2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
24 #include <isl_dim_map.h>
25 #include <isl_hmap_map_basic_set.h>
27 #include <isl_schedule_private.h>
28 #include <isl_band_private.h>
29 #include <isl_options_private.h>
30 #include <isl_tarjan.h>
33 * The scheduling algorithm implemented in this file was inspired by
34 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
35 * Parallelization and Locality Optimization in the Polyhedral Model".
39 /* Internal information about a node that is used during the construction
41 * dim represents the space in which the domain lives
42 * sched is a matrix representation of the schedule being constructed
44 * sched_map is an isl_map representation of the same (partial) schedule
45 * sched_map may be NULL
46 * rank is the number of linearly independent rows in the linear part
48 * the columns of cmap represent a change of basis for the schedule
49 * coefficients; the first rank columns span the linear part of
51 * start is the first variable in the LP problem in the sequences that
52 * represents the schedule coefficients of this node
53 * nvar is the dimension of the domain
54 * nparam is the number of parameters or 0 if we are not constructing
55 * a parametric schedule
57 * scc is the index of SCC (or WCC) this node belongs to
59 * band contains the band index for each of the rows of the schedule.
60 * band_id is used to differentiate between separate bands at the same
61 * level within the same parent band, i.e., bands that are separated
62 * by the parent band or bands that are independent of each other.
63 * zero contains a boolean for each of the rows of the schedule,
64 * indicating whether the corresponding scheduling dimension results
65 * in zero dependence distances within its band and with respect
66 * to the proximity edges.
68 struct isl_sched_node
{
85 static int node_has_dim(const void *entry
, const void *val
)
87 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
88 isl_space
*dim
= (isl_space
*)val
;
90 return isl_space_is_equal(node
->dim
, dim
);
93 /* An edge in the dependence graph. An edge may be used to
94 * ensure validity of the generated schedule, to minimize the dependence
97 * map is the dependence relation
98 * src is the source node
99 * dst is the sink node
100 * validity is set if the edge is used to ensure correctness
101 * proximity is set if the edge is used to minimize dependence distances
103 * For validity edges, start and end mark the sequence of inequality
104 * constraints in the LP problem that encode the validity constraint
105 * corresponding to this edge.
107 struct isl_sched_edge
{
110 struct isl_sched_node
*src
;
111 struct isl_sched_node
*dst
;
121 isl_edge_validity
= 0,
122 isl_edge_first
= isl_edge_validity
,
124 isl_edge_last
= isl_edge_proximity
127 /* Internal information about the dependence graph used during
128 * the construction of the schedule.
130 * intra_hmap is a cache, mapping dependence relations to their dual,
131 * for dependences from a node to itself
132 * inter_hmap is a cache, mapping dependence relations to their dual,
133 * for dependences between distinct nodes
135 * n is the number of nodes
136 * node is the list of nodes
137 * maxvar is the maximal number of variables over all nodes
138 * max_row is the allocated number of rows in the schedule
139 * n_row is the current (maximal) number of linearly independent
140 * rows in the node schedules
141 * n_total_row is the current number of rows in the node schedules
142 * n_band is the current number of completed bands
143 * band_start is the starting row in the node schedules of the current band
144 * root is set if this graph is the original dependence graph,
145 * without any splitting
147 * sorted contains a list of node indices sorted according to the
148 * SCC to which a node belongs
150 * n_edge is the number of edges
151 * edge is the list of edges
152 * max_edge contains the maximal number of edges of each type;
153 * in particular, it contains the number of edges in the inital graph.
154 * edge_table contains pointers into the edge array, hashed on the source
155 * and sink spaces; there is one such table for each type;
156 * a given edge may be referenced from more than one table
157 * if the corresponding relation appears in more than of the
158 * sets of dependences
160 * node_table contains pointers into the node array, hashed on the space
162 * region contains a list of variable sequences that should be non-trivial
164 * lp contains the (I)LP problem used to obtain new schedule rows
166 * src_scc and dst_scc are the source and sink SCCs of an edge with
167 * conflicting constraints
169 * scc represents the number of components
171 struct isl_sched_graph
{
172 isl_hmap_map_basic_set
*intra_hmap
;
173 isl_hmap_map_basic_set
*inter_hmap
;
175 struct isl_sched_node
*node
;
189 struct isl_sched_edge
*edge
;
191 int max_edge
[isl_edge_last
+ 1];
192 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
194 struct isl_hash_table
*node_table
;
195 struct isl_region
*region
;
205 /* Initialize node_table based on the list of nodes.
207 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
211 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
212 if (!graph
->node_table
)
215 for (i
= 0; i
< graph
->n
; ++i
) {
216 struct isl_hash_table_entry
*entry
;
219 hash
= isl_space_get_hash(graph
->node
[i
].dim
);
220 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
222 graph
->node
[i
].dim
, 1);
225 entry
->data
= &graph
->node
[i
];
231 /* Return a pointer to the node that lives within the given space,
232 * or NULL if there is no such node.
234 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
235 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
237 struct isl_hash_table_entry
*entry
;
240 hash
= isl_space_get_hash(dim
);
241 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
242 &node_has_dim
, dim
, 0);
244 return entry
? entry
->data
: NULL
;
247 static int edge_has_src_and_dst(const void *entry
, const void *val
)
249 const struct isl_sched_edge
*edge
= entry
;
250 const struct isl_sched_edge
*temp
= val
;
252 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
255 /* Add the given edge to graph->edge_table[type].
257 static int graph_edge_table_add(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
258 enum isl_edge_type type
, struct isl_sched_edge
*edge
)
260 struct isl_hash_table_entry
*entry
;
263 hash
= isl_hash_init();
264 hash
= isl_hash_builtin(hash
, edge
->src
);
265 hash
= isl_hash_builtin(hash
, edge
->dst
);
266 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
267 &edge_has_src_and_dst
, edge
, 1);
275 /* Allocate the edge_tables based on the maximal number of edges of
278 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
282 for (i
= 0; i
<= isl_edge_last
; ++i
) {
283 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
285 if (!graph
->edge_table
[i
])
292 /* If graph->edge_table[type] contains an edge from the given source
293 * to the given destination, then return the hash table entry of this edge.
294 * Otherwise, return NULL.
296 static struct isl_hash_table_entry
*graph_find_edge_entry(
297 struct isl_sched_graph
*graph
,
298 enum isl_edge_type type
,
299 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
301 isl_ctx
*ctx
= isl_space_get_ctx(src
->dim
);
303 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
305 hash
= isl_hash_init();
306 hash
= isl_hash_builtin(hash
, temp
.src
);
307 hash
= isl_hash_builtin(hash
, temp
.dst
);
308 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
309 &edge_has_src_and_dst
, &temp
, 0);
313 /* If graph->edge_table[type] contains an edge from the given source
314 * to the given destination, then return this edge.
315 * Otherwise, return NULL.
317 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
318 enum isl_edge_type type
,
319 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
321 struct isl_hash_table_entry
*entry
;
323 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
330 /* Check whether the dependence graph has an edge of the given type
331 * between the given two nodes.
333 static int graph_has_edge(struct isl_sched_graph
*graph
,
334 enum isl_edge_type type
,
335 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
337 struct isl_sched_edge
*edge
;
340 edge
= graph_find_edge(graph
, type
, src
, dst
);
344 empty
= isl_map_plain_is_empty(edge
->map
);
351 /* If there is an edge from the given source to the given destination
352 * of any type then return this edge.
353 * Otherwise, return NULL.
355 static struct isl_sched_edge
*graph_find_any_edge(struct isl_sched_graph
*graph
,
356 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
358 enum isl_edge_type i
;
359 struct isl_sched_edge
*edge
;
361 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
362 edge
= graph_find_edge(graph
, i
, src
, dst
);
370 /* Remove the given edge from all the edge_tables that refer to it.
372 static void graph_remove_edge(struct isl_sched_graph
*graph
,
373 struct isl_sched_edge
*edge
)
375 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
376 enum isl_edge_type i
;
378 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
379 struct isl_hash_table_entry
*entry
;
381 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
384 if (entry
->data
!= edge
)
386 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
390 /* Check whether the dependence graph has any edge
391 * between the given two nodes.
393 static int graph_has_any_edge(struct isl_sched_graph
*graph
,
394 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
396 enum isl_edge_type i
;
399 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
400 r
= graph_has_edge(graph
, i
, src
, dst
);
408 /* Check whether the dependence graph has a validity edge
409 * between the given two nodes.
411 static int graph_has_validity_edge(struct isl_sched_graph
*graph
,
412 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
414 return graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
417 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
418 int n_node
, int n_edge
)
423 graph
->n_edge
= n_edge
;
424 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
425 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
426 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
427 graph
->edge
= isl_calloc_array(ctx
,
428 struct isl_sched_edge
, graph
->n_edge
);
430 graph
->intra_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
431 graph
->inter_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
433 if (!graph
->node
|| !graph
->region
|| !graph
->edge
|| !graph
->sorted
)
436 for(i
= 0; i
< graph
->n
; ++i
)
437 graph
->sorted
[i
] = i
;
442 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
446 isl_hmap_map_basic_set_free(ctx
, graph
->intra_hmap
);
447 isl_hmap_map_basic_set_free(ctx
, graph
->inter_hmap
);
449 for (i
= 0; i
< graph
->n
; ++i
) {
450 isl_space_free(graph
->node
[i
].dim
);
451 isl_mat_free(graph
->node
[i
].sched
);
452 isl_map_free(graph
->node
[i
].sched_map
);
453 isl_mat_free(graph
->node
[i
].cmap
);
455 free(graph
->node
[i
].band
);
456 free(graph
->node
[i
].band_id
);
457 free(graph
->node
[i
].zero
);
462 for (i
= 0; i
< graph
->n_edge
; ++i
)
463 isl_map_free(graph
->edge
[i
].map
);
466 for (i
= 0; i
<= isl_edge_last
; ++i
)
467 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
468 isl_hash_table_free(ctx
, graph
->node_table
);
469 isl_basic_set_free(graph
->lp
);
472 /* For each "set" on which this function is called, increment
473 * graph->n by one and update graph->maxvar.
475 static int init_n_maxvar(__isl_take isl_set
*set
, void *user
)
477 struct isl_sched_graph
*graph
= user
;
478 int nvar
= isl_set_dim(set
, isl_dim_set
);
481 if (nvar
> graph
->maxvar
)
482 graph
->maxvar
= nvar
;
489 /* Compute the number of rows that should be allocated for the schedule.
490 * The graph can be split at most "n - 1" times, there can be at most
491 * two rows for each dimension in the iteration domains (in particular,
492 * we usually have one row, but it may be split by split_scaled),
493 * and there can be one extra row for ordering the statements.
494 * Note that if we have actually split "n - 1" times, then no ordering
495 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
497 static int compute_max_row(struct isl_sched_graph
*graph
,
498 __isl_keep isl_union_set
*domain
)
502 if (isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
) < 0)
504 graph
->max_row
= graph
->n
+ 2 * graph
->maxvar
;
509 /* Add a new node to the graph representing the given set.
