2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_mat_private.h>
12 #include "isl_map_private.h"
17 * The implementation of tableaus in this file was inspired by Section 8
18 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
19 * prover for program checking".
22 struct isl_tab
*isl_tab_alloc(struct isl_ctx
*ctx
,
23 unsigned n_row
, unsigned n_var
, unsigned M
)
29 tab
= isl_calloc_type(ctx
, struct isl_tab
);
32 tab
->mat
= isl_mat_alloc(ctx
, n_row
, off
+ n_var
);
35 tab
->var
= isl_alloc_array(ctx
, struct isl_tab_var
, n_var
);
38 tab
->con
= isl_alloc_array(ctx
, struct isl_tab_var
, n_row
);
41 tab
->col_var
= isl_alloc_array(ctx
, int, n_var
);
44 tab
->row_var
= isl_alloc_array(ctx
, int, n_row
);
47 for (i
= 0; i
< n_var
; ++i
) {
48 tab
->var
[i
].index
= i
;
49 tab
->var
[i
].is_row
= 0;
50 tab
->var
[i
].is_nonneg
= 0;
51 tab
->var
[i
].is_zero
= 0;
52 tab
->var
[i
].is_redundant
= 0;
53 tab
->var
[i
].frozen
= 0;
54 tab
->var
[i
].negated
= 0;
68 tab
->strict_redundant
= 0;
75 tab
->bottom
.type
= isl_tab_undo_bottom
;
76 tab
->bottom
.next
= NULL
;
77 tab
->top
= &tab
->bottom
;
89 int isl_tab_extend_cons(struct isl_tab
*tab
, unsigned n_new
)
98 if (tab
->max_con
< tab
->n_con
+ n_new
) {
99 struct isl_tab_var
*con
;
101 con
= isl_realloc_array(tab
->mat
->ctx
, tab
->con
,
102 struct isl_tab_var
, tab
->max_con
+ n_new
);
106 tab
->max_con
+= n_new
;
108 if (tab
->mat
->n_row
< tab
->n_row
+ n_new
) {
111 tab
->mat
= isl_mat_extend(tab
->mat
,
112 tab
->n_row
+ n_new
, off
+ tab
->n_col
);
115 row_var
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_var
,
116 int, tab
->mat
->n_row
);
119 tab
->row_var
= row_var
;
121 enum isl_tab_row_sign
*s
;
122 s
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_sign
,
123 enum isl_tab_row_sign
, tab
->mat
->n_row
);
132 /* Make room for at least n_new extra variables.
133 * Return -1 if anything went wrong.
135 int isl_tab_extend_vars(struct isl_tab
*tab
, unsigned n_new
)
137 struct isl_tab_var
*var
;
138 unsigned off
= 2 + tab
->M
;
140 if (tab
->max_var
< tab
->n_var
+ n_new
) {
141 var
= isl_realloc_array(tab
->mat
->ctx
, tab
->var
,
142 struct isl_tab_var
, tab
->n_var
+ n_new
);
146 tab
->max_var
+= n_new
;
149 if (tab
->mat
->n_col
< off
+ tab
->n_col
+ n_new
) {
152 tab
->mat
= isl_mat_extend(tab
->mat
,
153 tab
->mat
->n_row
, off
+ tab
->n_col
+ n_new
);
156 p
= isl_realloc_array(tab
->mat
->ctx
, tab
->col_var
,
157 int, tab
->n_col
+ n_new
);
166 struct isl_tab
*isl_tab_extend(struct isl_tab
*tab
, unsigned n_new
)
168 if (isl_tab_extend_cons(tab
, n_new
) >= 0)
175 static void free_undo_record(struct isl_tab_undo
*undo
)
177 switch (undo
->type
) {
178 case isl_tab_undo_saved_basis
:
179 free(undo
->u
.col_var
);
186 static void free_undo(struct isl_tab
*tab
)
188 struct isl_tab_undo
*undo
, *next
;
190 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
192 free_undo_record(undo
);
197 void isl_tab_free(struct isl_tab
*tab
)
202 isl_mat_free(tab
->mat
);
203 isl_vec_free(tab
->dual
);
204 isl_basic_map_free(tab
->bmap
);
210 isl_mat_free(tab
->samples
);
211 free(tab
->sample_index
);
212 isl_mat_free(tab
->basis
);
216 struct isl_tab
*isl_tab_dup(struct isl_tab
*tab
)
226 dup
= isl_calloc_type(tab
->mat
->ctx
, struct isl_tab
);
229 dup
->mat
= isl_mat_dup(tab
->mat
);
232 dup
->var
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_var
);
235 for (i
= 0; i
< tab
->n_var
; ++i
)
236 dup
->var
[i
] = tab
->var
[i
];
237 dup
->con
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_con
);
240 for (i
= 0; i
< tab
->n_con
; ++i
)
241 dup
->con
[i
] = tab
->con
[i
];
242 dup
->col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_col
- off
);
245 for (i
= 0; i
< tab
->n_col
; ++i
)
246 dup
->col_var
[i
] = tab
->col_var
[i
];
247 dup
->row_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_row
);
250 for (i
= 0; i
< tab
->n_row
; ++i
)
251 dup
->row_var
[i
] = tab
->row_var
[i
];
253 dup
->row_sign
= isl_alloc_array(tab
->mat
->ctx
, enum isl_tab_row_sign
,
257 for (i
= 0; i
< tab
->n_row
; ++i
)
258 dup
->row_sign
[i
] = tab
->row_sign
[i
];
261 dup
->samples
= isl_mat_dup(tab
->samples
);
264 dup
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int,
265 tab
->samples
->n_row
);
266 if (!dup
->sample_index
)
268 dup
->n_sample
= tab
->n_sample
;
269 dup
->n_outside
= tab
->n_outside
;
271 dup
->n_row
= tab
->n_row
;
272 dup
->n_con
= tab
->n_con
;
273 dup
->n_eq
= tab
->n_eq
;
274 dup
->max_con
= tab
->max_con
;
275 dup
->n_col
= tab
->n_col
;
276 dup
->n_var
= tab
->n_var
;
277 dup
->max_var
= tab
->max_var
;
278 dup
->n_param
= tab
->n_param
;
279 dup
->n_div
= tab
->n_div
;
280 dup
->n_dead
= tab
->n_dead
;
281 dup
->n_redundant
= tab
->n_redundant
;
282 dup
->rational
= tab
->rational
;
283 dup
->empty
= tab
->empty
;
284 dup
->strict_redundant
= 0;
288 tab
->cone
= tab
->cone
;
289 dup
->bottom
.type
= isl_tab_undo_bottom
;
290 dup
->bottom
.next
= NULL
;
291 dup
->top
= &dup
->bottom
;
293 dup
->n_zero
= tab
->n_zero
;
294 dup
->n_unbounded
= tab
->n_unbounded
;
295 dup
->basis
= isl_mat_dup(tab
->basis
);
303 /* Construct the coefficient matrix of the product tableau
305 * mat{1,2} is the coefficient matrix of tableau {1,2}
306 * row{1,2} is the number of rows in tableau {1,2}
307 * col{1,2} is the number of columns in tableau {1,2}
308 * off is the offset to the coefficient column (skipping the
309 * denominator, the constant term and the big parameter if any)
310 * r{1,2} is the number of redundant rows in tableau {1,2}
311 * d{1,2} is the number of dead columns in tableau {1,2}
313 * The order of the rows and columns in the result is as explained
314 * in isl_tab_product.
316 static struct isl_mat
*tab_mat_product(struct isl_mat
*mat1
,
317 struct isl_mat
*mat2
, unsigned row1
, unsigned row2
,
318 unsigned col1
, unsigned col2
,
319 unsigned off
, unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
322 struct isl_mat
*prod
;
325 prod
= isl_mat_alloc(mat1
->ctx
, mat1
->n_row
+ mat2
->n_row
,
331 for (i
= 0; i
< r1
; ++i
) {
332 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[i
], off
+ d1
);
333 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
334 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
335 mat1
->row
[i
] + off
+ d1
, col1
- d1
);
336 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
340 for (i
= 0; i
< r2
; ++i
) {
341 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[i
], off
);
342 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
343 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
344 mat2
->row
[i
] + off
, d2
);
345 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
346 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
347 mat2
->row
[i
] + off
+ d2
, col2
- d2
);
351 for (i
= 0; i
< row1
- r1
; ++i
) {
352 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[r1
+ i
], off
+ d1
);
353 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
354 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
355 mat1
->row
[r1
+ i
] + off
+ d1
, col1
- d1
);
356 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
360 for (i
= 0; i
< row2
- r2
; ++i
) {
361 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[r2
+ i
], off
);
362 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
363 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
364 mat2
->row
[r2
+ i
] + off
, d2
);
365 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
366 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
367 mat2
->row
[r2
+ i
] + off
+ d2
, col2
- d2
);
373 /* Update the row or column index of a variable that corresponds
374 * to a variable in the first input tableau.
376 static void update_index1(struct isl_tab_var
*var
,
377 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
379 if (var
->index
== -1)
381 if (var
->is_row
&& var
->index
>= r1
)
383 if (!var
->is_row
&& var
->index
>= d1
)
387 /* Update the row or column index of a variable that corresponds
388 * to a variable in the second input tableau.
390 static void update_index2(struct isl_tab_var
*var
,
391 unsigned row1
, unsigned col1
,
392 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
394 if (var
->index
== -1)
409 /* Create a tableau that represents the Cartesian product of the sets
410 * represented by tableaus tab1 and tab2.
411 * The order of the rows in the product is
412 * - redundant rows of tab1
413 * - redundant rows of tab2
414 * - non-redundant rows of tab1
415 * - non-redundant rows of tab2
416 * The order of the columns is
419 * - coefficient of big parameter, if any
420 * - dead columns of tab1
421 * - dead columns of tab2
422 * - live columns of tab1
423 * - live columns of tab2
424 * The order of the variables and the constraints is a concatenation
425 * of order in the two input tableaus.
