed,
1721 * then the dependence relation is also compressed before
1722 * the set of coefficients is computed.
1724 static __isl_give isl_basic_set *inter_coefficients(
1725 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1726 __isl_take isl_map *map)
1728 isl_set *set;
1729 isl_map *key;
1730 isl_basic_set *coef;
1731 isl_maybe_isl_basic_set m;
1733 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1734 if (m.valid < 0 || m.valid) {
1735 isl_map_free(map);
1736 return m.value;
1739 key = isl_map_copy(map);
1740 if (edge->src->compressed)
1741 map = isl_map_preimage_domain_multi_aff(map,
1742 isl_multi_aff_copy(edge->src->decompress));
1743 if (edge->dst->compressed)
1744 map = isl_map_preimage_range_multi_aff(map,
1745 isl_multi_aff_copy(edge->dst->decompress));
1746 set = isl_map_wrap(isl_map_remove_divs(map));
1747 coef = isl_set_coefficients(set);
1748 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1749 isl_basic_set_copy(coef));
1751 return coef;
1754 /* Add constraints to graph->lp that force validity for the given
1755 * dependence from a node i to itself.
1756 * That is, add constraints that enforce
1758 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1759 * = c_i_x (y - x) >= 0
1761 * for each (x,y) in R.
1762 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1763 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1764 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1765 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1767 * Actually, we do not construct constraints for the c_i_x themselves,
1768 * but for the coefficients of c_i_x written as a linear combination
1769 * of the columns in node->cmap.
1771 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
1772 struct isl_sched_edge *edge)
1774 unsigned total;
1775 isl_map *map = isl_map_copy(edge->map);
1776 isl_ctx *ctx = isl_map_get_ctx(map);
1777 isl_space *dim;
1778 isl_dim_map *dim_map;
1779 isl_basic_set *coef;
1780 struct isl_sched_node *node = edge->src;
1782 coef = intra_coefficients(graph, node, map);
1784 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1786 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1787 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1788 if (!coef)
1789 goto error;
1791 total = isl_basic_set_total_dim(graph->lp);
1792 dim_map = isl_dim_map_alloc(ctx, total);
1793 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1794 isl_space_dim(dim, isl_dim_set), 1,
1795 node->nvar, -1);
1796 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1797 isl_space_dim(dim, isl_dim_set), 1,
1798 node->nvar, 1);
1799 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1800 coef->n_eq, coef->n_ineq);
1801 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1802 coef, dim_map);
1803 isl_space_free(dim);
1805 return 0;
1806 error:
1807 isl_space_free(dim);
1808 return -1;
1811 /* Add constraints to graph->lp that force validity for the given
1812 * dependence from node i to node j.
1813 * That is, add constraints that enforce
1815 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1817 * for each (x,y) in R.
1818 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1819 * of valid constraints for R and then plug in
1820 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1821 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1822 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1823 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1825 * Actually, we do not construct constraints for the c_*_x themselves,
1826 * but for the coefficients of c_*_x written as a linear combination
1827 * of the columns in node->cmap.
1829 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
1830 struct isl_sched_edge *edge)
1832 unsigned total;
1833 isl_map *map = isl_map_copy(edge->map);
1834 isl_ctx *ctx = isl_map_get_ctx(map);
1835 isl_space *dim;
1836 isl_dim_map *dim_map;
1837 isl_basic_set *coef;
1838 struct isl_sched_node *src = edge->src;
1839 struct isl_sched_node *dst = edge->dst;
1841 coef = inter_coefficients(graph, edge, map);
1843 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1845 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1846 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1847 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1848 isl_space_dim(dim, isl_dim_set) + src->nvar,
1849 isl_mat_copy(dst->cmap));
1850 if (!coef)
1851 goto error;
1853 total = isl_basic_set_total_dim(graph->lp);
1854 dim_map = isl_dim_map_alloc(ctx, total);
1856 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1857 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1858 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1859 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1860 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1861 dst->nvar, -1);
1862 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1863 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1864 dst->nvar, 1);
1866 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1867 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1868 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1869 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1870 isl_space_dim(dim, isl_dim_set), 1,
1871 src->nvar, 1);
1872 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1873 isl_space_dim(dim, isl_dim_set), 1,
1874 src->nvar, -1);
1876 edge->start = graph->lp->n_ineq;
1877 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1878 coef->n_eq, coef->n_ineq);
1879 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1880 coef, dim_map);
1881 if (!graph->lp)
1882 goto error;
1883 isl_space_free(dim);
1884 edge->end = graph->lp->n_ineq;
1886 return 0;
1887 error:
1888 isl_space_free(dim);
1889 return -1;
1892 /* Add constraints to graph->lp that bound the dependence distance for the given
1893 * dependence from a node i to itself.
1894 * If s = 1, we add the constraint
1896 * c_i_x (y - x) <= m_0 + m_n n
1898 * or
1900 * -c_i_x (y - x) + m_0 + m_n n >= 0
1902 * for each (x,y) in R.
1903 * If s = -1, we add the constraint
1905 * -c_i_x (y - x) <= m_0 + m_n n
1907 * or
1909 * c_i_x (y - x) + m_0 + m_n n >= 0
1911 * for each (x,y) in R.
1912 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1913 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1914 * with each coefficient (except m_0) represented as a pair of non-negative
1915 * coefficients.
1917 * Actually, we do not construct constraints for the c_i_x themselves,
1918 * but for the coefficients of c_i_x written as a linear combination
1919 * of the columns in node->cmap.
1922 * If "local" is set, then we add constraints
1924 * c_i_x (y - x) <= 0
1926 * or
1928 * -c_i_x (y - x) <= 0
1930 * instead, forcing the dependence distance to be (less than or) equal to 0.
1931 * That is, we plug in (0, 0, -s * c_i_x),
1932 * Note that dependences marked local are treated as validity constraints
1933 * by add_all_validity_constraints and therefore also have
1934 * their distances bounded by 0 from below.
1936 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1937 struct isl_sched_edge *edge, int s, int local)
1939 unsigned total;
1940 unsigned nparam;
1941 isl_map *map = isl_map_copy(edge->map);
1942 isl_ctx *ctx = isl_map_get_ctx(map);
1943 isl_space *dim;
1944 isl_dim_map *dim_map;
1945 isl_basic_set *coef;
1946 struct isl_sched_node *node = edge->src;
1948 coef = intra_coefficients(graph, node, map);
1950 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1952 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1953 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1954 if (!coef)
1955 goto error;
1957 nparam = isl_space_dim(node->space, isl_dim_param);
1958 total = isl_basic_set_total_dim(graph->lp);
1959 dim_map = isl_dim_map_alloc(ctx, total);
1961 if (!local) {
1962 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1963 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1964 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1966 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1967 isl_space_dim(dim, isl_dim_set), 1,
1968 node->nvar, s);
1969 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1970 isl_space_dim(dim, isl_dim_set), 1,
1971 node->nvar, -s);
1972 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1973 coef->n_eq, coef->n_ineq);
1974 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1975 coef, dim_map);
1976 isl_space_free(dim);
1978 return 0;
1979 error:
1980 isl_space_free(dim);
1981 return -1;
1984 /* Add constraints to graph->lp that bound the dependence distance for the given
1985 * dependence from node i to node j.
1986 * If s = 1, we add the constraint
1988 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1989 * <= m_0 + m_n n
1991 * or
1993 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1994 * m_0 + m_n n >= 0
1996 * for each (x,y) in R.
1997 * If s = -1, we add the constraint
1999 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2000 * <= m_0 + m_n n
2002 * or
2004 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2005 * m_0 + m_n n >= 0
2007 * for each (x,y) in R.
2008 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2009 * of valid constraints for R and then plug in
2010 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2011 * -s*c_j_x+s*c_i_x)
2012 * with each coefficient (except m_0, c_j_0 and c_i_0)
2013 * represented as a pair of non-negative coefficients.
2015 * Actually, we do not construct constraints for the c_*_x themselves,
2016 * but for the coefficients of c_*_x written as a linear combination
2017 * of the columns in node->cmap.
2020 * If "local" is set, then we add constraints
2022 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2024 * or
2026 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
2028 * instead, forcing the dependence distance to be (less than or) equal to 0.
2029 * That is, we plug in
2030 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
2031 * Note that dependences marked local are treated as validity constraints
2032 * by add_all_validity_constraints and therefore also have
2033 * their distances bounded by 0 from below.
2035 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
2036 struct isl_sched_edge *edge, int s, int local)
2038 unsigned total;
2039 unsigned nparam;
2040 isl_map *map = isl_map_copy(edge->map);
2041 isl_ctx *ctx = isl_map_get_ctx(map);
2042 isl_space *dim;
2043 isl_dim_map *dim_map;
2044 isl_basic_set *coef;
2045 struct isl_sched_node *src = edge->src;
2046 struct isl_sched_node *dst = edge->dst;
2048 coef = inter_coefficients(graph, edge, map);
2050 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2052 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2053 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
2054 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2055 isl_space_dim(dim, isl_dim_set) + src->nvar,
2056 isl_mat_copy(dst->cmap));
2057 if (!coef)
2058 goto error;
2060 nparam = isl_space_dim(src->space, isl_dim_param);
2061 total = isl_basic_set_total_dim(graph->lp);
2062 dim_map = isl_dim_map_alloc(ctx, total);
2064 if (!local) {
2065 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2066 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2067 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2070 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
2071 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
2072 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
2073 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2074 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2075 dst->nvar, s);
2076 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2077 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2078 dst->nvar, -s);
2080 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
2081 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
2082 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
2083 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2084 isl_space_dim(dim, isl_dim_set), 1,
2085 src->nvar, -s);
2086 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2087 isl_space_dim(dim, isl_dim_set), 1,
2088 src->nvar, s);
2090 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2091 coef->n_eq, coef->n_ineq);
2092 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2093 coef, dim_map);
2094 isl_space_free(dim);
2096 return 0;
2097 error:
2098 isl_space_free(dim);
2099 return -1;
2102 /* Add all validity constraints to graph->lp.
2104 * An edge that is forced to be local needs to have its dependence
2105 * distances equal to zero. We take care of bounding them by 0 from below
2106 * here. add_all_proximity_constraints takes care of bounding them by 0
2107 * from above.
2109 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2110 * Otherwise, we ignore them.
2112 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2113 int use_coincidence)
2115 int i;
2117 for (i = 0; i < graph->n_edge; ++i) {
2118 struct isl_sched_edge *edge= &graph->edge[i];
2119 int local;
2121 local = is_local(edge) ||
2122 (is_coincidence(edge) && use_coincidence);
2123 if (!is_validity(edge) && !local)
2124 continue;
2125 if (edge->src != edge->dst)
2126 continue;
2127 if (add_intra_validity_constraints(graph, edge) < 0)
2128 return -1;
2131 for (i = 0; i < graph->n_edge; ++i) {
2132 struct isl_sched_edge *edge = &graph->edge[i];
2133 int local;
2135 local = is_local(edge) ||
2136 (is_coincidence(edge) && use_coincidence);
2137 if (!is_validity(edge) && !local)
2138 continue;
2139 if (edge->src == edge->dst)
2140 continue;
2141 if (add_inter_validity_constraints(graph, edge) < 0)
2142 return -1;
2145 return 0;
2148 /* Add constraints to graph->lp that bound the dependence distance
2149 * for all dependence relations.
2150 * If a given proximity dependence is identical to a validity
2151 * dependence, then the dependence distance is already bounded
2152 * from below (by zero), so we only need to bound the distance
2153 * from above. (This includes the case of "local" dependences
2154 * which are treated as validity dependence by add_all_validity_constraints.)
2155 * Otherwise, we need to bound the distance both from above and from below.
2157 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2158 * Otherwise, we ignore them.
2160 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2161 int use_coincidence)
2163 int i;
2165 for (i = 0; i < graph->n_edge; ++i) {
2166 struct isl_sched_edge *edge= &graph->edge[i];
2167 int local;
2169 local = is_local(edge) ||
2170 (is_coincidence(edge) && use_coincidence);
2171 if (!is_proximity(edge) && !local)
2172 continue;
2173 if (edge->src == edge->dst &&
2174 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
2175 return -1;
2176 if (edge->src != edge->dst &&
2177 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
2178 return -1;
2179 if (is_validity(edge) || local)
2180 continue;
2181 if (edge->src == edge->dst &&
2182 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2183 return -1;
2184 if (edge->src != edge->dst &&
2185 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2186 return -1;
2189 return 0;
2192 /* Compute a basis for the rows in the linear part of the schedule
2193 * and extend this basis to a full basis. The remaining rows
2194 * can then be used to force linear independence from the rows
2195 * in the schedule.
2197 * In particular, given the schedule rows S, we compute
2199 * S = H Q
2200 * S U = H
2202 * with H the Hermite normal form of S. That is, all but the
2203 * first rank columns of H are zero and so each row in S is
2204 * a linear combination of the first rank rows of Q.
2205 * The matrix Q is then transposed because we will write the
2206 * coefficients of the next schedule row as a column vector s
2207 * and express this s as a linear combination s = Q c of the
2208 * computed basis.
2209 * Similarly, the matrix U is transposed such that we can
2210 * compute the coefficients c = U s from a schedule row s.
2212 static int node_update_cmap(struct isl_sched_node *node)
2214 isl_mat *H, *U, *Q;
2215 int n_row = isl_mat_rows(node->sched);
2217 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2218 1 + node->nparam, node->nvar);
2220 H = isl_mat_left_hermite(H, 0, &U, &Q);
2221 isl_mat_free(node->cmap);
2222 isl_mat_free(node->cinv);
2223 isl_mat_free(node->ctrans);
2224 node->ctrans = isl_mat_copy(Q);
2225 node->cmap = isl_mat_transpose(Q);
2226 node->cinv = isl_mat_transpose(U);
2227 node->rank = isl_mat_initial_non_zero_cols(H);
2228 isl_mat_free(H);
2230 if (!node->cmap || !node->cinv || !node->ctrans || node->rank < 0)
2231 return -1;
2232 return 0;
2235 /* How many times should we count the constraints in "edge"?
2237 * If carry is set, then we are counting the number of
2238 * (validity or conditional validity) constraints that will be added
2239 * in setup_carry_lp and we count each edge exactly once.
2241 * Otherwise, we count as follows
2242 * validity -> 1 (>= 0)
2243 * validity+proximity -> 2 (>= 0 and upper bound)
2244 * proximity -> 2 (lower and upper bound)
2245 * local(+any) -> 2 (>= 0 and <= 0)
2247 * If an edge is only marked conditional_validity then it counts
2248 * as zero since it is only checked afterwards.
2250 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2251 * Otherwise, we ignore them.
2253 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
2254 int use_coincidence)
2256 if (carry && !is_validity(edge) && !is_conditional_validity(edge))
2257 return 0;
2258 if (carry)
2259 return 1;
2260 if (is_proximity(edge) || is_local(edge))
2261 return 2;
2262 if (use_coincidence && is_coincidence(edge))
2263 return 2;
2264 if (is_validity(edge))
2265 return 1;
2266 return 0;
2269 /* Count the number of equality and inequality constraints
2270 * that will be added for the given map.
2272 * "use_coincidence" is set if we should take into account coincidence edges.
2274 static int count_map_constraints(struct isl_sched_graph *graph,
2275 struct isl_sched_edge *edge, __isl_take isl_map *map,
2276 int *n_eq, int *n_ineq, int carry, int use_coincidence)
2278 isl_basic_set *coef;
2279 int f = edge_multiplicity(edge, carry, use_coincidence);
2281 if (f == 0) {
2282 isl_map_free(map);
2283 return 0;
2286 if (edge->src == edge->dst)
2287 coef = intra_coefficients(graph, edge->src, map);
2288 else
2289 coef = inter_coefficients(graph, edge, map);
2290 if (!coef)
2291 return -1;
2292 *n_eq += f * coef->n_eq;
2293 *n_ineq += f * coef->n_ineq;
2294 isl_basic_set_free(coef);
2296 return 0;
2299 /* Count the number of equality and inequality constraints
2300 * that will be added to the main lp problem.
2301 * We count as follows
2302 * validity -> 1 (>= 0)
2303 * validity+proximity -> 2 (>= 0 and upper bound)
2304 * proximity -> 2 (lower and upper bound)
2305 * local(+any) -> 2 (>= 0 and <= 0)
2307 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2308 * Otherwise, we ignore them.
2310 static int count_constraints(struct isl_sched_graph *graph,
2311 int *n_eq, int *n_ineq, int use_coincidence)
2313 int i;
2315 *n_eq = *n_ineq = 0;
2316 for (i = 0; i < graph->n_edge; ++i) {
2317 struct isl_sched_edge *edge= &graph->edge[i];
2318 isl_map *map = isl_map_copy(edge->map);
2320 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2321 0, use_coincidence) < 0)
2322 return -1;
2325 return 0;
2328 /* Count the number of constraints that will be added by
2329 * add_bound_constant_constraints to bound the values of the constant terms
2330 * and increment *n_eq and *n_ineq accordingly.
2332 * In practice, add_bound_constant_constraints only adds inequalities.
