2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/space.h>
14 #include <isl/constraint.h>
17 #include <isl_ast_build_expr.h>
18 #include <isl_ast_private.h>
19 #include <isl_ast_build_private.h>
22 /* Compute the "opposite" of the (numerator of the) argument of a div
23 * with denominator "d".
25 * In particular, compute
29 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
30 __isl_take isl_val
*d
)
32 aff
= isl_aff_neg(aff
);
33 aff
= isl_aff_add_constant_val(aff
, d
);
34 aff
= isl_aff_add_constant_si(aff
, -1);
39 /* Internal data structure used inside isl_ast_expr_add_term.
40 * The domain of "build" is used to simplify the expressions.
41 * "build" needs to be set by the caller of isl_ast_expr_add_term.
42 * "cst" is the constant term of the expression in which the added term
43 * appears. It may be modified by isl_ast_expr_add_term.
45 * "v" is the coefficient of the term that is being constructed and
46 * is set internally by isl_ast_expr_add_term.
48 struct isl_ast_add_term_data
{
54 /* Given the numerator "aff" of the argument of an integer division
55 * with denominator "d", check if it can be made non-negative over
56 * data->build->domain by stealing part of the constant term of
57 * the expression in which the integer division appears.
59 * In particular, the outer expression is of the form
61 * v * floor(aff/d) + cst
63 * We already know that "aff" itself may attain negative values.
64 * Here we check if aff + d*floor(cst/v) is non-negative, such
65 * that we could rewrite the expression to
67 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
69 * Note that aff + d*floor(cst/v) can only possibly be non-negative
70 * if data->cst and data->v have the same sign.
71 * Similarly, if floor(cst/v) is zero, then there is no point in
74 static int is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
75 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
82 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
85 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
86 shift
= isl_val_floor(shift
);
87 is_zero
= isl_val_is_zero(shift
);
88 if (is_zero
< 0 || is_zero
) {
90 return is_zero
< 0 ? -1 : 0;
92 shift
= isl_val_mul(shift
, isl_val_copy(d
));
93 shifted
= isl_aff_copy(aff
);
94 shifted
= isl_aff_add_constant_val(shifted
, shift
);
95 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
96 isl_aff_free(shifted
);
101 /* Given the numerator "aff' of the argument of an integer division
102 * with denominator "d", steal part of the constant term of
103 * the expression in which the integer division appears to make it
104 * non-negative over data->build->domain.
106 * In particular, the outer expression is of the form
108 * v * floor(aff/d) + cst
110 * We know that "aff" itself may attain negative values,
111 * but that aff + d*floor(cst/v) is non-negative.
112 * Find the minimal positive value that we need to add to "aff"
113 * to make it positive and adjust data->cst accordingly.
114 * That is, compute the minimal value "m" of "aff" over
115 * data->build->domain and take
123 * and rewrite the expression to
125 * v * floor((aff + s*d)/d) + (cst - v*s)
127 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
128 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
133 domain
= isl_ast_build_get_domain(data
->build
);
134 shift
= isl_set_min_val(domain
, aff
);
135 isl_set_free(domain
);
137 shift
= isl_val_neg(shift
);
138 shift
= isl_val_div(shift
, isl_val_copy(d
));
139 shift
= isl_val_ceil(shift
);
141 t
= isl_val_copy(shift
);
142 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
143 data
->cst
= isl_val_sub(data
->cst
, t
);
145 shift
= isl_val_mul(shift
, isl_val_copy(d
));
146 return isl_aff_add_constant_val(aff
, shift
);
149 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
150 * The result is simplified in terms of data->build->domain.
151 * This function may change (the sign of) data->v.
153 * "ls" is known to be non-NULL.
155 * Let the div be of the form floor(e/d).
156 * If the ast_build_prefer_pdiv option is set then we check if "e"
157 * is non-negative, so that we can generate
159 * (pdiv_q, expr(e), expr(d))
163 * (fdiv_q, expr(e), expr(d))
165 * If the ast_build_prefer_pdiv option is set and
166 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
167 * If so, we can rewrite
169 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
171 * and still use pdiv_q, while changing the sign of data->v.
173 * Otherwise, we check if
177 * is non-negative and if so, replace floor(e/d) by
179 * floor((e + s*d)/d) - s
181 * with s the minimal shift that makes the argument non-negative.
183 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
184 __isl_keep isl_local_space
*ls
, int pos
)
186 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
188 isl_ast_expr
*num
, *den
;
190 enum isl_ast_op_type type
;
192 aff
= isl_local_space_get_div(ls
, pos
);
193 d
= isl_aff_get_denominator_val(aff
);
194 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
195 den
= isl_ast_expr_from_val(isl_val_copy(d
));
197 type
= isl_ast_op_fdiv_q
;
198 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
199 int non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
200 if (non_neg
>= 0 && !non_neg
) {
201 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
203 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
204 if (non_neg
>= 0 && non_neg
) {
205 data
->v
= isl_val_neg(data
->v
);
211 if (non_neg
>= 0 && !non_neg
) {
212 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
213 if (non_neg
>= 0 && non_neg
)
214 aff
= steal_from_cst(aff
, d
, data
);
217 aff
= isl_aff_free(aff
);
219 type
= isl_ast_op_pdiv_q
;
223 num
= isl_ast_expr_from_aff(aff
, data
->build
);
224 return isl_ast_expr_alloc_binary(type
, num
, den
);
227 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
228 * The result is simplified in terms of data->build->domain.
229 * This function may change (the sign of) data->v.
231 * The isl_ast_expr is constructed based on the type of the dimension.
232 * - divs are constructed by var_div
233 * - set variables are constructed from the iterator isl_ids in data->build
234 * - parameters are constructed from the isl_ids in "ls"
236 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
237 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
)
239 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
242 if (type
== isl_dim_div
)
243 return var_div(data
, ls
, pos
);
245 if (type
== isl_dim_set
) {
246 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
247 return isl_ast_expr_from_id(id
);
250 if (!isl_local_space_has_dim_id(ls
, type
, pos
))
251 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
253 id
= isl_local_space_get_dim_id(ls
, type
, pos
);
254 return isl_ast_expr_from_id(id
);
257 /* Does "expr" represent the zero integer?
259 static int ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
263 if (expr
->type
!= isl_ast_expr_int
)
265 return isl_val_is_zero(expr
->u
.v
);
268 /* Create an expression representing the sum of "expr1" and "expr2",
269 * provided neither of the two expressions is identically zero.
271 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
272 __isl_take isl_ast_expr
*expr2
)
274 if (!expr1
|| !expr2
)
277 if (ast_expr_is_zero(expr1
)) {
278 isl_ast_expr_free(expr1
);
282 if (ast_expr_is_zero(expr2
)) {
283 isl_ast_expr_free(expr2
);
287 return isl_ast_expr_add(expr1
, expr2
);
289 isl_ast_expr_free(expr1
);
290 isl_ast_expr_free(expr2
);
294 /* Subtract expr2 from expr1.
296 * If expr2 is zero, we simply return expr1.
297 * If expr1 is zero, we return
299 * (isl_ast_op_minus, expr2)
301 * Otherwise, we return
303 * (isl_ast_op_sub, expr1, expr2)
305 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
306 __isl_take isl_ast_expr
*expr2
)
308 if (!expr1
|| !expr2
)
311 if (ast_expr_is_zero(expr2
)) {
312 isl_ast_expr_free(expr2
);
316 if (ast_expr_is_zero(expr1
)) {
317 isl_ast_expr_free(expr1
);
318 return isl_ast_expr_neg(expr2
);
321 return isl_ast_expr_sub(expr1
, expr2
);
323 isl_ast_expr_free(expr1
);
324 isl_ast_expr_free(expr2
);
328 /* Return an isl_ast_expr that represents
332 * v is assumed to be non-negative.
333 * The result is simplified in terms of build->domain.