511 static int extract_node(__isl_take isl_set
*set
, void *user
)
517 struct isl_sched_graph
*graph
= user
;
518 int *band
, *band_id
, *zero
;
520 ctx
= isl_set_get_ctx(set
);
521 dim
= isl_set_get_space(set
);
523 nvar
= isl_space_dim(dim
, isl_dim_set
);
524 nparam
= isl_space_dim(dim
, isl_dim_param
);
525 if (!ctx
->opt
->schedule_parametric
)
527 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
528 graph
->node
[graph
->n
].dim
= dim
;
529 graph
->node
[graph
->n
].nvar
= nvar
;
530 graph
->node
[graph
->n
].nparam
= nparam
;
531 graph
->node
[graph
->n
].sched
= sched
;
532 graph
->node
[graph
->n
].sched_map
= NULL
;
533 band
= isl_alloc_array(ctx
, int, graph
->max_row
);
534 graph
->node
[graph
->n
].band
= band
;
535 band_id
= isl_calloc_array(ctx
, int, graph
->max_row
);
536 graph
->node
[graph
->n
].band_id
= band_id
;
537 zero
= isl_calloc_array(ctx
, int, graph
->max_row
);
538 graph
->node
[graph
->n
].zero
= zero
;
541 if (!sched
|| !band
|| !band_id
|| !zero
)
547 struct isl_extract_edge_data
{
548 enum isl_edge_type type
;
549 struct isl_sched_graph
*graph
;
552 /* Add a new edge to the graph based on the given map
553 * and add it to data->graph->edge_table[data->type].
554 * If a dependence relation of a given type happens to be identical
555 * to one of the dependence relations of a type that was added before,
556 * then we don't create a new edge, but instead mark the original edge
557 * as also representing a dependence of the current type.
559 static int extract_edge(__isl_take isl_map
*map
, void *user
)
561 isl_ctx
*ctx
= isl_map_get_ctx(map
);
562 struct isl_extract_edge_data
*data
= user
;
563 struct isl_sched_graph
*graph
= data
->graph
;
564 struct isl_sched_node
*src
, *dst
;
566 struct isl_sched_edge
*edge
;
569 dim
= isl_space_domain(isl_map_get_space(map
));
570 src
= graph_find_node(ctx
, graph
, dim
);
572 dim
= isl_space_range(isl_map_get_space(map
));
573 dst
= graph_find_node(ctx
, graph
, dim
);
581 graph
->edge
[graph
->n_edge
].src
= src
;
582 graph
->edge
[graph
->n_edge
].dst
= dst
;
583 graph
->edge
[graph
->n_edge
].map
= map
;
584 if (data
->type
== isl_edge_validity
) {
585 graph
->edge
[graph
->n_edge
].validity
= 1;
586 graph
->edge
[graph
->n_edge
].proximity
= 0;
588 if (data
->type
== isl_edge_proximity
) {
589 graph
->edge
[graph
->n_edge
].validity
= 0;
590 graph
->edge
[graph
->n_edge
].proximity
= 1;
594 edge
= graph_find_any_edge(graph
, src
, dst
);
596 return graph_edge_table_add(ctx
, graph
, data
->type
,
597 &graph
->edge
[graph
->n_edge
- 1]);
598 is_equal
= isl_map_plain_is_equal(map
, edge
->map
);
602 return graph_edge_table_add(ctx
, graph
, data
->type
,
603 &graph
->edge
[graph
->n_edge
- 1]);
606 edge
->validity
|= graph
->edge
[graph
->n_edge
].validity
;
607 edge
->proximity
|= graph
->edge
[graph
->n_edge
].proximity
;
610 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
613 /* Check whether there is any dependence from node[j] to node[i]
614 * or from node[i] to node[j].
616 static int node_follows_weak(int i
, int j
, void *user
)
619 struct isl_sched_graph
*graph
= user
;
621 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
624 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
627 /* Check whether there is a validity dependence from node[j] to node[i],
628 * forcing node[i] to follow node[j].
630 static int node_follows_strong(int i
, int j
, void *user
)
632 struct isl_sched_graph
*graph
= user
;
634 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
637 /* Use Tarjan's algorithm for computing the strongly connected components
638 * in the dependence graph (only validity edges).
639 * If weak is set, we consider the graph to be undirected and
640 * we effectively compute the (weakly) connected components.
641 * Additionally, we also consider other edges when weak is set.
643 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
, int weak
)
646 struct isl_tarjan_graph
*g
= NULL
;
648 g
= isl_tarjan_graph_init(ctx
, graph
->n
,
649 weak
? &node_follows_weak
: &node_follows_strong
, graph
);
657 while (g
->order
[i
] != -1) {
658 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
666 isl_tarjan_graph_free(g
);
671 /* Apply Tarjan's algorithm to detect the strongly connected components
672 * in the dependence graph.
674 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
676 return detect_ccs(ctx
, graph
, 0);
679 /* Apply Tarjan's algorithm to detect the (weakly) connected components
680 * in the dependence graph.
682 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
684 return detect_ccs(ctx
, graph
, 1);
687 static int cmp_scc(const void *a
, const void *b
, void *data
)
689 struct isl_sched_graph
*graph
= data
;
693 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
696 /* Sort the elements of graph->sorted according to the corresponding SCCs.
698 static int sort_sccs(struct isl_sched_graph
*graph
)
700 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
703 /* Given a dependence relation R from a node to itself,
704 * construct the set of coefficients of valid constraints for elements
705 * in that dependence relation.
706 * In particular, the result contains tuples of coefficients
707 * c_0, c_n, c_x such that
709 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
713 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
715 * We choose here to compute the dual of delta R.
716 * Alternatively, we could have computed the dual of R, resulting
717 * in a set of tuples c_0, c_n, c_x, c_y, and then
718 * plugged in (c_0, c_n, c_x, -c_x).
720 static __isl_give isl_basic_set
*intra_coefficients(
721 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
723 isl_ctx
*ctx
= isl_map_get_ctx(map
);
727 if (isl_hmap_map_basic_set_has(ctx
, graph
->intra_hmap
, map
))
728 return isl_hmap_map_basic_set_get(ctx
, graph
->intra_hmap
, map
);
730 delta
= isl_set_remove_divs(isl_map_deltas(isl_map_copy(map
)));
731 coef
= isl_set_coefficients(delta
);
732 isl_hmap_map_basic_set_set(ctx
, graph
->intra_hmap
, map
,
733 isl_basic_set_copy(coef
));
738 /* Given a dependence relation R, * construct the set of coefficients
739 * of valid constraints for elements in that dependence relation.
740 * In particular, the result contains tuples of coefficients
741 * c_0, c_n, c_x, c_y such that
743 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
746 static __isl_give isl_basic_set
*inter_coefficients(
747 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
749 isl_ctx
*ctx
= isl_map_get_ctx(map
);
753 if (isl_hmap_map_basic_set_has(ctx
, graph
->inter_hmap
, map
))
754 return isl_hmap_map_basic_set_get(ctx
, graph
->inter_hmap
, map
);
756 set
= isl_map_wrap(isl_map_remove_divs(isl_map_copy(map
)));
757 coef
= isl_set_coefficients(set
);
758 isl_hmap_map_basic_set_set(ctx
, graph
->inter_hmap
, map
,
759 isl_basic_set_copy(coef
));
764 /* Add constraints to graph->lp that force validity for the given
765 * dependence from a node i to itself.
766 * That is, add constraints that enforce
768 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
769 * = c_i_x (y - x) >= 0
771 * for each (x,y) in R.
772 * We obtain general constraints on coefficients (c_0, c_n, c_x)
773 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
774 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
775 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
777 * Actually, we do not construct constraints for the c_i_x themselves,
778 * but for the coefficients of c_i_x written as a linear combination
779 * of the columns in node->cmap.
781 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
782 struct isl_sched_edge
*edge
)
785 isl_map
*map
= isl_map_copy(edge
->map
);
786 isl_ctx
*ctx
= isl_map_get_ctx(map
);
788 isl_dim_map
*dim_map
;
790 struct isl_sched_node
*node
= edge
->src
;
792 coef
= intra_coefficients(graph
, map
);
794 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
796 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
797 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
801 total
= isl_basic_set_total_dim(graph
->lp
);
802 dim_map
= isl_dim_map_alloc(ctx
, total
);
803 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
804 isl_space_dim(dim
, isl_dim_set
), 1,
806 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
807 isl_space_dim(dim
, isl_dim_set
), 1,
809 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
810 coef
->n_eq
, coef
->n_ineq
);
811 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
821 /* Add constraints to graph->lp that force validity for the given
822 * dependence from node i to node j.
823 * That is, add constraints that enforce
825 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
827 * for each (x,y) in R.
828 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
829 * of valid constraints for R and then plug in
830 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
831 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
832 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
833 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
835 * Actually, we do not construct constraints for the c_*_x themselves,
836 * but for the coefficients of c_*_x written as a linear combination
837 * of the columns in node->cmap.
839 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
840 struct isl_sched_edge
*edge
)
843 isl_map
*map
= isl_map_copy(edge
->map
);
844 isl_ctx
*ctx
= isl_map_get_ctx(map
);
846 isl_dim_map
*dim_map
;
848 struct isl_sched_node
*src
= edge
->src
;
849 struct isl_sched_node
*dst
= edge
->dst
;
851 coef
= inter_coefficients(graph
, map
);
853 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
855 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
856 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
857 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
858 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
859 isl_mat_copy(dst
->cmap
));
863 total
= isl_basic_set_total_dim(graph
->lp
);
864 dim_map
= isl_dim_map_alloc(ctx
, total
);
866 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
867 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
868 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
869 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
870 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
872 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
873 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
876 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
877 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
878 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
879 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
880 isl_space_dim(dim
, isl_dim_set
), 1,
882 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
883 isl_space_dim(dim
, isl_dim_set
), 1,
886 edge
->start
= graph
->lp
->n_ineq
;
887 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
888 coef
->n_eq
, coef
->n_ineq
);
889 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
894 edge
->end
= graph
->lp
->n_ineq
;
902 /* Add constraints to graph->lp that bound the dependence distance for the given
903 * dependence from a node i to itself.
904 * If s = 1, we add the constraint
906 * c_i_x (y - x) <= m_0 + m_n n
910 * -c_i_x (y - x) + m_0 + m_n n >= 0
912 * for each (x,y) in R.
913 * If s = -1, we add the constraint
915 * -c_i_x (y - x) <= m_0 + m_n n
919 * c_i_x (y - x) + m_0 + m_n n >= 0
921 * for each (x,y) in R.
922 * We obtain general constraints on coefficients (c_0, c_n, c_x)
923 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
924 * with each coefficient (except m_0) represented as a pair of non-negative
927 * Actually, we do not construct constraints for the c_i_x themselves,
928 * but for the coefficients of c_i_x written as a linear combination
929 * of the columns in node->cmap.
931 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
932 struct isl_sched_edge
*edge
, int s
)
936 isl_map
*map
= isl_map_copy(edge
->map
);
937 isl_ctx
*ctx
= isl_map_get_ctx(map
);
939 isl_dim_map
*dim_map
;
941 struct isl_sched_node
*node
= edge
->src
;
943 coef
= intra_coefficients(graph
, map
);
945 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
947 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
948 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
952 nparam
= isl_space_dim(node
->dim
, isl_dim_param
);
953 total
= isl_basic_set_total_dim(graph
->lp
);
954 dim_map
= isl_dim_map_alloc(ctx
, total
);
955 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
956 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
957 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
958 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
959 isl_space_dim(dim
, isl_dim_set
), 1,
961 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
962 isl_space_dim(dim
, isl_dim_set
), 1,
964 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
965 coef
->n_eq
, coef
->n_ineq
);
966 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
976 /* Add constraints to graph->lp that bound the dependence distance for the given
977 * dependence from node i to node j.
978 * If s = 1, we add the constraint
980 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
985 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
988 * for each (x,y) in R.
989 * If s = -1, we add the constraint
991 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
996 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
999 * for each (x,y) in R.