2334 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2335 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2337 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2338 return isl_stat_ok;
2340 *n_ineq += graph->n;
2342 return isl_stat_ok;
2345 /* Add constraints to bound the values of the constant terms in the schedule,
2346 * if requested by the user.
2348 * The maximal value of the constant terms is defined by the option
2349 * "schedule_max_constant_term".
2351 * Within each node, the coefficients have the following order:
2352 * - c_i_0
2353 * - positive and negative parts of c_i_n (if parametric)
2354 * - positive and negative parts of c_i_x
2356 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2357 struct isl_sched_graph *graph)
2359 int i, k;
2360 int max;
2361 int total;
2363 max = isl_options_get_schedule_max_constant_term(ctx);
2364 if (max == -1)
2365 return isl_stat_ok;
2367 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2369 for (i = 0; i < graph->n; ++i) {
2370 struct isl_sched_node *node = &graph->node[i];
2371 k = isl_basic_set_alloc_inequality(graph->lp);
2372 if (k < 0)
2373 return isl_stat_error;
2374 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2375 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2376 isl_int_set_si(graph->lp->ineq[k][0], max);
2379 return isl_stat_ok;
2382 /* Count the number of constraints that will be added by
2383 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2384 * accordingly.
2386 * In practice, add_bound_coefficient_constraints only adds inequalities.
2388 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2389 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2391 int i;
2393 if (ctx->opt->schedule_max_coefficient == -1)
2394 return 0;
2396 for (i = 0; i < graph->n; ++i)
2397 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
2399 return 0;
2402 /* Add constraints that bound the values of the variable and parameter
2403 * coefficients of the schedule.
2405 * The maximal value of the coefficients is defined by the option
2406 * 'schedule_max_coefficient'.
2408 static int add_bound_coefficient_constraints(isl_ctx *ctx,
2409 struct isl_sched_graph *graph)
2411 int i, j, k;
2412 int max_coefficient;
2413 int total;
2415 max_coefficient = ctx->opt->schedule_max_coefficient;
2417 if (max_coefficient == -1)
2418 return 0;
2420 total = isl_basic_set_total_dim(graph->lp);
2422 for (i = 0; i < graph->n; ++i) {
2423 struct isl_sched_node *node = &graph->node[i];
2424 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
2425 int dim;
2426 k = isl_basic_set_alloc_inequality(graph->lp);
2427 if (k < 0)
2428 return -1;
2429 dim = 1 + node->start + 1 + j;
2430 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2431 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2432 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
2436 return 0;
2439 /* Construct an ILP problem for finding schedule coefficients
2440 * that result in non-negative, but small dependence distances
2441 * over all dependences.
2442 * In particular, the dependence distances over proximity edges
2443 * are bounded by m_0 + m_n n and we compute schedule coefficients
2444 * with small values (preferably zero) of m_n and m_0.
2446 * All variables of the ILP are non-negative. The actual coefficients
2447 * may be negative, so each coefficient is represented as the difference
2448 * of two non-negative variables. The negative part always appears
2449 * immediately before the positive part.
2450 * Other than that, the variables have the following order
2452 * - sum of positive and negative parts of m_n coefficients
2453 * - m_0
2454 * - sum of positive and negative parts of all c_n coefficients
2455 * (unconstrained when computing non-parametric schedules)
2456 * - sum of positive and negative parts of all c_x coefficients
2457 * - positive and negative parts of m_n coefficients
2458 * - for each node
2459 * - c_i_0
2460 * - positive and negative parts of c_i_n (if parametric)
2461 * - positive and negative parts of c_i_x
2463 * The c_i_x are not represented directly, but through the columns of
2464 * node->cmap. That is, the computed values are for variable t_i_x
2465 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2467 * The constraints are those from the edges plus two or three equalities
2468 * to express the sums.
2470 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2471 * Otherwise, we ignore them.
2473 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2474 int use_coincidence)
2476 int i, j;
2477 int k;
2478 unsigned nparam;
2479 unsigned total;
2480 isl_space *space;
2481 int parametric;
2482 int param_pos;
2483 int n_eq, n_ineq;
2485 parametric = ctx->opt->schedule_parametric;
2486 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2487 param_pos = 4;
2488 total = param_pos + 2 * nparam;
2489 for (i = 0; i < graph->n; ++i) {
2490 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2491 if (node_update_cmap(node) < 0)
2492 return isl_stat_error;
2493 node->start = total;
2494 total += 1 + 2 * (node->nparam + node->nvar);
2497 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2498 return isl_stat_error;
2499 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2500 return isl_stat_error;
2501 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2502 return isl_stat_error;
2504 space = isl_space_set_alloc(ctx, 0, total);
2505 isl_basic_set_free(graph->lp);
2506 n_eq += 2 + parametric;
2508 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2510 k = isl_basic_set_alloc_equality(graph->lp);
2511 if (k < 0)
2512 return isl_stat_error;
2513 isl_seq_clr(graph->lp->eq[k], 1 + total);
2514 isl_int_set_si(graph->lp->eq[k][1], -1);
2515 for (i = 0; i < 2 * nparam; ++i)
2516 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
2518 if (parametric) {
2519 k = isl_basic_set_alloc_equality(graph->lp);
2520 if (k < 0)
2521 return isl_stat_error;
2522 isl_seq_clr(graph->lp->eq[k], 1 + total);
2523 isl_int_set_si(graph->lp->eq[k][3], -1);
2524 for (i = 0; i < graph->n; ++i) {
2525 int pos = 1 + graph->node[i].start + 1;
2527 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2528 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2532 k = isl_basic_set_alloc_equality(graph->lp);
2533 if (k < 0)
2534 return isl_stat_error;
2535 isl_seq_clr(graph->lp->eq[k], 1 + total);
2536 isl_int_set_si(graph->lp->eq[k][4], -1);
2537 for (i = 0; i < graph->n; ++i) {
2538 struct isl_sched_node *node = &graph->node[i];
2539 int pos = 1 + node->start + 1 + 2 * node->nparam;
2541 for (j = 0; j < 2 * node->nvar; ++j)
2542 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2545 if (add_bound_constant_constraints(ctx, graph) < 0)
2546 return isl_stat_error;
2547 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2548 return isl_stat_error;
2549 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2550 return isl_stat_error;
2551 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2552 return isl_stat_error;
2554 return isl_stat_ok;
2557 /* Analyze the conflicting constraint found by
2558 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2559 * constraint of one of the edges between distinct nodes, living, moreover
2560 * in distinct SCCs, then record the source and sink SCC as this may
2561 * be a good place to cut between SCCs.
2563 static int check_conflict(int con, void *user)
2565 int i;
2566 struct isl_sched_graph *graph = user;
2568 if (graph->src_scc >= 0)
2569 return 0;
2571 con -= graph->lp->n_eq;
2573 if (con >= graph->lp->n_ineq)
2574 return 0;
2576 for (i = 0; i < graph->n_edge; ++i) {
2577 if (!is_validity(&graph->edge[i]))
2578 continue;
2579 if (graph->edge[i].src == graph->edge[i].dst)
2580 continue;
2581 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2582 continue;
2583 if (graph->edge[i].start > con)
2584 continue;
2585 if (graph->edge[i].end <= con)
2586 continue;
2587 graph->src_scc = graph->edge[i].src->scc;
2588 graph->dst_scc = graph->edge[i].dst->scc;
2591 return 0;
2594 /* Check whether the next schedule row of the given node needs to be
2595 * non-trivial. Lower-dimensional domains may have some trivial rows,
2596 * but as soon as the number of remaining required non-trivial rows
2597 * is as large as the number or remaining rows to be computed,
2598 * all remaining rows need to be non-trivial.
2600 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2602 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2605 /* Solve the ILP problem constructed in setup_lp.
2606 * For each node such that all the remaining rows of its schedule
2607 * need to be non-trivial, we construct a non-triviality region.
2608 * This region imposes that the next row is independent of previous rows.
2609 * In particular the coefficients c_i_x are represented by t_i_x
2610 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2611 * its first columns span the rows of the previously computed part
2612 * of the schedule. The non-triviality region enforces that at least
2613 * one of the remaining components of t_i_x is non-zero, i.e.,
2614 * that the new schedule row depends on at least one of the remaining
2615 * columns of Q.
2617 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2619 int i;
2620 isl_vec *sol;
2621 isl_basic_set *lp;
2623 for (i = 0; i < graph->n; ++i) {
2624 struct isl_sched_node *node = &graph->node[i];
2625 int skip = node->rank;
2626 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
2627 if (needs_row(graph, node))
2628 graph->region[i].len = 2 * (node->nvar - skip);
2629 else
2630 graph->region[i].len = 0;
2632 lp = isl_basic_set_copy(graph->lp);
2633 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2634 graph->region, &check_conflict, graph);
2635 return sol;
2638 /* Update the schedules of all nodes based on the given solution
2639 * of the LP problem.
2640 * The new row is added to the current band.
2641 * All possibly negative coefficients are encoded as a difference
2642 * of two non-negative variables, so we need to perform the subtraction
2643 * here. Moreover, if use_cmap is set, then the solution does
2644 * not refer to the actual coefficients c_i_x, but instead to variables
2645 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2646 * In this case, we then also need to perform this multiplication
2647 * to obtain the values of c_i_x.
2649 * If coincident is set, then the caller guarantees that the new
2650 * row satisfies the coincidence constraints.
2652 static int update_schedule(struct isl_sched_graph *graph,
2653 __isl_take isl_vec *sol, int use_cmap, int coincident)
2655 int i, j;
2656 isl_vec *csol = NULL;
2658 if (!sol)
2659 goto error;
2660 if (sol->size == 0)
2661 isl_die(sol->ctx, isl_error_internal,
2662 "no solution found", goto error);
2663 if (graph->n_total_row >= graph->max_row)
2664 isl_die(sol->ctx, isl_error_internal,
2665 "too many schedule rows", goto error);
2667 for (i = 0; i < graph->n; ++i) {
2668 struct isl_sched_node *node = &graph->node[i];
2669 int pos = node->start;
2670 int row = isl_mat_rows(node->sched);
2672 isl_vec_free(csol);
2673 csol = isl_vec_alloc(sol->ctx, node->nvar);
2674 if (!csol)
2675 goto error;
2677 isl_map_free(node->sched_map);
2678 node->sched_map = NULL;
2679 node->sched = isl_mat_add_rows(node->sched, 1);
2680 if (!node->sched)
2681 goto error;
2682 node->sched = isl_mat_set_element(node->sched, row, 0,
2683 sol->el[1 + pos]);
2684 for (j = 0; j < node->nparam + node->nvar; ++j)
2685 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
2686 sol->el[1 + pos + 1 + 2 * j + 1],
2687 sol->el[1 + pos + 1 + 2 * j]);
2688 for (j = 0; j < node->nparam; ++j)
2689 node->sched = isl_mat_set_element(node->sched,
2690 row, 1 + j, sol->el[1+pos+1+2*j+1]);
2691 for (j = 0; j < node->nvar; ++j)
2692 isl_int_set(csol->el[j],
2693 sol->el[1+pos+1+2*(node->nparam+j)+1]);
2694 if (use_cmap)
2695 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2696 csol);
2697 if (!csol)
2698 goto error;
2699 for (j = 0; j < node->nvar; ++j)
2700 node->sched = isl_mat_set_element(node->sched,
2701 row, 1 + node->nparam + j, csol->el[j]);
2702 node->coincident[graph->n_total_row] = coincident;
2704 isl_vec_free(sol);
2705 isl_vec_free(csol);
2707 graph->n_row++;
2708 graph->n_total_row++;
2710 return 0;
2711 error:
2712 isl_vec_free(sol);
2713 isl_vec_free(csol);
2714 return -1;
2717 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2718 * and return this isl_aff.
2720 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2721 struct isl_sched_node *node, int row)
2723 int j;
2724 isl_int v;
2725 isl_aff *aff;
2727 isl_int_init(v);
2729 aff = isl_aff_zero_on_domain(ls);
2730 isl_mat_get_element(node->sched, row, 0, &v);
2731 aff = isl_aff_set_constant(aff, v);
2732 for (j = 0; j < node->nparam; ++j) {
2733 isl_mat_get_element(node->sched, row, 1 + j, &v);
2734 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2736 for (j = 0; j < node->nvar; ++j) {
2737 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2738 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2741 isl_int_clear(v);
2743 return aff;
2746 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2747 * and return this multi_aff.
2749 * The result is defined over the uncompressed node domain.
2751 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2752 struct isl_sched_node *node, int first, int n)
2754 int i;
2755 isl_space *space;
2756 isl_local_space *ls;
2757 isl_aff *aff;
2758 isl_multi_aff *ma;
2759 int nrow;
2761 if (!node)
2762 return NULL;
2763 nrow = isl_mat_rows(node->sched);
2764 if (node->compressed)
2765 space = isl_multi_aff_get_domain_space(node->decompress);
2766 else
2767 space = isl_space_copy(node->space);
2768 ls = isl_local_space_from_space(isl_space_copy(space));
2769 space = isl_space_from_domain(space);
2770 space = isl_space_add_dims(space, isl_dim_out, n);
2771 ma = isl_multi_aff_zero(space);
2773 for (i = first; i < first + n; ++i) {
2774 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2775 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2778 isl_local_space_free(ls);
2780 if (node->compressed)
2781 ma = isl_multi_aff_pullback_multi_aff(ma,
2782 isl_multi_aff_copy(node->compress));
2784 return ma;
2787 /* Convert node->sched into a multi_aff and return this multi_aff.
2789 * The result is defined over the uncompressed node domain.
2791 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2792 struct isl_sched_node *node)
2794 int nrow;
2796 nrow = isl_mat_rows(node->sched);
2797 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2800 /* Convert node->sched into a map and return this map.
2802 * The result is cached in node->sched_map, which needs to be released
2803 * whenever node->sched is updated.
2804 * It is defined over the uncompressed node domain.
2806 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2808 if (!node->sched_map) {
2809 isl_multi_aff *ma;
2811 ma = node_extract_schedule_multi_aff(node);
2812 node->sched_map = isl_map_from_multi_aff(ma);
2815 return isl_map_copy(node->sched_map);
2818 /* Construct a map that can be used to update a dependence relation
2819 * based on the current schedule.
2820 * That is, construct a map expressing that source and sink
2821 * are executed within the same iteration of the current schedule.
2822 * This map can then be intersected with the dependence relation.
2823 * This is not the most efficient way, but this shouldn't be a critical
2824 * operation.
2826 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2827 struct isl_sched_node *dst)
2829 isl_map *src_sched, *dst_sched;
2831 src_sched = node_extract_schedule(src);
2832 dst_sched = node_extract_schedule(dst);
2833 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2836 /* Intersect the domains of the nested relations in domain and range
2837 * of "umap" with "map".
2839 static __isl_give isl_union_map *intersect_domains(
2840 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2842 isl_union_set *uset;
2844 umap = isl_union_map_zip(umap);
2845 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2846 umap = isl_union_map_intersect_domain(umap, uset);
2847 umap = isl_union_map_zip(umap);
2848 return umap;
2851 /* Update the dependence relation of the given edge based
2852 * on the current schedule.
2853 * If the dependence is carried completely by the current schedule, then
2854 * it is removed from the edge_tables. It is kept in the list of edges
2855 * as otherwise all edge_tables would have to be recomputed.
2857 static int update_edge(struct isl_sched_graph *graph,
2858 struct isl_sched_edge *edge)
2860 int empty;
2861 isl_map *id;
2863 id = specializer(edge->src, edge->dst);
2864 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2865 if (!edge->map)
2866 goto error;
2868 if (edge->tagged_condition) {
2869 edge->tagged_condition =
2870 intersect_domains(edge->tagged_condition, id);
2871 if (!edge->tagged_condition)
2872 goto error;
2874 if (edge->tagged_validity) {
2875 edge->tagged_validity =
2876 intersect_domains(edge->tagged_validity, id);
2877 if (!edge->tagged_validity)
2878 goto error;
2881 empty = isl_map_plain_is_empty(edge->map);
2882 if (empty < 0)
2883 goto error;
2884 if (empty)
2885 graph_remove_edge(graph, edge);
2887 isl_map_free(id);
2888 return 0;
2889 error:
2890 isl_map_free(id);
2891 return -1;
2894 /* Does the domain of "umap" intersect "uset"?
2896 static int domain_intersects(__isl_keep isl_union_map *umap,
2897 __isl_keep isl_union_set *uset)
2899 int empty;
2901 umap = isl_union_map_copy(umap);
2902 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2903 empty = isl_union_map_is_empty(umap);
2904 isl_union_map_free(umap);
2906 return empty < 0 ? -1 : !empty;
2909 /* Does the range of "umap" intersect "uset"?
2911 static int range_intersects(__isl_keep isl_union_map *umap,
2912 __isl_keep isl_union_set *uset)
2914 int empty;
2916 umap = isl_union_map_copy(umap);
2917 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2918 empty = isl_union_map_is_empty(umap);
2919 isl_union_map_free(umap);
2921 return empty < 0 ? -1 : !empty;
2924 /* Are the condition dependences of "edge" local with respect to
2925 * the current schedule?