427 struct isl_tab
*isl_tab_product(struct isl_tab
*tab1
, struct isl_tab
*tab2
)
430 struct isl_tab
*prod
;
432 unsigned r1
, r2
, d1
, d2
;
437 isl_assert(tab1
->mat
->ctx
, tab1
->M
== tab2
->M
, return NULL
);
438 isl_assert(tab1
->mat
->ctx
, tab1
->rational
== tab2
->rational
, return NULL
);
439 isl_assert(tab1
->mat
->ctx
, tab1
->cone
== tab2
->cone
, return NULL
);
440 isl_assert(tab1
->mat
->ctx
, !tab1
->row_sign
, return NULL
);
441 isl_assert(tab1
->mat
->ctx
, !tab2
->row_sign
, return NULL
);
442 isl_assert(tab1
->mat
->ctx
, tab1
->n_param
== 0, return NULL
);
443 isl_assert(tab1
->mat
->ctx
, tab2
->n_param
== 0, return NULL
);
444 isl_assert(tab1
->mat
->ctx
, tab1
->n_div
== 0, return NULL
);
445 isl_assert(tab1
->mat
->ctx
, tab2
->n_div
== 0, return NULL
);
448 r1
= tab1
->n_redundant
;
449 r2
= tab2
->n_redundant
;
452 prod
= isl_calloc_type(tab1
->mat
->ctx
, struct isl_tab
);
455 prod
->mat
= tab_mat_product(tab1
->mat
, tab2
->mat
,
456 tab1
->n_row
, tab2
->n_row
,
457 tab1
->n_col
, tab2
->n_col
, off
, r1
, r2
, d1
, d2
);
460 prod
->var
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
461 tab1
->max_var
+ tab2
->max_var
);
464 for (i
= 0; i
< tab1
->n_var
; ++i
) {
465 prod
->var
[i
] = tab1
->var
[i
];
466 update_index1(&prod
->var
[i
], r1
, r2
, d1
, d2
);
468 for (i
= 0; i
< tab2
->n_var
; ++i
) {
469 prod
->var
[tab1
->n_var
+ i
] = tab2
->var
[i
];
470 update_index2(&prod
->var
[tab1
->n_var
+ i
],
471 tab1
->n_row
, tab1
->n_col
,
474 prod
->con
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
475 tab1
->max_con
+ tab2
->max_con
);
478 for (i
= 0; i
< tab1
->n_con
; ++i
) {
479 prod
->con
[i
] = tab1
->con
[i
];
480 update_index1(&prod
->con
[i
], r1
, r2
, d1
, d2
);
482 for (i
= 0; i
< tab2
->n_con
; ++i
) {
483 prod
->con
[tab1
->n_con
+ i
] = tab2
->con
[i
];
484 update_index2(&prod
->con
[tab1
->n_con
+ i
],
485 tab1
->n_row
, tab1
->n_col
,
488 prod
->col_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
489 tab1
->n_col
+ tab2
->n_col
);
492 for (i
= 0; i
< tab1
->n_col
; ++i
) {
493 int pos
= i
< d1
? i
: i
+ d2
;
494 prod
->col_var
[pos
] = tab1
->col_var
[i
];
496 for (i
= 0; i
< tab2
->n_col
; ++i
) {
497 int pos
= i
< d2
? d1
+ i
: tab1
->n_col
+ i
;
498 int t
= tab2
->col_var
[i
];
503 prod
->col_var
[pos
] = t
;
505 prod
->row_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
506 tab1
->mat
->n_row
+ tab2
->mat
->n_row
);
509 for (i
= 0; i
< tab1
->n_row
; ++i
) {
510 int pos
= i
< r1
? i
: i
+ r2
;
511 prod
->row_var
[pos
] = tab1
->row_var
[i
];
513 for (i
= 0; i
< tab2
->n_row
; ++i
) {
514 int pos
= i
< r2
? r1
+ i
: tab1
->n_row
+ i
;
515 int t
= tab2
->row_var
[i
];
520 prod
->row_var
[pos
] = t
;
522 prod
->samples
= NULL
;
523 prod
->sample_index
= NULL
;
524 prod
->n_row
= tab1
->n_row
+ tab2
->n_row
;
525 prod
->n_con
= tab1
->n_con
+ tab2
->n_con
;
527 prod
->max_con
= tab1
->max_con
+ tab2
->max_con
;
528 prod
->n_col
= tab1
->n_col
+ tab2
->n_col
;
529 prod
->n_var
= tab1
->n_var
+ tab2
->n_var
;
530 prod
->max_var
= tab1
->max_var
+ tab2
->max_var
;
533 prod
->n_dead
= tab1
->n_dead
+ tab2
->n_dead
;
534 prod
->n_redundant
= tab1
->n_redundant
+ tab2
->n_redundant
;
535 prod
->rational
= tab1
->rational
;
536 prod
->empty
= tab1
->empty
|| tab2
->empty
;
537 prod
->strict_redundant
= tab1
->strict_redundant
|| tab2
->strict_redundant
;
541 prod
->cone
= tab1
->cone
;
542 prod
->bottom
.type
= isl_tab_undo_bottom
;
543 prod
->bottom
.next
= NULL
;
544 prod
->top
= &prod
->bottom
;
547 prod
->n_unbounded
= 0;
556 static struct isl_tab_var
*var_from_index(struct isl_tab
*tab
, int i
)
561 return &tab
->con
[~i
];
564 struct isl_tab_var
*isl_tab_var_from_row(struct isl_tab
*tab
, int i
)
566 return var_from_index(tab
, tab
->row_var
[i
]);
569 static struct isl_tab_var
*var_from_col(struct isl_tab
*tab
, int i
)
571 return var_from_index(tab
, tab
->col_var
[i
]);
574 /* Check if there are any upper bounds on column variable "var",
575 * i.e., non-negative rows where var appears with a negative coefficient.
576 * Return 1 if there are no such bounds.
578 static int max_is_manifestly_unbounded(struct isl_tab
*tab
,
579 struct isl_tab_var
*var
)
582 unsigned off
= 2 + tab
->M
;
586 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
587 if (!isl_int_is_neg(tab
->mat
->row
[i
][off
+ var
->index
]))
589 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
595 /* Check if there are any lower bounds on column variable "var",
596 * i.e., non-negative rows where var appears with a positive coefficient.
597 * Return 1 if there are no such bounds.
599 static int min_is_manifestly_unbounded(struct isl_tab
*tab
,
600 struct isl_tab_var
*var
)
603 unsigned off
= 2 + tab
->M
;
607 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
608 if (!isl_int_is_pos(tab
->mat
->row
[i
][off
+ var
->index
]))
610 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
616 static int row_cmp(struct isl_tab
*tab
, int r1
, int r2
, int c
, isl_int t
)
618 unsigned off
= 2 + tab
->M
;
622 isl_int_mul(t
, tab
->mat
->row
[r1
][2], tab
->mat
->row
[r2
][off
+c
]);
623 isl_int_submul(t
, tab
->mat
->row
[r2
][2], tab
->mat
->row
[r1
][off
+c
]);
628 isl_int_mul(t
, tab
->mat
->row
[r1
][1], tab
->mat
->row
[r2
][off
+ c
]);
629 isl_int_submul(t
, tab
->mat
->row
[r2
][1], tab
->mat
->row
[r1
][off
+ c
]);
630 return isl_int_sgn(t
);
633 /* Given the index of a column "c", return the index of a row
634 * that can be used to pivot the column in, with either an increase
635 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
636 * If "var" is not NULL, then the row returned will be different from
637 * the one associated with "var".
639 * Each row in the tableau is of the form
641 * x_r = a_r0 + \sum_i a_ri x_i
643 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
644 * impose any limit on the increase or decrease in the value of x_c
645 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
646 * for the row with the smallest (most stringent) such bound.
647 * Note that the common denominator of each row drops out of the fraction.
648 * To check if row j has a smaller bound than row r, i.e.,
649 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
650 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
651 * where -sign(a_jc) is equal to "sgn".
653 static int pivot_row(struct isl_tab
*tab
,
654 struct isl_tab_var
*var
, int sgn
, int c
)
658 unsigned off
= 2 + tab
->M
;
662 for (j
= tab
->n_redundant
; j
< tab
->n_row
; ++j
) {
663 if (var
&& j
== var
->index
)
665 if (!isl_tab_var_from_row(tab
, j
)->is_nonneg
)
667 if (sgn
* isl_int_sgn(tab
->mat
->row
[j
][off
+ c
]) >= 0)
673 tsgn
= sgn
* row_cmp(tab
, r
, j
, c
, t
);
674 if (tsgn
< 0 || (tsgn
== 0 &&
675 tab
->row_var
[j
] < tab
->row_var
[r
]))
682 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
683 * (sgn < 0) the value of row variable var.
684 * If not NULL, then skip_var is a row variable that should be ignored
685 * while looking for a pivot row. It is usually equal to var.
687 * As the given row in the tableau is of the form
689 * x_r = a_r0 + \sum_i a_ri x_i
691 * we need to find a column such that the sign of a_ri is equal to "sgn"
692 * (such that an increase in x_i will have the desired effect) or a
693 * column with a variable that may attain negative values.
694 * If a_ri is positive, then we need to move x_i in the same direction
695 * to obtain the desired effect. Otherwise, x_i has to move in the
696 * opposite direction.
698 static void find_pivot(struct isl_tab
*tab
,
699 struct isl_tab_var
*var
, struct isl_tab_var
*skip_var
,
700 int sgn
, int *row
, int *col
)
707 isl_assert(tab
->mat
->ctx
, var
->is_row
, return);
708 tr
= tab
->mat
->row
[var
->index
] + 2 + tab
->M
;
711 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
712 if (isl_int_is_zero(tr
[j
]))
714 if (isl_int_sgn(tr
[j
]) != sgn
&&
715 var_from_col(tab
, j
)->is_nonneg
)
717 if (c
< 0 || tab
->col_var
[j
] < tab
->col_var
[c
])
723 sgn
*= isl_int_sgn(tr
[c
]);
724 r
= pivot_row(tab
, skip_var
, sgn
, c
);
725 *row
= r
< 0 ? var
->index
: r
;
729 /* Return 1 if row "row" represents an obviously redundant inequality.
731 * - it represents an inequality or a variable
732 * - that is the sum of a non-negative sample value and a positive
733 * combination of zero or more non-negative constraints.
735 int isl_tab_row_is_redundant(struct isl_tab
*tab
, int row
)
738 unsigned off
= 2 + tab
->M
;
740 if (tab
->row_var
[row
] < 0 && !isl_tab_var_from_row(tab
, row
)->is_nonneg
)
743 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
745 if (tab
->strict_redundant
&& isl_int_is_zero(tab
->mat
->row
[row
][1]))
747 if (tab
->M
&& isl_int_is_neg(tab
->mat
->row
[row
][2]))
750 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
751 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ i
]))
753 if (tab
->col_var
[i
] >= 0)
755 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ i
]))
757 if (!var_from_col(tab
, i
)->is_nonneg
)
763 static void swap_rows(struct isl_tab
*tab
, int row1
, int row2
)
766 enum isl_tab_row_sign s
;
768 t
= tab
->row_var
[row1
];
769 tab
->row_var
[row1
] = tab
->row_var
[row2
];
770 tab
->row_var
[row2
] = t
;
771 isl_tab_var_from_row(tab
, row1
)->index
= row1
;
772 isl_tab_var_from_row(tab
, row2
)->index
= row2
;
773 tab
->mat
= isl_mat_swap_rows(tab
->mat
, row1
, row2
);
777 s
= tab
->row_sign
[row1
];
778 tab
->row_sign
[row1
] = tab
->row_sign
[row2
];
779 tab
->row_sign
[row2
] = s
;
782 static int push_union(struct isl_tab
*tab
,
783 enum isl_tab_undo_type type
, union isl_tab_undo_val u
) WARN_UNUSED
;
784 static int push_union(struct isl_tab
*tab
,
785 enum isl_tab_undo_type type
, union isl_tab_undo_val u
)
787 struct isl_tab_undo
*undo
;
792 undo
= isl_alloc_type(tab
->mat
->ctx
, struct isl_tab_undo
);
797 undo
->next
= tab
->top
;
803 int isl_tab_push_var(struct isl_tab
*tab
,
804 enum isl_tab_undo_type type
, struct isl_tab_var
*var
)
806 union isl_tab_undo_val u
;
808 u
.var_index
= tab
->row_var
[var
->index
];
810 u
.var_index
= tab
->col_var
[var
->index
];
811 return push_union(tab
, type
, u
);
814 int isl_tab_push(struct isl_tab
*tab
, enum isl_tab_undo_type type
)
816 union isl_tab_undo_val u
= { 0 };
817 return push_union(tab
, type
, u
);
820 /* Push a record on the undo stack describing the current basic
821 * variables, so that the this state can be restored during rollback.