1000 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1001 * of valid constraints for R and then plug in
1002 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1004 * with each coefficient (except m_0, c_j_0 and c_i_0)
1005 * represented as a pair of non-negative coefficients.
1007 * Actually, we do not construct constraints for the c_*_x themselves,
1008 * but for the coefficients of c_*_x written as a linear combination
1009 * of the columns in node->cmap.
1011 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
1012 struct isl_sched_edge
*edge
, int s
)
1016 isl_map
*map
= isl_map_copy(edge
->map
);
1017 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1019 isl_dim_map
*dim_map
;
1020 isl_basic_set
*coef
;
1021 struct isl_sched_node
*src
= edge
->src
;
1022 struct isl_sched_node
*dst
= edge
->dst
;
1024 coef
= inter_coefficients(graph
, map
);
1026 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1028 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1029 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1030 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1031 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1032 isl_mat_copy(dst
->cmap
));
1036 nparam
= isl_space_dim(src
->dim
, isl_dim_param
);
1037 total
= isl_basic_set_total_dim(graph
->lp
);
1038 dim_map
= isl_dim_map_alloc(ctx
, total
);
1040 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1041 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1042 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1044 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
1045 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
1046 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
1047 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1048 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1050 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1051 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1054 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
1055 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
1056 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
1057 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1058 isl_space_dim(dim
, isl_dim_set
), 1,
1060 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1061 isl_space_dim(dim
, isl_dim_set
), 1,
1064 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1065 coef
->n_eq
, coef
->n_ineq
);
1066 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1068 isl_space_free(dim
);
1072 isl_space_free(dim
);
1076 static int add_all_validity_constraints(struct isl_sched_graph
*graph
)
1080 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1081 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1082 if (!edge
->validity
)
1084 if (edge
->src
!= edge
->dst
)
1086 if (add_intra_validity_constraints(graph
, edge
) < 0)
1090 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1091 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1092 if (!edge
->validity
)
1094 if (edge
->src
== edge
->dst
)
1096 if (add_inter_validity_constraints(graph
, edge
) < 0)
1103 /* Add constraints to graph->lp that bound the dependence distance
1104 * for all dependence relations.
1105 * If a given proximity dependence is identical to a validity
1106 * dependence, then the dependence distance is already bounded
1107 * from below (by zero), so we only need to bound the distance
1109 * Otherwise, we need to bound the distance both from above and from below.
1111 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
)
1115 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1116 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1117 if (!edge
->proximity
)
1119 if (edge
->src
== edge
->dst
&&
1120 add_intra_proximity_constraints(graph
, edge
, 1) < 0)
1122 if (edge
->src
!= edge
->dst
&&
1123 add_inter_proximity_constraints(graph
, edge
, 1) < 0)
1127 if (edge
->src
== edge
->dst
&&
1128 add_intra_proximity_constraints(graph
, edge
, -1) < 0)
1130 if (edge
->src
!= edge
->dst
&&
1131 add_inter_proximity_constraints(graph
, edge
, -1) < 0)
1138 /* Compute a basis for the rows in the linear part of the schedule
1139 * and extend this basis to a full basis. The remaining rows
1140 * can then be used to force linear independence from the rows
1143 * In particular, given the schedule rows S, we compute
1147 * with H the Hermite normal form of S. That is, all but the
1148 * first rank columns of Q are zero and so each row in S is
1149 * a linear combination of the first rank rows of Q.
1150 * The matrix Q is then transposed because we will write the
1151 * coefficients of the next schedule row as a column vector s
1152 * and express this s as a linear combination s = Q c of the
1155 static int node_update_cmap(struct isl_sched_node
*node
)
1158 int n_row
= isl_mat_rows(node
->sched
);
1160 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1161 1 + node
->nparam
, node
->nvar
);
1163 H
= isl_mat_left_hermite(H
, 0, NULL
, &Q
);
1164 isl_mat_free(node
->cmap
);
1165 node
->cmap
= isl_mat_transpose(Q
);
1166 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1169 if (!node
->cmap
|| node
->rank
< 0)
1174 /* Count the number of equality and inequality constraints
1175 * that will be added for the given map.
1176 * If carry is set, then we are counting the number of (validity)
1177 * constraints that will be added in setup_carry_lp and we count
1178 * each edge exactly once. Otherwise, we count as follows
1179 * validity -> 1 (>= 0)
1180 * validity+proximity -> 2 (>= 0 and upper bound)
1181 * proximity -> 2 (lower and upper bound)
1183 static int count_map_constraints(struct isl_sched_graph
*graph
,
1184 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
1185 int *n_eq
, int *n_ineq
, int carry
)
1187 isl_basic_set
*coef
;
1188 int f
= carry
? 1 : edge
->proximity
? 2 : 1;
1190 if (carry
&& !edge
->validity
) {
1195 if (edge
->src
== edge
->dst
)
1196 coef
= intra_coefficients(graph
, map
);
1198 coef
= inter_coefficients(graph
, map
);
1201 *n_eq
+= f
* coef
->n_eq
;
1202 *n_ineq
+= f
* coef
->n_ineq
;
1203 isl_basic_set_free(coef
);
1208 /* Count the number of equality and inequality constraints
1209 * that will be added to the main lp problem.
1210 * We count as follows
1211 * validity -> 1 (>= 0)
1212 * validity+proximity -> 2 (>= 0 and upper bound)
1213 * proximity -> 2 (lower and upper bound)
1215 static int count_constraints(struct isl_sched_graph
*graph
,
1216 int *n_eq
, int *n_ineq
)
1220 *n_eq
= *n_ineq
= 0;
1221 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1222 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1223 isl_map
*map
= isl_map_copy(edge
->map
);
1225 if (count_map_constraints(graph
, edge
, map
,
1226 n_eq
, n_ineq
, 0) < 0)
1233 /* Count the number of constraints that will be added by
1234 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1237 * In practice, add_bound_coefficient_constraints only adds inequalities.
1239 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
1240 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
1244 if (ctx
->opt
->schedule_max_coefficient
== -1)
1247 for (i
= 0; i
< graph
->n
; ++i
)
1248 *n_ineq
+= 2 * graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
1253 /* Add constraints that bound the values of the variable and parameter
1254 * coefficients of the schedule.
1256 * The maximal value of the coefficients is defined by the option
1257 * 'schedule_max_coefficient'.
1259 static int add_bound_coefficient_constraints(isl_ctx
*ctx
,
1260 struct isl_sched_graph
*graph
)
1263 int max_coefficient
;
1266 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1268 if (max_coefficient
== -1)
1271 total
= isl_basic_set_total_dim(graph
->lp
);
1273 for (i
= 0; i
< graph
->n
; ++i
) {
1274 struct isl_sched_node
*node
= &graph
->node
[i
];
1275 for (j
= 0; j
< 2 * node
->nparam
+ 2 * node
->nvar
; ++j
) {
1277 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1280 dim
= 1 + node
->start
+ 1 + j
;
1281 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
1282 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
1283 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_coefficient
);
1290 /* Construct an ILP problem for finding schedule coefficients
1291 * that result in non-negative, but small dependence distances
1292 * over all dependences.
1293 * In particular, the dependence distances over proximity edges
1294 * are bounded by m_0 + m_n n and we compute schedule coefficients
1295 * with small values (preferably zero) of m_n and m_0.
1297 * All variables of the ILP are non-negative. The actual coefficients
1298 * may be negative, so each coefficient is represented as the difference
1299 * of two non-negative variables. The negative part always appears
1300 * immediately before the positive part.
1301 * Other than that, the variables have the following order
1303 * - sum of positive and negative parts of m_n coefficients
1305 * - sum of positive and negative parts of all c_n coefficients
1306 * (unconstrained when computing non-parametric schedules)
1307 * - sum of positive and negative parts of all c_x coefficients
1308 * - positive and negative parts of m_n coefficients
1311 * - positive and negative parts of c_i_n (if parametric)
1312 * - positive and negative parts of c_i_x
1314 * The c_i_x are not represented directly, but through the columns of
1315 * node->cmap. That is, the computed values are for variable t_i_x
1316 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1318 * The constraints are those from the edges plus two or three equalities
1319 * to express the sums.
1321 * If force_zero is set, then we add equalities to ensure that
1322 * the sum of the m_n coefficients and m_0 are both zero.
1324 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1335 int max_constant_term
;
1337 max_constant_term
= ctx
->opt
->schedule_max_constant_term
;
1339 parametric
= ctx
->opt
->schedule_parametric
;
1340 nparam
= isl_space_dim(graph
->node
[0].dim
, isl_dim_param
);
1342 total
= param_pos
+ 2 * nparam
;
1343 for (i
= 0; i
< graph
->n
; ++i
) {
1344 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
1345 if (node_update_cmap(node
) < 0)
1347 node
->start
= total
;
1348 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
1351 if (count_constraints(graph
, &n_eq
, &n_ineq
) < 0)
1353 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
1356 dim
= isl_space_set_alloc(ctx
, 0, total
);
1357 isl_basic_set_free(graph
->lp
);
1358 n_eq
+= 2 + parametric
+ force_zero
;
1359 if (max_constant_term
!= -1)
1362 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
1364 k
= isl_basic_set_alloc_equality(graph
->lp
);
1367 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1369 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
1370 for (i
= 0; i
< 2 * nparam
; ++i
)
1371 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
1374 k
= isl_basic_set_alloc_equality(graph
->lp
);
1377 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1378 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
1382 k
= isl_basic_set_alloc_equality(graph
->lp
);
1385 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1386 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
1387 for (i
= 0; i
< graph
->n
; ++i
) {
1388 int pos
= 1 + graph
->node
[i
].start
+ 1;
1390 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
1391 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1395 k
= isl_basic_set_alloc_equality(graph
->lp
);
1398 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1399 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
1400 for (i
= 0; i
< graph
->n
; ++i
) {
1401 struct isl_sched_node
*node
= &graph
->node
[i
];
1402 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
1404 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
1405 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1408 if (max_constant_term
!= -1)
1409 for (i
= 0; i
< graph
->n
; ++i
) {
1410 struct isl_sched_node
*node
= &graph
->node
[i
];
1411 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1414 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
1415 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
1416 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_constant_term
);
1419 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
1421 if (add_all_validity_constraints(graph
) < 0)
1423 if (add_all_proximity_constraints(graph
) < 0)
1429 /* Analyze the conflicting constraint found by
1430 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1431 * constraint of one of the edges between distinct nodes, living, moreover
1432 * in distinct SCCs, then record the source and sink SCC as this may
1433 * be a good place to cut between SCCs.
1435 static int check_conflict(int con
, void *user
)
1438 struct isl_sched_graph
*graph
= user
;
1440 if (graph
->src_scc
>= 0)
1443 con
-= graph
->lp
->n_eq
;
1445 if (con
>= graph
->lp
->n_ineq
)
1448 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1449 if (!graph
->edge
[i
].validity
)
1451 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
1453 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
1455 if (graph
->edge
[i
].start
> con
)
1457 if (graph
->edge
[i
].end
<= con
)
1459 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
1460 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
1466 /* Check whether the next schedule row of the given node needs to be
1467 * non-trivial. Lower-dimensional domains may have some trivial rows,
1468 * but as soon as the number of remaining required non-trivial rows
1469 * is as large as the number or remaining rows to be computed,
1470 * all remaining rows need to be non-trivial.
1472 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
1474 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
1477 /* Solve the ILP problem constructed in setup_lp.
1478 * For each node such that all the remaining rows of its schedule
1479 * need to be non-trivial, we construct a non-triviality region.
1480 * This region imposes that the next row is independent of previous rows.
