isl_test: generalize coalesce tests
[isl.git] / isl_polynomial.c
blob2dfdd0f2170fcb0985c75308bc5169d4d1841cbc
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <stdlib.h>
12 #define ISL_DIM_H
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
16 #include <isl/lp.h>
17 #include <isl/seq.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
29 static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type)
31 switch (type) {
32 case isl_dim_param: return 0;
33 case isl_dim_in: return dim->nparam;
34 case isl_dim_out: return dim->nparam + dim->n_in;
35 default: return 0;
39 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
41 if (!up)
42 return -1;
44 return up->var < 0;
47 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
49 if (!up)
50 return NULL;
52 isl_assert(up->ctx, up->var < 0, return NULL);
54 return (struct isl_upoly_cst *)up;
57 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
59 if (!up)
60 return NULL;
62 isl_assert(up->ctx, up->var >= 0, return NULL);
64 return (struct isl_upoly_rec *)up;
67 int isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
68 __isl_keep struct isl_upoly *up2)
70 int i;
71 struct isl_upoly_rec *rec1, *rec2;
73 if (!up1 || !up2)
74 return -1;
75 if (up1 == up2)
76 return 1;
77 if (up1->var != up2->var)
78 return 0;
79 if (isl_upoly_is_cst(up1)) {
80 struct isl_upoly_cst *cst1, *cst2;
81 cst1 = isl_upoly_as_cst(up1);
82 cst2 = isl_upoly_as_cst(up2);
83 if (!cst1 || !cst2)
84 return -1;
85 return isl_int_eq(cst1->n, cst2->n) &&
86 isl_int_eq(cst1->d, cst2->d);
89 rec1 = isl_upoly_as_rec(up1);
90 rec2 = isl_upoly_as_rec(up2);
91 if (!rec1 || !rec2)
92 return -1;
94 if (rec1->n != rec2->n)
95 return 0;
97 for (i = 0; i < rec1->n; ++i) {
98 int eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
99 if (eq < 0 || !eq)
100 return eq;
103 return 1;
106 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
108 struct isl_upoly_cst *cst;
110 if (!up)
111 return -1;
112 if (!isl_upoly_is_cst(up))
113 return 0;
115 cst = isl_upoly_as_cst(up);
116 if (!cst)
117 return -1;
119 return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
122 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
124 struct isl_upoly_cst *cst;
126 if (!up)
127 return 0;
128 if (!isl_upoly_is_cst(up))
129 return 0;
131 cst = isl_upoly_as_cst(up);
132 if (!cst)
133 return 0;
135 return isl_int_sgn(cst->n);
138 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
140 struct isl_upoly_cst *cst;
142 if (!up)
143 return -1;
144 if (!isl_upoly_is_cst(up))
145 return 0;
147 cst = isl_upoly_as_cst(up);
148 if (!cst)
149 return -1;
151 return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
154 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
156 struct isl_upoly_cst *cst;
158 if (!up)
159 return -1;
160 if (!isl_upoly_is_cst(up))
161 return 0;
163 cst = isl_upoly_as_cst(up);
164 if (!cst)
165 return -1;
167 return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
170 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
172 struct isl_upoly_cst *cst;
174 if (!up)
175 return -1;
176 if (!isl_upoly_is_cst(up))
177 return 0;
179 cst = isl_upoly_as_cst(up);
180 if (!cst)
181 return -1;
183 return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
186 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
188 struct isl_upoly_cst *cst;
190 if (!up)
191 return -1;
192 if (!isl_upoly_is_cst(up))
193 return 0;
195 cst = isl_upoly_as_cst(up);
196 if (!cst)
197 return -1;
199 return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
202 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
204 struct isl_upoly_cst *cst;
206 if (!up)
207 return -1;
208 if (!isl_upoly_is_cst(up))
209 return 0;
211 cst = isl_upoly_as_cst(up);
212 if (!cst)
213 return -1;
215 return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
218 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
220 struct isl_upoly_cst *cst;
222 cst = isl_alloc_type(ctx, struct isl_upoly_cst);
223 if (!cst)
224 return NULL;
226 cst->up.ref = 1;
227 cst->up.ctx = ctx;
228 isl_ctx_ref(ctx);
229 cst->up.var = -1;
231 isl_int_init(cst->n);
232 isl_int_init(cst->d);
234 return cst;
237 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
239 struct isl_upoly_cst *cst;
241 cst = isl_upoly_cst_alloc(ctx);
242 if (!cst)
243 return NULL;
245 isl_int_set_si(cst->n, 0);
246 isl_int_set_si(cst->d, 1);
248 return &cst->up;
251 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
253 struct isl_upoly_cst *cst;
255 cst = isl_upoly_cst_alloc(ctx);
256 if (!cst)
257 return NULL;
259 isl_int_set_si(cst->n, 1);
260 isl_int_set_si(cst->d, 1);
262 return &cst->up;
265 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
267 struct isl_upoly_cst *cst;
269 cst = isl_upoly_cst_alloc(ctx);
270 if (!cst)
271 return NULL;
273 isl_int_set_si(cst->n, 1);
274 isl_int_set_si(cst->d, 0);
276 return &cst->up;
279 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
281 struct isl_upoly_cst *cst;
283 cst = isl_upoly_cst_alloc(ctx);
284 if (!cst)
285 return NULL;
287 isl_int_set_si(cst->n, -1);
288 isl_int_set_si(cst->d, 0);
290 return &cst->up;
293 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
295 struct isl_upoly_cst *cst;
297 cst = isl_upoly_cst_alloc(ctx);
298 if (!cst)
299 return NULL;
301 isl_int_set_si(cst->n, 0);
302 isl_int_set_si(cst->d, 0);
304 return &cst->up;
307 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
308 isl_int n, isl_int d)
310 struct isl_upoly_cst *cst;
312 cst = isl_upoly_cst_alloc(ctx);
313 if (!cst)
314 return NULL;
316 isl_int_set(cst->n, n);
317 isl_int_set(cst->d, d);
319 return &cst->up;
322 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
323 int var, int size)
325 struct isl_upoly_rec *rec;
327 isl_assert(ctx, var >= 0, return NULL);
328 isl_assert(ctx, size >= 0, return NULL);
329 rec = isl_calloc(ctx, struct isl_upoly_rec,
330 sizeof(struct isl_upoly_rec) +
331 size * sizeof(struct isl_upoly *));
332 if (!rec)
333 return NULL;
335 rec->up.ref = 1;
336 rec->up.ctx = ctx;
337 isl_ctx_ref(ctx);
338 rec->up.var = var;
340 rec->n = 0;
341 rec->size = size;
343 return rec;
346 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
347 __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim)
349 qp = isl_qpolynomial_cow(qp);
350 if (!qp || !dim)
351 goto error;
353 isl_space_free(qp->dim);
354 qp->dim = dim;
356 return qp;
357 error:
358 isl_qpolynomial_free(qp);
359 isl_space_free(dim);
360 return NULL;
363 /* Reset the space of "qp". This function is called from isl_pw_templ.c
364 * and doesn't know if the space of an element object is represented
365 * directly or through its domain. It therefore passes along both.
367 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
368 __isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
369 __isl_take isl_space *domain)
371 isl_space_free(space);
372 return isl_qpolynomial_reset_domain_space(qp, domain);
375 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
377 return qp ? qp->dim->ctx : NULL;
380 __isl_give isl_space *isl_qpolynomial_get_domain_space(
381 __isl_keep isl_qpolynomial *qp)
383 return qp ? isl_space_copy(qp->dim) : NULL;
386 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
388 isl_space *space;
389 if (!qp)
390 return NULL;
391 space = isl_space_copy(qp->dim);
392 space = isl_space_from_domain(space);
393 space = isl_space_add_dims(space, isl_dim_out, 1);
394 return space;
397 /* Externally, an isl_qpolynomial has a map space, but internally, the
398 * ls field corresponds to the domain of that space.
400 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
401 enum isl_dim_type type)
403 if (!qp)
404 return 0;
405 if (type == isl_dim_out)
406 return 1;
407 if (type == isl_dim_in)
408 type = isl_dim_set;
409 return isl_space_dim(qp->dim, type);
412 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
414 return qp ? isl_upoly_is_zero(qp->upoly) : -1;
417 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
419 return qp ? isl_upoly_is_one(qp->upoly) : -1;
422 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
424 return qp ? isl_upoly_is_nan(qp->upoly) : -1;
427 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
429 return qp ? isl_upoly_is_infty(qp->upoly) : -1;
432 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
434 return qp ? isl_upoly_is_neginfty(qp->upoly) : -1;
437 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
439 return qp ? isl_upoly_sgn(qp->upoly) : 0;
442 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
444 isl_int_clear(cst->n);
445 isl_int_clear(cst->d);
448 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
450 int i;
452 for (i = 0; i < rec->n; ++i)
453 isl_upoly_free(rec->p[i]);
456 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
458 if (!up)
459 return NULL;
461 up->ref++;
462 return up;
465 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
467 struct isl_upoly_cst *cst;
468 struct isl_upoly_cst *dup;
470 cst = isl_upoly_as_cst(up);
471 if (!cst)
472 return NULL;
474 dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
475 if (!dup)
476 return NULL;
477 isl_int_set(dup->n, cst->n);
478 isl_int_set(dup->d, cst->d);
480 return &dup->up;
483 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
485 int i;
486 struct isl_upoly_rec *rec;
487 struct isl_upoly_rec *dup;
489 rec = isl_upoly_as_rec(up);
490 if (!rec)
491 return NULL;
493 dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
494 if (!dup)
495 return NULL;
497 for (i = 0; i < rec->n; ++i) {
498 dup->p[i] = isl_upoly_copy(rec->p[i]);
499 if (!dup->p[i])
500 goto error;
501 dup->n++;
504 return &dup->up;
505 error:
506 isl_upoly_free(&dup->up);
507 return NULL;
510 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
512 if (!up)
513 return NULL;
515 if (isl_upoly_is_cst(up))
516 return isl_upoly_dup_cst(up);
517 else
518 return isl_upoly_dup_rec(up);
521 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
523 if (!up)
524 return NULL;
526 if (up->ref == 1)
527 return up;
528 up->ref--;
529 return isl_upoly_dup(up);
532 void isl_upoly_free(__isl_take struct isl_upoly *up)
534 if (!up)
535 return;
537 if (--up->ref > 0)
538 return;
540 if (up->var < 0)
541 upoly_free_cst((struct isl_upoly_cst *)up);
542 else
543 upoly_free_rec((struct isl_upoly_rec *)up);
545 isl_ctx_deref(up->ctx);
546 free(up);
549 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
551 isl_int gcd;
553 isl_int_init(gcd);
554 isl_int_gcd(gcd, cst->n, cst->d);
555 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
556 isl_int_divexact(cst->n, cst->n, gcd);
557 isl_int_divexact(cst->d, cst->d, gcd);
559 isl_int_clear(gcd);
562 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
563 __isl_take struct isl_upoly *up2)
565 struct isl_upoly_cst *cst1;
566 struct isl_upoly_cst *cst2;
568 up1 = isl_upoly_cow(up1);
569 if (!up1 || !up2)
570 goto error;
572 cst1 = isl_upoly_as_cst(up1);
573 cst2 = isl_upoly_as_cst(up2);
575 if (isl_int_eq(cst1->d, cst2->d))
576 isl_int_add(cst1->n, cst1->n, cst2->n);
577 else {
578 isl_int_mul(cst1->n, cst1->n, cst2->d);
579 isl_int_addmul(cst1->n, cst2->n, cst1->d);
580 isl_int_mul(cst1->d, cst1->d, cst2->d);
583 isl_upoly_cst_reduce(cst1);
585 isl_upoly_free(up2);
586 return up1;
587 error:
588 isl_upoly_free(up1);
589 isl_upoly_free(up2);
590 return NULL;
593 static __isl_give struct isl_upoly *replace_by_zero(
594 __isl_take struct isl_upoly *up)
596 struct isl_ctx *ctx;
598 if (!up)
599 return NULL;
600 ctx = up->ctx;
601 isl_upoly_free(up);
602 return isl_upoly_zero(ctx);
605 static __isl_give struct isl_upoly *replace_by_constant_term(