823 int isl_tab_push_basis(struct isl_tab
*tab
)
826 union isl_tab_undo_val u
;
828 u
.col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
831 for (i
= 0; i
< tab
->n_col
; ++i
)
832 u
.col_var
[i
] = tab
->col_var
[i
];
833 return push_union(tab
, isl_tab_undo_saved_basis
, u
);
836 int isl_tab_push_callback(struct isl_tab
*tab
, struct isl_tab_callback
*callback
)
838 union isl_tab_undo_val u
;
839 u
.callback
= callback
;
840 return push_union(tab
, isl_tab_undo_callback
, u
);
843 struct isl_tab
*isl_tab_init_samples(struct isl_tab
*tab
)
850 tab
->samples
= isl_mat_alloc(tab
->mat
->ctx
, 1, 1 + tab
->n_var
);
853 tab
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int, 1);
854 if (!tab
->sample_index
)
862 struct isl_tab
*isl_tab_add_sample(struct isl_tab
*tab
,
863 __isl_take isl_vec
*sample
)
868 if (tab
->n_sample
+ 1 > tab
->samples
->n_row
) {
869 int *t
= isl_realloc_array(tab
->mat
->ctx
,
870 tab
->sample_index
, int, tab
->n_sample
+ 1);
873 tab
->sample_index
= t
;
876 tab
->samples
= isl_mat_extend(tab
->samples
,
877 tab
->n_sample
+ 1, tab
->samples
->n_col
);
881 isl_seq_cpy(tab
->samples
->row
[tab
->n_sample
], sample
->el
, sample
->size
);
882 isl_vec_free(sample
);
883 tab
->sample_index
[tab
->n_sample
] = tab
->n_sample
;
888 isl_vec_free(sample
);
893 struct isl_tab
*isl_tab_drop_sample(struct isl_tab
*tab
, int s
)
895 if (s
!= tab
->n_outside
) {
896 int t
= tab
->sample_index
[tab
->n_outside
];
897 tab
->sample_index
[tab
->n_outside
] = tab
->sample_index
[s
];
898 tab
->sample_index
[s
] = t
;
899 isl_mat_swap_rows(tab
->samples
, tab
->n_outside
, s
);
902 if (isl_tab_push(tab
, isl_tab_undo_drop_sample
) < 0) {
910 /* Record the current number of samples so that we can remove newer
911 * samples during a rollback.
913 int isl_tab_save_samples(struct isl_tab
*tab
)
915 union isl_tab_undo_val u
;
921 return push_union(tab
, isl_tab_undo_saved_samples
, u
);
924 /* Mark row with index "row" as being redundant.
925 * If we may need to undo the operation or if the row represents
926 * a variable of the original problem, the row is kept,
927 * but no longer considered when looking for a pivot row.
928 * Otherwise, the row is simply removed.
930 * The row may be interchanged with some other row. If it
931 * is interchanged with a later row, return 1. Otherwise return 0.
932 * If the rows are checked in order in the calling function,
933 * then a return value of 1 means that the row with the given
934 * row number may now contain a different row that hasn't been checked yet.
936 int isl_tab_mark_redundant(struct isl_tab
*tab
, int row
)
938 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, row
);
939 var
->is_redundant
= 1;
940 isl_assert(tab
->mat
->ctx
, row
>= tab
->n_redundant
, return -1);
941 if (tab
->need_undo
|| tab
->row_var
[row
] >= 0) {
942 if (tab
->row_var
[row
] >= 0 && !var
->is_nonneg
) {
944 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, var
) < 0)
947 if (row
!= tab
->n_redundant
)
948 swap_rows(tab
, row
, tab
->n_redundant
);
950 return isl_tab_push_var(tab
, isl_tab_undo_redundant
, var
);
952 if (row
!= tab
->n_row
- 1)
953 swap_rows(tab
, row
, tab
->n_row
- 1);
954 isl_tab_var_from_row(tab
, tab
->n_row
- 1)->index
= -1;
960 int isl_tab_mark_empty(struct isl_tab
*tab
)
964 if (!tab
->empty
&& tab
->need_undo
)
965 if (isl_tab_push(tab
, isl_tab_undo_empty
) < 0)
971 int isl_tab_freeze_constraint(struct isl_tab
*tab
, int con
)
973 struct isl_tab_var
*var
;
978 var
= &tab
->con
[con
];
986 return isl_tab_push_var(tab
, isl_tab_undo_freeze
, var
);
991 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
992 * the original sign of the pivot element.
993 * We only keep track of row signs during PILP solving and in this case
994 * we only pivot a row with negative sign (meaning the value is always
995 * non-positive) using a positive pivot element.
997 * For each row j, the new value of the parametric constant is equal to
999 * a_j0 - a_jc a_r0/a_rc
1001 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1002 * a_r0 is the parametric constant of the pivot row and a_jc is the
1003 * pivot column entry of the row j.
1004 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1005 * remains the same if a_jc has the same sign as the row j or if
1006 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1008 static void update_row_sign(struct isl_tab
*tab
, int row
, int col
, int row_sgn
)
1011 struct isl_mat
*mat
= tab
->mat
;
1012 unsigned off
= 2 + tab
->M
;
1017 if (tab
->row_sign
[row
] == 0)
1019 isl_assert(mat
->ctx
, row_sgn
> 0, return);
1020 isl_assert(mat
->ctx
, tab
->row_sign
[row
] == isl_tab_row_neg
, return);
1021 tab
->row_sign
[row
] = isl_tab_row_pos
;
1022 for (i
= 0; i
< tab
->n_row
; ++i
) {
1026 s
= isl_int_sgn(mat
->row
[i
][off
+ col
]);
1029 if (!tab
->row_sign
[i
])
1031 if (s
< 0 && tab
->row_sign
[i
] == isl_tab_row_neg
)
1033 if (s
> 0 && tab
->row_sign
[i
] == isl_tab_row_pos
)
1035 tab
->row_sign
[i
] = isl_tab_row_unknown
;
1039 /* Given a row number "row" and a column number "col", pivot the tableau
1040 * such that the associated variables are interchanged.
1041 * The given row in the tableau expresses
1043 * x_r = a_r0 + \sum_i a_ri x_i
1047 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1049 * Substituting this equality into the other rows
1051 * x_j = a_j0 + \sum_i a_ji x_i
1053 * with a_jc \ne 0, we obtain
1055 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1062 * where i is any other column and j is any other row,
1063 * is therefore transformed into
1065 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1066 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1068 * The transformation is performed along the following steps
1070 * d_r/n_rc n_ri/n_rc
1073 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1076 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1077 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1079 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1080 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1082 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1083 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1085 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1086 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1089 int isl_tab_pivot(struct isl_tab
*tab
, int row
, int col
)
1094 struct isl_mat
*mat
= tab
->mat
;
1095 struct isl_tab_var
*var
;
1096 unsigned off
= 2 + tab
->M
;
1098 if (tab
->mat
->ctx
->abort
) {
1099 isl_ctx_set_error(tab
->mat
->ctx
, isl_error_abort
);
1103 isl_int_swap(mat
->row
[row
][0], mat
->row
[row
][off
+ col
]);
1104 sgn
= isl_int_sgn(mat
->row
[row
][0]);
1106 isl_int_neg(mat
->row
[row
][0], mat
->row
[row
][0]);
1107 isl_int_neg(mat
->row
[row
][off
+ col
], mat
->row
[row
][off
+ col
]);
1109 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1110 if (j
== off
- 1 + col
)
1112 isl_int_neg(mat
->row
[row
][1 + j
], mat
->row
[row
][1 + j
]);
1114 if (!isl_int_is_one(mat
->row
[row
][0]))
1115 isl_seq_normalize(mat
->ctx
, mat
->row
[row
], off
+ tab
->n_col
);
1116 for (i
= 0; i
< tab
->n_row
; ++i
) {
1119 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1121 isl_int_mul(mat
->row
[i
][0], mat
->row
[i
][0], mat
->row
[row
][0]);
1122 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1123 if (j
== off
- 1 + col
)
1125 isl_int_mul(mat
->row
[i
][1 + j
],
1126 mat
->row
[i
][1 + j
], mat
->row
[row
][0]);
1127 isl_int_addmul(mat
->row
[i
][1 + j
],
1128 mat
->row
[i
][off
+ col
], mat
->row
[row
][1 + j
]);
1130 isl_int_mul(mat
->row
[i
][off
+ col
],
1131 mat
->row
[i
][off
+ col
], mat
->row
[row
][off
+ col
]);
1132 if (!isl_int_is_one(mat
->row
[i
][0]))
1133 isl_seq_normalize(mat
->ctx
, mat
->row
[i
], off
+ tab
->n_col
);
1135 t
= tab
->row_var
[row
];
1136 tab
->row_var
[row
] = tab
->col_var
[col
];
1137 tab
->col_var
[col
] = t
;
1138 var
= isl_tab_var_from_row(tab
, row
);
1141 var
= var_from_col(tab
, col
);
1144 update_row_sign(tab
, row
, col
, sgn
);
1147 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1148 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1150 if (!isl_tab_var_from_row(tab
, i
)->frozen
&&
1151 isl_tab_row_is_redundant(tab
, i
)) {
1152 int redo
= isl_tab_mark_redundant(tab
, i
);
1162 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1163 * or down (sgn < 0) to a row. The variable is assumed not to be
1164 * unbounded in the specified direction.
1165 * If sgn = 0, then the variable is unbounded in both directions,
1166 * and we pivot with any row we can find.
