extract out shared isl_basic_set_check_no_locals
[isl.git] / isl_scheduler.c
blobbd02e7495395b74625c7db6639822b8728eb85ea
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/id.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
30 #include <isl/set.h>
31 #include <isl_union_set_private.h>
32 #include <isl_seq.h>
33 #include <isl_tab.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
36 #include <isl_sort.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
40 #include <isl/ilp.h>
41 #include <isl_val_private.h>
44 * The scheduling algorithm implemented in this file was inspired by
45 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
46 * Parallelization and Locality Optimization in the Polyhedral Model".
48 * For a detailed description of the variant implemented in isl,
49 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
53 /* Internal information about a node that is used during the construction
54 * of a schedule.
55 * space represents the original space in which the domain lives;
56 * that is, the space is not affected by compression
57 * sched is a matrix representation of the schedule being constructed
58 * for this node; if compressed is set, then this schedule is
59 * defined over the compressed domain space
60 * sched_map is an isl_map representation of the same (partial) schedule
61 * sched_map may be NULL; if compressed is set, then this map
62 * is defined over the uncompressed domain space
63 * rank is the number of linearly independent rows in the linear part
64 * of sched
65 * the rows of "vmap" represent a change of basis for the node
66 * variables; the first rank rows span the linear part of
67 * the schedule rows; the remaining rows are linearly independent
68 * the rows of "indep" represent linear combinations of the schedule
69 * coefficients that are non-zero when the schedule coefficients are
70 * linearly independent of previously computed schedule rows.
71 * start is the first variable in the LP problem in the sequences that
72 * represents the schedule coefficients of this node
73 * nvar is the dimension of the (compressed) domain
74 * nparam is the number of parameters or 0 if we are not constructing
75 * a parametric schedule
77 * If compressed is set, then hull represents the constraints
78 * that were used to derive the compression, while compress and
79 * decompress map the original space to the compressed space and
80 * vice versa.
82 * scc is the index of SCC (or WCC) this node belongs to
84 * "cluster" is only used inside extract_clusters and identifies
85 * the cluster of SCCs that the node belongs to.
87 * coincident contains a boolean for each of the rows of the schedule,
88 * indicating whether the corresponding scheduling dimension satisfies
89 * the coincidence constraints in the sense that the corresponding
90 * dependence distances are zero.
92 * If the schedule_treat_coalescing option is set, then
93 * "sizes" contains the sizes of the (compressed) instance set
94 * in each direction. If there is no fixed size in a given direction,
95 * then the corresponding size value is set to infinity.
96 * If the schedule_treat_coalescing option or the schedule_max_coefficient
97 * option is set, then "max" contains the maximal values for
98 * schedule coefficients of the (compressed) variables. If no bound
99 * needs to be imposed on a particular variable, then the corresponding
100 * value is negative.
101 * If not NULL, then "bounds" contains a non-parametric set
102 * in the compressed space that is bounded by the size in each direction.
104 struct isl_sched_node {
105 isl_space *space;
106 int compressed;
107 isl_set *hull;
108 isl_multi_aff *compress;
109 isl_multi_aff *decompress;
110 isl_mat *sched;
111 isl_map *sched_map;
112 int rank;
113 isl_mat *indep;
114 isl_mat *vmap;
115 int start;
116 int nvar;
117 int nparam;
119 int scc;
120 int cluster;
122 int *coincident;
124 isl_multi_val *sizes;
125 isl_basic_set *bounds;
126 isl_vec *max;
129 static int node_has_tuples(const void *entry, const void *val)
131 struct isl_sched_node *node = (struct isl_sched_node *)entry;
132 isl_space *space = (isl_space *) val;
134 return isl_space_has_equal_tuples(node->space, space);
137 static int node_scc_exactly(struct isl_sched_node *node, int scc)
139 return node->scc == scc;
142 static int node_scc_at_most(struct isl_sched_node *node, int scc)
144 return node->scc <= scc;
147 static int node_scc_at_least(struct isl_sched_node *node, int scc)
149 return node->scc >= scc;
152 /* An edge in the dependence graph. An edge may be used to
153 * ensure validity of the generated schedule, to minimize the dependence
154 * distance or both
156 * map is the dependence relation, with i -> j in the map if j depends on i
157 * tagged_condition and tagged_validity contain the union of all tagged
158 * condition or conditional validity dependence relations that
159 * specialize the dependence relation "map"; that is,
160 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
161 * or "tagged_validity", then i -> j is an element of "map".
162 * If these fields are NULL, then they represent the empty relation.
163 * src is the source node
164 * dst is the sink node
166 * types is a bit vector containing the types of this edge.
167 * validity is set if the edge is used to ensure correctness
168 * coincidence is used to enforce zero dependence distances
169 * proximity is set if the edge is used to minimize dependence distances
170 * condition is set if the edge represents a condition
171 * for a conditional validity schedule constraint
172 * local can only be set for condition edges and indicates that
173 * the dependence distance over the edge should be zero
174 * conditional_validity is set if the edge is used to conditionally
175 * ensure correctness
177 * For validity edges, start and end mark the sequence of inequality
178 * constraints in the LP problem that encode the validity constraint
179 * corresponding to this edge.
181 * During clustering, an edge may be marked "no_merge" if it should
182 * not be used to merge clusters.
183 * The weight is also only used during clustering and it is
184 * an indication of how many schedule dimensions on either side
185 * of the schedule constraints can be aligned.
186 * If the weight is negative, then this means that this edge was postponed
187 * by has_bounded_distances or any_no_merge. The original weight can
188 * be retrieved by adding 1 + graph->max_weight, with "graph"
189 * the graph containing this edge.
191 struct isl_sched_edge {
192 isl_map *map;
193 isl_union_map *tagged_condition;
194 isl_union_map *tagged_validity;
196 struct isl_sched_node *src;
197 struct isl_sched_node *dst;
199 unsigned types;
201 int start;
202 int end;
204 int no_merge;
205 int weight;
208 /* Is "edge" marked as being of type "type"?
210 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
212 return ISL_FL_ISSET(edge->types, 1 << type);
215 /* Mark "edge" as being of type "type".
217 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
219 ISL_FL_SET(edge->types, 1 << type);
222 /* No longer mark "edge" as being of type "type"?
224 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
226 ISL_FL_CLR(edge->types, 1 << type);
229 /* Is "edge" marked as a validity edge?
231 static int is_validity(struct isl_sched_edge *edge)
233 return is_type(edge, isl_edge_validity);
236 /* Mark "edge" as a validity edge.
238 static void set_validity(struct isl_sched_edge *edge)
240 set_type(edge, isl_edge_validity);
243 /* Is "edge" marked as a proximity edge?
245 static int is_proximity(struct isl_sched_edge *edge)
247 return is_type(edge, isl_edge_proximity);
250 /* Is "edge" marked as a local edge?
252 static int is_local(struct isl_sched_edge *edge)
254 return is_type(edge, isl_edge_local);
257 /* Mark "edge" as a local edge.
259 static void set_local(struct isl_sched_edge *edge)
261 set_type(edge, isl_edge_local);
264 /* No longer mark "edge" as a local edge.
266 static void clear_local(struct isl_sched_edge *edge)
268 clear_type(edge, isl_edge_local);
271 /* Is "edge" marked as a coincidence edge?
273 static int is_coincidence(struct isl_sched_edge *edge)
275 return is_type(edge, isl_edge_coincidence);
278 /* Is "edge" marked as a condition edge?
280 static int is_condition(struct isl_sched_edge *edge)
282 return is_type(edge, isl_edge_condition);
285 /* Is "edge" marked as a conditional validity edge?
287 static int is_conditional_validity(struct isl_sched_edge *edge)
289 return is_type(edge, isl_edge_conditional_validity);
292 /* Is "edge" of a type that can appear multiple times between
293 * the same pair of nodes?
295 * Condition edges and conditional validity edges may have tagged
296 * dependence relations, in which case an edge is added for each
297 * pair of tags.
299 static int is_multi_edge_type(struct isl_sched_edge *edge)
301 return is_condition(edge) || is_conditional_validity(edge);
304 /* Internal information about the dependence graph used during
305 * the construction of the schedule.
307 * intra_hmap is a cache, mapping dependence relations to their dual,
308 * for dependences from a node to itself, possibly without
309 * coefficients for the parameters
310 * intra_hmap_param is a cache, mapping dependence relations to their dual,
311 * for dependences from a node to itself, including coefficients
312 * for the parameters
313 * inter_hmap is a cache, mapping dependence relations to their dual,
314 * for dependences between distinct nodes
315 * if compression is involved then the key for these maps
316 * is the original, uncompressed dependence relation, while
317 * the value is the dual of the compressed dependence relation.
319 * n is the number of nodes
320 * node is the list of nodes
321 * maxvar is the maximal number of variables over all nodes
322 * max_row is the allocated number of rows in the schedule
323 * n_row is the current (maximal) number of linearly independent
324 * rows in the node schedules
325 * n_total_row is the current number of rows in the node schedules
326 * band_start is the starting row in the node schedules of the current band
327 * root is set to the original dependence graph from which this graph
328 * is derived through splitting. If this graph is not the result of
329 * splitting, then the root field points to the graph itself.
331 * sorted contains a list of node indices sorted according to the
332 * SCC to which a node belongs
334 * n_edge is the number of edges
335 * edge is the list of edges
336 * max_edge contains the maximal number of edges of each type;
337 * in particular, it contains the number of edges in the inital graph.
338 * edge_table contains pointers into the edge array, hashed on the source
339 * and sink spaces; there is one such table for each type;
340 * a given edge may be referenced from more than one table
341 * if the corresponding relation appears in more than one of the
342 * sets of dependences; however, for each type there is only
343 * a single edge between a given pair of source and sink space
344 * in the entire graph
346 * node_table contains pointers into the node array, hashed on the space tuples
348 * region contains a list of variable sequences that should be non-trivial
350 * lp contains the (I)LP problem used to obtain new schedule rows
352 * src_scc and dst_scc are the source and sink SCCs of an edge with
353 * conflicting constraints
355 * scc represents the number of components
356 * weak is set if the components are weakly connected
358 * max_weight is used during clustering and represents the maximal
359 * weight of the relevant proximity edges.
361 struct isl_sched_graph {
362 isl_map_to_basic_set *intra_hmap;
363 isl_map_to_basic_set *intra_hmap_param;
364 isl_map_to_basic_set *inter_hmap;
366 struct isl_sched_node *node;
367 int n;
368 int maxvar;
369 int max_row;
370 int n_row;
372 int *sorted;
374 int n_total_row;
375 int band_start;
377 struct isl_sched_graph *root;
379 struct isl_sched_edge *edge;
380 int n_edge;
381 int max_edge[isl_edge_last + 1];
382 struct isl_hash_table *edge_table[isl_edge_last + 1];
384 struct isl_hash_table *node_table;
385 struct isl_trivial_region *region;
387 isl_basic_set *lp;
389 int src_scc;
390 int dst_scc;
392 int scc;
393 int weak;
395 int max_weight;
398 /* Initialize node_table based on the list of nodes.
400 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
402 int i;
404 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
405 if (!graph->node_table)
406 return -1;
408 for (i = 0; i < graph->n; ++i) {
409 struct isl_hash_table_entry *entry;
410 uint32_t hash;
412 hash = isl_space_get_tuple_hash(graph->node[i].space);
413 entry = isl_hash_table_find(ctx, graph->node_table, hash,
414 &node_has_tuples,
415 graph->node[i].space, 1);
416 if (!entry)
417 return -1;
418 entry->data = &graph->node[i];
421 return 0;
424 /* Return a pointer to the node that lives within the given space,
425 * an invalid node if there is no such node, or NULL in case of error.
427 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
428 struct isl_sched_graph *graph, __isl_keep isl_space *space)
430 struct isl_hash_table_entry *entry;
431 uint32_t hash;
433 if (!space)
434 return NULL;
436 hash = isl_space_get_tuple_hash(space);
437 entry = isl_hash_table_find(ctx, graph->node_table, hash,
438 &node_has_tuples, space, 0);
440 return entry ? entry->data : graph->node + graph->n;
443 /* Is "node" a node in "graph"?
445 static int is_node(struct isl_sched_graph *graph,
446 struct isl_sched_node *node)
448 return node && node >= &graph->node[0] && node < &graph->node[graph->n];
451 static int edge_has_src_and_dst(const void *entry, const void *val)
453 const struct isl_sched_edge *edge = entry;
454 const struct isl_sched_edge *temp = val;
456 return edge->src == temp->src && edge->dst == temp->dst;
459 /* Add the given edge to graph->edge_table[type].
461 static isl_stat graph_edge_table_add(isl_ctx *ctx,
462 struct isl_sched_graph *graph, enum isl_edge_type type,
463 struct isl_sched_edge *edge)
465 struct isl_hash_table_entry *entry;
466 uint32_t hash;
468 hash = isl_hash_init();
469 hash = isl_hash_builtin(hash, edge->src);
470 hash = isl_hash_builtin(hash, edge->dst);
471 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
472 &edge_has_src_and_dst, edge, 1);
473 if (!entry)
474 return isl_stat_error;
475 entry->data = edge;
477 return isl_stat_ok;
480 /* Add "edge" to all relevant edge tables.
481 * That is, for every type of the edge, add it to the corresponding table.
483 static isl_stat graph_edge_tables_add(isl_ctx *ctx,
484 struct isl_sched_graph *graph, struct isl_sched_edge *edge)
486 enum isl_edge_type t;
488 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
489 if (!is_type(edge, t))
490 continue;
491 if (graph_edge_table_add(ctx, graph, t, edge) < 0)
492 return isl_stat_error;
495 return isl_stat_ok;
498 /* Allocate the edge_tables based on the maximal number of edges of
499 * each type.
501 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
503 int i;
505 for (i = 0; i <= isl_edge_last; ++i) {
506 graph->edge_table[i] = isl_hash_table_alloc(ctx,
507 graph->max_edge[i]);
508 if (!graph->edge_table[i])
509 return -1;
512 return 0;
515 /* If graph->edge_table[type] contains an edge from the given source
516 * to the given destination, then return the hash table entry of this edge.
517 * Otherwise, return NULL.
519 static struct isl_hash_table_entry *graph_find_edge_entry(
520 struct isl_sched_graph *graph,
521 enum isl_edge_type type,
522 struct isl_sched_node *src, struct isl_sched_node *dst)
524 isl_ctx *ctx = isl_space_get_ctx(src->space);
525 uint32_t hash;
526 struct isl_sched_edge temp = { .src = src, .dst = dst };
528 hash = isl_hash_init();
529 hash = isl_hash_builtin(hash, temp.src);
530 hash = isl_hash_builtin(hash, temp.dst);
531 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
532 &edge_has_src_and_dst, &temp, 0);
536 /* If graph->edge_table[type] contains an edge from the given source
537 * to the given destination, then return this edge.
538 * Otherwise, return NULL.
540 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
541 enum isl_edge_type type,
542 struct isl_sched_node *src, struct isl_sched_node *dst)
544 struct isl_hash_table_entry *entry;
546 entry = graph_find_edge_entry(graph, type, src, dst);
547 if (!entry)
548 return NULL;
550 return entry->data;
553 /* Check whether the dependence graph has an edge of the given type
554 * between the given two nodes.
556 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
557 enum isl_edge_type type,
558 struct isl_sched_node *src, struct isl_sched_node *dst)
560 struct isl_sched_edge *edge;
561 isl_bool empty;
563 edge = graph_find_edge(graph, type, src, dst);
564 if (!edge)
565 return isl_bool_false;
567 empty = isl_map_plain_is_empty(edge->map);
569 return isl_bool_not(empty);
572 /* Look for any edge with the same src, dst and map fields as "model".
574 * Return the matching edge if one can be found.
575 * Return "model" if no matching edge is found.
576 * Return NULL on error.
578 static struct isl_sched_edge *graph_find_matching_edge(
579 struct isl_sched_graph *graph, struct isl_sched_edge *model)
581 enum isl_edge_type i;
582 struct isl_sched_edge *edge;
584 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
585 int is_equal;
587 edge = graph_find_edge(graph, i, model->src, model->dst);
588 if (!edge)
589 continue;
590 is_equal = isl_map_plain_is_equal(model->map, edge->map);
591 if (is_equal < 0)
592 return NULL;
593 if (is_equal)
594 return edge;
597 return model;
600 /* Remove the given edge from all the edge_tables that refer to it.
602 static void graph_remove_edge(struct isl_sched_graph *graph,
603 struct isl_sched_edge *edge)
605 isl_ctx *ctx = isl_map_get_ctx(edge->map);
606 enum isl_edge_type i;
608 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
609 struct isl_hash_table_entry *entry;
611 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
612 if (!entry)
613 continue;
614 if (entry->data != edge)
615 continue;
616 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
620 /* Check whether the dependence graph has any edge
621 * between the given two nodes.
623 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
624 struct isl_sched_node *src, struct isl_sched_node *dst)
626 enum isl_edge_type i;
627 isl_bool r;
629 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
630 r = graph_has_edge(graph, i, src, dst);
631 if (r < 0 || r)
632 return r;
635 return r;
638 /* Check whether the dependence graph has a validity edge
639 * between the given two nodes.
641 * Conditional validity edges are essentially validity edges that
642 * can be ignored if the corresponding condition edges are iteration private.
643 * Here, we are only checking for the presence of validity
644 * edges, so we need to consider the conditional validity edges too.
645 * In particular, this function is used during the detection
646 * of strongly connected components and we cannot ignore
647 * conditional validity edges during this detection.
649 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
650 struct isl_sched_node *src, struct isl_sched_node *dst)
652 isl_bool r;
654 r = graph_has_edge(graph, isl_edge_validity, src, dst);
655 if (r < 0 || r)
656 return r;
658 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
661 /* Perform all the required memory allocations for a schedule graph "graph"
662 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
663 * fields.
665 static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
666 int n_node, int n_edge)
668 int i;
670 graph->n = n_node;
671 graph->n_edge = n_edge;
672 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
673 graph->sorted = isl_calloc_array(ctx, int, graph->n);
674 graph->region = isl_alloc_array(ctx,
675 struct isl_trivial_region, graph->n);
676 graph->edge = isl_calloc_array(ctx,
677 struct isl_sched_edge, graph->n_edge);
679 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
680 graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
681 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
683 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
684 !graph->sorted)
685 return isl_stat_error;
687 for(i = 0; i < graph->n; ++i)
688 graph->sorted[i] = i;
690 return isl_stat_ok;
693 /* Free the memory associated to node "node" in "graph".
694 * The "coincident" field is shared by nodes in a graph and its subgraph.
695 * It therefore only needs to be freed for the original dependence graph,
696 * i.e., one that is not the result of splitting.
698 static void clear_node(struct isl_sched_graph *graph,
699 struct isl_sched_node *node)
701 isl_space_free(node->space);
702 isl_set_free(node->hull);
703 isl_multi_aff_free(node->compress);
704 isl_multi_aff_free(node->decompress);
705 isl_mat_free(node->sched);
706 isl_map_free(node->sched_map);
707 isl_mat_free(node->indep);
708 isl_mat_free(node->vmap);
709 if (graph->root == graph)
710 free(node->coincident);
711 isl_multi_val_free(node->sizes);
712 isl_basic_set_free(node->bounds);
713 isl_vec_free(node->max);
716 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
718 int i;
720 isl_map_to_basic_set_free(graph->intra_hmap);
721 isl_map_to_basic_set_free(graph->intra_hmap_param);
722 isl_map_to_basic_set_free(graph->inter_hmap);
724 if (graph->node)
725 for (i = 0; i < graph->n; ++i)
726 clear_node(graph, &graph->node[i]);
727 free(graph->node);
728 free(graph->sorted);
729 if (graph->edge)
730 for (i = 0; i < graph->n_edge; ++i) {
731 isl_map_free(graph->edge[i].map);
732 isl_union_map_free(graph->edge[i].tagged_condition);
733 isl_union_map_free(graph->edge[i].tagged_validity);
735 free(graph->edge);
736 free(graph->region);
737 for (i = 0; i <= isl_edge_last; ++i)
738 isl_hash_table_free(ctx, graph->edge_table[i]);
739 isl_hash_table_free(ctx, graph->node_table);
740 isl_basic_set_free(graph->lp);
743 /* For each "set" on which this function is called, increment
744 * graph->n by one and update graph->maxvar.
746 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
748 struct isl_sched_graph *graph = user;
749 int nvar = isl_set_dim(set, isl_dim_set);
751 graph->n++;
752 if (nvar > graph->maxvar)
753 graph->maxvar = nvar;
755 isl_set_free(set);
757 return isl_stat_ok;
760 /* Compute the number of rows that should be allocated for the schedule.
761 * In particular, we need one row for each variable or one row
762 * for each basic map in the dependences.
763 * Note that it is practically impossible to exhaust both
764 * the number of dependences and the number of variables.
766 static isl_stat compute_max_row(struct isl_sched_graph *graph,
767 __isl_keep isl_schedule_constraints *sc)
769 int n_edge;
770 isl_stat r;
771 isl_union_set *domain;
773 graph->n = 0;
774 graph->maxvar = 0;
775 domain = isl_schedule_constraints_get_domain(sc);
776 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
777 isl_union_set_free(domain);
778 if (r < 0)
779 return isl_stat_error;
780 n_edge = isl_schedule_constraints_n_basic_map(sc);
781 if (n_edge < 0)
782 return isl_stat_error;
783 graph->max_row = n_edge + graph->maxvar;
785 return isl_stat_ok;
788 /* Does "bset" have any defining equalities for its set variables?
790 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
792 int i, n;
794 if (!bset)
795 return isl_bool_error;
797 n = isl_basic_set_dim(bset, isl_dim_set);
798 for (i = 0; i < n; ++i) {
799 isl_bool has;
801 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
802 NULL);
803 if (has < 0 || has)
804 return has;
807 return isl_bool_false;
810 /* Set the entries of node->max to the value of the schedule_max_coefficient
811 * option, if set.
813 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
815 int max;
817 max = isl_options_get_schedule_max_coefficient(ctx);
818 if (max == -1)
819 return isl_stat_ok;
821 node->max = isl_vec_alloc(ctx, node->nvar);
822 node->max = isl_vec_set_si(node->max, max);
823 if (!node->max)
824 return isl_stat_error;
826 return isl_stat_ok;
829 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
830 * option (if set) and half of the minimum of the sizes in the other
831 * dimensions. Round up when computing the half such that
832 * if the minimum of the sizes is one, half of the size is taken to be one
833 * rather than zero.
834 * If the global minimum is unbounded (i.e., if both
835 * the schedule_max_coefficient is not set and the sizes in the other
836 * dimensions are unbounded), then store a negative value.
837 * If the schedule coefficient is close to the size of the instance set
838 * in another dimension, then the schedule may represent a loop
839 * coalescing transformation (especially if the coefficient
840 * in that other dimension is one). Forcing the coefficient to be
841 * smaller than or equal to half the minimal size should avoid this
842 * situation.
844 static isl_stat compute_max_coefficient(isl_ctx *ctx,
845 struct isl_sched_node *node)
847 int max;
848 int i, j;
849 isl_vec *v;
851 max = isl_options_get_schedule_max_coefficient(ctx);
852 v = isl_vec_alloc(ctx, node->nvar);
853 if (!v)
854 return isl_stat_error;
856 for (i = 0; i < node->nvar; ++i) {
857 isl_int_set_si(v->el[i], max);
858 isl_int_mul_si(v->el[i], v->el[i], 2);
861 for (i = 0; i < node->nvar; ++i) {
862 isl_val *size;
864 size = isl_multi_val_get_val(node->sizes, i);
865 if (!size)
866 goto error;
867 if (!isl_val_is_int(size)) {
868 isl_val_free(size);
869 continue;
871 for (j = 0; j < node->nvar; ++j) {
872 if (j == i)
873 continue;
874 if (isl_int_is_neg(v->el[j]) ||
875 isl_int_gt(v->el[j], size->n))
876 isl_int_set(v->el[j], size->n);
878 isl_val_free(size);
881 for (i = 0; i < node->nvar; ++i)
882 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
884 node->max = v;
885 return isl_stat_ok;
886 error:
887 isl_vec_free(v);
888 return isl_stat_error;
891 /* Compute and return the size of "set" in dimension "dim".
892 * The size is taken to be the difference in values for that variable
893 * for fixed values of the other variables.
894 * This assumes that "set" is convex.
895 * In particular, the variable is first isolated from the other variables
896 * in the range of a map
898 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
900 * and then duplicated
902 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
904 * The shared variables are then projected out and the maximal value
905 * of i_dim' - i_dim is computed.
907 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
909 isl_map *map;
910 isl_local_space *ls;
911 isl_aff *obj;
912 isl_val *v;
914 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
915 map = isl_map_project_out(map, isl_dim_in, dim, 1);
916 map = isl_map_range_product(map, isl_map_copy(map));
917 map = isl_set_unwrap(isl_map_range(map));
918 set = isl_map_deltas(map);
919 ls = isl_local_space_from_space(isl_set_get_space(set));
920 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
921 v = isl_set_max_val(set, obj);
922 isl_aff_free(obj);
923 isl_set_free(set);
925 return v;
928 /* Compute the size of the instance set "set" of "node", after compression,
929 * as well as bounds on the corresponding coefficients, if needed.
931 * The sizes are needed when the schedule_treat_coalescing option is set.
932 * The bounds are needed when the schedule_treat_coalescing option or
933 * the schedule_max_coefficient option is set.
935 * If the schedule_treat_coalescing option is not set, then at most
936 * the bounds need to be set and this is done in set_max_coefficient.
937 * Otherwise, compress the domain if needed, compute the size
938 * in each direction and store the results in node->size.
939 * If the domain is not convex, then the sizes are computed
940 * on a convex superset in order to avoid picking up sizes
941 * that are valid for the individual disjuncts, but not for
942 * the domain as a whole.
943 * Finally, set the bounds on the coefficients based on the sizes
944 * and the schedule_max_coefficient option in compute_max_coefficient.
946 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
947 __isl_take isl_set *set)
949 int j, n;
950 isl_multi_val *mv;
952 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
953 isl_set_free(set);
954 return set_max_coefficient(ctx, node);
957 if (node->compressed)
958 set = isl_set_preimage_multi_aff(set,
959 isl_multi_aff_copy(node->decompress));
960 set = isl_set_from_basic_set(isl_set_simple_hull(set));
961 mv = isl_multi_val_zero(isl_set_get_space(set));
962 n = isl_set_dim(set, isl_dim_set);
963 for (j = 0; j < n; ++j) {
964 isl_val *v;
966 v = compute_size(isl_set_copy(set), j);
967 mv = isl_multi_val_set_val(mv, j, v);
969 node->sizes = mv;
970 isl_set_free(set);
971 if (!node->sizes)
972 return isl_stat_error;
973 return compute_max_coefficient(ctx, node);
976 /* Add a new node to the graph representing the given instance set.
977 * "nvar" is the (possibly compressed) number of variables and
978 * may be smaller than then number of set variables in "set"
979 * if "compressed" is set.
980 * If "compressed" is set, then "hull" represents the constraints
981 * that were used to derive the compression, while "compress" and
982 * "decompress" map the original space to the compressed space and
983 * vice versa.
984 * If "compressed" is not set, then "hull", "compress" and "decompress"
985 * should be NULL.
987 * Compute the size of the instance set and bounds on the coefficients,
988 * if needed.