606 __isl_take struct isl_upoly *up)
608 struct isl_upoly_rec *rec;
609 struct isl_upoly *cst;
611 if (!up)
612 return NULL;
614 rec = isl_upoly_as_rec(up);
615 if (!rec)
616 goto error;
617 cst = isl_upoly_copy(rec->p[0]);
618 isl_upoly_free(up);
619 return cst;
620 error:
621 isl_upoly_free(up);
622 return NULL;
625 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
626 __isl_take struct isl_upoly *up2)
628 int i;
629 struct isl_upoly_rec *rec1, *rec2;
631 if (!up1 || !up2)
632 goto error;
634 if (isl_upoly_is_nan(up1)) {
635 isl_upoly_free(up2);
636 return up1;
639 if (isl_upoly_is_nan(up2)) {
640 isl_upoly_free(up1);
641 return up2;
644 if (isl_upoly_is_zero(up1)) {
645 isl_upoly_free(up1);
646 return up2;
649 if (isl_upoly_is_zero(up2)) {
650 isl_upoly_free(up2);
651 return up1;
654 if (up1->var < up2->var)
655 return isl_upoly_sum(up2, up1);
657 if (up2->var < up1->var) {
658 struct isl_upoly_rec *rec;
659 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
660 isl_upoly_free(up1);
661 return up2;
663 up1 = isl_upoly_cow(up1);
664 rec = isl_upoly_as_rec(up1);
665 if (!rec)
666 goto error;
667 rec->p[0] = isl_upoly_sum(rec->p[0], up2);
668 if (rec->n == 1)
669 up1 = replace_by_constant_term(up1);
670 return up1;
673 if (isl_upoly_is_cst(up1))
674 return isl_upoly_sum_cst(up1, up2);
676 rec1 = isl_upoly_as_rec(up1);
677 rec2 = isl_upoly_as_rec(up2);
678 if (!rec1 || !rec2)
679 goto error;
681 if (rec1->n < rec2->n)
682 return isl_upoly_sum(up2, up1);
684 up1 = isl_upoly_cow(up1);
685 rec1 = isl_upoly_as_rec(up1);
686 if (!rec1)
687 goto error;
689 for (i = rec2->n - 1; i >= 0; --i) {
690 rec1->p[i] = isl_upoly_sum(rec1->p[i],
691 isl_upoly_copy(rec2->p[i]));
692 if (!rec1->p[i])
693 goto error;
694 if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
695 isl_upoly_free(rec1->p[i]);
696 rec1->n--;
700 if (rec1->n == 0)
701 up1 = replace_by_zero(up1);
702 else if (rec1->n == 1)
703 up1 = replace_by_constant_term(up1);
705 isl_upoly_free(up2);
707 return up1;
708 error:
709 isl_upoly_free(up1);
710 isl_upoly_free(up2);
711 return NULL;
714 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
715 __isl_take struct isl_upoly *up, isl_int v)
717 struct isl_upoly_cst *cst;
719 up = isl_upoly_cow(up);
720 if (!up)
721 return NULL;
723 cst = isl_upoly_as_cst(up);
725 isl_int_addmul(cst->n, cst->d, v);
727 return up;
730 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
731 __isl_take struct isl_upoly *up, isl_int v)
733 struct isl_upoly_rec *rec;
735 if (!up)
736 return NULL;
738 if (isl_upoly_is_cst(up))
739 return isl_upoly_cst_add_isl_int(up, v);
741 up = isl_upoly_cow(up);
742 rec = isl_upoly_as_rec(up);
743 if (!rec)
744 goto error;
746 rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
747 if (!rec->p[0])
748 goto error;
750 return up;
751 error:
752 isl_upoly_free(up);
753 return NULL;
756 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
757 __isl_take struct isl_upoly *up, isl_int v)
759 struct isl_upoly_cst *cst;
761 if (isl_upoly_is_zero(up))
762 return up;
764 up = isl_upoly_cow(up);
765 if (!up)
766 return NULL;
768 cst = isl_upoly_as_cst(up);
770 isl_int_mul(cst->n, cst->n, v);
772 return up;
775 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
776 __isl_take struct isl_upoly *up, isl_int v)
778 int i;
779 struct isl_upoly_rec *rec;
781 if (!up)
782 return NULL;
784 if (isl_upoly_is_cst(up))
785 return isl_upoly_cst_mul_isl_int(up, v);
787 up = isl_upoly_cow(up);
788 rec = isl_upoly_as_rec(up);
789 if (!rec)
790 goto error;
792 for (i = 0; i < rec->n; ++i) {
793 rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
794 if (!rec->p[i])
795 goto error;
798 return up;
799 error:
800 isl_upoly_free(up);
801 return NULL;
804 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
805 __isl_take struct isl_upoly *up2)
807 struct isl_upoly_cst *cst1;
808 struct isl_upoly_cst *cst2;
810 up1 = isl_upoly_cow(up1);
811 if (!up1 || !up2)
812 goto error;
814 cst1 = isl_upoly_as_cst(up1);
815 cst2 = isl_upoly_as_cst(up2);
817 isl_int_mul(cst1->n, cst1->n, cst2->n);
818 isl_int_mul(cst1->d, cst1->d, cst2->d);
820 isl_upoly_cst_reduce(cst1);
822 isl_upoly_free(up2);
823 return up1;
824 error:
825 isl_upoly_free(up1);
826 isl_upoly_free(up2);
827 return NULL;
830 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
831 __isl_take struct isl_upoly *up2)
833 struct isl_upoly_rec *rec1;
834 struct isl_upoly_rec *rec2;
835 struct isl_upoly_rec *res = NULL;
836 int i, j;
837 int size;
839 rec1 = isl_upoly_as_rec(up1);
840 rec2 = isl_upoly_as_rec(up2);
841 if (!rec1 || !rec2)
842 goto error;
843 size = rec1->n + rec2->n - 1;
844 res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
845 if (!res)
846 goto error;
848 for (i = 0; i < rec1->n; ++i) {
849 res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
850 isl_upoly_copy(rec1->p[i]));
851 if (!res->p[i])
852 goto error;
853 res->n++;
855 for (; i < size; ++i) {
856 res->p[i] = isl_upoly_zero(up1->ctx);
857 if (!res->p[i])
858 goto error;
859 res->n++;
861 for (i = 0; i < rec1->n; ++i) {
862 for (j = 1; j < rec2->n; ++j) {
863 struct isl_upoly *up;
864 up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
865 isl_upoly_copy(rec1->p[i]));
866 res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
867 if (!res->p[i + j])
868 goto error;
872 isl_upoly_free(up1);
873 isl_upoly_free(up2);
875 return &res->up;
876 error:
877 isl_upoly_free(up1);
878 isl_upoly_free(up2);
879 isl_upoly_free(&res->up);
880 return NULL;
883 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
884 __isl_take struct isl_upoly *up2)
886 if (!up1 || !up2)
887 goto error;
889 if (isl_upoly_is_nan(up1)) {
890 isl_upoly_free(up2);
891 return up1;
894 if (isl_upoly_is_nan(up2)) {
895 isl_upoly_free(up1);
896 return up2;
899 if (isl_upoly_is_zero(up1)) {
900 isl_upoly_free(up2);
901 return up1;
904 if (isl_upoly_is_zero(up2)) {
905 isl_upoly_free(up1);
906 return up2;
909 if (isl_upoly_is_one(up1)) {
910 isl_upoly_free(up1);
911 return up2;
914 if (isl_upoly_is_one(up2)) {
915 isl_upoly_free(up2);
916 return up1;
919 if (up1->var < up2->var)
920 return isl_upoly_mul(up2, up1);
922 if (up2->var < up1->var) {
923 int i;
924 struct isl_upoly_rec *rec;
925 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
926 isl_ctx *ctx = up1->ctx;
927 isl_upoly_free(up1);
928 isl_upoly_free(up2);
929 return isl_upoly_nan(ctx);
931 up1 = isl_upoly_cow(up1);
932 rec = isl_upoly_as_rec(up1);
933 if (!rec)
934 goto error;
936 for (i = 0; i < rec->n; ++i) {
937 rec->p[i] = isl_upoly_mul(rec->p[i],
938 isl_upoly_copy(up2));
939 if (!rec->p[i])
940 goto error;
942 isl_upoly_free(up2);
943 return up1;
946 if (isl_upoly_is_cst(up1))
947 return isl_upoly_mul_cst(up1, up2);
949 return isl_upoly_mul_rec(up1, up2);
950 error:
951 isl_upoly_free(up1);
952 isl_upoly_free(up2);
953 return NULL;
956 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
957 unsigned power)
959 struct isl_upoly *res;
961 if (!up)
962 return NULL;
963 if (power == 1)
964 return up;
966 if (power % 2)
967 res = isl_upoly_copy(up);
968 else
969 res = isl_upoly_one(up->ctx);
971 while (power >>= 1) {
972 up = isl_upoly_mul(up, isl_upoly_copy(up));
973 if (power % 2)
974 res = isl_upoly_mul(res, isl_upoly_copy(up));
977 isl_upoly_free(up);
978 return res;
981 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim,
982 unsigned n_div, __isl_take struct isl_upoly *up)
984 struct isl_qpolynomial *qp = NULL;
985 unsigned total;
987 if (!dim || !up)
988 goto error;
990 if (!isl_space_is_set(dim))
991 isl_die(isl_space_get_ctx(dim), isl_error_invalid,
992 "domain of polynomial should be a set", goto error);
994 total = isl_space_dim(dim, isl_dim_all);
996 qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
997 if (!qp)
998 goto error;
1000 qp->ref = 1;
1001 qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
1002 if (!qp->div)
1003 goto error;
1005 qp->dim = dim;
1006 qp->upoly = up;
1008 return qp;
1009 error:
1010 isl_space_free(dim);
1011 isl_upoly_free(up);
1012 isl_qpolynomial_free(qp);
1013 return NULL;
1016 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1018 if (!qp)
1019 return NULL;
1021 qp->ref++;
1022 return qp;
1025 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1027 struct isl_qpolynomial *dup;
1029 if (!qp)
1030 return NULL;
1032 dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1033 isl_upoly_copy(qp->upoly));
1034 if (!dup)
1035 return NULL;
1036 isl_mat_free(dup->div);
1037 dup->div = isl_mat_copy(qp->div);
1038 if (!dup->div)
1039 goto error;
1041 return dup;
1042 error:
1043 isl_qpolynomial_free(dup);
1044 return NULL;
1047 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1049 if (!qp)
1050 return NULL;
1052 if (qp->ref == 1)
1053 return qp;
1054 qp->ref--;
1055 return isl_qpolynomial_dup(qp);
1058 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp)
1060 if (!qp)
1061 return NULL;
1063 if (--qp->ref > 0)
1064 return NULL;
1066 isl_space_free(qp->dim);
1067 isl_mat_free(qp->div);
1068 isl_upoly_free(qp->upoly);
1070 free(qp);
1071 return NULL;
1074 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1076 int i;
1077 struct isl_upoly_rec *rec;
1078 struct isl_upoly_cst *cst;
1080 rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1081 if (!rec)
1082 return NULL;
1083 for (i = 0; i < 1 + power; ++i) {
1084 rec->p[i] = isl_upoly_zero(ctx);
1085 if (!rec->p[i])
1086 goto error;
1087 rec->n++;
1089 cst = isl_upoly_as_cst(rec->p[power]);
1090 isl_int_set_si(cst->n, 1);
1092 return &rec->up;
1093 error:
1094 isl_upoly_free(&rec->up);
1095 return NULL;
1098 /* r array maps original positions to new positions.
1100 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1101 int *r)
1103 int i;
1104 struct isl_upoly_rec *rec;
1105 struct isl_upoly *base;
1106 struct isl_upoly *res;
1108 if (isl_upoly_is_cst(up))
1109 return up;
1111 rec = isl_upoly_as_rec(up);
1112 if (!rec)
1113 goto error;
1115 isl_assert(up->ctx, rec->n >= 1, goto error);
1117 base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1118 res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1120 for (i = rec->n - 2; i >= 0; --i) {
1121 res = isl_upoly_mul(res, isl_upoly_copy(base));
1122 res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1125 isl_upoly_free(base);
1126 isl_upoly_free(up);
1128 return res;
1129 error:
1130 isl_upoly_free(up);
1131 return NULL;
1134 static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2)
1136 int n_row, n_col;
1137 int equal;
1139 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1140 div1->n_col >= div2->n_col, return -1);
1142 if (div1->n_row == div2->n_row)
1143 return isl_mat_is_equal(div1, div2);
1145 n_row = div1->n_row;
1146 n_col = div1->n_col;
1147 div1->n_row = div2->n_row;
1148 div1->n_col = div2->n_col;
1150 equal = isl_mat_is_equal(div1, div2);
1152 div1->n_row = n_row;
1153 div1->n_col = n_col;
1155 return equal;
1158 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1160 int li, lj;
1162 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1163 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1165 if (li != lj)
1166 return li - lj;
1168 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1171 struct isl_div_sort_info {
1172 isl_mat *div;
1173 int row;
1176 static int div_sort_cmp(const void *p1, const void *p2)
1178 const struct isl_div_sort_info *i1, *i2;
1179 i1 = (const struct isl_div_sort_info *) p1;
1180 i2 = (const struct isl_div_sort_info *) p2;
1182 return cmp_row(i1->div, i1->row, i2->row);
1185 /* Sort divs and remove duplicates.