1168 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
) WARN_UNUSED
;
1169 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
)
1172 unsigned off
= 2 + tab
->M
;
1178 for (r
= tab
->n_redundant
; r
< tab
->n_row
; ++r
)
1179 if (!isl_int_is_zero(tab
->mat
->row
[r
][off
+var
->index
]))
1181 isl_assert(tab
->mat
->ctx
, r
< tab
->n_row
, return -1);
1183 r
= pivot_row(tab
, NULL
, sign
, var
->index
);
1184 isl_assert(tab
->mat
->ctx
, r
>= 0, return -1);
1187 return isl_tab_pivot(tab
, r
, var
->index
);
1190 static void check_table(struct isl_tab
*tab
)
1196 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1197 struct isl_tab_var
*var
;
1198 var
= isl_tab_var_from_row(tab
, i
);
1199 if (!var
->is_nonneg
)
1202 isl_assert(tab
->mat
->ctx
,
1203 !isl_int_is_neg(tab
->mat
->row
[i
][2]), abort());
1204 if (isl_int_is_pos(tab
->mat
->row
[i
][2]))
1207 isl_assert(tab
->mat
->ctx
, !isl_int_is_neg(tab
->mat
->row
[i
][1]),
1212 /* Return the sign of the maximal value of "var".
1213 * If the sign is not negative, then on return from this function,
1214 * the sample value will also be non-negative.
1216 * If "var" is manifestly unbounded wrt positive values, we are done.
1217 * Otherwise, we pivot the variable up to a row if needed
1218 * Then we continue pivoting down until either
1219 * - no more down pivots can be performed
1220 * - the sample value is positive
1221 * - the variable is pivoted into a manifestly unbounded column
1223 static int sign_of_max(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1227 if (max_is_manifestly_unbounded(tab
, var
))
1229 if (to_row(tab
, var
, 1) < 0)
1231 while (!isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1232 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1234 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1235 if (isl_tab_pivot(tab
, row
, col
) < 0)
1237 if (!var
->is_row
) /* manifestly unbounded */
1243 int isl_tab_sign_of_max(struct isl_tab
*tab
, int con
)
1245 struct isl_tab_var
*var
;
1250 var
= &tab
->con
[con
];
1251 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -2);
1252 isl_assert(tab
->mat
->ctx
, !var
->is_zero
, return -2);
1254 return sign_of_max(tab
, var
);
1257 static int row_is_neg(struct isl_tab
*tab
, int row
)
1260 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1261 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1263 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1265 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1268 static int row_sgn(struct isl_tab
*tab
, int row
)
1271 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1272 if (!isl_int_is_zero(tab
->mat
->row
[row
][2]))
1273 return isl_int_sgn(tab
->mat
->row
[row
][2]);
1275 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1278 /* Perform pivots until the row variable "var" has a non-negative
1279 * sample value or until no more upward pivots can be performed.
1280 * Return the sign of the sample value after the pivots have been
1283 static int restore_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1287 while (row_is_neg(tab
, var
->index
)) {
1288 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1291 if (isl_tab_pivot(tab
, row
, col
) < 0)
1293 if (!var
->is_row
) /* manifestly unbounded */
1296 return row_sgn(tab
, var
->index
);
1299 /* Perform pivots until we are sure that the row variable "var"
1300 * can attain non-negative values. After return from this
1301 * function, "var" is still a row variable, but its sample
1302 * value may not be non-negative, even if the function returns 1.
1304 static int at_least_zero(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1308 while (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1309 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1312 if (row
== var
->index
) /* manifestly unbounded */
1314 if (isl_tab_pivot(tab
, row
, col
) < 0)
1317 return !isl_int_is_neg(tab
->mat
->row
[var
->index
][1]);
1320 /* Return a negative value if "var" can attain negative values.
1321 * Return a non-negative value otherwise.
1323 * If "var" is manifestly unbounded wrt negative values, we are done.
1324 * Otherwise, if var is in a column, we can pivot it down to a row.
1325 * Then we continue pivoting down until either
1326 * - the pivot would result in a manifestly unbounded column
1327 * => we don't perform the pivot, but simply return -1
1328 * - no more down pivots can be performed
1329 * - the sample value is negative
1330 * If the sample value becomes negative and the variable is supposed
1331 * to be nonnegative, then we undo the last pivot.
1332 * However, if the last pivot has made the pivoting variable
1333 * obviously redundant, then it may have moved to another row.
1334 * In that case we look for upward pivots until we reach a non-negative
1337 static int sign_of_min(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1340 struct isl_tab_var
*pivot_var
= NULL
;
1342 if (min_is_manifestly_unbounded(tab
, var
))
1346 row
= pivot_row(tab
, NULL
, -1, col
);
1347 pivot_var
= var_from_col(tab
, col
);
1348 if (isl_tab_pivot(tab
, row
, col
) < 0)
1350 if (var
->is_redundant
)
1352 if (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1353 if (var
->is_nonneg
) {
1354 if (!pivot_var
->is_redundant
&&
1355 pivot_var
->index
== row
) {
1356 if (isl_tab_pivot(tab
, row
, col
) < 0)
1359 if (restore_row(tab
, var
) < -1)
1365 if (var
->is_redundant
)
1367 while (!isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1368 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1369 if (row
== var
->index
)
1372 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1373 pivot_var
= var_from_col(tab
, col
);
1374 if (isl_tab_pivot(tab
, row
, col
) < 0)
1376 if (var
->is_redundant
)
1379 if (pivot_var
&& var
->is_nonneg
) {
1380 /* pivot back to non-negative value */
1381 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
) {
1382 if (isl_tab_pivot(tab
, row
, col
) < 0)
1385 if (restore_row(tab
, var
) < -1)
1391 static int row_at_most_neg_one(struct isl_tab
*tab
, int row
)
1394 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1396 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1399 return isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
1400 isl_int_abs_ge(tab
->mat
->row
[row
][1],
1401 tab
->mat
->row
[row
][0]);
1404 /* Return 1 if "var" can attain values <= -1.
1405 * Return 0 otherwise.
1407 * The sample value of "var" is assumed to be non-negative when the
1408 * the function is called. If 1 is returned then the constraint
1409 * is not redundant and the sample value is made non-negative again before
1410 * the function returns.
1412 int isl_tab_min_at_most_neg_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1415 struct isl_tab_var
*pivot_var
;
1417 if (min_is_manifestly_unbounded(tab
, var
))
1421 row
= pivot_row(tab
, NULL
, -1, col
);
1422 pivot_var
= var_from_col(tab
, col
);
1423 if (isl_tab_pivot(tab
, row
, col
) < 0)
1425 if (var
->is_redundant
)
1427 if (row_at_most_neg_one(tab
, var
->index
)) {
1428 if (var
->is_nonneg
) {
1429 if (!pivot_var
->is_redundant
&&
1430 pivot_var
->index
== row
) {
1431 if (isl_tab_pivot(tab
, row
, col
) < 0)
1434 if (restore_row(tab
, var
) < -1)
1440 if (var
->is_redundant
)
1443 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1444 if (row
== var
->index
) {
1445 if (restore_row(tab
, var
) < -1)
1451 pivot_var
= var_from_col(tab
, col
);
1452 if (isl_tab_pivot(tab
, row
, col
) < 0)
1454 if (var
->is_redundant
)
1456 } while (!row_at_most_neg_one(tab
, var
->index
));
1457 if (var
->is_nonneg
) {
1458 /* pivot back to non-negative value */
1459 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
)
1460 if (isl_tab_pivot(tab
, row
, col
) < 0)
1462 if (restore_row(tab
, var
) < -1)
1468 /* Return 1 if "var" can attain values >= 1.
1469 * Return 0 otherwise.
1471 static int at_least_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1476 if (max_is_manifestly_unbounded(tab
, var
))
1478 if (to_row(tab
, var
, 1) < 0)
1480 r
= tab
->mat
->row
[var
->index
];
1481 while (isl_int_lt(r
[1], r
[0])) {
1482 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1484 return isl_int_ge(r
[1], r
[0]);
1485 if (row
== var
->index
) /* manifestly unbounded */
1487 if (isl_tab_pivot(tab
, row
, col
) < 0)
1493 static void swap_cols(struct isl_tab
*tab
, int col1
, int col2
)
1496 unsigned off
= 2 + tab
->M
;
1497 t
= tab
->col_var
[col1
];
1498 tab
->col_var
[col1
] = tab
->col_var
[col2
];
1499 tab
->col_var
[col2
] = t
;
1500 var_from_col(tab
, col1
)->index
= col1
;
1501 var_from_col(tab
, col2
)->index
= col2
;
1502 tab
->mat
= isl_mat_swap_cols(tab
->mat
, off
+ col1
, off
+ col2
);
1505 /* Mark column with index "col" as representing a zero variable.
1506 * If we may need to undo the operation the column is kept,
1507 * but no longer considered.
1508 * Otherwise, the column is simply removed.
1510 * The column may be interchanged with some other column. If it
1511 * is interchanged with a later column, return 1. Otherwise return 0.
1512 * If the columns are checked in order in the calling function,
1513 * then a return value of 1 means that the column with the given
1514 * column number may now contain a different column that
1515 * hasn't been checked yet.
1517 int isl_tab_kill_col(struct isl_tab
*tab
, int col
)
1519 var_from_col(tab
, col
)->is_zero
= 1;
1520 if (tab
->need_undo
) {
1521 if (isl_tab_push_var(tab
, isl_tab_undo_zero
,
1522 var_from_col(tab
, col
)) < 0)
1524 if (col
!= tab
->n_dead
)
1525 swap_cols(tab
, col
, tab
->n_dead
);
1529 if (col
!= tab
->n_col
- 1)
1530 swap_cols(tab
, col
, tab
->n_col
- 1);
1531 var_from_col(tab
, tab
->n_col
- 1)->index
= -1;
1537 static int row_is_manifestly_non_integral(struct isl_tab
*tab
, int row
)
1539 unsigned off
= 2 + tab
->M
;
1541 if (tab
->M
&& !isl_int_eq(tab
->mat
->row
[row
][2],
1542 tab
->mat
->row
[row
][0]))
1544 if (isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1545 tab
->n_col
- tab
->n_dead
) != -1)
1548 return !isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1549 tab
->mat
->row
[row
][0]);
1552 /* For integer tableaus, check if any of the coordinates are stuck
1553 * at a non-integral value.
1555 static int tab_is_manifestly_empty(struct isl_tab
*tab
)
1564 for (i
= 0; i
< tab
->n_var
; ++i
) {
1565 if (!tab
->var
[i
].is_row
)
1567 if (row_is_manifestly_non_integral(tab
, tab
->var
[i
].index
))
1574 /* Row variable "var" is non-negative and cannot attain any values
1575 * larger than zero. This means that the coefficients of the unrestricted
1576 * column variables are zero and that the coefficients of the non-negative
1577 * column variables are zero or negative.
1578 * Each of the non-negative variables with a negative coefficient can
1579 * then also be written as the negative sum of non-negative variables
1580 * and must therefore also be zero.