990 static isl_stat add_node(struct isl_sched_graph *graph,
991 __isl_take isl_set *set, int nvar, int compressed,
992 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
993 __isl_take isl_multi_aff *decompress)
995 int nparam;
996 isl_ctx *ctx;
997 isl_mat *sched;
998 isl_space *space;
999 int *coincident;
1000 struct isl_sched_node *node;
1002 if (!set)
1003 goto error;
1005 ctx = isl_set_get_ctx(set);
1006 nparam = isl_set_dim(set, isl_dim_param);
1007 if (!ctx->opt->schedule_parametric)
1008 nparam = 0;
1009 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
1010 node = &graph->node[graph->n];
1011 graph->n++;
1012 space = isl_set_get_space(set);
1013 node->space = space;
1014 node->nvar = nvar;
1015 node->nparam = nparam;
1016 node->sched = sched;
1017 node->sched_map = NULL;
1018 coincident = isl_calloc_array(ctx, int, graph->max_row);
1019 node->coincident = coincident;
1020 node->compressed = compressed;
1021 node->hull = hull;
1022 node->compress = compress;
1023 node->decompress = decompress;
1024 if (compute_sizes_and_max(ctx, node, set) < 0)
1025 return isl_stat_error;
1027 if (!space || !sched || (graph->max_row && !coincident))
1028 return isl_stat_error;
1029 if (compressed && (!hull || !compress || !decompress))
1030 return isl_stat_error;
1032 return isl_stat_ok;
1033 error:
1034 isl_set_free(set);
1035 isl_set_free(hull);
1036 isl_multi_aff_free(compress);
1037 isl_multi_aff_free(decompress);
1038 return isl_stat_error;
1041 /* Construct an identifier for node "node", which will represent "set".
1042 * The name of the identifier is either "compressed" or
1043 * "compressed_<name>", with <name> the name of the space of "set".
1044 * The user pointer of the identifier points to "node".
1046 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
1047 struct isl_sched_node *node)
1049 isl_bool has_name;
1050 isl_ctx *ctx;
1051 isl_id *id;
1052 isl_printer *p;
1053 const char *name;
1054 char *id_name;
1056 has_name = isl_set_has_tuple_name(set);
1057 if (has_name < 0)
1058 return NULL;
1060 ctx = isl_set_get_ctx(set);
1061 if (!has_name)
1062 return isl_id_alloc(ctx, "compressed", node);
1064 p = isl_printer_to_str(ctx);
1065 name = isl_set_get_tuple_name(set);
1066 p = isl_printer_print_str(p, "compressed_");
1067 p = isl_printer_print_str(p, name);
1068 id_name = isl_printer_get_str(p);
1069 isl_printer_free(p);
1071 id = isl_id_alloc(ctx, id_name, node);
1072 free(id_name);
1074 return id;
1077 /* Add a new node to the graph representing the given set.
1079 * If any of the set variables is defined by an equality, then
1080 * we perform variable compression such that we can perform
1081 * the scheduling on the compressed domain.
1082 * In this case, an identifier is used that references the new node
1083 * such that each compressed space is unique and
1084 * such that the node can be recovered from the compressed space.
1086 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1088 int nvar;
1089 isl_bool has_equality;
1090 isl_id *id;
1091 isl_basic_set *hull;
1092 isl_set *hull_set;
1093 isl_morph *morph;
1094 isl_multi_aff *compress, *decompress;
1095 struct isl_sched_graph *graph = user;
1097 hull = isl_set_affine_hull(isl_set_copy(set));
1098 hull = isl_basic_set_remove_divs(hull);
1099 nvar = isl_set_dim(set, isl_dim_set);
1100 has_equality = has_any_defining_equality(hull);
1102 if (has_equality < 0)
1103 goto error;
1104 if (!has_equality) {
1105 isl_basic_set_free(hull);
1106 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1109 id = construct_compressed_id(set, &graph->node[graph->n]);
1110 morph = isl_basic_set_variable_compression_with_id(hull,
1111 isl_dim_set, id);
1112 isl_id_free(id);
1113 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1114 compress = isl_morph_get_var_multi_aff(morph);
1115 morph = isl_morph_inverse(morph);
1116 decompress = isl_morph_get_var_multi_aff(morph);
1117 isl_morph_free(morph);
1119 hull_set = isl_set_from_basic_set(hull);
1120 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1121 error:
1122 isl_basic_set_free(hull);
1123 isl_set_free(set);
1124 return isl_stat_error;
1127 struct isl_extract_edge_data {
1128 enum isl_edge_type type;
1129 struct isl_sched_graph *graph;
1132 /* Merge edge2 into edge1, freeing the contents of edge2.
1133 * Return 0 on success and -1 on failure.
1135 * edge1 and edge2 are assumed to have the same value for the map field.
1137 static int merge_edge(struct isl_sched_edge *edge1,
1138 struct isl_sched_edge *edge2)
1140 edge1->types |= edge2->types;
1141 isl_map_free(edge2->map);
1143 if (is_condition(edge2)) {
1144 if (!edge1->tagged_condition)
1145 edge1->tagged_condition = edge2->tagged_condition;
1146 else
1147 edge1->tagged_condition =
1148 isl_union_map_union(edge1->tagged_condition,
1149 edge2->tagged_condition);
1152 if (is_conditional_validity(edge2)) {
1153 if (!edge1->tagged_validity)
1154 edge1->tagged_validity = edge2->tagged_validity;
1155 else
1156 edge1->tagged_validity =
1157 isl_union_map_union(edge1->tagged_validity,
1158 edge2->tagged_validity);
1161 if (is_condition(edge2) && !edge1->tagged_condition)
1162 return -1;
1163 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1164 return -1;
1166 return 0;
1169 /* Insert dummy tags in domain and range of "map".
1171 * In particular, if "map" is of the form
1173 * A -> B
1175 * then return
1177 * [A -> dummy_tag] -> [B -> dummy_tag]
1179 * where the dummy_tags are identical and equal to any dummy tags
1180 * introduced by any other call to this function.
1182 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1184 static char dummy;
1185 isl_ctx *ctx;
1186 isl_id *id;
1187 isl_space *space;
1188 isl_set *domain, *range;
1190 ctx = isl_map_get_ctx(map);
1192 id = isl_id_alloc(ctx, NULL, &dummy);
1193 space = isl_space_params(isl_map_get_space(map));
1194 space = isl_space_set_from_params(space);
1195 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1196 space = isl_space_map_from_set(space);
1198 domain = isl_map_wrap(map);
1199 range = isl_map_wrap(isl_map_universe(space));
1200 map = isl_map_from_domain_and_range(domain, range);
1201 map = isl_map_zip(map);
1203 return map;
1206 /* Given that at least one of "src" or "dst" is compressed, return
1207 * a map between the spaces of these nodes restricted to the affine
1208 * hull that was used in the compression.
1210 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1211 struct isl_sched_node *dst)
1213 isl_set *dom, *ran;
1215 if (src->compressed)
1216 dom = isl_set_copy(src->hull);
1217 else
1218 dom = isl_set_universe(isl_space_copy(src->space));
1219 if (dst->compressed)
1220 ran = isl_set_copy(dst->hull);
1221 else
1222 ran = isl_set_universe(isl_space_copy(dst->space));
1224 return isl_map_from_domain_and_range(dom, ran);
1227 /* Intersect the domains of the nested relations in domain and range
1228 * of "tagged" with "map".
1230 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1231 __isl_keep isl_map *map)
1233 isl_set *set;
1235 tagged = isl_map_zip(tagged);
1236 set = isl_map_wrap(isl_map_copy(map));
1237 tagged = isl_map_intersect_domain(tagged, set);
1238 tagged = isl_map_zip(tagged);
1239 return tagged;
1242 /* Return a pointer to the node that lives in the domain space of "map",
1243 * an invalid node if there is no such node, or NULL in case of error.
1245 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1246 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1248 struct isl_sched_node *node;
1249 isl_space *space;
1251 space = isl_space_domain(isl_map_get_space(map));
1252 node = graph_find_node(ctx, graph, space);
1253 isl_space_free(space);
1255 return node;
1258 /* Return a pointer to the node that lives in the range space of "map",
1259 * an invalid node if there is no such node, or NULL in case of error.
1261 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1262 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1264 struct isl_sched_node *node;
1265 isl_space *space;
1267 space = isl_space_range(isl_map_get_space(map));
1268 node = graph_find_node(ctx, graph, space);
1269 isl_space_free(space);
1271 return node;
1274 /* Refrain from adding a new edge based on "map".
1275 * Instead, just free the map.
1276 * "tagged" is either a copy of "map" with additional tags or NULL.
1278 static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
1280 isl_map_free(map);
1281 isl_map_free(tagged);
1283 return isl_stat_ok;
1286 /* Add a new edge to the graph based on the given map
1287 * and add it to data->graph->edge_table[data->type].
1288 * If a dependence relation of a given type happens to be identical
1289 * to one of the dependence relations of a type that was added before,
1290 * then we don't create a new edge, but instead mark the original edge
1291 * as also representing a dependence of the current type.
1293 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1294 * may be specified as "tagged" dependence relations. That is, "map"
1295 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1296 * the dependence on iterations and a and b are tags.
1297 * edge->map is set to the relation containing the elements i -> j,
1298 * while edge->tagged_condition and edge->tagged_validity contain
1299 * the union of all the "map" relations
1300 * for which extract_edge is called that result in the same edge->map.
1302 * If the source or the destination node is compressed, then
1303 * intersect both "map" and "tagged" with the constraints that
1304 * were used to construct the compression.
1305 * This ensures that there are no schedule constraints defined
1306 * outside of these domains, while the scheduler no longer has
1307 * any control over those outside parts.
1309 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1311 isl_bool empty;
1312 isl_ctx *ctx = isl_map_get_ctx(map);
1313 struct isl_extract_edge_data *data = user;
1314 struct isl_sched_graph *graph = data->graph;
1315 struct isl_sched_node *src, *dst;
1316 struct isl_sched_edge *edge;
1317 isl_map *tagged = NULL;
1319 if (data->type == isl_edge_condition ||
1320 data->type == isl_edge_conditional_validity) {
1321 if (isl_map_can_zip(map)) {
1322 tagged = isl_map_copy(map);
1323 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1324 } else {
1325 tagged = insert_dummy_tags(isl_map_copy(map));
1329 src = find_domain_node(ctx, graph, map);
1330 dst = find_range_node(ctx, graph, map);
1332 if (!src || !dst)
1333 goto error;
1334 if (!is_node(graph, src) || !is_node(graph, dst))
1335 return skip_edge(map, tagged);
1337 if (src->compressed || dst->compressed) {
1338 isl_map *hull;
1339 hull = extract_hull(src, dst);
1340 if (tagged)
1341 tagged = map_intersect_domains(tagged, hull);
1342 map = isl_map_intersect(map, hull);
1345 empty = isl_map_plain_is_empty(map);
1346 if (empty < 0)
1347 goto error;
1348 if (empty)
1349 return skip_edge(map, tagged);
1351 graph->edge[graph->n_edge].src = src;
1352 graph->edge[graph->n_edge].dst = dst;
1353 graph->edge[graph->n_edge].map = map;
1354 graph->edge[graph->n_edge].types = 0;
1355 graph->edge[graph->n_edge].tagged_condition = NULL;
1356 graph->edge[graph->n_edge].tagged_validity = NULL;
1357 set_type(&graph->edge[graph->n_edge], data->type);
1358 if (data->type == isl_edge_condition)
1359 graph->edge[graph->n_edge].tagged_condition =
1360 isl_union_map_from_map(tagged);
1361 if (data->type == isl_edge_conditional_validity)
1362 graph->edge[graph->n_edge].tagged_validity =
1363 isl_union_map_from_map(tagged);
1365 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1366 if (!edge) {
1367 graph->n_edge++;
1368 return isl_stat_error;
1370 if (edge == &graph->edge[graph->n_edge])
1371 return graph_edge_table_add(ctx, graph, data->type,
1372 &graph->edge[graph->n_edge++]);
1374 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1375 return isl_stat_error;
1377 return graph_edge_table_add(ctx, graph, data->type, edge);
1378 error:
1379 isl_map_free(map);
1380 isl_map_free(tagged);
1381 return isl_stat_error;
1384 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1386 * The context is included in the domain before the nodes of
1387 * the graphs are extracted in order to be able to exploit
1388 * any possible additional equalities.
1389 * Note that this intersection is only performed locally here.
1391 static isl_stat graph_init(struct isl_sched_graph *graph,
1392 __isl_keep isl_schedule_constraints *sc)
1394 isl_ctx *ctx;
1395 isl_union_set *domain;
1396 isl_union_map *c;
1397 struct isl_extract_edge_data data;
1398 enum isl_edge_type i;
1399 isl_stat r;
1401 if (!sc)
1402 return isl_stat_error;
1404 ctx = isl_schedule_constraints_get_ctx(sc);
1406 domain = isl_schedule_constraints_get_domain(sc);
1407 graph->n = isl_union_set_n_set(domain);
1408 isl_union_set_free(domain);
1410 if (graph_alloc(ctx, graph, graph->n,
1411 isl_schedule_constraints_n_map(sc)) < 0)
1412 return isl_stat_error;
1414 if (compute_max_row(graph, sc) < 0)
1415 return isl_stat_error;
1416 graph->root = graph;
1417 graph->n = 0;
1418 domain = isl_schedule_constraints_get_domain(sc);
1419 domain = isl_union_set_intersect_params(domain,
1420 isl_schedule_constraints_get_context(sc));
1421 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1422 isl_union_set_free(domain);
1423 if (r < 0)
1424 return isl_stat_error;
1425 if (graph_init_table(ctx, graph) < 0)
1426 return isl_stat_error;
1427 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1428 c = isl_schedule_constraints_get(sc, i);
1429 graph->max_edge[i] = isl_union_map_n_map(c);
1430 isl_union_map_free(c);
1431 if (!c)
1432 return isl_stat_error;
1434 if (graph_init_edge_tables(ctx, graph) < 0)
1435 return isl_stat_error;
1436 graph->n_edge = 0;
1437 data.graph = graph;
1438 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1439 isl_stat r;
1441 data.type = i;
1442 c = isl_schedule_constraints_get(sc, i);
1443 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1444 isl_union_map_free(c);
1445 if (r < 0)
1446 return isl_stat_error;
1449 return isl_stat_ok;
1452 /* Check whether there is any dependence from node[j] to node[i]
1453 * or from node[i] to node[j].
1455 static isl_bool node_follows_weak(int i, int j, void *user)
1457 isl_bool f;
1458 struct isl_sched_graph *graph = user;
1460 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1461 if (f < 0 || f)
1462 return f;
1463 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1466 /* Check whether there is a (conditional) validity dependence from node[j]
1467 * to node[i], forcing node[i] to follow node[j].
1469 static isl_bool node_follows_strong(int i, int j, void *user)
1471 struct isl_sched_graph *graph = user;
1473 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1476 /* Use Tarjan's algorithm for computing the strongly connected components
1477 * in the dependence graph only considering those edges defined by "follows".
1479 static isl_stat detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1480 isl_bool (*follows)(int i, int j, void *user))
1482 int i, n;
1483 struct isl_tarjan_graph *g = NULL;
1485 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1486 if (!g)
1487 return isl_stat_error;
1489 graph->scc = 0;
1490 i = 0;
1491 n = graph->n;
1492 while (n) {
1493 while (g->order[i] != -1) {
1494 graph->node[g->order[i]].scc = graph->scc;
1495 --n;
1496 ++i;
1498 ++i;
1499 graph->scc++;
1502 isl_tarjan_graph_free(g);
1504 return isl_stat_ok;
1507 /* Apply Tarjan's algorithm to detect the strongly connected components
1508 * in the dependence graph.
1509 * Only consider the (conditional) validity dependences and clear "weak".
1511 static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1513 graph->weak = 0;
1514 return detect_ccs(ctx, graph, &node_follows_strong);
1517 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1518 * in the dependence graph.
1519 * Consider all dependences and set "weak".
1521 static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1523 graph->weak = 1;
1524 return detect_ccs(ctx, graph, &node_follows_weak);
1527 static int cmp_scc(const void *a, const void *b, void *data)
1529 struct isl_sched_graph *graph = data;
1530 const int *i1 = a;
1531 const int *i2 = b;
1533 return graph->node[*i1].scc - graph->node[*i2].scc;
1536 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1538 static int sort_sccs(struct isl_sched_graph *graph)
1540 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1543 /* Return a non-parametric set in the compressed space of "node" that is
1544 * bounded by the size in each direction
1546 * { [x] : -S_i <= x_i <= S_i }
1548 * If S_i is infinity in direction i, then there are no constraints
1549 * in that direction.
1551 * Cache the result in node->bounds.
1553 static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
1555 isl_space *space;
1556 isl_basic_set *bounds;
1557 int i;
1558 unsigned nparam;
1560 if (node->bounds)
1561 return isl_basic_set_copy(node->bounds);
1563 if (node->compressed)
1564 space = isl_multi_aff_get_domain_space(node->decompress);
1565 else
1566 space = isl_space_copy(node->space);
1567 nparam = isl_space_dim(space, isl_dim_param);
1568 space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
1569 bounds = isl_basic_set_universe(space);
1571 for (i = 0; i < node->nvar; ++i) {
1572 isl_val *size;
1574 size = isl_multi_val_get_val(node->sizes, i);
1575 if (!size)
1576 return isl_basic_set_free(bounds);
1577 if (!isl_val_is_int(size)) {
1578 isl_val_free(size);
1579 continue;
1581 bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
1582 isl_val_copy(size));
1583 bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
1584 isl_val_neg(size));
1587 node->bounds = isl_basic_set_copy(bounds);
1588 return bounds;
1591 /* Drop some constraints from "delta" that could be exploited
1592 * to construct loop coalescing schedules.
1593 * In particular, drop those constraint that bound the difference
1594 * to the size of the domain.
1595 * First project out the parameters to improve the effectiveness.
1597 static __isl_give isl_set *drop_coalescing_constraints(
1598 __isl_take isl_set *delta, struct isl_sched_node *node)
1600 unsigned nparam;
1601 isl_basic_set *bounds;
1603 bounds = get_size_bounds(node);
1605 nparam = isl_set_dim(delta, isl_dim_param);
1606 delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
1607 delta = isl_set_remove_divs(delta);
1608 delta = isl_set_plain_gist_basic_set(delta, bounds);
1609 return delta;
1612 /* Given a dependence relation R from "node" to itself,
1613 * construct the set of coefficients of valid constraints for elements
1614 * in that dependence relation.
1615 * In particular, the result contains tuples of coefficients
1616 * c_0, c_n, c_x such that
1618 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1620 * or, equivalently,
1622 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1624 * We choose here to compute the dual of delta R.
1625 * Alternatively, we could have computed the dual of R, resulting
1626 * in a set of tuples c_0, c_n, c_x, c_y, and then
1627 * plugged in (c_0, c_n, c_x, -c_x).
1629 * If "need_param" is set, then the resulting coefficients effectively
1630 * include coefficients for the parameters c_n. Otherwise, they may
1631 * have been projected out already.
1632 * Since the constraints may be different for these two cases,
1633 * they are stored in separate caches.
1634 * In particular, if no parameter coefficients are required and
1635 * the schedule_treat_coalescing option is set, then the parameters
1636 * are projected out and some constraints that could be exploited
1637 * to construct coalescing schedules are removed before the dual
1638 * is computed.
1640 * If "node" has been compressed, then the dependence relation
1641 * is also compressed before the set of coefficients is computed.
1643 static __isl_give isl_basic_set *intra_coefficients(
1644 struct isl_sched_graph *graph, struct isl_sched_node *node,
1645 __isl_take isl_map *map, int need_param)
1647 isl_ctx *ctx;
1648 isl_set *delta;
1649 isl_map *key;
1650 isl_basic_set *coef;
1651 isl_maybe_isl_basic_set m;
1652 isl_map_to_basic_set **hmap = &graph->intra_hmap;
1653 int treat;
1655 if (!map)
1656 return NULL;
1658 ctx = isl_map_get_ctx(map);
1659 treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
1660 if (!treat)
1661 hmap = &graph->intra_hmap_param;
1662 m = isl_map_to_basic_set_try_get(*hmap, map);
1663 if (m.valid < 0 || m.valid) {
1664 isl_map_free(map);
1665 return m.value;
1668 key = isl_map_copy(map);
1669 if (node->compressed) {
1670 map = isl_map_preimage_domain_multi_aff(map,
1671 isl_multi_aff_copy(node->decompress));
1672 map = isl_map_preimage_range_multi_aff(map,
1673 isl_multi_aff_copy(node->decompress));
1675 delta = isl_map_deltas(map);
1676 if (treat)
1677 delta = drop_coalescing_constraints(delta, node);
1678 delta = isl_set_remove_divs(delta);
1679 coef = isl_set_coefficients(delta);
1680 *hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
1682 return coef;
1685 /* Given a dependence relation R, construct the set of coefficients
1686 * of valid constraints for elements in that dependence relation.
1687 * In particular, the result contains tuples of coefficients
1688 * c_0, c_n, c_x, c_y such that
1690 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1692 * If the source or destination nodes of "edge" have been compressed,
1693 * then the dependence relation is also compressed before
1694 * the set of coefficients is computed.
1696 static __isl_give isl_basic_set *inter_coefficients(
1697 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1698 __isl_take isl_map *map)
1700 isl_set *set;
1701 isl_map *key;
1702 isl_basic_set *coef;
1703 isl_maybe_isl_basic_set m;
1705 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1706 if (m.valid < 0 || m.valid) {
1707 isl_map_free(map);
1708 return m.value;
1711 key = isl_map_copy(map);
1712 if (edge->src->compressed)
1713 map = isl_map_preimage_domain_multi_aff(map,
1714 isl_multi_aff_copy(edge->src->decompress));
1715 if (edge->dst->compressed)
1716 map = isl_map_preimage_range_multi_aff(map,
1717 isl_multi_aff_copy(edge->dst->decompress));
1718 set = isl_map_wrap(isl_map_remove_divs(map));
1719 coef = isl_set_coefficients(set);
1720 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1721 isl_basic_set_copy(coef));
1723 return coef;
1726 /* Return the position of the coefficients of the variables in
1727 * the coefficients constraints "coef".
1729 * The space of "coef" is of the form
1731 * { coefficients[[cst, params] -> S] }
1733 * Return the position of S.
1735 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1737 int offset;
1738 isl_space *space;
1740 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1741 offset = isl_space_dim(space, isl_dim_in);
1742 isl_space_free(space);
1744 return offset;
1747 /* Return the offset of the coefficient of the constant term of "node"
1748 * within the (I)LP.
1750 * Within each node, the coefficients have the following order:
1751 * - positive and negative parts of c_i_x
1752 * - c_i_n (if parametric)
1753 * - c_i_0
1755 static int node_cst_coef_offset(struct isl_sched_node *node)
1757 return node->start + 2 * node->nvar + node->nparam;
1760 /* Return the offset of the coefficients of the parameters of "node"
1761 * within the (I)LP.
1763 * Within each node, the coefficients have the following order:
1764 * - positive and negative parts of c_i_x
1765 * - c_i_n (if parametric)
1766 * - c_i_0
1768 static int node_par_coef_offset(struct isl_sched_node *node)
1770 return node->start + 2 * node->nvar;
1773 /* Return the offset of the coefficients of the variables of "node"
1774 * within the (I)LP.
1776 * Within each node, the coefficients have the following order:
1777 * - positive and negative parts of c_i_x
1778 * - c_i_n (if parametric)
1779 * - c_i_0
1781 static int node_var_coef_offset(struct isl_sched_node *node)
1783 return node->start;
1786 /* Return the position of the pair of variables encoding
1787 * coefficient "i" of "node".
1789 * The order of these variable pairs is the opposite of
1790 * that of the coefficients, with 2 variables per coefficient.
1792 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1794 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1797 /* Construct an isl_dim_map for mapping constraints on coefficients
1798 * for "node" to the corresponding positions in graph->lp.
1799 * "offset" is the offset of the coefficients for the variables
1800 * in the input constraints.
1801 * "s" is the sign of the mapping.
1803 * The input constraints are given in terms of the coefficients
1804 * (c_0, c_x) or (c_0, c_n, c_x).
1805 * The mapping produced by this function essentially plugs in
1806 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1807 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1808 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1809 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1810 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1811 * Furthermore, the order of these pairs is the opposite of that
1812 * of the corresponding coefficients.
1814 * The caller can extend the mapping to also map the other coefficients
1815 * (and therefore not plug in 0).
1817 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1818 struct isl_sched_graph *graph, struct isl_sched_node *node,
1819 int offset, int s)
1821 int pos;
1822 unsigned total;
1823 isl_dim_map *dim_map;
1825 if (!node || !graph->lp)
1826 return NULL;
1828 total = isl_basic_set_total_dim(graph->lp);
1829 pos = node_var_coef_pos(node, 0);
1830 dim_map = isl_dim_map_alloc(ctx, total);
1831 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1832 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1834 return dim_map;
1837 /* Construct an isl_dim_map for mapping constraints on coefficients
1838 * for "src" (node i) and "dst" (node j) to the corresponding positions
1839 * in graph->lp.
1840 * "offset" is the offset of the coefficients for the variables of "src"
1841 * in the input constraints.
1842 * "s" is the sign of the mapping.
1844 * The input constraints are given in terms of the coefficients
1845 * (c_0, c_n, c_x, c_y).
1846 * The mapping produced by this function essentially plugs in
1847 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1848 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1849 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1850 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1851 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1852 * Furthermore, the order of these pairs is the opposite of that
1853 * of the corresponding coefficients.
1855 * The caller can further extend the mapping.
1857 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1858 struct isl_sched_graph *graph, struct isl_sched_node *src,
1859 struct isl_sched_node *dst, int offset, int s)
1861 int pos;
1862 unsigned total;
1863 isl_dim_map *dim_map;
1865 if (!src || !dst || !graph->lp)
1866 return NULL;
1868 total = isl_basic_set_total_dim(graph->lp);
1869 dim_map = isl_dim_map_alloc(ctx, total);
1871 pos = node_cst_coef_offset(dst);
1872 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1873 pos = node_par_coef_offset(dst);
1874 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1875 pos = node_var_coef_pos(dst, 0);
1876 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1877 dst->nvar, -s);
1878 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1879 dst->nvar, s);
1881 pos = node_cst_coef_offset(src);
1882 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1883 pos = node_par_coef_offset(src);
1884 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1885 pos = node_var_coef_pos(src, 0);
1886 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1887 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1889 return dim_map;
1892 /* Add the constraints from "src" to "dst" using "dim_map",
1893 * after making sure there is enough room in "dst" for the extra constraints.
1895 static __isl_give isl_basic_set *add_constraints_dim_map(
1896 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1897 __isl_take isl_dim_map *dim_map)
1899 int n_eq, n_ineq;
1901 n_eq = isl_basic_set_n_equality(src);
1902 n_ineq = isl_basic_set_n_inequality(src);
1903 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1904 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1905 return dst;
1908 /* Add constraints to graph->lp that force validity for the given
1909 * dependence from a node i to itself.
1910 * That is, add constraints that enforce
1912 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1913 * = c_i_x (y - x) >= 0
1915 * for each (x,y) in R.
1916 * We obtain general constraints on coefficients (c_0, c_x)
1917 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1918 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1919 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1920 * Note that the result of intra_coefficients may also contain
1921 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1923 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1924 struct isl_sched_edge *edge)
1926 int offset;
1927 isl_map *map = isl_map_copy(edge->map);
1928 isl_ctx *ctx = isl_map_get_ctx(map);
1929 isl_dim_map *dim_map;
1930 isl_basic_set *coef;
1931 struct isl_sched_node *node = edge->src;
1933 coef = intra_coefficients(graph, node, map, 0);
1935 offset = coef_var_offset(coef);
1937 if (!coef)
1938 return isl_stat_error;
1940 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1941 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1943 return isl_stat_ok;
1946 /* Add constraints to graph->lp that force validity for the given
1947 * dependence from node i to node j.