1187 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1189 int i;
1190 int skip;
1191 int len;
1192 struct isl_div_sort_info *array = NULL;
1193 int *pos = NULL, *at = NULL;
1194 int *reordering = NULL;
1195 unsigned div_pos;
1197 if (!qp)
1198 return NULL;
1199 if (qp->div->n_row <= 1)
1200 return qp;
1202 div_pos = isl_space_dim(qp->dim, isl_dim_all);
1204 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1205 qp->div->n_row);
1206 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1207 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1208 len = qp->div->n_col - 2;
1209 reordering = isl_alloc_array(qp->div->ctx, int, len);
1210 if (!array || !pos || !at || !reordering)
1211 goto error;
1213 for (i = 0; i < qp->div->n_row; ++i) {
1214 array[i].div = qp->div;
1215 array[i].row = i;
1216 pos[i] = i;
1217 at[i] = i;
1220 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1221 div_sort_cmp);
1223 for (i = 0; i < div_pos; ++i)
1224 reordering[i] = i;
1226 for (i = 0; i < qp->div->n_row; ++i) {
1227 if (pos[array[i].row] == i)
1228 continue;
1229 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1230 pos[at[i]] = pos[array[i].row];
1231 at[pos[array[i].row]] = at[i];
1232 at[i] = array[i].row;
1233 pos[array[i].row] = i;
1236 skip = 0;
1237 for (i = 0; i < len - div_pos; ++i) {
1238 if (i > 0 &&
1239 isl_seq_eq(qp->div->row[i - skip - 1],
1240 qp->div->row[i - skip], qp->div->n_col)) {
1241 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1242 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1243 2 + div_pos + i - skip);
1244 qp->div = isl_mat_drop_cols(qp->div,
1245 2 + div_pos + i - skip, 1);
1246 skip++;
1248 reordering[div_pos + array[i].row] = div_pos + i - skip;
1251 qp->upoly = reorder(qp->upoly, reordering);
1253 if (!qp->upoly || !qp->div)
1254 goto error;
1256 free(at);
1257 free(pos);
1258 free(array);
1259 free(reordering);
1261 return qp;
1262 error:
1263 free(at);
1264 free(pos);
1265 free(array);
1266 free(reordering);
1267 isl_qpolynomial_free(qp);
1268 return NULL;
1271 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1272 int *exp, int first)
1274 int i;
1275 struct isl_upoly_rec *rec;
1277 if (isl_upoly_is_cst(up))
1278 return up;
1280 if (up->var < first)
1281 return up;
1283 if (exp[up->var - first] == up->var - first)
1284 return up;
1286 up = isl_upoly_cow(up);
1287 if (!up)
1288 goto error;
1290 up->var = exp[up->var - first] + first;
1292 rec = isl_upoly_as_rec(up);
1293 if (!rec)
1294 goto error;
1296 for (i = 0; i < rec->n; ++i) {
1297 rec->p[i] = expand(rec->p[i], exp, first);
1298 if (!rec->p[i])
1299 goto error;
1302 return up;
1303 error:
1304 isl_upoly_free(up);
1305 return NULL;
1308 static __isl_give isl_qpolynomial *with_merged_divs(
1309 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1310 __isl_take isl_qpolynomial *qp2),
1311 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1313 int *exp1 = NULL;
1314 int *exp2 = NULL;
1315 isl_mat *div = NULL;
1317 qp1 = isl_qpolynomial_cow(qp1);
1318 qp2 = isl_qpolynomial_cow(qp2);
1320 if (!qp1 || !qp2)
1321 goto error;
1323 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1324 qp1->div->n_col >= qp2->div->n_col, goto error);
1326 exp1 = isl_alloc_array(qp1->div->ctx, int, qp1->div->n_row);
1327 exp2 = isl_alloc_array(qp2->div->ctx, int, qp2->div->n_row);
1328 if (!exp1 || !exp2)
1329 goto error;
1331 div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1332 if (!div)
1333 goto error;
1335 isl_mat_free(qp1->div);
1336 qp1->div = isl_mat_copy(div);
1337 isl_mat_free(qp2->div);
1338 qp2->div = isl_mat_copy(div);
1340 qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1341 qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1343 if (!qp1->upoly || !qp2->upoly)
1344 goto error;
1346 isl_mat_free(div);
1347 free(exp1);
1348 free(exp2);
1350 return fn(qp1, qp2);
1351 error:
1352 isl_mat_free(div);
1353 free(exp1);
1354 free(exp2);
1355 isl_qpolynomial_free(qp1);
1356 isl_qpolynomial_free(qp2);
1357 return NULL;
1360 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1361 __isl_take isl_qpolynomial *qp2)
1363 qp1 = isl_qpolynomial_cow(qp1);
1365 if (!qp1 || !qp2)
1366 goto error;
1368 if (qp1->div->n_row < qp2->div->n_row)
1369 return isl_qpolynomial_add(qp2, qp1);
1371 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1372 if (!compatible_divs(qp1->div, qp2->div))
1373 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1375 qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1376 if (!qp1->upoly)
1377 goto error;
1379 isl_qpolynomial_free(qp2);
1381 return qp1;
1382 error:
1383 isl_qpolynomial_free(qp1);
1384 isl_qpolynomial_free(qp2);
1385 return NULL;
1388 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1389 __isl_keep isl_set *dom,
1390 __isl_take isl_qpolynomial *qp1,
1391 __isl_take isl_qpolynomial *qp2)
1393 qp1 = isl_qpolynomial_add(qp1, qp2);
1394 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1395 return qp1;
1398 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1399 __isl_take isl_qpolynomial *qp2)
1401 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1404 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1405 __isl_take isl_qpolynomial *qp, isl_int v)
1407 if (isl_int_is_zero(v))
1408 return qp;
1410 qp = isl_qpolynomial_cow(qp);
1411 if (!qp)
1412 return NULL;
1414 qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1415 if (!qp->upoly)
1416 goto error;
1418 return qp;
1419 error:
1420 isl_qpolynomial_free(qp);
1421 return NULL;
1425 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1427 if (!qp)
1428 return NULL;
1430 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1433 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1434 __isl_take isl_qpolynomial *qp, isl_int v)
1436 if (isl_int_is_one(v))
1437 return qp;
1439 if (qp && isl_int_is_zero(v)) {
1440 isl_qpolynomial *zero;
1441 zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1442 isl_qpolynomial_free(qp);
1443 return zero;
1446 qp = isl_qpolynomial_cow(qp);
1447 if (!qp)
1448 return NULL;
1450 qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1451 if (!qp->upoly)
1452 goto error;
1454 return qp;
1455 error:
1456 isl_qpolynomial_free(qp);
1457 return NULL;
1460 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1461 __isl_take isl_qpolynomial *qp, isl_int v)
1463 return isl_qpolynomial_mul_isl_int(qp, v);
1466 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1467 __isl_take isl_qpolynomial *qp2)
1469 qp1 = isl_qpolynomial_cow(qp1);
1471 if (!qp1 || !qp2)
1472 goto error;
1474 if (qp1->div->n_row < qp2->div->n_row)
1475 return isl_qpolynomial_mul(qp2, qp1);
1477 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1478 if (!compatible_divs(qp1->div, qp2->div))
1479 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1481 qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1482 if (!qp1->upoly)
1483 goto error;
1485 isl_qpolynomial_free(qp2);
1487 return qp1;
1488 error:
1489 isl_qpolynomial_free(qp1);
1490 isl_qpolynomial_free(qp2);
1491 return NULL;
1494 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1495 unsigned power)
1497 qp = isl_qpolynomial_cow(qp);
1499 if (!qp)
1500 return NULL;
1502 qp->upoly = isl_upoly_pow(qp->upoly, power);
1503 if (!qp->upoly)
1504 goto error;
1506 return qp;
1507 error:
1508 isl_qpolynomial_free(qp);
1509 return NULL;
1512 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1513 __isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1515 int i;
1517 if (power == 1)
1518 return pwqp;
1520 pwqp = isl_pw_qpolynomial_cow(pwqp);
1521 if (!pwqp)
1522 return NULL;
1524 for (i = 0; i < pwqp->n; ++i) {
1525 pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1526 if (!pwqp->p[i].qp)
1527 return isl_pw_qpolynomial_free(pwqp);
1530 return pwqp;
1533 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1534 __isl_take isl_space *dim)
1536 if (!dim)
1537 return NULL;
1538 return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1541 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1542 __isl_take isl_space *dim)
1544 if (!dim)
1545 return NULL;
1546 return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
1549 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1550 __isl_take isl_space *dim)
1552 if (!dim)
1553 return NULL;
1554 return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
1557 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1558 __isl_take isl_space *dim)
1560 if (!dim)
1561 return NULL;
1562 return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
1565 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1566 __isl_take isl_space *dim)
1568 if (!dim)
1569 return NULL;
1570 return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
1573 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1574 __isl_take isl_space *dim,
1575 isl_int v)
1577 struct isl_qpolynomial *qp;
1578 struct isl_upoly_cst *cst;
1580 if (!dim)
1581 return NULL;
1583 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1584 if (!qp)
1585 return NULL;
1587 cst = isl_upoly_as_cst(qp->upoly);
1588 isl_int_set(cst->n, v);
1590 return qp;
1593 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1594 isl_int *n, isl_int *d)
1596 struct isl_upoly_cst *cst;
1598 if (!qp)
1599 return -1;
1601 if (!isl_upoly_is_cst(qp->upoly))
1602 return 0;
1604 cst = isl_upoly_as_cst(qp->upoly);
1605 if (!cst)
1606 return -1;
1608 if (n)
1609 isl_int_set(*n, cst->n);
1610 if (d)
1611 isl_int_set(*d, cst->d);
1613 return 1;
1616 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1618 int is_cst;
1619 struct isl_upoly_rec *rec;
1621 if (!up)
1622 return -1;
1624 if (up->var < 0)
1625 return 1;
1627 rec = isl_upoly_as_rec(up);
1628 if (!rec)
1629 return -1;
1631 if (rec->n > 2)
1632 return 0;
1634 isl_assert(up->ctx, rec->n > 1, return -1);
1636 is_cst = isl_upoly_is_cst(rec->p[1]);
1637 if (is_cst < 0)
1638 return -1;
1639 if (!is_cst)
1640 return 0;
1642 return isl_upoly_is_affine(rec->p[0]);
1645 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1647 if (!qp)
1648 return -1;
1650 if (qp->div->n_row > 0)
1651 return 0;
1653 return isl_upoly_is_affine(qp->upoly);
1656 static void update_coeff(__isl_keep isl_vec *aff,
1657 __isl_keep struct isl_upoly_cst *cst, int pos)
1659 isl_int gcd;
1660 isl_int f;
1662 if (isl_int_is_zero(cst->n))
1663 return;
1665 isl_int_init(gcd);
1666 isl_int_init(f);
1667 isl_int_gcd(gcd, cst->d, aff->el[0]);
1668 isl_int_divexact(f, cst->d, gcd);
1669 isl_int_divexact(gcd, aff->el[0], gcd);
1670 isl_seq_scale(aff->el, aff->el, f, aff->size);
1671 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1672 isl_int_clear(gcd);
1673 isl_int_clear(f);
1676 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1677 __isl_keep isl_vec *aff)
1679 struct isl_upoly_cst *cst;
1680 struct isl_upoly_rec *rec;
1682 if (!up || !aff)
1683 return -1;
1685 if (up->var < 0) {
1686 struct isl_upoly_cst *cst;
1688 cst = isl_upoly_as_cst(up);
1689 if (!cst)
1690 return -1;
1691 update_coeff(aff, cst, 0);
1692 return 0;
1695 rec = isl_upoly_as_rec(up);
1696 if (!rec)
1697 return -1;
1698 isl_assert(up->ctx, rec->n == 2, return -1);
1700 cst = isl_upoly_as_cst(rec->p[1]);
1701 if (!cst)
1702 return -1;
1703 update_coeff(aff, cst, 1 + up->var);
1705 return isl_upoly_update_affine(rec->p[0], aff);
1708 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1709 __isl_keep isl_qpolynomial *qp)
1711 isl_vec *aff;
1712 unsigned d;
1714 if (!qp)
1715 return NULL;
1717 d = isl_space_dim(qp->dim, isl_dim_all);
1718 aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1719 if (!aff)
1720 return NULL;
1722 isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1723 isl_int_set_si(aff->el[0], 1);
1725 if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1726 goto error;
1728 return aff;
1729 error:
1730 isl_vec_free(aff);
1731 return NULL;
1734 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
1735 __isl_keep isl_qpolynomial *qp2)
1737 int equal;
1739 if (!qp1 || !qp2)
1740 return -1;
1742 equal = isl_space_is_equal(qp1->dim, qp2->dim);
1743 if (equal < 0 || !equal)
1744 return equal;
1746 equal = isl_mat_is_equal(qp1->div, qp2->div);
1747 if (equal < 0 || !equal)
1748 return equal;
1750 return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
1753 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
1755 int i;
1756 struct isl_upoly_rec *rec;
1758 if (isl_upoly_is_cst(up)) {
1759 struct isl_upoly_cst *cst;
1760 cst = isl_upoly_as_cst(up);
1761 if (!cst)
1762 return;
1763 isl_int_lcm(*d, *d, cst->d);
1764 return;
1767 rec = isl_upoly_as_rec(up);
1768 if (!rec)
1769 return;
1771 for (i = 0; i < rec->n; ++i)
1772 upoly_update_den(rec->p[i], d);
1775 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
1777 isl_int_set_si(*d, 1);
1778 if (!qp)
1779 return;
1780 upoly_update_den(qp->upoly, d);
1783 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
1784 __isl_take isl_space *dim, int pos, int power)
1786 struct isl_ctx *ctx;
1788 if (!dim)
1789 return NULL;
1791 ctx = dim->ctx;
1793 return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
1796 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim,
1797 enum isl_dim_type type, unsigned pos)
1799 if (!dim)
1800 return NULL;
1802 isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error);
1803 isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error);
1805 if (type == isl_dim_set)
1806 pos += isl_space_dim(dim, isl_dim_param);
1808 return isl_qpolynomial_var_pow_on_domain(dim, pos, 1);
1809 error:
1810 isl_space_free(dim);
1811 return NULL;
1814 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
1815 unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
1817 int i;
1818 struct isl_upoly_rec *rec;
1819 struct isl_upoly *base, *res;
1821 if (!up)
1822 return NULL;
1824 if (isl_upoly_is_cst(up))
1825 return up;
1827 if (up->var < first)
1828 return up;
1830 rec = isl_upoly_as_rec(up);
1831 if (!rec)
1832 goto error;
1834 isl_assert(up->ctx, rec->n >= 1, goto error);
1836 if (up->var >= first + n)
1837 base = isl_upoly_var_pow(up->ctx, up->var, 1);
1838 else
1839 base = isl_upoly_copy(subs[up->var - first]);
1841 res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
1842 for (i = rec->n - 2; i >= 0; --i) {
1843 struct isl_upoly *t;
1844 t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
1845 res = isl_upoly_mul(res, isl_upoly_copy(base));
1846 res = isl_upoly_sum(res, t);
1849 isl_upoly_free(base);
1850 isl_upoly_free(up);
1852 return res;
1853 error:
1854 isl_upoly_free(up);
1855 return NULL;
1858 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
1859 isl_int denom, unsigned len)
1861 int i;
1862 struct isl_upoly *up;
1864 isl_assert(ctx, len >= 1, return NULL);
1866 up = isl_upoly_rat_cst(ctx, f[0], denom);
1867 for (i = 0; i < len - 1; ++i) {
1868 struct isl_upoly *t;
1869 struct isl_upoly *c;
1871 if (isl_int_is_zero(f[1 + i]))
1872 continue;
1874 c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
1875 t = isl_upoly_var_pow(ctx, i, 1);
1876 t = isl_upoly_mul(c, t);
1877 up = isl_upoly_sum(up, t);
1880 return up;
1883 /* Remove common factor of non-constant terms and denominator.
1885 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
1887 isl_ctx *ctx = qp->div->ctx;
1888 unsigned total = qp->div->n_col - 2;
1890 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
1891 isl_int_gcd(ctx->normalize_gcd,
1892 ctx->normalize_gcd, qp->div->row[div][0]);
1893 if (isl_int_is_one(ctx->normalize_gcd))
1894 return;
1896 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
1897 ctx->normalize_gcd, total);
1898 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
1899 ctx->normalize_gcd);
1900 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
1901 ctx->normalize_gcd);
1904 /* Replace the integer division identified by "div" by the polynomial "s".
1905 * The integer division is assumed not to appear in the definition
1906 * of any other integer divisions.
1908 static __isl_give isl_qpolynomial *substitute_div(
1909 __isl_take isl_qpolynomial *qp,
1910 int div, __isl_take struct isl_upoly *s)
1912 int i;
1913 int total;
1914 int *reordering;
1916 if (!qp || !s)
1917 goto error;
1919 qp = isl_qpolynomial_cow(qp);
1920 if (!qp)
1921 goto error;
1923 total = isl_space_dim(qp->dim, isl_dim_all);
1924 qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
1925 if (!qp->upoly)
1926 goto error;
1928 reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
1929 if (!reordering)
1930 goto error;
1931 for (i = 0; i < total + div; ++i)
1932 reordering[i] = i;
1933 for (i = total + div + 1; i < total + qp->div->n_row; ++i)
1934 reordering[i] = i - 1;
1935 qp->div = isl_mat_drop_rows(qp->div, div, 1);
1936 qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
1937 qp->upoly = reorder(qp->upoly, reordering);
1938 free(reordering);
1940 if (!qp->upoly || !qp->div)
1941 goto error;
1943 isl_upoly_free(s);
1944 return qp;
1945 error:
1946 isl_qpolynomial_free(qp);
1947 isl_upoly_free(s);
1948 return NULL;
1951 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1952 * divisions because d is equal to 1 by their definition, i.e., e.