1582 static int close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1583 static int close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1586 struct isl_mat
*mat
= tab
->mat
;
1587 unsigned off
= 2 + tab
->M
;
1589 isl_assert(tab
->mat
->ctx
, var
->is_nonneg
, return -1);
1592 if (isl_tab_push_var(tab
, isl_tab_undo_zero
, var
) < 0)
1594 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1596 if (isl_int_is_zero(mat
->row
[var
->index
][off
+ j
]))
1598 isl_assert(tab
->mat
->ctx
,
1599 isl_int_is_neg(mat
->row
[var
->index
][off
+ j
]), return -1);
1600 recheck
= isl_tab_kill_col(tab
, j
);
1606 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
1608 if (tab_is_manifestly_empty(tab
) && isl_tab_mark_empty(tab
) < 0)
1613 /* Add a constraint to the tableau and allocate a row for it.
1614 * Return the index into the constraint array "con".
1616 int isl_tab_allocate_con(struct isl_tab
*tab
)
1620 isl_assert(tab
->mat
->ctx
, tab
->n_row
< tab
->mat
->n_row
, return -1);
1621 isl_assert(tab
->mat
->ctx
, tab
->n_con
< tab
->max_con
, return -1);
1624 tab
->con
[r
].index
= tab
->n_row
;
1625 tab
->con
[r
].is_row
= 1;
1626 tab
->con
[r
].is_nonneg
= 0;
1627 tab
->con
[r
].is_zero
= 0;
1628 tab
->con
[r
].is_redundant
= 0;
1629 tab
->con
[r
].frozen
= 0;
1630 tab
->con
[r
].negated
= 0;
1631 tab
->row_var
[tab
->n_row
] = ~r
;
1635 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
1641 /* Add a variable to the tableau and allocate a column for it.
1642 * Return the index into the variable array "var".
1644 int isl_tab_allocate_var(struct isl_tab
*tab
)
1648 unsigned off
= 2 + tab
->M
;
1650 isl_assert(tab
->mat
->ctx
, tab
->n_col
< tab
->mat
->n_col
, return -1);
1651 isl_assert(tab
->mat
->ctx
, tab
->n_var
< tab
->max_var
, return -1);
1654 tab
->var
[r
].index
= tab
->n_col
;
1655 tab
->var
[r
].is_row
= 0;
1656 tab
->var
[r
].is_nonneg
= 0;
1657 tab
->var
[r
].is_zero
= 0;
1658 tab
->var
[r
].is_redundant
= 0;
1659 tab
->var
[r
].frozen
= 0;
1660 tab
->var
[r
].negated
= 0;
1661 tab
->col_var
[tab
->n_col
] = r
;
1663 for (i
= 0; i
< tab
->n_row
; ++i
)
1664 isl_int_set_si(tab
->mat
->row
[i
][off
+ tab
->n_col
], 0);
1668 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->var
[r
]) < 0)
1674 /* Add a row to the tableau. The row is given as an affine combination
1675 * of the original variables and needs to be expressed in terms of the
1678 * We add each term in turn.
1679 * If r = n/d_r is the current sum and we need to add k x, then
1680 * if x is a column variable, we increase the numerator of
1681 * this column by k d_r
1682 * if x = f/d_x is a row variable, then the new representation of r is
1684 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1685 * --- + --- = ------------------- = -------------------
1686 * d_r d_r d_r d_x/g m
1688 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1690 * If tab->M is set, then, internally, each variable x is represented
1691 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1693 int isl_tab_add_row(struct isl_tab
*tab
, isl_int
*line
)
1699 unsigned off
= 2 + tab
->M
;
1701 r
= isl_tab_allocate_con(tab
);
1707 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1708 isl_int_set_si(row
[0], 1);
1709 isl_int_set(row
[1], line
[0]);
1710 isl_seq_clr(row
+ 2, tab
->M
+ tab
->n_col
);
1711 for (i
= 0; i
< tab
->n_var
; ++i
) {
1712 if (tab
->var
[i
].is_zero
)
1714 if (tab
->var
[i
].is_row
) {
1716 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1717 isl_int_swap(a
, row
[0]);
1718 isl_int_divexact(a
, row
[0], a
);
1720 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1721 isl_int_mul(b
, b
, line
[1 + i
]);
1722 isl_seq_combine(row
+ 1, a
, row
+ 1,
1723 b
, tab
->mat
->row
[tab
->var
[i
].index
] + 1,
1724 1 + tab
->M
+ tab
->n_col
);
1726 isl_int_addmul(row
[off
+ tab
->var
[i
].index
],
1727 line
[1 + i
], row
[0]);
1728 if (tab
->M
&& i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
1729 isl_int_submul(row
[2], line
[1 + i
], row
[0]);
1731 isl_seq_normalize(tab
->mat
->ctx
, row
, off
+ tab
->n_col
);
1736 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_unknown
;
1741 static int drop_row(struct isl_tab
*tab
, int row
)
1743 isl_assert(tab
->mat
->ctx
, ~tab
->row_var
[row
] == tab
->n_con
- 1, return -1);
1744 if (row
!= tab
->n_row
- 1)
1745 swap_rows(tab
, row
, tab
->n_row
- 1);
1751 static int drop_col(struct isl_tab
*tab
, int col
)
1753 isl_assert(tab
->mat
->ctx
, tab
->col_var
[col
] == tab
->n_var
- 1, return -1);
1754 if (col
!= tab
->n_col
- 1)
1755 swap_cols(tab
, col
, tab
->n_col
- 1);
1761 /* Add inequality "ineq" and check if it conflicts with the
1762 * previously added constraints or if it is obviously redundant.
1764 int isl_tab_add_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1773 struct isl_basic_map
*bmap
= tab
->bmap
;
1775 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, return -1);
1776 isl_assert(tab
->mat
->ctx
,
1777 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, return -1);
1778 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1779 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1786 isl_int_swap(ineq
[0], cst
);
1788 r
= isl_tab_add_row(tab
, ineq
);
1790 isl_int_swap(ineq
[0], cst
);
1795 tab
->con
[r
].is_nonneg
= 1;
1796 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1798 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1799 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1804 sgn
= restore_row(tab
, &tab
->con
[r
]);
1808 return isl_tab_mark_empty(tab
);
1809 if (tab
->con
[r
].is_row
&& isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1810 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1815 /* Pivot a non-negative variable down until it reaches the value zero
1816 * and then pivot the variable into a column position.
1818 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1819 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1823 unsigned off
= 2 + tab
->M
;
1828 while (isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1829 find_pivot(tab
, var
, NULL
, -1, &row
, &col
);
1830 isl_assert(tab
->mat
->ctx
, row
!= -1, return -1);
1831 if (isl_tab_pivot(tab
, row
, col
) < 0)
1837 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
)
1838 if (!isl_int_is_zero(tab
->mat
->row
[var
->index
][off
+ i
]))
1841 isl_assert(tab
->mat
->ctx
, i
< tab
->n_col
, return -1);
1842 if (isl_tab_pivot(tab
, var
->index
, i
) < 0)
1848 /* We assume Gaussian elimination has been performed on the equalities.
1849 * The equalities can therefore never conflict.
1850 * Adding the equalities is currently only really useful for a later call
1851 * to isl_tab_ineq_type.
1853 static struct isl_tab
*add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1860 r
= isl_tab_add_row(tab
, eq
);
1864 r
= tab
->con
[r
].index
;
1865 i
= isl_seq_first_non_zero(tab
->mat
->row
[r
] + 2 + tab
->M
+ tab
->n_dead
,
1866 tab
->n_col
- tab
->n_dead
);
1867 isl_assert(tab
->mat
->ctx
, i
>= 0, goto error
);
1869 if (isl_tab_pivot(tab
, r
, i
) < 0)
1871 if (isl_tab_kill_col(tab
, i
) < 0)
1881 static int row_is_manifestly_zero(struct isl_tab
*tab
, int row
)
1883 unsigned off
= 2 + tab
->M
;
1885 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]))
1887 if (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))
1889 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1890 tab
->n_col
- tab
->n_dead
) == -1;
1893 /* Add an equality that is known to be valid for the given tableau.
1895 int isl_tab_add_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1897 struct isl_tab_var
*var
;
1902 r
= isl_tab_add_row(tab
, eq
);
1908 if (row_is_manifestly_zero(tab
, r
)) {
1910 if (isl_tab_mark_redundant(tab
, r
) < 0)
1915 if (isl_int_is_neg(tab
->mat
->row
[r
][1])) {
1916 isl_seq_neg(tab
->mat
->row
[r
] + 1, tab
->mat
->row
[r
] + 1,
1921 if (to_col(tab
, var
) < 0)
1924 if (isl_tab_kill_col(tab
, var
->index
) < 0)
1930 static int add_zero_row(struct isl_tab
*tab
)
1935 r
= isl_tab_allocate_con(tab
);
1939 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1940 isl_seq_clr(row
+ 1, 1 + tab
->M
+ tab
->n_col
);
1941 isl_int_set_si(row
[0], 1);
1946 /* Add equality "eq" and check if it conflicts with the
1947 * previously added constraints or if it is obviously redundant.
1949 int isl_tab_add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1951 struct isl_tab_undo
*snap
= NULL
;
1952 struct isl_tab_var
*var
;
1960 isl_assert(tab
->mat
->ctx
, !tab
->M
, return -1);
1963 snap
= isl_tab_snap(tab
);
1967 isl_int_swap(eq
[0], cst
);
1969 r
= isl_tab_add_row(tab
, eq
);
1971 isl_int_swap(eq
[0], cst
);
1979 if (row_is_manifestly_zero(tab
, row
)) {
1981 if (isl_tab_rollback(tab
, snap
) < 0)
1989 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1990 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1992 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1993 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1994 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1995 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1999 if (add_zero_row(tab
) < 0)
2003 sgn
= isl_int_sgn(tab
->mat
->row
[row
][1]);
2006 isl_seq_neg(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
2013 sgn
= sign_of_max(tab
, var
);
2017 if (isl_tab_mark_empty(tab
) < 0)
2024 if (to_col(tab
, var
) < 0)
2027 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2033 /* Construct and return an inequality that expresses an upper bound
2035 * In particular, if the div is given by
2039 * then the inequality expresses
2043 static struct isl_vec
*ineq_for_div(struct isl_basic_map
*bmap
, unsigned div
)
2047 struct isl_vec
*ineq
;
2052 total
= isl_basic_map_total_dim(bmap
);
2053 div_pos
= 1 + total
- bmap
->n_div
+ div
;
2055 ineq
= isl_vec_alloc(bmap
->ctx
, 1 + total
);
2059 isl_seq_cpy(ineq
->el
, bmap
->div
[div
] + 1, 1 + total
);
2060 isl_int_neg(ineq
->el
[div_pos
], bmap
->div
[div
][0]);
2064 /* For a div d = floor(f/m), add the constraints
2067 * -(f-(m-1)) + m d >= 0
2069 * Note that the second constraint is the negation of
2073 * If add_ineq is not NULL, then this function is used
2074 * instead of isl_tab_add_ineq to effectively add the inequalities.