2927 * That is, are domain and range of the condition dependences mapped
2928 * to the same point?
2930 * In other words, is the condition false?
2932 static int is_condition_false(struct isl_sched_edge *edge)
2934 isl_union_map *umap;
2935 isl_map *map, *sched, *test;
2936 int empty, local;
2938 empty = isl_union_map_is_empty(edge->tagged_condition);
2939 if (empty < 0 || empty)
2940 return empty;
2942 umap = isl_union_map_copy(edge->tagged_condition);
2943 umap = isl_union_map_zip(umap);
2944 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2945 map = isl_map_from_union_map(umap);
2947 sched = node_extract_schedule(edge->src);
2948 map = isl_map_apply_domain(map, sched);
2949 sched = node_extract_schedule(edge->dst);
2950 map = isl_map_apply_range(map, sched);
2952 test = isl_map_identity(isl_map_get_space(map));
2953 local = isl_map_is_subset(map, test);
2954 isl_map_free(map);
2955 isl_map_free(test);
2957 return local;
2960 /* For each conditional validity constraint that is adjacent
2961 * to a condition with domain in condition_source or range in condition_sink,
2962 * turn it into an unconditional validity constraint.
2964 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2965 __isl_take isl_union_set *condition_source,
2966 __isl_take isl_union_set *condition_sink)
2968 int i;
2970 condition_source = isl_union_set_coalesce(condition_source);
2971 condition_sink = isl_union_set_coalesce(condition_sink);
2973 for (i = 0; i < graph->n_edge; ++i) {
2974 int adjacent;
2975 isl_union_map *validity;
2977 if (!is_conditional_validity(&graph->edge[i]))
2978 continue;
2979 if (is_validity(&graph->edge[i]))
2980 continue;
2982 validity = graph->edge[i].tagged_validity;
2983 adjacent = domain_intersects(validity, condition_sink);
2984 if (adjacent >= 0 && !adjacent)
2985 adjacent = range_intersects(validity, condition_source);
2986 if (adjacent < 0)
2987 goto error;
2988 if (!adjacent)
2989 continue;
2991 set_validity(&graph->edge[i]);
2994 isl_union_set_free(condition_source);
2995 isl_union_set_free(condition_sink);
2996 return 0;
2997 error:
2998 isl_union_set_free(condition_source);
2999 isl_union_set_free(condition_sink);
3000 return -1;
3003 /* Update the dependence relations of all edges based on the current schedule
3004 * and enforce conditional validity constraints that are adjacent
3005 * to satisfied condition constraints.
3007 * First check if any of the condition constraints are satisfied
3008 * (i.e., not local to the outer schedule) and keep track of
3009 * their domain and range.
3010 * Then update all dependence relations (which removes the non-local
3011 * constraints).
3012 * Finally, if any condition constraints turned out to be satisfied,
3013 * then turn all adjacent conditional validity constraints into
3014 * unconditional validity constraints.
3016 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3018 int i;
3019 int any = 0;
3020 isl_union_set *source, *sink;
3022 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3023 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3024 for (i = 0; i < graph->n_edge; ++i) {
3025 int local;
3026 isl_union_set *uset;
3027 isl_union_map *umap;
3029 if (!is_condition(&graph->edge[i]))
3030 continue;
3031 if (is_local(&graph->edge[i]))
3032 continue;
3033 local = is_condition_false(&graph->edge[i]);
3034 if (local < 0)
3035 goto error;
3036 if (local)
3037 continue;
3039 any = 1;
3041 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3042 uset = isl_union_map_domain(umap);
3043 source = isl_union_set_union(source, uset);
3045 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3046 uset = isl_union_map_range(umap);
3047 sink = isl_union_set_union(sink, uset);
3050 for (i = graph->n_edge - 1; i >= 0; --i) {
3051 if (update_edge(graph, &graph->edge[i]) < 0)
3052 goto error;
3055 if (any)
3056 return unconditionalize_adjacent_validity(graph, source, sink);
3058 isl_union_set_free(source);
3059 isl_union_set_free(sink);
3060 return 0;
3061 error:
3062 isl_union_set_free(source);
3063 isl_union_set_free(sink);
3064 return -1;
3067 static void next_band(struct isl_sched_graph *graph)
3069 graph->band_start = graph->n_total_row;
3072 /* Return the union of the universe domains of the nodes in "graph"
3073 * that satisfy "pred".
3075 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3076 struct isl_sched_graph *graph,
3077 int (*pred)(struct isl_sched_node *node, int data), int data)
3079 int i;
3080 isl_set *set;
3081 isl_union_set *dom;
3083 for (i = 0; i < graph->n; ++i)
3084 if (pred(&graph->node[i], data))
3085 break;
3087 if (i >= graph->n)
3088 isl_die(ctx, isl_error_internal,
3089 "empty component", return NULL);
3091 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3092 dom = isl_union_set_from_set(set);
3094 for (i = i + 1; i < graph->n; ++i) {
3095 if (!pred(&graph->node[i], data))
3096 continue;
3097 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3098 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3101 return dom;
3104 /* Return a list of unions of universe domains, where each element
3105 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3107 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3108 struct isl_sched_graph *graph)
3110 int i;
3111 isl_union_set_list *filters;
3113 filters = isl_union_set_list_alloc(ctx, graph->scc);
3114 for (i = 0; i < graph->scc; ++i) {
3115 isl_union_set *dom;
3117 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3118 filters = isl_union_set_list_add(filters, dom);
3121 return filters;
3124 /* Return a list of two unions of universe domains, one for the SCCs up
3125 * to and including graph->src_scc and another for the other SCCs.
3127 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3128 struct isl_sched_graph *graph)
3130 isl_union_set *dom;
3131 isl_union_set_list *filters;
3133 filters = isl_union_set_list_alloc(ctx, 2);
3134 dom = isl_sched_graph_domain(ctx, graph,
3135 &node_scc_at_most, graph->src_scc);
3136 filters = isl_union_set_list_add(filters, dom);
3137 dom = isl_sched_graph_domain(ctx, graph,
3138 &node_scc_at_least, graph->src_scc + 1);
3139 filters = isl_union_set_list_add(filters, dom);
3141 return filters;
3144 /* Copy nodes that satisfy node_pred from the src dependence graph
3145 * to the dst dependence graph.
3147 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3148 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3150 int i;
3152 dst->n = 0;
3153 for (i = 0; i < src->n; ++i) {
3154 int j;
3156 if (!node_pred(&src->node[i], data))
3157 continue;
3159 j = dst->n;
3160 dst->node[j].space = isl_space_copy(src->node[i].space);
3161 dst->node[j].compressed = src->node[i].compressed;
3162 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3163 dst->node[j].compress =
3164 isl_multi_aff_copy(src->node[i].compress);
3165 dst->node[j].decompress =
3166 isl_multi_aff_copy(src->node[i].decompress);
3167 dst->node[j].nvar = src->node[i].nvar;
3168 dst->node[j].nparam = src->node[i].nparam;
3169 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3170 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3171 dst->node[j].coincident = src->node[i].coincident;
3172 dst->n++;
3174 if (!dst->node[j].space || !dst->node[j].sched)
3175 return -1;
3176 if (dst->node[j].compressed &&
3177 (!dst->node[j].hull || !dst->node[j].compress ||
3178 !dst->node[j].decompress))
3179 return -1;
3182 return 0;
3185 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3186 * to the dst dependence graph.
3187 * If the source or destination node of the edge is not in the destination
3188 * graph, then it must be a backward proximity edge and it should simply
3189 * be ignored.
3191 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3192 struct isl_sched_graph *src,
3193 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3195 int i;
3196 enum isl_edge_type t;
3198 dst->n_edge = 0;
3199 for (i = 0; i < src->n_edge; ++i) {
3200 struct isl_sched_edge *edge = &src->edge[i];
3201 isl_map *map;
3202 isl_union_map *tagged_condition;
3203 isl_union_map *tagged_validity;
3204 struct isl_sched_node *dst_src, *dst_dst;
3206 if (!edge_pred(edge, data))
3207 continue;
3209 if (isl_map_plain_is_empty(edge->map))
3210 continue;
3212 dst_src = graph_find_node(ctx, dst, edge->src->space);
3213 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3214 if (!dst_src || !dst_dst) {
3215 if (is_validity(edge) || is_conditional_validity(edge))
3216 isl_die(ctx, isl_error_internal,
3217 "backward (conditional) validity edge",
3218 return -1);
3219 continue;
3222 map = isl_map_copy(edge->map);
3223 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3224 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3226 dst->edge[dst->n_edge].src = dst_src;
3227 dst->edge[dst->n_edge].dst = dst_dst;
3228 dst->edge[dst->n_edge].map = map;
3229 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3230 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3231 dst->edge[dst->n_edge].types = edge->types;
3232 dst->n_edge++;
3234 if (edge->tagged_condition && !tagged_condition)
3235 return -1;
3236 if (edge->tagged_validity && !tagged_validity)
3237 return -1;
3239 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3240 if (edge !=
3241 graph_find_edge(src, t, edge->src, edge->dst))
3242 continue;
3243 if (graph_edge_table_add(ctx, dst, t,
3244 &dst->edge[dst->n_edge - 1]) < 0)
3245 return -1;
3249 return 0;
3252 /* Compute the maximal number of variables over all nodes.
3253 * This is the maximal number of linearly independent schedule
3254 * rows that we need to compute.
3255 * Just in case we end up in a part of the dependence graph
3256 * with only lower-dimensional domains, we make sure we will
3257 * compute the required amount of extra linearly independent rows.
3259 static int compute_maxvar(struct isl_sched_graph *graph)
3261 int i;
3263 graph->maxvar = 0;
3264 for (i = 0; i < graph->n; ++i) {
3265 struct isl_sched_node *node = &graph->node[i];
3266 int nvar;
3268 if (node_update_cmap(node) < 0)
3269 return -1;
3270 nvar = node->nvar + graph->n_row - node->rank;
3271 if (nvar > graph->maxvar)
3272 graph->maxvar = nvar;
3275 return 0;
3278 /* Extract the subgraph of "graph" that consists of the node satisfying
3279 * "node_pred" and the edges satisfying "edge_pred" and store
3280 * the result in "sub".
3282 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3283 int (*node_pred)(struct isl_sched_node *node, int data),
3284 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3285 int data, struct isl_sched_graph *sub)
3287 int i, n = 0, n_edge = 0;
3288 int t;
3290 for (i = 0; i < graph->n; ++i)
3291 if (node_pred(&graph->node[i], data))
3292 ++n;
3293 for (i = 0; i < graph->n_edge; ++i)
3294 if (edge_pred(&graph->edge[i], data))
3295 ++n_edge;
3296 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3297 return -1;
3298 if (copy_nodes(sub, graph, node_pred, data) < 0)
3299 return -1;
3300 if (graph_init_table(ctx, sub) < 0)
3301 return -1;
3302 for (t = 0; t <= isl_edge_last; ++t)
3303 sub->max_edge[t] = graph->max_edge[t];
3304 if (graph_init_edge_tables(ctx, sub) < 0)
3305 return -1;
3306 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3307 return -1;
3308 sub->n_row = graph->n_row;
3309 sub->max_row = graph->max_row;
3310 sub->n_total_row = graph->n_total_row;
3311 sub->band_start = graph->band_start;
3313 return 0;
3316 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3317 struct isl_sched_graph *graph);
3318 static __isl_give isl_schedule_node *compute_schedule_wcc(
3319 isl_schedule_node *node, struct isl_sched_graph *graph);
3321 /* Compute a schedule for a subgraph of "graph". In particular, for
3322 * the graph composed of nodes that satisfy node_pred and edges that
3323 * that satisfy edge_pred.
3324 * If the subgraph is known to consist of a single component, then wcc should
3325 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3326 * Otherwise, we call compute_schedule, which will check whether the subgraph
3327 * is connected.
3329 * The schedule is inserted at "node" and the updated schedule node
3330 * is returned.
3332 static __isl_give isl_schedule_node *compute_sub_schedule(
3333 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3334 struct isl_sched_graph *graph,
3335 int (*node_pred)(struct isl_sched_node *node, int data),
3336 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3337 int data, int wcc)
3339 struct isl_sched_graph split = { 0 };
3341 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3342 &split) < 0)
3343 goto error;
3345 if (wcc)
3346 node = compute_schedule_wcc(node, &split);
3347 else
3348 node = compute_schedule(node, &split);
3350 graph_free(ctx, &split);
3351 return node;
3352 error:
3353 graph_free(ctx, &split);
3354 return isl_schedule_node_free(node);
3357 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3359 return edge->src->scc == scc && edge->dst->scc == scc;
3362 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3364 return edge->dst->scc <= scc;
3367 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3369 return edge->src->scc >= scc;
3372 /* Reset the current band by dropping all its schedule rows.
3374 static int reset_band(struct isl_sched_graph *graph)
3376 int i;
3377 int drop;
3379 drop = graph->n_total_row - graph->band_start;
3380 graph->n_total_row -= drop;
3381 graph->n_row -= drop;
3383 for (i = 0; i < graph->n; ++i) {
3384 struct isl_sched_node *node = &graph->node[i];
3386 isl_map_free(node->sched_map);
3387 node->sched_map = NULL;
3389 node->sched = isl_mat_drop_rows(node->sched,
3390 graph->band_start, drop);
3392 if (!node->sched)
3393 return -1;
3396 return 0;
3399 /* Split the current graph into two parts and compute a schedule for each
3400 * part individually. In particular, one part consists of all SCCs up
3401 * to and including graph->src_scc, while the other part contains the other
3402 * SCCs. The split is enforced by a sequence node inserted at position "node"
3403 * in the schedule tree. Return the updated schedule node.
3404 * If either of these two parts consists of a sequence, then it is spliced
3405 * into the sequence containing the two parts.
3407 * The current band is reset. It would be possible to reuse
3408 * the previously computed rows as the first rows in the next
3409 * band, but recomputing them may result in better rows as we are looking
3410 * at a smaller part of the dependence graph.
3412 static __isl_give isl_schedule_node *compute_split_schedule(
3413 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3415 int is_seq;
3416 isl_ctx *ctx;
3417 isl_union_set_list *filters;
3419 if (!node)
3420 return NULL;
3422 if (reset_band(graph) < 0)
3423 return isl_schedule_node_free(node);
3425 next_band(graph);
3427 ctx = isl_schedule_node_get_ctx(node);
3428 filters = extract_split(ctx, graph);
3429 node = isl_schedule_node_insert_sequence(node, filters);
3430 node = isl_schedule_node_child(node, 1);
3431 node = isl_schedule_node_child(node, 0);
3433 node = compute_sub_schedule(node, ctx, graph,
3434 &node_scc_at_least, &edge_src_scc_at_least,
3435 graph->src_scc + 1, 0);
3436 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3437 node = isl_schedule_node_parent(node);
3438 node = isl_schedule_node_parent(node);
3439 if (is_seq)
3440 node = isl_schedule_node_sequence_splice_child(node, 1);
3441 node = isl_schedule_node_child(node, 0);
3442 node = isl_schedule_node_child(node, 0);
3443 node = compute_sub_schedule(node, ctx, graph,
3444 &node_scc_at_most, &edge_dst_scc_at_most,
3445 graph->src_scc, 0);
3446 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3447 node = isl_schedule_node_parent(node);
3448 node = isl_schedule_node_parent(node);
3449 if (is_seq)
3450 node = isl_schedule_node_sequence_splice_child(node, 0);
3452 return node;
3455 /* Insert a band node at position "node" in the schedule tree corresponding
3456 * to the current band in "graph". Mark the band node permutable
3457 * if "permutable" is set.
3458 * The partial schedules and the coincidence property are extracted
3459 * from the graph nodes.
3460 * Return the updated schedule node.
3462 static __isl_give isl_schedule_node *insert_current_band(
3463 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3464 int permutable)
3466 int i;
3467 int start, end, n;
3468 isl_multi_aff *ma;
3469 isl_multi_pw_aff *mpa;
3470 isl_multi_union_pw_aff *mupa;
3472 if (!node)
3473 return NULL;
3475 if (graph->n < 1)
3476 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3477 "graph should have at least one node",
3478 return isl_schedule_node_free(node));
3480 start = graph->band_start;
3481 end = graph->n_total_row;
3482 n = end - start;
3484 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3485 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3486 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3488 for (i = 1; i < graph->n; ++i) {
3489 isl_multi_union_pw_aff *mupa_i;
3491 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3492 start, n);
3493 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3494 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3495 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3497 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3499 for (i = 0; i < n; ++i)
3500 node = isl_schedule_node_band_member_set_coincident(node, i,
3501 graph->node[0].coincident[start + i]);
3502 node = isl_schedule_node_band_set_permutable(node, permutable);
3504 return node;
3507 /* Update the dependence relations based on the current schedule,
3508 * add the current band to "node" and then continue with the computation
3509 * of the next band.
3510 * Return the updated schedule node.