1948 * That is, add constraints that enforce
1950 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1952 * for each (x,y) in R.
1953 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1954 * of valid constraints for R and then plug in
1955 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1956 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1957 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1959 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1960 struct isl_sched_edge *edge)
1962 int offset;
1963 isl_map *map;
1964 isl_ctx *ctx;
1965 isl_dim_map *dim_map;
1966 isl_basic_set *coef;
1967 struct isl_sched_node *src = edge->src;
1968 struct isl_sched_node *dst = edge->dst;
1970 if (!graph->lp)
1971 return isl_stat_error;
1973 map = isl_map_copy(edge->map);
1974 ctx = isl_map_get_ctx(map);
1975 coef = inter_coefficients(graph, edge, map);
1977 offset = coef_var_offset(coef);
1979 if (!coef)
1980 return isl_stat_error;
1982 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1984 edge->start = graph->lp->n_ineq;
1985 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1986 if (!graph->lp)
1987 return isl_stat_error;
1988 edge->end = graph->lp->n_ineq;
1990 return isl_stat_ok;
1993 /* Add constraints to graph->lp that bound the dependence distance for the given
1994 * dependence from a node i to itself.
1995 * If s = 1, we add the constraint
1997 * c_i_x (y - x) <= m_0 + m_n n
1999 * or
2001 * -c_i_x (y - x) + m_0 + m_n n >= 0
2003 * for each (x,y) in R.
2004 * If s = -1, we add the constraint
2006 * -c_i_x (y - x) <= m_0 + m_n n
2008 * or
2010 * c_i_x (y - x) + m_0 + m_n n >= 0
2012 * for each (x,y) in R.
2013 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2014 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2015 * with each coefficient (except m_0) represented as a pair of non-negative
2016 * coefficients.
2019 * If "local" is set, then we add constraints
2021 * c_i_x (y - x) <= 0
2023 * or
2025 * -c_i_x (y - x) <= 0
2027 * instead, forcing the dependence distance to be (less than or) equal to 0.
2028 * That is, we plug in (0, 0, -s * c_i_x),
2029 * intra_coefficients is not required to have c_n in its result when
2030 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2031 * Note that dependences marked local are treated as validity constraints
2032 * by add_all_validity_constraints and therefore also have
2033 * their distances bounded by 0 from below.
2035 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
2036 struct isl_sched_edge *edge, int s, int local)
2038 int offset;
2039 unsigned nparam;
2040 isl_map *map = isl_map_copy(edge->map);
2041 isl_ctx *ctx = isl_map_get_ctx(map);
2042 isl_dim_map *dim_map;
2043 isl_basic_set *coef;
2044 struct isl_sched_node *node = edge->src;
2046 coef = intra_coefficients(graph, node, map, !local);
2048 offset = coef_var_offset(coef);
2050 if (!coef)
2051 return isl_stat_error;
2053 nparam = isl_space_dim(node->space, isl_dim_param);
2054 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
2056 if (!local) {
2057 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2058 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2059 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2061 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2063 return isl_stat_ok;
2066 /* Add constraints to graph->lp that bound the dependence distance for the given
2067 * dependence from node i to node j.
2068 * If s = 1, we add the constraint
2070 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2071 * <= m_0 + m_n n
2073 * or
2075 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2076 * m_0 + m_n n >= 0
2078 * for each (x,y) in R.
2079 * If s = -1, we add the constraint
2081 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2082 * <= m_0 + m_n n
2084 * or
2086 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2087 * m_0 + m_n n >= 0
2089 * for each (x,y) in R.
2090 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2091 * of valid constraints for R and then plug in
2092 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2093 * s*c_i_x, -s*c_j_x)
2094 * with each coefficient (except m_0, c_*_0 and c_*_n)
2095 * represented as a pair of non-negative coefficients.
2098 * If "local" is set (and s = 1), then we add constraints
2100 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2102 * or
2104 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2106 * instead, forcing the dependence distance to be (less than or) equal to 0.
2107 * That is, we plug in
2108 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2109 * Note that dependences marked local are treated as validity constraints
2110 * by add_all_validity_constraints and therefore also have
2111 * their distances bounded by 0 from below.
2113 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2114 struct isl_sched_edge *edge, int s, int local)
2116 int offset;
2117 unsigned nparam;
2118 isl_map *map = isl_map_copy(edge->map);
2119 isl_ctx *ctx = isl_map_get_ctx(map);
2120 isl_dim_map *dim_map;
2121 isl_basic_set *coef;
2122 struct isl_sched_node *src = edge->src;
2123 struct isl_sched_node *dst = edge->dst;
2125 coef = inter_coefficients(graph, edge, map);
2127 offset = coef_var_offset(coef);
2129 if (!coef)
2130 return isl_stat_error;
2132 nparam = isl_space_dim(src->space, isl_dim_param);
2133 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
2135 if (!local) {
2136 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2137 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2138 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2141 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2143 return isl_stat_ok;
2146 /* Should the distance over "edge" be forced to zero?
2147 * That is, is it marked as a local edge?
2148 * If "use_coincidence" is set, then coincidence edges are treated
2149 * as local edges.
2151 static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
2153 return is_local(edge) || (use_coincidence && is_coincidence(edge));
2156 /* Add all validity constraints to graph->lp.
2158 * An edge that is forced to be local needs to have its dependence
2159 * distances equal to zero. We take care of bounding them by 0 from below
2160 * here. add_all_proximity_constraints takes care of bounding them by 0
2161 * from above.
2163 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2164 * Otherwise, we ignore them.
2166 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2167 int use_coincidence)
2169 int i;
2171 for (i = 0; i < graph->n_edge; ++i) {
2172 struct isl_sched_edge *edge = &graph->edge[i];
2173 int zero;
2175 zero = force_zero(edge, use_coincidence);
2176 if (!is_validity(edge) && !zero)
2177 continue;
2178 if (edge->src != edge->dst)
2179 continue;
2180 if (add_intra_validity_constraints(graph, edge) < 0)
2181 return -1;
2184 for (i = 0; i < graph->n_edge; ++i) {
2185 struct isl_sched_edge *edge = &graph->edge[i];
2186 int zero;
2188 zero = force_zero(edge, use_coincidence);
2189 if (!is_validity(edge) && !zero)
2190 continue;
2191 if (edge->src == edge->dst)
2192 continue;
2193 if (add_inter_validity_constraints(graph, edge) < 0)
2194 return -1;
2197 return 0;
2200 /* Add constraints to graph->lp that bound the dependence distance
2201 * for all dependence relations.
2202 * If a given proximity dependence is identical to a validity
2203 * dependence, then the dependence distance is already bounded
2204 * from below (by zero), so we only need to bound the distance
2205 * from above. (This includes the case of "local" dependences
2206 * which are treated as validity dependence by add_all_validity_constraints.)
2207 * Otherwise, we need to bound the distance both from above and from below.
2209 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2210 * Otherwise, we ignore them.
2212 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2213 int use_coincidence)
2215 int i;
2217 for (i = 0; i < graph->n_edge; ++i) {
2218 struct isl_sched_edge *edge = &graph->edge[i];
2219 int zero;
2221 zero = force_zero(edge, use_coincidence);
2222 if (!is_proximity(edge) && !zero)
2223 continue;
2224 if (edge->src == edge->dst &&
2225 add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
2226 return -1;
2227 if (edge->src != edge->dst &&
2228 add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
2229 return -1;
2230 if (is_validity(edge) || zero)
2231 continue;
2232 if (edge->src == edge->dst &&
2233 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2234 return -1;
2235 if (edge->src != edge->dst &&
2236 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2237 return -1;
2240 return 0;
2243 /* Normalize the rows of "indep" such that all rows are lexicographically
2244 * positive and such that each row contains as many final zeros as possible,
2245 * given the choice for the previous rows.
2246 * Do this by performing elementary row operations.
2248 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2250 indep = isl_mat_reverse_gauss(indep);
2251 indep = isl_mat_lexnonneg_rows(indep);
2252 return indep;
2255 /* Compute a basis for the rows in the linear part of the schedule
2256 * and extend this basis to a full basis. The remaining rows
2257 * can then be used to force linear independence from the rows
2258 * in the schedule.
2260 * In particular, given the schedule rows S, we compute
2262 * S = H Q
2263 * S U = H
2265 * with H the Hermite normal form of S. That is, all but the
2266 * first rank columns of H are zero and so each row in S is
2267 * a linear combination of the first rank rows of Q.
2268 * The matrix Q can be used as a variable transformation
2269 * that isolates the directions of S in the first rank rows.
2270 * Transposing S U = H yields
2272 * U^T S^T = H^T
2274 * with all but the first rank rows of H^T zero.
2275 * The last rows of U^T are therefore linear combinations
2276 * of schedule coefficients that are all zero on schedule
2277 * coefficients that are linearly dependent on the rows of S.
2278 * At least one of these combinations is non-zero on
2279 * linearly independent schedule coefficients.
2280 * The rows are normalized to involve as few of the last
2281 * coefficients as possible and to have a positive initial value.
2283 static int node_update_vmap(struct isl_sched_node *node)
2285 isl_mat *H, *U, *Q;
2286 int n_row = isl_mat_rows(node->sched);
2288 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2289 1 + node->nparam, node->nvar);
2291 H = isl_mat_left_hermite(H, 0, &U, &Q);
2292 isl_mat_free(node->indep);
2293 isl_mat_free(node->vmap);
2294 node->vmap = Q;
2295 node->indep = isl_mat_transpose(U);
2296 node->rank = isl_mat_initial_non_zero_cols(H);
2297 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2298 node->indep = normalize_independent(node->indep);
2299 isl_mat_free(H);
2301 if (!node->indep || !node->vmap || node->rank < 0)
2302 return -1;
2303 return 0;
2306 /* Is "edge" marked as a validity or a conditional validity edge?
2308 static int is_any_validity(struct isl_sched_edge *edge)
2310 return is_validity(edge) || is_conditional_validity(edge);
2313 /* How many times should we count the constraints in "edge"?
2315 * We count as follows
2316 * validity -> 1 (>= 0)
2317 * validity+proximity -> 2 (>= 0 and upper bound)
2318 * proximity -> 2 (lower and upper bound)
2319 * local(+any) -> 2 (>= 0 and <= 0)
2321 * If an edge is only marked conditional_validity then it counts
2322 * as zero since it is only checked afterwards.
2324 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2325 * Otherwise, we ignore them.
2327 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2329 if (is_proximity(edge) || force_zero(edge, use_coincidence))
2330 return 2;
2331 if (is_validity(edge))
2332 return 1;
2333 return 0;
2336 /* How many times should the constraints in "edge" be counted
2337 * as a parametric intra-node constraint?
2339 * Only proximity edges that are not forced zero need
2340 * coefficient constraints that include coefficients for parameters.
2341 * If the edge is also a validity edge, then only
2342 * an upper bound is introduced. Otherwise, both lower and upper bounds
2343 * are introduced.
2345 static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
2346 int use_coincidence)
2348 if (edge->src != edge->dst)
2349 return 0;
2350 if (!is_proximity(edge))
2351 return 0;
2352 if (force_zero(edge, use_coincidence))
2353 return 0;
2354 if (is_validity(edge))
2355 return 1;
2356 else
2357 return 2;
2360 /* Add "f" times the number of equality and inequality constraints of "bset"
2361 * to "n_eq" and "n_ineq" and free "bset".
2363 static isl_stat update_count(__isl_take isl_basic_set *bset,
2364 int f, int *n_eq, int *n_ineq)
2366 if (!bset)
2367 return isl_stat_error;
2369 *n_eq += isl_basic_set_n_equality(bset);
2370 *n_ineq += isl_basic_set_n_inequality(bset);
2371 isl_basic_set_free(bset);
2373 return isl_stat_ok;
2376 /* Count the number of equality and inequality constraints
2377 * that will be added for the given map.
2379 * The edges that require parameter coefficients are counted separately.
2381 * "use_coincidence" is set if we should take into account coincidence edges.
2383 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2384 struct isl_sched_edge *edge, __isl_take isl_map *map,
2385 int *n_eq, int *n_ineq, int use_coincidence)
2387 isl_map *copy;
2388 isl_basic_set *coef;
2389 int f = edge_multiplicity(edge, use_coincidence);
2390 int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
2392 if (f == 0) {
2393 isl_map_free(map);
2394 return isl_stat_ok;
2397 if (edge->src != edge->dst) {
2398 coef = inter_coefficients(graph, edge, map);
2399 return update_count(coef, f, n_eq, n_ineq);
2402 if (fp > 0) {
2403 copy = isl_map_copy(map);
2404 coef = intra_coefficients(graph, edge->src, copy, 1);
2405 if (update_count(coef, fp, n_eq, n_ineq) < 0)
2406 goto error;
2409 if (f > fp) {
2410 copy = isl_map_copy(map);
2411 coef = intra_coefficients(graph, edge->src, copy, 0);
2412 if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
2413 goto error;
2416 isl_map_free(map);
2417 return isl_stat_ok;
2418 error:
2419 isl_map_free(map);
2420 return isl_stat_error;
2423 /* Count the number of equality and inequality constraints
2424 * that will be added to the main lp problem.
2425 * We count as follows
2426 * validity -> 1 (>= 0)
2427 * validity+proximity -> 2 (>= 0 and upper bound)
2428 * proximity -> 2 (lower and upper bound)
2429 * local(+any) -> 2 (>= 0 and <= 0)
2431 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2432 * Otherwise, we ignore them.
2434 static int count_constraints(struct isl_sched_graph *graph,
2435 int *n_eq, int *n_ineq, int use_coincidence)
2437 int i;
2439 *n_eq = *n_ineq = 0;
2440 for (i = 0; i < graph->n_edge; ++i) {
2441 struct isl_sched_edge *edge = &graph->edge[i];
2442 isl_map *map = isl_map_copy(edge->map);
2444 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2445 use_coincidence) < 0)
2446 return -1;
2449 return 0;
2452 /* Count the number of constraints that will be added by
2453 * add_bound_constant_constraints to bound the values of the constant terms
2454 * and increment *n_eq and *n_ineq accordingly.
2456 * In practice, add_bound_constant_constraints only adds inequalities.
2458 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2459 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2461 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2462 return isl_stat_ok;
2464 *n_ineq += graph->n;
2466 return isl_stat_ok;
2469 /* Add constraints to bound the values of the constant terms in the schedule,
2470 * if requested by the user.
2472 * The maximal value of the constant terms is defined by the option
2473 * "schedule_max_constant_term".
2475 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2476 struct isl_sched_graph *graph)
2478 int i, k;
2479 int max;
2480 int total;
2482 max = isl_options_get_schedule_max_constant_term(ctx);
2483 if (max == -1)
2484 return isl_stat_ok;
2486 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2488 for (i = 0; i < graph->n; ++i) {
2489 struct isl_sched_node *node = &graph->node[i];
2490 int pos;
2492 k = isl_basic_set_alloc_inequality(graph->lp);
2493 if (k < 0)
2494 return isl_stat_error;
2495 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2496 pos = node_cst_coef_offset(node);
2497 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2498 isl_int_set_si(graph->lp->ineq[k][0], max);
2501 return isl_stat_ok;
2504 /* Count the number of constraints that will be added by
2505 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2506 * accordingly.
2508 * In practice, add_bound_coefficient_constraints only adds inequalities.
2510 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2511 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2513 int i;
2515 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2516 !isl_options_get_schedule_treat_coalescing(ctx))
2517 return 0;
2519 for (i = 0; i < graph->n; ++i)
2520 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2522 return 0;
2525 /* Add constraints to graph->lp that bound the values of
2526 * the parameter schedule coefficients of "node" to "max" and
2527 * the variable schedule coefficients to the corresponding entry
2528 * in node->max.
2529 * In either case, a negative value means that no bound needs to be imposed.
2531 * For parameter coefficients, this amounts to adding a constraint
2533 * c_n <= max
2535 * i.e.,
2537 * -c_n + max >= 0
2539 * The variables coefficients are, however, not represented directly.
2540 * Instead, the variable coefficients c_x are written as differences
2541 * c_x = c_x^+ - c_x^-.
2542 * That is,
2544 * -max_i <= c_x_i <= max_i
2546 * is encoded as
2548 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2550 * or
2552 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2553 * c_x_i^+ - c_x_i^- + max_i >= 0
2555 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2556 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2558 int i, j, k;
2559 int total;
2560 isl_vec *ineq;
2562 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2564 for (j = 0; j < node->nparam; ++j) {
2565 int dim;
2567 if (max < 0)
2568 continue;
2570 k = isl_basic_set_alloc_inequality(graph->lp);
2571 if (k < 0)
2572 return isl_stat_error;
2573 dim = 1 + node_par_coef_offset(node) + j;
2574 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2575 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2576 isl_int_set_si(graph->lp->ineq[k][0], max);
2579 ineq = isl_vec_alloc(ctx, 1 + total);
2580 ineq = isl_vec_clr(ineq);
2581 if (!ineq)
2582 return isl_stat_error;
2583 for (i = 0; i < node->nvar; ++i) {
2584 int pos = 1 + node_var_coef_pos(node, i);
2586 if (isl_int_is_neg(node->max->el[i]))
2587 continue;
2589 isl_int_set_si(ineq->el[pos], 1);
2590 isl_int_set_si(ineq->el[pos + 1], -1);
2591 isl_int_set(ineq->el[0], node->max->el[i]);
2593 k = isl_basic_set_alloc_inequality(graph->lp);
2594 if (k < 0)
2595 goto error;
2596 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2598 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
2599 k = isl_basic_set_alloc_inequality(graph->lp);
2600 if (k < 0)
2601 goto error;
2602 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2604 isl_seq_clr(ineq->el + pos, 2);
2606 isl_vec_free(ineq);
2608 return isl_stat_ok;
2609 error:
2610 isl_vec_free(ineq);
2611 return isl_stat_error;
2614 /* Add constraints that bound the values of the variable and parameter
2615 * coefficients of the schedule.
2617 * The maximal value of the coefficients is defined by the option
2618 * 'schedule_max_coefficient' and the entries in node->max.
2619 * These latter entries are only set if either the schedule_max_coefficient
2620 * option or the schedule_treat_coalescing option is set.
2622 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2623 struct isl_sched_graph *graph)
2625 int i;
2626 int max;
2628 max = isl_options_get_schedule_max_coefficient(ctx);
2630 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2631 return isl_stat_ok;
2633 for (i = 0; i < graph->n; ++i) {
2634 struct isl_sched_node *node = &graph->node[i];
2636 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2637 return isl_stat_error;
2640 return isl_stat_ok;
2643 /* Add a constraint to graph->lp that equates the value at position
2644 * "sum_pos" to the sum of the "n" values starting at "first".
2646 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2647 int sum_pos, int first, int n)
2649 int i, k;
2650 int total;
2652 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2654 k = isl_basic_set_alloc_equality(graph->lp);
2655 if (k < 0)
2656 return isl_stat_error;
2657 isl_seq_clr(graph->lp->eq[k], 1 + total);
2658 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2659 for (i = 0; i < n; ++i)
2660 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2662 return isl_stat_ok;
2665 /* Add a constraint to graph->lp that equates the value at position
2666 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2668 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2669 int sum_pos)
2671 int i, j, k;
2672 int total;
2674 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2676 k = isl_basic_set_alloc_equality(graph->lp);
2677 if (k < 0)
2678 return isl_stat_error;
2679 isl_seq_clr(graph->lp->eq[k], 1 + total);
2680 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2681 for (i = 0; i < graph->n; ++i) {
2682 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2684 for (j = 0; j < graph->node[i].nparam; ++j)
2685 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2688 return isl_stat_ok;
2691 /* Add a constraint to graph->lp that equates the value at position
2692 * "sum_pos" to the sum of the variable coefficients of all nodes.
2694 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2695 int sum_pos)
2697 int i, j, k;
2698 int total;
2700 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2702 k = isl_basic_set_alloc_equality(graph->lp);
2703 if (k < 0)
2704 return isl_stat_error;
2705 isl_seq_clr(graph->lp->eq[k], 1 + total);
2706 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2707 for (i = 0; i < graph->n; ++i) {
2708 struct isl_sched_node *node = &graph->node[i];
2709 int pos = 1 + node_var_coef_offset(node);
2711 for (j = 0; j < 2 * node->nvar; ++j)
2712 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2715 return isl_stat_ok;
2718 /* Construct an ILP problem for finding schedule coefficients
2719 * that result in non-negative, but small dependence distances
2720 * over all dependences.
2721 * In particular, the dependence distances over proximity edges
2722 * are bounded by m_0 + m_n n and we compute schedule coefficients
2723 * with small values (preferably zero) of m_n and m_0.
2725 * All variables of the ILP are non-negative. The actual coefficients
2726 * may be negative, so each coefficient is represented as the difference
2727 * of two non-negative variables. The negative part always appears
2728 * immediately before the positive part.
2729 * Other than that, the variables have the following order
2731 * - sum of positive and negative parts of m_n coefficients
2732 * - m_0
2733 * - sum of all c_n coefficients
2734 * (unconstrained when computing non-parametric schedules)
2735 * - sum of positive and negative parts of all c_x coefficients
2736 * - positive and negative parts of m_n coefficients
2737 * - for each node
2738 * - positive and negative parts of c_i_x, in opposite order
2739 * - c_i_n (if parametric)
2740 * - c_i_0
2742 * The constraints are those from the edges plus two or three equalities
2743 * to express the sums.
2745 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2746 * Otherwise, we ignore them.
2748 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2749 int use_coincidence)
2751 int i;
2752 unsigned nparam;
2753 unsigned total;
2754 isl_space *space;
2755 int parametric;
2756 int param_pos;
2757 int n_eq, n_ineq;
2759 parametric = ctx->opt->schedule_parametric;
2760 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2761 param_pos = 4;
2762 total = param_pos + 2 * nparam;
2763 for (i = 0; i < graph->n; ++i) {
2764 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2765 if (node_update_vmap(node) < 0)
2766 return isl_stat_error;
2767 node->start = total;
2768 total += 1 + node->nparam + 2 * node->nvar;
2771 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2772 return isl_stat_error;
2773 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2774 return isl_stat_error;
2775 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2776 return isl_stat_error;
2778 space = isl_space_set_alloc(ctx, 0, total);
2779 isl_basic_set_free(graph->lp);
2780 n_eq += 2 + parametric;
2782 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2784 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2785 return isl_stat_error;
2786 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2787 return isl_stat_error;
2788 if (add_var_sum_constraint(graph, 3) < 0)
2789 return isl_stat_error;
2790 if (add_bound_constant_constraints(ctx, graph) < 0)
2791 return isl_stat_error;
2792 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2793 return isl_stat_error;
2794 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2795 return isl_stat_error;
2796 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2797 return isl_stat_error;
2799 return isl_stat_ok;
2802 /* Analyze the conflicting constraint found by
2803 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2804 * constraint of one of the edges between distinct nodes, living, moreover
2805 * in distinct SCCs, then record the source and sink SCC as this may
2806 * be a good place to cut between SCCs.
2808 static int check_conflict(int con, void *user)
2810 int i;
2811 struct isl_sched_graph *graph = user;
2813 if (graph->src_scc >= 0)
2814 return 0;
2816 con -= graph->lp->n_eq;
2818 if (con >= graph->lp->n_ineq)
2819 return 0;
2821 for (i = 0; i < graph->n_edge; ++i) {
2822 if (!is_validity(&graph->edge[i]))
2823 continue;
2824 if (graph->edge[i].src == graph->edge[i].dst)
2825 continue;
2826 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2827 continue;
2828 if (graph->edge[i].start > con)
2829 continue;
2830 if (graph->edge[i].end <= con)
2831 continue;
2832 graph->src_scc = graph->edge[i].src->scc;
2833 graph->dst_scc = graph->edge[i].dst->scc;
2836 return 0;
2839 /* Check whether the next schedule row of the given node needs to be
2840 * non-trivial. Lower-dimensional domains may have some trivial rows,
2841 * but as soon as the number of remaining required non-trivial rows
2842 * is as large as the number or remaining rows to be computed,
2843 * all remaining rows need to be non-trivial.
2845 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2847 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2850 /* Construct a non-triviality region with triviality directions
2851 * corresponding to the rows of "indep".
2852 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2853 * while the triviality directions are expressed in terms of
2854 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2855 * before c^+_i. Furthermore,
2856 * the pairs of non-negative variables representing the coefficients
2857 * are stored in the opposite order.
2859 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2861 isl_ctx *ctx;
2862 isl_mat *mat;
2863 int i, j, n, n_var;
2865 if (!indep)
2866 return NULL;
2868 ctx = isl_mat_get_ctx(indep);
2869 n = isl_mat_rows(indep);
2870 n_var = isl_mat_cols(indep);
2871 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2872 if (!mat)
2873 return NULL;
2874 for (i = 0; i < n; ++i) {
2875 for (j = 0; j < n_var; ++j) {
2876 int nj = n_var - 1 - j;
2877 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2878 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2882 return mat;
2885 /* Solve the ILP problem constructed in setup_lp.
2886 * For each node such that all the remaining rows of its schedule
2887 * need to be non-trivial, we construct a non-triviality region.
2888 * This region imposes that the next row is independent of previous rows.
2889 * In particular, the non-triviality region enforces that at least
2890 * one of the linear combinations in the rows of node->indep is non-zero.
2892 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2894 int i;
2895 isl_vec *sol;
2896 isl_basic_set *lp;
2898 for (i = 0; i < graph->n; ++i) {
2899 struct isl_sched_node *node = &graph->node[i];
2900 isl_mat *trivial;
2902 graph->region[i].pos = node_var_coef_offset(node);
2903 if (needs_row(graph, node))
2904 trivial = construct_trivial(node->indep);
2905 else
2906 trivial = isl_mat_zero(ctx, 0, 0);
2907 graph->region[i].trivial = trivial;
2909 lp = isl_basic_set_copy(graph->lp);
2910 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2911 graph->region, &check_conflict, graph);
2912 for (i = 0; i < graph->n; ++i)
2913 isl_mat_free(graph->region[i].trivial);
2914 return sol;
2917 /* Extract the coefficients for the variables of "node" from "sol".
2919 * Each schedule coefficient c_i_x is represented as the difference
2920 * between two non-negative variables c_i_x^+ - c_i_x^-.
2921 * The c_i_x^- appear before their c_i_x^+ counterpart.
2922 * Furthermore, the order of these pairs is the opposite of that
2923 * of the corresponding coefficients.
2925 * Return c_i_x = c_i_x^+ - c_i_x^-
2927 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2928 __isl_keep isl_vec *sol)
2930 int i;
2931 int pos;
2932 isl_vec *csol;
2934 if (!sol)
2935 return NULL;
2936 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2937 if (!csol)
2938 return NULL;
2940 pos = 1 + node_var_coef_offset(node);
2941 for (i = 0; i < node->nvar; ++i)
2942 isl_int_sub(csol->el[node->nvar - 1 - i],
2943 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2945 return csol;
2948 /* Update the schedules of all nodes based on the given solution
2949 * of the LP problem.
2950 * The new row is added to the current band.
2951 * All possibly negative coefficients are encoded as a difference
2952 * of two non-negative variables, so we need to perform the subtraction
2953 * here.
2955 * If coincident is set, then the caller guarantees that the new
2956 * row satisfies the coincidence constraints.