2076 static int add_div_constraints(struct isl_tab
*tab
, unsigned div
,
2077 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
2081 struct isl_vec
*ineq
;
2083 total
= isl_basic_map_total_dim(tab
->bmap
);
2084 div_pos
= 1 + total
- tab
->bmap
->n_div
+ div
;
2086 ineq
= ineq_for_div(tab
->bmap
, div
);
2091 if (add_ineq(user
, ineq
->el
) < 0)
2094 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2098 isl_seq_neg(ineq
->el
, tab
->bmap
->div
[div
] + 1, 1 + total
);
2099 isl_int_set(ineq
->el
[div_pos
], tab
->bmap
->div
[div
][0]);
2100 isl_int_add(ineq
->el
[0], ineq
->el
[0], ineq
->el
[div_pos
]);
2101 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
2104 if (add_ineq(user
, ineq
->el
) < 0)
2107 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2119 /* Check whether the div described by "div" is obviously non-negative.
2120 * If we are using a big parameter, then we will encode the div
2121 * as div' = M + div, which is always non-negative.
2122 * Otherwise, we check whether div is a non-negative affine combination
2123 * of non-negative variables.
2125 static int div_is_nonneg(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2132 if (isl_int_is_neg(div
->el
[1]))
2135 for (i
= 0; i
< tab
->n_var
; ++i
) {
2136 if (isl_int_is_neg(div
->el
[2 + i
]))
2138 if (isl_int_is_zero(div
->el
[2 + i
]))
2140 if (!tab
->var
[i
].is_nonneg
)
2147 /* Add an extra div, prescribed by "div" to the tableau and
2148 * the associated bmap (which is assumed to be non-NULL).
2150 * If add_ineq is not NULL, then this function is used instead
2151 * of isl_tab_add_ineq to add the div constraints.
2152 * This complication is needed because the code in isl_tab_pip
2153 * wants to perform some extra processing when an inequality
2154 * is added to the tableau.
2156 int isl_tab_add_div(struct isl_tab
*tab
, __isl_keep isl_vec
*div
,
2157 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
2166 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
2168 nonneg
= div_is_nonneg(tab
, div
);
2170 if (isl_tab_extend_cons(tab
, 3) < 0)
2172 if (isl_tab_extend_vars(tab
, 1) < 0)
2174 r
= isl_tab_allocate_var(tab
);
2179 tab
->var
[r
].is_nonneg
= 1;
2181 tab
->bmap
= isl_basic_map_extend_dim(tab
->bmap
,
2182 isl_basic_map_get_dim(tab
->bmap
), 1, 0, 2);
2183 k
= isl_basic_map_alloc_div(tab
->bmap
);
2186 isl_seq_cpy(tab
->bmap
->div
[k
], div
->el
, div
->size
);
2187 if (isl_tab_push(tab
, isl_tab_undo_bmap_div
) < 0)
2190 if (add_div_constraints(tab
, k
, add_ineq
, user
) < 0)
2196 struct isl_tab
*isl_tab_from_basic_map(struct isl_basic_map
*bmap
)
2199 struct isl_tab
*tab
;
2203 tab
= isl_tab_alloc(bmap
->ctx
,
2204 isl_basic_map_total_dim(bmap
) + bmap
->n_ineq
+ 1,
2205 isl_basic_map_total_dim(bmap
), 0);
2208 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2209 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2210 if (isl_tab_mark_empty(tab
) < 0)
2214 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2215 tab
= add_eq(tab
, bmap
->eq
[i
]);
2219 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2220 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
2231 struct isl_tab
*isl_tab_from_basic_set(struct isl_basic_set
*bset
)
2233 return isl_tab_from_basic_map((struct isl_basic_map
*)bset
);
2236 /* Construct a tableau corresponding to the recession cone of "bset".
2238 struct isl_tab
*isl_tab_from_recession_cone(__isl_keep isl_basic_set
*bset
,
2243 struct isl_tab
*tab
;
2244 unsigned offset
= 0;
2249 offset
= isl_basic_set_dim(bset
, isl_dim_param
);
2250 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_eq
+ bset
->n_ineq
,
2251 isl_basic_set_total_dim(bset
) - offset
, 0);
2254 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
2258 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2259 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2261 if (isl_tab_add_eq(tab
, bset
->eq
[i
] + offset
) < 0)
2264 tab
= add_eq(tab
, bset
->eq
[i
]);
2265 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2269 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2271 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2272 r
= isl_tab_add_row(tab
, bset
->ineq
[i
] + offset
);
2273 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2276 tab
->con
[r
].is_nonneg
= 1;
2277 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2289 /* Assuming "tab" is the tableau of a cone, check if the cone is
2290 * bounded, i.e., if it is empty or only contains the origin.
2292 int isl_tab_cone_is_bounded(struct isl_tab
*tab
)
2300 if (tab
->n_dead
== tab
->n_col
)
2304 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2305 struct isl_tab_var
*var
;
2307 var
= isl_tab_var_from_row(tab
, i
);
2308 if (!var
->is_nonneg
)
2310 sgn
= sign_of_max(tab
, var
);
2315 if (close_row(tab
, var
) < 0)
2319 if (tab
->n_dead
== tab
->n_col
)
2321 if (i
== tab
->n_row
)
2326 int isl_tab_sample_is_integer(struct isl_tab
*tab
)
2333 for (i
= 0; i
< tab
->n_var
; ++i
) {
2335 if (!tab
->var
[i
].is_row
)
2337 row
= tab
->var
[i
].index
;
2338 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
2339 tab
->mat
->row
[row
][0]))
2345 static struct isl_vec
*extract_integer_sample(struct isl_tab
*tab
)
2348 struct isl_vec
*vec
;
2350 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2354 isl_int_set_si(vec
->block
.data
[0], 1);
2355 for (i
= 0; i
< tab
->n_var
; ++i
) {
2356 if (!tab
->var
[i
].is_row
)
2357 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2359 int row
= tab
->var
[i
].index
;
2360 isl_int_divexact(vec
->block
.data
[1 + i
],
2361 tab
->mat
->row
[row
][1], tab
->mat
->row
[row
][0]);
2368 struct isl_vec
*isl_tab_get_sample_value(struct isl_tab
*tab
)
2371 struct isl_vec
*vec
;
2377 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2383 isl_int_set_si(vec
->block
.data
[0], 1);
2384 for (i
= 0; i
< tab
->n_var
; ++i
) {
2386 if (!tab
->var
[i
].is_row
) {
2387 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2390 row
= tab
->var
[i
].index
;
2391 isl_int_gcd(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2392 isl_int_divexact(m
, tab
->mat
->row
[row
][0], m
);
2393 isl_seq_scale(vec
->block
.data
, vec
->block
.data
, m
, 1 + i
);
2394 isl_int_divexact(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2395 isl_int_mul(vec
->block
.data
[1 + i
], m
, tab
->mat
->row
[row
][1]);
2397 vec
= isl_vec_normalize(vec
);
2403 /* Update "bmap" based on the results of the tableau "tab".
2404 * In particular, implicit equalities are made explicit, redundant constraints
2405 * are removed and if the sample value happens to be integer, it is stored
2406 * in "bmap" (unless "bmap" already had an integer sample).
2408 * The tableau is assumed to have been created from "bmap" using
2409 * isl_tab_from_basic_map.
2411 struct isl_basic_map
*isl_basic_map_update_from_tab(struct isl_basic_map
*bmap
,
2412 struct isl_tab
*tab
)
2424 bmap
= isl_basic_map_set_to_empty(bmap
);
2426 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2427 if (isl_tab_is_equality(tab
, n_eq
+ i
))
2428 isl_basic_map_inequality_to_equality(bmap
, i
);
2429 else if (isl_tab_is_redundant(tab
, n_eq
+ i
))
2430 isl_basic_map_drop_inequality(bmap
, i
);
2432 if (bmap
->n_eq
!= n_eq
)
2433 isl_basic_map_gauss(bmap
, NULL
);
2434 if (!tab
->rational
&&
2435 !bmap
->sample
&& isl_tab_sample_is_integer(tab
))
2436 bmap
->sample
= extract_integer_sample(tab
);
2440 struct isl_basic_set
*isl_basic_set_update_from_tab(struct isl_basic_set
*bset
,
2441 struct isl_tab
*tab
)
2443 return (struct isl_basic_set
*)isl_basic_map_update_from_tab(
2444 (struct isl_basic_map
*)bset
, tab
);
2447 /* Given a non-negative variable "var", add a new non-negative variable
2448 * that is the opposite of "var", ensuring that var can only attain the
2450 * If var = n/d is a row variable, then the new variable = -n/d.
2451 * If var is a column variables, then the new variable = -var.
2452 * If the new variable cannot attain non-negative values, then
2453 * the resulting tableau is empty.
2454 * Otherwise, we know the value will be zero and we close the row.
2456 static int cut_to_hyperplane(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2461 unsigned off
= 2 + tab
->M
;
2465 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -1);
2466 isl_assert(tab
->mat
->ctx
, var
->is_nonneg
, return -1);
2468 if (isl_tab_extend_cons(tab
, 1) < 0)
2472 tab
->con
[r
].index
= tab
->n_row
;
2473 tab
->con
[r
].is_row
= 1;
2474 tab
->con
[r
].is_nonneg
= 0;
2475 tab
->con
[r
].is_zero
= 0;
2476 tab
->con
[r
].is_redundant
= 0;
2477 tab
->con
[r
].frozen
= 0;
2478 tab
->con
[r
].negated
= 0;
2479 tab
->row_var
[tab
->n_row
] = ~r
;
2480 row
= tab
->mat
->row
[tab
->n_row
];
2483 isl_int_set(row
[0], tab
->mat
->row
[var
->index
][0]);
2484 isl_seq_neg(row
+ 1,
2485 tab
->mat
->row
[var
->index
] + 1, 1 + tab
->n_col
);
2487 isl_int_set_si(row
[0], 1);
2488 isl_seq_clr(row
+ 1, 1 + tab
->n_col
);
2489 isl_int_set_si(row
[off
+ var
->index
], -1);
2494 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
2497 sgn
= sign_of_max(tab
, &tab
->con
[r
]);
2501 if (isl_tab_mark_empty(tab
) < 0)
2505 tab
->con
[r
].is_nonneg
= 1;
2506 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2509 if (close_row(tab
, &tab
->con
[r
]) < 0)
2515 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2516 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2517 * by r' = r + 1 >= 0.
2518 * If r is a row variable, we simply increase the constant term by one
2519 * (taking into account the denominator).
2520 * If r is a column variable, then we need to modify each row that
2521 * refers to r = r' - 1 by substituting this equality, effectively
2522 * subtracting the coefficient of the column from the constant.
2523 * We should only do this if the minimum is manifestly unbounded,
2524 * however. Otherwise, we may end up with negative sample values
2525 * for non-negative variables.
2526 * So, if r is a column variable with a minimum that is not
2527 * manifestly unbounded, then we need to move it to a row.