3512 static __isl_give isl_schedule_node *compute_next_band(
3513 __isl_take isl_schedule_node *node,
3514 struct isl_sched_graph *graph, int permutable)
3516 isl_ctx *ctx;
3518 if (!node)
3519 return NULL;
3521 ctx = isl_schedule_node_get_ctx(node);
3522 if (update_edges(ctx, graph) < 0)
3523 return isl_schedule_node_free(node);
3524 node = insert_current_band(node, graph, permutable);
3525 next_band(graph);
3527 node = isl_schedule_node_child(node, 0);
3528 node = compute_schedule(node, graph);
3529 node = isl_schedule_node_parent(node);
3531 return node;
3534 /* Add constraints to graph->lp that force the dependence "map" (which
3535 * is part of the dependence relation of "edge")
3536 * to be respected and attempt to carry it, where the edge is one from
3537 * a node j to itself. "pos" is the sequence number of the given map.
3538 * That is, add constraints that enforce
3540 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3541 * = c_j_x (y - x) >= e_i
3543 * for each (x,y) in R.
3544 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3545 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3546 * with each coefficient in c_j_x represented as a pair of non-negative
3547 * coefficients.
3549 static int add_intra_constraints(struct isl_sched_graph *graph,
3550 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3552 unsigned total;
3553 isl_ctx *ctx = isl_map_get_ctx(map);
3554 isl_space *dim;
3555 isl_dim_map *dim_map;
3556 isl_basic_set *coef;
3557 struct isl_sched_node *node = edge->src;
3559 coef = intra_coefficients(graph, node, map);
3560 if (!coef)
3561 return -1;
3563 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
3565 total = isl_basic_set_total_dim(graph->lp);
3566 dim_map = isl_dim_map_alloc(ctx, total);
3567 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3568 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
3569 isl_space_dim(dim, isl_dim_set), 1,
3570 node->nvar, -1);
3571 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
3572 isl_space_dim(dim, isl_dim_set), 1,
3573 node->nvar, 1);
3574 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3575 coef->n_eq, coef->n_ineq);
3576 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3577 coef, dim_map);
3578 isl_space_free(dim);
3580 return 0;
3583 /* Add constraints to graph->lp that force the dependence "map" (which
3584 * is part of the dependence relation of "edge")
3585 * to be respected and attempt to carry it, where the edge is one from
3586 * node j to node k. "pos" is the sequence number of the given map.
3587 * That is, add constraints that enforce
3589 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3591 * for each (x,y) in R.
3592 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3593 * of valid constraints for R and then plug in
3594 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3595 * with each coefficient (except e_i, c_k_0 and c_j_0)
3596 * represented as a pair of non-negative coefficients.
3598 static int add_inter_constraints(struct isl_sched_graph *graph,
3599 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3601 unsigned total;
3602 isl_ctx *ctx = isl_map_get_ctx(map);
3603 isl_space *dim;
3604 isl_dim_map *dim_map;
3605 isl_basic_set *coef;
3606 struct isl_sched_node *src = edge->src;
3607 struct isl_sched_node *dst = edge->dst;
3609 coef = inter_coefficients(graph, edge, map);
3610 if (!coef)
3611 return -1;
3613 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
3615 total = isl_basic_set_total_dim(graph->lp);
3616 dim_map = isl_dim_map_alloc(ctx, total);
3618 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3620 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
3621 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
3622 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
3623 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
3624 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
3625 dst->nvar, -1);
3626 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
3627 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
3628 dst->nvar, 1);
3630 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
3631 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
3632 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
3633 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
3634 isl_space_dim(dim, isl_dim_set), 1,
3635 src->nvar, 1);
3636 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
3637 isl_space_dim(dim, isl_dim_set), 1,
3638 src->nvar, -1);
3640 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3641 coef->n_eq, coef->n_ineq);
3642 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3643 coef, dim_map);
3644 isl_space_free(dim);
3646 return 0;
3649 /* Add constraints to graph->lp that force all (conditional) validity
3650 * dependences to be respected and attempt to carry them.
3652 static int add_all_constraints(struct isl_sched_graph *graph)
3654 int i, j;
3655 int pos;
3657 pos = 0;
3658 for (i = 0; i < graph->n_edge; ++i) {
3659 struct isl_sched_edge *edge= &graph->edge[i];
3661 if (!is_validity(edge) && !is_conditional_validity(edge))
3662 continue;
3664 for (j = 0; j < edge->map->n; ++j) {
3665 isl_basic_map *bmap;
3666 isl_map *map;
3668 bmap = isl_basic_map_copy(edge->map->p[j]);
3669 map = isl_map_from_basic_map(bmap);
3671 if (edge->src == edge->dst &&
3672 add_intra_constraints(graph, edge, map, pos) < 0)
3673 return -1;
3674 if (edge->src != edge->dst &&
3675 add_inter_constraints(graph, edge, map, pos) < 0)
3676 return -1;
3677 ++pos;
3681 return 0;
3684 /* Count the number of equality and inequality constraints
3685 * that will be added to the carry_lp problem.
3686 * We count each edge exactly once.
3688 static int count_all_constraints(struct isl_sched_graph *graph,
3689 int *n_eq, int *n_ineq)
3691 int i, j;
3693 *n_eq = *n_ineq = 0;
3694 for (i = 0; i < graph->n_edge; ++i) {
3695 struct isl_sched_edge *edge= &graph->edge[i];
3696 for (j = 0; j < edge->map->n; ++j) {
3697 isl_basic_map *bmap;
3698 isl_map *map;
3700 bmap = isl_basic_map_copy(edge->map->p[j]);
3701 map = isl_map_from_basic_map(bmap);
3703 if (count_map_constraints(graph, edge, map,
3704 n_eq, n_ineq, 1, 0) < 0)
3705 return -1;
3709 return 0;
3712 /* Construct an LP problem for finding schedule coefficients
3713 * such that the schedule carries as many dependences as possible.
3714 * In particular, for each dependence i, we bound the dependence distance
3715 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3716 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3717 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3718 * Note that if the dependence relation is a union of basic maps,
3719 * then we have to consider each basic map individually as it may only
3720 * be possible to carry the dependences expressed by some of those
3721 * basic maps and not all of them.
3722 * Below, we consider each of those basic maps as a separate "edge".
3724 * All variables of the LP are non-negative. The actual coefficients
3725 * may be negative, so each coefficient is represented as the difference
3726 * of two non-negative variables. The negative part always appears
3727 * immediately before the positive part.
3728 * Other than that, the variables have the following order
3730 * - sum of (1 - e_i) over all edges
3731 * - sum of positive and negative parts of all c_n coefficients
3732 * (unconstrained when computing non-parametric schedules)
3733 * - sum of positive and negative parts of all c_x coefficients
3734 * - for each edge
3735 * - e_i
3736 * - for each node
3737 * - c_i_0
3738 * - positive and negative parts of c_i_n (if parametric)
3739 * - positive and negative parts of c_i_x
3741 * The constraints are those from the (validity) edges plus three equalities
3742 * to express the sums and n_edge inequalities to express e_i <= 1.
3744 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
3746 int i, j;
3747 int k;
3748 isl_space *dim;
3749 unsigned total;
3750 int n_eq, n_ineq;
3751 int n_edge;
3753 n_edge = 0;
3754 for (i = 0; i < graph->n_edge; ++i)
3755 n_edge += graph->edge[i].map->n;
3757 total = 3 + n_edge;
3758 for (i = 0; i < graph->n; ++i) {
3759 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3760 node->start = total;
3761 total += 1 + 2 * (node->nparam + node->nvar);
3764 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
3765 return isl_stat_error;
3767 dim = isl_space_set_alloc(ctx, 0, total);
3768 isl_basic_set_free(graph->lp);
3769 n_eq += 3;
3770 n_ineq += n_edge;
3771 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3772 graph->lp = isl_basic_set_set_rational(graph->lp);
3774 k = isl_basic_set_alloc_equality(graph->lp);
3775 if (k < 0)
3776 return isl_stat_error;
3777 isl_seq_clr(graph->lp->eq[k], 1 + total);
3778 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3779 isl_int_set_si(graph->lp->eq[k][1], 1);
3780 for (i = 0; i < n_edge; ++i)
3781 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3783 k = isl_basic_set_alloc_equality(graph->lp);
3784 if (k < 0)
3785 return isl_stat_error;
3786 isl_seq_clr(graph->lp->eq[k], 1 + total);
3787 isl_int_set_si(graph->lp->eq[k][2], -1);
3788 for (i = 0; i < graph->n; ++i) {
3789 int pos = 1 + graph->node[i].start + 1;
3791 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
3792 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3795 k = isl_basic_set_alloc_equality(graph->lp);
3796 if (k < 0)
3797 return isl_stat_error;
3798 isl_seq_clr(graph->lp->eq[k], 1 + total);
3799 isl_int_set_si(graph->lp->eq[k][3], -1);
3800 for (i = 0; i < graph->n; ++i) {
3801 struct isl_sched_node *node = &graph->node[i];
3802 int pos = 1 + node->start + 1 + 2 * node->nparam;
3804 for (j = 0; j < 2 * node->nvar; ++j)
3805 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3808 for (i = 0; i < n_edge; ++i) {
3809 k = isl_basic_set_alloc_inequality(graph->lp);
3810 if (k < 0)
3811 return isl_stat_error;
3812 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3813 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3814 isl_int_set_si(graph->lp->ineq[k][0], 1);
3817 if (add_all_constraints(graph) < 0)
3818 return isl_stat_error;
3820 return isl_stat_ok;
3823 static __isl_give isl_schedule_node *compute_component_schedule(
3824 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3825 int wcc);
3827 /* Comparison function for sorting the statements based on
3828 * the corresponding value in "r".
3830 static int smaller_value(const void *a, const void *b, void *data)
3832 isl_vec *r = data;
3833 const int *i1 = a;
3834 const int *i2 = b;
3836 return isl_int_cmp(r->el[*i1], r->el[*i2]);
3839 /* If the schedule_split_scaled option is set and if the linear
3840 * parts of the scheduling rows for all nodes in the graphs have
3841 * a non-trivial common divisor, then split off the remainder of the
3842 * constant term modulo this common divisor from the linear part.
3843 * Otherwise, insert a band node directly and continue with
3844 * the construction of the schedule.
3846 * If a non-trivial common divisor is found, then
3847 * the linear part is reduced and the remainder is enforced
3848 * by a sequence node with the children placed in the order
3849 * of this remainder.
3850 * In particular, we assign an scc index based on the remainder and
3851 * then rely on compute_component_schedule to insert the sequence and
3852 * to continue the schedule construction on each part.
3854 static __isl_give isl_schedule_node *split_scaled(
3855 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3857 int i;
3858 int row;
3859 int scc;
3860 isl_ctx *ctx;
3861 isl_int gcd, gcd_i;
3862 isl_vec *r;
3863 int *order;
3865 if (!node)
3866 return NULL;
3868 ctx = isl_schedule_node_get_ctx(node);
3869 if (!ctx->opt->schedule_split_scaled)
3870 return compute_next_band(node, graph, 0);
3871 if (graph->n <= 1)
3872 return compute_next_band(node, graph, 0);
3874 isl_int_init(gcd);
3875 isl_int_init(gcd_i);
3877 isl_int_set_si(gcd, 0);
3879 row = isl_mat_rows(graph->node[0].sched) - 1;
3881 for (i = 0; i < graph->n; ++i) {
3882 struct isl_sched_node *node = &graph->node[i];
3883 int cols = isl_mat_cols(node->sched);
3885 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3886 isl_int_gcd(gcd, gcd, gcd_i);
3889 isl_int_clear(gcd_i);
3891 if (isl_int_cmp_si(gcd, 1) <= 0) {
3892 isl_int_clear(gcd);
3893 return compute_next_band(node, graph, 0);
3896 r = isl_vec_alloc(ctx, graph->n);
3897 order = isl_calloc_array(ctx, int, graph->n);
3898 if (!r || !order)
3899 goto error;
3901 for (i = 0; i < graph->n; ++i) {
3902 struct isl_sched_node *node = &graph->node[i];
3904 order[i] = i;
3905 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
3906 isl_int_fdiv_q(node->sched->row[row][0],
3907 node->sched->row[row][0], gcd);
3908 isl_int_mul(node->sched->row[row][0],
3909 node->sched->row[row][0], gcd);
3910 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3911 if (!node->sched)
3912 goto error;
3915 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
3916 goto error;
3918 scc = 0;
3919 for (i = 0; i < graph->n; ++i) {
3920 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
3921 ++scc;
3922 graph->node[order[i]].scc = scc;
3924 graph->scc = ++scc;
3925 graph->weak = 0;
3927 isl_int_clear(gcd);
3928 isl_vec_free(r);
3929 free(order);
3931 if (update_edges(ctx, graph) < 0)
3932 return isl_schedule_node_free(node);
3933 node = insert_current_band(node, graph, 0);
3934 next_band(graph);
3936 node = isl_schedule_node_child(node, 0);
3937 node = compute_component_schedule(node, graph, 0);
3938 node = isl_schedule_node_parent(node);
3940 return node;
3941 error:
3942 isl_vec_free(r);
3943 free(order);
3944 isl_int_clear(gcd);
3945 return isl_schedule_node_free(node);
3948 /* Is the schedule row "sol" trivial on node "node"?
3949 * That is, is the solution zero on the dimensions orthogonal to
3950 * the previously found solutions?
3951 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3953 * Each coefficient is represented as the difference between
3954 * two non-negative values in "sol". "sol" has been computed
3955 * in terms of the original iterators (i.e., without use of cmap).
3956 * We construct the schedule row s and write it as a linear
3957 * combination of (linear combinations of) previously computed schedule rows.
3958 * s = Q c or c = U s.
3959 * If the final entries of c are all zero, then the solution is trivial.
3961 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3963 int i;
3964 int pos;
3965 int trivial;
3966 isl_ctx *ctx;
3967 isl_vec *node_sol;
3969 if (!sol)
3970 return -1;
3971 if (node->nvar == node->rank)
3972 return 0;
3974 ctx = isl_vec_get_ctx(sol);
3975 node_sol = isl_vec_alloc(ctx, node->nvar);
3976 if (!node_sol)
3977 return -1;
3979 pos = 1 + node->start + 1 + 2 * node->nparam;
3981 for (i = 0; i < node->nvar; ++i)
3982 isl_int_sub(node_sol->el[i],
3983 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3985 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3987 if (!node_sol)
3988 return -1;
3990 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3991 node->nvar - node->rank) == -1;
3993 isl_vec_free(node_sol);
3995 return trivial;
3998 /* Is the schedule row "sol" trivial on any node where it should
3999 * not be trivial?
4000 * "sol" has been computed in terms of the original iterators
4001 * (i.e., without use of cmap).
4002 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4004 static int is_any_trivial(struct isl_sched_graph *graph,
4005 __isl_keep isl_vec *sol)
4007 int i;
4009 for (i = 0; i < graph->n; ++i) {
4010 struct isl_sched_node *node = &graph->node[i];
4011 int trivial;
4013 if (!needs_row(graph, node))
4014 continue;
4015 trivial = is_trivial(node, sol);
4016 if (trivial < 0 || trivial)
4017 return trivial;
4020 return 0;
4023 /* Construct a schedule row for each node such that as many dependences
4024 * as possible are carried and then continue with the next band.
4026 * Note that despite the fact that the problem is solved using a rational
4027 * solver, the solution is guaranteed to be integral.
4028 * Specifically, the dependence distance lower bounds e_i (and therefore
4029 * also their sum) are integers. See Lemma 5 of [1].
4031 * If the computed schedule row turns out to be trivial on one or
4032 * more nodes where it should not be trivial, then we throw it away
4033 * and try again on each component separately.
4035 * If there is only one component, then we accept the schedule row anyway,
4036 * but we do not consider it as a complete row and therefore do not
4037 * increment graph->n_row. Note that the ranks of the nodes that
4038 * do get a non-trivial schedule part will get updated regardless and
4039 * graph->maxvar is computed based on these ranks. The test for
4040 * whether more schedule rows are required in compute_schedule_wcc
4041 * is therefore not affected.
4043 * Insert a band corresponding to the schedule row at position "node"
4044 * of the schedule tree and continue with the construction of the schedule.
4045 * This insertion and the continued construction is performed by split_scaled
4046 * after optionally checking for non-trivial common divisors.
4048 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4049 * Problem, Part II: Multi-Dimensional Time.
4050 * In Intl. Journal of Parallel Programming, 1992.
