export isl_pw_aff_nonneg_set
[isl.git] / isl_convex_hull.c
blob266d9a76e016a2bc71ab70d587cfd8caadb24ba0
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include <isl/lp.h>
13 #include <isl/map.h>
14 #include <isl_mat_private.h>
15 #include <isl/set.h>
16 #include <isl/seq.h>
17 #include "isl_equalities.h"
18 #include "isl_tab.h"
20 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
22 /* Return 1 if constraint c is redundant with respect to the constraints
23 * in bmap. If c is a lower [upper] bound in some variable and bmap
24 * does not have a lower [upper] bound in that variable, then c cannot
25 * be redundant and we do not need solve any lp.
27 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
28 isl_int *c, isl_int *opt_n, isl_int *opt_d)
30 enum isl_lp_result res;
31 unsigned total;
32 int i, j;
34 if (!bmap)
35 return -1;
37 total = isl_basic_map_total_dim(*bmap);
38 for (i = 0; i < total; ++i) {
39 int sign;
40 if (isl_int_is_zero(c[1+i]))
41 continue;
42 sign = isl_int_sgn(c[1+i]);
43 for (j = 0; j < (*bmap)->n_ineq; ++j)
44 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
45 break;
46 if (j == (*bmap)->n_ineq)
47 break;
49 if (i < total)
50 return 0;
52 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
53 opt_n, opt_d, NULL);
54 if (res == isl_lp_unbounded)
55 return 0;
56 if (res == isl_lp_error)
57 return -1;
58 if (res == isl_lp_empty) {
59 *bmap = isl_basic_map_set_to_empty(*bmap);
60 return 0;
62 return !isl_int_is_neg(*opt_n);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
66 isl_int *c, isl_int *opt_n, isl_int *opt_d)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map **)bset, c, opt_n, opt_d);
72 /* Remove redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
78 * of a facet.
80 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
81 __isl_take isl_basic_map *bmap)
83 struct isl_tab *tab;
85 if (!bmap)
86 return NULL;
88 bmap = isl_basic_map_gauss(bmap, NULL);
89 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
90 return bmap;
91 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
92 return bmap;
93 if (bmap->n_ineq <= 1)
94 return bmap;
96 tab = isl_tab_from_basic_map(bmap);
97 if (isl_tab_detect_implicit_equalities(tab) < 0)
98 goto error;
99 if (isl_tab_detect_redundant(tab) < 0)
100 goto error;
101 bmap = isl_basic_map_update_from_tab(bmap, tab);
102 isl_tab_free(tab);
103 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
104 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
105 return bmap;
106 error:
107 isl_tab_free(tab);
108 isl_basic_map_free(bmap);
109 return NULL;
112 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
113 __isl_take isl_basic_set *bset)
115 return (struct isl_basic_set *)
116 isl_basic_map_remove_redundancies((struct isl_basic_map *)bset);
119 /* Remove redundant constraints in each of the basic maps.
121 __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map)
123 return isl_map_inline_foreach_basic_map(map,
124 &isl_basic_map_remove_redundancies);
127 __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set)
129 return isl_map_remove_redundancies(set);
132 /* Check if the set set is bound in the direction of the affine
133 * constraint c and if so, set the constant term such that the
134 * resulting constraint is a bounding constraint for the set.
136 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
138 int first;
139 int j;
140 isl_int opt;
141 isl_int opt_denom;
143 isl_int_init(opt);
144 isl_int_init(opt_denom);
145 first = 1;
146 for (j = 0; j < set->n; ++j) {
147 enum isl_lp_result res;
149 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
150 continue;
152 res = isl_basic_set_solve_lp(set->p[j],
153 0, c, set->ctx->one, &opt, &opt_denom, NULL);
154 if (res == isl_lp_unbounded)
155 break;
156 if (res == isl_lp_error)
157 goto error;
158 if (res == isl_lp_empty) {
159 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
160 if (!set->p[j])
161 goto error;
162 continue;
164 if (first || isl_int_is_neg(opt)) {
165 if (!isl_int_is_one(opt_denom))
166 isl_seq_scale(c, c, opt_denom, len);
167 isl_int_sub(c[0], c[0], opt);
169 first = 0;
171 isl_int_clear(opt);
172 isl_int_clear(opt_denom);
173 return j >= set->n;
174 error:
175 isl_int_clear(opt);
176 isl_int_clear(opt_denom);
177 return -1;
180 __isl_give isl_basic_map *isl_basic_map_set_rational(
181 __isl_take isl_basic_set *bmap)
183 if (!bmap)
184 return NULL;
186 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
187 return bmap;
189 bmap = isl_basic_map_cow(bmap);
190 if (!bmap)
191 return NULL;
193 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
195 return isl_basic_map_finalize(bmap);
198 __isl_give isl_basic_set *isl_basic_set_set_rational(
199 __isl_take isl_basic_set *bset)
201 return isl_basic_map_set_rational(bset);
204 static struct isl_set *isl_set_set_rational(struct isl_set *set)
206 int i;
208 set = isl_set_cow(set);
209 if (!set)
210 return NULL;
211 for (i = 0; i < set->n; ++i) {
212 set->p[i] = isl_basic_set_set_rational(set->p[i]);
213 if (!set->p[i])
214 goto error;
216 return set;
217 error:
218 isl_set_free(set);
219 return NULL;
222 static struct isl_basic_set *isl_basic_set_add_equality(
223 struct isl_basic_set *bset, isl_int *c)
225 int i;
226 unsigned dim;
228 if (!bset)
229 return NULL;
231 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
232 return bset;
234 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
235 isl_assert(bset->ctx, bset->n_div == 0, goto error);
236 dim = isl_basic_set_n_dim(bset);
237 bset = isl_basic_set_cow(bset);
238 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
239 i = isl_basic_set_alloc_equality(bset);
240 if (i < 0)
241 goto error;
242 isl_seq_cpy(bset->eq[i], c, 1 + dim);
243 return bset;
244 error:
245 isl_basic_set_free(bset);
246 return NULL;
249 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
251 int i;
253 set = isl_set_cow(set);
254 if (!set)
255 return NULL;
256 for (i = 0; i < set->n; ++i) {
257 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
258 if (!set->p[i])
259 goto error;
261 return set;
262 error:
263 isl_set_free(set);
264 return NULL;
267 /* Given a union of basic sets, construct the constraints for wrapping
268 * a facet around one of its ridges.
269 * In particular, if each of n the d-dimensional basic sets i in "set"
270 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
271 * and is defined by the constraints
272 * [ 1 ]
273 * A_i [ x ] >= 0
275 * then the resulting set is of dimension n*(1+d) and has as constraints
277 * [ a_i ]
278 * A_i [ x_i ] >= 0
280 * a_i >= 0
282 * \sum_i x_{i,1} = 1
284 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
286 struct isl_basic_set *lp;
287 unsigned n_eq;
288 unsigned n_ineq;
289 int i, j, k;
290 unsigned dim, lp_dim;
292 if (!set)
293 return NULL;
295 dim = 1 + isl_set_n_dim(set);
296 n_eq = 1;
297 n_ineq = set->n;
298 for (i = 0; i < set->n; ++i) {
299 n_eq += set->p[i]->n_eq;
300 n_ineq += set->p[i]->n_ineq;
302 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
303 lp = isl_basic_set_set_rational(lp);
304 if (!lp)
305 return NULL;
306 lp_dim = isl_basic_set_n_dim(lp);
307 k = isl_basic_set_alloc_equality(lp);
308 isl_int_set_si(lp->eq[k][0], -1);
309 for (i = 0; i < set->n; ++i) {
310 isl_int_set_si(lp->eq[k][1+dim*i], 0);
311 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
312 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
314 for (i = 0; i < set->n; ++i) {
315 k = isl_basic_set_alloc_inequality(lp);
316 isl_seq_clr(lp->ineq[k], 1+lp_dim);
317 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
319 for (j = 0; j < set->p[i]->n_eq; ++j) {
320 k = isl_basic_set_alloc_equality(lp);
321 isl_seq_clr(lp->eq[k], 1+dim*i);
322 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
323 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
326 for (j = 0; j < set->p[i]->n_ineq; ++j) {
327 k = isl_basic_set_alloc_inequality(lp);
328 isl_seq_clr(lp->ineq[k], 1+dim*i);
329 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
330 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
333 return lp;
336 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
337 * of that facet, compute the other facet of the convex hull that contains
338 * the ridge.