2528 * However, the sample value of this row may be negative,
2529 * even after the relaxation, so we need to restore it.
2530 * We therefore prefer to pivot a column up to a row, if possible.
2532 struct isl_tab
*isl_tab_relax(struct isl_tab
*tab
, int con
)
2534 struct isl_tab_var
*var
;
2535 unsigned off
= 2 + tab
->M
;
2540 var
= &tab
->con
[con
];
2542 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
2543 if (to_row(tab
, var
, 1) < 0)
2545 if (!var
->is_row
&& !min_is_manifestly_unbounded(tab
, var
))
2546 if (to_row(tab
, var
, -1) < 0)
2550 isl_int_add(tab
->mat
->row
[var
->index
][1],
2551 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
2552 if (restore_row(tab
, var
) < 0)
2557 for (i
= 0; i
< tab
->n_row
; ++i
) {
2558 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2560 isl_int_sub(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
2561 tab
->mat
->row
[i
][off
+ var
->index
]);
2566 if (isl_tab_push_var(tab
, isl_tab_undo_relax
, var
) < 0)
2575 int isl_tab_select_facet(struct isl_tab
*tab
, int con
)
2580 return cut_to_hyperplane(tab
, &tab
->con
[con
]);
2583 static int may_be_equality(struct isl_tab
*tab
, int row
)
2585 unsigned off
= 2 + tab
->M
;
2586 return tab
->rational
? isl_int_is_zero(tab
->mat
->row
[row
][1])
2587 : isl_int_lt(tab
->mat
->row
[row
][1],
2588 tab
->mat
->row
[row
][0]);
2591 /* Check for (near) equalities among the constraints.
2592 * A constraint is an equality if it is non-negative and if
2593 * its maximal value is either
2594 * - zero (in case of rational tableaus), or
2595 * - strictly less than 1 (in case of integer tableaus)
2597 * We first mark all non-redundant and non-dead variables that
2598 * are not frozen and not obviously not an equality.
2599 * Then we iterate over all marked variables if they can attain
2600 * any values larger than zero or at least one.
2601 * If the maximal value is zero, we mark any column variables
2602 * that appear in the row as being zero and mark the row as being redundant.
2603 * Otherwise, if the maximal value is strictly less than one (and the
2604 * tableau is integer), then we restrict the value to being zero
2605 * by adding an opposite non-negative variable.
2607 int isl_tab_detect_implicit_equalities(struct isl_tab
*tab
)
2616 if (tab
->n_dead
== tab
->n_col
)
2620 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2621 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2622 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2623 may_be_equality(tab
, i
);
2627 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2628 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2629 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2634 struct isl_tab_var
*var
;
2636 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2637 var
= isl_tab_var_from_row(tab
, i
);
2641 if (i
== tab
->n_row
) {
2642 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2643 var
= var_from_col(tab
, i
);
2647 if (i
== tab
->n_col
)
2652 sgn
= sign_of_max(tab
, var
);
2656 if (close_row(tab
, var
) < 0)
2658 } else if (!tab
->rational
&& !at_least_one(tab
, var
)) {
2659 if (cut_to_hyperplane(tab
, var
) < 0)
2661 return isl_tab_detect_implicit_equalities(tab
);
2663 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2664 var
= isl_tab_var_from_row(tab
, i
);
2667 if (may_be_equality(tab
, i
))
2677 static int con_is_redundant(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2681 if (tab
->rational
) {
2682 int sgn
= sign_of_min(tab
, var
);
2687 int irred
= isl_tab_min_at_most_neg_one(tab
, var
);
2694 /* Check for (near) redundant constraints.
2695 * A constraint is redundant if it is non-negative and if
2696 * its minimal value (temporarily ignoring the non-negativity) is either
2697 * - zero (in case of rational tableaus), or
2698 * - strictly larger than -1 (in case of integer tableaus)
2700 * We first mark all non-redundant and non-dead variables that
2701 * are not frozen and not obviously negatively unbounded.
2702 * Then we iterate over all marked variables if they can attain
2703 * any values smaller than zero or at most negative one.
2704 * If not, we mark the row as being redundant (assuming it hasn't
2705 * been detected as being obviously redundant in the mean time).
2707 int isl_tab_detect_redundant(struct isl_tab
*tab
)
2716 if (tab
->n_redundant
== tab
->n_row
)
2720 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2721 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2722 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2726 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2727 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2728 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2729 !min_is_manifestly_unbounded(tab
, var
);
2734 struct isl_tab_var
*var
;
2736 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2737 var
= isl_tab_var_from_row(tab
, i
);
2741 if (i
== tab
->n_row
) {
2742 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2743 var
= var_from_col(tab
, i
);
2747 if (i
== tab
->n_col
)
2752 red
= con_is_redundant(tab
, var
);
2755 if (red
&& !var
->is_redundant
)
2756 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
2758 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2759 var
= var_from_col(tab
, i
);
2762 if (!min_is_manifestly_unbounded(tab
, var
))
2772 int isl_tab_is_equality(struct isl_tab
*tab
, int con
)
2779 if (tab
->con
[con
].is_zero
)
2781 if (tab
->con
[con
].is_redundant
)
2783 if (!tab
->con
[con
].is_row
)
2784 return tab
->con
[con
].index
< tab
->n_dead
;
2786 row
= tab
->con
[con
].index
;
2789 return isl_int_is_zero(tab
->mat
->row
[row
][1]) &&
2790 (!tab
->M
|| isl_int_is_zero(tab
->mat
->row
[row
][2])) &&
2791 isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
2792 tab
->n_col
- tab
->n_dead
) == -1;
2795 /* Return the minimal value of the affine expression "f" with denominator
2796 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2797 * the expression cannot attain arbitrarily small values.
2798 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2799 * The return value reflects the nature of the result (empty, unbounded,
2800 * minimal value returned in *opt).
2802 enum isl_lp_result
isl_tab_min(struct isl_tab
*tab
,
2803 isl_int
*f
, isl_int denom
, isl_int
*opt
, isl_int
*opt_denom
,
2807 enum isl_lp_result res
= isl_lp_ok
;
2808 struct isl_tab_var
*var
;
2809 struct isl_tab_undo
*snap
;
2812 return isl_lp_error
;
2815 return isl_lp_empty
;
2817 snap
= isl_tab_snap(tab
);
2818 r
= isl_tab_add_row(tab
, f
);
2820 return isl_lp_error
;
2824 find_pivot(tab
, var
, var
, -1, &row
, &col
);
2825 if (row
== var
->index
) {
2826 res
= isl_lp_unbounded
;
2831 if (isl_tab_pivot(tab
, row
, col
) < 0)
2832 return isl_lp_error
;
2834 isl_int_mul(tab
->mat
->row
[var
->index
][0],
2835 tab
->mat
->row
[var
->index
][0], denom
);
2836 if (ISL_FL_ISSET(flags
, ISL_TAB_SAVE_DUAL
)) {
2839 isl_vec_free(tab
->dual
);
2840 tab
->dual
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_con
);
2842 return isl_lp_error
;
2843 isl_int_set(tab
->dual
->el
[0], tab
->mat
->row
[var
->index
][0]);
2844 for (i
= 0; i
< tab
->n_con
; ++i
) {
2846 if (tab
->con
[i
].is_row
) {
2847 isl_int_set_si(tab
->dual
->el
[1 + i
], 0);
2850 pos
= 2 + tab
->M
+ tab
->con
[i
].index
;
2851 if (tab
->con
[i
].negated
)
2852 isl_int_neg(tab
->dual
->el
[1 + i
],
2853 tab
->mat
->row
[var
->index
][pos
]);
2855 isl_int_set(tab
->dual
->el
[1 + i
],
2856 tab
->mat
->row
[var
->index
][pos
]);
2859 if (opt
&& res
== isl_lp_ok
) {
2861 isl_int_set(*opt
, tab
->mat
->row
[var
->index
][1]);
2862 isl_int_set(*opt_denom
, tab
->mat
->row
[var
->index
][0]);
2864 isl_int_cdiv_q(*opt
, tab
->mat
->row
[var
->index
][1],
2865 tab
->mat
->row
[var
->index
][0]);
2867 if (isl_tab_rollback(tab
, snap
) < 0)
2868 return isl_lp_error
;
2872 int isl_tab_is_redundant(struct isl_tab
*tab
, int con
)
2876 if (tab
->con
[con
].is_zero
)
2878 if (tab
->con
[con
].is_redundant
)
2880 return tab
->con
[con
].is_row
&& tab
->con
[con
].index
< tab
->n_redundant
;
2883 /* Take a snapshot of the tableau that can be restored by s call to
2886 struct isl_tab_undo
*isl_tab_snap(struct isl_tab
*tab
)
2894 /* Undo the operation performed by isl_tab_relax.
2896 static int unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
2897 static int unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2899 unsigned off
= 2 + tab
->M
;
2901 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
2902 if (to_row(tab
, var
, 1) < 0)
2906 isl_int_sub(tab
->mat
->row
[var
->index
][1],
2907 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
2908 if (var
->is_nonneg
) {
2909 int sgn
= restore_row(tab
, var
);
2910 isl_assert(tab
->mat
->ctx
, sgn
>= 0, return -1);
2915 for (i
= 0; i
< tab
->n_row
; ++i
) {
2916 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2918 isl_int_add(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
2919 tab
->mat
->row
[i
][off
+ var
->index
]);
2927 static int perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
) WARN_UNUSED
;
2928 static int perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
2930 struct isl_tab_var
*var
= var_from_index(tab
, undo
->u
.var_index
);
2931 switch(undo
->type
) {
2932 case isl_tab_undo_nonneg
:
2935 case isl_tab_undo_redundant
:
2936 var
->is_redundant
= 0;
2938 restore_row(tab
, isl_tab_var_from_row(tab
, tab
->n_redundant
));
2940 case isl_tab_undo_freeze
:
2943 case isl_tab_undo_zero
:
2948 case isl_tab_undo_allocate
:
2949 if (undo
->u
.var_index
>= 0) {
2950 isl_assert(tab
->mat
->ctx
, !var
->is_row
, return -1);
2951 drop_col(tab
, var
->index
);
2955 if (!max_is_manifestly_unbounded(tab
, var
)) {
2956 if (to_row(tab
, var
, 1) < 0)
2958 } else if (!min_is_manifestly_unbounded(tab
, var
)) {
2959 if (to_row(tab
, var
, -1) < 0)
2962 if (to_row(tab
, var
, 0) < 0)
2965 drop_row(tab
, var
->index
);
2967 case isl_tab_undo_relax
:
2968 return unrelax(tab
, var
);
2974 /* Restore the tableau to the state where the basic variables
2975 * are those in "col_var".
2976 * We first construct a list of variables that are currently in
2977 * the basis, but shouldn't. Then we iterate over all variables
2978 * that should be in the basis and for each one that is currently
2979 * not in the basis, we exchange it with one of the elements of the
2980 * list constructed before.