4052 static __isl_give isl_schedule_node *carry_dependences(
4053 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4055 int i;
4056 int n_edge;
4057 int trivial;
4058 isl_ctx *ctx;
4059 isl_vec *sol;
4060 isl_basic_set *lp;
4062 if (!node)
4063 return NULL;
4065 n_edge = 0;
4066 for (i = 0; i < graph->n_edge; ++i)
4067 n_edge += graph->edge[i].map->n;
4069 ctx = isl_schedule_node_get_ctx(node);
4070 if (setup_carry_lp(ctx, graph) < 0)
4071 return isl_schedule_node_free(node);
4073 lp = isl_basic_set_copy(graph->lp);
4074 sol = isl_tab_basic_set_non_neg_lexmin(lp);
4075 if (!sol)
4076 return isl_schedule_node_free(node);
4078 if (sol->size == 0) {
4079 isl_vec_free(sol);
4080 isl_die(ctx, isl_error_internal,
4081 "error in schedule construction",
4082 return isl_schedule_node_free(node));
4085 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4086 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
4087 isl_vec_free(sol);
4088 isl_die(ctx, isl_error_unknown,
4089 "unable to carry dependences",
4090 return isl_schedule_node_free(node));
4093 trivial = is_any_trivial(graph, sol);
4094 if (trivial < 0) {
4095 sol = isl_vec_free(sol);
4096 } else if (trivial && graph->scc > 1) {
4097 isl_vec_free(sol);
4098 return compute_component_schedule(node, graph, 1);
4101 if (update_schedule(graph, sol, 0, 0) < 0)
4102 return isl_schedule_node_free(node);
4103 if (trivial)
4104 graph->n_row--;
4106 return split_scaled(node, graph);
4109 /* Topologically sort statements mapped to the same schedule iteration
4110 * and add insert a sequence node in front of "node"
4111 * corresponding to this order.
4112 * If "initialized" is set, then it may be assumed that compute_maxvar
4113 * has been called on the current band. Otherwise, call
4114 * compute_maxvar if and before carry_dependences gets called.
4116 * If it turns out to be impossible to sort the statements apart,
4117 * because different dependences impose different orderings
4118 * on the statements, then we extend the schedule such that
4119 * it carries at least one more dependence.
4121 static __isl_give isl_schedule_node *sort_statements(
4122 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4123 int initialized)
4125 isl_ctx *ctx;
4126 isl_union_set_list *filters;
4128 if (!node)
4129 return NULL;
4131 ctx = isl_schedule_node_get_ctx(node);
4132 if (graph->n < 1)
4133 isl_die(ctx, isl_error_internal,
4134 "graph should have at least one node",
4135 return isl_schedule_node_free(node));
4137 if (graph->n == 1)
4138 return node;
4140 if (update_edges(ctx, graph) < 0)
4141 return isl_schedule_node_free(node);
4143 if (graph->n_edge == 0)
4144 return node;
4146 if (detect_sccs(ctx, graph) < 0)
4147 return isl_schedule_node_free(node);
4149 next_band(graph);
4150 if (graph->scc < graph->n) {
4151 if (!initialized && compute_maxvar(graph) < 0)
4152 return isl_schedule_node_free(node);
4153 return carry_dependences(node, graph);
4156 filters = extract_sccs(ctx, graph);
4157 node = isl_schedule_node_insert_sequence(node, filters);
4159 return node;
4162 /* Are there any (non-empty) (conditional) validity edges in the graph?
4164 static int has_validity_edges(struct isl_sched_graph *graph)
4166 int i;
4168 for (i = 0; i < graph->n_edge; ++i) {
4169 int empty;
4171 empty = isl_map_plain_is_empty(graph->edge[i].map);
4172 if (empty < 0)
4173 return -1;
4174 if (empty)
4175 continue;
4176 if (is_validity(&graph->edge[i]) ||
4177 is_conditional_validity(&graph->edge[i]))
4178 return 1;
4181 return 0;
4184 /* Should we apply a Feautrier step?
4185 * That is, did the user request the Feautrier algorithm and are
4186 * there any validity dependences (left)?
4188 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4190 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4191 return 0;
4193 return has_validity_edges(graph);
4196 /* Compute a schedule for a connected dependence graph using Feautrier's
4197 * multi-dimensional scheduling algorithm and return the updated schedule node.
4199 * The original algorithm is described in [1].
4200 * The main idea is to minimize the number of scheduling dimensions, by
4201 * trying to satisfy as many dependences as possible per scheduling dimension.
4203 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4204 * Problem, Part II: Multi-Dimensional Time.
4205 * In Intl. Journal of Parallel Programming, 1992.
4207 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4208 isl_schedule_node *node, struct isl_sched_graph *graph)
4210 return carry_dependences(node, graph);
4213 /* Turn off the "local" bit on all (condition) edges.
4215 static void clear_local_edges(struct isl_sched_graph *graph)
4217 int i;
4219 for (i = 0; i < graph->n_edge; ++i)
4220 if (is_condition(&graph->edge[i]))
4221 clear_local(&graph->edge[i]);
4224 /* Does "graph" have both condition and conditional validity edges?
4226 static int need_condition_check(struct isl_sched_graph *graph)
4228 int i;
4229 int any_condition = 0;
4230 int any_conditional_validity = 0;
4232 for (i = 0; i < graph->n_edge; ++i) {
4233 if (is_condition(&graph->edge[i]))
4234 any_condition = 1;
4235 if (is_conditional_validity(&graph->edge[i]))
4236 any_conditional_validity = 1;
4239 return any_condition && any_conditional_validity;
4242 /* Does "graph" contain any coincidence edge?
4244 static int has_any_coincidence(struct isl_sched_graph *graph)
4246 int i;
4248 for (i = 0; i < graph->n_edge; ++i)
4249 if (is_coincidence(&graph->edge[i]))
4250 return 1;
4252 return 0;
4255 /* Extract the final schedule row as a map with the iteration domain
4256 * of "node" as domain.
4258 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4260 isl_local_space *ls;
4261 isl_aff *aff;
4262 int row;
4264 row = isl_mat_rows(node->sched) - 1;
4265 ls = isl_local_space_from_space(isl_space_copy(node->space));
4266 aff = extract_schedule_row(ls, node, row);
4267 return isl_map_from_aff(aff);
4270 /* Is the conditional validity dependence in the edge with index "edge_index"
4271 * violated by the latest (i.e., final) row of the schedule?
4272 * That is, is i scheduled after j
4273 * for any conditional validity dependence i -> j?
4275 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4277 isl_map *src_sched, *dst_sched, *map;
4278 struct isl_sched_edge *edge = &graph->edge[edge_index];
4279 int empty;
4281 src_sched = final_row(edge->src);
4282 dst_sched = final_row(edge->dst);
4283 map = isl_map_copy(edge->map);
4284 map = isl_map_apply_domain(map, src_sched);
4285 map = isl_map_apply_range(map, dst_sched);
4286 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4287 empty = isl_map_is_empty(map);
4288 isl_map_free(map);
4290 if (empty < 0)
4291 return -1;
4293 return !empty;
4296 /* Does "graph" have any satisfied condition edges that
4297 * are adjacent to the conditional validity constraint with
4298 * domain "conditional_source" and range "conditional_sink"?
4300 * A satisfied condition is one that is not local.
4301 * If a condition was forced to be local already (i.e., marked as local)
4302 * then there is no need to check if it is in fact local.
4304 * Additionally, mark all adjacent condition edges found as local.
4306 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4307 __isl_keep isl_union_set *conditional_source,
4308 __isl_keep isl_union_set *conditional_sink)
4310 int i;
4311 int any = 0;
4313 for (i = 0; i < graph->n_edge; ++i) {
4314 int adjacent, local;
4315 isl_union_map *condition;
4317 if (!is_condition(&graph->edge[i]))
4318 continue;
4319 if (is_local(&graph->edge[i]))
4320 continue;
4322 condition = graph->edge[i].tagged_condition;
4323 adjacent = domain_intersects(condition, conditional_sink);
4324 if (adjacent >= 0 && !adjacent)
4325 adjacent = range_intersects(condition,
4326 conditional_source);
4327 if (adjacent < 0)
4328 return -1;
4329 if (!adjacent)
4330 continue;
4332 set_local(&graph->edge[i]);
4334 local = is_condition_false(&graph->edge[i]);
4335 if (local < 0)
4336 return -1;
4337 if (!local)
4338 any = 1;
4341 return any;
4344 /* Are there any violated conditional validity dependences with
4345 * adjacent condition dependences that are not local with respect
4346 * to the current schedule?
4347 * That is, is the conditional validity constraint violated?
4349 * Additionally, mark all those adjacent condition dependences as local.
4350 * We also mark those adjacent condition dependences that were not marked
4351 * as local before, but just happened to be local already. This ensures
4352 * that they remain local if the schedule is recomputed.
4354 * We first collect domain and range of all violated conditional validity
4355 * dependences and then check if there are any adjacent non-local
4356 * condition dependences.
4358 static int has_violated_conditional_constraint(isl_ctx *ctx,
4359 struct isl_sched_graph *graph)
4361 int i;
4362 int any = 0;
4363 isl_union_set *source, *sink;
4365 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4366 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4367 for (i = 0; i < graph->n_edge; ++i) {
4368 isl_union_set *uset;
4369 isl_union_map *umap;
4370 int violated;
4372 if (!is_conditional_validity(&graph->edge[i]))
4373 continue;
4375 violated = is_violated(graph, i);
4376 if (violated < 0)
4377 goto error;
4378 if (!violated)
4379 continue;
4381 any = 1;
4383 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4384 uset = isl_union_map_domain(umap);
4385 source = isl_union_set_union(source, uset);
4386 source = isl_union_set_coalesce(source);
4388 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4389 uset = isl_union_map_range(umap);
4390 sink = isl_union_set_union(sink, uset);
4391 sink = isl_union_set_coalesce(sink);
4394 if (any)
4395 any = has_adjacent_true_conditions(graph, source, sink);
4397 isl_union_set_free(source);
4398 isl_union_set_free(sink);
4399 return any;
4400 error:
4401 isl_union_set_free(source);
4402 isl_union_set_free(sink);
4403 return -1;
4406 /* Examine the current band (the rows between graph->band_start and
4407 * graph->n_total_row), deciding whether to drop it or add it to "node"
4408 * and then continue with the computation of the next band, if any.
4409 * If "initialized" is set, then it may be assumed that compute_maxvar
4410 * has been called on the current band. Otherwise, call
4411 * compute_maxvar if and before carry_dependences gets called.
4413 * The caller keeps looking for a new row as long as
4414 * graph->n_row < graph->maxvar. If the latest attempt to find
4415 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4416 * then we either
4417 * - split between SCCs and start over (assuming we found an interesting
4418 * pair of SCCs between which to split)
4419 * - continue with the next band (assuming the current band has at least
4420 * one row)
4421 * - try to carry as many dependences as possible and continue with the next
4422 * band
4423 * In each case, we first insert a band node in the schedule tree
4424 * if any rows have been computed.
4426 * If the caller managed to complete the schedule, we insert a band node
4427 * (if any schedule rows were computed) and we finish off by topologically
4428 * sorting the statements based on the remaining dependences.
4430 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4431 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4432 int initialized)
4434 int insert;
4436 if (!node)
4437 return NULL;
4439 if (graph->n_row < graph->maxvar) {
4440 isl_ctx *ctx;
4441 int empty = graph->n_total_row == graph->band_start;
4443 ctx = isl_schedule_node_get_ctx(node);
4444 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4445 return compute_next_band(node, graph, 1);
4446 if (graph->src_scc >= 0)
4447 return compute_split_schedule(node, graph);
4448 if (!empty)
4449 return compute_next_band(node, graph, 1);
4450 if (!initialized && compute_maxvar(graph) < 0)
4451 return isl_schedule_node_free(node);
4452 return carry_dependences(node, graph);
4455 insert = graph->n_total_row > graph->band_start;
4456 if (insert) {
4457 node = insert_current_band(node, graph, 1);
4458 node = isl_schedule_node_child(node, 0);
4460 node = sort_statements(node, graph, initialized);
4461 if (insert)
4462 node = isl_schedule_node_parent(node);
4464 return node;
4467 /* Construct a band of schedule rows for a connected dependence graph.
4468 * The caller is responsible for determining the strongly connected
4469 * components and calling compute_maxvar first.
4471 * We try to find a sequence of as many schedule rows as possible that result
4472 * in non-negative dependence distances (independent of the previous rows
4473 * in the sequence, i.e., such that the sequence is tilable), with as
4474 * many of the initial rows as possible satisfying the coincidence constraints.
4475 * The computation stops if we can't find any more rows or if we have found
4476 * all the rows we wanted to find.
4478 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4479 * outermost dimension to satisfy the coincidence constraints. If this
4480 * turns out to be impossible, we fall back on the general scheme above
4481 * and try to carry as many dependences as possible.
4483 * If "graph" contains both condition and conditional validity dependences,
4484 * then we need to check that that the conditional schedule constraint
4485 * is satisfied, i.e., there are no violated conditional validity dependences
4486 * that are adjacent to any non-local condition dependences.
4487 * If there are, then we mark all those adjacent condition dependences
4488 * as local and recompute the current band. Those dependences that
4489 * are marked local will then be forced to be local.
4490 * The initial computation is performed with no dependences marked as local.
4491 * If we are lucky, then there will be no violated conditional validity
4492 * dependences adjacent to any non-local condition dependences.
4493 * Otherwise, we mark some additional condition dependences as local and
4494 * recompute. We continue this process until there are no violations left or
4495 * until we are no longer able to compute a schedule.
4496 * Since there are only a finite number of dependences,
4497 * there will only be a finite number of iterations.
4499 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
4500 struct isl_sched_graph *graph)
4502 int has_coincidence;
4503 int use_coincidence;
4504 int force_coincidence = 0;
4505 int check_conditional;
4507 if (sort_sccs(graph) < 0)
4508 return isl_stat_error;
4510 clear_local_edges(graph);
4511 check_conditional = need_condition_check(graph);
4512 has_coincidence = has_any_coincidence(graph);
4514 if (ctx->opt->schedule_outer_coincidence)
4515 force_coincidence = 1;
4517 use_coincidence = has_coincidence;
4518 while (graph->n_row < graph->maxvar) {
4519 isl_vec *sol;
4520 int violated;
4521 int coincident;
4523 graph->src_scc = -1;
4524 graph->dst_scc = -1;
4526 if (setup_lp(ctx, graph, use_coincidence) < 0)
4527 return isl_stat_error;
4528 sol = solve_lp(graph);
4529 if (!sol)
4530 return isl_stat_error;
4531 if (sol->size == 0) {
4532 int empty = graph->n_total_row == graph->band_start;
4534 isl_vec_free(sol);
4535 if (use_coincidence && (!force_coincidence || !empty)) {
4536 use_coincidence = 0;
4537 continue;
4539 return isl_stat_ok;
4541 coincident = !has_coincidence || use_coincidence;
4542 if (update_schedule(graph, sol, 1, coincident) < 0)
4543 return isl_stat_error;
4545 if (!check_conditional)
4546 continue;
4547 violated = has_violated_conditional_constraint(ctx, graph);
4548 if (violated < 0)
4549 return isl_stat_error;
4550 if (!violated)
4551 continue;
4552 if (reset_band(graph) < 0)
4553 return isl_stat_error;
4554 use_coincidence = has_coincidence;
4557 return isl_stat_ok;
4560 /* Compute a schedule for a connected dependence graph by considering
4561 * the graph as a whole and return the updated schedule node.
4563 * The actual schedule rows of the current band are computed by
4564 * compute_schedule_wcc_band. compute_schedule_finish_band takes
4565 * care of integrating the band into "node" and continuing
4566 * the computation.
4568 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
4569 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4571 isl_ctx *ctx;
4573 if (!node)
4574 return NULL;
4576 ctx = isl_schedule_node_get_ctx(node);
4577 if (compute_schedule_wcc_band(ctx, graph) < 0)
4578 return isl_schedule_node_free(node);
4580 return compute_schedule_finish_band(node, graph, 1);
4583 /* Clustering information used by compute_schedule_wcc_clustering.
4585 * "n" is the number of SCCs in the original dependence graph
4586 * "scc" is an array of "n" elements, each representing an SCC
4587 * of the original dependence graph. All entries in the same cluster
4588 * have the same number of schedule rows.
4589 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
4590 * where each cluster is represented by the index of the first SCC
4591 * in the cluster. Initially, each SCC belongs to a cluster containing
4592 * only that SCC.
4594 * "scc_in_merge" is used by merge_clusters_along_edge to keep
4595 * track of which SCCs need to be merged.
4597 * "cluster" contains the merged clusters of SCCs after the clustering
4598 * has completed.
4600 * "scc_node" is a temporary data structure used inside copy_partial.
4601 * For each SCC, it keeps track of the number of nodes in the SCC
4602 * that have already been copied.
4604 struct isl_clustering {
4605 int n;
4606 struct isl_sched_graph *scc;
4607 struct isl_sched_graph *cluster;
4608 int *scc_cluster;
4609 int *scc_node;
4610 int *scc_in_merge;
4613 /* Initialize the clustering data structure "c" from "graph".
4615 * In particular, allocate memory, extract the SCCs from "graph"
4616 * into c->scc, initialize scc_cluster and construct
4617 * a band of schedule rows for each SCC.
4618 * Within each SCC, there is only one SCC by definition.
4619 * Each SCC initially belongs to a cluster containing only that SCC.