1954 static __isl_give isl_qpolynomial *substitute_non_divs(
1955 __isl_take isl_qpolynomial *qp)
1957 int i, j;
1958 int total;
1959 struct isl_upoly *s;
1961 if (!qp)
1962 return NULL;
1964 total = isl_space_dim(qp->dim, isl_dim_all);
1965 for (i = 0; qp && i < qp->div->n_row; ++i) {
1966 if (!isl_int_is_one(qp->div->row[i][0]))
1967 continue;
1968 for (j = i + 1; j < qp->div->n_row; ++j) {
1969 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
1970 continue;
1971 isl_seq_combine(qp->div->row[j] + 1,
1972 qp->div->ctx->one, qp->div->row[j] + 1,
1973 qp->div->row[j][2 + total + i],
1974 qp->div->row[i] + 1, 1 + total + i);
1975 isl_int_set_si(qp->div->row[j][2 + total + i], 0);
1976 normalize_div(qp, j);
1978 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
1979 qp->div->row[i][0], qp->div->n_col - 1);
1980 qp = substitute_div(qp, i, s);
1981 --i;
1984 return qp;
1987 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1988 * with d the denominator. When replacing the coefficient e of x by
1989 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1990 * inside the division, so we need to add floor(e/d) * x outside.
1991 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1992 * to adjust the coefficient of x in each later div that depends on the
1993 * current div "div" and also in the affine expression "aff"
1994 * (if it too depends on "div").
1996 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
1997 __isl_keep isl_vec *aff)
1999 int i, j;
2000 isl_int v;
2001 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2003 isl_int_init(v);
2004 for (i = 0; i < 1 + total + div; ++i) {
2005 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2006 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2007 continue;
2008 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2009 isl_int_fdiv_r(qp->div->row[div][1 + i],
2010 qp->div->row[div][1 + i], qp->div->row[div][0]);
2011 if (!isl_int_is_zero(aff->el[1 + total + div]))
2012 isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]);
2013 for (j = div + 1; j < qp->div->n_row; ++j) {
2014 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2015 continue;
2016 isl_int_addmul(qp->div->row[j][1 + i],
2017 v, qp->div->row[j][2 + total + div]);
2020 isl_int_clear(v);
2023 /* Check if the last non-zero coefficient is bigger that half of the
2024 * denominator. If so, we will invert the div to further reduce the number
2025 * of distinct divs that may appear.
2026 * If the last non-zero coefficient is exactly half the denominator,
2027 * then we continue looking for earlier coefficients that are bigger
2028 * than half the denominator.
2030 static int needs_invert(__isl_keep isl_mat *div, int row)
2032 int i;
2033 int cmp;
2035 for (i = div->n_col - 1; i >= 1; --i) {
2036 if (isl_int_is_zero(div->row[row][i]))
2037 continue;
2038 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2039 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2040 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2041 if (cmp)
2042 return cmp > 0;
2043 if (i == 1)
2044 return 1;
2047 return 0;
2050 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2051 * We only invert the coefficients of e (and the coefficient of q in
2052 * later divs and in "aff"). After calling this function, the
2053 * coefficients of e should be reduced again.
2055 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2056 __isl_keep isl_vec *aff)
2058 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2060 isl_seq_neg(qp->div->row[div] + 1,
2061 qp->div->row[div] + 1, qp->div->n_col - 1);
2062 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2063 isl_int_add(qp->div->row[div][1],
2064 qp->div->row[div][1], qp->div->row[div][0]);
2065 if (!isl_int_is_zero(aff->el[1 + total + div]))
2066 isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]);
2067 isl_mat_col_mul(qp->div, 2 + total + div,
2068 qp->div->ctx->negone, 2 + total + div);
2071 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2072 * in the interval [0, d-1], with d the denominator and such that the
2073 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2075 * After the reduction, some divs may have become redundant or identical,
2076 * so we call substitute_non_divs and sort_divs. If these functions
2077 * eliminate divs or merge two or more divs into one, the coefficients
2078 * of the enclosing divs may have to be reduced again, so we call
2079 * ourselves recursively if the number of divs decreases.
2081 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2083 int i;
2084 isl_vec *aff = NULL;
2085 struct isl_upoly *s;
2086 unsigned n_div;
2088 if (!qp)
2089 return NULL;
2091 aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
2092 aff = isl_vec_clr(aff);
2093 if (!aff)
2094 goto error;
2096 isl_int_set_si(aff->el[1 + qp->upoly->var], 1);
2098 for (i = 0; i < qp->div->n_row; ++i) {
2099 normalize_div(qp, i);
2100 reduce_div(qp, i, aff);
2101 if (needs_invert(qp->div, i)) {
2102 invert_div(qp, i, aff);
2103 reduce_div(qp, i, aff);
2107 s = isl_upoly_from_affine(qp->div->ctx, aff->el,
2108 qp->div->ctx->one, aff->size);
2109 qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s);
2110 isl_upoly_free(s);
2111 if (!qp->upoly)
2112 goto error;
2114 isl_vec_free(aff);
2116 n_div = qp->div->n_row;
2117 qp = substitute_non_divs(qp);
2118 qp = sort_divs(qp);
2119 if (qp && qp->div->n_row < n_div)
2120 return reduce_divs(qp);
2122 return qp;
2123 error:
2124 isl_qpolynomial_free(qp);
2125 isl_vec_free(aff);
2126 return NULL;
2129 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2130 __isl_take isl_space *dim, const isl_int n, const isl_int d)
2132 struct isl_qpolynomial *qp;
2133 struct isl_upoly_cst *cst;
2135 if (!dim)
2136 return NULL;
2138 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
2139 if (!qp)
2140 return NULL;
2142 cst = isl_upoly_as_cst(qp->upoly);
2143 isl_int_set(cst->n, n);
2144 isl_int_set(cst->d, d);
2146 return qp;
2149 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2151 struct isl_upoly_rec *rec;
2152 int i;
2154 if (!up)
2155 return -1;
2157 if (isl_upoly_is_cst(up))
2158 return 0;
2160 if (up->var < d)
2161 active[up->var] = 1;
2163 rec = isl_upoly_as_rec(up);
2164 for (i = 0; i < rec->n; ++i)
2165 if (up_set_active(rec->p[i], active, d) < 0)
2166 return -1;
2168 return 0;
2171 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2173 int i, j;
2174 int d = isl_space_dim(qp->dim, isl_dim_all);
2176 if (!qp || !active)
2177 return -1;
2179 for (i = 0; i < d; ++i)
2180 for (j = 0; j < qp->div->n_row; ++j) {
2181 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2182 continue;
2183 active[i] = 1;
2184 break;
2187 return up_set_active(qp->upoly, active, d);
2190 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2191 enum isl_dim_type type, unsigned first, unsigned n)
2193 int i;
2194 int *active = NULL;
2195 int involves = 0;
2197 if (!qp)
2198 return -1;
2199 if (n == 0)
2200 return 0;
2202 isl_assert(qp->dim->ctx,
2203 first + n <= isl_qpolynomial_dim(qp, type), return -1);
2204 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2205 type == isl_dim_in, return -1);
2207 active = isl_calloc_array(qp->dim->ctx, int,
2208 isl_space_dim(qp->dim, isl_dim_all));
2209 if (set_active(qp, active) < 0)
2210 goto error;
2212 if (type == isl_dim_in)
2213 first += isl_space_dim(qp->dim, isl_dim_param);
2214 for (i = 0; i < n; ++i)
2215 if (active[first + i]) {
2216 involves = 1;
2217 break;
2220 free(active);
2222 return involves;
2223 error:
2224 free(active);
2225 return -1;
2228 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2229 * of the divs that do appear in the quasi-polynomial.
2231 static __isl_give isl_qpolynomial *remove_redundant_divs(
2232 __isl_take isl_qpolynomial *qp)
2234 int i, j;
2235 int d;
2236 int len;
2237 int skip;
2238 int *active = NULL;
2239 int *reordering = NULL;
2240 int redundant = 0;
2241 int n_div;
2242 isl_ctx *ctx;
2244 if (!qp)
2245 return NULL;
2246 if (qp->div->n_row == 0)
2247 return qp;
2249 d = isl_space_dim(qp->dim, isl_dim_all);
2250 len = qp->div->n_col - 2;
2251 ctx = isl_qpolynomial_get_ctx(qp);
2252 active = isl_calloc_array(ctx, int, len);
2253 if (!active)
2254 goto error;
2256 if (up_set_active(qp->upoly, active, len) < 0)
2257 goto error;
2259 for (i = qp->div->n_row - 1; i >= 0; --i) {
2260 if (!active[d + i]) {
2261 redundant = 1;
2262 continue;
2264 for (j = 0; j < i; ++j) {
2265 if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
2266 continue;
2267 active[d + j] = 1;
2268 break;
2272 if (!redundant) {
2273 free(active);
2274 return qp;
2277 reordering = isl_alloc_array(qp->div->ctx, int, len);
2278 if (!reordering)
2279 goto error;
2281 for (i = 0; i < d; ++i)
2282 reordering[i] = i;
2284 skip = 0;
2285 n_div = qp->div->n_row;
2286 for (i = 0; i < n_div; ++i) {
2287 if (!active[d + i]) {
2288 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2289 qp->div = isl_mat_drop_cols(qp->div,
2290 2 + d + i - skip, 1);
2291 skip++;
2293 reordering[d + i] = d + i - skip;
2296 qp->upoly = reorder(qp->upoly, reordering);
2298 if (!qp->upoly || !qp->div)
2299 goto error;
2301 free(active);
2302 free(reordering);
2304 return qp;
2305 error:
2306 free(active);
2307 free(reordering);
2308 isl_qpolynomial_free(qp);
2309 return NULL;
2312 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2313 unsigned first, unsigned n)
2315 int i;
2316 struct isl_upoly_rec *rec;
2318 if (!up)
2319 return NULL;
2320 if (n == 0 || up->var < 0 || up->var < first)
2321 return up;
2322 if (up->var < first + n) {
2323 up = replace_by_constant_term(up);
2324 return isl_upoly_drop(up, first, n);
2326 up = isl_upoly_cow(up);
2327 if (!up)
2328 return NULL;
2329 up->var -= n;
2330 rec = isl_upoly_as_rec(up);
2331 if (!rec)
2332 goto error;
2334 for (i = 0; i < rec->n; ++i) {
2335 rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2336 if (!rec->p[i])
2337 goto error;
2340 return up;
2341 error:
2342 isl_upoly_free(up);
2343 return NULL;
2346 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2347 __isl_take isl_qpolynomial *qp,
2348 enum isl_dim_type type, unsigned pos, const char *s)
2350 qp = isl_qpolynomial_cow(qp);
2351 if (!qp)
2352 return NULL;
2353 qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2354 if (!qp->dim)
2355 goto error;
2356 return qp;
2357 error:
2358 isl_qpolynomial_free(qp);
2359 return NULL;
2362 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2363 __isl_take isl_qpolynomial *qp,
2364 enum isl_dim_type type, unsigned first, unsigned n)
2366 if (!qp)
2367 return NULL;
2368 if (type == isl_dim_out)
2369 isl_die(qp->dim->ctx, isl_error_invalid,
2370 "cannot drop output/set dimension",
2371 goto error);
2372 if (type == isl_dim_in)
2373 type = isl_dim_set;
2374 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2375 return qp;
2377 qp = isl_qpolynomial_cow(qp);
2378 if (!qp)
2379 return NULL;
2381 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
2382 goto error);
2383 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2384 type == isl_dim_set, goto error);
2386 qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2387 if (!qp->dim)
2388 goto error;
2390 if (type == isl_dim_set)
2391 first += isl_space_dim(qp->dim, isl_dim_param);
2393 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2394 if (!qp->div)
2395 goto error;
2397 qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2398 if (!qp->upoly)
2399 goto error;
2401 return qp;
2402 error:
2403 isl_qpolynomial_free(qp);
2404 return NULL;
2407 /* Project the domain of the quasi-polynomial onto its parameter space.
2408 * The quasi-polynomial may not involve any of the domain dimensions.
2410 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2411 __isl_take isl_qpolynomial *qp)
2413 isl_space *space;
2414 unsigned n;
2415 int involves;
2417 n = isl_qpolynomial_dim(qp, isl_dim_in);
2418 involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2419 if (involves < 0)
2420 return isl_qpolynomial_free(qp);
2421 if (involves)
2422 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2423 "polynomial involves some of the domain dimensions",
2424 return isl_qpolynomial_free(qp));
2425 qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2426 space = isl_qpolynomial_get_domain_space(qp);
2427 space = isl_space_params(space);
2428 qp = isl_qpolynomial_reset_domain_space(qp, space);
2429 return qp;
2432 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2433 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2435 int i, j, k;
2436 isl_int denom;
2437 unsigned total;
2438 unsigned n_div;
2439 struct isl_upoly *up;
2441 if (!eq)
2442 goto error;
2443 if (eq->n_eq == 0) {
2444 isl_basic_set_free(eq);
2445 return qp;
2448 qp = isl_qpolynomial_cow(qp);
2449 if (!qp)
2450 goto error;
2451 qp->div = isl_mat_cow(qp->div);
2452 if (!qp->div)
2453 goto error;
2455 total = 1 + isl_space_dim(eq->dim, isl_dim_all);
2456 n_div = eq->n_div;
2457 isl_int_init(denom);
2458 for (i = 0; i < eq->n_eq; ++i) {
2459 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2460 if (j < 0 || j == 0 || j >= total)
2461 continue;
2463 for (k = 0; k < qp->div->n_row; ++k) {
2464 if (isl_int_is_zero(qp->div->row[k][1 + j]))
2465 continue;
2466 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2467 &qp->div->row[k][0]);
2468 normalize_div(qp, k);
2471 if (isl_int_is_pos(eq->eq[i][j]))
2472 isl_seq_neg(eq->eq[i], eq->eq[i], total);
2473 isl_int_abs(denom, eq->eq[i][j]);
2474 isl_int_set_si(eq->eq[i][j], 0);
2476 up = isl_upoly_from_affine(qp->dim->ctx,
2477 eq->eq[i], denom, total);
2478 qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2479 isl_upoly_free(up);
2481 isl_int_clear(denom);
2483 if (!qp->upoly)
2484 goto error;
2486 isl_basic_set_free(eq);
2488 qp = substitute_non_divs(qp);
2489 qp = sort_divs(qp);
2491 return qp;
2492 error:
2493 isl_basic_set_free(eq);
2494 isl_qpolynomial_free(qp);
2495 return NULL;
2498 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2500 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2501 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2503 if (!qp || !eq)
2504 goto error;
2505 if (qp->div->n_row > 0)
2506 eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row);
2507 return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
2508 error:
2509 isl_basic_set_free(eq);
2510 isl_qpolynomial_free(qp);
2511 return NULL;
2514 static __isl_give isl_basic_set *add_div_constraints(
2515 __isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2517 int i;
2518 unsigned total;
2520 if (!bset || !div)
2521 goto error;
2523 bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2524 if (!bset)
2525 goto error;
2526 total = isl_basic_set_total_dim(bset);
2527 for (i = 0; i < div->n_row; ++i)
2528 if (isl_basic_set_add_div_constraints_var(bset,
2529 total - div->n_row + i, div->row[i]) < 0)
2530 goto error;
2532 isl_mat_free(div);
2533 return bset;
2534 error:
2535 isl_mat_free(div);
2536 isl_basic_set_free(bset);
2537 return NULL;
2540 /* Look for equalities among the variables shared by context and qp
2541 * and the integer divisions of qp, if any.