2981 * We can always find an appropriate variable to pivot with because
2982 * the current basis is mapped to the old basis by a non-singular
2983 * matrix and so we can never end up with a zero row.
2985 static int restore_basis(struct isl_tab
*tab
, int *col_var
)
2989 int *extra
= NULL
; /* current columns that contain bad stuff */
2990 unsigned off
= 2 + tab
->M
;
2992 extra
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
2995 for (i
= 0; i
< tab
->n_col
; ++i
) {
2996 for (j
= 0; j
< tab
->n_col
; ++j
)
2997 if (tab
->col_var
[i
] == col_var
[j
])
3001 extra
[n_extra
++] = i
;
3003 for (i
= 0; i
< tab
->n_col
&& n_extra
> 0; ++i
) {
3004 struct isl_tab_var
*var
;
3007 for (j
= 0; j
< tab
->n_col
; ++j
)
3008 if (col_var
[i
] == tab
->col_var
[j
])
3012 var
= var_from_index(tab
, col_var
[i
]);
3014 for (j
= 0; j
< n_extra
; ++j
)
3015 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+extra
[j
]]))
3017 isl_assert(tab
->mat
->ctx
, j
< n_extra
, goto error
);
3018 if (isl_tab_pivot(tab
, row
, extra
[j
]) < 0)
3020 extra
[j
] = extra
[--n_extra
];
3030 /* Remove all samples with index n or greater, i.e., those samples
3031 * that were added since we saved this number of samples in
3032 * isl_tab_save_samples.
3034 static void drop_samples_since(struct isl_tab
*tab
, int n
)
3038 for (i
= tab
->n_sample
- 1; i
>= 0 && tab
->n_sample
> n
; --i
) {
3039 if (tab
->sample_index
[i
] < n
)
3042 if (i
!= tab
->n_sample
- 1) {
3043 int t
= tab
->sample_index
[tab
->n_sample
-1];
3044 tab
->sample_index
[tab
->n_sample
-1] = tab
->sample_index
[i
];
3045 tab
->sample_index
[i
] = t
;
3046 isl_mat_swap_rows(tab
->samples
, tab
->n_sample
-1, i
);
3052 static int perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
) WARN_UNUSED
;
3053 static int perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3055 switch (undo
->type
) {
3056 case isl_tab_undo_empty
:
3059 case isl_tab_undo_nonneg
:
3060 case isl_tab_undo_redundant
:
3061 case isl_tab_undo_freeze
:
3062 case isl_tab_undo_zero
:
3063 case isl_tab_undo_allocate
:
3064 case isl_tab_undo_relax
:
3065 return perform_undo_var(tab
, undo
);
3066 case isl_tab_undo_bmap_eq
:
3067 return isl_basic_map_free_equality(tab
->bmap
, 1);
3068 case isl_tab_undo_bmap_ineq
:
3069 return isl_basic_map_free_inequality(tab
->bmap
, 1);
3070 case isl_tab_undo_bmap_div
:
3071 if (isl_basic_map_free_div(tab
->bmap
, 1) < 0)
3074 tab
->samples
->n_col
--;
3076 case isl_tab_undo_saved_basis
:
3077 if (restore_basis(tab
, undo
->u
.col_var
) < 0)
3080 case isl_tab_undo_drop_sample
:
3083 case isl_tab_undo_saved_samples
:
3084 drop_samples_since(tab
, undo
->u
.n
);
3086 case isl_tab_undo_callback
:
3087 return undo
->u
.callback
->run(undo
->u
.callback
);
3089 isl_assert(tab
->mat
->ctx
, 0, return -1);
3094 /* Return the tableau to the state it was in when the snapshot "snap"
3097 int isl_tab_rollback(struct isl_tab
*tab
, struct isl_tab_undo
*snap
)
3099 struct isl_tab_undo
*undo
, *next
;
3105 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
3109 if (perform_undo(tab
, undo
) < 0) {
3115 free_undo_record(undo
);
3124 /* The given row "row" represents an inequality violated by all
3125 * points in the tableau. Check for some special cases of such
3126 * separating constraints.
3127 * In particular, if the row has been reduced to the constant -1,
3128 * then we know the inequality is adjacent (but opposite) to
3129 * an equality in the tableau.
3130 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3131 * of the tableau and c a positive constant, then the inequality
3132 * is adjacent (but opposite) to the inequality r'.
3134 static enum isl_ineq_type
separation_type(struct isl_tab
*tab
, unsigned row
)
3137 unsigned off
= 2 + tab
->M
;
3140 return isl_ineq_separate
;
3142 if (!isl_int_is_one(tab
->mat
->row
[row
][0]))
3143 return isl_ineq_separate
;
3145 pos
= isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3146 tab
->n_col
- tab
->n_dead
);
3148 if (isl_int_is_negone(tab
->mat
->row
[row
][1]))
3149 return isl_ineq_adj_eq
;
3151 return isl_ineq_separate
;
3154 if (!isl_int_eq(tab
->mat
->row
[row
][1],
3155 tab
->mat
->row
[row
][off
+ tab
->n_dead
+ pos
]))
3156 return isl_ineq_separate
;
3158 pos
= isl_seq_first_non_zero(
3159 tab
->mat
->row
[row
] + off
+ tab
->n_dead
+ pos
+ 1,
3160 tab
->n_col
- tab
->n_dead
- pos
- 1);
3162 return pos
== -1 ? isl_ineq_adj_ineq
: isl_ineq_separate
;
3165 /* Check the effect of inequality "ineq" on the tableau "tab".
3167 * isl_ineq_redundant: satisfied by all points in the tableau
3168 * isl_ineq_separate: satisfied by no point in the tableau
3169 * isl_ineq_cut: satisfied by some by not all points
3170 * isl_ineq_adj_eq: adjacent to an equality
3171 * isl_ineq_adj_ineq: adjacent to an inequality.
3173 enum isl_ineq_type
isl_tab_ineq_type(struct isl_tab
*tab
, isl_int
*ineq
)
3175 enum isl_ineq_type type
= isl_ineq_error
;
3176 struct isl_tab_undo
*snap
= NULL
;
3181 return isl_ineq_error
;
3183 if (isl_tab_extend_cons(tab
, 1) < 0)
3184 return isl_ineq_error
;
3186 snap
= isl_tab_snap(tab
);
3188 con
= isl_tab_add_row(tab
, ineq
);
3192 row
= tab
->con
[con
].index
;
3193 if (isl_tab_row_is_redundant(tab
, row
))
3194 type
= isl_ineq_redundant
;
3195 else if (isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
3197 isl_int_abs_ge(tab
->mat
->row
[row
][1],
3198 tab
->mat
->row
[row
][0]))) {
3199 int nonneg
= at_least_zero(tab
, &tab
->con
[con
]);
3203 type
= isl_ineq_cut
;
3205 type
= separation_type(tab
, row
);
3207 int red
= con_is_redundant(tab
, &tab
->con
[con
]);
3211 type
= isl_ineq_cut
;
3213 type
= isl_ineq_redundant
;
3216 if (isl_tab_rollback(tab
, snap
))
3217 return isl_ineq_error
;
3220 return isl_ineq_error
;
3223 int isl_tab_track_bmap(struct isl_tab
*tab
, __isl_take isl_basic_map
*bmap
)
3228 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, return -1);
3229 isl_assert(tab
->mat
->ctx
,
3230 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, return -1);
3236 isl_basic_map_free(bmap
);
3240 int isl_tab_track_bset(struct isl_tab
*tab
, __isl_take isl_basic_set
*bset
)
3242 return isl_tab_track_bmap(tab
, (isl_basic_map
*)bset
);
3245 __isl_keep isl_basic_set
*isl_tab_peek_bset(struct isl_tab
*tab
)
3250 return (isl_basic_set
*)tab
->bmap
;
3253 static void isl_tab_print_internal(__isl_keep
struct isl_tab
*tab
,
3254 FILE *out
, int indent
)
3260 fprintf(out
, "%*snull tab\n", indent
, "");
3263 fprintf(out
, "%*sn_redundant: %d, n_dead: %d", indent
, "",
3264 tab
->n_redundant
, tab
->n_dead
);
3266 fprintf(out
, ", rational");
3268 fprintf(out
, ", empty");
3270 fprintf(out
, "%*s[", indent
, "");
3271 for (i
= 0; i
< tab
->n_var
; ++i
) {
3273 fprintf(out
, (i
== tab
->n_param
||
3274 i
== tab
->n_var
- tab
->n_div
) ? "; "
3276 fprintf(out
, "%c%d%s", tab
->var
[i
].is_row
? 'r' : 'c',
3278 tab
->var
[i
].is_zero
? " [=0]" :
3279 tab
->var
[i
].is_redundant
? " [R]" : "");
3281 fprintf(out
, "]\n");
3282 fprintf(out
, "%*s[", indent
, "");
3283 for (i
= 0; i
< tab
->n_con
; ++i
) {
3286 fprintf(out
, "%c%d%s", tab
->con
[i
].is_row
? 'r' : 'c',
3288 tab
->con
[i
].is_zero
? " [=0]" :
3289 tab
->con
[i
].is_redundant
? " [R]" : "");
3291 fprintf(out
, "]\n");
3292 fprintf(out
, "%*s[", indent
, "");
3293 for (i
= 0; i
< tab
->n_row
; ++i
) {
3294 const char *sign
= "";
3297 if (tab
->row_sign
) {
3298 if (tab
->row_sign
[i
] == isl_tab_row_unknown
)
3300 else if (tab
->row_sign
[i
] == isl_tab_row_neg
)
3302 else if (tab
->row_sign
[i
] == isl_tab_row_pos
)
3307 fprintf(out
, "r%d: %d%s%s", i
, tab
->row_var
[i
],
3308 isl_tab_var_from_row(tab
, i
)->is_nonneg
? " [>=0]" : "", sign
);
3310 fprintf(out
, "]\n");
3311 fprintf(out
, "%*s[", indent
, "");
3312 for (i
= 0; i
< tab
->n_col
; ++i
) {
3315 fprintf(out
, "c%d: %d%s", i
, tab
->col_var
[i
],
3316 var_from_col(tab
, i
)->is_nonneg
? " [>=0]" : "");
3318 fprintf(out
, "]\n");
3319 r
= tab
->mat
->n_row
;
3320 tab
->mat
->n_row
= tab
->n_row
;
3321 c
= tab
->mat
->n_col
;
3322 tab
->mat
->n_col
= 2 + tab
->M
+ tab
->n_col
;
3323 isl_mat_print_internal(tab
->mat
, out
, indent
);
3324 tab
->mat
->n_row
= r
;
3325 tab
->mat
->n_col
= c
;
3327 isl_basic_map_print_internal(tab
->bmap
, out
, indent
);
3330 void isl_tab_dump(__isl_keep
struct isl_tab
*tab
)
3332 isl_tab_print_internal(tab
, stderr
, 0);