4621 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
4622 struct isl_sched_graph *graph)
4624 int i;
4626 c->n = graph->scc;
4627 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4628 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4629 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
4630 c->scc_node = isl_calloc_array(ctx, int, c->n);
4631 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
4632 if (!c->scc || !c->cluster ||
4633 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
4634 return isl_stat_error;
4636 for (i = 0; i < c->n; ++i) {
4637 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
4638 &edge_scc_exactly, i, &c->scc[i]) < 0)
4639 return isl_stat_error;
4640 c->scc[i].scc = 1;
4641 if (compute_maxvar(&c->scc[i]) < 0)
4642 return isl_stat_error;
4643 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
4644 return isl_stat_error;
4645 c->scc_cluster[i] = i;
4648 return isl_stat_ok;
4651 /* Free all memory allocated for "c".
4653 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
4655 int i;
4657 if (c->scc)
4658 for (i = 0; i < c->n; ++i)
4659 graph_free(ctx, &c->scc[i]);
4660 free(c->scc);
4661 if (c->cluster)
4662 for (i = 0; i < c->n; ++i)
4663 graph_free(ctx, &c->cluster[i]);
4664 free(c->cluster);
4665 free(c->scc_cluster);
4666 free(c->scc_node);
4667 free(c->scc_in_merge);
4670 /* Should we refrain from merging the cluster in "graph" with
4671 * any other cluster?
4672 * In particular, is its current schedule band empty and incomplete.
4674 static int bad_cluster(struct isl_sched_graph *graph)
4676 return graph->n_row < graph->maxvar &&
4677 graph->n_total_row == graph->band_start;
4680 /* Return the index of an edge in "graph" that can be used to merge
4681 * two clusters in "c".
4682 * Return graph->n_edge if no such edge can be found.
4683 * Return -1 on error.
4685 * In particular, return a proximity edge between two clusters
4686 * that is not marked "no_merge" and such that neither of the
4687 * two clusters has an incomplete, empty band.
4689 * If there are multiple such edges, then try and find the most
4690 * appropriate edge to use for merging. In particular, pick the edge
4691 * with the greatest weight. If there are multiple of those,
4692 * then pick one with the shortest distance between
4693 * the two cluster representatives.
4695 static int find_proximity(struct isl_sched_graph *graph,
4696 struct isl_clustering *c)
4698 int i, best = graph->n_edge, best_dist, best_weight;
4700 for (i = 0; i < graph->n_edge; ++i) {
4701 struct isl_sched_edge *edge = &graph->edge[i];
4702 int dist, weight;
4704 if (!is_proximity(edge))
4705 continue;
4706 if (edge->no_merge)
4707 continue;
4708 if (bad_cluster(&c->scc[edge->src->scc]) ||
4709 bad_cluster(&c->scc[edge->dst->scc]))
4710 continue;
4711 dist = c->scc_cluster[edge->dst->scc] -
4712 c->scc_cluster[edge->src->scc];
4713 if (dist == 0)
4714 continue;
4715 weight = edge->weight;
4716 if (best < graph->n_edge) {
4717 if (best_weight > weight)
4718 continue;
4719 if (best_weight == weight && best_dist <= dist)
4720 continue;
4722 best = i;
4723 best_dist = dist;
4724 best_weight = weight;
4727 return best;
4730 /* Internal data structure used in mark_merge_sccs.
4732 * "graph" is the dependence graph in which a strongly connected
4733 * component is constructed.
4734 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
4735 * "src" and "dst" are the indices of the nodes that are being merged.
4737 struct isl_mark_merge_sccs_data {
4738 struct isl_sched_graph *graph;
4739 int *scc_cluster;
4740 int src;
4741 int dst;
4744 /* Check whether the cluster containing node "i" depends on the cluster
4745 * containing node "j". If "i" and "j" belong to the same cluster,
4746 * then they are taken to depend on each other to ensure that
4747 * the resulting strongly connected component consists of complete
4748 * clusters. Furthermore, if "i" and "j" are the two nodes that
4749 * are being merged, then they are taken to depend on each other as well.
4750 * Otherwise, check if there is a (conditional) validity dependence
4751 * from node[j] to node[i], forcing node[i] to follow node[j].
4753 static isl_bool cluster_follows(int i, int j, void *user)
4755 struct isl_mark_merge_sccs_data *data = user;
4756 struct isl_sched_graph *graph = data->graph;
4757 int *scc_cluster = data->scc_cluster;
4759 if (data->src == i && data->dst == j)
4760 return isl_bool_true;
4761 if (data->src == j && data->dst == i)
4762 return isl_bool_true;
4763 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
4764 return isl_bool_true;
4766 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
4769 /* Mark all SCCs that belong to either of the two clusters in "c"
4770 * connected by the edge in "graph" with index "edge", or to any
4771 * of the intermediate clusters.
4772 * The marking is recorded in c->scc_in_merge.
4774 * The given edge has been selected for merging two clusters,
4775 * meaning that there is at least a proximity edge between the two nodes.
4776 * However, there may also be (indirect) validity dependences
4777 * between the two nodes. When merging the two clusters, all clusters
4778 * containing one or more of the intermediate nodes along the
4779 * indirect validity dependences need to be merged in as well.
4781 * First collect all such nodes by computing the strongly connected
4782 * component (SCC) containing the two nodes connected by the edge, where
4783 * the two nodes are considered to depend on each other to make
4784 * sure they end up in the same SCC. Similarly, each node is considered
4785 * to depend on every other node in the same cluster to ensure
4786 * that the SCC consists of complete clusters.
4788 * Then the original SCCs that contain any of these nodes are marked
4789 * in c->scc_in_merge.
4791 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
4792 int edge, struct isl_clustering *c)
4794 struct isl_mark_merge_sccs_data data;
4795 struct isl_tarjan_graph *g;
4796 int i;
4798 for (i = 0; i < c->n; ++i)
4799 c->scc_in_merge[i] = 0;
4801 data.graph = graph;
4802 data.scc_cluster = c->scc_cluster;
4803 data.src = graph->edge[edge].src - graph->node;
4804 data.dst = graph->edge[edge].dst - graph->node;
4806 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
4807 &cluster_follows, &data);
4808 if (!g)
4809 goto error;
4811 i = g->op;
4812 if (i < 3)
4813 isl_die(ctx, isl_error_internal,
4814 "expecting at least two nodes in component",
4815 goto error);
4816 if (g->order[--i] != -1)
4817 isl_die(ctx, isl_error_internal,
4818 "expecting end of component marker", goto error);
4820 for (--i; i >= 0 && g->order[i] != -1; --i) {
4821 int scc = graph->node[g->order[i]].scc;
4822 c->scc_in_merge[scc] = 1;
4825 isl_tarjan_graph_free(g);
4826 return isl_stat_ok;
4827 error:
4828 isl_tarjan_graph_free(g);
4829 return isl_stat_error;
4832 /* Construct the identifier "cluster_i".
4834 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
4836 char name[40];
4838 snprintf(name, sizeof(name), "cluster_%d", i);
4839 return isl_id_alloc(ctx, name, NULL);
4842 /* Construct the space of the cluster with index "i" containing
4843 * the strongly connected component "scc".
4845 * In particular, construct a space called cluster_i with dimension equal
4846 * to the number of schedule rows in the current band of "scc".
4848 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
4850 int nvar;
4851 isl_space *space;
4852 isl_id *id;
4854 nvar = scc->n_total_row - scc->band_start;
4855 space = isl_space_copy(scc->node[0].space);
4856 space = isl_space_params(space);
4857 space = isl_space_set_from_params(space);
4858 space = isl_space_add_dims(space, isl_dim_set, nvar);
4859 id = cluster_id(isl_space_get_ctx(space), i);
4860 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4862 return space;
4865 /* Collect the domain of the graph for merging clusters.
4867 * In particular, for each cluster with first SCC "i", construct
4868 * a set in the space called cluster_i with dimension equal
4869 * to the number of schedule rows in the current band of the cluster.
4871 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
4872 struct isl_sched_graph *graph, struct isl_clustering *c)
4874 int i;
4875 isl_space *space;
4876 isl_union_set *domain;
4878 space = isl_space_params_alloc(ctx, 0);
4879 domain = isl_union_set_empty(space);
4881 for (i = 0; i < graph->scc; ++i) {
4882 isl_space *space;
4884 if (!c->scc_in_merge[i])
4885 continue;
4886 if (c->scc_cluster[i] != i)
4887 continue;
4888 space = cluster_space(&c->scc[i], i);
4889 domain = isl_union_set_add_set(domain, isl_set_universe(space));
4892 return domain;
4895 /* Construct a map from the original instances to the corresponding
4896 * cluster instance in the current bands of the clusters in "c".
4898 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
4899 struct isl_sched_graph *graph, struct isl_clustering *c)
4901 int i, j;
4902 isl_space *space;
4903 isl_union_map *cluster_map;
4905 space = isl_space_params_alloc(ctx, 0);
4906 cluster_map = isl_union_map_empty(space);
4907 for (i = 0; i < graph->scc; ++i) {
4908 int start, n;
4909 isl_id *id;
4911 if (!c->scc_in_merge[i])
4912 continue;
4914 id = cluster_id(ctx, c->scc_cluster[i]);
4915 start = c->scc[i].band_start;
4916 n = c->scc[i].n_total_row - start;
4917 for (j = 0; j < c->scc[i].n; ++j) {
4918 isl_multi_aff *ma;
4919 isl_map *map;
4920 struct isl_sched_node *node = &c->scc[i].node[j];
4922 ma = node_extract_partial_schedule_multi_aff(node,
4923 start, n);
4924 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
4925 isl_id_copy(id));
4926 map = isl_map_from_multi_aff(ma);
4927 cluster_map = isl_union_map_add_map(cluster_map, map);
4929 isl_id_free(id);
4932 return cluster_map;
4935 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
4936 * that are not isl_edge_condition or isl_edge_conditional_validity.
4938 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
4939 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
4940 __isl_take isl_schedule_constraints *sc)
4942 enum isl_edge_type t;
4944 if (!sc)
4945 return NULL;
4947 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
4948 if (t == isl_edge_condition ||
4949 t == isl_edge_conditional_validity)
4950 continue;
4951 if (!is_type(edge, t))
4952 continue;
4953 sc->constraint[t] = isl_union_map_union(sc->constraint[t],
4954 isl_union_map_copy(umap));
4955 if (!sc->constraint[t])
4956 return isl_schedule_constraints_free(sc);
4959 return sc;
4962 /* Add schedule constraints of types isl_edge_condition and
4963 * isl_edge_conditional_validity to "sc" by applying "umap" to
4964 * the domains of the wrapped relations in domain and range
4965 * of the corresponding tagged constraints of "edge".
4967 static __isl_give isl_schedule_constraints *add_conditional_constraints(
4968 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
4969 __isl_take isl_schedule_constraints *sc)
4971 enum isl_edge_type t;
4972 isl_union_map *tagged;
4974 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
4975 if (!is_type(edge, t))
4976 continue;
4977 if (t == isl_edge_condition)
4978 tagged = isl_union_map_copy(edge->tagged_condition);
4979 else
4980 tagged = isl_union_map_copy(edge->tagged_validity);
4981 tagged = isl_union_map_zip(tagged);
4982 tagged = isl_union_map_apply_domain(tagged,
4983 isl_union_map_copy(umap));
4984 tagged = isl_union_map_zip(tagged);
4985 sc->constraint[t] = isl_union_map_union(sc->constraint[t],
4986 tagged);
4987 if (!sc->constraint[t])
4988 return isl_schedule_constraints_free(sc);
4991 return sc;
4994 /* Given a mapping "cluster_map" from the original instances to
4995 * the cluster instances, add schedule constraints on the clusters
4996 * to "sc" corresponding to the original constraints represented by "edge".
4998 * For non-tagged dependence constraints, the cluster constraints
4999 * are obtained by applying "cluster_map" to the edge->map.
5001 * For tagged dependence constraints, "cluster_map" needs to be applied
5002 * to the domains of the wrapped relations in domain and range
5003 * of the tagged dependence constraints. Pick out the mappings
5004 * from these domains from "cluster_map" and construct their product.
5005 * This mapping can then be applied to the pair of domains.
5007 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5008 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5009 __isl_take isl_schedule_constraints *sc)
5011 isl_union_map *umap;
5012 isl_space *space;
5013 isl_union_set *uset;
5014 isl_union_map *umap1, *umap2;
5016 if (!sc)
5017 return NULL;
5019 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5020 umap = isl_union_map_apply_domain(umap,
5021 isl_union_map_copy(cluster_map));
5022 umap = isl_union_map_apply_range(umap,
5023 isl_union_map_copy(cluster_map));
5024 sc = add_non_conditional_constraints(edge, umap, sc);
5025 isl_union_map_free(umap);
5027 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5028 return sc;
5030 space = isl_space_domain(isl_map_get_space(edge->map));
5031 uset = isl_union_set_from_set(isl_set_universe(space));
5032 umap1 = isl_union_map_copy(cluster_map);
5033 umap1 = isl_union_map_intersect_domain(umap1, uset);
5034 space = isl_space_range(isl_map_get_space(edge->map));
5035 uset = isl_union_set_from_set(isl_set_universe(space));
5036 umap2 = isl_union_map_copy(cluster_map);
5037 umap2 = isl_union_map_intersect_domain(umap2, uset);
5038 umap = isl_union_map_product(umap1, umap2);
5040 sc = add_conditional_constraints(edge, umap, sc);
5042 isl_union_map_free(umap);
5043 return sc;
5046 /* Given a mapping "cluster_map" from the original instances to
5047 * the cluster instances, add schedule constraints on the clusters
5048 * to "sc" corresponding to all edges in "graph" between nodes that
5049 * belong to SCCs that are marked for merging in "scc_in_merge".
5051 static __isl_give isl_schedule_constraints *collect_constraints(
5052 struct isl_sched_graph *graph, int *scc_in_merge,
5053 __isl_keep isl_union_map *cluster_map,
5054 __isl_take isl_schedule_constraints *sc)
5056 int i;
5058 for (i = 0; i < graph->n_edge; ++i) {
5059 struct isl_sched_edge *edge = &graph->edge[i];
5061 if (!scc_in_merge[edge->src->scc])
5062 continue;
5063 if (!scc_in_merge[edge->dst->scc])
5064 continue;
5065 sc = collect_edge_constraints(edge, cluster_map, sc);
5068 return sc;
5071 /* Construct a dependence graph for scheduling clusters with respect
5072 * to each other and store the result in "merge_graph".
5073 * In particular, the nodes of the graph correspond to the schedule
5074 * dimensions of the current bands of those clusters that have been
5075 * marked for merging in "c".
5077 * First construct an isl_schedule_constraints object for this domain
5078 * by transforming the edges in "graph" to the domain.
5079 * Then initialize a dependence graph for scheduling from these
5080 * constraints.
5082 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5083 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5085 isl_union_set *domain;
5086 isl_union_map *cluster_map;
5087 isl_schedule_constraints *sc;
5088 isl_stat r;
5090 domain = collect_domain(ctx, graph, c);
5091 sc = isl_schedule_constraints_on_domain(domain);
5092 if (!sc)
5093 return isl_stat_error;
5094 cluster_map = collect_cluster_map(ctx, graph, c);
5095 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5096 isl_union_map_free(cluster_map);
5098 r = graph_init(merge_graph, sc);
5100 isl_schedule_constraints_free(sc);
5102 return r;
5105 /* Compute the maximal number of remaining schedule rows that still need
5106 * to be computed for the nodes that belong to clusters with the maximal
5107 * dimension for the current band (i.e., the band that is to be merged).
5108 * Only clusters that are about to be merged are considered.
5109 * "maxvar" is the maximal dimension for the current band.
5110 * "c" contains information about the clusters.
5112 * Return the maximal number of remaining schedule rows or -1 on error.
5114 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5116 int i, j;
5117 int max_slack;
5119 max_slack = 0;
5120 for (i = 0; i < c->n; ++i) {
5121 int nvar;
5122 struct isl_sched_graph *scc;
5124 if (!c->scc_in_merge[i])
5125 continue;
5126 scc = &c->scc[i];
5127 nvar = scc->n_total_row - scc->band_start;
5128 if (nvar != maxvar)
5129 continue;
5130 for (j = 0; j < scc->n; ++j) {
5131 struct isl_sched_node *node = &scc->node[j];
5132 int slack;
5134 if (node_update_cmap(node) < 0)
5135 return -1;
5136 slack = node->nvar - node->rank;
5137 if (slack > max_slack)
5138 max_slack = slack;
5142 return max_slack;
5145 /* If there are any clusters where the dimension of the current band
5146 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5147 * if there are any nodes in such a cluster where the number
5148 * of remaining schedule rows that still need to be computed
5149 * is greater than "max_slack", then return the smallest current band
5150 * dimension of all these clusters. Otherwise return the original value
5151 * of "maxvar". Return -1 in case of any error.
5152 * Only clusters that are about to be merged are considered.
5153 * "c" contains information about the clusters.