1481 * In particular the coefficients c_i_x are represented by t_i_x
1482 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1483 * its first columns span the rows of the previously computed part
1484 * of the schedule. The non-triviality region enforces that at least
1485 * one of the remaining components of t_i_x is non-zero, i.e.,
1486 * that the new schedule row depends on at least one of the remaining
1489 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
1495 for (i
= 0; i
< graph
->n
; ++i
) {
1496 struct isl_sched_node
*node
= &graph
->node
[i
];
1497 int skip
= node
->rank
;
1498 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
1499 if (needs_row(graph
, node
))
1500 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
1502 graph
->region
[i
].len
= 0;
1504 lp
= isl_basic_set_copy(graph
->lp
);
1505 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
1506 graph
->region
, &check_conflict
, graph
);
1510 /* Update the schedules of all nodes based on the given solution
1511 * of the LP problem.
1512 * The new row is added to the current band.
1513 * All possibly negative coefficients are encoded as a difference
1514 * of two non-negative variables, so we need to perform the subtraction
1515 * here. Moreover, if use_cmap is set, then the solution does
1516 * not refer to the actual coefficients c_i_x, but instead to variables
1517 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1518 * In this case, we then also need to perform this multiplication
1519 * to obtain the values of c_i_x.
1521 * If check_zero is set, then the first two coordinates of sol are
1522 * assumed to correspond to the dependence distance. If these two
1523 * coordinates are zero, then the corresponding scheduling dimension
1524 * is marked as being zero distance.
1526 static int update_schedule(struct isl_sched_graph
*graph
,
1527 __isl_take isl_vec
*sol
, int use_cmap
, int check_zero
)
1531 isl_vec
*csol
= NULL
;
1536 isl_die(sol
->ctx
, isl_error_internal
,
1537 "no solution found", goto error
);
1538 if (graph
->n_total_row
>= graph
->max_row
)
1539 isl_die(sol
->ctx
, isl_error_internal
,
1540 "too many schedule rows", goto error
);
1543 zero
= isl_int_is_zero(sol
->el
[1]) &&
1544 isl_int_is_zero(sol
->el
[2]);
1546 for (i
= 0; i
< graph
->n
; ++i
) {
1547 struct isl_sched_node
*node
= &graph
->node
[i
];
1548 int pos
= node
->start
;
1549 int row
= isl_mat_rows(node
->sched
);
1552 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
1556 isl_map_free(node
->sched_map
);
1557 node
->sched_map
= NULL
;
1558 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1561 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
1563 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
1564 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1565 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1566 sol
->el
[1 + pos
+ 1 + 2 * j
]);
1567 for (j
= 0; j
< node
->nparam
; ++j
)
1568 node
->sched
= isl_mat_set_element(node
->sched
,
1569 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
1570 for (j
= 0; j
< node
->nvar
; ++j
)
1571 isl_int_set(csol
->el
[j
],
1572 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
1574 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
1578 for (j
= 0; j
< node
->nvar
; ++j
)
1579 node
->sched
= isl_mat_set_element(node
->sched
,
1580 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
1581 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1582 node
->zero
[graph
->n_total_row
] = zero
;
1588 graph
->n_total_row
++;
1597 /* Convert node->sched into a multi_aff and return this multi_aff.
1599 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
1600 struct isl_sched_node
*node
)
1604 isl_local_space
*ls
;
1610 nrow
= isl_mat_rows(node
->sched
);
1611 ncol
= isl_mat_cols(node
->sched
) - 1;
1612 space
= isl_space_from_domain(isl_space_copy(node
->dim
));
1613 space
= isl_space_add_dims(space
, isl_dim_out
, nrow
);
1614 ma
= isl_multi_aff_zero(space
);
1615 ls
= isl_local_space_from_space(isl_space_copy(node
->dim
));
1619 for (i
= 0; i
< nrow
; ++i
) {
1620 aff
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1621 isl_mat_get_element(node
->sched
, i
, 0, &v
);
1622 aff
= isl_aff_set_constant(aff
, v
);
1623 for (j
= 0; j
< node
->nparam
; ++j
) {
1624 isl_mat_get_element(node
->sched
, i
, 1 + j
, &v
);
1625 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
1627 for (j
= 0; j
< node
->nvar
; ++j
) {
1628 isl_mat_get_element(node
->sched
,
1629 i
, 1 + node
->nparam
+ j
, &v
);
1630 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
1632 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
1637 isl_local_space_free(ls
);
1642 /* Convert node->sched into a map and return this map.
1644 * The result is cached in node->sched_map, which needs to be released
1645 * whenever node->sched is updated.
1647 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
1649 if (!node
->sched_map
) {
1652 ma
= node_extract_schedule_multi_aff(node
);
1653 node
->sched_map
= isl_map_from_multi_aff(ma
);
1656 return isl_map_copy(node
->sched_map
);
1659 /* Update the given dependence relation based on the current schedule.
1660 * That is, intersect the dependence relation with a map expressing
1661 * that source and sink are executed within the same iteration of
1662 * the current schedule.
1663 * This is not the most efficient way, but this shouldn't be a critical
1666 static __isl_give isl_map
*specialize(__isl_take isl_map
*map
,
1667 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
1669 isl_map
*src_sched
, *dst_sched
, *id
;
1671 src_sched
= node_extract_schedule(src
);
1672 dst_sched
= node_extract_schedule(dst
);
1673 id
= isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
1674 return isl_map_intersect(map
, id
);
1677 /* Update the dependence relations of all edges based on the current schedule.
1678 * If a dependence is carried completely by the current schedule, then
1679 * it is removed from the edge_tables. It is kept in the list of edges
1680 * as otherwise all edge_tables would have to be recomputed.
1682 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1686 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
1687 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1688 edge
->map
= specialize(edge
->map
, edge
->src
, edge
->dst
);
1692 if (isl_map_plain_is_empty(edge
->map
))
1693 graph_remove_edge(graph
, edge
);
1699 static void next_band(struct isl_sched_graph
*graph
)
1701 graph
->band_start
= graph
->n_total_row
;
1705 /* Topologically sort statements mapped to the same schedule iteration
1706 * and add a row to the schedule corresponding to this order.
1708 static int sort_statements(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1715 if (update_edges(ctx
, graph
) < 0)
1718 if (graph
->n_edge
== 0)
1721 if (detect_sccs(ctx
, graph
) < 0)
1724 if (graph
->n_total_row
>= graph
->max_row
)
1725 isl_die(ctx
, isl_error_internal
,
1726 "too many schedule rows", return -1);
1728 for (i
= 0; i
< graph
->n
; ++i
) {
1729 struct isl_sched_node
*node
= &graph
->node
[i
];
1730 int row
= isl_mat_rows(node
->sched
);
1731 int cols
= isl_mat_cols(node
->sched
);
1733 isl_map_free(node
->sched_map
);
1734 node
->sched_map
= NULL
;
1735 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1738 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
1740 for (j
= 1; j
< cols
; ++j
)
1741 node
->sched
= isl_mat_set_element_si(node
->sched
,
1743 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1746 graph
->n_total_row
++;
1752 /* Construct an isl_schedule based on the computed schedule stored
1753 * in graph and with parameters specified by dim.
1755 static __isl_give isl_schedule
*extract_schedule(struct isl_sched_graph
*graph
,
1756 __isl_take isl_space
*dim
)
1760 isl_schedule
*sched
= NULL
;
1765 ctx
= isl_space_get_ctx(dim
);
1766 sched
= isl_calloc(ctx
, struct isl_schedule
,
1767 sizeof(struct isl_schedule
) +
1768 (graph
->n
- 1) * sizeof(struct isl_schedule_node
));
1773 sched
->n
= graph
->n
;
1774 sched
->n_band
= graph
->n_band
;
1775 sched
->n_total_row
= graph
->n_total_row
;
1777 for (i
= 0; i
< sched
->n
; ++i
) {
1779 int *band_end
, *band_id
, *zero
;
1781 sched
->node
[i
].sched
=
1782 node_extract_schedule_multi_aff(&graph
->node
[i
]);
1783 if (!sched
->node
[i
].sched
)
1786 sched
->node
[i
].n_band
= graph
->n_band
;
1787 if (graph
->n_band
== 0)
1790 band_end
= isl_alloc_array(ctx
, int, graph
->n_band
);
1791 band_id
= isl_alloc_array(ctx
, int, graph
->n_band
);
1792 zero
= isl_alloc_array(ctx
, int, graph
->n_total_row
);
1793 sched
->node
[i
].band_end
= band_end
;
1794 sched
->node
[i
].band_id
= band_id
;
1795 sched
->node
[i
].zero
= zero
;
1796 if (!band_end
|| !band_id
|| !zero
)
1799 for (r
= 0; r
< graph
->n_total_row
; ++r
)
1800 zero
[r
] = graph
->node
[i
].zero
[r
];
1801 for (r
= b
= 0; r
< graph
->n_total_row
; ++r
) {
1802 if (graph
->node
[i
].band
[r
] == b
)
1805 if (graph
->node
[i
].band
[r
] == -1)
1808 if (r
== graph
->n_total_row
)
1810 sched
->node
[i
].n_band
= b
;
1811 for (--b
; b
>= 0; --b
)
1812 band_id
[b
] = graph
->node
[i
].band_id
[b
];
1819 isl_space_free(dim
);
1820 isl_schedule_free(sched
);
1824 /* Copy nodes that satisfy node_pred from the src dependence graph
1825 * to the dst dependence graph.
1827 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
1828 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1833 for (i
= 0; i
< src
->n
; ++i
) {
1834 if (!node_pred(&src
->node
[i
], data
))
1836 dst
->node
[dst
->n
].dim
= isl_space_copy(src
->node
[i
].dim
);
1837 dst
->node
[dst
->n
].nvar
= src
->node
[i
].nvar
;
1838 dst
->node
[dst
->n
].nparam
= src
->node
[i
].nparam
;
1839 dst
->node
[dst
->n
].sched
= isl_mat_copy(src
->node
[i
].sched
);
1840 dst
->node
[dst
->n
].sched_map
=
1841 isl_map_copy(src
->node
[i
].sched_map
);
1842 dst
->node
[dst
->n
].band
= src
->node
[i
].band
;
1843 dst
->node
[dst
->n
].band_id
= src
->node
[i
].band_id
;
1844 dst
->node
[dst
->n
].zero
= src
->node
[i
].zero
;
1851 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1852 * to the dst dependence graph.
1853 * If the source or destination node of the edge is not in the destination
1854 * graph, then it must be a backward proximity edge and it should simply
1857 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
1858 struct isl_sched_graph
*src
,
1859 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
1862 enum isl_edge_type t
;
1865 for (i
= 0; i
< src
->n_edge
; ++i
) {
1866 struct isl_sched_edge
*edge
= &src
->edge
[i
];
1868 struct isl_sched_node
*dst_src
, *dst_dst
;
1870 if (!edge_pred(edge
, data
))
1873 if (isl_map_plain_is_empty(edge
->map
))
1876 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->dim
);
1877 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->dim
);
1878 if (!dst_src
|| !dst_dst
) {
1880 isl_die(ctx
, isl_error_internal
,
1881 "backward validity edge", return -1);
1885 map
= isl_map_copy(edge
->map
);
1887 dst
->edge
[dst
->n_edge
].src
= dst_src
;
1888 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
1889 dst
->edge
[dst
->n_edge
].map
= map
;
1890 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
1891 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
1894 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
1896 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
1898 if (graph_edge_table_add(ctx
, dst
, t
,
1899 &dst
->edge
[dst
->n_edge
- 1]) < 0)
1907 /* Given a "src" dependence graph that contains the nodes from "dst"
1908 * that satisfy node_pred, copy the schedule computed in "src"
1909 * for those nodes back to "dst".
