2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 #include "isl_map_private.h"
12 #include "isl_sample.h"
14 #include "isl_equalities.h"
16 /* Given a basic set "bset", construct a basic set U such that for
17 * each element x in U, the whole unit box positioned at x is inside
18 * the given basic set.
19 * Note that U may not contain all points that satisfy this property.
21 * We simply add the sum of all negative coefficients to the constant
22 * term. This ensures that if x satisfies the resulting constraints,
23 * then x plus any sum of unit vectors satisfies the original constraints.
25 static struct isl_basic_set
*unit_box_base_points(struct isl_basic_set
*bset
)
28 struct isl_basic_set
*unit_box
= NULL
;
34 if (bset
->n_eq
!= 0) {
35 unit_box
= isl_basic_set_empty_like(bset
);
36 isl_basic_set_free(bset
);
40 total
= isl_basic_set_total_dim(bset
);
41 unit_box
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
),
44 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
45 k
= isl_basic_set_alloc_inequality(unit_box
);
48 isl_seq_cpy(unit_box
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
49 for (j
= 0; j
< total
; ++j
) {
50 if (isl_int_is_nonneg(unit_box
->ineq
[k
][1 + j
]))
52 isl_int_add(unit_box
->ineq
[k
][0],
53 unit_box
->ineq
[k
][0], unit_box
->ineq
[k
][1 + j
]);
57 isl_basic_set_free(bset
);
60 isl_basic_set_free(bset
);
61 isl_basic_set_free(unit_box
);
65 /* Find an integer point in "bset", preferably one that is
66 * close to minimizing "f".
68 * We first check if we can easily put unit boxes inside bset.
69 * If so, we take the best base point of any of the unit boxes we can find
70 * and round it up to the nearest integer.
71 * If not, we simply pick any integer point in "bset".
73 static struct isl_vec
*initial_solution(struct isl_basic_set
*bset
, isl_int
*f
)
75 enum isl_lp_result res
;
76 struct isl_basic_set
*unit_box
;
79 unit_box
= unit_box_base_points(isl_basic_set_copy(bset
));
81 res
= isl_basic_set_solve_lp(unit_box
, 0, f
, bset
->ctx
->one
,
83 if (res
== isl_lp_ok
) {
84 isl_basic_set_free(unit_box
);
85 return isl_vec_ceil(sol
);
88 isl_basic_set_free(unit_box
);
90 return isl_basic_set_sample_vec(isl_basic_set_copy(bset
));
93 /* Restrict "bset" to those points with values for f in the interval [l, u].
95 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
96 isl_int
*f
, isl_int l
, isl_int u
)
101 total
= isl_basic_set_total_dim(bset
);
102 bset
= isl_basic_set_extend_constraints(bset
, 0, 2);
104 k
= isl_basic_set_alloc_inequality(bset
);
107 isl_seq_cpy(bset
->ineq
[k
], f
, 1 + total
);
108 isl_int_sub(bset
->ineq
[k
][0], bset
->ineq
[k
][0], l
);
110 k
= isl_basic_set_alloc_inequality(bset
);
113 isl_seq_neg(bset
->ineq
[k
], f
, 1 + total
);
114 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], u
);
118 isl_basic_set_free(bset
);
122 /* Find an integer point in "bset" that minimizes f (in any) such that
123 * the value of f lies inside the interval [l, u].
124 * Return this integer point if it can be found.
125 * Otherwise, return sol.
127 * We perform a number of steps until l > u.
128 * In each step, we look for an integer point with value in either
129 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
130 * The choice depends on whether we have found an integer point in the
131 * previous step. If so, we look for the next point in half of the remaining
133 * If we find a point, the current solution is updated and u is set
134 * to its value minus 1.
135 * If no point can be found, we update l to the upper bound of the interval
136 * we checked (u or l+floor(u-l-1/2)) plus 1.