340 * We first transform the set such that the facet constraint becomes
342 * x_1 >= 0
344 * I.e., the facet lies in
346 * x_1 = 0
348 * and on that facet, the constraint that defines the ridge is
350 * x_2 >= 0
352 * (This transformation is not strictly needed, all that is needed is
353 * that the ridge contains the origin.)
355 * Since the ridge contains the origin, the cone of the convex hull
356 * will be of the form
358 * x_1 >= 0
359 * x_2 >= a x_1
361 * with this second constraint defining the new facet.
362 * The constant a is obtained by settting x_1 in the cone of the
363 * convex hull to 1 and minimizing x_2.
364 * Now, each element in the cone of the convex hull is the sum
365 * of elements in the cones of the basic sets.
366 * If a_i is the dilation factor of basic set i, then the problem
367 * we need to solve is
369 * min \sum_i x_{i,2}
370 * st
371 * \sum_i x_{i,1} = 1
372 * a_i >= 0
373 * [ a_i ]
374 * A [ x_i ] >= 0
376 * with
377 * [ 1 ]
378 * A_i [ x_i ] >= 0
380 * the constraints of each (transformed) basic set.
381 * If a = n/d, then the constraint defining the new facet (in the transformed
382 * space) is
384 * -n x_1 + d x_2 >= 0
386 * In the original space, we need to take the same combination of the
387 * corresponding constraints "facet" and "ridge".
389 * If a = -infty = "-1/0", then we just return the original facet constraint.
390 * This means that the facet is unbounded, but has a bounded intersection
391 * with the union of sets.
393 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
394 isl_int *facet, isl_int *ridge)
396 int i;
397 isl_ctx *ctx;
398 struct isl_mat *T = NULL;
399 struct isl_basic_set *lp = NULL;
400 struct isl_vec *obj;
401 enum isl_lp_result res;
402 isl_int num, den;
403 unsigned dim;
405 if (!set)
406 return NULL;
407 ctx = set->ctx;
408 set = isl_set_copy(set);
409 set = isl_set_set_rational(set);
411 dim = 1 + isl_set_n_dim(set);
412 T = isl_mat_alloc(ctx, 3, dim);
413 if (!T)
414 goto error;
415 isl_int_set_si(T->row[0][0], 1);
416 isl_seq_clr(T->row[0]+1, dim - 1);
417 isl_seq_cpy(T->row[1], facet, dim);
418 isl_seq_cpy(T->row[2], ridge, dim);
419 T = isl_mat_right_inverse(T);
420 set = isl_set_preimage(set, T);
421 T = NULL;
422 if (!set)
423 goto error;
424 lp = wrap_constraints(set);
425 obj = isl_vec_alloc(ctx, 1 + dim*set->n);
426 if (!obj)
427 goto error;
428 isl_int_set_si(obj->block.data[0], 0);
429 for (i = 0; i < set->n; ++i) {
430 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
431 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
432 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
434 isl_int_init(num);
435 isl_int_init(den);
436 res = isl_basic_set_solve_lp(lp, 0,
437 obj->block.data, ctx->one, &num, &den, NULL);
438 if (res == isl_lp_ok) {
439 isl_int_neg(num, num);
440 isl_seq_combine(facet, num, facet, den, ridge, dim);
441 isl_seq_normalize(ctx, facet, dim);
443 isl_int_clear(num);
444 isl_int_clear(den);
445 isl_vec_free(obj);
446 isl_basic_set_free(lp);
447 isl_set_free(set);
448 if (res == isl_lp_error)
449 return NULL;
450 isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
451 return NULL);
452 return facet;
453 error:
454 isl_basic_set_free(lp);
455 isl_mat_free(T);
456 isl_set_free(set);
457 return NULL;
460 /* Compute the constraint of a facet of "set".
462 * We first compute the intersection with a bounding constraint
463 * that is orthogonal to one of the coordinate axes.
464 * If the affine hull of this intersection has only one equality,
465 * we have found a facet.
466 * Otherwise, we wrap the current bounding constraint around
467 * one of the equalities of the face (one that is not equal to
468 * the current bounding constraint).
469 * This process continues until we have found a facet.
470 * The dimension of the intersection increases by at least
471 * one on each iteration, so termination is guaranteed.
473 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
475 struct isl_set *slice = NULL;
476 struct isl_basic_set *face = NULL;
477 int i;
478 unsigned dim = isl_set_n_dim(set);
479 int is_bound;
480 isl_mat *bounds;
482 isl_assert(set->ctx, set->n > 0, goto error);
483 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
484 if (!bounds)
485 return NULL;
487 isl_seq_clr(bounds->row[0], dim);
488 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
489 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
490 if (is_bound < 0)
491 goto error;
492 isl_assert(set->ctx, is_bound, goto error);
493 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
494 bounds->n_row = 1;
496 for (;;) {
497 slice = isl_set_copy(set);
498 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
499 face = isl_set_affine_hull(slice);
500 if (!face)
501 goto error;
502 if (face->n_eq == 1) {
503 isl_basic_set_free(face);
504 break;
506 for (i = 0; i < face->n_eq; ++i)
507 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
508 !isl_seq_is_neg(bounds->row[0],
509 face->eq[i], 1 + dim))
510 break;
511 isl_assert(set->ctx, i < face->n_eq, goto error);
512 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
513 goto error;
514 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
515 isl_basic_set_free(face);
518 return bounds;
519 error:
520 isl_basic_set_free(face);
521 isl_mat_free(bounds);
522 return NULL;
525 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
526 * compute a hyperplane description of the facet, i.e., compute the facets
527 * of the facet.
529 * We compute an affine transformation that transforms the constraint
531 * [ 1 ]
532 * c [ x ] = 0
534 * to the constraint
536 * z_1 = 0
538 * by computing the right inverse U of a matrix that starts with the rows
540 * [ 1 0 ]
541 * [ c ]
543 * Then
544 * [ 1 ] [ 1 ]
545 * [ x ] = U [ z ]
546 * and
547 * [ 1 ] [ 1 ]
548 * [ z ] = Q [ x ]
550 * with Q = U^{-1}
551 * Since z_1 is zero, we can drop this variable as well as the corresponding
552 * column of U to obtain
554 * [ 1 ] [ 1 ]
555 * [ x ] = U' [ z' ]
556 * and
557 * [ 1 ] [ 1 ]
558 * [ z' ] = Q' [ x ]
560 * with Q' equal to Q, but without the corresponding row.
561 * After computing the facets of the facet in the z' space,
562 * we convert them back to the x space through Q.
564 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
566 struct isl_mat *m, *U, *Q;
567 struct isl_basic_set *facet = NULL;
568 struct isl_ctx *ctx;
569 unsigned dim;
571 ctx = set->ctx;
572 set = isl_set_copy(set);
573 dim = isl_set_n_dim(set);
574 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
575 if (!m)
576 goto error;
577 isl_int_set_si(m->row[0][0], 1);
578 isl_seq_clr(m->row[0]+1, dim);
579 isl_seq_cpy(m->row[1], c, 1+dim);
580 U = isl_mat_right_inverse(m);
581 Q = isl_mat_right_inverse(isl_mat_copy(U));
582 U = isl_mat_drop_cols(U, 1, 1);
583 Q = isl_mat_drop_rows(Q, 1, 1);
584 set = isl_set_preimage(set, U);
585 facet = uset_convex_hull_wrap_bounded(set);
586 facet = isl_basic_set_preimage(facet, Q);
587 if (facet)
588 isl_assert(ctx, facet->n_eq == 0, goto error);
589 return facet;
590 error:
591 isl_basic_set_free(facet);
592 isl_set_free(set);
593 return NULL;
596 /* Given an initial facet constraint, compute the remaining facets.
597 * We do this by running through all facets found so far and computing
598 * the adjacent facets through wrapping, adding those facets that we
599 * hadn't already found before.
601 * For each facet we have found so far, we first compute its facets
602 * in the resulting convex hull. That is, we compute the ridges
603 * of the resulting convex hull contained in the facet.
604 * We also compute the corresponding facet in the current approximation
605 * of the convex hull. There is no need to wrap around the ridges
606 * in this facet since that would result in a facet that is already
607 * present in the current approximation.
609 * This function can still be significantly optimized by checking which of
610 * the facets of the basic sets are also facets of the convex hull and
611 * using all the facets so far to help in constructing the facets of the
612 * facets
613 * and/or
614 * using the technique in section "3.1 Ridge Generation" of
615 * "Extended Convex Hull" by Fukuda et al.