1911 static int copy_schedule(struct isl_sched_graph
*dst
,
1912 struct isl_sched_graph
*src
,
1913 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1918 for (i
= 0; i
< dst
->n
; ++i
) {
1919 if (!node_pred(&dst
->node
[i
], data
))
1921 isl_mat_free(dst
->node
[i
].sched
);
1922 isl_map_free(dst
->node
[i
].sched_map
);
1923 dst
->node
[i
].sched
= isl_mat_copy(src
->node
[src
->n
].sched
);
1924 dst
->node
[i
].sched_map
=
1925 isl_map_copy(src
->node
[src
->n
].sched_map
);
1929 dst
->max_row
= src
->max_row
;
1930 dst
->n_total_row
= src
->n_total_row
;
1931 dst
->n_band
= src
->n_band
;
1936 /* Compute the maximal number of variables over all nodes.
1937 * This is the maximal number of linearly independent schedule
1938 * rows that we need to compute.
1939 * Just in case we end up in a part of the dependence graph
1940 * with only lower-dimensional domains, we make sure we will
1941 * compute the required amount of extra linearly independent rows.
1943 static int compute_maxvar(struct isl_sched_graph
*graph
)
1948 for (i
= 0; i
< graph
->n
; ++i
) {
1949 struct isl_sched_node
*node
= &graph
->node
[i
];
1952 if (node_update_cmap(node
) < 0)
1954 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
1955 if (nvar
> graph
->maxvar
)
1956 graph
->maxvar
= nvar
;
1962 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1963 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1965 /* Compute a schedule for a subgraph of "graph". In particular, for
1966 * the graph composed of nodes that satisfy node_pred and edges that
1967 * that satisfy edge_pred. The caller should precompute the number
1968 * of nodes and edges that satisfy these predicates and pass them along
1969 * as "n" and "n_edge".
1970 * If the subgraph is known to consist of a single component, then wcc should
1971 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1972 * Otherwise, we call compute_schedule, which will check whether the subgraph
1975 static int compute_sub_schedule(isl_ctx
*ctx
,
1976 struct isl_sched_graph
*graph
, int n
, int n_edge
,
1977 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
1978 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
1981 struct isl_sched_graph split
= { 0 };
1984 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
1986 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
1988 if (graph_init_table(ctx
, &split
) < 0)
1990 for (t
= 0; t
<= isl_edge_last
; ++t
)
1991 split
.max_edge
[t
] = graph
->max_edge
[t
];
1992 if (graph_init_edge_tables(ctx
, &split
) < 0)
1994 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
1996 split
.n_row
= graph
->n_row
;
1997 split
.max_row
= graph
->max_row
;
1998 split
.n_total_row
= graph
->n_total_row
;
1999 split
.n_band
= graph
->n_band
;
2000 split
.band_start
= graph
->band_start
;
2002 if (wcc
&& compute_schedule_wcc(ctx
, &split
) < 0)
2004 if (!wcc
&& compute_schedule(ctx
, &split
) < 0)
2007 copy_schedule(graph
, &split
, node_pred
, data
);
2009 graph_free(ctx
, &split
);
2012 graph_free(ctx
, &split
);
2016 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
2018 return node
->scc
== scc
;
2021 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
2023 return node
->scc
<= scc
;
2026 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
2028 return node
->scc
>= scc
;
2031 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
2033 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
2036 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
2038 return edge
->dst
->scc
<= scc
;
2041 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
2043 return edge
->src
->scc
>= scc
;
2046 /* Pad the schedules of all nodes with zero rows such that in the end
2047 * they all have graph->n_total_row rows.
2048 * The extra rows don't belong to any band, so they get assigned band number -1.
2050 static int pad_schedule(struct isl_sched_graph
*graph
)
2054 for (i
= 0; i
< graph
->n
; ++i
) {
2055 struct isl_sched_node
*node
= &graph
->node
[i
];
2056 int row
= isl_mat_rows(node
->sched
);
2057 if (graph
->n_total_row
> row
) {
2058 isl_map_free(node
->sched_map
);
2059 node
->sched_map
= NULL
;
2061 node
->sched
= isl_mat_add_zero_rows(node
->sched
,
2062 graph
->n_total_row
- row
);
2065 for (j
= row
; j
< graph
->n_total_row
; ++j
)
2072 /* Split the current graph into two parts and compute a schedule for each
2073 * part individually. In particular, one part consists of all SCCs up
2074 * to and including graph->src_scc, while the other part contains the other
2077 * The split is enforced in the schedule by constant rows with two different
2078 * values (0 and 1). These constant rows replace the previously computed rows
2079 * in the current band.
2080 * It would be possible to reuse them as the first rows in the next
2081 * band, but recomputing them may result in better rows as we are looking
2082 * at a smaller part of the dependence graph.
2083 * compute_split_schedule is only called when no zero-distance schedule row
2084 * could be found on the entire graph, so we wark the splitting row as
2085 * non zero-distance.
2087 * The band_id of the second group is set to n, where n is the number
2088 * of nodes in the first group. This ensures that the band_ids over
2089 * the two groups remain disjoint, even if either or both of the two
2090 * groups contain independent components.
2092 static int compute_split_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2094 int i
, j
, n
, e1
, e2
;
2095 int n_total_row
, orig_total_row
;
2096 int n_band
, orig_band
;
2099 if (graph
->n_total_row
>= graph
->max_row
)
2100 isl_die(ctx
, isl_error_internal
,
2101 "too many schedule rows", return -1);
2103 drop
= graph
->n_total_row
- graph
->band_start
;
2104 graph
->n_total_row
-= drop
;
2105 graph
->n_row
-= drop
;
2108 for (i
= 0; i
< graph
->n
; ++i
) {
2109 struct isl_sched_node
*node
= &graph
->node
[i
];
2110 int row
= isl_mat_rows(node
->sched
) - drop
;
2111 int cols
= isl_mat_cols(node
->sched
);
2112 int before
= node
->scc
<= graph
->src_scc
;
2117 isl_map_free(node
->sched_map
);
2118 node
->sched_map
= NULL
;
2119 node
->sched
= isl_mat_drop_rows(node
->sched
,
2120 graph
->band_start
, drop
);
2121 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2124 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2126 for (j
= 1; j
< cols
; ++j
)
2127 node
->sched
= isl_mat_set_element_si(node
->sched
,
2129 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2130 node
->zero
[graph
->n_total_row
] = 0;
2134 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2135 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
2137 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
2141 graph
->n_total_row
++;
2144 for (i
= 0; i
< graph
->n
; ++i
) {
2145 struct isl_sched_node
*node
= &graph
->node
[i
];
2146 if (node
->scc
> graph
->src_scc
)
2147 node
->band_id
[graph
->n_band
] = n
;
2150 orig_total_row
= graph
->n_total_row
;
2151 orig_band
= graph
->n_band
;
2152 if (compute_sub_schedule(ctx
, graph
, n
, e1
,
2153 &node_scc_at_most
, &edge_dst_scc_at_most
,
2154 graph
->src_scc
, 0) < 0)
2156 n_total_row
= graph
->n_total_row
;
2157 graph
->n_total_row
= orig_total_row
;
2158 n_band
= graph
->n_band
;
2159 graph
->n_band
= orig_band
;
2160 if (compute_sub_schedule(ctx
, graph
, graph
->n
- n
, e2
,
2161 &node_scc_at_least
, &edge_src_scc_at_least
,
2162 graph
->src_scc
+ 1, 0) < 0)
2164 if (n_total_row
> graph
->n_total_row
)
2165 graph
->n_total_row
= n_total_row
;
2166 if (n_band
> graph
->n_band
)
2167 graph
->n_band
= n_band
;
2169 return pad_schedule(graph
);
2172 /* Compute the next band of the schedule after updating the dependence
2173 * relations based on the the current schedule.
2175 static int compute_next_band(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2177 if (update_edges(ctx
, graph
) < 0)
2181 return compute_schedule(ctx
, graph
);
2184 /* Add constraints to graph->lp that force the dependence "map" (which
2185 * is part of the dependence relation of "edge")
2186 * to be respected and attempt to carry it, where the edge is one from
2187 * a node j to itself. "pos" is the sequence number of the given map.
2188 * That is, add constraints that enforce
2190 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2191 * = c_j_x (y - x) >= e_i
2193 * for each (x,y) in R.
2194 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2195 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2196 * with each coefficient in c_j_x represented as a pair of non-negative
2199 static int add_intra_constraints(struct isl_sched_graph
*graph
,
2200 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
2203 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2205 isl_dim_map
*dim_map
;
2206 isl_basic_set
*coef
;
2207 struct isl_sched_node
*node
= edge
->src
;
2209 coef
= intra_coefficients(graph
, map
);
2213 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2215 total
= isl_basic_set_total_dim(graph
->lp
);
2216 dim_map
= isl_dim_map_alloc(ctx
, total
);
2217 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2218 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
2219 isl_space_dim(dim
, isl_dim_set
), 1,
2221 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
2222 isl_space_dim(dim
, isl_dim_set
), 1,
2224 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2225 coef
->n_eq
, coef
->n_ineq
);
2226 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2228 isl_space_free(dim
);
2233 /* Add constraints to graph->lp that force the dependence "map" (which
2234 * is part of the dependence relation of "edge")
2235 * to be respected and attempt to carry it, where the edge is one from
2236 * node j to node k. "pos" is the sequence number of the given map.
2237 * That is, add constraints that enforce
2239 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2241 * for each (x,y) in R.
2242 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2243 * of valid constraints for R and then plug in
2244 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2245 * with each coefficient (except e_i, c_k_0 and c_j_0)
2246 * represented as a pair of non-negative coefficients.
2248 static int add_inter_constraints(struct isl_sched_graph
*graph
,
2249 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
2252 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2254 isl_dim_map
*dim_map
;
2255 isl_basic_set
*coef
;
2256 struct isl_sched_node
*src
= edge
->src
;
2257 struct isl_sched_node
*dst
= edge
->dst
;
2259 coef
= inter_coefficients(graph
, map
);
2263 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2265 total
= isl_basic_set_total_dim(graph
->lp
);
2266 dim_map
= isl_dim_map_alloc(ctx
, total
);
2268 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2270 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
2271 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
2272 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
2273 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
2274 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2276 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
2277 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2280 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
2281 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
2282 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
2283 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
2284 isl_space_dim(dim
, isl_dim_set
), 1,
2286 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
2287 isl_space_dim(dim
, isl_dim_set
), 1,
2290 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2291 coef
->n_eq
, coef
->n_ineq
);
2292 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2294 isl_space_free(dim
);
2299 /* Add constraints to graph->lp that force all validity dependences
2300 * to be respected and attempt to carry them.
2302 static int add_all_constraints(struct isl_sched_graph
*graph
)
2308 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2309 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2311 if (!edge
->validity
)
2314 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2315 isl_basic_map
*bmap
;
2318 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2319 map
= isl_map_from_basic_map(bmap
);
2321 if (edge
->src
== edge
->dst
&&
2322 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
2324 if (edge
->src
!= edge
->dst
&&
2325 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
2334 /* Count the number of equality and inequality constraints
2335 * that will be added to the carry_lp problem.
2336 * We count each edge exactly once.