335 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
336 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
337 __isl_keep isl_ast_build
*build
)
345 expr
= isl_ast_expr_from_aff(isl_aff_copy(aff
), build
);
347 c
= isl_ast_expr_from_val(isl_val_copy(d
));
348 expr
= isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r
, expr
, c
);
350 if (!isl_val_is_one(v
)) {
351 c
= isl_ast_expr_from_val(isl_val_copy(v
));
352 expr
= isl_ast_expr_mul(c
, expr
);
358 /* Create an isl_ast_expr that scales "expr" by "v".
360 * If v is 1, we simply return expr.
361 * If v is -1, we return
363 * (isl_ast_op_minus, expr)
365 * Otherwise, we return
367 * (isl_ast_op_mul, expr(v), expr)
369 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
370 __isl_take isl_val
*v
)
376 if (isl_val_is_one(v
)) {
381 if (isl_val_is_negone(v
)) {
383 expr
= isl_ast_expr_neg(expr
);
385 c
= isl_ast_expr_from_val(v
);
386 expr
= isl_ast_expr_mul(c
, expr
);
392 isl_ast_expr_free(expr
);
396 /* Add an expression for "*v" times the specified dimension of "ls"
398 * If the dimension is an integer division, then this function
399 * may modify data->cst in order to make the numerator non-negative.
400 * The result is simplified in terms of data->build->domain.
402 * Let e be the expression for the specified dimension,
403 * multiplied by the absolute value of "*v".
404 * If "*v" is negative, we create
406 * (isl_ast_op_sub, expr, e)
408 * except when expr is trivially zero, in which case we create
410 * (isl_ast_op_minus, e)
414 * If "*v" is positive, we simply create
416 * (isl_ast_op_add, expr, e)
419 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
420 __isl_take isl_ast_expr
*expr
,
421 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
,
422 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
430 term
= var(data
, ls
, type
, pos
);
433 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
435 term
= scale(term
, v
);
436 return ast_expr_sub(expr
, term
);
438 term
= scale(term
, v
);
439 return ast_expr_add(expr
, term
);
443 /* Add an expression for "v" to expr.
445 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
446 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
448 isl_ast_expr
*expr_int
;
453 if (isl_val_is_zero(v
)) {
458 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
460 expr_int
= isl_ast_expr_from_val(v
);
461 return ast_expr_sub(expr
, expr_int
);
463 expr_int
= isl_ast_expr_from_val(v
);
464 return ast_expr_add(expr
, expr_int
);
467 isl_ast_expr_free(expr
);
472 /* Internal data structure used inside extract_modulos.
474 * If any modulo expressions are detected in "aff", then the
475 * expression is removed from "aff" and added to either "pos" or "neg"
476 * depending on the sign of the coefficient of the modulo expression
479 * "add" is an expression that needs to be added to "aff" at the end of
480 * the computation. It is NULL as long as no modulos have been extracted.
482 * "i" is the position in "aff" of the div under investigation
483 * "v" is the coefficient in "aff" of the div
484 * "div" is the argument of the div, with the denominator removed
485 * "d" is the original denominator of the argument of the div
487 * "nonneg" is an affine expression that is non-negative over "build"
488 * and that can be used to extract a modulo expression from "div".
489 * In particular, if "sign" is 1, then the coefficients of "nonneg"
490 * are equal to those of "div" modulo "d". If "sign" is -1, then
491 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
492 * If "sign" is 0, then no such affine expression has been found (yet).
494 struct isl_extract_mod_data
{
495 isl_ast_build
*build
;
512 /* Given that data->v * div_i in data->aff is equal to
514 * f * (term - (arg mod d))
516 * with data->d * f = data->v, add
522 * abs(f) * (arg mod d)
524 * to data->neg or data->pos depending on the sign of -f.
526 static int extract_term_and_mod(struct isl_extract_mod_data
*data
,
527 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
532 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
533 s
= isl_val_sgn(data
->v
);
534 data
->v
= isl_val_abs(data
->v
);
535 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
538 data
->neg
= ast_expr_add(data
->neg
, expr
);
540 data
->pos
= ast_expr_add(data
->pos
, expr
);
541 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
542 isl_dim_div
, data
->i
, 0);
544 data
->v
= isl_val_neg(data
->v
);
545 term
= isl_aff_scale_val(term
, isl_val_copy(data
->v
));
550 data
->add
= isl_aff_add(data
->add
, term
);
557 /* Given that data->v * div_i in data->aff is of the form
559 * f * d * floor(div/d)
561 * with div nonnegative on data->build, rewrite it as
563 * f * (div - (div mod d)) = f * div - f * (div mod d)
571 * abs(f) * (div mod d)
573 * to data->neg or data->pos depending on the sign of -f.
575 static int extract_mod(struct isl_extract_mod_data
*data
)
577 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
578 isl_aff_copy(data
->div
));
581 /* Given that data->v * div_i in data->aff is of the form
583 * f * d * floor(div/d) (1)
585 * check if div is non-negative on data->build and, if so,
586 * extract the corresponding modulo from data->aff.
587 * If not, then check if
591 * is non-negative on data->build. If so, replace (1) by
593 * -f * d * floor((-div + d - 1)/d)
595 * and extract the corresponding modulo from data->aff.
597 * This function may modify data->div.
599 static int extract_nonneg_mod(struct isl_extract_mod_data
*data
)
603 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
607 return extract_mod(data
);
609 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
610 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
614 data
->v
= isl_val_neg(data
->v
);
615 return extract_mod(data
);
620 data
->aff
= isl_aff_free(data
->aff
);
624 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
625 * for use in extracting a modulo expression?
627 * We currently only consider the constant term of the affine expression.
628 * In particular, we prefer the affine expression with the smallest constant
630 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
631 * then we would pick x >= 0
633 * More detailed heuristics could be used if it turns out that there is a need.
635 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
636 __isl_keep isl_constraint
*c
)
644 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
645 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
646 simpler
= isl_val_lt(v1
, v2
);
653 /* Check if the coefficients of "c" are either equal or opposite to those
654 * of data->div modulo data->d. If so, and if "c" is "simpler" than
655 * data->nonneg, then replace data->nonneg by the affine expression of "c"
656 * and set data->sign accordingly.
658 * Both "c" and data->div are assumed not to involve any integer divisions.
660 * Before we start the actual comparison, we first quickly check if
661 * "c" and data->div have the same non-zero coefficients.
662 * If not, then we assume that "c" is not of the desired form.
663 * Note that while the coefficients of data->div can be reasonably expected
664 * not to involve any coefficients that are multiples of d, "c" may
665 * very well involve such coefficients. This means that we may actually
668 * If the constant term is "too large", then the constraint is rejected,
669 * where "too large" is fairly arbitrarily set to 1 << 15.
670 * We do this to avoid picking up constraints that bound a variable
671 * by a very large number, say the largest or smallest possible
672 * variable in the representation of some integer type.
674 static isl_stat
check_parallel_or_opposite(__isl_take isl_constraint
*c
,
677 struct isl_extract_mod_data
*data
= user
;
678 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
679 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
682 int parallel
= 1, opposite
= 1;
684 for (t
= 0; t
< 2; ++t
) {
685 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
686 for (i
= 0; i
< n
[t
]; ++i
) {
689 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
690 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
692 parallel
= opposite
= 0;
696 if (parallel
|| opposite
) {
699 v
= isl_val_abs(isl_constraint_get_constant_val(c
));
700 if (isl_val_cmp_si(v
, 1 << 15) > 0)
701 parallel
= opposite
= 0;
705 for (t
= 0; t
< 2; ++t
) {
706 for (i
= 0; i
< n
[t
]; ++i
) {
709 if (!parallel
&& !opposite
)
711 v1
= isl_constraint_get_coefficient_val(c
,
713 v2
= isl_aff_get_coefficient_val(data
->div
,
716 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
717 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
718 v1
= isl_val_add(v1
, isl_val_copy(v2
));
721 v1
= isl_val_add(v1
, isl_val_copy(v2
));
722 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
729 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
730 isl_aff_free(data
->nonneg
);
731 data
->nonneg
= isl_constraint_get_aff(c
);
732 data
->sign
= parallel
? 1 : -1;
735 isl_constraint_free(c
);
737 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
738 return isl_stat_error
;
743 /* Given that data->v * div_i in data->aff is of the form
745 * f * d * floor(div/d) (1)
747 * see if we can find an expression div' that is non-negative over data->build
748 * and that is related to div through
754 * div' = -div + d - 1 + d * e
756 * with e some affine expression.