617 static struct isl_basic_set *extend(struct isl_basic_set *hull,
618 struct isl_set *set)
620 int i, j, f;
621 int k;
622 struct isl_basic_set *facet = NULL;
623 struct isl_basic_set *hull_facet = NULL;
624 unsigned dim;
626 if (!hull)
627 return NULL;
629 isl_assert(set->ctx, set->n > 0, goto error);
631 dim = isl_set_n_dim(set);
633 for (i = 0; i < hull->n_ineq; ++i) {
634 facet = compute_facet(set, hull->ineq[i]);
635 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
636 facet = isl_basic_set_gauss(facet, NULL);
637 facet = isl_basic_set_normalize_constraints(facet);
638 hull_facet = isl_basic_set_copy(hull);
639 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
640 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
641 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
642 if (!facet || !hull_facet)
643 goto error;
644 hull = isl_basic_set_cow(hull);
645 hull = isl_basic_set_extend_dim(hull,
646 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
647 if (!hull)
648 goto error;
649 for (j = 0; j < facet->n_ineq; ++j) {
650 for (f = 0; f < hull_facet->n_ineq; ++f)
651 if (isl_seq_eq(facet->ineq[j],
652 hull_facet->ineq[f], 1 + dim))
653 break;
654 if (f < hull_facet->n_ineq)
655 continue;
656 k = isl_basic_set_alloc_inequality(hull);
657 if (k < 0)
658 goto error;
659 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
660 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
661 goto error;
663 isl_basic_set_free(hull_facet);
664 isl_basic_set_free(facet);
666 hull = isl_basic_set_simplify(hull);
667 hull = isl_basic_set_finalize(hull);
668 return hull;
669 error:
670 isl_basic_set_free(hull_facet);
671 isl_basic_set_free(facet);
672 isl_basic_set_free(hull);
673 return NULL;
676 /* Special case for computing the convex hull of a one dimensional set.
677 * We simply collect the lower and upper bounds of each basic set
678 * and the biggest of those.
680 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
682 struct isl_mat *c = NULL;
683 isl_int *lower = NULL;
684 isl_int *upper = NULL;
685 int i, j, k;
686 isl_int a, b;
687 struct isl_basic_set *hull;
689 for (i = 0; i < set->n; ++i) {
690 set->p[i] = isl_basic_set_simplify(set->p[i]);
691 if (!set->p[i])
692 goto error;
694 set = isl_set_remove_empty_parts(set);
695 if (!set)
696 goto error;
697 isl_assert(set->ctx, set->n > 0, goto error);
698 c = isl_mat_alloc(set->ctx, 2, 2);
699 if (!c)
700 goto error;
702 if (set->p[0]->n_eq > 0) {
703 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
704 lower = c->row[0];
705 upper = c->row[1];
706 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
707 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
708 isl_seq_neg(upper, set->p[0]->eq[0], 2);
709 } else {
710 isl_seq_neg(lower, set->p[0]->eq[0], 2);
711 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
713 } else {
714 for (j = 0; j < set->p[0]->n_ineq; ++j) {
715 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
716 lower = c->row[0];
717 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
718 } else {
719 upper = c->row[1];
720 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
725 isl_int_init(a);
726 isl_int_init(b);
727 for (i = 0; i < set->n; ++i) {
728 struct isl_basic_set *bset = set->p[i];
729 int has_lower = 0;
730 int has_upper = 0;
732 for (j = 0; j < bset->n_eq; ++j) {
733 has_lower = 1;
734 has_upper = 1;
735 if (lower) {
736 isl_int_mul(a, lower[0], bset->eq[j][1]);
737 isl_int_mul(b, lower[1], bset->eq[j][0]);
738 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
739 isl_seq_cpy(lower, bset->eq[j], 2);
740 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
741 isl_seq_neg(lower, bset->eq[j], 2);
743 if (upper) {
744 isl_int_mul(a, upper[0], bset->eq[j][1]);
745 isl_int_mul(b, upper[1], bset->eq[j][0]);
746 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
747 isl_seq_neg(upper, bset->eq[j], 2);
748 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
749 isl_seq_cpy(upper, bset->eq[j], 2);
752 for (j = 0; j < bset->n_ineq; ++j) {
753 if (isl_int_is_pos(bset->ineq[j][1]))
754 has_lower = 1;
755 if (isl_int_is_neg(bset->ineq[j][1]))
756 has_upper = 1;
757 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
758 isl_int_mul(a, lower[0], bset->ineq[j][1]);
759 isl_int_mul(b, lower[1], bset->ineq[j][0]);
760 if (isl_int_lt(a, b))
761 isl_seq_cpy(lower, bset->ineq[j], 2);
763 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
764 isl_int_mul(a, upper[0], bset->ineq[j][1]);
765 isl_int_mul(b, upper[1], bset->ineq[j][0]);
766 if (isl_int_gt(a, b))
767 isl_seq_cpy(upper, bset->ineq[j], 2);
770 if (!has_lower)
771 lower = NULL;
772 if (!has_upper)
773 upper = NULL;
775 isl_int_clear(a);
776 isl_int_clear(b);
778 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
779 hull = isl_basic_set_set_rational(hull);
780 if (!hull)
781 goto error;
782 if (lower) {
783 k = isl_basic_set_alloc_inequality(hull);
784 isl_seq_cpy(hull->ineq[k], lower, 2);
786 if (upper) {
787 k = isl_basic_set_alloc_inequality(hull);
788 isl_seq_cpy(hull->ineq[k], upper, 2);
790 hull = isl_basic_set_finalize(hull);
791 isl_set_free(set);
792 isl_mat_free(c);
793 return hull;
794 error:
795 isl_set_free(set);
796 isl_mat_free(c);
797 return NULL;
800 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
802 struct isl_basic_set *convex_hull;
804 if (!set)
805 return NULL;
807 if (isl_set_is_empty(set))
808 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
809 else
810 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
811 isl_set_free(set);
812 return convex_hull;
815 /* Compute the convex hull of a pair of basic sets without any parameters or
816 * integer divisions using Fourier-Motzkin elimination.
817 * The convex hull is the set of all points that can be written as
818 * the sum of points from both basic sets (in homogeneous coordinates).
819 * We set up the constraints in a space with dimensions for each of
820 * the three sets and then project out the dimensions corresponding
821 * to the two original basic sets, retaining only those corresponding
822 * to the convex hull.
824 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
825 struct isl_basic_set *bset2)
827 int i, j, k;
828 struct isl_basic_set *bset[2];
829 struct isl_basic_set *hull = NULL;
830 unsigned dim;
832 if (!bset1 || !bset2)
833 goto error;
835 dim = isl_basic_set_n_dim(bset1);
836 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
837 1 + dim + bset1->n_eq + bset2->n_eq,
838 2 + bset1->n_ineq + bset2->n_ineq);
839 bset[0] = bset1;
840 bset[1] = bset2;
841 for (i = 0; i < 2; ++i) {
842 for (j = 0; j < bset[i]->n_eq; ++j) {
843 k = isl_basic_set_alloc_equality(hull);
844 if (k < 0)
845 goto error;
846 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
847 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
848 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
849 1+dim);
851 for (j = 0; j < bset[i]->n_ineq; ++j) {
852 k = isl_basic_set_alloc_inequality(hull);
853 if (k < 0)
854 goto error;
855 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
856 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
857 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
858 bset[i]->ineq[j], 1+dim);
860 k = isl_basic_set_alloc_inequality(hull);
861 if (k < 0)
862 goto error;
863 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
864 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
866 for (j = 0; j < 1+dim; ++j) {
867 k = isl_basic_set_alloc_equality(hull);
868 if (k < 0)
869 goto error;
870 isl_seq_clr(hull->eq[k], 1+2+3*dim);
871 isl_int_set_si(hull->eq[k][j], -1);
872 isl_int_set_si(hull->eq[k][1+dim+j], 1);
873 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
875 hull = isl_basic_set_set_rational(hull);
876 hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim));
877 hull = isl_basic_set_remove_redundancies(hull);
878 isl_basic_set_free(bset1);
879 isl_basic_set_free(bset2);
880 return hull;
881 error:
882 isl_basic_set_free(bset1);
883 isl_basic_set_free(bset2);
884 isl_basic_set_free(hull);
885 return NULL;
888 /* Is the set bounded for each value of the parameters?
890 int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
892 struct isl_tab *tab;
893 int bounded;
895 if (!bset)
896 return -1;
897 if (isl_basic_set_plain_is_empty(bset))
898 return 1;
900 tab = isl_tab_from_recession_cone(bset, 1);
901 bounded = isl_tab_cone_is_bounded(tab);
902 isl_tab_free(tab);
903 return bounded;
906 /* Is the image bounded for each value of the parameters and
907 * the domain variables?