2958 static int update_schedule(struct isl_sched_graph *graph,
2959 __isl_take isl_vec *sol, int coincident)
2961 int i, j;
2962 isl_vec *csol = NULL;
2964 if (!sol)
2965 goto error;
2966 if (sol->size == 0)
2967 isl_die(sol->ctx, isl_error_internal,
2968 "no solution found", goto error);
2969 if (graph->n_total_row >= graph->max_row)
2970 isl_die(sol->ctx, isl_error_internal,
2971 "too many schedule rows", goto error);
2973 for (i = 0; i < graph->n; ++i) {
2974 struct isl_sched_node *node = &graph->node[i];
2975 int pos;
2976 int row = isl_mat_rows(node->sched);
2978 isl_vec_free(csol);
2979 csol = extract_var_coef(node, sol);
2980 if (!csol)
2981 goto error;
2983 isl_map_free(node->sched_map);
2984 node->sched_map = NULL;
2985 node->sched = isl_mat_add_rows(node->sched, 1);
2986 if (!node->sched)
2987 goto error;
2988 pos = node_cst_coef_offset(node);
2989 node->sched = isl_mat_set_element(node->sched,
2990 row, 0, sol->el[1 + pos]);
2991 pos = node_par_coef_offset(node);
2992 for (j = 0; j < node->nparam; ++j)
2993 node->sched = isl_mat_set_element(node->sched,
2994 row, 1 + j, sol->el[1 + pos + j]);
2995 for (j = 0; j < node->nvar; ++j)
2996 node->sched = isl_mat_set_element(node->sched,
2997 row, 1 + node->nparam + j, csol->el[j]);
2998 node->coincident[graph->n_total_row] = coincident;
3000 isl_vec_free(sol);
3001 isl_vec_free(csol);
3003 graph->n_row++;
3004 graph->n_total_row++;
3006 return 0;
3007 error:
3008 isl_vec_free(sol);
3009 isl_vec_free(csol);
3010 return -1;
3013 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3014 * and return this isl_aff.
3016 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
3017 struct isl_sched_node *node, int row)
3019 int j;
3020 isl_int v;
3021 isl_aff *aff;
3023 isl_int_init(v);
3025 aff = isl_aff_zero_on_domain(ls);
3026 if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
3027 goto error;
3028 aff = isl_aff_set_constant(aff, v);
3029 for (j = 0; j < node->nparam; ++j) {
3030 if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
3031 goto error;
3032 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
3034 for (j = 0; j < node->nvar; ++j) {
3035 if (isl_mat_get_element(node->sched, row,
3036 1 + node->nparam + j, &v) < 0)
3037 goto error;
3038 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
3041 isl_int_clear(v);
3043 return aff;
3044 error:
3045 isl_int_clear(v);
3046 isl_aff_free(aff);
3047 return NULL;
3050 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3051 * and return this multi_aff.
3053 * The result is defined over the uncompressed node domain.
3055 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
3056 struct isl_sched_node *node, int first, int n)
3058 int i;
3059 isl_space *space;
3060 isl_local_space *ls;
3061 isl_aff *aff;
3062 isl_multi_aff *ma;
3063 int nrow;
3065 if (!node)
3066 return NULL;
3067 nrow = isl_mat_rows(node->sched);
3068 if (node->compressed)
3069 space = isl_multi_aff_get_domain_space(node->decompress);
3070 else
3071 space = isl_space_copy(node->space);
3072 ls = isl_local_space_from_space(isl_space_copy(space));
3073 space = isl_space_from_domain(space);
3074 space = isl_space_add_dims(space, isl_dim_out, n);
3075 ma = isl_multi_aff_zero(space);
3077 for (i = first; i < first + n; ++i) {
3078 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
3079 ma = isl_multi_aff_set_aff(ma, i - first, aff);
3082 isl_local_space_free(ls);
3084 if (node->compressed)
3085 ma = isl_multi_aff_pullback_multi_aff(ma,
3086 isl_multi_aff_copy(node->compress));
3088 return ma;
3091 /* Convert node->sched into a multi_aff and return this multi_aff.
3093 * The result is defined over the uncompressed node domain.
3095 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
3096 struct isl_sched_node *node)
3098 int nrow;
3100 nrow = isl_mat_rows(node->sched);
3101 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
3104 /* Convert node->sched into a map and return this map.
3106 * The result is cached in node->sched_map, which needs to be released
3107 * whenever node->sched is updated.
3108 * It is defined over the uncompressed node domain.
3110 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3112 if (!node->sched_map) {
3113 isl_multi_aff *ma;
3115 ma = node_extract_schedule_multi_aff(node);
3116 node->sched_map = isl_map_from_multi_aff(ma);
3119 return isl_map_copy(node->sched_map);
3122 /* Construct a map that can be used to update a dependence relation
3123 * based on the current schedule.
3124 * That is, construct a map expressing that source and sink
3125 * are executed within the same iteration of the current schedule.
3126 * This map can then be intersected with the dependence relation.
3127 * This is not the most efficient way, but this shouldn't be a critical
3128 * operation.
3130 static __isl_give isl_map *specializer(struct isl_sched_node *src,
3131 struct isl_sched_node *dst)
3133 isl_map *src_sched, *dst_sched;
3135 src_sched = node_extract_schedule(src);
3136 dst_sched = node_extract_schedule(dst);
3137 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
3140 /* Intersect the domains of the nested relations in domain and range
3141 * of "umap" with "map".
3143 static __isl_give isl_union_map *intersect_domains(
3144 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3146 isl_union_set *uset;
3148 umap = isl_union_map_zip(umap);
3149 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
3150 umap = isl_union_map_intersect_domain(umap, uset);
3151 umap = isl_union_map_zip(umap);
3152 return umap;
3155 /* Update the dependence relation of the given edge based
3156 * on the current schedule.
3157 * If the dependence is carried completely by the current schedule, then
3158 * it is removed from the edge_tables. It is kept in the list of edges
3159 * as otherwise all edge_tables would have to be recomputed.
3161 * If the edge is of a type that can appear multiple times
3162 * between the same pair of nodes, then it is added to
3163 * the edge table (again). This prevents the situation
3164 * where none of these edges is referenced from the edge table
3165 * because the one that was referenced turned out to be empty and
3166 * was therefore removed from the table.
3168 static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
3169 struct isl_sched_edge *edge)
3171 int empty;
3172 isl_map *id;
3174 id = specializer(edge->src, edge->dst);
3175 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
3176 if (!edge->map)
3177 goto error;
3179 if (edge->tagged_condition) {
3180 edge->tagged_condition =
3181 intersect_domains(edge->tagged_condition, id);
3182 if (!edge->tagged_condition)
3183 goto error;
3185 if (edge->tagged_validity) {
3186 edge->tagged_validity =
3187 intersect_domains(edge->tagged_validity, id);
3188 if (!edge->tagged_validity)
3189 goto error;
3192 empty = isl_map_plain_is_empty(edge->map);
3193 if (empty < 0)
3194 goto error;
3195 if (empty) {
3196 graph_remove_edge(graph, edge);
3197 } else if (is_multi_edge_type(edge)) {
3198 if (graph_edge_tables_add(ctx, graph, edge) < 0)
3199 goto error;
3202 isl_map_free(id);
3203 return isl_stat_ok;
3204 error:
3205 isl_map_free(id);
3206 return isl_stat_error;
3209 /* Does the domain of "umap" intersect "uset"?
3211 static int domain_intersects(__isl_keep isl_union_map *umap,
3212 __isl_keep isl_union_set *uset)
3214 int empty;
3216 umap = isl_union_map_copy(umap);
3217 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3218 empty = isl_union_map_is_empty(umap);
3219 isl_union_map_free(umap);
3221 return empty < 0 ? -1 : !empty;
3224 /* Does the range of "umap" intersect "uset"?
3226 static int range_intersects(__isl_keep isl_union_map *umap,
3227 __isl_keep isl_union_set *uset)
3229 int empty;
3231 umap = isl_union_map_copy(umap);
3232 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3233 empty = isl_union_map_is_empty(umap);
3234 isl_union_map_free(umap);
3236 return empty < 0 ? -1 : !empty;
3239 /* Are the condition dependences of "edge" local with respect to
3240 * the current schedule?
3242 * That is, are domain and range of the condition dependences mapped
3243 * to the same point?
3245 * In other words, is the condition false?
3247 static int is_condition_false(struct isl_sched_edge *edge)
3249 isl_union_map *umap;
3250 isl_map *map, *sched, *test;
3251 int empty, local;
3253 empty = isl_union_map_is_empty(edge->tagged_condition);
3254 if (empty < 0 || empty)
3255 return empty;
3257 umap = isl_union_map_copy(edge->tagged_condition);
3258 umap = isl_union_map_zip(umap);
3259 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3260 map = isl_map_from_union_map(umap);
3262 sched = node_extract_schedule(edge->src);
3263 map = isl_map_apply_domain(map, sched);
3264 sched = node_extract_schedule(edge->dst);
3265 map = isl_map_apply_range(map, sched);
3267 test = isl_map_identity(isl_map_get_space(map));
3268 local = isl_map_is_subset(map, test);
3269 isl_map_free(map);
3270 isl_map_free(test);
3272 return local;
3275 /* For each conditional validity constraint that is adjacent
3276 * to a condition with domain in condition_source or range in condition_sink,
3277 * turn it into an unconditional validity constraint.
3279 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3280 __isl_take isl_union_set *condition_source,
3281 __isl_take isl_union_set *condition_sink)
3283 int i;
3285 condition_source = isl_union_set_coalesce(condition_source);
3286 condition_sink = isl_union_set_coalesce(condition_sink);
3288 for (i = 0; i < graph->n_edge; ++i) {
3289 int adjacent;
3290 isl_union_map *validity;
3292 if (!is_conditional_validity(&graph->edge[i]))
3293 continue;
3294 if (is_validity(&graph->edge[i]))
3295 continue;
3297 validity = graph->edge[i].tagged_validity;
3298 adjacent = domain_intersects(validity, condition_sink);
3299 if (adjacent >= 0 && !adjacent)
3300 adjacent = range_intersects(validity, condition_source);
3301 if (adjacent < 0)
3302 goto error;
3303 if (!adjacent)
3304 continue;
3306 set_validity(&graph->edge[i]);
3309 isl_union_set_free(condition_source);
3310 isl_union_set_free(condition_sink);
3311 return 0;
3312 error:
3313 isl_union_set_free(condition_source);
3314 isl_union_set_free(condition_sink);
3315 return -1;
3318 /* Update the dependence relations of all edges based on the current schedule
3319 * and enforce conditional validity constraints that are adjacent
3320 * to satisfied condition constraints.
3322 * First check if any of the condition constraints are satisfied
3323 * (i.e., not local to the outer schedule) and keep track of
3324 * their domain and range.
3325 * Then update all dependence relations (which removes the non-local
3326 * constraints).
3327 * Finally, if any condition constraints turned out to be satisfied,
3328 * then turn all adjacent conditional validity constraints into
3329 * unconditional validity constraints.
3331 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3333 int i;
3334 int any = 0;
3335 isl_union_set *source, *sink;
3337 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3338 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3339 for (i = 0; i < graph->n_edge; ++i) {
3340 int local;
3341 isl_union_set *uset;
3342 isl_union_map *umap;
3344 if (!is_condition(&graph->edge[i]))
3345 continue;
3346 if (is_local(&graph->edge[i]))
3347 continue;
3348 local = is_condition_false(&graph->edge[i]);
3349 if (local < 0)
3350 goto error;
3351 if (local)
3352 continue;
3354 any = 1;
3356 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3357 uset = isl_union_map_domain(umap);
3358 source = isl_union_set_union(source, uset);
3360 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3361 uset = isl_union_map_range(umap);
3362 sink = isl_union_set_union(sink, uset);
3365 for (i = 0; i < graph->n_edge; ++i) {
3366 if (update_edge(ctx, graph, &graph->edge[i]) < 0)
3367 goto error;
3370 if (any)
3371 return unconditionalize_adjacent_validity(graph, source, sink);
3373 isl_union_set_free(source);
3374 isl_union_set_free(sink);
3375 return 0;
3376 error:
3377 isl_union_set_free(source);
3378 isl_union_set_free(sink);
3379 return -1;
3382 static void next_band(struct isl_sched_graph *graph)
3384 graph->band_start = graph->n_total_row;
3387 /* Return the union of the universe domains of the nodes in "graph"
3388 * that satisfy "pred".
3390 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3391 struct isl_sched_graph *graph,
3392 int (*pred)(struct isl_sched_node *node, int data), int data)
3394 int i;
3395 isl_set *set;
3396 isl_union_set *dom;
3398 for (i = 0; i < graph->n; ++i)
3399 if (pred(&graph->node[i], data))
3400 break;
3402 if (i >= graph->n)
3403 isl_die(ctx, isl_error_internal,
3404 "empty component", return NULL);
3406 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3407 dom = isl_union_set_from_set(set);
3409 for (i = i + 1; i < graph->n; ++i) {
3410 if (!pred(&graph->node[i], data))
3411 continue;
3412 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3413 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3416 return dom;
3419 /* Return a list of unions of universe domains, where each element
3420 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3422 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3423 struct isl_sched_graph *graph)
3425 int i;
3426 isl_union_set_list *filters;
3428 filters = isl_union_set_list_alloc(ctx, graph->scc);
3429 for (i = 0; i < graph->scc; ++i) {
3430 isl_union_set *dom;
3432 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3433 filters = isl_union_set_list_add(filters, dom);
3436 return filters;
3439 /* Return a list of two unions of universe domains, one for the SCCs up
3440 * to and including graph->src_scc and another for the other SCCs.
3442 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3443 struct isl_sched_graph *graph)
3445 isl_union_set *dom;
3446 isl_union_set_list *filters;
3448 filters = isl_union_set_list_alloc(ctx, 2);
3449 dom = isl_sched_graph_domain(ctx, graph,
3450 &node_scc_at_most, graph->src_scc);
3451 filters = isl_union_set_list_add(filters, dom);
3452 dom = isl_sched_graph_domain(ctx, graph,
3453 &node_scc_at_least, graph->src_scc + 1);
3454 filters = isl_union_set_list_add(filters, dom);
3456 return filters;
3459 /* Copy nodes that satisfy node_pred from the src dependence graph
3460 * to the dst dependence graph.
3462 static isl_stat copy_nodes(struct isl_sched_graph *dst,
3463 struct isl_sched_graph *src,
3464 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3466 int i;
3468 dst->n = 0;
3469 for (i = 0; i < src->n; ++i) {
3470 int j;
3472 if (!node_pred(&src->node[i], data))
3473 continue;
3475 j = dst->n;
3476 dst->node[j].space = isl_space_copy(src->node[i].space);
3477 dst->node[j].compressed = src->node[i].compressed;
3478 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3479 dst->node[j].compress =
3480 isl_multi_aff_copy(src->node[i].compress);
3481 dst->node[j].decompress =
3482 isl_multi_aff_copy(src->node[i].decompress);
3483 dst->node[j].nvar = src->node[i].nvar;
3484 dst->node[j].nparam = src->node[i].nparam;
3485 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3486 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3487 dst->node[j].coincident = src->node[i].coincident;
3488 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3489 dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
3490 dst->node[j].max = isl_vec_copy(src->node[i].max);
3491 dst->n++;
3493 if (!dst->node[j].space || !dst->node[j].sched)
3494 return isl_stat_error;
3495 if (dst->node[j].compressed &&
3496 (!dst->node[j].hull || !dst->node[j].compress ||
3497 !dst->node[j].decompress))
3498 return isl_stat_error;
3501 return isl_stat_ok;
3504 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3505 * to the dst dependence graph.
3506 * If the source or destination node of the edge is not in the destination
3507 * graph, then it must be a backward proximity edge and it should simply
3508 * be ignored.
3510 static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3511 struct isl_sched_graph *src,
3512 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3514 int i;
3516 dst->n_edge = 0;
3517 for (i = 0; i < src->n_edge; ++i) {
3518 struct isl_sched_edge *edge = &src->edge[i];
3519 isl_map *map;
3520 isl_union_map *tagged_condition;
3521 isl_union_map *tagged_validity;
3522 struct isl_sched_node *dst_src, *dst_dst;
3524 if (!edge_pred(edge, data))
3525 continue;
3527 if (isl_map_plain_is_empty(edge->map))
3528 continue;
3530 dst_src = graph_find_node(ctx, dst, edge->src->space);
3531 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3532 if (!dst_src || !dst_dst)
3533 return isl_stat_error;
3534 if (!is_node(dst, dst_src) || !is_node(dst, dst_dst)) {
3535 if (is_validity(edge) || is_conditional_validity(edge))
3536 isl_die(ctx, isl_error_internal,
3537 "backward (conditional) validity edge",
3538 return isl_stat_error);
3539 continue;
3542 map = isl_map_copy(edge->map);
3543 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3544 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3546 dst->edge[dst->n_edge].src = dst_src;
3547 dst->edge[dst->n_edge].dst = dst_dst;
3548 dst->edge[dst->n_edge].map = map;
3549 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3550 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3551 dst->edge[dst->n_edge].types = edge->types;
3552 dst->n_edge++;
3554 if (edge->tagged_condition && !tagged_condition)
3555 return isl_stat_error;
3556 if (edge->tagged_validity && !tagged_validity)
3557 return isl_stat_error;
3559 if (graph_edge_tables_add(ctx, dst,
3560 &dst->edge[dst->n_edge - 1]) < 0)
3561 return isl_stat_error;
3564 return isl_stat_ok;
3567 /* Compute the maximal number of variables over all nodes.
3568 * This is the maximal number of linearly independent schedule
3569 * rows that we need to compute.
3570 * Just in case we end up in a part of the dependence graph
3571 * with only lower-dimensional domains, we make sure we will
3572 * compute the required amount of extra linearly independent rows.
3574 static int compute_maxvar(struct isl_sched_graph *graph)
3576 int i;
3578 graph->maxvar = 0;
3579 for (i = 0; i < graph->n; ++i) {
3580 struct isl_sched_node *node = &graph->node[i];
3581 int nvar;
3583 if (node_update_vmap(node) < 0)
3584 return -1;
3585 nvar = node->nvar + graph->n_row - node->rank;
3586 if (nvar > graph->maxvar)
3587 graph->maxvar = nvar;
3590 return 0;
3593 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3594 * "node_pred" and the edges satisfying "edge_pred" and store
3595 * the result in "sub".
3597 static isl_stat extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3598 int (*node_pred)(struct isl_sched_node *node, int data),
3599 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3600 int data, struct isl_sched_graph *sub)
3602 int i, n = 0, n_edge = 0;
3603 int t;
3605 for (i = 0; i < graph->n; ++i)
3606 if (node_pred(&graph->node[i], data))
3607 ++n;
3608 for (i = 0; i < graph->n_edge; ++i)
3609 if (edge_pred(&graph->edge[i], data))
3610 ++n_edge;
3611 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3612 return isl_stat_error;
3613 sub->root = graph->root;
3614 if (copy_nodes(sub, graph, node_pred, data) < 0)
3615 return isl_stat_error;
3616 if (graph_init_table(ctx, sub) < 0)
3617 return isl_stat_error;
3618 for (t = 0; t <= isl_edge_last; ++t)
3619 sub->max_edge[t] = graph->max_edge[t];
3620 if (graph_init_edge_tables(ctx, sub) < 0)
3621 return isl_stat_error;
3622 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3623 return isl_stat_error;
3624 sub->n_row = graph->n_row;
3625 sub->max_row = graph->max_row;
3626 sub->n_total_row = graph->n_total_row;
3627 sub->band_start = graph->band_start;
3629 return isl_stat_ok;
3632 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3633 struct isl_sched_graph *graph);
3634 static __isl_give isl_schedule_node *compute_schedule_wcc(
3635 isl_schedule_node *node, struct isl_sched_graph *graph);
3637 /* Compute a schedule for a subgraph of "graph". In particular, for
3638 * the graph composed of nodes that satisfy node_pred and edges that
3639 * that satisfy edge_pred.
3640 * If the subgraph is known to consist of a single component, then wcc should
3641 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3642 * Otherwise, we call compute_schedule, which will check whether the subgraph
3643 * is connected.
3645 * The schedule is inserted at "node" and the updated schedule node
3646 * is returned.
3648 static __isl_give isl_schedule_node *compute_sub_schedule(
3649 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3650 struct isl_sched_graph *graph,
3651 int (*node_pred)(struct isl_sched_node *node, int data),
3652 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3653 int data, int wcc)
3655 struct isl_sched_graph split = { 0 };
3657 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3658 &split) < 0)
3659 goto error;
3661 if (wcc)
3662 node = compute_schedule_wcc(node, &split);
3663 else
3664 node = compute_schedule(node, &split);
3666 graph_free(ctx, &split);
3667 return node;
3668 error:
3669 graph_free(ctx, &split);
3670 return isl_schedule_node_free(node);
3673 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3675 return edge->src->scc == scc && edge->dst->scc == scc;
3678 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3680 return edge->dst->scc <= scc;
3683 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3685 return edge->src->scc >= scc;
3688 /* Reset the current band by dropping all its schedule rows.
3690 static isl_stat reset_band(struct isl_sched_graph *graph)
3692 int i;
3693 int drop;
3695 drop = graph->n_total_row - graph->band_start;
3696 graph->n_total_row -= drop;
3697 graph->n_row -= drop;
3699 for (i = 0; i < graph->n; ++i) {
3700 struct isl_sched_node *node = &graph->node[i];
3702 isl_map_free(node->sched_map);
3703 node->sched_map = NULL;
3705 node->sched = isl_mat_drop_rows(node->sched,
3706 graph->band_start, drop);
3708 if (!node->sched)
3709 return isl_stat_error;
3712 return isl_stat_ok;
3715 /* Split the current graph into two parts and compute a schedule for each
3716 * part individually. In particular, one part consists of all SCCs up
3717 * to and including graph->src_scc, while the other part contains the other
3718 * SCCs. The split is enforced by a sequence node inserted at position "node"
3719 * in the schedule tree. Return the updated schedule node.
3720 * If either of these two parts consists of a sequence, then it is spliced
3721 * into the sequence containing the two parts.
3723 * The current band is reset. It would be possible to reuse
3724 * the previously computed rows as the first rows in the next
3725 * band, but recomputing them may result in better rows as we are looking
3726 * at a smaller part of the dependence graph.
3728 static __isl_give isl_schedule_node *compute_split_schedule(
3729 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3731 int is_seq;
3732 isl_ctx *ctx;
3733 isl_union_set_list *filters;
3735 if (!node)
3736 return NULL;
3738 if (reset_band(graph) < 0)
3739 return isl_schedule_node_free(node);
3741 next_band(graph);
3743 ctx = isl_schedule_node_get_ctx(node);
3744 filters = extract_split(ctx, graph);
3745 node = isl_schedule_node_insert_sequence(node, filters);
3746 node = isl_schedule_node_child(node, 1);
3747 node = isl_schedule_node_child(node, 0);
3749 node = compute_sub_schedule(node, ctx, graph,
3750 &node_scc_at_least, &edge_src_scc_at_least,
3751 graph->src_scc + 1, 0);
3752 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3753 node = isl_schedule_node_parent(node);
3754 node = isl_schedule_node_parent(node);
3755 if (is_seq)
3756 node = isl_schedule_node_sequence_splice_child(node, 1);
3757 node = isl_schedule_node_child(node, 0);
3758 node = isl_schedule_node_child(node, 0);
3759 node = compute_sub_schedule(node, ctx, graph,
3760 &node_scc_at_most, &edge_dst_scc_at_most,
3761 graph->src_scc, 0);
3762 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3763 node = isl_schedule_node_parent(node);
3764 node = isl_schedule_node_parent(node);
3765 if (is_seq)
3766 node = isl_schedule_node_sequence_splice_child(node, 0);
3768 return node;
3771 /* Insert a band node at position "node" in the schedule tree corresponding
3772 * to the current band in "graph". Mark the band node permutable
3773 * if "permutable" is set.
3774 * The partial schedules and the coincidence property are extracted
3775 * from the graph nodes.
3776 * Return the updated schedule node.
3778 static __isl_give isl_schedule_node *insert_current_band(
3779 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3780 int permutable)
3782 int i;
3783 int start, end, n;
3784 isl_multi_aff *ma;
3785 isl_multi_pw_aff *mpa;
3786 isl_multi_union_pw_aff *mupa;
3788 if (!node)
3789 return NULL;
3791 if (graph->n < 1)
3792 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3793 "graph should have at least one node",
3794 return isl_schedule_node_free(node));
3796 start = graph->band_start;
3797 end = graph->n_total_row;
3798 n = end - start;
3800 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3801 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3802 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3804 for (i = 1; i < graph->n; ++i) {
3805 isl_multi_union_pw_aff *mupa_i;
3807 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3808 start, n);
3809 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3810 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3811 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3813 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3815 for (i = 0; i < n; ++i)
3816 node = isl_schedule_node_band_member_set_coincident(node, i,
3817 graph->node[0].coincident[start + i]);
3818 node = isl_schedule_node_band_set_permutable(node, permutable);
3820 return node;
3823 /* Update the dependence relations based on the current schedule,
3824 * add the current band to "node" and then continue with the computation
3825 * of the next band.
3826 * Return the updated schedule node.
3828 static __isl_give isl_schedule_node *compute_next_band(
3829 __isl_take isl_schedule_node *node,
3830 struct isl_sched_graph *graph, int permutable)
3832 isl_ctx *ctx;
3834 if (!node)
3835 return NULL;
3837 ctx = isl_schedule_node_get_ctx(node);
3838 if (update_edges(ctx, graph) < 0)
3839 return isl_schedule_node_free(node);
3840 node = insert_current_band(node, graph, permutable);
3841 next_band(graph);
3843 node = isl_schedule_node_child(node, 0);
3844 node = compute_schedule(node, graph);
3845 node = isl_schedule_node_parent(node);
3847 return node;
3850 /* Add the constraints "coef" derived from an edge from "node" to itself
3851 * to graph->lp in order to respect the dependences and to try and carry them.
3852 * "pos" is the sequence number of the edge that needs to be carried.
3853 * "coef" represents general constraints on coefficients (c_0, c_x)
3854 * of valid constraints for (y - x) with x and y instances of the node.
3856 * The constraints added to graph->lp need to enforce
3858 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3859 * = c_j_x (y - x) >= e_i
3861 * for each (x,y) in the dependence relation of the edge.
3862 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3863 * taking into account that each coefficient in c_j_x is represented
3864 * as a pair of non-negative coefficients.
3866 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3867 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3869 int offset;
3870 isl_ctx *ctx;
3871 isl_dim_map *dim_map;
3873 if (!coef)
3874 return isl_stat_error;
3876 ctx = isl_basic_set_get_ctx(coef);
3877 offset = coef_var_offset(coef);
3878 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3879 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3880 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3882 return isl_stat_ok;
3885 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3886 * to graph->lp in order to respect the dependences and to try and carry them.
3887 * "pos" is the sequence number of the edge that needs to be carried or
3888 * -1 if no attempt should be made to carry the dependences.
3889 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3890 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3892 * The constraints added to graph->lp need to enforce
3894 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3896 * for each (x,y) in the dependence relation of the edge or
3898 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3900 * if pos is -1.
3901 * That is,
3902 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3903 * or
3904 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3905 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3906 * taking into account that each coefficient in c_j_x and c_k_x is represented
3907 * as a pair of non-negative coefficients.
3909 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3910 struct isl_sched_node *src, struct isl_sched_node *dst,
3911 __isl_take isl_basic_set *coef, int pos)
3913 int offset;
3914 isl_ctx *ctx;
3915 isl_dim_map *dim_map;
3917 if (!coef)
3918 return isl_stat_error;
3920 ctx = isl_basic_set_get_ctx(coef);
3921 offset = coef_var_offset(coef);
3922 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3923 if (pos >= 0)
3924 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3925 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3927 return isl_stat_ok;
3930 /* Data structure for keeping track of the data needed
3931 * to exploit non-trivial lineality spaces.