757 * If so, we write (1) as
759 * f * div + f * (div' mod d)
763 * -f * (-div + d - 1) - f * (div' mod d)
765 * exploiting (in the second case) the fact that
767 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
770 * We first try to find an appropriate expression for div'
771 * from the constraints of data->build->domain (which is therefore
772 * guaranteed to be non-negative on data->build), where we remove
773 * any integer divisions from the constraints and skip this step
774 * if "div" itself involves any integer divisions.
775 * If we cannot find an appropriate expression this way, then
776 * we pass control to extract_nonneg_mod where check
777 * if div or "-div + d -1" themselves happen to be
778 * non-negative on data->build.
780 * While looking for an appropriate constraint in data->build->domain,
781 * we ignore the constant term, so after finding such a constraint,
782 * we still need to fix up the constant term.
783 * In particular, if a is the constant term of "div"
784 * (or d - 1 - the constant term of "div" if data->sign < 0)
785 * and b is the constant term of the constraint, then we need to find
786 * a non-negative constant c such that
788 * b + c \equiv a mod d
794 * and add it to b to obtain the constant term of div'.
795 * If this constant term is "too negative", then we add an appropriate
796 * multiple of d to make it positive.
799 * Note that the above is a only a very simple heuristic for finding an
800 * appropriate expression. We could try a bit harder by also considering
801 * sums of constraints that involve disjoint sets of variables or
802 * we could consider arbitrary linear combinations of constraints,
803 * although that could potentially be much more expensive as it involves
804 * the solution of an LP problem.
806 * In particular, if v_i is a column vector representing constraint i,
807 * w represents div and e_i is the i-th unit vector, then we are looking
808 * for a solution of the constraints
810 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
812 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
813 * If we are not just interested in a non-negative expression, but
814 * also in one with a minimal range, then we don't just want
815 * c = \sum_i lambda_i v_i to be non-negative over the domain,
816 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
817 * that we want to minimize and we now also have to take into account
818 * the constant terms of the constraints.
819 * Alternatively, we could first compute the dual of the domain
820 * and plug in the constraints on the coefficients.
822 static int try_extract_mod(struct isl_extract_mod_data
*data
)
831 n
= isl_aff_dim(data
->div
, isl_dim_div
);
833 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
834 return extract_nonneg_mod(data
);
836 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
837 hull
= isl_basic_set_remove_divs(hull
);
840 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
842 isl_basic_set_free(hull
);
844 if (!data
->sign
|| r
< 0) {
845 isl_aff_free(data
->nonneg
);
848 return extract_nonneg_mod(data
);
851 v1
= isl_aff_get_constant_val(data
->div
);
852 v2
= isl_aff_get_constant_val(data
->nonneg
);
853 if (data
->sign
< 0) {
854 v1
= isl_val_neg(v1
);
855 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
856 v1
= isl_val_sub_ui(v1
, 1);
858 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
859 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
860 v1
= isl_val_add(v1
, v2
);
861 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
862 v2
= isl_val_ceil(v2
);
863 if (isl_val_is_neg(v2
)) {
864 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
865 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
867 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
870 if (data
->sign
< 0) {
871 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
872 data
->v
= isl_val_neg(data
->v
);
875 return extract_term_and_mod(data
,
876 isl_aff_copy(data
->div
), data
->nonneg
);
878 data
->aff
= isl_aff_free(data
->aff
);
882 /* Check if "data->aff" involves any (implicit) modulo computations based
884 * If so, remove them from aff and add expressions corresponding
885 * to those modulo computations to data->pos and/or data->neg.
887 * "aff" is assumed to be an integer affine expression.
889 * In particular, check if (v * div_j) is of the form
891 * f * m * floor(a / m)
893 * and, if so, rewrite it as
895 * f * (a - (a mod m)) = f * a - f * (a mod m)
897 * and extract out -f * (a mod m).
898 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
899 * If f < 0, we add ((-f) * (a mod m)) to *pos.
901 * Note that in order to represent "a mod m" as
903 * (isl_ast_op_pdiv_r, a, m)
905 * we need to make sure that a is non-negative.
906 * If not, we check if "-a + m - 1" is non-negative.
907 * If so, we can rewrite
909 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
911 * and still extract a modulo.
913 static int extract_modulo(struct isl_extract_mod_data
*data
)
915 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
916 data
->d
= isl_aff_get_denominator_val(data
->div
);
917 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
918 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
919 if (try_extract_mod(data
) < 0)
920 data
->aff
= isl_aff_free(data
->aff
);
922 isl_aff_free(data
->div
);
923 isl_val_free(data
->d
);
927 /* Check if "aff" involves any (implicit) modulo computations.
928 * If so, remove them from aff and add expressions corresponding
929 * to those modulo computations to *pos and/or *neg.
930 * We only do this if the option ast_build_prefer_pdiv is set.
932 * "aff" is assumed to be an integer affine expression.
934 * A modulo expression is of the form
936 * a mod m = a - m * floor(a / m)
938 * To detect them in aff, we look for terms of the form
940 * f * m * floor(a / m)
944 * f * (a - (a mod m)) = f * a - f * (a mod m)
946 * and extract out -f * (a mod m).
947 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
948 * If f < 0, we add ((-f) * (a mod m)) to *pos.
950 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
951 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
952 __isl_keep isl_ast_build
*build
)
954 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
961 ctx
= isl_aff_get_ctx(aff
);
962 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
965 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
966 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
967 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
968 isl_dim_div
, data
.i
);
970 return isl_aff_free(aff
);
971 if (isl_val_is_zero(data
.v
) ||
972 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
973 isl_val_free(data
.v
);
976 if (extract_modulo(&data
) < 0)
977 data
.aff
= isl_aff_free(data
.aff
);
978 isl_val_free(data
.v
);
984 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
991 /* Check if aff involves any non-integer coefficients.
992 * If so, split aff into
994 * aff = aff1 + (aff2 / d)
996 * with both aff1 and aff2 having only integer coefficients.
997 * Return aff1 and add (aff2 / d) to *expr.
999 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
1000 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
1003 isl_aff
*rat
= NULL
;
1004 isl_local_space
*ls
= NULL
;
1005 isl_ast_expr
*rat_expr
;
1007 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1008 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1012 d
= isl_aff_get_denominator_val(aff
);
1015 if (isl_val_is_one(d
)) {
1020 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
1022 ls
= isl_aff_get_domain_local_space(aff
);
1023 rat
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1025 for (i
= 0; i
< 3; ++i
) {
1026 n
= isl_aff_dim(aff
, t
[i
]);
1027 for (j
= 0; j
< n
; ++j
) {
1030 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1033 if (isl_val_is_divisible_by(v
, d
)) {
1037 rat_j
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1039 rat_j
= isl_aff_scale_val(rat_j
, v
);
1040 rat
= isl_aff_add(rat
, rat_j
);
1044 v
= isl_aff_get_constant_val(aff
);
1045 if (isl_val_is_divisible_by(v
, d
)) {
1050 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(ls
), v
);
1051 rat
= isl_aff_add(rat
, rat_0
);
1054 isl_local_space_free(ls
);
1056 aff
= isl_aff_sub(aff
, isl_aff_copy(rat
));
1057 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(d
));
1059 rat_expr
= isl_ast_expr_from_aff(rat
, build
);
1060 rat_expr
= isl_ast_expr_div(rat_expr
, isl_ast_expr_from_val(d
));
1061 *expr
= ast_expr_add(*expr
, rat_expr
);
1066 isl_local_space_free(ls
);
1072 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1073 * The result is simplified in terms of build->domain.