2542 * The equalities are then used to eliminate variables and/or integer
2543 * divisions from qp.
2545 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2546 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2548 isl_basic_set *aff;
2550 if (!qp)
2551 goto error;
2552 if (qp->div->n_row > 0) {
2553 isl_basic_set *bset;
2554 context = isl_set_add_dims(context, isl_dim_set,
2555 qp->div->n_row);
2556 bset = isl_basic_set_universe(isl_set_get_space(context));
2557 bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2558 context = isl_set_intersect(context,
2559 isl_set_from_basic_set(bset));
2562 aff = isl_set_affine_hull(context);
2563 return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
2564 error:
2565 isl_qpolynomial_free(qp);
2566 isl_set_free(context);
2567 return NULL;
2570 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
2571 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2573 isl_space *space = isl_qpolynomial_get_domain_space(qp);
2574 isl_set *dom_context = isl_set_universe(space);
2575 dom_context = isl_set_intersect_params(dom_context, context);
2576 return isl_qpolynomial_gist(qp, dom_context);
2579 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2580 __isl_take isl_qpolynomial *qp)
2582 isl_set *dom;
2584 if (!qp)
2585 return NULL;
2586 if (isl_qpolynomial_is_zero(qp)) {
2587 isl_space *dim = isl_qpolynomial_get_space(qp);
2588 isl_qpolynomial_free(qp);
2589 return isl_pw_qpolynomial_zero(dim);
2592 dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp));
2593 return isl_pw_qpolynomial_alloc(dom, qp);
2596 #undef PW
2597 #define PW isl_pw_qpolynomial
2598 #undef EL
2599 #define EL isl_qpolynomial
2600 #undef EL_IS_ZERO
2601 #define EL_IS_ZERO is_zero
2602 #undef ZERO
2603 #define ZERO zero
2604 #undef IS_ZERO
2605 #define IS_ZERO is_zero
2606 #undef FIELD
2607 #define FIELD qp
2608 #undef DEFAULT_IS_ZERO
2609 #define DEFAULT_IS_ZERO 1
2611 #define NO_PULLBACK
2613 #include <isl_pw_templ.c>
2615 #undef UNION
2616 #define UNION isl_union_pw_qpolynomial
2617 #undef PART
2618 #define PART isl_pw_qpolynomial
2619 #undef PARTS
2620 #define PARTS pw_qpolynomial
2621 #define ALIGN_DOMAIN
2623 #include <isl_union_templ.c>
2625 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2627 if (!pwqp)
2628 return -1;
2630 if (pwqp->n != -1)
2631 return 0;
2633 if (!isl_set_plain_is_universe(pwqp->p[0].set))
2634 return 0;
2636 return isl_qpolynomial_is_one(pwqp->p[0].qp);
2639 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2640 __isl_take isl_pw_qpolynomial *pwqp1,
2641 __isl_take isl_pw_qpolynomial *pwqp2)
2643 return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
2646 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2647 __isl_take isl_pw_qpolynomial *pwqp1,
2648 __isl_take isl_pw_qpolynomial *pwqp2)
2650 int i, j, n;
2651 struct isl_pw_qpolynomial *res;
2653 if (!pwqp1 || !pwqp2)
2654 goto error;
2656 isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
2657 goto error);
2659 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
2660 isl_pw_qpolynomial_free(pwqp2);
2661 return pwqp1;
2664 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
2665 isl_pw_qpolynomial_free(pwqp1);
2666 return pwqp2;
2669 if (isl_pw_qpolynomial_is_one(pwqp1)) {
2670 isl_pw_qpolynomial_free(pwqp1);
2671 return pwqp2;
2674 if (isl_pw_qpolynomial_is_one(pwqp2)) {
2675 isl_pw_qpolynomial_free(pwqp2);
2676 return pwqp1;
2679 n = pwqp1->n * pwqp2->n;
2680 res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
2682 for (i = 0; i < pwqp1->n; ++i) {
2683 for (j = 0; j < pwqp2->n; ++j) {
2684 struct isl_set *common;
2685 struct isl_qpolynomial *prod;
2686 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
2687 isl_set_copy(pwqp2->p[j].set));
2688 if (isl_set_plain_is_empty(common)) {
2689 isl_set_free(common);
2690 continue;
2693 prod = isl_qpolynomial_mul(
2694 isl_qpolynomial_copy(pwqp1->p[i].qp),
2695 isl_qpolynomial_copy(pwqp2->p[j].qp));
2697 res = isl_pw_qpolynomial_add_piece(res, common, prod);
2701 isl_pw_qpolynomial_free(pwqp1);
2702 isl_pw_qpolynomial_free(pwqp2);
2704 return res;
2705 error:
2706 isl_pw_qpolynomial_free(pwqp1);
2707 isl_pw_qpolynomial_free(pwqp2);
2708 return NULL;
2711 __isl_give struct isl_upoly *isl_upoly_eval(
2712 __isl_take struct isl_upoly *up, __isl_take isl_vec *vec)
2714 int i;
2715 struct isl_upoly_rec *rec;
2716 struct isl_upoly *res;
2717 struct isl_upoly *base;
2719 if (isl_upoly_is_cst(up)) {
2720 isl_vec_free(vec);
2721 return up;
2724 rec = isl_upoly_as_rec(up);
2725 if (!rec)
2726 goto error;
2728 isl_assert(up->ctx, rec->n >= 1, goto error);
2730 base = isl_upoly_rat_cst(up->ctx, vec->el[1 + up->var], vec->el[0]);
2732 res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
2733 isl_vec_copy(vec));
2735 for (i = rec->n - 2; i >= 0; --i) {
2736 res = isl_upoly_mul(res, isl_upoly_copy(base));
2737 res = isl_upoly_sum(res,
2738 isl_upoly_eval(isl_upoly_copy(rec->p[i]),
2739 isl_vec_copy(vec)));
2742 isl_upoly_free(base);
2743 isl_upoly_free(up);
2744 isl_vec_free(vec);
2745 return res;
2746 error:
2747 isl_upoly_free(up);
2748 isl_vec_free(vec);
2749 return NULL;
2752 __isl_give isl_qpolynomial *isl_qpolynomial_eval(
2753 __isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt)
2755 isl_vec *ext;
2756 struct isl_upoly *up;
2757 isl_space *dim;
2759 if (!qp || !pnt)
2760 goto error;
2761 isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
2763 if (qp->div->n_row == 0)
2764 ext = isl_vec_copy(pnt->vec);
2765 else {
2766 int i;
2767 unsigned dim = isl_space_dim(qp->dim, isl_dim_all);
2768 ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row);
2769 if (!ext)
2770 goto error;
2772 isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size);
2773 for (i = 0; i < qp->div->n_row; ++i) {
2774 isl_seq_inner_product(qp->div->row[i] + 1, ext->el,
2775 1 + dim + i, &ext->el[1+dim+i]);
2776 isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i],
2777 qp->div->row[i][0]);
2781 up = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
2782 if (!up)
2783 goto error;
2785 dim = isl_space_copy(qp->dim);
2786 isl_qpolynomial_free(qp);
2787 isl_point_free(pnt);
2789 return isl_qpolynomial_alloc(dim, 0, up);
2790 error:
2791 isl_qpolynomial_free(qp);
2792 isl_point_free(pnt);
2793 return NULL;
2796 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
2797 __isl_keep struct isl_upoly_cst *cst2)
2799 int cmp;
2800 isl_int t;
2801 isl_int_init(t);
2802 isl_int_mul(t, cst1->n, cst2->d);
2803 isl_int_submul(t, cst2->n, cst1->d);
2804 cmp = isl_int_sgn(t);
2805 isl_int_clear(t);
2806 return cmp;
2809 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial *qp1,
2810 __isl_keep isl_qpolynomial *qp2)
2812 struct isl_upoly_cst *cst1, *cst2;
2814 if (!qp1 || !qp2)
2815 return -1;
2816 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), return -1);
2817 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), return -1);
2818 if (isl_qpolynomial_is_nan(qp1))
2819 return -1;
2820 if (isl_qpolynomial_is_nan(qp2))
2821 return -1;
2822 cst1 = isl_upoly_as_cst(qp1->upoly);
2823 cst2 = isl_upoly_as_cst(qp2->upoly);
2825 return isl_upoly_cmp(cst1, cst2) <= 0;
2828 __isl_give isl_qpolynomial *isl_qpolynomial_min_cst(
2829 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2831 struct isl_upoly_cst *cst1, *cst2;
2832 int cmp;
2834 if (!qp1 || !qp2)
2835 goto error;
2836 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2837 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2838 cst1 = isl_upoly_as_cst(qp1->upoly);
2839 cst2 = isl_upoly_as_cst(qp2->upoly);
2840 cmp = isl_upoly_cmp(cst1, cst2);
2842 if (cmp <= 0) {
2843 isl_qpolynomial_free(qp2);
2844 } else {
2845 isl_qpolynomial_free(qp1);
2846 qp1 = qp2;
2848 return qp1;
2849 error:
2850 isl_qpolynomial_free(qp1);
2851 isl_qpolynomial_free(qp2);
2852 return NULL;
2855 __isl_give isl_qpolynomial *isl_qpolynomial_max_cst(
2856 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2858 struct isl_upoly_cst *cst1, *cst2;
2859 int cmp;
2861 if (!qp1 || !qp2)
2862 goto error;
2863 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2864 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2865 cst1 = isl_upoly_as_cst(qp1->upoly);
2866 cst2 = isl_upoly_as_cst(qp2->upoly);
2867 cmp = isl_upoly_cmp(cst1, cst2);
2869 if (cmp >= 0) {
2870 isl_qpolynomial_free(qp2);
2871 } else {
2872 isl_qpolynomial_free(qp1);
2873 qp1 = qp2;
2875 return qp1;
2876 error:
2877 isl_qpolynomial_free(qp1);
2878 isl_qpolynomial_free(qp2);
2879 return NULL;
2882 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
2883 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
2884 unsigned first, unsigned n)
2886 unsigned total;
2887 unsigned g_pos;
2888 int *exp;
2890 if (!qp)
2891 return NULL;
2892 if (type == isl_dim_out)
2893 isl_die(qp->div->ctx, isl_error_invalid,
2894 "cannot insert output/set dimensions",
2895 goto error);
2896 if (type == isl_dim_in)
2897 type = isl_dim_set;
2898 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2899 return qp;
2901 qp = isl_qpolynomial_cow(qp);
2902 if (!qp)
2903 return NULL;
2905 isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type),
2906 goto error);
2908 g_pos = pos(qp->dim, type) + first;
2910 qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
2911 if (!qp->div)
2912 goto error;
2914 total = qp->div->n_col - 2;
2915 if (total > g_pos) {
2916 int i;
2917 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
2918 if (!exp)
2919 goto error;
2920 for (i = 0; i < total - g_pos; ++i)
2921 exp[i] = i + n;
2922 qp->upoly = expand(qp->upoly, exp, g_pos);
2923 free(exp);
2924 if (!qp->upoly)
2925 goto error;
2928 qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
2929 if (!qp->dim)
2930 goto error;
2932 return qp;
2933 error:
2934 isl_qpolynomial_free(qp);
2935 return NULL;
2938 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
2939 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
2941 unsigned pos;
2943 pos = isl_qpolynomial_dim(qp, type);
2945 return isl_qpolynomial_insert_dims(qp, type, pos, n);
2948 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
2949 __isl_take isl_pw_qpolynomial *pwqp,
2950 enum isl_dim_type type, unsigned n)
2952 unsigned pos;
2954 pos = isl_pw_qpolynomial_dim(pwqp, type);
2956 return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
2959 static int *reordering_move(isl_ctx *ctx,
2960 unsigned len, unsigned dst, unsigned src, unsigned n)
2962 int i;
2963 int *reordering;
2965 reordering = isl_alloc_array(ctx, int, len);
2966 if (!reordering)
2967 return NULL;
2969 if (dst <= src) {
2970 for (i = 0; i < dst; ++i)
2971 reordering[i] = i;
2972 for (i = 0; i < n; ++i)
2973 reordering[src + i] = dst + i;
2974 for (i = 0; i < src - dst; ++i)
2975 reordering[dst + i] = dst + n + i;
2976 for (i = 0; i < len - src - n; ++i)
2977 reordering[src + n + i] = src + n + i;
2978 } else {
2979 for (i = 0; i < src; ++i)
2980 reordering[i] = i;
2981 for (i = 0; i < n; ++i)
2982 reordering[src + i] = dst + i;
2983 for (i = 0; i < dst - src; ++i)
2984 reordering[src + n + i] = src + i;
2985 for (i = 0; i < len - dst - n; ++i)
2986 reordering[dst + n + i] = dst + n + i;
2989 return reordering;
2992 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
2993 __isl_take isl_qpolynomial *qp,
2994 enum isl_dim_type dst_type, unsigned dst_pos,
2995 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
2997 unsigned g_dst_pos;
2998 unsigned g_src_pos;
2999 int *reordering;
3001 qp = isl_qpolynomial_cow(qp);
3002 if (!qp)
3003 return NULL;
3005 if (dst_type == isl_dim_out || src_type == isl_dim_out)
3006 isl_die(qp->dim->ctx, isl_error_invalid,
3007 "cannot move output/set dimension",
3008 goto error);
3009 if (dst_type == isl_dim_in)
3010 dst_type = isl_dim_set;
3011 if (src_type == isl_dim_in)
3012 src_type = isl_dim_set;
3014 isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type),
3015 goto error);
3017 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
3018 g_src_pos = pos(qp->dim, src_type) + src_pos;
3019 if (dst_type > src_type)
3020 g_dst_pos -= n;
3022 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3023 if (!qp->div)
3024 goto error;
3025 qp = sort_divs(qp);
3026 if (!qp)
3027 goto error;
3029 reordering = reordering_move(qp->dim->ctx,
3030 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3031 if (!reordering)
3032 goto error;
3034 qp->upoly = reorder(qp->upoly, reordering);
3035 free(reordering);
3036 if (!qp->upoly)
3037 goto error;
3039 qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3040 if (!qp->dim)
3041 goto error;
3043 return qp;
3044 error:
3045 isl_qpolynomial_free(qp);
3046 return NULL;
3049 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim,
3050 isl_int *f, isl_int denom)
3052 struct isl_upoly *up;
3054 dim = isl_space_domain(dim);
3055 if (!dim)
3056 return NULL;
3058 up = isl_upoly_from_affine(dim->ctx, f, denom,
3059 1 + isl_space_dim(dim, isl_dim_all));
3061 return isl_qpolynomial_alloc(dim, 0, up);
3064 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3066 isl_ctx *ctx;
3067 struct isl_upoly *up;
3068 isl_qpolynomial *qp;
3070 if (!aff)
3071 return NULL;
3073 ctx = isl_aff_get_ctx(aff);
3074 up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3075 aff->v->size - 1);
3077 qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3078 aff->ls->div->n_row, up);
3079 if (!qp)
3080 goto error;
3082 isl_mat_free(qp->div);
3083 qp->div = isl_mat_copy(aff->ls->div);
3084 qp->div = isl_mat_cow(qp->div);
3085 if (!qp->div)
3086 goto error;
3088 isl_aff_free(aff);
3089 qp = reduce_divs(qp);
3090 qp = remove_redundant_divs(qp);
3091 return qp;
3092 error:
3093 isl_aff_free(aff);
3094 return NULL;
3097 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3098 __isl_take isl_pw_aff *pwaff)
3100 int i;
3101 isl_pw_qpolynomial *pwqp;
3103 if (!pwaff)
3104 return NULL;
3106 pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3107 pwaff->n);
3109 for (i = 0; i < pwaff->n; ++i) {
3110 isl_set *dom;
3111 isl_qpolynomial *qp;
3113 dom = isl_set_copy(pwaff->p[i].set);
3114 qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3115 pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp);
3118 isl_pw_aff_free(pwaff);
3119 return pwqp;
3122 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3123 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3125 isl_aff *aff;
3127 aff = isl_constraint_get_bound(c, type, pos);
3128 isl_constraint_free(c);
3129 return isl_qpolynomial_from_aff(aff);
3132 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3133 * in "qp" by subs[i].