909 int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap)
911 unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param);
912 unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in);
913 int bounded;
915 bmap = isl_basic_map_copy(bmap);
916 bmap = isl_basic_map_cow(bmap);
917 bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam,
918 isl_dim_in, 0, n_in);
919 bounded = isl_basic_set_is_bounded((isl_basic_set *)bmap);
920 isl_basic_map_free(bmap);
922 return bounded;
925 /* Is the set bounded for each value of the parameters?
927 int isl_set_is_bounded(__isl_keep isl_set *set)
929 int i;
931 if (!set)
932 return -1;
934 for (i = 0; i < set->n; ++i) {
935 int bounded = isl_basic_set_is_bounded(set->p[i]);
936 if (!bounded || bounded < 0)
937 return bounded;
939 return 1;
942 /* Compute the lineality space of the convex hull of bset1 and bset2.
944 * We first compute the intersection of the recession cone of bset1
945 * with the negative of the recession cone of bset2 and then compute
946 * the linear hull of the resulting cone.
948 static struct isl_basic_set *induced_lineality_space(
949 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
951 int i, k;
952 struct isl_basic_set *lin = NULL;
953 unsigned dim;
955 if (!bset1 || !bset2)
956 goto error;
958 dim = isl_basic_set_total_dim(bset1);
959 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
960 bset1->n_eq + bset2->n_eq,
961 bset1->n_ineq + bset2->n_ineq);
962 lin = isl_basic_set_set_rational(lin);
963 if (!lin)
964 goto error;
965 for (i = 0; i < bset1->n_eq; ++i) {
966 k = isl_basic_set_alloc_equality(lin);
967 if (k < 0)
968 goto error;
969 isl_int_set_si(lin->eq[k][0], 0);
970 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
972 for (i = 0; i < bset1->n_ineq; ++i) {
973 k = isl_basic_set_alloc_inequality(lin);
974 if (k < 0)
975 goto error;
976 isl_int_set_si(lin->ineq[k][0], 0);
977 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
979 for (i = 0; i < bset2->n_eq; ++i) {
980 k = isl_basic_set_alloc_equality(lin);
981 if (k < 0)
982 goto error;
983 isl_int_set_si(lin->eq[k][0], 0);
984 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
986 for (i = 0; i < bset2->n_ineq; ++i) {
987 k = isl_basic_set_alloc_inequality(lin);
988 if (k < 0)
989 goto error;
990 isl_int_set_si(lin->ineq[k][0], 0);
991 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
994 isl_basic_set_free(bset1);
995 isl_basic_set_free(bset2);
996 return isl_basic_set_affine_hull(lin);
997 error:
998 isl_basic_set_free(lin);
999 isl_basic_set_free(bset1);
1000 isl_basic_set_free(bset2);
1001 return NULL;
1004 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
1006 /* Given a set and a linear space "lin" of dimension n > 0,
1007 * project the linear space from the set, compute the convex hull
1008 * and then map the set back to the original space.
1010 * Let
1012 * M x = 0
1014 * describe the linear space. We first compute the Hermite normal
1015 * form H = M U of M = H Q, to obtain
1017 * H Q x = 0
1019 * The last n rows of H will be zero, so the last n variables of x' = Q x
1020 * are the one we want to project out. We do this by transforming each
1021 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1022 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1023 * we transform the hull back to the original space as A' Q_1 x >= b',
1024 * with Q_1 all but the last n rows of Q.
1026 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
1027 struct isl_basic_set *lin)
1029 unsigned total = isl_basic_set_total_dim(lin);
1030 unsigned lin_dim;
1031 struct isl_basic_set *hull;
1032 struct isl_mat *M, *U, *Q;
1034 if (!set || !lin)
1035 goto error;
1036 lin_dim = total - lin->n_eq;
1037 M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1038 M = isl_mat_left_hermite(M, 0, &U, &Q);
1039 if (!M)
1040 goto error;
1041 isl_mat_free(M);
1042 isl_basic_set_free(lin);
1044 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1046 U = isl_mat_lin_to_aff(U);
1047 Q = isl_mat_lin_to_aff(Q);
1049 set = isl_set_preimage(set, U);
1050 set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim);
1051 hull = uset_convex_hull(set);
1052 hull = isl_basic_set_preimage(hull, Q);
1054 return hull;
1055 error:
1056 isl_basic_set_free(lin);
1057 isl_set_free(set);
1058 return NULL;
1061 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1062 * set up an LP for solving
1064 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1066 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1067 * The next \alpha{ij} correspond to the equalities and come in pairs.
1068 * The final \alpha{ij} correspond to the inequalities.
1070 static struct isl_basic_set *valid_direction_lp(
1071 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1073 struct isl_dim *dim;
1074 struct isl_basic_set *lp;
1075 unsigned d;
1076 int n;
1077 int i, j, k;
1079 if (!bset1 || !bset2)
1080 goto error;
1081 d = 1 + isl_basic_set_total_dim(bset1);
1082 n = 2 +
1083 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1084 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1085 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1086 if (!lp)
1087 goto error;
1088 for (i = 0; i < n; ++i) {
1089 k = isl_basic_set_alloc_inequality(lp);
1090 if (k < 0)
1091 goto error;
1092 isl_seq_clr(lp->ineq[k] + 1, n);
1093 isl_int_set_si(lp->ineq[k][0], -1);
1094 isl_int_set_si(lp->ineq[k][1 + i], 1);
1096 for (i = 0; i < d; ++i) {
1097 k = isl_basic_set_alloc_equality(lp);
1098 if (k < 0)
1099 goto error;
1100 n = 0;
1101 isl_int_set_si(lp->eq[k][n], 0); n++;
1102 /* positivity constraint 1 >= 0 */
1103 isl_int_set_si(lp->eq[k][n], i == 0); n++;
1104 for (j = 0; j < bset1->n_eq; ++j) {
1105 isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++;
1106 isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++;
1108 for (j = 0; j < bset1->n_ineq; ++j) {
1109 isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++;
1111 /* positivity constraint 1 >= 0 */
1112 isl_int_set_si(lp->eq[k][n], -(i == 0)); n++;
1113 for (j = 0; j < bset2->n_eq; ++j) {
1114 isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++;
1115 isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++;
1117 for (j = 0; j < bset2->n_ineq; ++j) {
1118 isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++;
1121 lp = isl_basic_set_gauss(lp, NULL);
1122 isl_basic_set_free(bset1);
1123 isl_basic_set_free(bset2);
1124 return lp;
1125 error:
1126 isl_basic_set_free(bset1);
1127 isl_basic_set_free(bset2);
1128 return NULL;
1131 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1132 * for all rays in the homogeneous space of the two cones that correspond
1133 * to the input polyhedra bset1 and bset2.
1135 * We compute s as a vector that satisfies
1137 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1139 * with h_{ij} the normals of the facets of polyhedron i
1140 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1141 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1142 * We first set up an LP with as variables the \alpha{ij}.
1143 * In this formulation, for each polyhedron i,
1144 * the first constraint is the positivity constraint, followed by pairs
1145 * of variables for the equalities, followed by variables for the inequalities.
1146 * We then simply pick a feasible solution and compute s using (*).
1148 * Note that we simply pick any valid direction and make no attempt
1149 * to pick a "good" or even the "best" valid direction.
1151 static struct isl_vec *valid_direction(
1152 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1154 struct isl_basic_set *lp;
1155 struct isl_tab *tab;
1156 struct isl_vec *sample = NULL;
1157 struct isl_vec *dir;
1158 unsigned d;
1159 int i;
1160 int n;
1162 if (!bset1 || !bset2)
1163 goto error;
1164 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1165 isl_basic_set_copy(bset2));
1166 tab = isl_tab_from_basic_set(lp);
1167 sample = isl_tab_get_sample_value(tab);
1168 isl_tab_free(tab);
1169 isl_basic_set_free(lp);
1170 if (!sample)
1171 goto error;
1172 d = isl_basic_set_total_dim(bset1);
1173 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1174 if (!dir)
1175 goto error;
1176 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1177 n = 1;
1178 /* positivity constraint 1 >= 0 */
1179 isl_int_set(dir->block.data[0], sample->block.data[n]); n++;
1180 for (i = 0; i < bset1->n_eq; ++i) {
1181 isl_int_sub(sample->block.data[n],
1182 sample->block.data[n], sample->block.data[n+1]);
1183 isl_seq_combine(dir->block.data,
1184 bset1->ctx->one, dir->block.data,
1185 sample->block.data[n], bset1->eq[i], 1 + d);
1187 n += 2;
1189 for (i = 0; i < bset1->n_ineq; ++i)
1190 isl_seq_combine(dir->block.data,
1191 bset1->ctx->one, dir->block.data,
1192 sample->block.data[n++], bset1->ineq[i], 1 + d);
1193 isl_vec_free(sample);
1194 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1195 isl_basic_set_free(bset1);
1196 isl_basic_set_free(bset2);
1197 return dir;
1198 error:
1199 isl_vec_free(sample);
1200 isl_basic_set_free(bset1);
1201 isl_basic_set_free(bset2);
1202 return NULL;
1205 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1206 * compute b_i' + A_i' x' >= 0, with
1208 * [ b_i A_i ] [ y' ] [ y' ]
1209 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1211 * In particular, add the "positivity constraint" and then perform
1212 * the mapping.