3933 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3934 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3935 * "equivalent" connects instances to other instances on the same line(s).
3936 * "mask" contains the domain spaces of "equivalent".
3937 * Any instance set not in "mask" does not have a non-trivial lineality space.
3939 struct isl_exploit_lineality_data {
3940 isl_bool any_non_trivial;
3941 isl_union_map *equivalent;
3942 isl_union_set *mask;
3945 /* Data structure collecting information used during the construction
3946 * of an LP for carrying dependences.
3948 * "intra" is a sequence of coefficient constraints for intra-node edges.
3949 * "inter" is a sequence of coefficient constraints for inter-node edges.
3950 * "lineality" contains data used to exploit non-trivial lineality spaces.
3952 struct isl_carry {
3953 isl_basic_set_list *intra;
3954 isl_basic_set_list *inter;
3955 struct isl_exploit_lineality_data lineality;
3958 /* Free all the data stored in "carry".
3960 static void isl_carry_clear(struct isl_carry *carry)
3962 isl_basic_set_list_free(carry->intra);
3963 isl_basic_set_list_free(carry->inter);
3964 isl_union_map_free(carry->lineality.equivalent);
3965 isl_union_set_free(carry->lineality.mask);
3968 /* Return a pointer to the node in "graph" that lives in "space".
3969 * If the requested node has been compressed, then "space"
3970 * corresponds to the compressed space.
3971 * The graph is assumed to have such a node.
3972 * Return NULL in case of error.
3974 * First try and see if "space" is the space of an uncompressed node.
3975 * If so, return that node.
3976 * Otherwise, "space" was constructed by construct_compressed_id and
3977 * contains a user pointer pointing to the node in the tuple id.
3978 * However, this node belongs to the original dependence graph.
3979 * If "graph" is a subgraph of this original dependence graph,
3980 * then the node with the same space still needs to be looked up
3981 * in the current graph.
3983 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
3984 struct isl_sched_graph *graph, __isl_keep isl_space *space)
3986 isl_id *id;
3987 struct isl_sched_node *node;
3989 if (!space)
3990 return NULL;
3992 node = graph_find_node(ctx, graph, space);
3993 if (!node)
3994 return NULL;
3995 if (is_node(graph, node))
3996 return node;
3998 id = isl_space_get_tuple_id(space, isl_dim_set);
3999 node = isl_id_get_user(id);
4000 isl_id_free(id);
4002 if (!node)
4003 return NULL;
4005 if (!is_node(graph->root, node))
4006 isl_die(ctx, isl_error_internal,
4007 "space points to invalid node", return NULL);
4008 if (graph != graph->root)
4009 node = graph_find_node(ctx, graph, node->space);
4010 if (!is_node(graph, node))
4011 isl_die(ctx, isl_error_internal,
4012 "unable to find node", return NULL);
4014 return node;
4017 /* Internal data structure for add_all_constraints.
4019 * "graph" is the schedule constraint graph for which an LP problem
4020 * is being constructed.
4021 * "carry_inter" indicates whether inter-node edges should be carried.
4022 * "pos" is the position of the next edge that needs to be carried.
4024 struct isl_add_all_constraints_data {
4025 isl_ctx *ctx;
4026 struct isl_sched_graph *graph;
4027 int carry_inter;
4028 int pos;
4031 /* Add the constraints "coef" derived from an edge from a node to itself
4032 * to data->graph->lp in order to respect the dependences and
4033 * to try and carry them.
4035 * The space of "coef" is of the form
4037 * coefficients[[c_cst] -> S[c_x]]
4039 * with S[c_x] the (compressed) space of the node.
4040 * Extract the node from the space and call add_intra_constraints.
4042 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
4044 struct isl_add_all_constraints_data *data = user;
4045 isl_space *space;
4046 struct isl_sched_node *node;
4048 space = isl_basic_set_get_space(coef);
4049 space = isl_space_range(isl_space_unwrap(space));
4050 node = graph_find_compressed_node(data->ctx, data->graph, space);
4051 isl_space_free(space);
4052 return add_intra_constraints(data->graph, node, coef, data->pos++);
4055 /* Add the constraints "coef" derived from an edge from a node j
4056 * to a node k to data->graph->lp in order to respect the dependences and
4057 * to try and carry them (provided data->carry_inter is set).
4059 * The space of "coef" is of the form
4061 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4063 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4064 * Extract the nodes from the space and call add_inter_constraints.
4066 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
4068 struct isl_add_all_constraints_data *data = user;
4069 isl_space *space, *dom;
4070 struct isl_sched_node *src, *dst;
4071 int pos;
4073 space = isl_basic_set_get_space(coef);
4074 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
4075 dom = isl_space_domain(isl_space_copy(space));
4076 src = graph_find_compressed_node(data->ctx, data->graph, dom);
4077 isl_space_free(dom);
4078 space = isl_space_range(space);
4079 dst = graph_find_compressed_node(data->ctx, data->graph, space);
4080 isl_space_free(space);
4082 pos = data->carry_inter ? data->pos++ : -1;
4083 return add_inter_constraints(data->graph, src, dst, coef, pos);
4086 /* Add constraints to graph->lp that force all (conditional) validity
4087 * dependences to be respected and attempt to carry them.
4088 * "intra" is the sequence of coefficient constraints for intra-node edges.
4089 * "inter" is the sequence of coefficient constraints for inter-node edges.
4090 * "carry_inter" indicates whether inter-node edges should be carried or
4091 * only respected.
4093 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
4094 __isl_keep isl_basic_set_list *intra,
4095 __isl_keep isl_basic_set_list *inter, int carry_inter)
4097 struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
4099 data.pos = 0;
4100 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
4101 return isl_stat_error;
4102 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
4103 return isl_stat_error;
4104 return isl_stat_ok;
4107 /* Internal data structure for count_all_constraints
4108 * for keeping track of the number of equality and inequality constraints.
4110 struct isl_sched_count {
4111 int n_eq;
4112 int n_ineq;
4115 /* Add the number of equality and inequality constraints of "bset"
4116 * to data->n_eq and data->n_ineq.
4118 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
4120 struct isl_sched_count *data = user;
4122 return update_count(bset, 1, &data->n_eq, &data->n_ineq);
4125 /* Count the number of equality and inequality constraints
4126 * that will be added to the carry_lp problem.
4127 * We count each edge exactly once.
4128 * "intra" is the sequence of coefficient constraints for intra-node edges.
4129 * "inter" is the sequence of coefficient constraints for inter-node edges.
4131 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
4132 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
4134 struct isl_sched_count data;
4136 data.n_eq = data.n_ineq = 0;
4137 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
4138 return isl_stat_error;
4139 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
4140 return isl_stat_error;
4142 *n_eq = data.n_eq;
4143 *n_ineq = data.n_ineq;
4145 return isl_stat_ok;
4148 /* Construct an LP problem for finding schedule coefficients
4149 * such that the schedule carries as many validity dependences as possible.
4150 * In particular, for each dependence i, we bound the dependence distance
4151 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4152 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4153 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4154 * "intra" is the sequence of coefficient constraints for intra-node edges.
4155 * "inter" is the sequence of coefficient constraints for inter-node edges.
4156 * "n_edge" is the total number of edges.
4157 * "carry_inter" indicates whether inter-node edges should be carried or
4158 * only respected. That is, if "carry_inter" is not set, then
4159 * no e_i variables are introduced for the inter-node edges.
4161 * All variables of the LP are non-negative. The actual coefficients
4162 * may be negative, so each coefficient is represented as the difference
4163 * of two non-negative variables. The negative part always appears
4164 * immediately before the positive part.
4165 * Other than that, the variables have the following order
4167 * - sum of (1 - e_i) over all edges
4168 * - sum of all c_n coefficients
4169 * (unconstrained when computing non-parametric schedules)
4170 * - sum of positive and negative parts of all c_x coefficients
4171 * - for each edge
4172 * - e_i
4173 * - for each node
4174 * - positive and negative parts of c_i_x, in opposite order
4175 * - c_i_n (if parametric)
4176 * - c_i_0
4178 * The constraints are those from the (validity) edges plus three equalities
4179 * to express the sums and n_edge inequalities to express e_i <= 1.
4181 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
4182 int n_edge, __isl_keep isl_basic_set_list *intra,
4183 __isl_keep isl_basic_set_list *inter, int carry_inter)
4185 int i;
4186 int k;
4187 isl_space *dim;
4188 unsigned total;
4189 int n_eq, n_ineq;
4191 total = 3 + n_edge;
4192 for (i = 0; i < graph->n; ++i) {
4193 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4194 node->start = total;
4195 total += 1 + node->nparam + 2 * node->nvar;
4198 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
4199 return isl_stat_error;
4201 dim = isl_space_set_alloc(ctx, 0, total);
4202 isl_basic_set_free(graph->lp);
4203 n_eq += 3;
4204 n_ineq += n_edge;
4205 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
4206 graph->lp = isl_basic_set_set_rational(graph->lp);
4208 k = isl_basic_set_alloc_equality(graph->lp);
4209 if (k < 0)
4210 return isl_stat_error;
4211 isl_seq_clr(graph->lp->eq[k], 1 + total);
4212 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4213 isl_int_set_si(graph->lp->eq[k][1], 1);
4214 for (i = 0; i < n_edge; ++i)
4215 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4217 if (add_param_sum_constraint(graph, 1) < 0)
4218 return isl_stat_error;
4219 if (add_var_sum_constraint(graph, 2) < 0)
4220 return isl_stat_error;
4222 for (i = 0; i < n_edge; ++i) {
4223 k = isl_basic_set_alloc_inequality(graph->lp);
4224 if (k < 0)
4225 return isl_stat_error;
4226 isl_seq_clr(graph->lp->ineq[k], 1 + total);
4227 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4228 isl_int_set_si(graph->lp->ineq[k][0], 1);
4231 if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
4232 return isl_stat_error;
4234 return isl_stat_ok;
4237 static __isl_give isl_schedule_node *compute_component_schedule(
4238 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4239 int wcc);
4241 /* If the schedule_split_scaled option is set and if the linear
4242 * parts of the scheduling rows for all nodes in the graphs have
4243 * a non-trivial common divisor, then remove this
4244 * common divisor from the linear part.
4245 * Otherwise, insert a band node directly and continue with
4246 * the construction of the schedule.
4248 * If a non-trivial common divisor is found, then
4249 * the linear part is reduced and the remainder is ignored.
4250 * The pieces of the graph that are assigned different remainders
4251 * form (groups of) strongly connected components within
4252 * the scaled down band. If needed, they can therefore
4253 * be ordered along this remainder in a sequence node.
4254 * However, this ordering is not enforced here in order to allow
4255 * the scheduler to combine some of the strongly connected components.
4257 static __isl_give isl_schedule_node *split_scaled(
4258 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4260 int i;
4261 int row;
4262 isl_ctx *ctx;
4263 isl_int gcd, gcd_i;
4265 if (!node)
4266 return NULL;
4268 ctx = isl_schedule_node_get_ctx(node);
4269 if (!ctx->opt->schedule_split_scaled)
4270 return compute_next_band(node, graph, 0);
4271 if (graph->n <= 1)
4272 return compute_next_band(node, graph, 0);
4274 isl_int_init(gcd);
4275 isl_int_init(gcd_i);
4277 isl_int_set_si(gcd, 0);
4279 row = isl_mat_rows(graph->node[0].sched) - 1;
4281 for (i = 0; i < graph->n; ++i) {
4282 struct isl_sched_node *node = &graph->node[i];
4283 int cols = isl_mat_cols(node->sched);
4285 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4286 isl_int_gcd(gcd, gcd, gcd_i);
4289 isl_int_clear(gcd_i);
4291 if (isl_int_cmp_si(gcd, 1) <= 0) {
4292 isl_int_clear(gcd);
4293 return compute_next_band(node, graph, 0);
4296 for (i = 0; i < graph->n; ++i) {
4297 struct isl_sched_node *node = &graph->node[i];
4299 isl_int_fdiv_q(node->sched->row[row][0],
4300 node->sched->row[row][0], gcd);
4301 isl_int_mul(node->sched->row[row][0],
4302 node->sched->row[row][0], gcd);
4303 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4304 if (!node->sched)
4305 goto error;
4308 isl_int_clear(gcd);
4310 return compute_next_band(node, graph, 0);
4311 error:
4312 isl_int_clear(gcd);
4313 return isl_schedule_node_free(node);
4316 /* Is the schedule row "sol" trivial on node "node"?
4317 * That is, is the solution zero on the dimensions linearly independent of
4318 * the previously found solutions?
4319 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4321 * Each coefficient is represented as the difference between
4322 * two non-negative values in "sol".
4323 * We construct the schedule row s and check if it is linearly
4324 * independent of previously computed schedule rows
4325 * by computing T s, with T the linear combinations that are zero
4326 * on linearly dependent schedule rows.
4327 * If the result consists of all zeros, then the solution is trivial.
4329 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4331 int trivial;
4332 isl_vec *node_sol;
4334 if (!sol)
4335 return -1;
4336 if (node->nvar == node->rank)
4337 return 0;
4339 node_sol = extract_var_coef(node, sol);
4340 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4341 if (!node_sol)
4342 return -1;
4344 trivial = isl_seq_first_non_zero(node_sol->el,
4345 node->nvar - node->rank) == -1;
4347 isl_vec_free(node_sol);
4349 return trivial;
4352 /* Is the schedule row "sol" trivial on any node where it should
4353 * not be trivial?
4354 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4356 static int is_any_trivial(struct isl_sched_graph *graph,
4357 __isl_keep isl_vec *sol)
4359 int i;
4361 for (i = 0; i < graph->n; ++i) {
4362 struct isl_sched_node *node = &graph->node[i];
4363 int trivial;
4365 if (!needs_row(graph, node))
4366 continue;
4367 trivial = is_trivial(node, sol);
4368 if (trivial < 0 || trivial)
4369 return trivial;
4372 return 0;
4375 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4376 * If so, return the position of the coalesced dimension.
4377 * Otherwise, return node->nvar or -1 on error.
4379 * In particular, look for pairs of coefficients c_i and c_j such that
4380 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4381 * If any such pair is found, then return i.
4382 * If size_i is infinity, then no check on c_i needs to be performed.
4384 static int find_node_coalescing(struct isl_sched_node *node,
4385 __isl_keep isl_vec *sol)
4387 int i, j;
4388 isl_int max;
4389 isl_vec *csol;
4391 if (node->nvar <= 1)
4392 return node->nvar;
4394 csol = extract_var_coef(node, sol);
4395 if (!csol)
4396 return -1;
4397 isl_int_init(max);
4398 for (i = 0; i < node->nvar; ++i) {
4399 isl_val *v;
4401 if (isl_int_is_zero(csol->el[i]))
4402 continue;
4403 v = isl_multi_val_get_val(node->sizes, i);
4404 if (!v)
4405 goto error;
4406 if (!isl_val_is_int(v)) {
4407 isl_val_free(v);
4408 continue;
4410 v = isl_val_div_ui(v, 2);
4411 v = isl_val_ceil(v);
4412 if (!v)
4413 goto error;
4414 isl_int_mul(max, v->n, csol->el[i]);
4415 isl_val_free(v);
4417 for (j = 0; j < node->nvar; ++j) {
4418 if (j == i)
4419 continue;
4420 if (isl_int_abs_gt(csol->el[j], max))
4421 break;
4423 if (j < node->nvar)
4424 break;
4427 isl_int_clear(max);
4428 isl_vec_free(csol);
4429 return i;
4430 error:
4431 isl_int_clear(max);
4432 isl_vec_free(csol);
4433 return -1;
4436 /* Force the schedule coefficient at position "pos" of "node" to be zero
4437 * in "tl".
4438 * The coefficient is encoded as the difference between two non-negative
4439 * variables. Force these two variables to have the same value.
4441 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4442 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4444 int dim;
4445 isl_ctx *ctx;
4446 isl_vec *eq;
4448 ctx = isl_space_get_ctx(node->space);
4449 dim = isl_tab_lexmin_dim(tl);
4450 if (dim < 0)
4451 return isl_tab_lexmin_free(tl);
4452 eq = isl_vec_alloc(ctx, 1 + dim);
4453 eq = isl_vec_clr(eq);
4454 if (!eq)
4455 return isl_tab_lexmin_free(tl);
4457 pos = 1 + node_var_coef_pos(node, pos);
4458 isl_int_set_si(eq->el[pos], 1);
4459 isl_int_set_si(eq->el[pos + 1], -1);
4460 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4461 isl_vec_free(eq);
4463 return tl;
4466 /* Return the lexicographically smallest rational point in the basic set
4467 * from which "tl" was constructed, double checking that this input set
4468 * was not empty.
4470 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4472 isl_vec *sol;
4474 sol = isl_tab_lexmin_get_solution(tl);
4475 if (!sol)
4476 return NULL;
4477 if (sol->size == 0)
4478 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4479 "error in schedule construction",
4480 return isl_vec_free(sol));
4481 return sol;
4484 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4485 * carry any of the "n_edge" groups of dependences?
4486 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4487 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4488 * by the edge are carried by the solution.
4489 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4490 * one of those is carried.
4492 * Note that despite the fact that the problem is solved using a rational
4493 * solver, the solution is guaranteed to be integral.
4494 * Specifically, the dependence distance lower bounds e_i (and therefore
4495 * also their sum) are integers. See Lemma 5 of [1].
4497 * Any potential denominator of the sum is cleared by this function.
4498 * The denominator is not relevant for any of the other elements
4499 * in the solution.
4501 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4502 * Problem, Part II: Multi-Dimensional Time.
4503 * In Intl. Journal of Parallel Programming, 1992.
4505 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4507 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4508 isl_int_set_si(sol->el[0], 1);
4509 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4512 /* Return the lexicographically smallest rational point in "lp",
4513 * assuming that all variables are non-negative and performing some
4514 * additional sanity checks.
4515 * If "want_integral" is set, then compute the lexicographically smallest
4516 * integer point instead.
4517 * In particular, "lp" should not be empty by construction.
4518 * Double check that this is the case.
4519 * If dependences are not carried for any of the "n_edge" edges,
4520 * then return an empty vector.
4522 * If the schedule_treat_coalescing option is set and
4523 * if the computed schedule performs loop coalescing on a given node,
4524 * i.e., if it is of the form
4526 * c_i i + c_j j + ...
4528 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4529 * to cut out this solution. Repeat this process until no more loop
4530 * coalescing occurs or until no more dependences can be carried.
4531 * In the latter case, revert to the previously computed solution.
4533 * If the caller requests an integral solution and if coalescing should
4534 * be treated, then perform the coalescing treatment first as
4535 * an integral solution computed before coalescing treatment
4536 * would carry the same number of edges and would therefore probably
4537 * also be coalescing.
4539 * To allow the coalescing treatment to be performed first,
4540 * the initial solution is allowed to be rational and it is only
4541 * cut out (if needed) in the next iteration, if no coalescing measures
4542 * were taken.
4544 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4545 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4547 int i, pos, cut;
4548 isl_ctx *ctx;
4549 isl_tab_lexmin *tl;
4550 isl_vec *sol = NULL, *prev;
4551 int treat_coalescing;
4552 int try_again;
4554 if (!lp)
4555 return NULL;
4556 ctx = isl_basic_set_get_ctx(lp);
4557 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4558 tl = isl_tab_lexmin_from_basic_set(lp);
4560 cut = 0;
4561 do {
4562 int integral;
4564 try_again = 0;
4565 if (cut)
4566 tl = isl_tab_lexmin_cut_to_integer(tl);
4567 prev = sol;
4568 sol = non_empty_solution(tl);
4569 if (!sol)
4570 goto error;
4572 integral = isl_int_is_one(sol->el[0]);
4573 if (!carries_dependences(sol, n_edge)) {
4574 if (!prev)
4575 prev = isl_vec_alloc(ctx, 0);
4576 isl_vec_free(sol);
4577 sol = prev;
4578 break;
4580 prev = isl_vec_free(prev);
4581 cut = want_integral && !integral;
4582 if (cut)
4583 try_again = 1;
4584 if (!treat_coalescing)
4585 continue;
4586 for (i = 0; i < graph->n; ++i) {
4587 struct isl_sched_node *node = &graph->node[i];
4589 pos = find_node_coalescing(node, sol);
4590 if (pos < 0)
4591 goto error;
4592 if (pos < node->nvar)
4593 break;
4595 if (i < graph->n) {
4596 try_again = 1;
4597 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4598 cut = 0;
4600 } while (try_again);
4602 isl_tab_lexmin_free(tl);
4604 return sol;
4605 error:
4606 isl_tab_lexmin_free(tl);
4607 isl_vec_free(prev);
4608 isl_vec_free(sol);
4609 return NULL;
4612 /* If "edge" is an edge from a node to itself, then add the corresponding
4613 * dependence relation to "umap".
4614 * If "node" has been compressed, then the dependence relation
4615 * is also compressed first.
4617 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4618 struct isl_sched_edge *edge)
4620 isl_map *map;
4621 struct isl_sched_node *node = edge->src;
4623 if (edge->src != edge->dst)
4624 return umap;
4626 map = isl_map_copy(edge->map);
4627 if (node->compressed) {
4628 map = isl_map_preimage_domain_multi_aff(map,
4629 isl_multi_aff_copy(node->decompress));
4630 map = isl_map_preimage_range_multi_aff(map,
4631 isl_multi_aff_copy(node->decompress));
4633 umap = isl_union_map_add_map(umap, map);
4634 return umap;
4637 /* If "edge" is an edge from a node to another node, then add the corresponding
4638 * dependence relation to "umap".
4639 * If the source or destination nodes of "edge" have been compressed,
4640 * then the dependence relation is also compressed first.
4642 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4643 struct isl_sched_edge *edge)
4645 isl_map *map;
4647 if (edge->src == edge->dst)
4648 return umap;
4650 map = isl_map_copy(edge->map);
4651 if (edge->src->compressed)
4652 map = isl_map_preimage_domain_multi_aff(map,
4653 isl_multi_aff_copy(edge->src->decompress));
4654 if (edge->dst->compressed)
4655 map = isl_map_preimage_range_multi_aff(map,
4656 isl_multi_aff_copy(edge->dst->decompress));
4657 umap = isl_union_map_add_map(umap, map);
4658 return umap;
4661 /* Internal data structure used by union_drop_coalescing_constraints
4662 * to collect bounds on all relevant statements.
4664 * "graph" is the schedule constraint graph for which an LP problem
4665 * is being constructed.
4666 * "bounds" collects the bounds.
4668 struct isl_collect_bounds_data {
4669 isl_ctx *ctx;
4670 struct isl_sched_graph *graph;
4671 isl_union_set *bounds;
4674 /* Add the size bounds for the node with instance deltas in "set"
4675 * to data->bounds.
4677 static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
4679 struct isl_collect_bounds_data *data = user;
4680 struct isl_sched_node *node;
4681 isl_space *space;
4682 isl_set *bounds;
4684 space = isl_set_get_space(set);
4685 isl_set_free(set);
4687 node = graph_find_compressed_node(data->ctx, data->graph, space);
4688 isl_space_free(space);
4690 bounds = isl_set_from_basic_set(get_size_bounds(node));
4691 data->bounds = isl_union_set_add_set(data->bounds, bounds);
4693 return isl_stat_ok;
4696 /* Drop some constraints from "delta" that could be exploited
4697 * to construct loop coalescing schedules.
4698 * In particular, drop those constraint that bound the difference
4699 * to the size of the domain.
4700 * Do this for each set/node in "delta" separately.
4701 * The parameters are assumed to have been projected out by the caller.
4703 static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
4704 struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
4706 struct isl_collect_bounds_data data = { ctx, graph };
4708 data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4709 if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
4710 data.bounds = isl_union_set_free(data.bounds);
4711 delta = isl_union_set_plain_gist(delta, data.bounds);
4713 return delta;
4716 /* Given a non-trivial lineality space "lineality", add the corresponding
4717 * universe set to data->mask and add a map from elements to
4718 * other elements along the lines in "lineality" to data->equivalent.
4719 * If this is the first time this function gets called
4720 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4721 * initialize data->mask and data->equivalent.
4723 * In particular, if the lineality space is defined by equality constraints
4725 * E x = 0
4727 * then construct an affine mapping
4729 * f : x -> E x
4731 * and compute the equivalence relation of having the same image under f:
4733 * { x -> x' : E x = E x' }
4735 static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
4736 struct isl_exploit_lineality_data *data)
4738 isl_mat *eq;
4739 isl_space *space;
4740 isl_set *univ;
4741 isl_multi_aff *ma;
4742 isl_multi_pw_aff *mpa;
4743 isl_map *map;
4744 int n;
4746 if (isl_basic_set_check_no_locals(lineality) < 0)
4747 goto error;
4749 space = isl_basic_set_get_space(lineality);
4750 if (!data->any_non_trivial) {
4751 data->equivalent = isl_union_map_empty(isl_space_copy(space));
4752 data->mask = isl_union_set_empty(isl_space_copy(space));
4754 data->any_non_trivial = isl_bool_true;
4756 univ = isl_set_universe(isl_space_copy(space));
4757 data->mask = isl_union_set_add_set(data->mask, univ);
4759 eq = isl_basic_set_extract_equalities(lineality);
4760 n = isl_mat_rows(eq);
4761 eq = isl_mat_insert_zero_rows(eq, 0, 1);
4762 eq = isl_mat_set_element_si(eq, 0, 0, 1);
4763 space = isl_space_from_domain(space);
4764 space = isl_space_add_dims(space, isl_dim_out, n);
4765 ma = isl_multi_aff_from_aff_mat(space, eq);
4766 mpa = isl_multi_pw_aff_from_multi_aff(ma);
4767 map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
4768 data->equivalent = isl_union_map_add_map(data->equivalent, map);
4770 isl_basic_set_free(lineality);
4771 return isl_stat_ok;
4772 error:
4773 isl_basic_set_free(lineality);
4774 return isl_stat_error;
4777 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4778 * the origin or, in other words, satisfies a number of equality constraints
4779 * that is smaller than the dimension of the set).
4780 * If so, extend data->mask and data->equivalent accordingly.
4782 * The input should not have any local variables already, but
4783 * isl_set_remove_divs is called to make sure it does not.
4785 static isl_stat add_lineality(__isl_take isl_set *set, void *user)
4787 struct isl_exploit_lineality_data *data = user;
4788 isl_basic_set *hull;
4789 int dim, n_eq;
4791 set = isl_set_remove_divs(set);
4792 hull = isl_set_unshifted_simple_hull(set);
4793 dim = isl_basic_set_dim(hull, isl_dim_set);
4794 n_eq = isl_basic_set_n_equality(hull);
4795 if (!hull)
4796 return isl_stat_error;
4797 if (dim != n_eq)
4798 return add_non_trivial_lineality(hull, data);
4799 isl_basic_set_free(hull);
4800 return isl_stat_ok;
4803 /* Check if the difference set on intra-node schedule constraints "intra"
4804 * has any non-trivial lineality space.
4805 * If so, then extend the difference set to a difference set
4806 * on equivalent elements. That is, if "intra" is
4808 * { y - x : (x,y) \in V }
4810 * and elements are equivalent if they have the same image under f,
4811 * then return
4813 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4815 * or, since f is linear,
4817 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4819 * The results of the search for non-trivial lineality spaces is stored
4820 * in "data".