3135 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3136 __isl_take isl_qpolynomial *qp,
3137 enum isl_dim_type type, unsigned first, unsigned n,
3138 __isl_keep isl_qpolynomial **subs)
3140 int i;
3141 struct isl_upoly **ups;
3143 if (n == 0)
3144 return qp;
3146 qp = isl_qpolynomial_cow(qp);
3147 if (!qp)
3148 return NULL;
3150 if (type == isl_dim_out)
3151 isl_die(qp->dim->ctx, isl_error_invalid,
3152 "cannot substitute output/set dimension",
3153 goto error);
3154 if (type == isl_dim_in)
3155 type = isl_dim_set;
3157 for (i = 0; i < n; ++i)
3158 if (!subs[i])
3159 goto error;
3161 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
3162 goto error);
3164 for (i = 0; i < n; ++i)
3165 isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim),
3166 goto error);
3168 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3169 for (i = 0; i < n; ++i)
3170 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3172 first += pos(qp->dim, type);
3174 ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
3175 if (!ups)
3176 goto error;
3177 for (i = 0; i < n; ++i)
3178 ups[i] = subs[i]->upoly;
3180 qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
3182 free(ups);
3184 if (!qp->upoly)
3185 goto error;
3187 return qp;
3188 error:
3189 isl_qpolynomial_free(qp);
3190 return NULL;
3193 /* Extend "bset" with extra set dimensions for each integer division
3194 * in "qp" and then call "fn" with the extended bset and the polynomial
3195 * that results from replacing each of the integer divisions by the
3196 * corresponding extra set dimension.
3198 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3199 __isl_keep isl_basic_set *bset,
3200 int (*fn)(__isl_take isl_basic_set *bset,
3201 __isl_take isl_qpolynomial *poly, void *user), void *user)
3203 isl_space *dim;
3204 isl_mat *div;
3205 isl_qpolynomial *poly;
3207 if (!qp || !bset)
3208 goto error;
3209 if (qp->div->n_row == 0)
3210 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3211 user);
3213 div = isl_mat_copy(qp->div);
3214 dim = isl_space_copy(qp->dim);
3215 dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row);
3216 poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3217 bset = isl_basic_set_copy(bset);
3218 bset = isl_basic_set_add_dims(bset, isl_dim_set, qp->div->n_row);
3219 bset = add_div_constraints(bset, div);
3221 return fn(bset, poly, user);
3222 error:
3223 return -1;
3226 /* Return total degree in variables first (inclusive) up to last (exclusive).
3228 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3230 int deg = -1;
3231 int i;
3232 struct isl_upoly_rec *rec;
3234 if (!up)
3235 return -2;
3236 if (isl_upoly_is_zero(up))
3237 return -1;
3238 if (isl_upoly_is_cst(up) || up->var < first)
3239 return 0;
3241 rec = isl_upoly_as_rec(up);
3242 if (!rec)
3243 return -2;
3245 for (i = 0; i < rec->n; ++i) {
3246 int d;
3248 if (isl_upoly_is_zero(rec->p[i]))
3249 continue;
3250 d = isl_upoly_degree(rec->p[i], first, last);
3251 if (up->var < last)
3252 d += i;
3253 if (d > deg)
3254 deg = d;
3257 return deg;
3260 /* Return total degree in set variables.
3262 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3264 unsigned ovar;
3265 unsigned nvar;
3267 if (!poly)
3268 return -2;
3270 ovar = isl_space_offset(poly->dim, isl_dim_set);
3271 nvar = isl_space_dim(poly->dim, isl_dim_set);
3272 return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3275 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3276 unsigned pos, int deg)
3278 int i;
3279 struct isl_upoly_rec *rec;
3281 if (!up)
3282 return NULL;
3284 if (isl_upoly_is_cst(up) || up->var < pos) {
3285 if (deg == 0)
3286 return isl_upoly_copy(up);
3287 else
3288 return isl_upoly_zero(up->ctx);
3291 rec = isl_upoly_as_rec(up);
3292 if (!rec)
3293 return NULL;
3295 if (up->var == pos) {
3296 if (deg < rec->n)
3297 return isl_upoly_copy(rec->p[deg]);
3298 else
3299 return isl_upoly_zero(up->ctx);
3302 up = isl_upoly_copy(up);
3303 up = isl_upoly_cow(up);
3304 rec = isl_upoly_as_rec(up);
3305 if (!rec)
3306 goto error;
3308 for (i = 0; i < rec->n; ++i) {
3309 struct isl_upoly *t;
3310 t = isl_upoly_coeff(rec->p[i], pos, deg);
3311 if (!t)
3312 goto error;
3313 isl_upoly_free(rec->p[i]);
3314 rec->p[i] = t;
3317 return up;
3318 error:
3319 isl_upoly_free(up);
3320 return NULL;
3323 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3325 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3326 __isl_keep isl_qpolynomial *qp,
3327 enum isl_dim_type type, unsigned t_pos, int deg)
3329 unsigned g_pos;
3330 struct isl_upoly *up;
3331 isl_qpolynomial *c;
3333 if (!qp)
3334 return NULL;
3336 if (type == isl_dim_out)
3337 isl_die(qp->div->ctx, isl_error_invalid,
3338 "output/set dimension does not have a coefficient",
3339 return NULL);
3340 if (type == isl_dim_in)
3341 type = isl_dim_set;
3343 isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type),
3344 return NULL);
3346 g_pos = pos(qp->dim, type) + t_pos;
3347 up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3349 c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up);
3350 if (!c)
3351 return NULL;
3352 isl_mat_free(c->div);
3353 c->div = isl_mat_copy(qp->div);
3354 if (!c->div)
3355 goto error;
3356 return c;
3357 error:
3358 isl_qpolynomial_free(c);
3359 return NULL;
3362 /* Homogenize the polynomial in the variables first (inclusive) up to
3363 * last (exclusive) by inserting powers of variable first.
3364 * Variable first is assumed not to appear in the input.
3366 __isl_give struct isl_upoly *isl_upoly_homogenize(
3367 __isl_take struct isl_upoly *up, int deg, int target,
3368 int first, int last)
3370 int i;
3371 struct isl_upoly_rec *rec;
3373 if (!up)
3374 return NULL;
3375 if (isl_upoly_is_zero(up))
3376 return up;
3377 if (deg == target)
3378 return up;
3379 if (isl_upoly_is_cst(up) || up->var < first) {
3380 struct isl_upoly *hom;
3382 hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3383 if (!hom)
3384 goto error;
3385 rec = isl_upoly_as_rec(hom);
3386 rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3388 return hom;
3391 up = isl_upoly_cow(up);
3392 rec = isl_upoly_as_rec(up);
3393 if (!rec)
3394 goto error;
3396 for (i = 0; i < rec->n; ++i) {
3397 if (isl_upoly_is_zero(rec->p[i]))
3398 continue;
3399 rec->p[i] = isl_upoly_homogenize(rec->p[i],
3400 up->var < last ? deg + i : i, target,
3401 first, last);
3402 if (!rec->p[i])
3403 goto error;
3406 return up;
3407 error:
3408 isl_upoly_free(up);
3409 return NULL;
3412 /* Homogenize the polynomial in the set variables by introducing
3413 * powers of an extra set variable at position 0.
3415 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3416 __isl_take isl_qpolynomial *poly)
3418 unsigned ovar;
3419 unsigned nvar;
3420 int deg = isl_qpolynomial_degree(poly);
3422 if (deg < -1)
3423 goto error;
3425 poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3426 poly = isl_qpolynomial_cow(poly);
3427 if (!poly)
3428 goto error;
3430 ovar = isl_space_offset(poly->dim, isl_dim_set);
3431 nvar = isl_space_dim(poly->dim, isl_dim_set);
3432 poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3433 ovar, ovar + nvar);
3434 if (!poly->upoly)
3435 goto error;
3437 return poly;
3438 error:
3439 isl_qpolynomial_free(poly);
3440 return NULL;
3443 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim,
3444 __isl_take isl_mat *div)
3446 isl_term *term;
3447 int n;
3449 if (!dim || !div)
3450 goto error;
3452 n = isl_space_dim(dim, isl_dim_all) + div->n_row;
3454 term = isl_calloc(dim->ctx, struct isl_term,
3455 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3456 if (!term)
3457 goto error;
3459 term->ref = 1;
3460 term->dim = dim;
3461 term->div = div;
3462 isl_int_init(term->n);
3463 isl_int_init(term->d);
3465 return term;
3466 error:
3467 isl_space_free(dim);
3468 isl_mat_free(div);
3469 return NULL;
3472 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3474 if (!term)
3475 return NULL;
3477 term->ref++;
3478 return term;
3481 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3483 int i;
3484 isl_term *dup;
3485 unsigned total;
3487 if (!term)
3488 return NULL;
3490 total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3492 dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3493 if (!dup)
3494 return NULL;
3496 isl_int_set(dup->n, term->n);
3497 isl_int_set(dup->d, term->d);
3499 for (i = 0; i < total; ++i)
3500 dup->pow[i] = term->pow[i];
3502 return dup;
3505 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3507 if (!term)
3508 return NULL;
3510 if (term->ref == 1)
3511 return term;
3512 term->ref--;
3513 return isl_term_dup(term);
3516 void isl_term_free(__isl_take isl_term *term)
3518 if (!term)
3519 return;
3521 if (--term->ref > 0)
3522 return;
3524 isl_space_free(term->dim);
3525 isl_mat_free(term->div);
3526 isl_int_clear(term->n);
3527 isl_int_clear(term->d);
3528 free(term);
3531 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3533 if (!term)
3534 return 0;
3536 switch (type) {
3537 case isl_dim_param:
3538 case isl_dim_in:
3539 case isl_dim_out: return isl_space_dim(term->dim, type);
3540 case isl_dim_div: return term->div->n_row;
3541 case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) +
3542 term->div->n_row;
3543 default: return 0;
3547 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3549 return term ? term->dim->ctx : NULL;
3552 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3554 if (!term)
3555 return;
3556 isl_int_set(*n, term->n);
3559 void isl_term_get_den(__isl_keep isl_term *term, isl_int *d)
3561 if (!term)
3562 return;
3563 isl_int_set(*d, term->d);
3566 int isl_term_get_exp(__isl_keep isl_term *term,
3567 enum isl_dim_type type, unsigned pos)
3569 if (!term)
3570 return -1;
3572 isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3574 if (type >= isl_dim_set)
3575 pos += isl_space_dim(term->dim, isl_dim_param);
3576 if (type >= isl_dim_div)
3577 pos += isl_space_dim(term->dim, isl_dim_set);
3579 return term->pow[pos];
3582 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3584 isl_local_space *ls;
3585 isl_aff *aff;
3587 if (!term)
3588 return NULL;
3590 isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3591 return NULL);
3593 ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
3594 isl_mat_copy(term->div));
3595 aff = isl_aff_alloc(ls);
3596 if (!aff)
3597 return NULL;
3599 isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
3601 aff = isl_aff_normalize(aff);
3603 return aff;
3606 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3607 int (*fn)(__isl_take isl_term *term, void *user),
3608 __isl_take isl_term *term, void *user)
3610 int i;
3611 struct isl_upoly_rec *rec;
3613 if (!up || !term)
3614 goto error;
3616 if (isl_upoly_is_zero(up))
3617 return term;
3619 isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3620 isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3621 isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3623 if (isl_upoly_is_cst(up)) {
3624 struct isl_upoly_cst *cst;
3625 cst = isl_upoly_as_cst(up);
3626 if (!cst)
3627 goto error;
3628 term = isl_term_cow(term);
3629 if (!term)
3630 goto error;
3631 isl_int_set(term->n, cst->n);
3632 isl_int_set(term->d, cst->d);
3633 if (fn(isl_term_copy(term), user) < 0)
3634 goto error;
3635 return term;
3638 rec = isl_upoly_as_rec(up);
3639 if (!rec)
3640 goto error;
3642 for (i = 0; i < rec->n; ++i) {
3643 term = isl_term_cow(term);
3644 if (!term)
3645 goto error;
3646 term->pow[up->var] = i;
3647 term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3648 if (!term)
3649 goto error;
3651 term->pow[up->var] = 0;
3653 return term;
3654 error:
3655 isl_term_free(term);
3656 return NULL;
3659 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3660 int (*fn)(__isl_take isl_term *term, void *user), void *user)
3662 isl_term *term;
3664 if (!qp)
3665 return -1;
3667 term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
3668 if (!term)
3669 return -1;
3671 term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3673 isl_term_free(term);
3675 return term ? 0 : -1;
3678 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3680 struct isl_upoly *up;
3681 isl_qpolynomial *qp;
3682 int i, n;
3684 if (!term)
3685 return NULL;
3687 n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3689 up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3690 for (i = 0; i < n; ++i) {
3691 if (!term->pow[i])
3692 continue;
3693 up = isl_upoly_mul(up,
3694 isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3697 qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up);
3698 if (!qp)
3699 goto error;
3700 isl_mat_free(qp->div);
3701 qp->div = isl_mat_copy(term->div);
3702 if (!qp->div)
3703 goto error;
3705 isl_term_free(term);
3706 return qp;
3707 error:
3708 isl_qpolynomial_free(qp);
3709 isl_term_free(term);
3710 return NULL;
3713 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
3714 __isl_take isl_space *dim)
3716 int i;
3717 int extra;
3718 unsigned total;
3720 if (!qp || !dim)
3721 goto error;
3723 if (isl_space_is_equal(qp->dim, dim)) {
3724 isl_space_free(dim);
3725 return qp;
3728 qp = isl_qpolynomial_cow(qp);
3729 if (!qp)
3730 goto error;
3732 extra = isl_space_dim(dim, isl_dim_set) -
3733 isl_space_dim(qp->dim, isl_dim_set);
3734 total = isl_space_dim(qp->dim, isl_dim_all);
3735 if (qp->div->n_row) {
3736 int *exp;
3738 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
3739 if (!exp)
3740 goto error;
3741 for (i = 0; i < qp->div->n_row; ++i)
3742 exp[i] = extra + i;
3743 qp->upoly = expand(qp->upoly, exp, total);
3744 free(exp);
3745 if (!qp->upoly)
3746 goto error;
3748 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
3749 if (!qp->div)
3750 goto error;
3751 for (i = 0; i < qp->div->n_row; ++i)
3752 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
3754 isl_space_free(qp->dim);
3755 qp->dim = dim;
3757 return qp;
3758 error:
3759 isl_space_free(dim);
3760 isl_qpolynomial_free(qp);
3761 return NULL;
3764 /* For each parameter or variable that does not appear in qp,
3765 * first eliminate the variable from all constraints and then set it to zero.