1075 * We first extract hidden modulo computations from the affine expression
1076 * and then add terms for each variable with a non-zero coefficient.
1077 * Finally, if the affine expression has a non-trivial denominator,
1078 * we divide the resulting isl_ast_expr by this denominator.
1080 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1081 __isl_keep isl_ast_build
*build
)
1086 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1087 isl_ast_expr
*expr
, *expr_neg
;
1088 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1089 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1090 isl_local_space
*ls
;
1091 struct isl_ast_add_term_data data
;
1096 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1097 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1099 aff
= extract_rational(aff
, &expr
, build
);
1101 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1102 expr
= ast_expr_sub(expr
, expr_neg
);
1104 ls
= isl_aff_get_domain_local_space(aff
);
1107 data
.cst
= isl_aff_get_constant_val(aff
);
1108 for (i
= 0; i
< 3; ++i
) {
1109 n
= isl_aff_dim(aff
, t
[i
]);
1110 for (j
= 0; j
< n
; ++j
) {
1111 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1113 expr
= isl_ast_expr_free(expr
);
1114 if (isl_val_is_zero(v
)) {
1118 expr
= isl_ast_expr_add_term(expr
,
1119 ls
, l
[i
], j
, v
, &data
);
1123 expr
= isl_ast_expr_add_int(expr
, data
.cst
);
1125 isl_local_space_free(ls
);
1130 /* Add terms to "expr" for each variable in "aff" with a coefficient
1131 * with sign equal to "sign".
1132 * The result is simplified in terms of data->build->domain.
1134 static __isl_give isl_ast_expr
*add_signed_terms(__isl_take isl_ast_expr
*expr
,
1135 __isl_keep isl_aff
*aff
, int sign
, struct isl_ast_add_term_data
*data
)
1139 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1140 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1141 isl_local_space
*ls
;
1143 ls
= isl_aff_get_domain_local_space(aff
);
1145 for (i
= 0; i
< 3; ++i
) {
1146 int n
= isl_aff_dim(aff
, t
[i
]);
1147 for (j
= 0; j
< n
; ++j
) {
1148 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1149 if (sign
* isl_val_sgn(v
) <= 0) {
1154 expr
= isl_ast_expr_add_term(expr
,
1155 ls
, l
[i
], j
, v
, data
);
1159 isl_local_space_free(ls
);
1164 /* Should the constant term "v" be considered positive?
1166 * A positive constant will be added to "pos" by the caller,
1167 * while a negative constant will be added to "neg".
1168 * If either "pos" or "neg" is exactly zero, then we prefer
1169 * to add the constant "v" to that side, irrespective of the sign of "v".
1170 * This results in slightly shorter expressions and may reduce the risk
1173 static int constant_is_considered_positive(__isl_keep isl_val
*v
,
1174 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1176 if (ast_expr_is_zero(pos
))
1178 if (ast_expr_is_zero(neg
))
1180 return isl_val_is_pos(v
);
1183 /* Check if the equality
1187 * represents a stride constraint on the integer division "pos".
1189 * In particular, if the integer division "pos" is equal to
1193 * then check if aff is equal to
1199 * If so, the equality is exactly
1203 * Note that in principle we could also accept
1207 * where e and e' differ by a constant.
1209 static int is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1215 div
= isl_aff_get_div(aff
, pos
);
1216 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1217 d
= isl_aff_get_denominator_val(div
);
1218 eq
= isl_val_abs_eq(c
, d
);
1219 if (eq
>= 0 && eq
) {
1220 aff
= isl_aff_copy(aff
);
1221 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1222 div
= isl_aff_scale_val(div
, d
);
1223 if (isl_val_is_pos(c
))
1224 div
= isl_aff_neg(div
);
1225 eq
= isl_aff_plain_is_equal(div
, aff
);
1235 /* Are all coefficients of "aff" (zero or) negative?
1237 static int all_negative_coefficients(__isl_keep isl_aff
*aff
)
1244 n
= isl_aff_dim(aff
, isl_dim_param
);
1245 for (i
= 0; i
< n
; ++i
)
1246 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1249 n
= isl_aff_dim(aff
, isl_dim_in
);
1250 for (i
= 0; i
< n
; ++i
)
1251 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1257 /* Give an equality of the form
1259 * aff = e - d floor(e/d) = 0
1263 * aff = -e + d floor(e/d) = 0
1265 * with the integer division "pos" equal to floor(e/d),
1266 * construct the AST expression
1268 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1270 * If e only has negative coefficients, then construct
1272 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1276 static __isl_give isl_ast_expr
*extract_stride_constraint(
1277 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1281 isl_ast_expr
*expr
, *cst
;
1286 ctx
= isl_aff_get_ctx(aff
);
1288 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1289 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1291 if (all_negative_coefficients(aff
))
1292 aff
= isl_aff_neg(aff
);
1294 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1295 expr
= isl_ast_expr_from_aff(aff
, build
);
1297 expr
= isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r
, expr
, cst
);
1298 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1299 expr
= isl_ast_expr_alloc_binary(isl_ast_op_eq
, expr
, cst
);
1304 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1305 * The result is simplified in terms of build->domain.
1307 * We first check if the constraint is an equality of the form
1309 * e - d floor(e/d) = 0
1315 * If so, we convert it to
1317 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1319 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1320 * We first extract hidden modulo computations from "a"
1321 * and then collect all the terms with a positive coefficient in cons_pos
1322 * and the terms with a negative coefficient in cons_neg.
1324 * The result is then of the form
1326 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1330 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1332 * However, if the first expression is an integer constant (and the second
1333 * is not), then we swap the two expressions. This ensures that we construct,
1334 * e.g., "i <= 5" rather than "5 >= i".
1336 * Furthermore, is there are no terms with positive coefficients (or no terms
1337 * with negative coefficients), then the constant term is added to "pos"
1338 * (or "neg"), ignoring the sign of the constant term.
1340 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1341 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1345 isl_ast_expr
*expr_pos
;
1346 isl_ast_expr
*expr_neg
;
1350 enum isl_ast_op_type type
;
1351 struct isl_ast_add_term_data data
;
1356 aff
= isl_constraint_get_aff(constraint
);
1357 eq
= isl_constraint_is_equality(constraint
);
1358 isl_constraint_free(constraint
);
1360 n
= isl_aff_dim(aff
, isl_dim_div
);
1362 for (i
= 0; i
< n
; ++i
) {
1364 is_stride
= is_stride_constraint(aff
, i
);
1368 return extract_stride_constraint(aff
, i
, build
);
1371 ctx
= isl_aff_get_ctx(aff
);
1372 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1373 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1375 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1378 data
.cst
= isl_aff_get_constant_val(aff
);
1379 expr_pos
= add_signed_terms(expr_pos
, aff
, 1, &data
);
1380 data
.cst
= isl_val_neg(data
.cst
);
1381 expr_neg
= add_signed_terms(expr_neg
, aff
, -1, &data
);
1382 data
.cst
= isl_val_neg(data
.cst
);
1384 if (constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
)) {
1385 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1387 data
.cst
= isl_val_neg(data
.cst
);
1388 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1391 if (isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
&&
1392 isl_ast_expr_get_type(expr_neg
) != isl_ast_expr_int
) {
1393 type
= eq
? isl_ast_op_eq
: isl_ast_op_le
;
1394 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1396 type
= eq
? isl_ast_op_eq
: isl_ast_op_ge
;
1397 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1407 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1408 * as a callback to isl_constraint_list_sort.