4822 static __isl_give isl_union_set *exploit_intra_lineality(
4823 __isl_take isl_union_set *intra,
4824 struct isl_exploit_lineality_data *data)
4826 isl_union_set *lineality;
4827 isl_union_set *uset;
4829 data->any_non_trivial = isl_bool_false;
4830 lineality = isl_union_set_copy(intra);
4831 lineality = isl_union_set_combined_lineality_space(lineality);
4832 if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
4833 data->any_non_trivial = isl_bool_error;
4834 isl_union_set_free(lineality);
4836 if (data->any_non_trivial < 0)
4837 return isl_union_set_free(intra);
4838 if (!data->any_non_trivial)
4839 return intra;
4841 uset = isl_union_set_copy(intra);
4842 intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
4843 uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
4844 intra = isl_union_set_union(intra, uset);
4846 intra = isl_union_set_remove_divs(intra);
4848 return intra;
4851 /* If the difference set on intra-node schedule constraints was found to have
4852 * any non-trivial lineality space by exploit_intra_lineality,
4853 * as recorded in "data", then extend the inter-node
4854 * schedule constraints "inter" to schedule constraints on equivalent elements.
4855 * That is, if "inter" is V and
4856 * elements are equivalent if they have the same image under f, then return
4858 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4860 static __isl_give isl_union_map *exploit_inter_lineality(
4861 __isl_take isl_union_map *inter,
4862 struct isl_exploit_lineality_data *data)
4864 isl_union_map *umap;
4866 if (data->any_non_trivial < 0)
4867 return isl_union_map_free(inter);
4868 if (!data->any_non_trivial)
4869 return inter;
4871 umap = isl_union_map_copy(inter);
4872 inter = isl_union_map_subtract_range(inter,
4873 isl_union_set_copy(data->mask));
4874 umap = isl_union_map_apply_range(umap,
4875 isl_union_map_copy(data->equivalent));
4876 inter = isl_union_map_union(inter, umap);
4877 umap = isl_union_map_copy(inter);
4878 inter = isl_union_map_subtract_domain(inter,
4879 isl_union_set_copy(data->mask));
4880 umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
4881 umap);
4882 inter = isl_union_map_union(inter, umap);
4884 inter = isl_union_map_remove_divs(inter);
4886 return inter;
4889 /* For each (conditional) validity edge in "graph",
4890 * add the corresponding dependence relation using "add"
4891 * to a collection of dependence relations and return the result.
4892 * If "coincidence" is set, then coincidence edges are considered as well.
4894 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4895 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4896 struct isl_sched_edge *edge), int coincidence)
4898 int i;
4899 isl_space *space;
4900 isl_union_map *umap;
4902 space = isl_space_copy(graph->node[0].space);
4903 umap = isl_union_map_empty(space);
4905 for (i = 0; i < graph->n_edge; ++i) {
4906 struct isl_sched_edge *edge = &graph->edge[i];
4908 if (!is_any_validity(edge) &&
4909 (!coincidence || !is_coincidence(edge)))
4910 continue;
4912 umap = add(umap, edge);
4915 return umap;
4918 /* Project out all parameters from "uset" and return the result.
4920 static __isl_give isl_union_set *union_set_drop_parameters(
4921 __isl_take isl_union_set *uset)
4923 unsigned nparam;
4925 nparam = isl_union_set_dim(uset, isl_dim_param);
4926 return isl_union_set_project_out(uset, isl_dim_param, 0, nparam);
4929 /* For each dependence relation on a (conditional) validity edge
4930 * from a node to itself,
4931 * construct the set of coefficients of valid constraints for elements
4932 * in that dependence relation and collect the results.
4933 * If "coincidence" is set, then coincidence edges are considered as well.
4935 * In particular, for each dependence relation R, constraints
4936 * on coefficients (c_0, c_x) are constructed such that
4938 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4940 * If the schedule_treat_coalescing option is set, then some constraints
4941 * that could be exploited to construct coalescing schedules
4942 * are removed before the dual is computed, but after the parameters
4943 * have been projected out.
4944 * The entire computation is essentially the same as that performed
4945 * by intra_coefficients, except that it operates on multiple
4946 * edges together and that the parameters are always projected out.
4948 * Additionally, exploit any non-trivial lineality space
4949 * in the difference set after removing coalescing constraints and
4950 * store the results of the non-trivial lineality space detection in "data".
4951 * The procedure is currently run unconditionally, but it is unlikely
4952 * to find any non-trivial lineality spaces if no coalescing constraints
4953 * have been removed.
4955 * Note that if a dependence relation is a union of basic maps,
4956 * then each basic map needs to be treated individually as it may only
4957 * be possible to carry the dependences expressed by some of those
4958 * basic maps and not all of them.
4959 * The collected validity constraints are therefore not coalesced and
4960 * it is assumed that they are not coalesced automatically.
4961 * Duplicate basic maps can be removed, however.
4962 * In particular, if the same basic map appears as a disjunct
4963 * in multiple edges, then it only needs to be carried once.
4965 static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
4966 struct isl_sched_graph *graph, int coincidence,
4967 struct isl_exploit_lineality_data *data)
4969 isl_union_map *intra;
4970 isl_union_set *delta;
4971 isl_basic_set_list *list;
4973 intra = collect_validity(graph, &add_intra, coincidence);
4974 delta = isl_union_map_deltas(intra);
4975 delta = union_set_drop_parameters(delta);
4976 delta = isl_union_set_remove_divs(delta);
4977 if (isl_options_get_schedule_treat_coalescing(ctx))
4978 delta = union_drop_coalescing_constraints(ctx, graph, delta);
4979 delta = exploit_intra_lineality(delta, data);
4980 list = isl_union_set_get_basic_set_list(delta);
4981 isl_union_set_free(delta);
4983 return isl_basic_set_list_coefficients(list);
4986 /* For each dependence relation on a (conditional) validity edge
4987 * from a node to some other node,
4988 * construct the set of coefficients of valid constraints for elements
4989 * in that dependence relation and collect the results.
4990 * If "coincidence" is set, then coincidence edges are considered as well.
4992 * In particular, for each dependence relation R, constraints
4993 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4995 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4997 * This computation is essentially the same as that performed
4998 * by inter_coefficients, except that it operates on multiple
4999 * edges together.
5001 * Additionally, exploit any non-trivial lineality space
5002 * that may have been discovered by collect_intra_validity
5003 * (as stored in "data").
5005 * Note that if a dependence relation is a union of basic maps,
5006 * then each basic map needs to be treated individually as it may only
5007 * be possible to carry the dependences expressed by some of those
5008 * basic maps and not all of them.
5009 * The collected validity constraints are therefore not coalesced and
5010 * it is assumed that they are not coalesced automatically.
5011 * Duplicate basic maps can be removed, however.
5012 * In particular, if the same basic map appears as a disjunct
5013 * in multiple edges, then it only needs to be carried once.
5015 static __isl_give isl_basic_set_list *collect_inter_validity(
5016 struct isl_sched_graph *graph, int coincidence,
5017 struct isl_exploit_lineality_data *data)
5019 isl_union_map *inter;
5020 isl_union_set *wrap;
5021 isl_basic_set_list *list;
5023 inter = collect_validity(graph, &add_inter, coincidence);
5024 inter = exploit_inter_lineality(inter, data);
5025 inter = isl_union_map_remove_divs(inter);
5026 wrap = isl_union_map_wrap(inter);
5027 list = isl_union_set_get_basic_set_list(wrap);
5028 isl_union_set_free(wrap);
5029 return isl_basic_set_list_coefficients(list);
5032 /* Construct an LP problem for finding schedule coefficients
5033 * such that the schedule carries as many of the "n_edge" groups of
5034 * dependences as possible based on the corresponding coefficient
5035 * constraints and return the lexicographically smallest non-trivial solution.
5036 * "intra" is the sequence of coefficient constraints for intra-node edges.
5037 * "inter" is the sequence of coefficient constraints for inter-node edges.
5038 * If "want_integral" is set, then compute an integral solution
5039 * for the coefficients rather than using the numerators
5040 * of a rational solution.
5041 * "carry_inter" indicates whether inter-node edges should be carried or
5042 * only respected.
5044 * If none of the "n_edge" groups can be carried
5045 * then return an empty vector.
5047 static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
5048 struct isl_sched_graph *graph, int n_edge,
5049 __isl_keep isl_basic_set_list *intra,
5050 __isl_keep isl_basic_set_list *inter, int want_integral,
5051 int carry_inter)
5053 isl_basic_set *lp;
5055 if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
5056 return NULL;
5058 lp = isl_basic_set_copy(graph->lp);
5059 return non_neg_lexmin(graph, lp, n_edge, want_integral);
5062 /* Construct an LP problem for finding schedule coefficients
5063 * such that the schedule carries as many of the validity dependences
5064 * as possible and
5065 * return the lexicographically smallest non-trivial solution.
5066 * If "fallback" is set, then the carrying is performed as a fallback
5067 * for the Pluto-like scheduler.
5068 * If "coincidence" is set, then try and carry coincidence edges as well.
5070 * The variable "n_edge" stores the number of groups that should be carried.
5071 * If none of the "n_edge" groups can be carried
5072 * then return an empty vector.
5073 * If, moreover, "n_edge" is zero, then the LP problem does not even
5074 * need to be constructed.
5076 * If a fallback solution is being computed, then compute an integral solution
5077 * for the coefficients rather than using the numerators
5078 * of a rational solution.
5080 * If a fallback solution is being computed, if there are any intra-node
5081 * dependences, and if requested by the user, then first try
5082 * to only carry those intra-node dependences.
5083 * If this fails to carry any dependences, then try again
5084 * with the inter-node dependences included.
5086 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
5087 struct isl_sched_graph *graph, int fallback, int coincidence)
5089 int n_intra, n_inter;
5090 int n_edge;
5091 struct isl_carry carry = { 0 };
5092 isl_vec *sol;
5094 carry.intra = collect_intra_validity(ctx, graph, coincidence,
5095 &carry.lineality);
5096 carry.inter = collect_inter_validity(graph, coincidence,
5097 &carry.lineality);
5098 if (!carry.intra || !carry.inter)
5099 goto error;
5100 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
5101 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
5103 if (fallback && n_intra > 0 &&
5104 isl_options_get_schedule_carry_self_first(ctx)) {
5105 sol = compute_carrying_sol_coef(ctx, graph, n_intra,
5106 carry.intra, carry.inter, fallback, 0);
5107 if (!sol || sol->size != 0 || n_inter == 0) {
5108 isl_carry_clear(&carry);
5109 return sol;
5111 isl_vec_free(sol);
5114 n_edge = n_intra + n_inter;
5115 if (n_edge == 0) {
5116 isl_carry_clear(&carry);
5117 return isl_vec_alloc(ctx, 0);
5120 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
5121 carry.intra, carry.inter, fallback, 1);
5122 isl_carry_clear(&carry);
5123 return sol;
5124 error:
5125 isl_carry_clear(&carry);
5126 return NULL;
5129 /* Construct a schedule row for each node such that as many validity dependences
5130 * as possible are carried and then continue with the next band.
5131 * If "fallback" is set, then the carrying is performed as a fallback
5132 * for the Pluto-like scheduler.
5133 * If "coincidence" is set, then try and carry coincidence edges as well.
5135 * If there are no validity dependences, then no dependence can be carried and
5136 * the procedure is guaranteed to fail. If there is more than one component,
5137 * then try computing a schedule on each component separately
5138 * to prevent or at least postpone this failure.
5140 * If a schedule row is computed, then check that dependences are carried
5141 * for at least one of the edges.
5143 * If the computed schedule row turns out to be trivial on one or
5144 * more nodes where it should not be trivial, then we throw it away
5145 * and try again on each component separately.
5147 * If there is only one component, then we accept the schedule row anyway,
5148 * but we do not consider it as a complete row and therefore do not
5149 * increment graph->n_row. Note that the ranks of the nodes that
5150 * do get a non-trivial schedule part will get updated regardless and
5151 * graph->maxvar is computed based on these ranks. The test for
5152 * whether more schedule rows are required in compute_schedule_wcc
5153 * is therefore not affected.
5155 * Insert a band corresponding to the schedule row at position "node"
5156 * of the schedule tree and continue with the construction of the schedule.
5157 * This insertion and the continued construction is performed by split_scaled
5158 * after optionally checking for non-trivial common divisors.
5160 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
5161 struct isl_sched_graph *graph, int fallback, int coincidence)
5163 int trivial;
5164 isl_ctx *ctx;
5165 isl_vec *sol;
5167 if (!node)
5168 return NULL;
5170 ctx = isl_schedule_node_get_ctx(node);
5171 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
5172 if (!sol)
5173 return isl_schedule_node_free(node);
5174 if (sol->size == 0) {
5175 isl_vec_free(sol);
5176 if (graph->scc > 1)
5177 return compute_component_schedule(node, graph, 1);
5178 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
5179 return isl_schedule_node_free(node));
5182 trivial = is_any_trivial(graph, sol);
5183 if (trivial < 0) {
5184 sol = isl_vec_free(sol);
5185 } else if (trivial && graph->scc > 1) {
5186 isl_vec_free(sol);
5187 return compute_component_schedule(node, graph, 1);
5190 if (update_schedule(graph, sol, 0) < 0)
5191 return isl_schedule_node_free(node);
5192 if (trivial)
5193 graph->n_row--;
5195 return split_scaled(node, graph);
5198 /* Construct a schedule row for each node such that as many validity dependences
5199 * as possible are carried and then continue with the next band.
5200 * Do so as a fallback for the Pluto-like scheduler.
5201 * If "coincidence" is set, then try and carry coincidence edges as well.
5203 static __isl_give isl_schedule_node *carry_fallback(
5204 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5205 int coincidence)
5207 return carry(node, graph, 1, coincidence);
5210 /* Construct a schedule row for each node such that as many validity dependences
5211 * as possible are carried and then continue with the next band.
5212 * Do so for the case where the Feautrier scheduler was selected
5213 * by the user.
5215 static __isl_give isl_schedule_node *carry_feautrier(
5216 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5218 return carry(node, graph, 0, 0);
5221 /* Construct a schedule row for each node such that as many validity dependences
5222 * as possible are carried and then continue with the next band.
5223 * Do so as a fallback for the Pluto-like scheduler.
5225 static __isl_give isl_schedule_node *carry_dependences(
5226 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5228 return carry_fallback(node, graph, 0);
5231 /* Construct a schedule row for each node such that as many validity or
5232 * coincidence dependences as possible are carried and
5233 * then continue with the next band.
5234 * Do so as a fallback for the Pluto-like scheduler.
5236 static __isl_give isl_schedule_node *carry_coincidence(
5237 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5239 return carry_fallback(node, graph, 1);
5242 /* Topologically sort statements mapped to the same schedule iteration
5243 * and add insert a sequence node in front of "node"
5244 * corresponding to this order.
5245 * If "initialized" is set, then it may be assumed that compute_maxvar
5246 * has been called on the current band. Otherwise, call
5247 * compute_maxvar if and before carry_dependences gets called.
5249 * If it turns out to be impossible to sort the statements apart,
5250 * because different dependences impose different orderings
5251 * on the statements, then we extend the schedule such that
5252 * it carries at least one more dependence.
5254 static __isl_give isl_schedule_node *sort_statements(
5255 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5256 int initialized)
5258 isl_ctx *ctx;
5259 isl_union_set_list *filters;
5261 if (!node)
5262 return NULL;
5264 ctx = isl_schedule_node_get_ctx(node);
5265 if (graph->n < 1)
5266 isl_die(ctx, isl_error_internal,
5267 "graph should have at least one node",
5268 return isl_schedule_node_free(node));
5270 if (graph->n == 1)
5271 return node;
5273 if (update_edges(ctx, graph) < 0)
5274 return isl_schedule_node_free(node);
5276 if (graph->n_edge == 0)
5277 return node;
5279 if (detect_sccs(ctx, graph) < 0)
5280 return isl_schedule_node_free(node);
5282 next_band(graph);
5283 if (graph->scc < graph->n) {
5284 if (!initialized && compute_maxvar(graph) < 0)
5285 return isl_schedule_node_free(node);
5286 return carry_dependences(node, graph);
5289 filters = extract_sccs(ctx, graph);
5290 node = isl_schedule_node_insert_sequence(node, filters);
5292 return node;
5295 /* Are there any (non-empty) (conditional) validity edges in the graph?
5297 static int has_validity_edges(struct isl_sched_graph *graph)
5299 int i;
5301 for (i = 0; i < graph->n_edge; ++i) {
5302 int empty;
5304 empty = isl_map_plain_is_empty(graph->edge[i].map);
5305 if (empty < 0)
5306 return -1;
5307 if (empty)
5308 continue;
5309 if (is_any_validity(&graph->edge[i]))
5310 return 1;
5313 return 0;
5316 /* Should we apply a Feautrier step?
5317 * That is, did the user request the Feautrier algorithm and are
5318 * there any validity dependences (left)?
5320 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
5322 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
5323 return 0;
5325 return has_validity_edges(graph);
5328 /* Compute a schedule for a connected dependence graph using Feautrier's
5329 * multi-dimensional scheduling algorithm and return the updated schedule node.
5331 * The original algorithm is described in [1].
5332 * The main idea is to minimize the number of scheduling dimensions, by
5333 * trying to satisfy as many dependences as possible per scheduling dimension.
5335 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5336 * Problem, Part II: Multi-Dimensional Time.
5337 * In Intl. Journal of Parallel Programming, 1992.
5339 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
5340 isl_schedule_node *node, struct isl_sched_graph *graph)
5342 return carry_feautrier(node, graph);
5345 /* Turn off the "local" bit on all (condition) edges.
5347 static void clear_local_edges(struct isl_sched_graph *graph)
5349 int i;
5351 for (i = 0; i < graph->n_edge; ++i)
5352 if (is_condition(&graph->edge[i]))
5353 clear_local(&graph->edge[i]);
5356 /* Does "graph" have both condition and conditional validity edges?
5358 static int need_condition_check(struct isl_sched_graph *graph)
5360 int i;
5361 int any_condition = 0;
5362 int any_conditional_validity = 0;
5364 for (i = 0; i < graph->n_edge; ++i) {
5365 if (is_condition(&graph->edge[i]))
5366 any_condition = 1;
5367 if (is_conditional_validity(&graph->edge[i]))
5368 any_conditional_validity = 1;
5371 return any_condition && any_conditional_validity;
5374 /* Does "graph" contain any coincidence edge?
5376 static int has_any_coincidence(struct isl_sched_graph *graph)
5378 int i;
5380 for (i = 0; i < graph->n_edge; ++i)
5381 if (is_coincidence(&graph->edge[i]))
5382 return 1;
5384 return 0;
5387 /* Extract the final schedule row as a map with the iteration domain
5388 * of "node" as domain.
5390 static __isl_give isl_map *final_row(struct isl_sched_node *node)
5392 isl_multi_aff *ma;
5393 int row;
5395 row = isl_mat_rows(node->sched) - 1;
5396 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
5397 return isl_map_from_multi_aff(ma);
5400 /* Is the conditional validity dependence in the edge with index "edge_index"
5401 * violated by the latest (i.e., final) row of the schedule?
5402 * That is, is i scheduled after j
5403 * for any conditional validity dependence i -> j?
5405 static int is_violated(struct isl_sched_graph *graph, int edge_index)
5407 isl_map *src_sched, *dst_sched, *map;
5408 struct isl_sched_edge *edge = &graph->edge[edge_index];
5409 int empty;
5411 src_sched = final_row(edge->src);
5412 dst_sched = final_row(edge->dst);
5413 map = isl_map_copy(edge->map);
5414 map = isl_map_apply_domain(map, src_sched);
5415 map = isl_map_apply_range(map, dst_sched);
5416 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
5417 empty = isl_map_is_empty(map);
5418 isl_map_free(map);
5420 if (empty < 0)
5421 return -1;
5423 return !empty;
5426 /* Does "graph" have any satisfied condition edges that
5427 * are adjacent to the conditional validity constraint with
5428 * domain "conditional_source" and range "conditional_sink"?
5430 * A satisfied condition is one that is not local.
5431 * If a condition was forced to be local already (i.e., marked as local)
5432 * then there is no need to check if it is in fact local.
5434 * Additionally, mark all adjacent condition edges found as local.
5436 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
5437 __isl_keep isl_union_set *conditional_source,
5438 __isl_keep isl_union_set *conditional_sink)
5440 int i;
5441 int any = 0;
5443 for (i = 0; i < graph->n_edge; ++i) {
5444 int adjacent, local;
5445 isl_union_map *condition;
5447 if (!is_condition(&graph->edge[i]))
5448 continue;
5449 if (is_local(&graph->edge[i]))
5450 continue;
5452 condition = graph->edge[i].tagged_condition;
5453 adjacent = domain_intersects(condition, conditional_sink);
5454 if (adjacent >= 0 && !adjacent)
5455 adjacent = range_intersects(condition,
5456 conditional_source);
5457 if (adjacent < 0)
5458 return -1;
5459 if (!adjacent)
5460 continue;
5462 set_local(&graph->edge[i]);
5464 local = is_condition_false(&graph->edge[i]);
5465 if (local < 0)
5466 return -1;
5467 if (!local)
5468 any = 1;
5471 return any;
5474 /* Are there any violated conditional validity dependences with
5475 * adjacent condition dependences that are not local with respect
5476 * to the current schedule?
5477 * That is, is the conditional validity constraint violated?
5479 * Additionally, mark all those adjacent condition dependences as local.
5480 * We also mark those adjacent condition dependences that were not marked
5481 * as local before, but just happened to be local already. This ensures
5482 * that they remain local if the schedule is recomputed.
5484 * We first collect domain and range of all violated conditional validity
5485 * dependences and then check if there are any adjacent non-local
5486 * condition dependences.
5488 static int has_violated_conditional_constraint(isl_ctx *ctx,
5489 struct isl_sched_graph *graph)
5491 int i;
5492 int any = 0;
5493 isl_union_set *source, *sink;
5495 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5496 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5497 for (i = 0; i < graph->n_edge; ++i) {
5498 isl_union_set *uset;
5499 isl_union_map *umap;
5500 int violated;
5502 if (!is_conditional_validity(&graph->edge[i]))
5503 continue;
5505 violated = is_violated(graph, i);
5506 if (violated < 0)
5507 goto error;
5508 if (!violated)
5509 continue;
5511 any = 1;
5513 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5514 uset = isl_union_map_domain(umap);
5515 source = isl_union_set_union(source, uset);
5516 source = isl_union_set_coalesce(source);
5518 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5519 uset = isl_union_map_range(umap);
5520 sink = isl_union_set_union(sink, uset);
5521 sink = isl_union_set_coalesce(sink);
5524 if (any)
5525 any = has_adjacent_true_conditions(graph, source, sink);
5527 isl_union_set_free(source);
5528 isl_union_set_free(sink);
5529 return any;
5530 error:
5531 isl_union_set_free(source);
5532 isl_union_set_free(sink);
5533 return -1;
5536 /* Examine the current band (the rows between graph->band_start and
5537 * graph->n_total_row), deciding whether to drop it or add it to "node"
5538 * and then continue with the computation of the next band, if any.
5539 * If "initialized" is set, then it may be assumed that compute_maxvar
5540 * has been called on the current band. Otherwise, call
5541 * compute_maxvar if and before carry_dependences gets called.
5543 * The caller keeps looking for a new row as long as
5544 * graph->n_row < graph->maxvar. If the latest attempt to find
5545 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5546 * then we either
5547 * - split between SCCs and start over (assuming we found an interesting
5548 * pair of SCCs between which to split)
5549 * - continue with the next band (assuming the current band has at least
5550 * one row)
5551 * - if there is more than one SCC left, then split along all SCCs
5552 * - if outer coincidence needs to be enforced, then try to carry as many
5553 * validity or coincidence dependences as possible and
5554 * continue with the next band
5555 * - try to carry as many validity dependences as possible and
5556 * continue with the next band
5557 * In each case, we first insert a band node in the schedule tree
5558 * if any rows have been computed.
5560 * If the caller managed to complete the schedule and the current band
5561 * is empty, then finish off by topologically
5562 * sorting the statements based on the remaining dependences.
5563 * If, on the other hand, the current band has at least one row,
5564 * then continue with the next band. Note that this next band
5565 * will necessarily be empty, but the graph may still be split up
5566 * into weakly connected components before arriving back here.
5568 static __isl_give isl_schedule_node *compute_schedule_finish_band(
5569 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5570 int initialized)
5572 int empty;
5574 if (!node)
5575 return NULL;
5577 empty = graph->n_total_row == graph->band_start;
5578 if (graph->n_row < graph->maxvar) {
5579 isl_ctx *ctx;
5581 ctx = isl_schedule_node_get_ctx(node);
5582 if (!ctx->opt->schedule_maximize_band_depth && !empty)
5583 return compute_next_band(node, graph, 1);
5584 if (graph->src_scc >= 0)
5585 return compute_split_schedule(node, graph);
5586 if (!empty)
5587 return compute_next_band(node, graph, 1);
5588 if (graph->scc > 1)
5589 return compute_component_schedule(node, graph, 1);
5590 if (!initialized && compute_maxvar(graph) < 0)
5591 return isl_schedule_node_free(node);
5592 if (isl_options_get_schedule_outer_coincidence(ctx))
5593 return carry_coincidence(node, graph);
5594 return carry_dependences(node, graph);
5597 if (!empty)
5598 return compute_next_band(node, graph, 1);
5599 return sort_statements(node, graph, initialized);
5602 /* Construct a band of schedule rows for a connected dependence graph.
5603 * The caller is responsible for determining the strongly connected
5604 * components and calling compute_maxvar first.
5606 * We try to find a sequence of as many schedule rows as possible that result
5607 * in non-negative dependence distances (independent of the previous rows
5608 * in the sequence, i.e., such that the sequence is tilable), with as
5609 * many of the initial rows as possible satisfying the coincidence constraints.
5610 * The computation stops if we can't find any more rows or if we have found
5611 * all the rows we wanted to find.
5613 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5614 * outermost dimension to satisfy the coincidence constraints. If this
5615 * turns out to be impossible, we fall back on the general scheme above
5616 * and try to carry as many dependences as possible.
5618 * If "graph" contains both condition and conditional validity dependences,
5619 * then we need to check that that the conditional schedule constraint
5620 * is satisfied, i.e., there are no violated conditional validity dependences
5621 * that are adjacent to any non-local condition dependences.
5622 * If there are, then we mark all those adjacent condition dependences
5623 * as local and recompute the current band. Those dependences that
5624 * are marked local will then be forced to be local.
5625 * The initial computation is performed with no dependences marked as local.
5626 * If we are lucky, then there will be no violated conditional validity
5627 * dependences adjacent to any non-local condition dependences.
5628 * Otherwise, we mark some additional condition dependences as local and
5629 * recompute. We continue this process until there are no violations left or
5630 * until we are no longer able to compute a schedule.
5631 * Since there are only a finite number of dependences,
5632 * there will only be a finite number of iterations.
5634 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5635 struct isl_sched_graph *graph)
5637 int has_coincidence;
5638 int use_coincidence;
5639 int force_coincidence = 0;
5640 int check_conditional;
5642 if (sort_sccs(graph) < 0)
5643 return isl_stat_error;
5645 clear_local_edges(graph);
5646 check_conditional = need_condition_check(graph);
5647 has_coincidence = has_any_coincidence(graph);
5649 if (ctx->opt->schedule_outer_coincidence)
5650 force_coincidence = 1;
5652 use_coincidence = has_coincidence;
5653 while (graph->n_row < graph->maxvar) {
5654 isl_vec *sol;
5655 int violated;
5656 int coincident;
5658 graph->src_scc = -1;
5659 graph->dst_scc = -1;
5661 if (setup_lp(ctx, graph, use_coincidence) < 0)
5662 return isl_stat_error;
5663 sol = solve_lp(ctx, graph);
5664 if (!sol)
5665 return isl_stat_error;
5666 if (sol->size == 0) {
5667 int empty = graph->n_total_row == graph->band_start;
5669 isl_vec_free(sol);
5670 if (use_coincidence && (!force_coincidence || !empty)) {
5671 use_coincidence = 0;
5672 continue;
5674 return isl_stat_ok;
5676 coincident = !has_coincidence || use_coincidence;
5677 if (update_schedule(graph, sol, coincident) < 0)
5678 return isl_stat_error;
5680 if (!check_conditional)
5681 continue;
5682 violated = has_violated_conditional_constraint(ctx, graph);
5683 if (violated < 0)
5684 return isl_stat_error;
5685 if (!violated)
5686 continue;
5687 if (reset_band(graph) < 0)
5688 return isl_stat_error;
5689 use_coincidence = has_coincidence;
5692 return isl_stat_ok;
5695 /* Compute a schedule for a connected dependence graph by considering
5696 * the graph as a whole and return the updated schedule node.