3767 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
3768 __isl_keep isl_qpolynomial *qp)
3770 int *active = NULL;
3771 int i;
3772 int d;
3773 unsigned nparam;
3774 unsigned nvar;
3776 if (!set || !qp)
3777 goto error;
3779 d = isl_space_dim(set->dim, isl_dim_all);
3780 active = isl_calloc_array(set->ctx, int, d);
3781 if (set_active(qp, active) < 0)
3782 goto error;
3784 for (i = 0; i < d; ++i)
3785 if (!active[i])
3786 break;
3788 if (i == d) {
3789 free(active);
3790 return set;
3793 nparam = isl_space_dim(set->dim, isl_dim_param);
3794 nvar = isl_space_dim(set->dim, isl_dim_set);
3795 for (i = 0; i < nparam; ++i) {
3796 if (active[i])
3797 continue;
3798 set = isl_set_eliminate(set, isl_dim_param, i, 1);
3799 set = isl_set_fix_si(set, isl_dim_param, i, 0);
3801 for (i = 0; i < nvar; ++i) {
3802 if (active[nparam + i])
3803 continue;
3804 set = isl_set_eliminate(set, isl_dim_set, i, 1);
3805 set = isl_set_fix_si(set, isl_dim_set, i, 0);
3808 free(active);
3810 return set;
3811 error:
3812 free(active);
3813 isl_set_free(set);
3814 return NULL;
3817 struct isl_opt_data {
3818 isl_qpolynomial *qp;
3819 int first;
3820 isl_qpolynomial *opt;
3821 int max;
3824 static int opt_fn(__isl_take isl_point *pnt, void *user)
3826 struct isl_opt_data *data = (struct isl_opt_data *)user;
3827 isl_qpolynomial *val;
3829 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
3830 if (data->first) {
3831 data->first = 0;
3832 data->opt = val;
3833 } else if (data->max) {
3834 data->opt = isl_qpolynomial_max_cst(data->opt, val);
3835 } else {
3836 data->opt = isl_qpolynomial_min_cst(data->opt, val);
3839 return 0;
3842 __isl_give isl_qpolynomial *isl_qpolynomial_opt_on_domain(
3843 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
3845 struct isl_opt_data data = { NULL, 1, NULL, max };
3847 if (!set || !qp)
3848 goto error;
3850 if (isl_upoly_is_cst(qp->upoly)) {
3851 isl_set_free(set);
3852 return qp;
3855 set = fix_inactive(set, qp);
3857 data.qp = qp;
3858 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
3859 goto error;
3861 if (data.first) {
3862 isl_space *space = isl_qpolynomial_get_domain_space(qp);
3863 data.opt = isl_qpolynomial_zero_on_domain(space);
3866 isl_set_free(set);
3867 isl_qpolynomial_free(qp);
3868 return data.opt;
3869 error:
3870 isl_set_free(set);
3871 isl_qpolynomial_free(qp);
3872 isl_qpolynomial_free(data.opt);
3873 return NULL;
3876 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
3877 __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
3879 int i;
3880 int n_sub;
3881 isl_ctx *ctx;
3882 struct isl_upoly **subs;
3883 isl_mat *mat, *diag;
3885 qp = isl_qpolynomial_cow(qp);
3886 if (!qp || !morph)
3887 goto error;
3889 ctx = qp->dim->ctx;
3890 isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error);
3892 n_sub = morph->inv->n_row - 1;
3893 if (morph->inv->n_row != morph->inv->n_col)
3894 n_sub += qp->div->n_row;
3895 subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
3896 if (!subs)
3897 goto error;
3899 for (i = 0; 1 + i < morph->inv->n_row; ++i)
3900 subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
3901 morph->inv->row[0][0], morph->inv->n_col);
3902 if (morph->inv->n_row != morph->inv->n_col)
3903 for (i = 0; i < qp->div->n_row; ++i)
3904 subs[morph->inv->n_row - 1 + i] =
3905 isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
3907 qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
3909 for (i = 0; i < n_sub; ++i)
3910 isl_upoly_free(subs[i]);
3911 free(subs);
3913 diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
3914 mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
3915 diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
3916 mat = isl_mat_diagonal(mat, diag);
3917 qp->div = isl_mat_product(qp->div, mat);
3918 isl_space_free(qp->dim);
3919 qp->dim = isl_space_copy(morph->ran->dim);
3921 if (!qp->upoly || !qp->div || !qp->dim)
3922 goto error;
3924 isl_morph_free(morph);
3926 return qp;
3927 error:
3928 isl_qpolynomial_free(qp);
3929 isl_morph_free(morph);
3930 return NULL;
3933 static int neg_entry(void **entry, void *user)
3935 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
3937 *pwqp = isl_pw_qpolynomial_neg(*pwqp);
3939 return *pwqp ? 0 : -1;
3942 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_neg(
3943 __isl_take isl_union_pw_qpolynomial *upwqp)
3945 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
3946 if (!upwqp)
3947 return NULL;
3949 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
3950 &neg_entry, NULL) < 0)
3951 goto error;
3953 return upwqp;
3954 error:
3955 isl_union_pw_qpolynomial_free(upwqp);
3956 return NULL;
3959 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3960 __isl_take isl_union_pw_qpolynomial *upwqp1,
3961 __isl_take isl_union_pw_qpolynomial *upwqp2)
3963 return match_bin_op(upwqp1, upwqp2, &isl_pw_qpolynomial_mul);
3966 /* Reorder the columns of the given div definitions according to the
3967 * given reordering.
3969 static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div,
3970 __isl_take isl_reordering *r)
3972 int i, j;
3973 isl_mat *mat;
3974 int extra;
3976 if (!div || !r)
3977 goto error;
3979 extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len;
3980 mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra);
3981 if (!mat)
3982 goto error;
3984 for (i = 0; i < div->n_row; ++i) {
3985 isl_seq_cpy(mat->row[i], div->row[i], 2);
3986 isl_seq_clr(mat->row[i] + 2, mat->n_col - 2);
3987 for (j = 0; j < r->len; ++j)
3988 isl_int_set(mat->row[i][2 + r->pos[j]],
3989 div->row[i][2 + j]);
3992 isl_reordering_free(r);
3993 isl_mat_free(div);
3994 return mat;
3995 error:
3996 isl_reordering_free(r);
3997 isl_mat_free(div);
3998 return NULL;
4001 /* Reorder the dimension of "qp" according to the given reordering.
4003 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4004 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4006 qp = isl_qpolynomial_cow(qp);
4007 if (!qp)
4008 goto error;
4010 r = isl_reordering_extend(r, qp->div->n_row);
4011 if (!r)
4012 goto error;
4014 qp->div = reorder_divs(qp->div, isl_reordering_copy(r));
4015 if (!qp->div)
4016 goto error;
4018 qp->upoly = reorder(qp->upoly, r->pos);
4019 if (!qp->upoly)
4020 goto error;
4022 qp = isl_qpolynomial_reset_domain_space(qp, isl_space_copy(r->dim));
4024 isl_reordering_free(r);
4025 return qp;
4026 error:
4027 isl_qpolynomial_free(qp);
4028 isl_reordering_free(r);
4029 return NULL;
4032 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4033 __isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4035 if (!qp || !model)
4036 goto error;
4038 if (!isl_space_match(qp->dim, isl_dim_param, model, isl_dim_param)) {
4039 isl_reordering *exp;
4041 model = isl_space_drop_dims(model, isl_dim_in,
4042 0, isl_space_dim(model, isl_dim_in));
4043 model = isl_space_drop_dims(model, isl_dim_out,
4044 0, isl_space_dim(model, isl_dim_out));
4045 exp = isl_parameter_alignment_reordering(qp->dim, model);
4046 exp = isl_reordering_extend_space(exp,
4047 isl_qpolynomial_get_domain_space(qp));
4048 qp = isl_qpolynomial_realign_domain(qp, exp);
4051 isl_space_free(model);
4052 return qp;
4053 error:
4054 isl_space_free(model);
4055 isl_qpolynomial_free(qp);
4056 return NULL;
4059 struct isl_split_periods_data {
4060 int max_periods;
4061 isl_pw_qpolynomial *res;
4064 /* Create a slice where the integer division "div" has the fixed value "v".
4065 * In particular, if "div" refers to floor(f/m), then create a slice
4067 * m v <= f <= m v + (m - 1)
4069 * or
4071 * f - m v >= 0
4072 * -f + m v + (m - 1) >= 0
4074 static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim,
4075 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
4077 int total;
4078 isl_basic_set *bset = NULL;
4079 int k;
4081 if (!dim || !qp)
4082 goto error;
4084 total = isl_space_dim(dim, isl_dim_all);
4085 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2);
4087 k = isl_basic_set_alloc_inequality(bset);
4088 if (k < 0)
4089 goto error;
4090 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4091 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4093 k = isl_basic_set_alloc_inequality(bset);
4094 if (k < 0)
4095 goto error;
4096 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4097 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4098 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4099 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4101 isl_space_free(dim);
4102 return isl_set_from_basic_set(bset);
4103 error:
4104 isl_basic_set_free(bset);
4105 isl_space_free(dim);
4106 return NULL;
4109 static int split_periods(__isl_take isl_set *set,
4110 __isl_take isl_qpolynomial *qp, void *user);
4112 /* Create a slice of the domain "set" such that integer division "div"
4113 * has the fixed value "v" and add the results to data->res,
4114 * replacing the integer division by "v" in "qp".
4116 static int set_div(__isl_take isl_set *set,
4117 __isl_take isl_qpolynomial *qp, int div, isl_int v,
4118 struct isl_split_periods_data *data)
4120 int i;
4121 int total;
4122 isl_set *slice;
4123 struct isl_upoly *cst;
4125 slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4126 set = isl_set_intersect(set, slice);
4128 if (!qp)
4129 goto error;
4131 total = isl_space_dim(qp->dim, isl_dim_all);
4133 for (i = div + 1; i < qp->div->n_row; ++i) {
4134 if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
4135 continue;
4136 isl_int_addmul(qp->div->row[i][1],
4137 qp->div->row[i][2 + total + div], v);
4138 isl_int_set_si(qp->div->row[i][2 + total + div], 0);
4141 cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4142 qp = substitute_div(qp, div, cst);
4144 return split_periods(set, qp, data);
4145 error:
4146 isl_set_free(set);
4147 isl_qpolynomial_free(qp);
4148 return -1;
4151 /* Split the domain "set" such that integer division "div"
4152 * has a fixed value (ranging from "min" to "max") on each slice
4153 * and add the results to data->res.
4155 static int split_div(__isl_take isl_set *set,
4156 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4157 struct isl_split_periods_data *data)
4159 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4160 isl_set *set_i = isl_set_copy(set);
4161 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4163 if (set_div(set_i, qp_i, div, min, data) < 0)
4164 goto error;
4166 isl_set_free(set);
4167 isl_qpolynomial_free(qp);
4168 return 0;
4169 error:
4170 isl_set_free(set);
4171 isl_qpolynomial_free(qp);
4172 return -1;
4175 /* If "qp" refers to any integer division
4176 * that can only attain "max_periods" distinct values on "set"
4177 * then split the domain along those distinct values.
4178 * Add the results (or the original if no splitting occurs)
4179 * to data->res.
4181 static int split_periods(__isl_take isl_set *set,
4182 __isl_take isl_qpolynomial *qp, void *user)
4184 int i;
4185 isl_pw_qpolynomial *pwqp;
4186 struct isl_split_periods_data *data;
4187 isl_int min, max;
4188 int total;
4189 int r = 0;
4191 data = (struct isl_split_periods_data *)user;
4193 if (!set || !qp)
4194 goto error;
4196 if (qp->div->n_row == 0) {
4197 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4198 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4199 return 0;
4202 isl_int_init(min);
4203 isl_int_init(max);
4204 total = isl_space_dim(qp->dim, isl_dim_all);
4205 for (i = 0; i < qp->div->n_row; ++i) {
4206 enum isl_lp_result lp_res;
4208 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4209 qp->div->n_row) != -1)
4210 continue;
4212 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4213 set->ctx->one, &min, NULL, NULL);
4214 if (lp_res == isl_lp_error)
4215 goto error2;
4216 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4217 continue;
4218 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4220 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4221 set->ctx->one, &max, NULL, NULL);
4222 if (lp_res == isl_lp_error)
4223 goto error2;
4224 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4225 continue;
4226 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4228 isl_int_sub(max, max, min);
4229 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4230 isl_int_add(max, max, min);
4231 break;
4235 if (i < qp->div->n_row) {
4236 r = split_div(set, qp, i, min, max, data);
4237 } else {
4238 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4239 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4242 isl_int_clear(max);
4243 isl_int_clear(min);
4245 return r;
4246 error2:
4247 isl_int_clear(max);
4248 isl_int_clear(min);
4249 error:
4250 isl_set_free(set);
4251 isl_qpolynomial_free(qp);
4252 return -1;
4255 /* If any quasi-polynomial in pwqp refers to any integer division
4256 * that can only attain "max_periods" distinct values on its domain
4257 * then split the domain along those distinct values.