1409 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1410 * apart, then use isl_constraint_plain_cmp instead.
1412 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1413 __isl_keep isl_constraint
*b
, void *user
)
1417 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1420 return isl_constraint_plain_cmp(a
, b
);
1423 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1424 * The result is simplified in terms of build->domain.
1426 * If "bset" is not bounded by any constraint, then we contruct
1427 * the expression "1", i.e., "true".
1429 * Otherwise, we sort the constraints, putting constraints that involve
1430 * integer divisions after those that do not, and construct an "and"
1431 * of the ast expressions of the individual constraints.
1433 * Each constraint is added to the generated constraints of the build
1434 * after it has been converted to an AST expression so that it can be used
1435 * to simplify the following constraints. This may change the truth value
1436 * of subsequent constraints that do not satisfy the earlier constraints,
1437 * but this does not affect the outcome of the conjunction as it is
1438 * only true if all the conjuncts are true (no matter in what order
1439 * they are evaluated). In particular, the constraints that do not
1440 * involve integer divisions may serve to simplify some constraints
1441 * that do involve integer divisions.
1443 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1444 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1448 isl_constraint_list
*list
;
1452 list
= isl_basic_set_get_constraint_list(bset
);
1453 isl_basic_set_free(bset
);
1454 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1457 n
= isl_constraint_list_n_constraint(list
);
1459 isl_ctx
*ctx
= isl_constraint_list_get_ctx(list
);
1460 isl_constraint_list_free(list
);
1461 return isl_ast_expr_alloc_int_si(ctx
, 1);
1464 build
= isl_ast_build_copy(build
);
1466 c
= isl_constraint_list_get_constraint(list
, 0);
1467 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1468 set
= isl_set_from_basic_set(bset
);
1469 res
= isl_ast_expr_from_constraint(c
, build
);
1470 build
= isl_ast_build_restrict_generated(build
, set
);
1472 for (i
= 1; i
< n
; ++i
) {
1475 c
= isl_constraint_list_get_constraint(list
, i
);
1476 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1477 set
= isl_set_from_basic_set(bset
);
1478 expr
= isl_ast_expr_from_constraint(c
, build
);
1479 build
= isl_ast_build_restrict_generated(build
, set
);
1480 res
= isl_ast_expr_and(res
, expr
);
1483 isl_constraint_list_free(list
);
1484 isl_ast_build_free(build
);
1488 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1489 * The result is simplified in terms of build->domain.
1491 * If "set" is an (obviously) empty set, then return the expression "0".
1493 * If there are multiple disjuncts in the description of the set,
1494 * then subsequent disjuncts are simplified in a context where
1495 * the previous disjuncts have been removed from build->domain.
1496 * In particular, constraints that ensure that there is no overlap
1497 * with these previous disjuncts, can be removed.
1498 * This is mostly useful for disjuncts that are only defined by
1499 * a single constraint (relative to the build domain) as the opposite
1500 * of that single constraint can then be removed from the other disjuncts.
1501 * In order not to increase the number of disjuncts in the build domain
1502 * after subtracting the previous disjuncts of "set", the simple hull
1503 * is computed after taking the difference with each of these disjuncts.
1504 * This means that constraints that prevent overlap with a union
1505 * of multiple previous disjuncts are not removed.
1507 * "set" lives in the internal schedule space.
1509 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
1510 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1513 isl_basic_set
*bset
;
1514 isl_basic_set_list
*list
;
1518 list
= isl_set_get_basic_set_list(set
);
1523 n
= isl_basic_set_list_n_basic_set(list
);
1525 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1526 isl_basic_set_list_free(list
);
1527 return isl_ast_expr_from_val(isl_val_zero(ctx
));
1530 domain
= isl_ast_build_get_domain(build
);
1532 bset
= isl_basic_set_list_get_basic_set(list
, 0);
1533 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1534 res
= isl_ast_build_expr_from_basic_set(build
, bset
);
1536 for (i
= 1; i
< n
; ++i
) {
1540 rest
= isl_set_subtract(isl_set_copy(domain
), set
);
1541 rest
= isl_set_from_basic_set(isl_set_simple_hull(rest
));
1542 domain
= isl_set_intersect(domain
, rest
);
1543 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1544 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1545 bset
= isl_basic_set_gist(bset
,
1546 isl_set_simple_hull(isl_set_copy(domain
)));
1547 expr
= isl_ast_build_expr_from_basic_set(build
, bset
);
1548 res
= isl_ast_expr_or(res
, expr
);
1551 isl_set_free(domain
);
1553 isl_basic_set_list_free(list
);
1557 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1558 * The result is simplified in terms of build->domain.
1560 * If "set" is an (obviously) empty set, then return the expression "0".
1562 * "set" lives in the external schedule space.
1564 * The internal AST expression generation assumes that there are
1565 * no unknown divs, so make sure an explicit representation is available.
1566 * Since the set comes from the outside, it may have constraints that
1567 * are redundant with respect to the build domain. Remove them first.
1569 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1570 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1572 if (isl_ast_build_need_schedule_map(build
)) {
1574 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1575 set
= isl_set_preimage_multi_aff(set
, ma
);
1578 set
= isl_set_compute_divs(set
);
1579 set
= isl_ast_build_compute_gist(build
, set
);
1580 return isl_ast_build_expr_from_set_internal(build
, set
);
1583 /* State of data about previous pieces in
1584 * isl_ast_build_expr_from_pw_aff_internal.
1586 * isl_state_none: no data about previous pieces
1587 * isl_state_single: data about a single previous piece
1588 * isl_state_min: data represents minimum of several pieces
1589 * isl_state_max: data represents maximum of several pieces
1591 enum isl_from_pw_aff_state
{
1598 /* Internal date structure representing a single piece in the input of
1599 * isl_ast_build_expr_from_pw_aff_internal.
1601 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1602 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1603 * single previous subpiece.
1604 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1605 * a sequence of several previous subpieces that are equal to the minimum
1606 * of the entries in "aff_list" over the union of "set_list"
1607 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1608 * a sequence of several previous subpieces that are equal to the maximum
1609 * of the entries in "aff_list" over the union of "set_list"
1611 * During the construction of the pieces, "set" is NULL.
1612 * After the construction, "set" is set to the union of the elements
1613 * in "set_list", at which point "set_list" is set to NULL.
1615 struct isl_from_pw_aff_piece
{
1616 enum isl_from_pw_aff_state state
;
1618 isl_set_list
*set_list
;
1619 isl_aff_list
*aff_list
;
1622 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1624 * "build" specifies the domain against which the result is simplified.
1625 * "dom" is the domain of the entire isl_pw_aff.
1627 * "n" is the number of pieces constructed already.
1628 * In particular, during the construction of the pieces, "n" points to
1629 * the piece that is being constructed. After the construction of the
1630 * pieces, "n" is set to the total number of pieces.
1631 * "max" is the total number of allocated entries.
1632 * "p" contains the individual pieces.
1634 struct isl_from_pw_aff_data
{
1635 isl_ast_build
*build
;
1640 struct isl_from_pw_aff_piece
*p
;
1643 /* Initialize "data" based on "build" and "pa".
1645 static isl_stat
isl_from_pw_aff_data_init(struct isl_from_pw_aff_data
*data
,
1646 __isl_keep isl_ast_build
*build
, __isl_keep isl_pw_aff
*pa
)
1651 ctx
= isl_pw_aff_get_ctx(pa
);
1652 n
= isl_pw_aff_n_piece(pa
);
1654 isl_die(ctx
, isl_error_invalid
,
1655 "cannot handle void expression", return isl_stat_error
);
1657 data
->p
= isl_calloc_array(ctx
, struct isl_from_pw_aff_piece
, n
);
1659 return isl_stat_error
;
1660 data
->build
= build
;
1661 data
->dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1667 /* Free all memory allocated for "data".