5155 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5156 struct isl_clustering *c)
5158 int i, j;
5160 for (i = 0; i < c->n; ++i) {
5161 int nvar;
5162 struct isl_sched_graph *scc;
5164 if (!c->scc_in_merge[i])
5165 continue;
5166 scc = &c->scc[i];
5167 nvar = scc->n_total_row - scc->band_start;
5168 if (nvar >= maxvar)
5169 continue;
5170 for (j = 0; j < scc->n; ++j) {
5171 struct isl_sched_node *node = &scc->node[j];
5172 int slack;
5174 if (node_update_cmap(node) < 0)
5175 return -1;
5176 slack = node->nvar - node->rank;
5177 if (slack > max_slack) {
5178 maxvar = nvar;
5179 break;
5184 return maxvar;
5187 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5188 * that still need to be computed. In particular, if there is a node
5189 * in a cluster where the dimension of the current band is smaller
5190 * than merge_graph->maxvar, but the number of remaining schedule rows
5191 * is greater than that of any node in a cluster with the maximal
5192 * dimension for the current band (i.e., merge_graph->maxvar),
5193 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5194 * of those clusters. Without this adjustment, the total number of
5195 * schedule dimensions would be increased, resulting in a skewed view
5196 * of the number of coincident dimensions.
5197 * "c" contains information about the clusters.
5199 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5200 * then there is no point in attempting any merge since it will be rejected
5201 * anyway. Set merge_graph->maxvar to zero in such cases.
5203 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5204 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5206 int max_slack, maxvar;
5208 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5209 if (max_slack < 0)
5210 return isl_stat_error;
5211 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5212 if (maxvar < 0)
5213 return isl_stat_error;
5215 if (maxvar < merge_graph->maxvar) {
5216 if (isl_options_get_schedule_maximize_band_depth(ctx))
5217 merge_graph->maxvar = 0;
5218 else
5219 merge_graph->maxvar = maxvar;
5222 return isl_stat_ok;
5225 /* Return the number of coincident dimensions in the current band of "graph",
5226 * where the nodes of "graph" are assumed to be scheduled by a single band.
5228 static int get_n_coincident(struct isl_sched_graph *graph)
5230 int i;
5232 for (i = graph->band_start; i < graph->n_total_row; ++i)
5233 if (!graph->node[0].coincident[i])
5234 break;
5236 return i - graph->band_start;
5239 /* Should the clusters be merged based on the cluster schedule
5240 * in the current (and only) band of "merge_graph", given that
5241 * coincidence should be maximized?
5243 * If the number of coincident schedule dimensions in the merged band
5244 * would be less than the maximal number of coincident schedule dimensions
5245 * in any of the merged clusters, then the clusters should not be merged.
5247 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5248 struct isl_sched_graph *merge_graph)
5250 int i;
5251 int n_coincident;
5252 int max_coincident;
5254 max_coincident = 0;
5255 for (i = 0; i < c->n; ++i) {
5256 if (!c->scc_in_merge[i])
5257 continue;
5258 n_coincident = get_n_coincident(&c->scc[i]);
5259 if (n_coincident > max_coincident)
5260 max_coincident = n_coincident;
5263 n_coincident = get_n_coincident(merge_graph);
5265 return n_coincident >= max_coincident;
5268 /* Return the transformation on "node" expressed by the current (and only)
5269 * band of "merge_graph" applied to the clusters in "c".
5271 * First find the representation of "node" in its SCC in "c" and
5272 * extract the transformation expressed by the current band.
5273 * Then extract the transformation applied by "merge_graph"
5274 * to the cluster to which this SCC belongs.
5275 * Combine the two to obtain the complete transformation on the node.
5277 * Note that the range of the first transformation is an anonymous space,
5278 * while the domain of the second is named "cluster_X". The range
5279 * of the former therefore needs to be adjusted before the two
5280 * can be combined.
5282 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5283 struct isl_sched_node *node, struct isl_clustering *c,
5284 struct isl_sched_graph *merge_graph)
5286 struct isl_sched_node *scc_node, *cluster_node;
5287 int start, n;
5288 isl_id *id;
5289 isl_space *space;
5290 isl_multi_aff *ma, *ma2;
5292 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5293 start = c->scc[node->scc].band_start;
5294 n = c->scc[node->scc].n_total_row - start;
5295 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5296 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5297 cluster_node = graph_find_node(ctx, merge_graph, space);
5298 if (space && !cluster_node)
5299 isl_die(ctx, isl_error_internal, "unable to find cluster",
5300 space = isl_space_free(space));
5301 id = isl_space_get_tuple_id(space, isl_dim_set);
5302 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5303 isl_space_free(space);
5304 n = merge_graph->n_total_row;
5305 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5306 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5308 return isl_map_from_multi_aff(ma);
5311 /* Give a set of distances "set", are they bounded by a small constant
5312 * in direction "pos"?
5313 * In practice, check if they are bounded by 2 by checking that there
5314 * are no elements with a value greater than or equal to 3 or
5315 * smaller than or equal to -3.
5317 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5319 isl_bool bounded;
5320 isl_set *test;
5322 if (!set)
5323 return isl_bool_error;
5325 test = isl_set_copy(set);
5326 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5327 bounded = isl_set_is_empty(test);
5328 isl_set_free(test);
5330 if (bounded < 0 || !bounded)
5331 return bounded;
5333 test = isl_set_copy(set);
5334 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5335 bounded = isl_set_is_empty(test);
5336 isl_set_free(test);
5338 return bounded;
5341 /* Does the set "set" have a fixed (but possible parametric) value
5342 * at dimension "pos"?
5344 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5346 int n;
5347 isl_bool single;
5349 if (!set)
5350 return isl_bool_error;
5351 set = isl_set_copy(set);
5352 n = isl_set_dim(set, isl_dim_set);
5353 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5354 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5355 single = isl_set_is_singleton(set);
5356 isl_set_free(set);
5358 return single;
5361 /* Does "map" have a fixed (but possible parametric) value
5362 * at dimension "pos" of either its domain or its range?
5364 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5366 isl_set *set;
5367 isl_bool single;
5369 set = isl_map_domain(isl_map_copy(map));
5370 single = has_single_value(set, pos);
5371 isl_set_free(set);
5373 if (single < 0 || single)
5374 return single;
5376 set = isl_map_range(isl_map_copy(map));
5377 single = has_single_value(set, pos);
5378 isl_set_free(set);
5380 return single;
5383 /* Does the edge "edge" from "graph" have bounded dependence distances
5384 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5386 * Extract the complete transformations of the source and destination
5387 * nodes of the edge, apply them to the edge constraints and
5388 * compute the differences. Finally, check if these differences are bounded
5389 * in each direction.
5391 * If the dimension of the band is greater than the number of
5392 * dimensions that can be expected to be optimized by the edge
5393 * (based on its weight), then also allow the differences to be unbounded
5394 * in the remaining dimensions, but only if either the source or
5395 * the destination has a fixed value in that direction.
5396 * This allows a statement that produces values that are used by
5397 * several instance of another statement to be merged with that
5398 * other statement.
5399 * However, merging such clusters will introduce an inherently
5400 * large proximity distance inside the merged cluster, meaning
5401 * that proximity distances will no longer be optimized in
5402 * subsequent merges. These merges are therefore only allowed
5403 * after all other possible merges have been tried.
5404 * The first time such a merge is encountered, the weight of the edge
5405 * is replaced by a negative weight. The second time (i.e., after
5406 * all merges over edges with a non-negative weight have been tried),
5407 * the merge is allowed.
5409 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5410 struct isl_sched_graph *graph, struct isl_clustering *c,
5411 struct isl_sched_graph *merge_graph)
5413 int i, n, n_slack;
5414 isl_bool bounded;
5415 isl_map *map, *t;
5416 isl_set *dist;
5418 map = isl_map_copy(edge->map);
5419 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5420 map = isl_map_apply_domain(map, t);
5421 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5422 map = isl_map_apply_range(map, t);
5423 dist = isl_map_deltas(isl_map_copy(map));
5425 bounded = isl_bool_true;
5426 n = isl_set_dim(dist, isl_dim_set);
5427 n_slack = n - edge->weight;
5428 if (edge->weight < 0)
5429 n_slack -= graph->max_weight + 1;
5430 for (i = 0; i < n; ++i) {
5431 isl_bool bounded_i, singular_i;
5433 bounded_i = distance_is_bounded(dist, i);
5434 if (bounded_i < 0)
5435 goto error;
5436 if (bounded_i)
5437 continue;
5438 if (edge->weight >= 0)
5439 bounded = isl_bool_false;
5440 n_slack--;
5441 if (n_slack < 0)
5442 break;
5443 singular_i = has_singular_src_or_dst(map, i);
5444 if (singular_i < 0)
5445 goto error;
5446 if (singular_i)
5447 continue;
5448 bounded = isl_bool_false;
5449 break;
5451 if (!bounded && i >= n && edge->weight >= 0)
5452 edge->weight -= graph->max_weight + 1;
5453 isl_map_free(map);
5454 isl_set_free(dist);
5456 return bounded;
5457 error:
5458 isl_map_free(map);
5459 isl_set_free(dist);
5460 return isl_bool_error;
5463 /* Should the clusters be merged based on the cluster schedule
5464 * in the current (and only) band of "merge_graph"?
5465 * "graph" is the original dependence graph, while "c" records
5466 * which SCCs are involved in the latest merge.
5468 * In particular, is there at least one proximity constraint
5469 * that is optimized by the merge?
5471 * A proximity constraint is considered to be optimized
5472 * if the dependence distances are small.
5474 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
5475 struct isl_sched_graph *graph, struct isl_clustering *c,
5476 struct isl_sched_graph *merge_graph)
5478 int i;
5480 for (i = 0; i < graph->n_edge; ++i) {
5481 struct isl_sched_edge *edge = &graph->edge[i];
5482 isl_bool bounded;
5484 if (!is_proximity(edge))
5485 continue;
5486 if (!c->scc_in_merge[edge->src->scc])
5487 continue;
5488 if (!c->scc_in_merge[edge->dst->scc])
5489 continue;
5490 if (c->scc_cluster[edge->dst->scc] ==
5491 c->scc_cluster[edge->src->scc])
5492 continue;
5493 bounded = has_bounded_distances(ctx, edge, graph, c,
5494 merge_graph);
5495 if (bounded < 0 || bounded)
5496 return bounded;
5499 return isl_bool_false;
5502 /* Should the clusters be merged based on the cluster schedule
5503 * in the current (and only) band of "merge_graph"?
5504 * "graph" is the original dependence graph, while "c" records
5505 * which SCCs are involved in the latest merge.
5507 * If the current band is empty, then the clusters should not be merged.
5509 * If the band depth should be maximized and the merge schedule
5510 * is incomplete (meaning that the dimension of some of the schedule
5511 * bands in the original schedule will be reduced), then the clusters
5512 * should not be merged.
5514 * If the schedule_maximize_coincidence option is set, then check that
5515 * the number of coincident schedule dimensions is not reduced.
5517 * Finally, only allow the merge if at least one proximity
5518 * constraint is optimized.
5520 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5521 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5523 if (merge_graph->n_total_row == merge_graph->band_start)
5524 return isl_bool_false;
5526 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
5527 merge_graph->n_total_row < merge_graph->maxvar)
5528 return isl_bool_false;
5530 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
5531 isl_bool ok;
5533 ok = ok_to_merge_coincident(c, merge_graph);
5534 if (ok < 0 || !ok)
5535 return ok;
5538 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
5541 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
5542 * of the schedule in "node" and return the result.
5544 * That is, essentially compute
5546 * T * N(first:first+n-1)
5548 * taking into account the constant term and the parameter coefficients
5549 * in "t_node".
5551 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
5552 struct isl_sched_node *t_node, struct isl_sched_node *node,
5553 int first, int n)
5555 int i, j;
5556 isl_mat *t;
5557 int n_row, n_col, n_param, n_var;
5559 n_param = node->nparam;
5560 n_var = node->nvar;
5561 n_row = isl_mat_rows(t_node->sched);
5562 n_col = isl_mat_cols(node->sched);
5563 t = isl_mat_alloc(ctx, n_row, n_col);
5564 if (!t)
5565 return NULL;
5566 for (i = 0; i < n_row; ++i) {
5567 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
5568 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
5569 for (j = 0; j < n; ++j)
5570 isl_seq_addmul(t->row[i],
5571 t_node->sched->row[i][1 + n_param + j],
5572 node->sched->row[first + j],
5573 1 + n_param + n_var);
5575 return t;
5578 /* Apply the cluster schedule in "t_node" to the current band
5579 * schedule of the nodes in "graph".
5581 * In particular, replace the rows starting at band_start
5582 * by the result of applying the cluster schedule in "t_node"
5583 * to the original rows.
5585 * The coincidence of the schedule is determined by the coincidence
5586 * of the cluster schedule.
5588 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
5589 struct isl_sched_node *t_node)
5591 int i, j;
5592 int n_new;
5593 int start, n;
5595 start = graph->band_start;
5596 n = graph->n_total_row - start;
5598 n_new = isl_mat_rows(t_node->sched);
5599 for (i = 0; i < graph->n; ++i) {
5600 struct isl_sched_node *node = &graph->node[i];
5601 isl_mat *t;
5603 t = node_transformation(ctx, t_node, node, start, n);
5604 node->sched = isl_mat_drop_rows(node->sched, start, n);
5605 node->sched = isl_mat_concat(node->sched, t);
5606 node->sched_map = isl_map_free(node->sched_map);
5607 if (!node->sched)
5608 return isl_stat_error;
5609 for (j = 0; j < n_new; ++j)
5610 node->coincident[start + j] = t_node->coincident[j];
5612 graph->n_total_row -= n;
5613 graph->n_row -= n;
5614 graph->n_total_row += n_new;
5615 graph->n_row += n_new;
5617 return isl_stat_ok;
5620 /* Merge the clusters marked for merging in "c" into a single
5621 * cluster using the cluster schedule in the current band of "merge_graph".
5622 * The representative SCC for the new cluster is the SCC with
5623 * the smallest index.
5625 * The current band schedule of each SCC in the new cluster is obtained
5626 * by applying the schedule of the corresponding original cluster
5627 * to the original band schedule.
5628 * All SCCs in the new cluster have the same number of schedule rows.
5630 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
5631 struct isl_sched_graph *merge_graph)
5633 int i;
5634 int cluster = -1;
5635 isl_space *space;
5637 for (i = 0; i < c->n; ++i) {
5638 struct isl_sched_node *node;
5640 if (!c->scc_in_merge[i])
5641 continue;
5642 if (cluster < 0)
5643 cluster = i;
5644 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
5645 if (!space)
5646 return isl_stat_error;
5647 node = graph_find_node(ctx, merge_graph, space);
5648 isl_space_free(space);
5649 if (!node)
5650 isl_die(ctx, isl_error_internal,
5651 "unable to find cluster",
5652 return isl_stat_error);
5653 if (transform(ctx, &c->scc[i], node) < 0)
5654 return isl_stat_error;
5655 c->scc_cluster[i] = cluster;
5658 return isl_stat_ok;
5661 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
5662 * by scheduling the current cluster bands with respect to each other.
5664 * Construct a dependence graph with a space for each cluster and
5665 * with the coordinates of each space corresponding to the schedule
5666 * dimensions of the current band of that cluster.
5667 * Construct a cluster schedule in this cluster dependence graph and
5668 * apply it to the current cluster bands if it is applicable
5669 * according to ok_to_merge.
5671 * If the number of remaining schedule dimensions in a cluster
5672 * with a non-maximal current schedule dimension is greater than
5673 * the number of remaining schedule dimensions in clusters
5674 * with a maximal current schedule dimension, then restrict
5675 * the number of rows to be computed in the cluster schedule
5676 * to the minimal such non-maximal current schedule dimension.
5677 * Do this by adjusting merge_graph.maxvar.
5679 * Return isl_bool_true if the clusters have effectively been merged
5680 * into a single cluster.
5682 * Note that since the standard scheduling algorithm minimizes the maximal
5683 * distance over proximity constraints, the proximity constraints between
5684 * the merged clusters may not be optimized any further than what is
5685 * sufficient to bring the distances within the limits of the internal
5686 * proximity constraints inside the individual clusters.
5687 * It may therefore make sense to perform an additional translation step
5688 * to bring the clusters closer to each other, while maintaining
5689 * the linear part of the merging schedule found using the standard
5690 * scheduling algorithm.
5692 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5693 struct isl_clustering *c)
5695 struct isl_sched_graph merge_graph = { 0 };
5696 isl_bool merged;
5698 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
5699 goto error;
5701 if (compute_maxvar(&merge_graph) < 0)
5702 goto error;
5703 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
5704 goto error;
5705 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
5706 goto error;
5707 merged = ok_to_merge(ctx, graph, c, &merge_graph);
5708 if (merged && merge(ctx, c, &merge_graph) < 0)
5709 goto error;
5711 graph_free(ctx, &merge_graph);
5712 return merged;
5713 error:
5714 graph_free(ctx, &merge_graph);
5715 return isl_bool_error;
5718 /* Is there any edge marked "no_merge" between two SCCs that are
5719 * about to be merged (i.e., that are set in "scc_in_merge")?
5720 * "merge_edge" is the proximity edge along which the clusters of SCCs
5721 * are going to be merged.