5698 * The actual schedule rows of the current band are computed by
5699 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5700 * care of integrating the band into "node" and continuing
5701 * the computation.
5703 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5704 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5706 isl_ctx *ctx;
5708 if (!node)
5709 return NULL;
5711 ctx = isl_schedule_node_get_ctx(node);
5712 if (compute_schedule_wcc_band(ctx, graph) < 0)
5713 return isl_schedule_node_free(node);
5715 return compute_schedule_finish_band(node, graph, 1);
5718 /* Clustering information used by compute_schedule_wcc_clustering.
5720 * "n" is the number of SCCs in the original dependence graph
5721 * "scc" is an array of "n" elements, each representing an SCC
5722 * of the original dependence graph. All entries in the same cluster
5723 * have the same number of schedule rows.
5724 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5725 * where each cluster is represented by the index of the first SCC
5726 * in the cluster. Initially, each SCC belongs to a cluster containing
5727 * only that SCC.
5729 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5730 * track of which SCCs need to be merged.
5732 * "cluster" contains the merged clusters of SCCs after the clustering
5733 * has completed.
5735 * "scc_node" is a temporary data structure used inside copy_partial.
5736 * For each SCC, it keeps track of the number of nodes in the SCC
5737 * that have already been copied.
5739 struct isl_clustering {
5740 int n;
5741 struct isl_sched_graph *scc;
5742 struct isl_sched_graph *cluster;
5743 int *scc_cluster;
5744 int *scc_node;
5745 int *scc_in_merge;
5748 /* Initialize the clustering data structure "c" from "graph".
5750 * In particular, allocate memory, extract the SCCs from "graph"
5751 * into c->scc, initialize scc_cluster and construct
5752 * a band of schedule rows for each SCC.
5753 * Within each SCC, there is only one SCC by definition.
5754 * Each SCC initially belongs to a cluster containing only that SCC.
5756 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5757 struct isl_sched_graph *graph)
5759 int i;
5761 c->n = graph->scc;
5762 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5763 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5764 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5765 c->scc_node = isl_calloc_array(ctx, int, c->n);
5766 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5767 if (!c->scc || !c->cluster ||
5768 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5769 return isl_stat_error;
5771 for (i = 0; i < c->n; ++i) {
5772 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5773 &edge_scc_exactly, i, &c->scc[i]) < 0)
5774 return isl_stat_error;
5775 c->scc[i].scc = 1;
5776 if (compute_maxvar(&c->scc[i]) < 0)
5777 return isl_stat_error;
5778 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5779 return isl_stat_error;
5780 c->scc_cluster[i] = i;
5783 return isl_stat_ok;
5786 /* Free all memory allocated for "c".
5788 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5790 int i;
5792 if (c->scc)
5793 for (i = 0; i < c->n; ++i)
5794 graph_free(ctx, &c->scc[i]);
5795 free(c->scc);
5796 if (c->cluster)
5797 for (i = 0; i < c->n; ++i)
5798 graph_free(ctx, &c->cluster[i]);
5799 free(c->cluster);
5800 free(c->scc_cluster);
5801 free(c->scc_node);
5802 free(c->scc_in_merge);
5805 /* Should we refrain from merging the cluster in "graph" with
5806 * any other cluster?
5807 * In particular, is its current schedule band empty and incomplete.
5809 static int bad_cluster(struct isl_sched_graph *graph)
5811 return graph->n_row < graph->maxvar &&
5812 graph->n_total_row == graph->band_start;
5815 /* Is "edge" a proximity edge with a non-empty dependence relation?
5817 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
5819 if (!is_proximity(edge))
5820 return isl_bool_false;
5821 return isl_bool_not(isl_map_plain_is_empty(edge->map));
5824 /* Return the index of an edge in "graph" that can be used to merge
5825 * two clusters in "c".
5826 * Return graph->n_edge if no such edge can be found.
5827 * Return -1 on error.
5829 * In particular, return a proximity edge between two clusters
5830 * that is not marked "no_merge" and such that neither of the
5831 * two clusters has an incomplete, empty band.
5833 * If there are multiple such edges, then try and find the most
5834 * appropriate edge to use for merging. In particular, pick the edge
5835 * with the greatest weight. If there are multiple of those,
5836 * then pick one with the shortest distance between
5837 * the two cluster representatives.
5839 static int find_proximity(struct isl_sched_graph *graph,
5840 struct isl_clustering *c)
5842 int i, best = graph->n_edge, best_dist, best_weight;
5844 for (i = 0; i < graph->n_edge; ++i) {
5845 struct isl_sched_edge *edge = &graph->edge[i];
5846 int dist, weight;
5847 isl_bool prox;
5849 prox = is_non_empty_proximity(edge);
5850 if (prox < 0)
5851 return -1;
5852 if (!prox)
5853 continue;
5854 if (edge->no_merge)
5855 continue;
5856 if (bad_cluster(&c->scc[edge->src->scc]) ||
5857 bad_cluster(&c->scc[edge->dst->scc]))
5858 continue;
5859 dist = c->scc_cluster[edge->dst->scc] -
5860 c->scc_cluster[edge->src->scc];
5861 if (dist == 0)
5862 continue;
5863 weight = edge->weight;
5864 if (best < graph->n_edge) {
5865 if (best_weight > weight)
5866 continue;
5867 if (best_weight == weight && best_dist <= dist)
5868 continue;
5870 best = i;
5871 best_dist = dist;
5872 best_weight = weight;
5875 return best;
5878 /* Internal data structure used in mark_merge_sccs.
5880 * "graph" is the dependence graph in which a strongly connected
5881 * component is constructed.
5882 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5883 * "src" and "dst" are the indices of the nodes that are being merged.
5885 struct isl_mark_merge_sccs_data {
5886 struct isl_sched_graph *graph;
5887 int *scc_cluster;
5888 int src;
5889 int dst;
5892 /* Check whether the cluster containing node "i" depends on the cluster
5893 * containing node "j". If "i" and "j" belong to the same cluster,
5894 * then they are taken to depend on each other to ensure that
5895 * the resulting strongly connected component consists of complete
5896 * clusters. Furthermore, if "i" and "j" are the two nodes that
5897 * are being merged, then they are taken to depend on each other as well.
5898 * Otherwise, check if there is a (conditional) validity dependence
5899 * from node[j] to node[i], forcing node[i] to follow node[j].
5901 static isl_bool cluster_follows(int i, int j, void *user)
5903 struct isl_mark_merge_sccs_data *data = user;
5904 struct isl_sched_graph *graph = data->graph;
5905 int *scc_cluster = data->scc_cluster;
5907 if (data->src == i && data->dst == j)
5908 return isl_bool_true;
5909 if (data->src == j && data->dst == i)
5910 return isl_bool_true;
5911 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5912 return isl_bool_true;
5914 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5917 /* Mark all SCCs that belong to either of the two clusters in "c"
5918 * connected by the edge in "graph" with index "edge", or to any
5919 * of the intermediate clusters.
5920 * The marking is recorded in c->scc_in_merge.
5922 * The given edge has been selected for merging two clusters,
5923 * meaning that there is at least a proximity edge between the two nodes.
5924 * However, there may also be (indirect) validity dependences
5925 * between the two nodes. When merging the two clusters, all clusters
5926 * containing one or more of the intermediate nodes along the
5927 * indirect validity dependences need to be merged in as well.
5929 * First collect all such nodes by computing the strongly connected
5930 * component (SCC) containing the two nodes connected by the edge, where
5931 * the two nodes are considered to depend on each other to make
5932 * sure they end up in the same SCC. Similarly, each node is considered
5933 * to depend on every other node in the same cluster to ensure
5934 * that the SCC consists of complete clusters.
5936 * Then the original SCCs that contain any of these nodes are marked
5937 * in c->scc_in_merge.
5939 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5940 int edge, struct isl_clustering *c)
5942 struct isl_mark_merge_sccs_data data;
5943 struct isl_tarjan_graph *g;
5944 int i;
5946 for (i = 0; i < c->n; ++i)
5947 c->scc_in_merge[i] = 0;
5949 data.graph = graph;
5950 data.scc_cluster = c->scc_cluster;
5951 data.src = graph->edge[edge].src - graph->node;
5952 data.dst = graph->edge[edge].dst - graph->node;
5954 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5955 &cluster_follows, &data);
5956 if (!g)
5957 goto error;
5959 i = g->op;
5960 if (i < 3)
5961 isl_die(ctx, isl_error_internal,
5962 "expecting at least two nodes in component",
5963 goto error);
5964 if (g->order[--i] != -1)
5965 isl_die(ctx, isl_error_internal,
5966 "expecting end of component marker", goto error);
5968 for (--i; i >= 0 && g->order[i] != -1; --i) {
5969 int scc = graph->node[g->order[i]].scc;
5970 c->scc_in_merge[scc] = 1;
5973 isl_tarjan_graph_free(g);
5974 return isl_stat_ok;
5975 error:
5976 isl_tarjan_graph_free(g);
5977 return isl_stat_error;
5980 /* Construct the identifier "cluster_i".
5982 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5984 char name[40];
5986 snprintf(name, sizeof(name), "cluster_%d", i);
5987 return isl_id_alloc(ctx, name, NULL);
5990 /* Construct the space of the cluster with index "i" containing
5991 * the strongly connected component "scc".
5993 * In particular, construct a space called cluster_i with dimension equal
5994 * to the number of schedule rows in the current band of "scc".
5996 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5998 int nvar;
5999 isl_space *space;
6000 isl_id *id;
6002 nvar = scc->n_total_row - scc->band_start;
6003 space = isl_space_copy(scc->node[0].space);
6004 space = isl_space_params(space);
6005 space = isl_space_set_from_params(space);
6006 space = isl_space_add_dims(space, isl_dim_set, nvar);
6007 id = cluster_id(isl_space_get_ctx(space), i);
6008 space = isl_space_set_tuple_id(space, isl_dim_set, id);
6010 return space;
6013 /* Collect the domain of the graph for merging clusters.
6015 * In particular, for each cluster with first SCC "i", construct
6016 * a set in the space called cluster_i with dimension equal
6017 * to the number of schedule rows in the current band of the cluster.
6019 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
6020 struct isl_sched_graph *graph, struct isl_clustering *c)
6022 int i;
6023 isl_space *space;
6024 isl_union_set *domain;
6026 space = isl_space_params_alloc(ctx, 0);
6027 domain = isl_union_set_empty(space);
6029 for (i = 0; i < graph->scc; ++i) {
6030 isl_space *space;
6032 if (!c->scc_in_merge[i])
6033 continue;
6034 if (c->scc_cluster[i] != i)
6035 continue;
6036 space = cluster_space(&c->scc[i], i);
6037 domain = isl_union_set_add_set(domain, isl_set_universe(space));
6040 return domain;
6043 /* Construct a map from the original instances to the corresponding
6044 * cluster instance in the current bands of the clusters in "c".
6046 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
6047 struct isl_sched_graph *graph, struct isl_clustering *c)
6049 int i, j;
6050 isl_space *space;
6051 isl_union_map *cluster_map;
6053 space = isl_space_params_alloc(ctx, 0);
6054 cluster_map = isl_union_map_empty(space);
6055 for (i = 0; i < graph->scc; ++i) {
6056 int start, n;
6057 isl_id *id;
6059 if (!c->scc_in_merge[i])
6060 continue;
6062 id = cluster_id(ctx, c->scc_cluster[i]);
6063 start = c->scc[i].band_start;
6064 n = c->scc[i].n_total_row - start;
6065 for (j = 0; j < c->scc[i].n; ++j) {
6066 isl_multi_aff *ma;
6067 isl_map *map;
6068 struct isl_sched_node *node = &c->scc[i].node[j];
6070 ma = node_extract_partial_schedule_multi_aff(node,
6071 start, n);
6072 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
6073 isl_id_copy(id));
6074 map = isl_map_from_multi_aff(ma);
6075 cluster_map = isl_union_map_add_map(cluster_map, map);
6077 isl_id_free(id);
6080 return cluster_map;
6083 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
6084 * that are not isl_edge_condition or isl_edge_conditional_validity.
6086 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
6087 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
6088 __isl_take isl_schedule_constraints *sc)
6090 enum isl_edge_type t;
6092 if (!sc)
6093 return NULL;
6095 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
6096 if (t == isl_edge_condition ||
6097 t == isl_edge_conditional_validity)
6098 continue;
6099 if (!is_type(edge, t))
6100 continue;
6101 sc = isl_schedule_constraints_add(sc, t,
6102 isl_union_map_copy(umap));
6105 return sc;
6108 /* Add schedule constraints of types isl_edge_condition and
6109 * isl_edge_conditional_validity to "sc" by applying "umap" to
6110 * the domains of the wrapped relations in domain and range
6111 * of the corresponding tagged constraints of "edge".
6113 static __isl_give isl_schedule_constraints *add_conditional_constraints(
6114 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
6115 __isl_take isl_schedule_constraints *sc)
6117 enum isl_edge_type t;
6118 isl_union_map *tagged;
6120 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
6121 if (!is_type(edge, t))
6122 continue;
6123 if (t == isl_edge_condition)
6124 tagged = isl_union_map_copy(edge->tagged_condition);
6125 else
6126 tagged = isl_union_map_copy(edge->tagged_validity);
6127 tagged = isl_union_map_zip(tagged);
6128 tagged = isl_union_map_apply_domain(tagged,
6129 isl_union_map_copy(umap));
6130 tagged = isl_union_map_zip(tagged);
6131 sc = isl_schedule_constraints_add(sc, t, tagged);
6132 if (!sc)
6133 return NULL;
6136 return sc;
6139 /* Given a mapping "cluster_map" from the original instances to
6140 * the cluster instances, add schedule constraints on the clusters
6141 * to "sc" corresponding to the original constraints represented by "edge".
6143 * For non-tagged dependence constraints, the cluster constraints
6144 * are obtained by applying "cluster_map" to the edge->map.
6146 * For tagged dependence constraints, "cluster_map" needs to be applied
6147 * to the domains of the wrapped relations in domain and range
6148 * of the tagged dependence constraints. Pick out the mappings
6149 * from these domains from "cluster_map" and construct their product.
6150 * This mapping can then be applied to the pair of domains.
6152 static __isl_give isl_schedule_constraints *collect_edge_constraints(
6153 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
6154 __isl_take isl_schedule_constraints *sc)
6156 isl_union_map *umap;
6157 isl_space *space;
6158 isl_union_set *uset;
6159 isl_union_map *umap1, *umap2;
6161 if (!sc)
6162 return NULL;
6164 umap = isl_union_map_from_map(isl_map_copy(edge->map));
6165 umap = isl_union_map_apply_domain(umap,
6166 isl_union_map_copy(cluster_map));
6167 umap = isl_union_map_apply_range(umap,
6168 isl_union_map_copy(cluster_map));
6169 sc = add_non_conditional_constraints(edge, umap, sc);
6170 isl_union_map_free(umap);
6172 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
6173 return sc;
6175 space = isl_space_domain(isl_map_get_space(edge->map));
6176 uset = isl_union_set_from_set(isl_set_universe(space));
6177 umap1 = isl_union_map_copy(cluster_map);
6178 umap1 = isl_union_map_intersect_domain(umap1, uset);
6179 space = isl_space_range(isl_map_get_space(edge->map));
6180 uset = isl_union_set_from_set(isl_set_universe(space));
6181 umap2 = isl_union_map_copy(cluster_map);
6182 umap2 = isl_union_map_intersect_domain(umap2, uset);
6183 umap = isl_union_map_product(umap1, umap2);
6185 sc = add_conditional_constraints(edge, umap, sc);
6187 isl_union_map_free(umap);
6188 return sc;
6191 /* Given a mapping "cluster_map" from the original instances to
6192 * the cluster instances, add schedule constraints on the clusters
6193 * to "sc" corresponding to all edges in "graph" between nodes that
6194 * belong to SCCs that are marked for merging in "scc_in_merge".
6196 static __isl_give isl_schedule_constraints *collect_constraints(
6197 struct isl_sched_graph *graph, int *scc_in_merge,
6198 __isl_keep isl_union_map *cluster_map,
6199 __isl_take isl_schedule_constraints *sc)
6201 int i;
6203 for (i = 0; i < graph->n_edge; ++i) {
6204 struct isl_sched_edge *edge = &graph->edge[i];
6206 if (!scc_in_merge[edge->src->scc])
6207 continue;
6208 if (!scc_in_merge[edge->dst->scc])
6209 continue;
6210 sc = collect_edge_constraints(edge, cluster_map, sc);
6213 return sc;
6216 /* Construct a dependence graph for scheduling clusters with respect
6217 * to each other and store the result in "merge_graph".
6218 * In particular, the nodes of the graph correspond to the schedule
6219 * dimensions of the current bands of those clusters that have been
6220 * marked for merging in "c".
6222 * First construct an isl_schedule_constraints object for this domain
6223 * by transforming the edges in "graph" to the domain.
6224 * Then initialize a dependence graph for scheduling from these
6225 * constraints.
6227 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
6228 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6230 isl_union_set *domain;
6231 isl_union_map *cluster_map;
6232 isl_schedule_constraints *sc;
6233 isl_stat r;
6235 domain = collect_domain(ctx, graph, c);
6236 sc = isl_schedule_constraints_on_domain(domain);
6237 if (!sc)
6238 return isl_stat_error;
6239 cluster_map = collect_cluster_map(ctx, graph, c);
6240 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
6241 isl_union_map_free(cluster_map);
6243 r = graph_init(merge_graph, sc);
6245 isl_schedule_constraints_free(sc);
6247 return r;
6250 /* Compute the maximal number of remaining schedule rows that still need
6251 * to be computed for the nodes that belong to clusters with the maximal
6252 * dimension for the current band (i.e., the band that is to be merged).
6253 * Only clusters that are about to be merged are considered.
6254 * "maxvar" is the maximal dimension for the current band.
6255 * "c" contains information about the clusters.
6257 * Return the maximal number of remaining schedule rows or -1 on error.
6259 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
6261 int i, j;
6262 int max_slack;
6264 max_slack = 0;
6265 for (i = 0; i < c->n; ++i) {
6266 int nvar;
6267 struct isl_sched_graph *scc;
6269 if (!c->scc_in_merge[i])
6270 continue;
6271 scc = &c->scc[i];
6272 nvar = scc->n_total_row - scc->band_start;
6273 if (nvar != maxvar)
6274 continue;
6275 for (j = 0; j < scc->n; ++j) {
6276 struct isl_sched_node *node = &scc->node[j];
6277 int slack;
6279 if (node_update_vmap(node) < 0)
6280 return -1;
6281 slack = node->nvar - node->rank;
6282 if (slack > max_slack)
6283 max_slack = slack;
6287 return max_slack;
6290 /* If there are any clusters where the dimension of the current band
6291 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6292 * if there are any nodes in such a cluster where the number
6293 * of remaining schedule rows that still need to be computed
6294 * is greater than "max_slack", then return the smallest current band
6295 * dimension of all these clusters. Otherwise return the original value
6296 * of "maxvar". Return -1 in case of any error.
6297 * Only clusters that are about to be merged are considered.
6298 * "c" contains information about the clusters.
6300 static int limit_maxvar_to_slack(int maxvar, int max_slack,
6301 struct isl_clustering *c)
6303 int i, j;
6305 for (i = 0; i < c->n; ++i) {
6306 int nvar;
6307 struct isl_sched_graph *scc;
6309 if (!c->scc_in_merge[i])
6310 continue;
6311 scc = &c->scc[i];
6312 nvar = scc->n_total_row - scc->band_start;
6313 if (nvar >= maxvar)
6314 continue;
6315 for (j = 0; j < scc->n; ++j) {
6316 struct isl_sched_node *node = &scc->node[j];
6317 int slack;
6319 if (node_update_vmap(node) < 0)
6320 return -1;
6321 slack = node->nvar - node->rank;
6322 if (slack > max_slack) {
6323 maxvar = nvar;
6324 break;
6329 return maxvar;
6332 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6333 * that still need to be computed. In particular, if there is a node
6334 * in a cluster where the dimension of the current band is smaller
6335 * than merge_graph->maxvar, but the number of remaining schedule rows
6336 * is greater than that of any node in a cluster with the maximal
6337 * dimension for the current band (i.e., merge_graph->maxvar),
6338 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6339 * of those clusters. Without this adjustment, the total number of
6340 * schedule dimensions would be increased, resulting in a skewed view
6341 * of the number of coincident dimensions.
6342 * "c" contains information about the clusters.
6344 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6345 * then there is no point in attempting any merge since it will be rejected
6346 * anyway. Set merge_graph->maxvar to zero in such cases.
6348 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
6349 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
6351 int max_slack, maxvar;
6353 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
6354 if (max_slack < 0)
6355 return isl_stat_error;
6356 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
6357 if (maxvar < 0)
6358 return isl_stat_error;
6360 if (maxvar < merge_graph->maxvar) {
6361 if (isl_options_get_schedule_maximize_band_depth(ctx))
6362 merge_graph->maxvar = 0;
6363 else
6364 merge_graph->maxvar = maxvar;
6367 return isl_stat_ok;
6370 /* Return the number of coincident dimensions in the current band of "graph",
6371 * where the nodes of "graph" are assumed to be scheduled by a single band.
6373 static int get_n_coincident(struct isl_sched_graph *graph)
6375 int i;
6377 for (i = graph->band_start; i < graph->n_total_row; ++i)
6378 if (!graph->node[0].coincident[i])
6379 break;
6381 return i - graph->band_start;
6384 /* Should the clusters be merged based on the cluster schedule
6385 * in the current (and only) band of "merge_graph", given that
6386 * coincidence should be maximized?
6388 * If the number of coincident schedule dimensions in the merged band
6389 * would be less than the maximal number of coincident schedule dimensions
6390 * in any of the merged clusters, then the clusters should not be merged.
6392 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
6393 struct isl_sched_graph *merge_graph)
6395 int i;
6396 int n_coincident;
6397 int max_coincident;
6399 max_coincident = 0;
6400 for (i = 0; i < c->n; ++i) {
6401 if (!c->scc_in_merge[i])
6402 continue;
6403 n_coincident = get_n_coincident(&c->scc[i]);
6404 if (n_coincident > max_coincident)
6405 max_coincident = n_coincident;
6408 n_coincident = get_n_coincident(merge_graph);
6410 return n_coincident >= max_coincident;
6413 /* Return the transformation on "node" expressed by the current (and only)
6414 * band of "merge_graph" applied to the clusters in "c".
6416 * First find the representation of "node" in its SCC in "c" and
6417 * extract the transformation expressed by the current band.
6418 * Then extract the transformation applied by "merge_graph"
6419 * to the cluster to which this SCC belongs.
6420 * Combine the two to obtain the complete transformation on the node.
6422 * Note that the range of the first transformation is an anonymous space,
6423 * while the domain of the second is named "cluster_X". The range
6424 * of the former therefore needs to be adjusted before the two
6425 * can be combined.
6427 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
6428 struct isl_sched_node *node, struct isl_clustering *c,
6429 struct isl_sched_graph *merge_graph)
6431 struct isl_sched_node *scc_node, *cluster_node;
6432 int start, n;
6433 isl_id *id;
6434 isl_space *space;
6435 isl_multi_aff *ma, *ma2;
6437 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
6438 if (scc_node && !is_node(&c->scc[node->scc], scc_node))
6439 isl_die(ctx, isl_error_internal, "unable to find node",
6440 return NULL);
6441 start = c->scc[node->scc].band_start;
6442 n = c->scc[node->scc].n_total_row - start;
6443 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
6444 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
6445 cluster_node = graph_find_node(ctx, merge_graph, space);
6446 if (cluster_node && !is_node(merge_graph, cluster_node))
6447 isl_die(ctx, isl_error_internal, "unable to find cluster",
6448 space = isl_space_free(space));
6449 id = isl_space_get_tuple_id(space, isl_dim_set);
6450 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
6451 isl_space_free(space);
6452 n = merge_graph->n_total_row;
6453 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
6454 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
6456 return isl_map_from_multi_aff(ma);
6459 /* Give a set of distances "set", are they bounded by a small constant
6460 * in direction "pos"?
6461 * In practice, check if they are bounded by 2 by checking that there
6462 * are no elements with a value greater than or equal to 3 or
6463 * smaller than or equal to -3.
6465 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
6467 isl_bool bounded;
6468 isl_set *test;
6470 if (!set)
6471 return isl_bool_error;
6473 test = isl_set_copy(set);
6474 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
6475 bounded = isl_set_is_empty(test);
6476 isl_set_free(test);
6478 if (bounded < 0 || !bounded)
6479 return bounded;
6481 test = isl_set_copy(set);
6482 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
6483 bounded = isl_set_is_empty(test);
6484 isl_set_free(test);
6486 return bounded;
6489 /* Does the set "set" have a fixed (but possible parametric) value
6490 * at dimension "pos"?
6492 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
6494 int n;
6495 isl_bool single;
6497 if (!set)
6498 return isl_bool_error;
6499 set = isl_set_copy(set);
6500 n = isl_set_dim(set, isl_dim_set);
6501 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
6502 set = isl_set_project_out(set, isl_dim_set, 0, pos);
6503 single = isl_set_is_singleton(set);
6504 isl_set_free(set);
6506 return single;
6509 /* Does "map" have a fixed (but possible parametric) value
6510 * at dimension "pos" of either its domain or its range?
6512 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
6514 isl_set *set;
6515 isl_bool single;
6517 set = isl_map_domain(isl_map_copy(map));
6518 single = has_single_value(set, pos);
6519 isl_set_free(set);
6521 if (single < 0 || single)
6522 return single;
6524 set = isl_map_range(isl_map_copy(map));
6525 single = has_single_value(set, pos);
6526 isl_set_free(set);
6528 return single;
6531 /* Does the edge "edge" from "graph" have bounded dependence distances
6532 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6534 * Extract the complete transformations of the source and destination
6535 * nodes of the edge, apply them to the edge constraints and
6536 * compute the differences. Finally, check if these differences are bounded
6537 * in each direction.
6539 * If the dimension of the band is greater than the number of
6540 * dimensions that can be expected to be optimized by the edge
6541 * (based on its weight), then also allow the differences to be unbounded
6542 * in the remaining dimensions, but only if either the source or
6543 * the destination has a fixed value in that direction.
6544 * This allows a statement that produces values that are used by
6545 * several instances of another statement to be merged with that
6546 * other statement.
6547 * However, merging such clusters will introduce an inherently
6548 * large proximity distance inside the merged cluster, meaning
6549 * that proximity distances will no longer be optimized in
6550 * subsequent merges. These merges are therefore only allowed
6551 * after all other possible merges have been tried.
6552 * The first time such a merge is encountered, the weight of the edge
6553 * is replaced by a negative weight. The second time (i.e., after
6554 * all merges over edges with a non-negative weight have been tried),
6555 * the merge is allowed.