1669 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data
*data
)
1673 isl_set_free(data
->dom
);
1677 for (i
= 0; i
< data
->max
; ++i
) {
1678 isl_set_free(data
->p
[i
].set
);
1679 isl_set_list_free(data
->p
[i
].set_list
);
1680 isl_aff_list_free(data
->p
[i
].aff_list
);
1685 /* Initialize the current entry of "data" to an unused piece.
1687 static void set_none(struct isl_from_pw_aff_data
*data
)
1689 data
->p
[data
->n
].state
= isl_state_none
;
1690 data
->p
[data
->n
].set_list
= NULL
;
1691 data
->p
[data
->n
].aff_list
= NULL
;
1694 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
1696 static void set_single(struct isl_from_pw_aff_data
*data
,
1697 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1699 data
->p
[data
->n
].state
= isl_state_single
;
1700 data
->p
[data
->n
].set_list
= isl_set_list_from_set(set
);
1701 data
->p
[data
->n
].aff_list
= isl_aff_list_from_aff(aff
);
1704 /* Extend the current entry of "data" with "set" and "aff"
1705 * as a minimum expression.
1707 static isl_stat
extend_min(struct isl_from_pw_aff_data
*data
,
1708 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1711 data
->p
[n
].state
= isl_state_min
;
1712 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1713 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1715 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1716 return isl_stat_error
;
1720 /* Extend the current entry of "data" with "set" and "aff"
1721 * as a maximum expression.
1723 static isl_stat
extend_max(struct isl_from_pw_aff_data
*data
,
1724 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1727 data
->p
[n
].state
= isl_state_max
;
1728 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1729 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1731 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1732 return isl_stat_error
;
1736 /* Extend the domain of the current entry of "data", which is assumed
1737 * to contain a single subpiece, with "set". If "replace" is set,
1738 * then also replace the affine function by "aff". Otherwise,
1739 * simply free "aff".
1741 static isl_stat
extend_domain(struct isl_from_pw_aff_data
*data
,
1742 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
, int replace
)
1747 set_n
= isl_set_list_get_set(data
->p
[n
].set_list
, 0);
1748 set_n
= isl_set_union(set_n
, set
);
1749 data
->p
[n
].set_list
=
1750 isl_set_list_set_set(data
->p
[n
].set_list
, 0, set_n
);
1753 data
->p
[n
].aff_list
=
1754 isl_aff_list_set_aff(data
->p
[n
].aff_list
, 0, aff
);
1758 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1759 return isl_stat_error
;
1763 /* Construct an isl_ast_expr from "list" within "build".
1764 * If "state" is isl_state_single, then "list" contains a single entry and
1765 * an isl_ast_expr is constructed for that entry.
1766 * Otherwise a min or max expression is constructed from "list"
1767 * depending on "state".
1769 static __isl_give isl_ast_expr
*ast_expr_from_aff_list(
1770 __isl_take isl_aff_list
*list
, enum isl_from_pw_aff_state state
,
1771 __isl_keep isl_ast_build
*build
)
1776 enum isl_ast_op_type op_type
;
1778 if (state
== isl_state_single
) {
1779 aff
= isl_aff_list_get_aff(list
, 0);
1780 isl_aff_list_free(list
);
1781 return isl_ast_expr_from_aff(aff
, build
);
1783 n
= isl_aff_list_n_aff(list
);
1784 op_type
= state
== isl_state_min
? isl_ast_op_min
: isl_ast_op_max
;
1785 expr
= isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build
), op_type
, n
);
1789 for (i
= 0; i
< n
; ++i
) {
1790 isl_ast_expr
*expr_i
;
1792 aff
= isl_aff_list_get_aff(list
, i
);
1793 expr_i
= isl_ast_expr_from_aff(aff
, build
);
1796 expr
->u
.op
.args
[i
] = expr_i
;
1799 isl_aff_list_free(list
);
1802 isl_aff_list_free(list
);
1803 isl_ast_expr_free(expr
);
1807 /* Extend the expression in "next" to take into account
1808 * the piece at position "pos" in "data", allowing for a further extension
1809 * for the next piece(s).
1810 * In particular, "next" is set to a select operation that selects
1811 * an isl_ast_expr corresponding to data->aff_list on data->set and
1812 * to an expression that will be filled in by later calls.
1813 * Return a pointer to this location.
1814 * Afterwards, the state of "data" is set to isl_state_none.
1816 * The constraints of data->set are added to the generated
1817 * constraints of the build such that they can be exploited to simplify
1818 * the AST expression constructed from data->aff_list.
1820 static isl_ast_expr
**add_intermediate_piece(struct isl_from_pw_aff_data
*data
,
1821 int pos
, isl_ast_expr
**next
)
1824 isl_ast_build
*build
;
1825 isl_ast_expr
*ternary
, *arg
;
1826 isl_set
*set
, *gist
;
1828 set
= data
->p
[pos
].set
;
1829 data
->p
[pos
].set
= NULL
;
1830 ctx
= isl_ast_build_get_ctx(data
->build
);
1831 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_op_select
, 3);
1832 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
1833 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
1834 ternary
= isl_ast_expr_set_op_arg(ternary
, 0, arg
);
1835 build
= isl_ast_build_copy(data
->build
);
1836 build
= isl_ast_build_restrict_generated(build
, set
);
1837 arg
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
1838 data
->p
[pos
].state
, build
);
1839 data
->p
[pos
].aff_list
= NULL
;
1840 isl_ast_build_free(build
);
1841 ternary
= isl_ast_expr_set_op_arg(ternary
, 1, arg
);
1842 data
->p
[pos
].state
= isl_state_none
;
1847 return &ternary
->u
.op
.args
[2];
1850 /* Extend the expression in "next" to take into account
1851 * the final piece, located at position "pos" in "data".
1852 * In particular, "next" is set to evaluate data->aff_list
1853 * and the domain is ignored.
1854 * Return isl_stat_ok on success and isl_stat_error on failure.
1856 * The constraints of data->set are however added to the generated
1857 * constraints of the build such that they can be exploited to simplify
1858 * the AST expression constructed from data->aff_list.
1860 static isl_stat
add_last_piece(struct isl_from_pw_aff_data
*data
,
1861 int pos
, isl_ast_expr
**next
)
1863 isl_ast_build
*build
;
1865 if (data
->p
[pos
].state
== isl_state_none
)
1866 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
1867 "cannot handle void expression", return isl_stat_error
);
1869 build
= isl_ast_build_copy(data
->build
);
1870 build
= isl_ast_build_restrict_generated(build
, data
->p
[pos
].set
);
1871 data
->p
[pos
].set
= NULL
;
1872 *next
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
1873 data
->p
[pos
].state
, build
);
1874 data
->p
[pos
].aff_list
= NULL
;
1875 isl_ast_build_free(build
);
1876 data
->p
[pos
].state
= isl_state_none
;
1878 return isl_stat_error
;
1883 /* Return -1 if the piece "p1" should be sorted before "p2"
1884 * and 1 if it should be sorted after "p2".
1885 * Return 0 if they do not need to be sorted in a specific order.
1887 * Pieces are sorted according to the number of disjuncts
1890 static int sort_pieces_cmp(const void *p1
, const void *p2
, void *arg
)
1892 const struct isl_from_pw_aff_piece
*piece1
= p1
;
1893 const struct isl_from_pw_aff_piece
*piece2
= p2
;
1896 n1
= isl_set_n_basic_set(piece1
->set
);
1897 n2
= isl_set_n_basic_set(piece2
->set
);
1902 /* Construct an isl_ast_expr from the pieces in "data".
1903 * Return the result or NULL on failure.
1905 * When this function is called, data->n points to the current piece.
1906 * If this is an effective piece, then first increment data->n such
1907 * that data->n contains the number of pieces.
1908 * The "set_list" fields are subsequently replaced by the corresponding
1909 * "set" fields, after which the pieces are sorted according to
1910 * the number of disjuncts in these "set" fields.