2338 static int count_all_constraints(struct isl_sched_graph
*graph
,
2339 int *n_eq
, int *n_ineq
)
2343 *n_eq
= *n_ineq
= 0;
2344 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2345 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2346 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2347 isl_basic_map
*bmap
;
2350 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2351 map
= isl_map_from_basic_map(bmap
);
2353 if (count_map_constraints(graph
, edge
, map
,
2354 n_eq
, n_ineq
, 1) < 0)
2362 /* Construct an LP problem for finding schedule coefficients
2363 * such that the schedule carries as many dependences as possible.
2364 * In particular, for each dependence i, we bound the dependence distance
2365 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2366 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2367 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2368 * Note that if the dependence relation is a union of basic maps,
2369 * then we have to consider each basic map individually as it may only
2370 * be possible to carry the dependences expressed by some of those
2371 * basic maps and not all off them.
2372 * Below, we consider each of those basic maps as a separate "edge".
2374 * All variables of the LP are non-negative. The actual coefficients
2375 * may be negative, so each coefficient is represented as the difference
2376 * of two non-negative variables. The negative part always appears
2377 * immediately before the positive part.
2378 * Other than that, the variables have the following order
2380 * - sum of (1 - e_i) over all edges
2381 * - sum of positive and negative parts of all c_n coefficients
2382 * (unconstrained when computing non-parametric schedules)
2383 * - sum of positive and negative parts of all c_x coefficients
2388 * - positive and negative parts of c_i_n (if parametric)
2389 * - positive and negative parts of c_i_x
2391 * The constraints are those from the (validity) edges plus three equalities
2392 * to express the sums and n_edge inequalities to express e_i <= 1.
2394 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2404 for (i
= 0; i
< graph
->n_edge
; ++i
)
2405 n_edge
+= graph
->edge
[i
].map
->n
;
2408 for (i
= 0; i
< graph
->n
; ++i
) {
2409 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2410 node
->start
= total
;
2411 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2414 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
2417 dim
= isl_space_set_alloc(ctx
, 0, total
);
2418 isl_basic_set_free(graph
->lp
);
2421 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2422 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
2424 k
= isl_basic_set_alloc_equality(graph
->lp
);
2427 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2428 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
2429 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
2430 for (i
= 0; i
< n_edge
; ++i
)
2431 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
2433 k
= isl_basic_set_alloc_equality(graph
->lp
);
2436 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2437 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
2438 for (i
= 0; i
< graph
->n
; ++i
) {
2439 int pos
= 1 + graph
->node
[i
].start
+ 1;
2441 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2442 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2445 k
= isl_basic_set_alloc_equality(graph
->lp
);
2448 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2449 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2450 for (i
= 0; i
< graph
->n
; ++i
) {
2451 struct isl_sched_node
*node
= &graph
->node
[i
];
2452 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2454 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2455 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2458 for (i
= 0; i
< n_edge
; ++i
) {
2459 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2462 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2463 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
2464 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
2467 if (add_all_constraints(graph
) < 0)
2473 /* If the schedule_split_scaled option is set and if the linear
2474 * parts of the scheduling rows for all nodes in the graphs have
2475 * non-trivial common divisor, then split off the constant term
2476 * from the linear part.
2477 * The constant term is then placed in a separate band and
2478 * the linear part is reduced.
2480 static int split_scaled(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2486 if (!ctx
->opt
->schedule_split_scaled
)
2491 if (graph
->n_total_row
>= graph
->max_row
)
2492 isl_die(ctx
, isl_error_internal
,
2493 "too many schedule rows", return -1);
2496 isl_int_init(gcd_i
);
2498 isl_int_set_si(gcd
, 0);
2500 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
2502 for (i
= 0; i
< graph
->n
; ++i
) {
2503 struct isl_sched_node
*node
= &graph
->node
[i
];
2504 int cols
= isl_mat_cols(node
->sched
);
2506 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
2507 isl_int_gcd(gcd
, gcd
, gcd_i
);
2510 isl_int_clear(gcd_i
);
2512 if (isl_int_cmp_si(gcd
, 1) <= 0) {
2519 for (i
= 0; i
< graph
->n
; ++i
) {
2520 struct isl_sched_node
*node
= &graph
->node
[i
];
2522 isl_map_free(node
->sched_map
);
2523 node
->sched_map
= NULL
;
2524 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2527 isl_int_fdiv_r(node
->sched
->row
[row
+ 1][0],
2528 node
->sched
->row
[row
][0], gcd
);
2529 isl_int_fdiv_q(node
->sched
->row
[row
][0],
2530 node
->sched
->row
[row
][0], gcd
);
2531 isl_int_mul(node
->sched
->row
[row
][0],
2532 node
->sched
->row
[row
][0], gcd
);
2533 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
2536 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2539 graph
->n_total_row
++;
2548 static int compute_component_schedule(isl_ctx
*ctx
,
2549 struct isl_sched_graph
*graph
);
2551 /* Is the schedule row "sol" trivial on node "node"?
2552 * That is, is the solution zero on the dimensions orthogonal to
2553 * the previously found solutions?
2554 * Each coefficient is represented as the difference between
2555 * two non-negative values in "sol". The coefficient is then
2556 * zero if those two values are equal to each other.
2558 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
2564 pos
= 1 + node
->start
+ 1 + 2 * (node
->nparam
+ node
->rank
);
2565 len
= 2 * (node
->nvar
- node
->rank
);
2570 for (i
= 0; i
< len
; i
+= 2)
2571 if (isl_int_ne(sol
->el
[pos
+ i
], sol
->el
[pos
+ i
+ 1]))
2577 /* Is the schedule row "sol" trivial on any node where it should
2580 static int is_any_trivial(struct isl_sched_graph
*graph
,
2581 __isl_keep isl_vec
*sol
)
2585 for (i
= 0; i
< graph
->n
; ++i
) {
2586 struct isl_sched_node
*node
= &graph
->node
[i
];
2588 if (!needs_row(graph
, node
))
2590 if (is_trivial(node
, sol
))
2597 /* Construct a schedule row for each node such that as many dependences
2598 * as possible are carried and then continue with the next band.
2600 * If the computed schedule row turns out to be trivial on one or
2601 * more nodes where it should not be trivial, then we throw it away
2602 * and try again on each component separately.
2604 static int carry_dependences(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2612 for (i
= 0; i
< graph
->n_edge
; ++i
)
2613 n_edge
+= graph
->edge
[i
].map
->n
;
2615 if (setup_carry_lp(ctx
, graph
) < 0)
2618 lp
= isl_basic_set_copy(graph
->lp
);
2619 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
2623 if (sol
->size
== 0) {
2625 isl_die(ctx
, isl_error_internal
,
2626 "error in schedule construction", return -1);
2629 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
2630 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
2632 isl_die(ctx
, isl_error_unknown
,
2633 "unable to carry dependences", return -1);
2636 if (is_any_trivial(graph
, sol
)) {
2639 return compute_component_schedule(ctx
, graph
);
2640 isl_die(ctx
, isl_error_unknown
,
2641 "unable to construct non-trivial solution", return -1);
2644 if (update_schedule(graph
, sol
, 0, 0) < 0)
2647 if (split_scaled(ctx
, graph
) < 0)
2650 return compute_next_band(ctx
, graph
);
2653 /* Are there any (non-empty) validity edges in the graph?
2655 static int has_validity_edges(struct isl_sched_graph
*graph
)
2659 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2662 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
2667 if (graph
->edge
[i
].validity
)
2674 /* Should we apply a Feautrier step?
2675 * That is, did the user request the Feautrier algorithm and are
2676 * there any validity dependences (left)?
2678 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2680 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
2683 return has_validity_edges(graph
);
2686 /* Compute a schedule for a connected dependence graph using Feautrier's
2687 * multi-dimensional scheduling algorithm.
2688 * The original algorithm is described in [1].
2689 * The main idea is to minimize the number of scheduling dimensions, by
2690 * trying to satisfy as many dependences as possible per scheduling dimension.
2692 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2693 * Problem, Part II: Multi-Dimensional Time.
2694 * In Intl. Journal of Parallel Programming, 1992.
2696 static int compute_schedule_wcc_feautrier(isl_ctx
*ctx
,
2697 struct isl_sched_graph
*graph
)
2699 return carry_dependences(ctx
, graph
);
2702 /* Compute a schedule for a connected dependence graph.
2703 * We try to find a sequence of as many schedule rows as possible that result
2704 * in non-negative dependence distances (independent of the previous rows
2705 * in the sequence, i.e., such that the sequence is tilable).
2706 * If we can't find any more rows we either
2707 * - split between SCCs and start over (assuming we found an interesting
2708 * pair of SCCs between which to split)
2709 * - continue with the next band (assuming the current band has at least
2711 * - try to carry as many dependences as possible and continue with the next
2714 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2715 * as many validity dependences as possible. When all validity dependences
2716 * are satisfied we extend the schedule to a full-dimensional schedule.
2718 * If we manage to complete the schedule, we finish off by topologically
2719 * sorting the statements based on the remaining dependences.
2721 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2722 * outermost dimension in the current band to be zero distance. If this
2723 * turns out to be impossible, we fall back on the general scheme above
2724 * and try to carry as many dependences as possible.
2726 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2730 if (detect_sccs(ctx
, graph
) < 0)
2732 if (sort_sccs(graph
) < 0)
2735 if (compute_maxvar(graph
) < 0)
2738 if (need_feautrier_step(ctx
, graph
))
2739 return compute_schedule_wcc_feautrier(ctx
, graph
);
2741 if (ctx
->opt
->schedule_outer_zero_distance
)
2744 while (graph
->n_row
< graph
->maxvar
) {
2747 graph
->src_scc
= -1;
2748 graph
->dst_scc
= -1;
2750 if (setup_lp(ctx
, graph
, force_zero
) < 0)
2752 sol
= solve_lp(graph
);
2755 if (sol
->size
== 0) {
2757 if (!ctx
->opt
->schedule_maximize_band_depth
&&
2758 graph
->n_total_row
> graph
->band_start
)
2759 return compute_next_band(ctx
, graph
);
2760 if (graph
->src_scc
>= 0)
2761 return compute_split_schedule(ctx
, graph
);
2762 if (graph
->n_total_row
> graph
->band_start
)
2763 return compute_next_band(ctx
, graph
);
2764 return carry_dependences(ctx
, graph
);
2766 if (update_schedule(graph
, sol
, 1, 1) < 0)
2771 if (graph
->n_total_row
> graph
->band_start
)
2773 return sort_statements(ctx
, graph
);
2776 /* Add a row to the schedules that separates the SCCs and move
2779 static int split_on_scc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2783 if (graph
->n_total_row
>= graph
->max_row
)
2784 isl_die(ctx
, isl_error_internal
,
2785 "too many schedule rows", return -1);
2787 for (i
= 0; i
< graph
->n
; ++i
) {
2788 struct isl_sched_node
*node
= &graph
->node
[i
];
2789 int row
= isl_mat_rows(node
->sched
);
2791 isl_map_free(node
->sched_map
);
2792 node
->sched_map
= NULL
;
2793 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2794 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2798 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2801 graph
->n_total_row
++;
2807 /* Compute a schedule for each component (identified by node->scc)
2808 * of the dependence graph separately and then combine the results.
2809 * Depending on the setting of schedule_fuse, a component may be
2810 * either weakly or strongly connected.
2812 * The band_id is adjusted such that each component has a separate id.
2813 * Note that the band_id may have already been set to a value different
2814 * from zero by compute_split_schedule.