5723 * If there is any edge between two SCCs with a negative weight,
5724 * while the weight of "merge_edge" is non-negative, then this
5725 * means that the edge was postponed. "merge_edge" should then
5726 * also be postponed since merging along the edge with negative weight should
5727 * be postponed until all edges with non-negative weight have been tried.
5728 * Replace the weight of "merge_edge" by a negative weight as well and
5729 * tell the caller not to attempt a merge.
5731 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
5732 struct isl_sched_edge *merge_edge)
5734 int i;
5736 for (i = 0; i < graph->n_edge; ++i) {
5737 struct isl_sched_edge *edge = &graph->edge[i];
5739 if (!scc_in_merge[edge->src->scc])
5740 continue;
5741 if (!scc_in_merge[edge->dst->scc])
5742 continue;
5743 if (edge->no_merge)
5744 return 1;
5745 if (merge_edge->weight >= 0 && edge->weight < 0) {
5746 merge_edge->weight -= graph->max_weight + 1;
5747 return 1;
5751 return 0;
5754 /* Merge the two clusters in "c" connected by the edge in "graph"
5755 * with index "edge" into a single cluster.
5756 * If it turns out to be impossible to merge these two clusters,
5757 * then mark the edge as "no_merge" such that it will not be
5758 * considered again.
5760 * First mark all SCCs that need to be merged. This includes the SCCs
5761 * in the two clusters, but it may also include the SCCs
5762 * of intermediate clusters.
5763 * If there is already a no_merge edge between any pair of such SCCs,
5764 * then simply mark the current edge as no_merge as well.
5765 * Likewise, if any of those edges was postponed by has_bounded_distances,
5766 * then postpone the current edge as well.
5767 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
5768 * if the clusters did not end up getting merged, unless the non-merge
5769 * is due to the fact that the edge was postponed. This postponement
5770 * can be recognized by a change in weight (from non-negative to negative).
5772 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
5773 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
5775 isl_bool merged;
5776 int edge_weight = graph->edge[edge].weight;
5778 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
5779 return isl_stat_error;
5781 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
5782 merged = isl_bool_false;
5783 else
5784 merged = try_merge(ctx, graph, c);
5785 if (merged < 0)
5786 return isl_stat_error;
5787 if (!merged && edge_weight == graph->edge[edge].weight)
5788 graph->edge[edge].no_merge = 1;
5790 return isl_stat_ok;
5793 /* Does "node" belong to the cluster identified by "cluster"?
5795 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
5797 return node->cluster == cluster;
5800 /* Does "edge" connect two nodes belonging to the cluster
5801 * identified by "cluster"?
5803 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
5805 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
5808 /* Swap the schedule of "node1" and "node2".
5809 * Both nodes have been derived from the same node in a common parent graph.
5810 * Since the "coincident" field is shared with that node
5811 * in the parent graph, there is no need to also swap this field.
5813 static void swap_sched(struct isl_sched_node *node1,
5814 struct isl_sched_node *node2)
5816 isl_mat *sched;
5817 isl_map *sched_map;
5819 sched = node1->sched;
5820 node1->sched = node2->sched;
5821 node2->sched = sched;
5823 sched_map = node1->sched_map;
5824 node1->sched_map = node2->sched_map;
5825 node2->sched_map = sched_map;
5828 /* Copy the current band schedule from the SCCs that form the cluster
5829 * with index "pos" to the actual cluster at position "pos".
5830 * By construction, the index of the first SCC that belongs to the cluster
5831 * is also "pos".
5833 * The order of the nodes inside both the SCCs and the cluster
5834 * is assumed to be same as the order in the original "graph".
5836 * Since the SCC graphs will no longer be used after this function,
5837 * the schedules are actually swapped rather than copied.
5839 static isl_stat copy_partial(struct isl_sched_graph *graph,
5840 struct isl_clustering *c, int pos)
5842 int i, j;
5844 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
5845 c->cluster[pos].n_row = c->scc[pos].n_row;
5846 c->cluster[pos].maxvar = c->scc[pos].maxvar;
5847 j = 0;
5848 for (i = 0; i < graph->n; ++i) {
5849 int k;
5850 int s;
5852 if (graph->node[i].cluster != pos)
5853 continue;
5854 s = graph->node[i].scc;
5855 k = c->scc_node[s]++;
5856 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
5857 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
5858 c->cluster[pos].maxvar = c->scc[s].maxvar;
5859 ++j;
5862 return isl_stat_ok;
5865 /* Is there a (conditional) validity dependence from node[j] to node[i],
5866 * forcing node[i] to follow node[j] or do the nodes belong to the same
5867 * cluster?
5869 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
5871 struct isl_sched_graph *graph = user;
5873 if (graph->node[i].cluster == graph->node[j].cluster)
5874 return isl_bool_true;
5875 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5878 /* Extract the merged clusters of SCCs in "graph", sort them, and
5879 * store them in c->clusters. Update c->scc_cluster accordingly.
5881 * First keep track of the cluster containing the SCC to which a node
5882 * belongs in the node itself.
5883 * Then extract the clusters into c->clusters, copying the current
5884 * band schedule from the SCCs that belong to the cluster.
5885 * Do this only once per cluster.
5887 * Finally, topologically sort the clusters and update c->scc_cluster
5888 * to match the new scc numbering. While the SCCs were originally
5889 * sorted already, some SCCs that depend on some other SCCs may
5890 * have been merged with SCCs that appear before these other SCCs.
5891 * A reordering may therefore be required.
5893 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
5894 struct isl_clustering *c)
5896 int i;
5898 for (i = 0; i < graph->n; ++i)
5899 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
5901 for (i = 0; i < graph->scc; ++i) {
5902 if (c->scc_cluster[i] != i)
5903 continue;
5904 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
5905 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
5906 return isl_stat_error;
5907 c->cluster[i].src_scc = -1;
5908 c->cluster[i].dst_scc = -1;
5909 if (copy_partial(graph, c, i) < 0)
5910 return isl_stat_error;
5913 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
5914 return isl_stat_error;
5915 for (i = 0; i < graph->n; ++i)
5916 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
5918 return isl_stat_ok;
5921 /* Compute weights on the proximity edges of "graph" that can
5922 * be used by find_proximity to find the most appropriate
5923 * proximity edge to use to merge two clusters in "c".
5924 * The weights are also used by has_bounded_distances to determine
5925 * whether the merge should be allowed.
5926 * Store the maximum of the computed weights in graph->max_weight.
5928 * The computed weight is a measure for the number of remaining schedule
5929 * dimensions that can still be completely aligned.
5930 * In particular, compute the number of equalities between
5931 * input dimensions and output dimensions in the proximity constraints.
5932 * The directions that are already handled by outer schedule bands
5933 * are projected out prior to determining this number.
5935 * Edges that will never be considered by find_proximity are ignored.
5937 static isl_stat compute_weights(struct isl_sched_graph *graph,
5938 struct isl_clustering *c)
5940 int i;
5942 graph->max_weight = 0;
5944 for (i = 0; i < graph->n_edge; ++i) {
5945 struct isl_sched_edge *edge = &graph->edge[i];
5946 struct isl_sched_node *src = edge->src;
5947 struct isl_sched_node *dst = edge->dst;
5948 isl_basic_map *hull;
5949 int n_in, n_out;
5951 if (!is_proximity(edge))
5952 continue;
5953 if (bad_cluster(&c->scc[edge->src->scc]) ||
5954 bad_cluster(&c->scc[edge->dst->scc]))
5955 continue;
5956 if (c->scc_cluster[edge->dst->scc] ==
5957 c->scc_cluster[edge->src->scc])
5958 continue;
5960 hull = isl_map_affine_hull(isl_map_copy(edge->map));
5961 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
5962 isl_mat_copy(src->ctrans));
5963 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
5964 isl_mat_copy(dst->ctrans));
5965 hull = isl_basic_map_project_out(hull,
5966 isl_dim_in, 0, src->rank);
5967 hull = isl_basic_map_project_out(hull,
5968 isl_dim_out, 0, dst->rank);
5969 hull = isl_basic_map_remove_divs(hull);
5970 n_in = isl_basic_map_dim(hull, isl_dim_in);
5971 n_out = isl_basic_map_dim(hull, isl_dim_out);
5972 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
5973 isl_dim_in, 0, n_in);
5974 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
5975 isl_dim_out, 0, n_out);
5976 if (!hull)
5977 return isl_stat_error;
5978 edge->weight = hull->n_eq;
5979 isl_basic_map_free(hull);
5981 if (edge->weight > graph->max_weight)
5982 graph->max_weight = edge->weight;
5985 return isl_stat_ok;
5988 /* Call compute_schedule_finish_band on each of the clusters in "c"
5989 * in their topological order. This order is determined by the scc
5990 * fields of the nodes in "graph".
5991 * Combine the results in a sequence expressing the topological order.
5993 * If there is only one cluster left, then there is no need to introduce
5994 * a sequence node. Also, in this case, the cluster necessarily contains
5995 * the SCC at position 0 in the original graph and is therefore also
5996 * stored in the first cluster of "c".
5998 static __isl_give isl_schedule_node *finish_bands_clustering(
5999 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6000 struct isl_clustering *c)
6002 int i;
6003 isl_ctx *ctx;
6004 isl_union_set_list *filters;
6006 if (graph->scc == 1)
6007 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6009 ctx = isl_schedule_node_get_ctx(node);
6011 filters = extract_sccs(ctx, graph);
6012 node = isl_schedule_node_insert_sequence(node, filters);
6014 for (i = 0; i < graph->scc; ++i) {
6015 int j = c->scc_cluster[i];
6016 node = isl_schedule_node_child(node, i);
6017 node = isl_schedule_node_child(node, 0);
6018 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6019 node = isl_schedule_node_parent(node);
6020 node = isl_schedule_node_parent(node);
6023 return node;
6026 /* Compute a schedule for a connected dependence graph by first considering
6027 * each strongly connected component (SCC) in the graph separately and then
6028 * incrementally combining them into clusters.
6029 * Return the updated schedule node.
6031 * Initially, each cluster consists of a single SCC, each with its
6032 * own band schedule. The algorithm then tries to merge pairs
6033 * of clusters along a proximity edge until no more suitable
6034 * proximity edges can be found. During this merging, the schedule
6035 * is maintained in the individual SCCs.
6036 * After the merging is completed, the full resulting clusters
6037 * are extracted and in finish_bands_clustering,
6038 * compute_schedule_finish_band is called on each of them to integrate
6039 * the band into "node" and to continue the computation.
6041 * compute_weights initializes the weights that are used by find_proximity.
6043 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6044 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6046 isl_ctx *ctx;
6047 struct isl_clustering c;
6048 int i;
6050 ctx = isl_schedule_node_get_ctx(node);
6052 if (clustering_init(ctx, &c, graph) < 0)
6053 goto error;
6055 if (compute_weights(graph, &c) < 0)
6056 goto error;
6058 for (;;) {
6059 i = find_proximity(graph, &c);
6060 if (i < 0)
6061 goto error;
6062 if (i >= graph->n_edge)
6063 break;
6064 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6065 goto error;
6068 if (extract_clusters(ctx, graph, &c) < 0)
6069 goto error;
6071 node = finish_bands_clustering(node, graph, &c);
6073 clustering_free(ctx, &c);
6074 return node;
6075 error:
6076 clustering_free(ctx, &c);
6077 return isl_schedule_node_free(node);
6080 /* Compute a schedule for a connected dependence graph and return
6081 * the updated schedule node.
6083 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6084 * as many validity dependences as possible. When all validity dependences
6085 * are satisfied we extend the schedule to a full-dimensional schedule.
6087 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6088 * depending on whether the user has selected the option to try and
6089 * compute a schedule for the entire (weakly connected) component first.
6090 * If there is only a single strongly connected component (SCC), then
6091 * there is no point in trying to combine SCCs
6092 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6093 * is called instead.
6095 static __isl_give isl_schedule_node *compute_schedule_wcc(
6096 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6098 isl_ctx *ctx;
6100 if (!node)
6101 return NULL;
6103 ctx = isl_schedule_node_get_ctx(node);
6104 if (detect_sccs(ctx, graph) < 0)
6105 return isl_schedule_node_free(node);
6107 if (compute_maxvar(graph) < 0)
6108 return isl_schedule_node_free(node);
6110 if (need_feautrier_step(ctx, graph))
6111 return compute_schedule_wcc_feautrier(node, graph);
6113 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6114 return compute_schedule_wcc_whole(node, graph);
6115 else
6116 return compute_schedule_wcc_clustering(node, graph);
6119 /* Compute a schedule for each group of nodes identified by node->scc
6120 * separately and then combine them in a sequence node (or as set node
6121 * if graph->weak is set) inserted at position "node" of the schedule tree.
6122 * Return the updated schedule node.
6124 * If "wcc" is set then each of the groups belongs to a single
6125 * weakly connected component in the dependence graph so that
6126 * there is no need for compute_sub_schedule to look for weakly
6127 * connected components.
6129 static __isl_give isl_schedule_node *compute_component_schedule(
6130 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6131 int wcc)
6133 int component;
6134 isl_ctx *ctx;
6135 isl_union_set_list *filters;
6137 if (!node)
6138 return NULL;
6139 ctx = isl_schedule_node_get_ctx(node);
6141 filters = extract_sccs(ctx, graph);
6142 if (graph->weak)
6143 node = isl_schedule_node_insert_set(node, filters);
6144 else
6145 node = isl_schedule_node_insert_sequence(node, filters);
6147 for (component = 0; component < graph->scc; ++component) {
6148 node = isl_schedule_node_child(node, component);
6149 node = isl_schedule_node_child(node, 0);
6150 node = compute_sub_schedule(node, ctx, graph,
6151 &node_scc_exactly,
6152 &edge_scc_exactly, component, wcc);
6153 node = isl_schedule_node_parent(node);
6154 node = isl_schedule_node_parent(node);
6157 return node;
6160 /* Compute a schedule for the given dependence graph and insert it at "node".
6161 * Return the updated schedule node.
6163 * We first check if the graph is connected (through validity and conditional
6164 * validity dependences) and, if not, compute a schedule
6165 * for each component separately.
6166 * If the schedule_serialize_sccs option is set, then we check for strongly
6167 * connected components instead and compute a separate schedule for
6168 * each such strongly connected component.
6170 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6171 struct isl_sched_graph *graph)
6173 isl_ctx *ctx;
6175 if (!node)
6176 return NULL;
6178 ctx = isl_schedule_node_get_ctx(node);
6179 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6180 if (detect_sccs(ctx, graph) < 0)
6181 return isl_schedule_node_free(node);
6182 } else {
6183 if (detect_wccs(ctx, graph) < 0)
6184 return isl_schedule_node_free(node);
6187 if (graph->scc > 1)
6188 return compute_component_schedule(node, graph, 1);
6190 return compute_schedule_wcc(node, graph);
6193 /* Compute a schedule on sc->domain that respects the given schedule
6194 * constraints.
6196 * In particular, the schedule respects all the validity dependences.
6197 * If the default isl scheduling algorithm is used, it tries to minimize
6198 * the dependence distances over the proximity dependences.
6199 * If Feautrier's scheduling algorithm is used, the proximity dependence
6200 * distances are only minimized during the extension to a full-dimensional
6201 * schedule.
6203 * If there are any condition and conditional validity dependences,
6204 * then the conditional validity dependences may be violated inside
6205 * a tilable band, provided they have no adjacent non-local
6206 * condition dependences.
6208 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6209 __isl_take isl_schedule_constraints *sc)
6211 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6212 struct isl_sched_graph graph = { 0 };
6213 isl_schedule *sched;
6214 isl_schedule_node *node;
6215 isl_union_set *domain;
6217 sc = isl_schedule_constraints_align_params(sc);
6219 domain = isl_schedule_constraints_get_domain(sc);
6220 if (isl_union_set_n_set(domain) == 0) {
6221 isl_schedule_constraints_free(sc);
6222 return isl_schedule_from_domain(domain);
6225 if (graph_init(&graph, sc) < 0)
6226 domain = isl_union_set_free(domain);
6228 node = isl_schedule_node_from_domain(domain);
6229 node = isl_schedule_node_child(node, 0);
6230 if (graph.n > 0)
6231 node = compute_schedule(node, &graph);
6232 sched = isl_schedule_node_get_schedule(node);
6233 isl_schedule_node_free(node);
6235 graph_free(ctx, &graph);
6236 isl_schedule_constraints_free(sc);
6238 return sched;
6241 /* Compute a schedule for the given union of domains that respects
6242 * all the validity dependences and minimizes
6243 * the dependence distances over the proximity dependences.
6245 * This function is kept for backward compatibility.
6247 __isl_give isl_schedule *isl_union_set_compute_schedule(
6248 __isl_take isl_union_set *domain,
6249 __isl_take isl_union_map *validity,
6250 __isl_take isl_union_map *proximity)
6252 isl_schedule_constraints *sc;
6254 sc = isl_schedule_constraints_on_domain(domain);
6255 sc = isl_schedule_constraints_set_validity(sc, validity);
6256 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6258 return isl_schedule_constraints_compute_schedule(sc);