138 static struct isl_vec
*solve_ilp_search(struct isl_basic_set
*bset
,
139 isl_int
*f
, isl_int
*opt
, struct isl_vec
*sol
, isl_int l
, isl_int u
)
146 while (isl_int_le(l
, u
)) {
147 struct isl_basic_set
*slice
;
148 struct isl_vec
*sample
;
153 isl_int_sub(tmp
, u
, l
);
154 isl_int_fdiv_q_ui(tmp
, tmp
, 2);
155 isl_int_add(tmp
, tmp
, l
);
157 slice
= add_bounds(isl_basic_set_copy(bset
), f
, l
, tmp
);
158 sample
= isl_basic_set_sample_vec(slice
);
164 if (sample
->size
> 0) {
167 isl_seq_inner_product(f
, sol
->el
, sol
->size
, opt
);
168 isl_int_sub_ui(u
, *opt
, 1);
171 isl_vec_free(sample
);
174 isl_int_add_ui(l
, tmp
, 1);
184 /* Find an integer point in "bset" that minimizes f (if any).
185 * If sol_p is not NULL then the integer point is returned in *sol_p.
186 * The optimal value of f is returned in *opt.
188 * The algorithm maintains a currently best solution and an interval [l, u]
189 * of values of f for which integer solutions could potentially still be found.
190 * The initial value of the best solution so far is any solution.
191 * The initial value of l is minimal value of f over the rationals
192 * (rounded up to the nearest integer).
193 * The initial value of u is the value of f at the initial solution minus 1.
195 * We then call solve_ilp_search to perform a binary search on the interval.
197 static enum isl_lp_result
solve_ilp(struct isl_basic_set
*bset
,
198 isl_int
*f
, isl_int
*opt
,
199 struct isl_vec
**sol_p
)
201 enum isl_lp_result res
;
205 res
= isl_basic_set_solve_lp(bset
, 0, f
, bset
->ctx
->one
,
207 if (res
== isl_lp_ok
&& isl_int_is_one(sol
->el
[0])) {
215 if (res
== isl_lp_error
|| res
== isl_lp_empty
)
218 sol
= initial_solution(bset
, f
);
221 if (sol
->size
== 0) {
225 if (res
== isl_lp_unbounded
) {
227 return isl_lp_unbounded
;
233 isl_int_set(l
, *opt
);
235 isl_seq_inner_product(f
, sol
->el
, sol
->size
, opt
);
236 isl_int_sub_ui(u
, *opt
, 1);
238 sol
= solve_ilp_search(bset
, f
, opt
, sol
, l
, u
);
253 static enum isl_lp_result
solve_ilp_with_eq(struct isl_basic_set
*bset
, int max
,
254 isl_int
*f
, isl_int
*opt
,
255 struct isl_vec
**sol_p
)
258 enum isl_lp_result res
;
259 struct isl_mat
*T
= NULL
;
262 bset
= isl_basic_set_copy(bset
);
263 dim
= isl_basic_set_total_dim(bset
);
264 v
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
267 isl_seq_cpy(v
->el
, f
, 1 + dim
);
268 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
269 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
272 res
= isl_basic_set_solve_ilp(bset
, max
, v
->el
, opt
, sol_p
);
274 if (res
== isl_lp_ok
&& sol_p
) {
275 *sol_p
= isl_mat_vec_product(T
, *sol_p
);
280 isl_basic_set_free(bset
);
284 isl_basic_set_free(bset
);
288 /* Find an integer point in "bset" that minimizes (or maximizes if max is set)
290 * If sol_p is not NULL then the integer point is returned in *sol_p.
291 * The optimal value of f is returned in *opt.
293 * If there is any equality among the points in "bset", then we first
294 * project it out. Otherwise, we continue with solve_ilp above.
296 enum isl_lp_result
isl_basic_set_solve_ilp(struct isl_basic_set
*bset
, int max
,
297 isl_int
*f
, isl_int
*opt
,
298 struct isl_vec
**sol_p
)
301 enum isl_lp_result res
;
308 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
310 if (isl_basic_set_fast_is_empty(bset
))
314 return solve_ilp_with_eq(bset
, max
, f
, opt
, sol_p
);
316 dim
= isl_basic_set_total_dim(bset
);
319 isl_seq_neg(f
, f
, 1 + dim
);
321 res
= solve_ilp(bset
, f
, opt
, sol_p
);
324 isl_seq_neg(f
, f
, 1 + dim
);
325 isl_int_neg(*opt
, *opt
);
330 isl_basic_set_free(bset
);