2816 static int compute_component_schedule(isl_ctx
*ctx
,
2817 struct isl_sched_graph
*graph
)
2821 int n_total_row
, orig_total_row
;
2822 int n_band
, orig_band
;
2824 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
||
2825 ctx
->opt
->schedule_separate_components
)
2826 if (split_on_scc(ctx
, graph
) < 0)
2830 orig_total_row
= graph
->n_total_row
;
2832 orig_band
= graph
->n_band
;
2833 for (i
= 0; i
< graph
->n
; ++i
)
2834 graph
->node
[i
].band_id
[graph
->n_band
] += graph
->node
[i
].scc
;
2835 for (wcc
= 0; wcc
< graph
->scc
; ++wcc
) {
2837 for (i
= 0; i
< graph
->n
; ++i
)
2838 if (graph
->node
[i
].scc
== wcc
)
2841 for (i
= 0; i
< graph
->n_edge
; ++i
)
2842 if (graph
->edge
[i
].src
->scc
== wcc
&&
2843 graph
->edge
[i
].dst
->scc
== wcc
)
2846 if (compute_sub_schedule(ctx
, graph
, n
, n_edge
,
2848 &edge_scc_exactly
, wcc
, 1) < 0)
2850 if (graph
->n_total_row
> n_total_row
)
2851 n_total_row
= graph
->n_total_row
;
2852 graph
->n_total_row
= orig_total_row
;
2853 if (graph
->n_band
> n_band
)
2854 n_band
= graph
->n_band
;
2855 graph
->n_band
= orig_band
;
2858 graph
->n_total_row
= n_total_row
;
2859 graph
->n_band
= n_band
;
2861 return pad_schedule(graph
);
2864 /* Compute a schedule for the given dependence graph.
2865 * We first check if the graph is connected (through validity dependences)
2866 * and, if not, compute a schedule for each component separately.
2867 * If schedule_fuse is set to minimal fusion, then we check for strongly
2868 * connected components instead and compute a separate schedule for
2869 * each such strongly connected component.
2871 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2873 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
) {
2874 if (detect_sccs(ctx
, graph
) < 0)
2877 if (detect_wccs(ctx
, graph
) < 0)
2882 return compute_component_schedule(ctx
, graph
);
2884 return compute_schedule_wcc(ctx
, graph
);
2887 /* Compute a schedule for the given union of domains that respects
2888 * all the validity dependences.
2889 * If the default isl scheduling algorithm is used, it tries to minimize
2890 * the dependence distances over the proximity dependences.
2891 * If Feautrier's scheduling algorithm is used, the proximity dependence
2892 * distances are only minimized during the extension to a full-dimensional
2895 __isl_give isl_schedule
*isl_union_set_compute_schedule(
2896 __isl_take isl_union_set
*domain
,
2897 __isl_take isl_union_map
*validity
,
2898 __isl_take isl_union_map
*proximity
)
2900 isl_ctx
*ctx
= isl_union_set_get_ctx(domain
);
2902 struct isl_sched_graph graph
= { 0 };
2903 isl_schedule
*sched
;
2904 struct isl_extract_edge_data data
;
2906 domain
= isl_union_set_align_params(domain
,
2907 isl_union_map_get_space(validity
));
2908 domain
= isl_union_set_align_params(domain
,
2909 isl_union_map_get_space(proximity
));
2910 dim
= isl_union_set_get_space(domain
);
2911 validity
= isl_union_map_align_params(validity
, isl_space_copy(dim
));
2912 proximity
= isl_union_map_align_params(proximity
, dim
);
2917 graph
.n
= isl_union_set_n_set(domain
);
2920 if (graph_alloc(ctx
, &graph
, graph
.n
,
2921 isl_union_map_n_map(validity
) + isl_union_map_n_map(proximity
)) < 0)
2923 if (compute_max_row(&graph
, domain
) < 0)
2927 if (isl_union_set_foreach_set(domain
, &extract_node
, &graph
) < 0)
2929 if (graph_init_table(ctx
, &graph
) < 0)
2931 graph
.max_edge
[isl_edge_validity
] = isl_union_map_n_map(validity
);
2932 graph
.max_edge
[isl_edge_proximity
] = isl_union_map_n_map(proximity
);
2933 if (graph_init_edge_tables(ctx
, &graph
) < 0)
2936 data
.graph
= &graph
;
2937 data
.type
= isl_edge_validity
;
2938 if (isl_union_map_foreach_map(validity
, &extract_edge
, &data
) < 0)
2940 data
.type
= isl_edge_proximity
;
2941 if (isl_union_map_foreach_map(proximity
, &extract_edge
, &data
) < 0)
2944 if (compute_schedule(ctx
, &graph
) < 0)
2948 sched
= extract_schedule(&graph
, isl_union_set_get_space(domain
));
2950 graph_free(ctx
, &graph
);
2951 isl_union_set_free(domain
);
2952 isl_union_map_free(validity
);
2953 isl_union_map_free(proximity
);
2957 graph_free(ctx
, &graph
);
2958 isl_union_set_free(domain
);
2959 isl_union_map_free(validity
);
2960 isl_union_map_free(proximity
);
2964 void *isl_schedule_free(__isl_take isl_schedule
*sched
)
2970 if (--sched
->ref
> 0)
2973 for (i
= 0; i
< sched
->n
; ++i
) {
2974 isl_multi_aff_free(sched
->node
[i
].sched
);
2975 free(sched
->node
[i
].band_end
);
2976 free(sched
->node
[i
].band_id
);
2977 free(sched
->node
[i
].zero
);
2979 isl_space_free(sched
->dim
);
2980 isl_band_list_free(sched
->band_forest
);
2985 isl_ctx
*isl_schedule_get_ctx(__isl_keep isl_schedule
*schedule
)
2987 return schedule
? isl_space_get_ctx(schedule
->dim
) : NULL
;
2990 /* Set max_out to the maximal number of output dimensions over
2993 static int update_max_out(__isl_take isl_map
*map
, void *user
)
2995 int *max_out
= user
;
2996 int n_out
= isl_map_dim(map
, isl_dim_out
);
2998 if (n_out
> *max_out
)
3005 /* Internal data structure for map_pad_range.
3007 * "max_out" is the maximal schedule dimension.
3008 * "res" collects the results.
3010 struct isl_pad_schedule_map_data
{
3015 /* Pad the range of the given map with zeros to data->max_out and
3016 * then add the result to data->res.
3018 static int map_pad_range(__isl_take isl_map
*map
, void *user
)
3020 struct isl_pad_schedule_map_data
*data
= user
;
3022 int n_out
= isl_map_dim(map
, isl_dim_out
);
3024 map
= isl_map_add_dims(map
, isl_dim_out
, data
->max_out
- n_out
);
3025 for (i
= n_out
; i
< data
->max_out
; ++i
)
3026 map
= isl_map_fix_si(map
, isl_dim_out
, i
, 0);
3028 data
->res
= isl_union_map_add_map(data
->res
, map
);
3035 /* Pad the ranges of the maps in the union map with zeros such they all have
3036 * the same dimension.
3038 static __isl_give isl_union_map
*pad_schedule_map(
3039 __isl_take isl_union_map
*umap
)
3041 struct isl_pad_schedule_map_data data
;
3045 if (isl_union_map_n_map(umap
) <= 1)
3049 if (isl_union_map_foreach_map(umap
, &update_max_out
, &data
.max_out
) < 0)
3050 return isl_union_map_free(umap
);
3052 data
.res
= isl_union_map_empty(isl_union_map_get_space(umap
));
3053 if (isl_union_map_foreach_map(umap
, &map_pad_range
, &data
) < 0)
3054 data
.res
= isl_union_map_free(data
.res
);
3056 isl_union_map_free(umap
);
3060 /* Return an isl_union_map of the schedule. If we have already constructed
3061 * a band forest, then this band forest may have been modified so we need
3062 * to extract the isl_union_map from the forest rather than from
3063 * the originally computed schedule. This reconstructed schedule map
3064 * then needs to be padded with zeros to unify the schedule space
3065 * since the result of isl_band_list_get_suffix_schedule may not have
3066 * a unified schedule space.
3068 __isl_give isl_union_map
*isl_schedule_get_map(__isl_keep isl_schedule
*sched
)
3071 isl_union_map
*umap
;
3076 if (sched
->band_forest
) {
3077 umap
= isl_band_list_get_suffix_schedule(sched
->band_forest
);
3078 return pad_schedule_map(umap
);
3081 umap
= isl_union_map_empty(isl_space_copy(sched
->dim
));
3082 for (i
= 0; i
< sched
->n
; ++i
) {
3085 ma
= isl_multi_aff_copy(sched
->node
[i
].sched
);
3086 umap
= isl_union_map_add_map(umap
, isl_map_from_multi_aff(ma
));
3092 static __isl_give isl_band_list
*construct_band_list(
3093 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
3094 int band_nr
, int *parent_active
, int n_active
);
3096 /* Construct an isl_band structure for the band in the given schedule
3097 * with sequence number band_nr for the n_active nodes marked by active.
3098 * If the nodes don't have a band with the given sequence number,
3099 * then a band without members is created.
3101 * Because of the way the schedule is constructed, we know that
3102 * the position of the band inside the schedule of a node is the same
3103 * for all active nodes.
3105 * The partial schedule for the band is created before the children
3106 * are created to that construct_band_list can refer to the partial
3107 * schedule of the parent.
3109 static __isl_give isl_band
*construct_band(__isl_keep isl_schedule
*schedule
,
3110 __isl_keep isl_band
*parent
,
3111 int band_nr
, int *active
, int n_active
)
3114 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3116 unsigned start
, end
;
3118 band
= isl_band_alloc(ctx
);
3122 band
->schedule
= schedule
;
3123 band
->parent
= parent
;
3125 for (i
= 0; i
< schedule
->n
; ++i
)
3129 if (i
>= schedule
->n
)
3130 isl_die(ctx
, isl_error_internal
,
3131 "band without active statements", goto error
);
3133 start
= band_nr
? schedule
->node
[i
].band_end
[band_nr
- 1] : 0;
3134 end
= band_nr
< schedule
->node
[i
].n_band
?
3135 schedule
->node
[i
].band_end
[band_nr
] : start
;
3136 band
->n
= end
- start
;
3138 band
->zero
= isl_alloc_array(ctx
, int, band
->n
);
3142 for (j
= 0; j
< band
->n
; ++j
)
3143 band
->zero
[j
] = schedule
->node
[i
].zero
[start
+ j
];
3145 band
->pma
= isl_union_pw_multi_aff_empty(isl_space_copy(schedule
->dim
));
3146 for (i
= 0; i
< schedule
->n
; ++i
) {
3148 isl_pw_multi_aff
*pma
;
3154 ma
= isl_multi_aff_copy(schedule
->node
[i
].sched
);
3155 n_out
= isl_multi_aff_dim(ma
, isl_dim_out
);
3156 ma
= isl_multi_aff_drop_dims(ma
, isl_dim_out
, end
, n_out
- end
);
3157 ma
= isl_multi_aff_drop_dims(ma
, isl_dim_out
, 0, start
);
3158 pma
= isl_pw_multi_aff_from_multi_aff(ma
);
3159 band
->pma
= isl_union_pw_multi_aff_add_pw_multi_aff(band
->pma
,
3165 for (i
= 0; i
< schedule
->n
; ++i
)
3166 if (active
[i
] && schedule
->node
[i
].n_band
> band_nr
+ 1)
3169 if (i
< schedule
->n
) {
3170 band
->children
= construct_band_list(schedule
, band
,
3171 band_nr
+ 1, active
, n_active
);
3172 if (!band
->children
)
3178 isl_band_free(band
);
3182 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
3184 * r is set to a negative value if anything goes wrong.
3186 * c1 stores the result of extract_int.
3187 * c2 is a temporary value used inside cmp_band_in_ancestor.
3188 * t is a temporary value used inside extract_int.