6557 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
6558 struct isl_sched_graph *graph, struct isl_clustering *c,
6559 struct isl_sched_graph *merge_graph)
6561 int i, n, n_slack;
6562 isl_bool bounded;
6563 isl_map *map, *t;
6564 isl_set *dist;
6566 map = isl_map_copy(edge->map);
6567 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
6568 map = isl_map_apply_domain(map, t);
6569 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
6570 map = isl_map_apply_range(map, t);
6571 dist = isl_map_deltas(isl_map_copy(map));
6573 bounded = isl_bool_true;
6574 n = isl_set_dim(dist, isl_dim_set);
6575 n_slack = n - edge->weight;
6576 if (edge->weight < 0)
6577 n_slack -= graph->max_weight + 1;
6578 for (i = 0; i < n; ++i) {
6579 isl_bool bounded_i, singular_i;
6581 bounded_i = distance_is_bounded(dist, i);
6582 if (bounded_i < 0)
6583 goto error;
6584 if (bounded_i)
6585 continue;
6586 if (edge->weight >= 0)
6587 bounded = isl_bool_false;
6588 n_slack--;
6589 if (n_slack < 0)
6590 break;
6591 singular_i = has_singular_src_or_dst(map, i);
6592 if (singular_i < 0)
6593 goto error;
6594 if (singular_i)
6595 continue;
6596 bounded = isl_bool_false;
6597 break;
6599 if (!bounded && i >= n && edge->weight >= 0)
6600 edge->weight -= graph->max_weight + 1;
6601 isl_map_free(map);
6602 isl_set_free(dist);
6604 return bounded;
6605 error:
6606 isl_map_free(map);
6607 isl_set_free(dist);
6608 return isl_bool_error;
6611 /* Should the clusters be merged based on the cluster schedule
6612 * in the current (and only) band of "merge_graph"?
6613 * "graph" is the original dependence graph, while "c" records
6614 * which SCCs are involved in the latest merge.
6616 * In particular, is there at least one proximity constraint
6617 * that is optimized by the merge?
6619 * A proximity constraint is considered to be optimized
6620 * if the dependence distances are small.
6622 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
6623 struct isl_sched_graph *graph, struct isl_clustering *c,
6624 struct isl_sched_graph *merge_graph)
6626 int i;
6628 for (i = 0; i < graph->n_edge; ++i) {
6629 struct isl_sched_edge *edge = &graph->edge[i];
6630 isl_bool bounded;
6632 if (!is_proximity(edge))
6633 continue;
6634 if (!c->scc_in_merge[edge->src->scc])
6635 continue;
6636 if (!c->scc_in_merge[edge->dst->scc])
6637 continue;
6638 if (c->scc_cluster[edge->dst->scc] ==
6639 c->scc_cluster[edge->src->scc])
6640 continue;
6641 bounded = has_bounded_distances(ctx, edge, graph, c,
6642 merge_graph);
6643 if (bounded < 0 || bounded)
6644 return bounded;
6647 return isl_bool_false;
6650 /* Should the clusters be merged based on the cluster schedule
6651 * in the current (and only) band of "merge_graph"?
6652 * "graph" is the original dependence graph, while "c" records
6653 * which SCCs are involved in the latest merge.
6655 * If the current band is empty, then the clusters should not be merged.
6657 * If the band depth should be maximized and the merge schedule
6658 * is incomplete (meaning that the dimension of some of the schedule
6659 * bands in the original schedule will be reduced), then the clusters
6660 * should not be merged.
6662 * If the schedule_maximize_coincidence option is set, then check that
6663 * the number of coincident schedule dimensions is not reduced.
6665 * Finally, only allow the merge if at least one proximity
6666 * constraint is optimized.
6668 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6669 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6671 if (merge_graph->n_total_row == merge_graph->band_start)
6672 return isl_bool_false;
6674 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6675 merge_graph->n_total_row < merge_graph->maxvar)
6676 return isl_bool_false;
6678 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6679 isl_bool ok;
6681 ok = ok_to_merge_coincident(c, merge_graph);
6682 if (ok < 0 || !ok)
6683 return ok;
6686 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6689 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6690 * of the schedule in "node" and return the result.
6692 * That is, essentially compute
6694 * T * N(first:first+n-1)
6696 * taking into account the constant term and the parameter coefficients
6697 * in "t_node".
6699 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6700 struct isl_sched_node *t_node, struct isl_sched_node *node,
6701 int first, int n)
6703 int i, j;
6704 isl_mat *t;
6705 int n_row, n_col, n_param, n_var;
6707 n_param = node->nparam;
6708 n_var = node->nvar;
6709 n_row = isl_mat_rows(t_node->sched);
6710 n_col = isl_mat_cols(node->sched);
6711 t = isl_mat_alloc(ctx, n_row, n_col);
6712 if (!t)
6713 return NULL;
6714 for (i = 0; i < n_row; ++i) {
6715 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6716 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6717 for (j = 0; j < n; ++j)
6718 isl_seq_addmul(t->row[i],
6719 t_node->sched->row[i][1 + n_param + j],
6720 node->sched->row[first + j],
6721 1 + n_param + n_var);
6723 return t;
6726 /* Apply the cluster schedule in "t_node" to the current band
6727 * schedule of the nodes in "graph".
6729 * In particular, replace the rows starting at band_start
6730 * by the result of applying the cluster schedule in "t_node"
6731 * to the original rows.
6733 * The coincidence of the schedule is determined by the coincidence
6734 * of the cluster schedule.
6736 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6737 struct isl_sched_node *t_node)
6739 int i, j;
6740 int n_new;
6741 int start, n;
6743 start = graph->band_start;
6744 n = graph->n_total_row - start;
6746 n_new = isl_mat_rows(t_node->sched);
6747 for (i = 0; i < graph->n; ++i) {
6748 struct isl_sched_node *node = &graph->node[i];
6749 isl_mat *t;
6751 t = node_transformation(ctx, t_node, node, start, n);
6752 node->sched = isl_mat_drop_rows(node->sched, start, n);
6753 node->sched = isl_mat_concat(node->sched, t);
6754 node->sched_map = isl_map_free(node->sched_map);
6755 if (!node->sched)
6756 return isl_stat_error;
6757 for (j = 0; j < n_new; ++j)
6758 node->coincident[start + j] = t_node->coincident[j];
6760 graph->n_total_row -= n;
6761 graph->n_row -= n;
6762 graph->n_total_row += n_new;
6763 graph->n_row += n_new;
6765 return isl_stat_ok;
6768 /* Merge the clusters marked for merging in "c" into a single
6769 * cluster using the cluster schedule in the current band of "merge_graph".
6770 * The representative SCC for the new cluster is the SCC with
6771 * the smallest index.
6773 * The current band schedule of each SCC in the new cluster is obtained
6774 * by applying the schedule of the corresponding original cluster
6775 * to the original band schedule.
6776 * All SCCs in the new cluster have the same number of schedule rows.
6778 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6779 struct isl_sched_graph *merge_graph)
6781 int i;
6782 int cluster = -1;
6783 isl_space *space;
6785 for (i = 0; i < c->n; ++i) {
6786 struct isl_sched_node *node;
6788 if (!c->scc_in_merge[i])
6789 continue;
6790 if (cluster < 0)
6791 cluster = i;
6792 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6793 node = graph_find_node(ctx, merge_graph, space);
6794 isl_space_free(space);
6795 if (!node)
6796 return isl_stat_error;
6797 if (!is_node(merge_graph, node))
6798 isl_die(ctx, isl_error_internal,
6799 "unable to find cluster",
6800 return isl_stat_error);
6801 if (transform(ctx, &c->scc[i], node) < 0)
6802 return isl_stat_error;
6803 c->scc_cluster[i] = cluster;
6806 return isl_stat_ok;
6809 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6810 * by scheduling the current cluster bands with respect to each other.
6812 * Construct a dependence graph with a space for each cluster and
6813 * with the coordinates of each space corresponding to the schedule
6814 * dimensions of the current band of that cluster.
6815 * Construct a cluster schedule in this cluster dependence graph and
6816 * apply it to the current cluster bands if it is applicable
6817 * according to ok_to_merge.
6819 * If the number of remaining schedule dimensions in a cluster
6820 * with a non-maximal current schedule dimension is greater than
6821 * the number of remaining schedule dimensions in clusters
6822 * with a maximal current schedule dimension, then restrict
6823 * the number of rows to be computed in the cluster schedule
6824 * to the minimal such non-maximal current schedule dimension.
6825 * Do this by adjusting merge_graph.maxvar.
6827 * Return isl_bool_true if the clusters have effectively been merged
6828 * into a single cluster.
6830 * Note that since the standard scheduling algorithm minimizes the maximal
6831 * distance over proximity constraints, the proximity constraints between
6832 * the merged clusters may not be optimized any further than what is
6833 * sufficient to bring the distances within the limits of the internal
6834 * proximity constraints inside the individual clusters.
6835 * It may therefore make sense to perform an additional translation step
6836 * to bring the clusters closer to each other, while maintaining
6837 * the linear part of the merging schedule found using the standard
6838 * scheduling algorithm.
6840 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6841 struct isl_clustering *c)
6843 struct isl_sched_graph merge_graph = { 0 };
6844 isl_bool merged;
6846 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6847 goto error;
6849 if (compute_maxvar(&merge_graph) < 0)
6850 goto error;
6851 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6852 goto error;
6853 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6854 goto error;
6855 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6856 if (merged && merge(ctx, c, &merge_graph) < 0)
6857 goto error;
6859 graph_free(ctx, &merge_graph);
6860 return merged;
6861 error:
6862 graph_free(ctx, &merge_graph);
6863 return isl_bool_error;
6866 /* Is there any edge marked "no_merge" between two SCCs that are
6867 * about to be merged (i.e., that are set in "scc_in_merge")?
6868 * "merge_edge" is the proximity edge along which the clusters of SCCs
6869 * are going to be merged.
6871 * If there is any edge between two SCCs with a negative weight,
6872 * while the weight of "merge_edge" is non-negative, then this
6873 * means that the edge was postponed. "merge_edge" should then
6874 * also be postponed since merging along the edge with negative weight should
6875 * be postponed until all edges with non-negative weight have been tried.
6876 * Replace the weight of "merge_edge" by a negative weight as well and
6877 * tell the caller not to attempt a merge.
6879 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6880 struct isl_sched_edge *merge_edge)
6882 int i;
6884 for (i = 0; i < graph->n_edge; ++i) {
6885 struct isl_sched_edge *edge = &graph->edge[i];
6887 if (!scc_in_merge[edge->src->scc])
6888 continue;
6889 if (!scc_in_merge[edge->dst->scc])
6890 continue;
6891 if (edge->no_merge)
6892 return 1;
6893 if (merge_edge->weight >= 0 && edge->weight < 0) {
6894 merge_edge->weight -= graph->max_weight + 1;
6895 return 1;
6899 return 0;
6902 /* Merge the two clusters in "c" connected by the edge in "graph"
6903 * with index "edge" into a single cluster.
6904 * If it turns out to be impossible to merge these two clusters,
6905 * then mark the edge as "no_merge" such that it will not be
6906 * considered again.
6908 * First mark all SCCs that need to be merged. This includes the SCCs
6909 * in the two clusters, but it may also include the SCCs
6910 * of intermediate clusters.
6911 * If there is already a no_merge edge between any pair of such SCCs,
6912 * then simply mark the current edge as no_merge as well.
6913 * Likewise, if any of those edges was postponed by has_bounded_distances,
6914 * then postpone the current edge as well.
6915 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6916 * if the clusters did not end up getting merged, unless the non-merge
6917 * is due to the fact that the edge was postponed. This postponement
6918 * can be recognized by a change in weight (from non-negative to negative).
6920 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6921 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6923 isl_bool merged;
6924 int edge_weight = graph->edge[edge].weight;
6926 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6927 return isl_stat_error;
6929 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6930 merged = isl_bool_false;
6931 else
6932 merged = try_merge(ctx, graph, c);
6933 if (merged < 0)
6934 return isl_stat_error;
6935 if (!merged && edge_weight == graph->edge[edge].weight)
6936 graph->edge[edge].no_merge = 1;
6938 return isl_stat_ok;
6941 /* Does "node" belong to the cluster identified by "cluster"?
6943 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6945 return node->cluster == cluster;
6948 /* Does "edge" connect two nodes belonging to the cluster
6949 * identified by "cluster"?
6951 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6953 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6956 /* Swap the schedule of "node1" and "node2".
6957 * Both nodes have been derived from the same node in a common parent graph.
6958 * Since the "coincident" field is shared with that node
6959 * in the parent graph, there is no need to also swap this field.
6961 static void swap_sched(struct isl_sched_node *node1,
6962 struct isl_sched_node *node2)
6964 isl_mat *sched;
6965 isl_map *sched_map;
6967 sched = node1->sched;
6968 node1->sched = node2->sched;
6969 node2->sched = sched;
6971 sched_map = node1->sched_map;
6972 node1->sched_map = node2->sched_map;
6973 node2->sched_map = sched_map;
6976 /* Copy the current band schedule from the SCCs that form the cluster
6977 * with index "pos" to the actual cluster at position "pos".
6978 * By construction, the index of the first SCC that belongs to the cluster
6979 * is also "pos".
6981 * The order of the nodes inside both the SCCs and the cluster
6982 * is assumed to be same as the order in the original "graph".
6984 * Since the SCC graphs will no longer be used after this function,
6985 * the schedules are actually swapped rather than copied.
6987 static isl_stat copy_partial(struct isl_sched_graph *graph,
6988 struct isl_clustering *c, int pos)
6990 int i, j;
6992 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6993 c->cluster[pos].n_row = c->scc[pos].n_row;
6994 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6995 j = 0;
6996 for (i = 0; i < graph->n; ++i) {
6997 int k;
6998 int s;
7000 if (graph->node[i].cluster != pos)
7001 continue;
7002 s = graph->node[i].scc;
7003 k = c->scc_node[s]++;
7004 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
7005 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
7006 c->cluster[pos].maxvar = c->scc[s].maxvar;
7007 ++j;
7010 return isl_stat_ok;
7013 /* Is there a (conditional) validity dependence from node[j] to node[i],
7014 * forcing node[i] to follow node[j] or do the nodes belong to the same
7015 * cluster?
7017 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
7019 struct isl_sched_graph *graph = user;
7021 if (graph->node[i].cluster == graph->node[j].cluster)
7022 return isl_bool_true;
7023 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
7026 /* Extract the merged clusters of SCCs in "graph", sort them, and
7027 * store them in c->clusters. Update c->scc_cluster accordingly.
7029 * First keep track of the cluster containing the SCC to which a node
7030 * belongs in the node itself.
7031 * Then extract the clusters into c->clusters, copying the current
7032 * band schedule from the SCCs that belong to the cluster.
7033 * Do this only once per cluster.
7035 * Finally, topologically sort the clusters and update c->scc_cluster
7036 * to match the new scc numbering. While the SCCs were originally
7037 * sorted already, some SCCs that depend on some other SCCs may
7038 * have been merged with SCCs that appear before these other SCCs.
7039 * A reordering may therefore be required.
7041 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
7042 struct isl_clustering *c)
7044 int i;
7046 for (i = 0; i < graph->n; ++i)
7047 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
7049 for (i = 0; i < graph->scc; ++i) {
7050 if (c->scc_cluster[i] != i)
7051 continue;
7052 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
7053 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
7054 return isl_stat_error;
7055 c->cluster[i].src_scc = -1;
7056 c->cluster[i].dst_scc = -1;
7057 if (copy_partial(graph, c, i) < 0)
7058 return isl_stat_error;
7061 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
7062 return isl_stat_error;
7063 for (i = 0; i < graph->n; ++i)
7064 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
7066 return isl_stat_ok;
7069 /* Compute weights on the proximity edges of "graph" that can
7070 * be used by find_proximity to find the most appropriate
7071 * proximity edge to use to merge two clusters in "c".
7072 * The weights are also used by has_bounded_distances to determine
7073 * whether the merge should be allowed.
7074 * Store the maximum of the computed weights in graph->max_weight.
7076 * The computed weight is a measure for the number of remaining schedule
7077 * dimensions that can still be completely aligned.
7078 * In particular, compute the number of equalities between
7079 * input dimensions and output dimensions in the proximity constraints.
7080 * The directions that are already handled by outer schedule bands
7081 * are projected out prior to determining this number.
7083 * Edges that will never be considered by find_proximity are ignored.
7085 static isl_stat compute_weights(struct isl_sched_graph *graph,
7086 struct isl_clustering *c)
7088 int i;
7090 graph->max_weight = 0;
7092 for (i = 0; i < graph->n_edge; ++i) {
7093 struct isl_sched_edge *edge = &graph->edge[i];
7094 struct isl_sched_node *src = edge->src;
7095 struct isl_sched_node *dst = edge->dst;
7096 isl_basic_map *hull;
7097 isl_bool prox;
7098 int n_in, n_out;
7100 prox = is_non_empty_proximity(edge);
7101 if (prox < 0)
7102 return isl_stat_error;
7103 if (!prox)
7104 continue;
7105 if (bad_cluster(&c->scc[edge->src->scc]) ||
7106 bad_cluster(&c->scc[edge->dst->scc]))
7107 continue;
7108 if (c->scc_cluster[edge->dst->scc] ==
7109 c->scc_cluster[edge->src->scc])
7110 continue;
7112 hull = isl_map_affine_hull(isl_map_copy(edge->map));
7113 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
7114 isl_mat_copy(src->vmap));
7115 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
7116 isl_mat_copy(dst->vmap));
7117 hull = isl_basic_map_project_out(hull,
7118 isl_dim_in, 0, src->rank);
7119 hull = isl_basic_map_project_out(hull,
7120 isl_dim_out, 0, dst->rank);
7121 hull = isl_basic_map_remove_divs(hull);
7122 n_in = isl_basic_map_dim(hull, isl_dim_in);
7123 n_out = isl_basic_map_dim(hull, isl_dim_out);
7124 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
7125 isl_dim_in, 0, n_in);
7126 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
7127 isl_dim_out, 0, n_out);
7128 if (!hull)
7129 return isl_stat_error;
7130 edge->weight = isl_basic_map_n_equality(hull);
7131 isl_basic_map_free(hull);
7133 if (edge->weight > graph->max_weight)
7134 graph->max_weight = edge->weight;
7137 return isl_stat_ok;
7140 /* Call compute_schedule_finish_band on each of the clusters in "c"
7141 * in their topological order. This order is determined by the scc
7142 * fields of the nodes in "graph".
7143 * Combine the results in a sequence expressing the topological order.
7145 * If there is only one cluster left, then there is no need to introduce
7146 * a sequence node. Also, in this case, the cluster necessarily contains
7147 * the SCC at position 0 in the original graph and is therefore also
7148 * stored in the first cluster of "c".
7150 static __isl_give isl_schedule_node *finish_bands_clustering(
7151 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
7152 struct isl_clustering *c)
7154 int i;
7155 isl_ctx *ctx;
7156 isl_union_set_list *filters;
7158 if (graph->scc == 1)
7159 return compute_schedule_finish_band(node, &c->cluster[0], 0);
7161 ctx = isl_schedule_node_get_ctx(node);
7163 filters = extract_sccs(ctx, graph);
7164 node = isl_schedule_node_insert_sequence(node, filters);
7166 for (i = 0; i < graph->scc; ++i) {
7167 int j = c->scc_cluster[i];
7168 node = isl_schedule_node_child(node, i);
7169 node = isl_schedule_node_child(node, 0);
7170 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
7171 node = isl_schedule_node_parent(node);
7172 node = isl_schedule_node_parent(node);
7175 return node;
7178 /* Compute a schedule for a connected dependence graph by first considering
7179 * each strongly connected component (SCC) in the graph separately and then
7180 * incrementally combining them into clusters.
7181 * Return the updated schedule node.
7183 * Initially, each cluster consists of a single SCC, each with its
7184 * own band schedule. The algorithm then tries to merge pairs
7185 * of clusters along a proximity edge until no more suitable
7186 * proximity edges can be found. During this merging, the schedule
7187 * is maintained in the individual SCCs.
7188 * After the merging is completed, the full resulting clusters
7189 * are extracted and in finish_bands_clustering,
7190 * compute_schedule_finish_band is called on each of them to integrate
7191 * the band into "node" and to continue the computation.
7193 * compute_weights initializes the weights that are used by find_proximity.
7195 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
7196 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
7198 isl_ctx *ctx;
7199 struct isl_clustering c;
7200 int i;
7202 ctx = isl_schedule_node_get_ctx(node);
7204 if (clustering_init(ctx, &c, graph) < 0)
7205 goto error;
7207 if (compute_weights(graph, &c) < 0)
7208 goto error;
7210 for (;;) {
7211 i = find_proximity(graph, &c);
7212 if (i < 0)
7213 goto error;
7214 if (i >= graph->n_edge)
7215 break;
7216 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
7217 goto error;
7220 if (extract_clusters(ctx, graph, &c) < 0)
7221 goto error;
7223 node = finish_bands_clustering(node, graph, &c);
7225 clustering_free(ctx, &c);
7226 return node;
7227 error:
7228 clustering_free(ctx, &c);
7229 return isl_schedule_node_free(node);
7232 /* Compute a schedule for a connected dependence graph and return
7233 * the updated schedule node.
7235 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7236 * as many validity dependences as possible. When all validity dependences
7237 * are satisfied we extend the schedule to a full-dimensional schedule.
7239 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7240 * depending on whether the user has selected the option to try and
7241 * compute a schedule for the entire (weakly connected) component first.
7242 * If there is only a single strongly connected component (SCC), then
7243 * there is no point in trying to combine SCCs
7244 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7245 * is called instead.
7247 static __isl_give isl_schedule_node *compute_schedule_wcc(
7248 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
7250 isl_ctx *ctx;
7252 if (!node)
7253 return NULL;
7255 ctx = isl_schedule_node_get_ctx(node);
7256 if (detect_sccs(ctx, graph) < 0)
7257 return isl_schedule_node_free(node);
7259 if (compute_maxvar(graph) < 0)
7260 return isl_schedule_node_free(node);
7262 if (need_feautrier_step(ctx, graph))
7263 return compute_schedule_wcc_feautrier(node, graph);
7265 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
7266 return compute_schedule_wcc_whole(node, graph);
7267 else
7268 return compute_schedule_wcc_clustering(node, graph);
7271 /* Compute a schedule for each group of nodes identified by node->scc
7272 * separately and then combine them in a sequence node (or as set node
7273 * if graph->weak is set) inserted at position "node" of the schedule tree.
7274 * Return the updated schedule node.
7276 * If "wcc" is set then each of the groups belongs to a single
7277 * weakly connected component in the dependence graph so that
7278 * there is no need for compute_sub_schedule to look for weakly
7279 * connected components.
7281 * If a set node would be introduced and if the number of components
7282 * is equal to the number of nodes, then check if the schedule
7283 * is already complete. If so, a redundant set node would be introduced
7284 * (without any further descendants) stating that the statements
7285 * can be executed in arbitrary order, which is also expressed
7286 * by the absence of any node. Refrain from inserting any nodes
7287 * in this case and simply return.
7289 static __isl_give isl_schedule_node *compute_component_schedule(
7290 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
7291 int wcc)
7293 int component;
7294 isl_ctx *ctx;
7295 isl_union_set_list *filters;
7297 if (!node)
7298 return NULL;
7300 if (graph->weak && graph->scc == graph->n) {
7301 if (compute_maxvar(graph) < 0)
7302 return isl_schedule_node_free(node);
7303 if (graph->n_row >= graph->maxvar)
7304 return node;
7307 ctx = isl_schedule_node_get_ctx(node);
7308 filters = extract_sccs(ctx, graph);
7309 if (graph->weak)
7310 node = isl_schedule_node_insert_set(node, filters);
7311 else
7312 node = isl_schedule_node_insert_sequence(node, filters);
7314 for (component = 0; component < graph->scc; ++component) {
7315 node = isl_schedule_node_child(node, component);
7316 node = isl_schedule_node_child(node, 0);
7317 node = compute_sub_schedule(node, ctx, graph,
7318 &node_scc_exactly,
7319 &edge_scc_exactly, component, wcc);
7320 node = isl_schedule_node_parent(node);
7321 node = isl_schedule_node_parent(node);
7324 return node;
7327 /* Compute a schedule for the given dependence graph and insert it at "node".
7328 * Return the updated schedule node.
7330 * We first check if the graph is connected (through validity and conditional
7331 * validity dependences) and, if not, compute a schedule
7332 * for each component separately.
7333 * If the schedule_serialize_sccs option is set, then we check for strongly
7334 * connected components instead and compute a separate schedule for
7335 * each such strongly connected component.
7337 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
7338 struct isl_sched_graph *graph)
7340 isl_ctx *ctx;
7342 if (!node)
7343 return NULL;
7345 ctx = isl_schedule_node_get_ctx(node);
7346 if (isl_options_get_schedule_serialize_sccs(ctx)) {
7347 if (detect_sccs(ctx, graph) < 0)
7348 return isl_schedule_node_free(node);
7349 } else {
7350 if (detect_wccs(ctx, graph) < 0)
7351 return isl_schedule_node_free(node);
7354 if (graph->scc > 1)
7355 return compute_component_schedule(node, graph, 1);
7357 return compute_schedule_wcc(node, graph);
7360 /* Compute a schedule on sc->domain that respects the given schedule
7361 * constraints.
7363 * In particular, the schedule respects all the validity dependences.
7364 * If the default isl scheduling algorithm is used, it tries to minimize
7365 * the dependence distances over the proximity dependences.
7366 * If Feautrier's scheduling algorithm is used, the proximity dependence
7367 * distances are only minimized during the extension to a full-dimensional
7368 * schedule.
7370 * If there are any condition and conditional validity dependences,
7371 * then the conditional validity dependences may be violated inside
7372 * a tilable band, provided they have no adjacent non-local
7373 * condition dependences.
7375 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
7376 __isl_take isl_schedule_constraints *sc)
7378 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
7379 struct isl_sched_graph graph = { 0 };
7380 isl_schedule *sched;
7381 isl_schedule_node *node;
7382 isl_union_set *domain;
7384 sc = isl_schedule_constraints_align_params(sc);
7386 domain = isl_schedule_constraints_get_domain(sc);
7387 if (isl_union_set_n_set(domain) == 0) {
7388 isl_schedule_constraints_free(sc);
7389 return isl_schedule_from_domain(domain);
7392 if (graph_init(&graph, sc) < 0)
7393 domain = isl_union_set_free(domain);
7395 node = isl_schedule_node_from_domain(domain);
7396 node = isl_schedule_node_child(node, 0);
7397 if (graph.n > 0)
7398 node = compute_schedule(node, &graph);
7399 sched = isl_schedule_node_get_schedule(node);
7400 isl_schedule_node_free(node);
7402 graph_free(ctx, &graph);
7403 isl_schedule_constraints_free(sc);
7405 return sched;
7408 /* Compute a schedule for the given union of domains that respects
7409 * all the validity dependences and minimizes
7410 * the dependence distances over the proximity dependences.
7412 * This function is kept for backward compatibility.
7414 __isl_give isl_schedule *isl_union_set_compute_schedule(
7415 __isl_take isl_union_set *domain,
7416 __isl_take isl_union_map *validity,
7417 __isl_take isl_union_map *proximity)
7419 isl_schedule_constraints *sc;
7421 sc = isl_schedule_constraints_on_domain(domain);
7422 sc = isl_schedule_constraints_set_validity(sc, validity);
7423 sc = isl_schedule_constraints_set_proximity(sc, proximity);
7425 return isl_schedule_constraints_compute_schedule(sc);