1214 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1215 struct isl_mat *T)
1217 int k;
1219 if (!bset)
1220 goto error;
1221 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1222 k = isl_basic_set_alloc_inequality(bset);
1223 if (k < 0)
1224 goto error;
1225 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1226 isl_int_set_si(bset->ineq[k][0], 1);
1227 bset = isl_basic_set_preimage(bset, T);
1228 return bset;
1229 error:
1230 isl_mat_free(T);
1231 isl_basic_set_free(bset);
1232 return NULL;
1235 /* Compute the convex hull of a pair of basic sets without any parameters or
1236 * integer divisions, where the convex hull is known to be pointed,
1237 * but the basic sets may be unbounded.
1239 * We turn this problem into the computation of a convex hull of a pair
1240 * _bounded_ polyhedra by "changing the direction of the homogeneous
1241 * dimension". This idea is due to Matthias Koeppe.
1243 * Consider the cones in homogeneous space that correspond to the
1244 * input polyhedra. The rays of these cones are also rays of the
1245 * polyhedra if the coordinate that corresponds to the homogeneous
1246 * dimension is zero. That is, if the inner product of the rays
1247 * with the homogeneous direction is zero.
1248 * The cones in the homogeneous space can also be considered to
1249 * correspond to other pairs of polyhedra by chosing a different
1250 * homogeneous direction. To ensure that both of these polyhedra
1251 * are bounded, we need to make sure that all rays of the cones
1252 * correspond to vertices and not to rays.
1253 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1254 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1255 * The vector s is computed in valid_direction.
1257 * Note that we need to consider _all_ rays of the cones and not just
1258 * the rays that correspond to rays in the polyhedra. If we were to
1259 * only consider those rays and turn them into vertices, then we
1260 * may inadvertently turn some vertices into rays.
1262 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1263 * We therefore transform the two polyhedra such that the selected
1264 * direction is mapped onto this standard direction and then proceed
1265 * with the normal computation.
1266 * Let S be a non-singular square matrix with s as its first row,
1267 * then we want to map the polyhedra to the space
1269 * [ y' ] [ y ] [ y ] [ y' ]
1270 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1272 * We take S to be the unimodular completion of s to limit the growth
1273 * of the coefficients in the following computations.
1275 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1276 * We first move to the homogeneous dimension
1278 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1279 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1281 * Then we change directoin
1283 * [ b_i A_i ] [ y' ] [ y' ]
1284 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1286 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1287 * resulting in b' + A' x' >= 0, which we then convert back
1289 * [ y ] [ y ]
1290 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1292 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1294 static struct isl_basic_set *convex_hull_pair_pointed(
1295 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1297 struct isl_ctx *ctx = NULL;
1298 struct isl_vec *dir = NULL;
1299 struct isl_mat *T = NULL;
1300 struct isl_mat *T2 = NULL;
1301 struct isl_basic_set *hull;
1302 struct isl_set *set;
1304 if (!bset1 || !bset2)
1305 goto error;
1306 ctx = bset1->ctx;
1307 dir = valid_direction(isl_basic_set_copy(bset1),
1308 isl_basic_set_copy(bset2));
1309 if (!dir)
1310 goto error;
1311 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1312 if (!T)
1313 goto error;
1314 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1315 T = isl_mat_unimodular_complete(T, 1);
1316 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1318 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1319 bset2 = homogeneous_map(bset2, T2);
1320 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1321 set = isl_set_add_basic_set(set, bset1);
1322 set = isl_set_add_basic_set(set, bset2);
1323 hull = uset_convex_hull(set);
1324 hull = isl_basic_set_preimage(hull, T);
1326 isl_vec_free(dir);
1328 return hull;
1329 error:
1330 isl_vec_free(dir);
1331 isl_basic_set_free(bset1);
1332 isl_basic_set_free(bset2);
1333 return NULL;
1336 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
1337 static struct isl_basic_set *modulo_affine_hull(
1338 struct isl_set *set, struct isl_basic_set *affine_hull);
1340 /* Compute the convex hull of a pair of basic sets without any parameters or
1341 * integer divisions.
1343 * This function is called from uset_convex_hull_unbounded, which
1344 * means that the complete convex hull is unbounded. Some pairs
1345 * of basic sets may still be bounded, though.
1346 * They may even lie inside a lower dimensional space, in which
1347 * case they need to be handled inside their affine hull since
1348 * the main algorithm assumes that the result is full-dimensional.
1350 * If the convex hull of the two basic sets would have a non-trivial
1351 * lineality space, we first project out this lineality space.
1353 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1354 struct isl_basic_set *bset2)
1356 isl_basic_set *lin, *aff;
1357 int bounded1, bounded2;
1359 if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM)
1360 return convex_hull_pair_elim(bset1, bset2);
1362 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1363 isl_basic_set_copy(bset2)));
1364 if (!aff)
1365 goto error;
1366 if (aff->n_eq != 0)
1367 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1368 isl_basic_set_free(aff);
1370 bounded1 = isl_basic_set_is_bounded(bset1);
1371 bounded2 = isl_basic_set_is_bounded(bset2);
1373 if (bounded1 < 0 || bounded2 < 0)
1374 goto error;
1376 if (bounded1 && bounded2)
1377 uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1379 if (bounded1 || bounded2)
1380 return convex_hull_pair_pointed(bset1, bset2);
1382 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1383 isl_basic_set_copy(bset2));
1384 if (!lin)
1385 goto error;
1386 if (isl_basic_set_is_universe(lin)) {
1387 isl_basic_set_free(bset1);
1388 isl_basic_set_free(bset2);
1389 return lin;
1391 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1392 struct isl_set *set;
1393 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1394 set = isl_set_add_basic_set(set, bset1);
1395 set = isl_set_add_basic_set(set, bset2);
1396 return modulo_lineality(set, lin);
1398 isl_basic_set_free(lin);
1400 return convex_hull_pair_pointed(bset1, bset2);
1401 error:
1402 isl_basic_set_free(bset1);
1403 isl_basic_set_free(bset2);
1404 return NULL;
1407 /* Compute the lineality space of a basic set.
1408 * We currently do not allow the basic set to have any divs.
1409 * We basically just drop the constants and turn every inequality
1410 * into an equality.
1412 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1414 int i, k;
1415 struct isl_basic_set *lin = NULL;
1416 unsigned dim;
1418 if (!bset)
1419 goto error;
1420 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1421 dim = isl_basic_set_total_dim(bset);
1423 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1424 if (!lin)
1425 goto error;
1426 for (i = 0; i < bset->n_eq; ++i) {
1427 k = isl_basic_set_alloc_equality(lin);
1428 if (k < 0)
1429 goto error;
1430 isl_int_set_si(lin->eq[k][0], 0);
1431 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1433 lin = isl_basic_set_gauss(lin, NULL);
1434 if (!lin)
1435 goto error;
1436 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1437 k = isl_basic_set_alloc_equality(lin);
1438 if (k < 0)
1439 goto error;
1440 isl_int_set_si(lin->eq[k][0], 0);
1441 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1442 lin = isl_basic_set_gauss(lin, NULL);
1443 if (!lin)
1444 goto error;
1446 isl_basic_set_free(bset);
1447 return lin;
1448 error:
1449 isl_basic_set_free(lin);
1450 isl_basic_set_free(bset);
1451 return NULL;
1454 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1455 * "underlying" set "set".
1457 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1459 int i;
1460 struct isl_set *lin = NULL;
1462 if (!set)
1463 return NULL;
1464 if (set->n == 0) {
1465 struct isl_dim *dim = isl_set_get_dim(set);
1466 isl_set_free(set);
1467 return isl_basic_set_empty(dim);
1470 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1471 for (i = 0; i < set->n; ++i)
1472 lin = isl_set_add_basic_set(lin,
1473 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1474 isl_set_free(set);
1475 return isl_set_affine_hull(lin);
1478 /* Compute the convex hull of a set without any parameters or
1479 * integer divisions.