1912 * Construct intermediate AST expressions for the initial pieces and
1913 * finish off with the final pieces.
1915 static isl_ast_expr
*build_pieces(struct isl_from_pw_aff_data
*data
)
1918 isl_ast_expr
*res
= NULL
;
1919 isl_ast_expr
**next
= &res
;
1921 if (data
->p
[data
->n
].state
!= isl_state_none
)
1924 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
1925 "cannot handle void expression", return NULL
);
1927 for (i
= 0; i
< data
->n
; ++i
) {
1928 data
->p
[i
].set
= isl_set_list_union(data
->p
[i
].set_list
);
1929 if (data
->p
[i
].state
!= isl_state_single
)
1930 data
->p
[i
].set
= isl_set_coalesce(data
->p
[i
].set
);
1931 data
->p
[i
].set_list
= NULL
;
1934 if (isl_sort(data
->p
, data
->n
, sizeof(data
->p
[0]),
1935 &sort_pieces_cmp
, NULL
) < 0)
1936 return isl_ast_expr_free(res
);
1938 for (i
= 0; i
+ 1 < data
->n
; ++i
) {
1939 next
= add_intermediate_piece(data
, i
, next
);
1941 return isl_ast_expr_free(res
);
1944 if (add_last_piece(data
, data
->n
- 1, next
) < 0)
1945 return isl_ast_expr_free(res
);
1950 /* Is the domain of the current entry of "data", which is assumed
1951 * to contain a single subpiece, a subset of "set"?
1953 static isl_bool
single_is_subset(struct isl_from_pw_aff_data
*data
,
1954 __isl_keep isl_set
*set
)
1959 set_n
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, 0);
1960 subset
= isl_set_is_subset(set_n
, set
);
1961 isl_set_free(set_n
);
1966 /* Is "aff" a rational expression, i.e., does it have a denominator
1967 * different from one?
1969 static isl_bool
aff_is_rational(__isl_keep isl_aff
*aff
)
1974 den
= isl_aff_get_denominator_val(aff
);
1975 rational
= isl_bool_not(isl_val_is_one(den
));
1981 /* Does "list" consist of a single rational affine expression?
1983 static isl_bool
is_single_rational_aff(__isl_keep isl_aff_list
*list
)
1988 if (isl_aff_list_n_aff(list
) != 1)
1989 return isl_bool_false
;
1990 aff
= isl_aff_list_get_aff(list
, 0);
1991 rational
= aff_is_rational(aff
);
1997 /* Can the list of subpieces in the last piece of "data" be extended with
1998 * "set" and "aff" based on "test"?
1999 * In particular, is it the case for each entry (set_i, aff_i) that
2001 * test(aff, aff_i) holds on set_i, and
2002 * test(aff_i, aff) holds on set?
2004 * "test" returns the set of elements where the tests holds, meaning
2005 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2007 * This function is used to detect min/max expressions.
2008 * If the ast_build_detect_min_max option is turned off, then
2009 * do not even try and perform any detection and return false instead.
2011 * Rational affine expressions are not considered for min/max expressions
2012 * since the combined expression will be defined on the union of the domains,
2013 * while a rational expression may only yield integer values
2014 * on its own definition domain.
2016 static isl_bool
extends(struct isl_from_pw_aff_data
*data
,
2017 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
,
2018 __isl_give isl_basic_set
*(*test
)(__isl_take isl_aff
*aff1
,
2019 __isl_take isl_aff
*aff2
))
2022 isl_bool is_rational
;
2026 is_rational
= aff_is_rational(aff
);
2027 if (is_rational
>= 0 && !is_rational
)
2028 is_rational
= is_single_rational_aff(data
->p
[data
->n
].aff_list
);
2029 if (is_rational
< 0 || is_rational
)
2030 return isl_bool_not(is_rational
);
2032 ctx
= isl_ast_build_get_ctx(data
->build
);
2033 if (!isl_options_get_ast_build_detect_min_max(ctx
))
2034 return isl_bool_false
;
2036 dom
= isl_ast_build_get_domain(data
->build
);
2037 set
= isl_set_intersect(dom
, isl_set_copy(set
));
2039 n
= isl_set_list_n_set(data
->p
[data
->n
].set_list
);
2040 for (i
= 0; i
< n
; ++i
) {
2043 isl_set
*dom
, *required
;
2046 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2047 valid
= isl_set_from_basic_set(test(isl_aff_copy(aff
), aff_i
));
2048 required
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, i
);
2049 dom
= isl_ast_build_get_domain(data
->build
);
2050 required
= isl_set_intersect(dom
, required
);
2051 is_valid
= isl_set_is_subset(required
, valid
);
2052 isl_set_free(required
);
2053 isl_set_free(valid
);
2054 if (is_valid
< 0 || !is_valid
) {
2059 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2060 valid
= isl_set_from_basic_set(test(aff_i
, isl_aff_copy(aff
)));
2061 is_valid
= isl_set_is_subset(set
, valid
);
2062 isl_set_free(valid
);
2063 if (is_valid
< 0 || !is_valid
) {
2070 return isl_bool_true
;
2073 /* Can the list of pieces in "data" be extended with "set" and "aff"
2074 * to form/preserve a minimum expression?
2075 * In particular, is it the case for each entry (set_i, aff_i) that
2077 * aff >= aff_i on set_i, and
2078 * aff_i >= aff on set?
2080 static isl_bool
extends_min(struct isl_from_pw_aff_data
*data
,
2081 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2083 return extends(data
, set
, aff
, &isl_aff_ge_basic_set
);
2086 /* Can the list of pieces in "data" be extended with "set" and "aff"
2087 * to form/preserve a maximum expression?
2088 * In particular, is it the case for each entry (set_i, aff_i) that
2090 * aff <= aff_i on set_i, and
2091 * aff_i <= aff on set?
2093 static isl_bool
extends_max(struct isl_from_pw_aff_data
*data
,
2094 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2096 return extends(data
, set
, aff
, &isl_aff_le_basic_set
);
2099 /* This function is called during the construction of an isl_ast_expr
2100 * that evaluates an isl_pw_aff.
2101 * If the last piece of "data" contains a single subpiece and
2102 * if its affine function is equal to "aff" on a part of the domain
2103 * that includes either "set" or the domain of that single subpiece,
2104 * then extend the domain of that single subpiece with "set".
2105 * If it was the original domain of the single subpiece where
2106 * the two affine functions are equal, then also replace
2107 * the affine function of the single subpiece by "aff".
2108 * If the last piece of "data" contains either a single subpiece
2109 * or a minimum, then check if this minimum expression can be extended
2111 * If so, extend the sequence and return.
2112 * Perform the same operation for maximum expressions.
2113 * If no such extension can be performed, then move to the next piece
2114 * in "data" (if the current piece contains any data), and then store
2115 * the current subpiece in the current piece of "data" for later handling.
2117 static isl_stat
ast_expr_from_pw_aff(__isl_take isl_set
*set
,
2118 __isl_take isl_aff
*aff
, void *user
)
2120 struct isl_from_pw_aff_data
*data
= user
;
2122 enum isl_from_pw_aff_state state
;
2124 state
= data
->p
[data
->n
].state
;
2125 if (state
== isl_state_single
) {
2128 isl_bool subset1
, subset2
= isl_bool_false
;
2129 aff0
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, 0);
2130 eq
= isl_aff_eq_set(isl_aff_copy(aff
), aff0
);
2131 subset1
= isl_set_is_subset(set
, eq
);
2132 if (subset1
>= 0 && !subset1
)
2133 subset2
= single_is_subset(data
, eq
);
2135 if (subset1
< 0 || subset2
< 0)
2138 return extend_domain(data
, set
, aff
, 0);
2140 return extend_domain(data
, set
, aff
, 1);
2142 if (state
== isl_state_single
|| state
== isl_state_min
) {
2143 test
= extends_min(data
, set
, aff
);
2147 return extend_min(data
, set
, aff
);
2149 if (state
== isl_state_single
|| state
== isl_state_max
) {
2150 test
= extends_max(data
, set
, aff
);
2154 return extend_max(data
, set
, aff
);
2156 if (state
!= isl_state_none
)
2158 set_single(data
, set
, aff
);
2164 return isl_stat_error
;
2167 /* Construct an isl_ast_expr that evaluates "pa".