3190 * first and equal are used inside extract_int.
3191 * first is set if we are looking at the first isl_multi_aff inside
3192 * the isl_union_pw_multi_aff.
3193 * equal is set if all the isl_multi_affs have been equal so far.
3195 struct isl_cmp_band_data
{
3206 /* Check if "ma" assigns a constant value.
3207 * Note that this function is only called on isl_multi_affs
3208 * with a single output dimension.
3210 * If "ma" assigns a constant value then we compare it to data->c1
3211 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
3212 * If "ma" does not assign a constant value or if it assigns a value
3213 * that is different from data->c1, then we set data->equal to zero
3214 * and terminate the check.
3216 static int multi_aff_extract_int(__isl_take isl_set
*set
,
3217 __isl_take isl_multi_aff
*ma
, void *user
)
3220 struct isl_cmp_band_data
*data
= user
;
3222 aff
= isl_multi_aff_get_aff(ma
, 0);
3223 data
->r
= isl_aff_is_cst(aff
);
3224 if (data
->r
>= 0 && data
->r
) {
3225 isl_aff_get_constant(aff
, &data
->t
);
3227 isl_int_set(data
->c1
, data
->t
);
3229 } else if (!isl_int_eq(data
->c1
, data
->t
))
3231 } else if (data
->r
>= 0 && !data
->r
)
3236 isl_multi_aff_free(ma
);
3245 /* This function is called for each isl_pw_multi_aff in
3246 * the isl_union_pw_multi_aff checked by extract_int.
3247 * Check all the isl_multi_affs inside "pma".
3249 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff
*pma
,
3254 r
= isl_pw_multi_aff_foreach_piece(pma
, &multi_aff_extract_int
, user
);
3255 isl_pw_multi_aff_free(pma
);
3260 /* Check if "upma" assigns a single constant value to its domain.
3261 * If so, return 1 and store the result in data->c1.
3264 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
3265 * means that either an error occurred or that we have broken off the check
3266 * because we already know the result is going to be negative.
3267 * In the latter case, data->equal is set to zero.
3269 static int extract_int(__isl_keep isl_union_pw_multi_aff
*upma
,
3270 struct isl_cmp_band_data
*data
)
3275 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma
,
3276 &pw_multi_aff_extract_int
, data
) < 0) {
3282 return !data
->first
&& data
->equal
;
3285 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
3288 * If the parent of "ancestor" also has a single member, then we
3289 * first try to compare the two band based on the partial schedule
3292 * Otherwise, or if the result is inconclusive, we look at the partial schedule
3293 * of "ancestor" itself.
3294 * In particular, we specialize the parent schedule based
3295 * on the domains of the child schedules, check if both assign
3296 * a single constant value and, if so, compare the two constant values.
3297 * If the specialized parent schedules do not assign a constant value,
3298 * then they cannot be used to order the two bands and so in this case
3301 static int cmp_band_in_ancestor(__isl_keep isl_band
*b1
,
3302 __isl_keep isl_band
*b2
, struct isl_cmp_band_data
*data
,
3303 __isl_keep isl_band
*ancestor
)
3305 isl_union_pw_multi_aff
*upma
;
3306 isl_union_set
*domain
;
3312 if (ancestor
->parent
&& ancestor
->parent
->n
== 1) {
3313 r
= cmp_band_in_ancestor(b1
, b2
, data
, ancestor
->parent
);
3320 upma
= isl_union_pw_multi_aff_copy(b1
->pma
);
3321 domain
= isl_union_pw_multi_aff_domain(upma
);
3322 upma
= isl_union_pw_multi_aff_copy(ancestor
->pma
);
3323 upma
= isl_union_pw_multi_aff_intersect_domain(upma
, domain
);
3324 r
= extract_int(upma
, data
);
3325 isl_union_pw_multi_aff_free(upma
);
3332 isl_int_set(data
->c2
, data
->c1
);
3334 upma
= isl_union_pw_multi_aff_copy(b2
->pma
);
3335 domain
= isl_union_pw_multi_aff_domain(upma
);
3336 upma
= isl_union_pw_multi_aff_copy(ancestor
->pma
);
3337 upma
= isl_union_pw_multi_aff_intersect_domain(upma
, domain
);
3338 r
= extract_int(upma
, data
);
3339 isl_union_pw_multi_aff_free(upma
);
3346 return isl_int_cmp(data
->c2
, data
->c1
);
3349 /* Compare "a" and "b" based on the parent schedule of their parent.
3351 static int cmp_band(const void *a
, const void *b
, void *user
)
3353 isl_band
*b1
= *(isl_band
* const *) a
;
3354 isl_band
*b2
= *(isl_band
* const *) b
;
3355 struct isl_cmp_band_data
*data
= user
;
3357 return cmp_band_in_ancestor(b1
, b2
, data
, b1
->parent
);
3360 /* Sort the elements in "list" based on the partial schedules of its parent
3361 * (and ancestors). In particular if the parent assigns constant values
3362 * to the domains of the bands in "list", then the elements are sorted
3363 * according to that order.
3364 * This order should be a more "natural" order for the user, but otherwise
3365 * shouldn't have any effect.
3366 * If we would be constructing an isl_band forest directly in
3367 * isl_union_set_compute_schedule then there wouldn't be any need
3368 * for a reordering, since the children would be added to the list
3369 * in their natural order automatically.
3371 * If there is only one element in the list, then there is no need to sort
3373 * If the partial schedule of the parent has more than one member
3374 * (or if there is no parent), then it's
3375 * defnitely not assigning constant values to the different children in
3376 * the list and so we wouldn't be able to use it to sort the list.
3378 static __isl_give isl_band_list
*sort_band_list(__isl_take isl_band_list
*list
,
3379 __isl_keep isl_band
*parent
)
3381 struct isl_cmp_band_data data
;
3387 if (!parent
|| parent
->n
!= 1)
3391 isl_int_init(data
.c1
);
3392 isl_int_init(data
.c2
);
3393 isl_int_init(data
.t
);
3394 isl_sort(list
->p
, list
->n
, sizeof(list
->p
[0]), &cmp_band
, &data
);
3396 list
= isl_band_list_free(list
);
3397 isl_int_clear(data
.c1
);
3398 isl_int_clear(data
.c2
);
3399 isl_int_clear(data
.t
);
3404 /* Construct a list of bands that start at the same position (with
3405 * sequence number band_nr) in the schedules of the nodes that
3406 * were active in the parent band.
3408 * A separate isl_band structure is created for each band_id
3409 * and for each node that does not have a band with sequence
3410 * number band_nr. In the latter case, a band without members
3412 * This ensures that if a band has any children, then each node
3413 * that was active in the band is active in exactly one of the children.
3415 static __isl_give isl_band_list
*construct_band_list(
3416 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
3417 int band_nr
, int *parent_active
, int n_active
)
3420 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3423 isl_band_list
*list
;
3426 for (i
= 0; i
< n_active
; ++i
) {
3427 for (j
= 0; j
< schedule
->n
; ++j
) {
3428 if (!parent_active
[j
])
3430 if (schedule
->node
[j
].n_band
<= band_nr
)
3432 if (schedule
->node
[j
].band_id
[band_nr
] == i
) {
3438 for (j
= 0; j
< schedule
->n
; ++j
)
3439 if (schedule
->node
[j
].n_band
<= band_nr
)
3444 list
= isl_band_list_alloc(ctx
, n_band
);
3445 band
= construct_band(schedule
, parent
, band_nr
,
3446 parent_active
, n_active
);
3447 return isl_band_list_add(list
, band
);
3450 active
= isl_alloc_array(ctx
, int, schedule
->n
);
3454 list
= isl_band_list_alloc(ctx
, n_band
);
3456 for (i
= 0; i
< n_active
; ++i
) {
3460 for (j
= 0; j
< schedule
->n
; ++j
) {
3461 active
[j
] = parent_active
[j
] &&
3462 schedule
->node
[j
].n_band
> band_nr
&&
3463 schedule
->node
[j
].band_id
[band_nr
] == i
;
3470 band
= construct_band(schedule
, parent
, band_nr
, active
, n
);
3472 list
= isl_band_list_add(list
, band
);
3474 for (i
= 0; i
< schedule
->n
; ++i
) {
3476 if (!parent_active
[i
])
3478 if (schedule
->node
[i
].n_band
> band_nr
)
3480 for (j
= 0; j
< schedule
->n
; ++j
)
3482 band
= construct_band(schedule
, parent
, band_nr
, active
, 1);
3483 list
= isl_band_list_add(list
, band
);
3488 list
= sort_band_list(list
, parent
);
3493 /* Construct a band forest representation of the schedule and
3494 * return the list of roots.
3496 static __isl_give isl_band_list
*construct_forest(
3497 __isl_keep isl_schedule
*schedule
)
3500 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3501 isl_band_list
*forest
;
3504 active
= isl_alloc_array(ctx
, int, schedule
->n
);
3508 for (i
= 0; i
< schedule
->n
; ++i
)
3511 forest
= construct_band_list(schedule
, NULL
, 0, active
, schedule
->n
);
3518 /* Return the roots of a band forest representation of the schedule.
3520 __isl_give isl_band_list
*isl_schedule_get_band_forest(
3521 __isl_keep isl_schedule
*schedule
)
3525 if (!schedule
->band_forest
)
3526 schedule
->band_forest
= construct_forest(schedule
);
3527 return isl_band_list_dup(schedule
->band_forest
);
3530 /* Call "fn" on each band in the schedule in depth-first post-order.
3532 int isl_schedule_foreach_band(__isl_keep isl_schedule
*sched
,
3533 int (*fn
)(__isl_keep isl_band
*band
, void *user
), void *user
)
3536 isl_band_list
*forest
;
3541 forest
= isl_schedule_get_band_forest(sched
);
3542 r
= isl_band_list_foreach_band(forest
, fn
, user
);
3543 isl_band_list_free(forest
);
3548 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
3549 __isl_keep isl_band_list
*list
);
3551 static __isl_give isl_printer
*print_band(__isl_take isl_printer
*p
,
3552 __isl_keep isl_band
*band
)
3554 isl_band_list
*children
;
3556 p
= isl_printer_start_line(p
);
3557 p
= isl_printer_print_union_pw_multi_aff(p
, band
->pma
);
3558 p
= isl_printer_end_line(p
);
3560 if (!isl_band_has_children(band
))
3563 children
= isl_band_get_children(band
);
3565 p
= isl_printer_indent(p
, 4);
3566 p
= print_band_list(p
, children
);
3567 p
= isl_printer_indent(p
, -4);
3569 isl_band_list_free(children
);
3574 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
3575 __isl_keep isl_band_list
*list
)
3579 n
= isl_band_list_n_band(list
);
3580 for (i
= 0; i
< n
; ++i
) {
3582 band
= isl_band_list_get_band(list
, i
);
3583 p
= print_band(p
, band
);
3584 isl_band_free(band
);
3590 __isl_give isl_printer
*isl_printer_print_schedule(__isl_take isl_printer
*p
,
3591 __isl_keep isl_schedule
*schedule
)
3593 isl_band_list
*forest
;
3595 forest
= isl_schedule_get_band_forest(schedule
);
3597 p
= print_band_list(p
, forest
);
3599 isl_band_list_free(forest
);
3604 void isl_schedule_dump(__isl_keep isl_schedule
*schedule
)
3606 isl_printer
*printer
;
3611 printer
= isl_printer_to_file(isl_schedule_get_ctx(schedule
), stderr
);
3612 printer
= isl_printer_print_schedule(printer
, schedule
);
3614 isl_printer_free(printer
);