1480 * In each step, we combined two basic sets until only one
1481 * basic set is left.
1482 * The input basic sets are assumed not to have a non-trivial
1483 * lineality space. If any of the intermediate results has
1484 * a non-trivial lineality space, it is projected out.
1486 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1488 struct isl_basic_set *convex_hull = NULL;
1490 convex_hull = isl_set_copy_basic_set(set);
1491 set = isl_set_drop_basic_set(set, convex_hull);
1492 if (!set)
1493 goto error;
1494 while (set->n > 0) {
1495 struct isl_basic_set *t;
1496 t = isl_set_copy_basic_set(set);
1497 if (!t)
1498 goto error;
1499 set = isl_set_drop_basic_set(set, t);
1500 if (!set)
1501 goto error;
1502 convex_hull = convex_hull_pair(convex_hull, t);
1503 if (set->n == 0)
1504 break;
1505 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1506 if (!t)
1507 goto error;
1508 if (isl_basic_set_is_universe(t)) {
1509 isl_basic_set_free(convex_hull);
1510 convex_hull = t;
1511 break;
1513 if (t->n_eq < isl_basic_set_total_dim(t)) {
1514 set = isl_set_add_basic_set(set, convex_hull);
1515 return modulo_lineality(set, t);
1517 isl_basic_set_free(t);
1519 isl_set_free(set);
1520 return convex_hull;
1521 error:
1522 isl_set_free(set);
1523 isl_basic_set_free(convex_hull);
1524 return NULL;
1527 /* Compute an initial hull for wrapping containing a single initial
1528 * facet.
1529 * This function assumes that the given set is bounded.
1531 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1532 struct isl_set *set)
1534 struct isl_mat *bounds = NULL;
1535 unsigned dim;
1536 int k;
1538 if (!hull)
1539 goto error;
1540 bounds = initial_facet_constraint(set);
1541 if (!bounds)
1542 goto error;
1543 k = isl_basic_set_alloc_inequality(hull);
1544 if (k < 0)
1545 goto error;
1546 dim = isl_set_n_dim(set);
1547 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1548 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1549 isl_mat_free(bounds);
1551 return hull;
1552 error:
1553 isl_basic_set_free(hull);
1554 isl_mat_free(bounds);
1555 return NULL;
1558 struct max_constraint {
1559 struct isl_mat *c;
1560 int count;
1561 int ineq;
1564 static int max_constraint_equal(const void *entry, const void *val)
1566 struct max_constraint *a = (struct max_constraint *)entry;
1567 isl_int *b = (isl_int *)val;
1569 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1572 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1573 isl_int *con, unsigned len, int n, int ineq)
1575 struct isl_hash_table_entry *entry;
1576 struct max_constraint *c;
1577 uint32_t c_hash;
1579 c_hash = isl_seq_get_hash(con + 1, len);
1580 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1581 con + 1, 0);
1582 if (!entry)
1583 return;
1584 c = entry->data;
1585 if (c->count < n) {
1586 isl_hash_table_remove(ctx, table, entry);
1587 return;
1589 c->count++;
1590 if (isl_int_gt(c->c->row[0][0], con[0]))
1591 return;
1592 if (isl_int_eq(c->c->row[0][0], con[0])) {
1593 if (ineq)
1594 c->ineq = ineq;
1595 return;
1597 c->c = isl_mat_cow(c->c);
1598 isl_int_set(c->c->row[0][0], con[0]);
1599 c->ineq = ineq;
1602 /* Check whether the constraint hash table "table" constains the constraint
1603 * "con".
1605 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1606 isl_int *con, unsigned len, int n)
1608 struct isl_hash_table_entry *entry;
1609 struct max_constraint *c;
1610 uint32_t c_hash;
1612 c_hash = isl_seq_get_hash(con + 1, len);
1613 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1614 con + 1, 0);
1615 if (!entry)
1616 return 0;
1617 c = entry->data;
1618 if (c->count < n)
1619 return 0;
1620 return isl_int_eq(c->c->row[0][0], con[0]);
1623 /* Check for inequality constraints of a basic set without equalities
1624 * such that the same or more stringent copies of the constraint appear
1625 * in all of the basic sets. Such constraints are necessarily facet
1626 * constraints of the convex hull.
1628 * If the resulting basic set is by chance identical to one of
1629 * the basic sets in "set", then we know that this basic set contains
1630 * all other basic sets and is therefore the convex hull of set.
1631 * In this case we set *is_hull to 1.
1633 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1634 struct isl_set *set, int *is_hull)
1636 int i, j, s, n;
1637 int min_constraints;
1638 int best;
1639 struct max_constraint *constraints = NULL;
1640 struct isl_hash_table *table = NULL;
1641 unsigned total;
1643 *is_hull = 0;
1645 for (i = 0; i < set->n; ++i)
1646 if (set->p[i]->n_eq == 0)
1647 break;
1648 if (i >= set->n)
1649 return hull;
1650 min_constraints = set->p[i]->n_ineq;
1651 best = i;
1652 for (i = best + 1; i < set->n; ++i) {
1653 if (set->p[i]->n_eq != 0)
1654 continue;
1655 if (set->p[i]->n_ineq >= min_constraints)
1656 continue;
1657 min_constraints = set->p[i]->n_ineq;
1658 best = i;
1660 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1661 min_constraints);
1662 if (!constraints)
1663 return hull;
1664 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1665 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1666 goto error;
1668 total = isl_dim_total(set->dim);
1669 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1670 constraints[i].c = isl_mat_sub_alloc6(hull->ctx,
1671 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1672 if (!constraints[i].c)
1673 goto error;
1674 constraints[i].ineq = 1;
1676 for (i = 0; i < min_constraints; ++i) {
1677 struct isl_hash_table_entry *entry;
1678 uint32_t c_hash;
1679 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1680 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1681 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1682 if (!entry)
1683 goto error;
1684 isl_assert(hull->ctx, !entry->data, goto error);
1685 entry->data = &constraints[i];
1688 n = 0;
1689 for (s = 0; s < set->n; ++s) {
1690 if (s == best)
1691 continue;
1693 for (i = 0; i < set->p[s]->n_eq; ++i) {
1694 isl_int *eq = set->p[s]->eq[i];
1695 for (j = 0; j < 2; ++j) {
1696 isl_seq_neg(eq, eq, 1 + total);
1697 update_constraint(hull->ctx, table,
1698 eq, total, n, 0);
1701 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1702 isl_int *ineq = set->p[s]->ineq[i];
1703 update_constraint(hull->ctx, table, ineq, total, n,
1704 set->p[s]->n_eq == 0);
1706 ++n;
1709 for (i = 0; i < min_constraints; ++i) {
1710 if (constraints[i].count < n)
1711 continue;
1712 if (!constraints[i].ineq)
1713 continue;
1714 j = isl_basic_set_alloc_inequality(hull);
1715 if (j < 0)
1716 goto error;
1717 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1720 for (s = 0; s < set->n; ++s) {
1721 if (set->p[s]->n_eq)
1722 continue;
1723 if (set->p[s]->n_ineq != hull->n_ineq)
1724 continue;
1725 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1726 isl_int *ineq = set->p[s]->ineq[i];
1727 if (!has_constraint(hull->ctx, table, ineq, total, n))
1728 break;
1730 if (i == set->p[s]->n_ineq)
1731 *is_hull = 1;
1734 isl_hash_table_clear(table);
1735 for (i = 0; i < min_constraints; ++i)
1736 isl_mat_free(constraints[i].c);
1737 free(constraints);
1738 free(table);
1739 return hull;
1740 error:
1741 isl_hash_table_clear(table);
1742 free(table);
1743 if (constraints)
1744 for (i = 0; i < min_constraints; ++i)
1745 isl_mat_free(constraints[i].c);
1746 free(constraints);
1747 return hull;
1750 /* Create a template for the convex hull of "set" and fill it up
1751 * obvious facet constraints, if any. If the result happens to
1752 * be the convex hull of "set" then *is_hull is set to 1.
1754 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1756 struct isl_basic_set *hull;
1757 unsigned n_ineq;
1758 int i;
1760 n_ineq = 1;
1761 for (i = 0; i < set->n; ++i) {
1762 n_ineq += set->p[i]->n_eq;
1763 n_ineq += set->p[i]->n_ineq;
1765 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1766 hull = isl_basic_set_set_rational(hull);
1767 if (!hull)
1768 return NULL;
1769 return common_constraints(hull, set, is_hull);
1772 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1774 struct isl_basic_set *hull;
1775 int is_hull;
1777 hull = proto_hull(set, &is_hull);
1778 if (hull && !is_hull) {
1779 if (hull->n_ineq == 0)
1780 hull = initial_hull(hull, set);
1781 hull = extend(hull, set);
1783 isl_set_free(set);
1785 return hull;
1788 /* Compute the convex hull of a set without any parameters or
1789 * integer divisions. Depending on whether the set is bounded,
1790 * we pass control to the wrapping based convex hull or
1791 * the Fourier-Motzkin elimination based convex hull.