2168 * The result is simplified in terms of build->domain.
2170 * The domain of "pa" lives in the internal schedule space.
2172 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
2173 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2175 struct isl_from_pw_aff_data data
= { NULL
};
2176 isl_ast_expr
*res
= NULL
;
2178 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
2179 pa
= isl_pw_aff_coalesce(pa
);
2183 if (isl_from_pw_aff_data_init(&data
, build
, pa
) < 0)
2187 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) >= 0)
2188 res
= build_pieces(&data
);
2190 isl_pw_aff_free(pa
);
2191 isl_from_pw_aff_data_clear(&data
);
2194 isl_pw_aff_free(pa
);
2195 isl_from_pw_aff_data_clear(&data
);
2199 /* Construct an isl_ast_expr that evaluates "pa".
2200 * The result is simplified in terms of build->domain.
2202 * The domain of "pa" lives in the external schedule space.
2204 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
2205 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2209 if (isl_ast_build_need_schedule_map(build
)) {
2211 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2212 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
2214 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2218 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2221 * The domain of "mpa" is assumed to live in the internal schedule domain.
2223 static __isl_give isl_multi_pw_aff
*set_iterator_names(
2224 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2228 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
2229 for (i
= 0; i
< n
; ++i
) {
2232 id
= isl_ast_build_get_iterator_id(build
, i
);
2233 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
2239 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2240 * the remaining arguments derived from "mpa".
2241 * That is, construct a call or access expression that calls/accesses "arg0"
2242 * with arguments/indices specified by "mpa".
2244 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
2245 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2246 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
2252 ctx
= isl_ast_build_get_ctx(build
);
2254 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
2255 expr
= isl_ast_expr_alloc_op(ctx
, type
, 1 + n
);
2256 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
2257 for (i
= 0; i
< n
; ++i
) {
2261 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
2262 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2263 expr
= isl_ast_expr_set_op_arg(expr
, 1 + i
, arg
);
2266 isl_multi_pw_aff_free(mpa
);
2270 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2271 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2272 __isl_take isl_multi_pw_aff
*mpa
);
2274 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2275 * The range of "mpa" is assumed to be wrapped relation.
2276 * The domain of this wrapped relation specifies the structure being
2277 * accessed, while the range of this wrapped relation spacifies the
2278 * member of the structure being accessed.
2280 * The domain of "mpa" is assumed to live in the internal schedule domain.
2282 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
2283 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2286 isl_multi_pw_aff
*domain
;
2287 isl_ast_expr
*domain_expr
, *expr
;
2288 enum isl_ast_op_type type
= isl_ast_op_access
;
2290 domain
= isl_multi_pw_aff_copy(mpa
);
2291 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
2292 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
2294 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
2295 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2296 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2297 "missing field name", goto error
);
2298 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2299 expr
= isl_ast_expr_from_id(id
);
2300 expr
= isl_ast_expr_alloc_binary(isl_ast_op_member
, domain_expr
, expr
);
2301 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2303 isl_multi_pw_aff_free(mpa
);
2307 /* Construct an isl_ast_expr of type "type" that calls or accesses
2308 * the element specified by "mpa".
2309 * The first argument is obtained from the output tuple name.
2310 * The remaining arguments are given by the piecewise affine expressions.
2312 * If the range of "mpa" is a mapped relation, then we assume it
2313 * represents an access to a member of a structure.
2315 * The domain of "mpa" is assumed to live in the internal schedule domain.
2317 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2318 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2319 __isl_take isl_multi_pw_aff
*mpa
)
2328 if (type
== isl_ast_op_access
&&
2329 isl_multi_pw_aff_range_is_wrapping(mpa
))
2330 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
2332 mpa
= set_iterator_names(build
, mpa
);
2336 ctx
= isl_ast_build_get_ctx(build
);
2338 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2339 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2341 id
= isl_id_alloc(ctx
, "", NULL
);
2343 expr
= isl_ast_expr_from_id(id
);
2344 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2346 isl_multi_pw_aff_free(mpa
);
2350 /* Construct an isl_ast_expr of type "type" that calls or accesses
2351 * the element specified by "pma".
2352 * The first argument is obtained from the output tuple name.
2353 * The remaining arguments are given by the piecewise affine expressions.
2355 * The domain of "pma" is assumed to live in the internal schedule domain.
2357 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
2358 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2359 __isl_take isl_pw_multi_aff
*pma
)
2361 isl_multi_pw_aff
*mpa
;
2363 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2364 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2367 /* Construct an isl_ast_expr of type "type" that calls or accesses
2368 * the element specified by "mpa".
2369 * The first argument is obtained from the output tuple name.
2370 * The remaining arguments are given by the piecewise affine expressions.
2372 * The domain of "mpa" is assumed to live in the external schedule domain.
2374 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
2375 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2376 __isl_take isl_multi_pw_aff
*mpa
)
2380 isl_space
*space_build
, *space_mpa
;
2382 space_build
= isl_ast_build_get_space(build
, 0);
2383 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
2384 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
2385 space_mpa
, isl_dim_in
);
2386 isl_space_free(space_build
);
2387 isl_space_free(space_mpa
);
2391 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2392 "spaces don't match", goto error
);
2394 if (isl_ast_build_need_schedule_map(build
)) {
2396 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2397 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
2400 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2403 isl_multi_pw_aff_free(mpa
);
2407 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2408 * The name of the function is obtained from the output tuple name.
2409 * The arguments are given by the piecewise affine expressions.
2411 * The domain of "mpa" is assumed to live in the external schedule domain.
2413 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
2414 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2416 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_call
, mpa
);
2419 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2420 * The name of the array is obtained from the output tuple name.
2421 * The index expressions are given by the piecewise affine expressions.
2423 * The domain of "mpa" is assumed to live in the external schedule domain.
2425 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
2426 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2428 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_access
, mpa
);
2431 /* Construct an isl_ast_expr of type "type" that calls or accesses
2432 * the element specified by "pma".
2433 * The first argument is obtained from the output tuple name.
2434 * The remaining arguments are given by the piecewise affine expressions.
2436 * The domain of "pma" is assumed to live in the external schedule domain.
2438 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
2439 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2440 __isl_take isl_pw_multi_aff
*pma
)
2442 isl_multi_pw_aff
*mpa
;
2444 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2445 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
2448 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2449 * The name of the function is obtained from the output tuple name.
2450 * The arguments are given by the piecewise affine expressions.
2452 * The domain of "pma" is assumed to live in the external schedule domain.
2454 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
2455 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2457 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_call
, pma
);
2460 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2461 * The name of the array is obtained from the output tuple name.
2462 * The index expressions are given by the piecewise affine expressions.
2464 * The domain of "pma" is assumed to live in the external schedule domain.
2466 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
2467 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2469 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_access
, pma
);
2472 /* Construct an isl_ast_expr that calls the domain element
2473 * specified by "executed".
2475 * "executed" is assumed to be single-valued, with a domain that lives
2476 * in the internal schedule space.
2478 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
2479 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
2481 isl_pw_multi_aff
*iteration
;
2484 iteration
= isl_pw_multi_aff_from_map(executed
);
2485 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
2486 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
2487 isl_ast_build_get_domain(build
));
2488 expr
= isl_ast_build_from_pw_multi_aff_internal(build
, isl_ast_op_call
,
2490 return isl_ast_node_alloc_user(expr
);