1792 * We also handle a few special cases before checking the boundedness.
1794 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1796 struct isl_basic_set *convex_hull = NULL;
1797 struct isl_basic_set *lin;
1799 if (isl_set_n_dim(set) == 0)
1800 return convex_hull_0d(set);
1802 set = isl_set_coalesce(set);
1803 set = isl_set_set_rational(set);
1805 if (!set)
1806 goto error;
1807 if (!set)
1808 return NULL;
1809 if (set->n == 1) {
1810 convex_hull = isl_basic_set_copy(set->p[0]);
1811 isl_set_free(set);
1812 return convex_hull;
1814 if (isl_set_n_dim(set) == 1)
1815 return convex_hull_1d(set);
1817 if (isl_set_is_bounded(set) &&
1818 set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP)
1819 return uset_convex_hull_wrap(set);
1821 lin = uset_combined_lineality_space(isl_set_copy(set));
1822 if (!lin)
1823 goto error;
1824 if (isl_basic_set_is_universe(lin)) {
1825 isl_set_free(set);
1826 return lin;
1828 if (lin->n_eq < isl_basic_set_total_dim(lin))
1829 return modulo_lineality(set, lin);
1830 isl_basic_set_free(lin);
1832 return uset_convex_hull_unbounded(set);
1833 error:
1834 isl_set_free(set);
1835 isl_basic_set_free(convex_hull);
1836 return NULL;
1839 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1840 * without parameters or divs and where the convex hull of set is
1841 * known to be full-dimensional.
1843 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1845 struct isl_basic_set *convex_hull = NULL;
1847 if (!set)
1848 goto error;
1850 if (isl_set_n_dim(set) == 0) {
1851 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1852 isl_set_free(set);
1853 convex_hull = isl_basic_set_set_rational(convex_hull);
1854 return convex_hull;
1857 set = isl_set_set_rational(set);
1858 set = isl_set_coalesce(set);
1859 if (!set)
1860 goto error;
1861 if (set->n == 1) {
1862 convex_hull = isl_basic_set_copy(set->p[0]);
1863 isl_set_free(set);
1864 return convex_hull;
1866 if (isl_set_n_dim(set) == 1)
1867 return convex_hull_1d(set);
1869 return uset_convex_hull_wrap(set);
1870 error:
1871 isl_set_free(set);
1872 return NULL;
1875 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1876 * We first remove the equalities (transforming the set), compute the
1877 * convex hull of the transformed set and then add the equalities back
1878 * (after performing the inverse transformation.
1880 static struct isl_basic_set *modulo_affine_hull(
1881 struct isl_set *set, struct isl_basic_set *affine_hull)
1883 struct isl_mat *T;
1884 struct isl_mat *T2;
1885 struct isl_basic_set *dummy;
1886 struct isl_basic_set *convex_hull;
1888 dummy = isl_basic_set_remove_equalities(
1889 isl_basic_set_copy(affine_hull), &T, &T2);
1890 if (!dummy)
1891 goto error;
1892 isl_basic_set_free(dummy);
1893 set = isl_set_preimage(set, T);
1894 convex_hull = uset_convex_hull(set);
1895 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1896 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1897 return convex_hull;
1898 error:
1899 isl_basic_set_free(affine_hull);
1900 isl_set_free(set);
1901 return NULL;
1904 /* Compute the convex hull of a map.
1906 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1907 * specifically, the wrapping of facets to obtain new facets.
1909 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1911 struct isl_basic_set *bset;
1912 struct isl_basic_map *model = NULL;
1913 struct isl_basic_set *affine_hull = NULL;
1914 struct isl_basic_map *convex_hull = NULL;
1915 struct isl_set *set = NULL;
1916 struct isl_ctx *ctx;
1918 if (!map)
1919 goto error;
1921 ctx = map->ctx;
1922 if (map->n == 0) {
1923 convex_hull = isl_basic_map_empty_like_map(map);
1924 isl_map_free(map);
1925 return convex_hull;
1928 map = isl_map_detect_equalities(map);
1929 map = isl_map_align_divs(map);
1930 if (!map)
1931 goto error;
1932 model = isl_basic_map_copy(map->p[0]);
1933 set = isl_map_underlying_set(map);
1934 if (!set)
1935 goto error;
1937 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1938 if (!affine_hull)
1939 goto error;
1940 if (affine_hull->n_eq != 0)
1941 bset = modulo_affine_hull(set, affine_hull);
1942 else {
1943 isl_basic_set_free(affine_hull);
1944 bset = uset_convex_hull(set);
1947 convex_hull = isl_basic_map_overlying_set(bset, model);
1948 if (!convex_hull)
1949 return NULL;
1951 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1952 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1953 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1954 return convex_hull;
1955 error:
1956 isl_set_free(set);
1957 isl_basic_map_free(model);
1958 return NULL;
1961 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1963 return (struct isl_basic_set *)
1964 isl_map_convex_hull((struct isl_map *)set);
1967 __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map)
1969 isl_basic_map *hull;
1971 hull = isl_map_convex_hull(map);
1972 return isl_basic_map_remove_divs(hull);
1975 __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set)
1977 return (isl_basic_set *)isl_map_polyhedral_hull((isl_map *)set);
1980 struct sh_data_entry {
1981 struct isl_hash_table *table;
1982 struct isl_tab *tab;
1985 /* Holds the data needed during the simple hull computation.
1986 * In particular,
1987 * n the number of basic sets in the original set
1988 * hull_table a hash table of already computed constraints
1989 * in the simple hull
1990 * p for each basic set,
1991 * table a hash table of the constraints
1992 * tab the tableau corresponding to the basic set
1994 struct sh_data {
1995 struct isl_ctx *ctx;
1996 unsigned n;
1997 struct isl_hash_table *hull_table;
1998 struct sh_data_entry p[1];
2001 static void sh_data_free(struct sh_data *data)
2003 int i;
2005 if (!data)
2006 return;
2007 isl_hash_table_free(data->ctx, data->hull_table);
2008 for (i = 0; i < data->n; ++i) {
2009 isl_hash_table_free(data->ctx, data->p[i].table);
2010 isl_tab_free(data->p[i].tab);
2012 free(data);
2015 struct ineq_cmp_data {
2016 unsigned len;
2017 isl_int *p;
2020 static int has_ineq(const void *entry, const void *val)
2022 isl_int *row = (isl_int *)entry;
2023 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
2025 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
2026 isl_seq_is_neg(row + 1, v->p + 1, v->len);
2029 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
2030 isl_int *ineq, unsigned len)
2032 uint32_t c_hash;
2033 struct ineq_cmp_data v;
2034 struct isl_hash_table_entry *entry;
2036 v.len = len;
2037 v.p = ineq;
2038 c_hash = isl_seq_get_hash(ineq + 1, len);
2039 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
2040 if (!entry)
2041 return - 1;
2042 entry->data = ineq;
2043 return 0;
2046 /* Fill hash table "table" with the constraints of "bset".
2047 * Equalities are added as two inequalities.
2048 * The value in the hash table is a pointer to the (in)equality of "bset".
2050 static int hash_basic_set(struct isl_hash_table *table,
2051 struct isl_basic_set *bset)
2053 int i, j;
2054 unsigned dim = isl_basic_set_total_dim(bset);
2056 for (i = 0; i < bset->n_eq; ++i) {
2057 for (j = 0; j < 2; ++j) {
2058 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2059 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2060 return -1;
2063 for (i = 0; i < bset->n_ineq; ++i) {
2064 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2065 return -1;
2067 return 0;
2070 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2072 struct sh_data *data;
2073 int i;
2075 data = isl_calloc(set->ctx, struct sh_data,
2076 sizeof(struct sh_data) +
2077 (set->n - 1) * sizeof(struct sh_data_entry));
2078 if (!data)
2079 return NULL;
2080 data->ctx = set->ctx;
2081 data->n = set->n;
2082 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2083 if (!data->hull_table)
2084 goto error;
2085 for (i = 0; i < set->n; ++i) {
2086 data->p[i].table = isl_hash_table_alloc(set->ctx,
2087 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2088 if (!data->p[i].table)
2089 goto error;
2090 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2091 goto error;
2093 return data;
2094 error:
2095 sh_data_free(data);
2096 return NULL;
2099 /* Check if inequality "ineq" is a bound for basic set "j" or if
2100 * it can be relaxed (by increasing the constant term) to become
2101 * a bound for that basic set. In the latter case, the constant
2102 * term is updated.
2103 * Return 1 if "ineq" is a bound
2104 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2105 * -1 if some error occurred
2107 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2108 isl_int *ineq)
2110 enum isl_lp_result res;
2111 isl_int opt;
2113 if (!data->p[j].tab) {
2114 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2115 if (!data->p[j].tab)
2116 return -1;
2119 isl_int_init(opt);
2121 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2122 &opt, NULL, 0);
2123 if (res == isl_lp_ok && isl_int_is_neg(opt))
2124 isl_int_sub(ineq[0], ineq[0], opt);
2126 isl_int_clear(opt);
2128 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2129 res == isl_lp_unbounded ? 0 : -1;
2132 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2133 * become a bound on the whole set. If so, add the (relaxed) inequality
2134 * to "hull".
2136 * We first check if "hull" already contains a translate of the inequality.
2137 * If so, we are done.
2138 * Then, we check if any of the previous basic sets contains a translate
2139 * of the inequality. If so, then we have already considered this
2140 * inequality and we are done.
2141 * Otherwise, for each basic set other than "i", we check if the inequality
2142 * is a bound on the basic set.
2143 * For previous basic sets, we know that they do not contain a translate
2144 * of the inequality, so we directly call is_bound.
2145 * For following basic sets, we first check if a translate of the
2146 * inequality appears in its description and if so directly update
2147 * the inequality accordingly.
2149 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2150 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2152 uint32_t c_hash;
2153 struct ineq_cmp_data v;
2154 struct isl_hash_table_entry *entry;
2155 int j, k;
2157 if (!hull)
2158 return NULL;
2160 v.len = isl_basic_set_total_dim(hull);
2161 v.p = ineq;
2162 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2164 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2165 has_ineq, &v, 0);
2166 if (entry)
2167 return hull;
2169 for (j = 0; j < i; ++j) {
2170 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2171 c_hash, has_ineq, &v, 0);
2172 if (entry)
2173 break;
2175 if (j < i)
2176 return hull;
2178 k = isl_basic_set_alloc_inequality(hull);
2179 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2180 if (k < 0)
2181 goto error;
2183 for (j = 0; j < i; ++j) {
2184 int bound;
2185 bound = is_bound(data, set, j, hull->ineq[k]);
2186 if (bound < 0)
2187 goto error;
2188 if (!bound)
2189 break;
2191 if (j < i) {
2192 isl_basic_set_free_inequality(hull, 1);
2193 return hull;
2196 for (j = i + 1; j < set->n; ++j) {
2197 int bound, neg;
2198 isl_int *ineq_j;
2199 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2200 c_hash, has_ineq, &v, 0);
2201 if (entry) {
2202 ineq_j = entry->data;
2203 neg = isl_seq_is_neg(ineq_j + 1,
2204 hull->ineq[k] + 1, v.len);
2205 if (neg)
2206 isl_int_neg(ineq_j[0], ineq_j[0]);
2207 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2208 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2209 if (neg)
2210 isl_int_neg(ineq_j[0], ineq_j[0]);
2211 continue;
2213 bound = is_bound(data, set, j, hull->ineq[k]);
2214 if (bound < 0)
2215 goto error;
2216 if (!bound)
2217 break;
2219 if (j < set->n) {
2220 isl_basic_set_free_inequality(hull, 1);
2221 return hull;
2224 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2225 has_ineq, &v, 1);
2226 if (!entry)
2227 goto error;
2228 entry->data = hull->ineq[k];
2230 return hull;
2231 error:
2232 isl_basic_set_free(hull);
2233 return NULL;
2236 /* Check if any inequality from basic set "i" can be relaxed to
2237 * become a bound on the whole set. If so, add the (relaxed) inequality
2238 * to "hull".
2240 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2241 struct sh_data *data, struct isl_set *set, int i)
2243 int j, k;
2244 unsigned dim = isl_basic_set_total_dim(bset);
2246 for (j = 0; j < set->p[i]->n_eq; ++j) {
2247 for (k = 0; k < 2; ++k) {
2248 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2249 bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
2252 for (j = 0; j < set->p[i]->n_ineq; ++j)
2253 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2254 return bset;
2257 /* Compute a superset of the convex hull of set that is described
2258 * by only translates of the constraints in the constituents of set.
2260 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2262 struct sh_data *data = NULL;
2263 struct isl_basic_set *hull = NULL;
2264 unsigned n_ineq;
2265 int i;
2267 if (!set)
2268 return NULL;
2270 n_ineq = 0;
2271 for (i = 0; i < set->n; ++i) {
2272 if (!set->p[i])
2273 goto error;
2274 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2277 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2278 if (!hull)
2279 goto error;
2281 data = sh_data_alloc(set, n_ineq);
2282 if (!data)
2283 goto error;
2285 for (i = 0; i < set->n; ++i)
2286 hull = add_bounds(hull, data, set, i);
2288 sh_data_free(data);
2289 isl_set_free(set);
2291 return hull;
2292 error:
2293 sh_data_free(data);
2294 isl_basic_set_free(hull);
2295 isl_set_free(set);
2296 return NULL;
2299 /* Compute a superset of the convex hull of map that is described
2300 * by only translates of the constraints in the constituents of map.
2302 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2304 struct isl_set *set = NULL;
2305 struct isl_basic_map *model = NULL;
2306 struct isl_basic_map *hull;
2307 struct isl_basic_map *affine_hull;
2308 struct isl_basic_set *bset = NULL;
2310 if (!map)
2311 return NULL;
2312 if (map->n == 0) {
2313 hull = isl_basic_map_empty_like_map(map);
2314 isl_map_free(map);
2315 return hull;
2317 if (map->n == 1) {
2318 hull = isl_basic_map_copy(map->p[0]);
2319 isl_map_free(map);
2320 return hull;
2323 map = isl_map_detect_equalities(map);
2324 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2325 map = isl_map_align_divs(map);
2326 model = isl_basic_map_copy(map->p[0]);
2328 set = isl_map_underlying_set(map);
2330 bset = uset_simple_hull(set);
2332 hull = isl_basic_map_overlying_set(bset, model);
2334 hull = isl_basic_map_intersect(hull, affine_hull);
2335 hull = isl_basic_map_remove_redundancies(hull);
2336 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2337 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2339 return hull;
2342 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2344 return (struct isl_basic_set *)
2345 isl_map_simple_hull((struct isl_map *)set);
2348 /* Given a set "set", return parametric bounds on the dimension "dim".
2350 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2352 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2353 set = isl_set_copy(set);
2354 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2355 set = isl_set_eliminate_dims(set, 0, dim);
2356 return isl_set_convex_hull(set);
2359 /* Computes a "simple hull" and then check if each dimension in the
2360 * resulting hull is bounded by a symbolic constant. If not, the
2361 * hull is intersected with the corresponding bounds on the whole set.
2363 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2365 int i, j;
2366 struct isl_basic_set *hull;
2367 unsigned nparam, left;
2368 int removed_divs = 0;
2370 hull = isl_set_simple_hull(isl_set_copy(set));
2371 if (!hull)
2372 goto error;
2374 nparam = isl_basic_set_dim(hull, isl_dim_param);
2375 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2376 int lower = 0, upper = 0;
2377 struct isl_basic_set *bounds;
2379 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2380 for (j = 0; j < hull->n_eq; ++j) {
2381 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2382 continue;
2383 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2384 left) == -1)
2385 break;
2387 if (j < hull->n_eq)
2388 continue;
2390 for (j = 0; j < hull->n_ineq; ++j) {
2391 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2392 continue;
2393 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2394 left) != -1 ||
2395 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2396 i) != -1)
2397 continue;
2398 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2399 lower = 1;
2400 else
2401 upper = 1;
2402 if (lower && upper)
2403 break;
2406 if (lower && upper)
2407 continue;
2409 if (!removed_divs) {
2410 set = isl_set_remove_divs(set);
2411 if (!set)
2412 goto error;
2413 removed_divs = 1;
2415 bounds = set_bounds(set, i);
2416 hull = isl_basic_set_intersect(hull, bounds);
2417 if (!hull)
2418 goto error;
2421 isl_set_free(set);
2422 return hull;
2423 error:
2424 isl_set_free(set);
2425 return NULL;