4259 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4260 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4262 struct isl_split_periods_data data;
4264 data.max_periods = max_periods;
4265 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4267 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4268 goto error;
4270 isl_pw_qpolynomial_free(pwqp);
4272 return data.res;
4273 error:
4274 isl_pw_qpolynomial_free(data.res);
4275 isl_pw_qpolynomial_free(pwqp);
4276 return NULL;
4279 /* Construct a piecewise quasipolynomial that is constant on the given
4280 * domain. In particular, it is
4281 * 0 if cst == 0
4282 * 1 if cst == 1
4283 * infinity if cst == -1
4285 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4286 __isl_take isl_basic_set *bset, int cst)
4288 isl_space *dim;
4289 isl_qpolynomial *qp;
4291 if (!bset)
4292 return NULL;
4294 bset = isl_basic_set_params(bset);
4295 dim = isl_basic_set_get_space(bset);
4296 if (cst < 0)
4297 qp = isl_qpolynomial_infty_on_domain(dim);
4298 else if (cst == 0)
4299 qp = isl_qpolynomial_zero_on_domain(dim);
4300 else
4301 qp = isl_qpolynomial_one_on_domain(dim);
4302 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4305 /* Factor bset, call fn on each of the factors and return the product.
4307 * If no factors can be found, simply call fn on the input.
4308 * Otherwise, construct the factors based on the factorizer,
4309 * call fn on each factor and compute the product.
4311 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4312 __isl_take isl_basic_set *bset,
4313 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4315 int i, n;
4316 isl_space *dim;
4317 isl_set *set;
4318 isl_factorizer *f;
4319 isl_qpolynomial *qp;
4320 isl_pw_qpolynomial *pwqp;
4321 unsigned nparam;
4322 unsigned nvar;
4324 f = isl_basic_set_factorizer(bset);
4325 if (!f)
4326 goto error;
4327 if (f->n_group == 0) {
4328 isl_factorizer_free(f);
4329 return fn(bset);
4332 nparam = isl_basic_set_dim(bset, isl_dim_param);
4333 nvar = isl_basic_set_dim(bset, isl_dim_set);
4335 dim = isl_basic_set_get_space(bset);
4336 dim = isl_space_domain(dim);
4337 set = isl_set_universe(isl_space_copy(dim));
4338 qp = isl_qpolynomial_one_on_domain(dim);
4339 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4341 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4343 for (i = 0, n = 0; i < f->n_group; ++i) {
4344 isl_basic_set *bset_i;
4345 isl_pw_qpolynomial *pwqp_i;
4347 bset_i = isl_basic_set_copy(bset);
4348 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4349 nparam + n + f->len[i], nvar - n - f->len[i]);
4350 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4351 nparam, n);
4352 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4353 n + f->len[i], nvar - n - f->len[i]);
4354 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4356 pwqp_i = fn(bset_i);
4357 pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4359 n += f->len[i];
4362 isl_basic_set_free(bset);
4363 isl_factorizer_free(f);
4365 return pwqp;
4366 error:
4367 isl_basic_set_free(bset);
4368 return NULL;
4371 /* Factor bset, call fn on each of the factors and return the product.
4372 * The function is assumed to evaluate to zero on empty domains,
4373 * to one on zero-dimensional domains and to infinity on unbounded domains
4374 * and will not be called explicitly on zero-dimensional or unbounded domains.
4376 * We first check for some special cases and remove all equalities.
4377 * Then we hand over control to compressed_multiplicative_call.
4379 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4380 __isl_take isl_basic_set *bset,
4381 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4383 int bounded;
4384 isl_morph *morph;
4385 isl_pw_qpolynomial *pwqp;
4387 if (!bset)
4388 return NULL;
4390 if (isl_basic_set_plain_is_empty(bset))
4391 return constant_on_domain(bset, 0);
4393 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
4394 return constant_on_domain(bset, 1);
4396 bounded = isl_basic_set_is_bounded(bset);
4397 if (bounded < 0)
4398 goto error;
4399 if (!bounded)
4400 return constant_on_domain(bset, -1);
4402 if (bset->n_eq == 0)
4403 return compressed_multiplicative_call(bset, fn);
4405 morph = isl_basic_set_full_compression(bset);
4406 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4408 pwqp = compressed_multiplicative_call(bset, fn);
4410 morph = isl_morph_dom_params(morph);
4411 morph = isl_morph_ran_params(morph);
4412 morph = isl_morph_inverse(morph);
4414 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4416 return pwqp;
4417 error:
4418 isl_basic_set_free(bset);
4419 return NULL;
4422 /* Drop all floors in "qp", turning each integer division [a/m] into
4423 * a rational division a/m. If "down" is set, then the integer division
4424 * is replaces by (a-(m-1))/m instead.
4426 static __isl_give isl_qpolynomial *qp_drop_floors(
4427 __isl_take isl_qpolynomial *qp, int down)
4429 int i;
4430 struct isl_upoly *s;
4432 if (!qp)
4433 return NULL;
4434 if (qp->div->n_row == 0)
4435 return qp;
4437 qp = isl_qpolynomial_cow(qp);
4438 if (!qp)
4439 return NULL;
4441 for (i = qp->div->n_row - 1; i >= 0; --i) {
4442 if (down) {
4443 isl_int_sub(qp->div->row[i][1],
4444 qp->div->row[i][1], qp->div->row[i][0]);
4445 isl_int_add_ui(qp->div->row[i][1],
4446 qp->div->row[i][1], 1);
4448 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4449 qp->div->row[i][0], qp->div->n_col - 1);
4450 qp = substitute_div(qp, i, s);
4451 if (!qp)
4452 return NULL;
4455 return qp;
4458 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4459 * a rational division a/m.
4461 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4462 __isl_take isl_pw_qpolynomial *pwqp)
4464 int i;
4466 if (!pwqp)
4467 return NULL;
4469 if (isl_pw_qpolynomial_is_zero(pwqp))
4470 return pwqp;
4472 pwqp = isl_pw_qpolynomial_cow(pwqp);
4473 if (!pwqp)
4474 return NULL;
4476 for (i = 0; i < pwqp->n; ++i) {
4477 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4478 if (!pwqp->p[i].qp)
4479 goto error;
4482 return pwqp;
4483 error:
4484 isl_pw_qpolynomial_free(pwqp);
4485 return NULL;
4488 /* Adjust all the integer divisions in "qp" such that they are at least
4489 * one over the given orthant (identified by "signs"). This ensures
4490 * that they will still be non-negative even after subtracting (m-1)/m.
4492 * In particular, f is replaced by f' + v, changing f = [a/m]
4493 * to f' = [(a - m v)/m].
4494 * If the constant term k in a is smaller than m,
4495 * the constant term of v is set to floor(k/m) - 1.
4496 * For any other term, if the coefficient c and the variable x have
4497 * the same sign, then no changes are needed.
4498 * Otherwise, if the variable is positive (and c is negative),
4499 * then the coefficient of x in v is set to floor(c/m).
4500 * If the variable is negative (and c is positive),
4501 * then the coefficient of x in v is set to ceil(c/m).
4503 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4504 int *signs)
4506 int i, j;
4507 int total;
4508 isl_vec *v = NULL;
4509 struct isl_upoly *s;
4511 qp = isl_qpolynomial_cow(qp);
4512 if (!qp)
4513 return NULL;
4514 qp->div = isl_mat_cow(qp->div);
4515 if (!qp->div)
4516 goto error;
4518 total = isl_space_dim(qp->dim, isl_dim_all);
4519 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4521 for (i = 0; i < qp->div->n_row; ++i) {
4522 isl_int *row = qp->div->row[i];
4523 v = isl_vec_clr(v);
4524 if (!v)
4525 goto error;
4526 if (isl_int_lt(row[1], row[0])) {
4527 isl_int_fdiv_q(v->el[0], row[1], row[0]);
4528 isl_int_sub_ui(v->el[0], v->el[0], 1);
4529 isl_int_submul(row[1], row[0], v->el[0]);
4531 for (j = 0; j < total; ++j) {
4532 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4533 continue;
4534 if (signs[j] < 0)
4535 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4536 else
4537 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4538 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4540 for (j = 0; j < i; ++j) {
4541 if (isl_int_sgn(row[2 + total + j]) >= 0)
4542 continue;
4543 isl_int_fdiv_q(v->el[1 + total + j],
4544 row[2 + total + j], row[0]);
4545 isl_int_submul(row[2 + total + j],
4546 row[0], v->el[1 + total + j]);
4548 for (j = i + 1; j < qp->div->n_row; ++j) {
4549 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4550 continue;
4551 isl_seq_combine(qp->div->row[j] + 1,
4552 qp->div->ctx->one, qp->div->row[j] + 1,
4553 qp->div->row[j][2 + total + i], v->el, v->size);
4555 isl_int_set_si(v->el[1 + total + i], 1);
4556 s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4557 qp->div->ctx->one, v->size);
4558 qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4559 isl_upoly_free(s);
4560 if (!qp->upoly)
4561 goto error;
4564 isl_vec_free(v);
4565 return qp;
4566 error:
4567 isl_vec_free(v);
4568 isl_qpolynomial_free(qp);
4569 return NULL;
4572 struct isl_to_poly_data {
4573 int sign;
4574 isl_pw_qpolynomial *res;
4575 isl_qpolynomial *qp;
4578 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4579 * We first make all integer divisions positive and then split the
4580 * quasipolynomials into terms with sign data->sign (the direction
4581 * of the requested approximation) and terms with the opposite sign.
4582 * In the first set of terms, each integer division [a/m] is
4583 * overapproximated by a/m, while in the second it is underapproximated
4584 * by (a-(m-1))/m.
4586 static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs,
4587 void *user)
4589 struct isl_to_poly_data *data = user;
4590 isl_pw_qpolynomial *t;
4591 isl_qpolynomial *qp, *up, *down;
4593 qp = isl_qpolynomial_copy(data->qp);
4594 qp = make_divs_pos(qp, signs);
4596 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4597 up = qp_drop_floors(up, 0);
4598 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4599 down = qp_drop_floors(down, 1);
4601 isl_qpolynomial_free(qp);
4602 qp = isl_qpolynomial_add(up, down);
4604 t = isl_pw_qpolynomial_alloc(orthant, qp);
4605 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4607 return 0;
4610 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4611 * the polynomial will be an overapproximation. If "sign" is negative,
4612 * it will be an underapproximation. If "sign" is zero, the approximation
4613 * will lie somewhere in between.
4615 * In particular, is sign == 0, we simply drop the floors, turning
4616 * the integer divisions into rational divisions.
4617 * Otherwise, we split the domains into orthants, make all integer divisions
4618 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4619 * depending on the requested sign and the sign of the term in which
4620 * the integer division appears.
4622 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4623 __isl_take isl_pw_qpolynomial *pwqp, int sign)
4625 int i;
4626 struct isl_to_poly_data data;
4628 if (sign == 0)
4629 return pwqp_drop_floors(pwqp);
4631 if (!pwqp)
4632 return NULL;
4634 data.sign = sign;
4635 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4637 for (i = 0; i < pwqp->n; ++i) {
4638 if (pwqp->p[i].qp->div->n_row == 0) {
4639 isl_pw_qpolynomial *t;
4640 t = isl_pw_qpolynomial_alloc(
4641 isl_set_copy(pwqp->p[i].set),
4642 isl_qpolynomial_copy(pwqp->p[i].qp));
4643 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4644 continue;
4646 data.qp = pwqp->p[i].qp;
4647 if (isl_set_foreach_orthant(pwqp->p[i].set,
4648 &to_polynomial_on_orthant, &data) < 0)
4649 goto error;
4652 isl_pw_qpolynomial_free(pwqp);
4654 return data.res;
4655 error:
4656 isl_pw_qpolynomial_free(pwqp);
4657 isl_pw_qpolynomial_free(data.res);
4658 return NULL;
4661 static int poly_entry(void **entry, void *user)
4663 int *sign = user;
4664 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
4666 *pwqp = isl_pw_qpolynomial_to_polynomial(*pwqp, *sign);
4668 return *pwqp ? 0 : -1;
4671 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4672 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4674 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
4675 if (!upwqp)
4676 return NULL;
4678 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
4679 &poly_entry, &sign) < 0)
4680 goto error;
4682 return upwqp;
4683 error:
4684 isl_union_pw_qpolynomial_free(upwqp);
4685 return NULL;
4688 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4689 __isl_take isl_qpolynomial *qp)
4691 int i, k;
4692 isl_space *dim;
4693 isl_vec *aff = NULL;
4694 isl_basic_map *bmap = NULL;
4695 unsigned pos;
4696 unsigned n_div;
4698 if (!qp)
4699 return NULL;
4700 if (!isl_upoly_is_affine(qp->upoly))
4701 isl_die(qp->dim->ctx, isl_error_invalid,
4702 "input quasi-polynomial not affine", goto error);
4703 aff = isl_qpolynomial_extract_affine(qp);
4704 if (!aff)
4705 goto error;
4706 dim = isl_qpolynomial_get_space(qp);
4707 pos = 1 + isl_space_offset(dim, isl_dim_out);
4708 n_div = qp->div->n_row;
4709 bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div);
4711 for (i = 0; i < n_div; ++i) {
4712 k = isl_basic_map_alloc_div(bmap);
4713 if (k < 0)
4714 goto error;
4715 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4716 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4717 if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4718 goto error;
4720 k = isl_basic_map_alloc_equality(bmap);
4721 if (k < 0)
4722 goto error;
4723 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4724 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4725 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4727 isl_vec_free(aff);
4728 isl_qpolynomial_free(qp);
4729 bmap = isl_basic_map_finalize(bmap);
4730 return bmap;
4731 error:
4732 isl_vec_free(aff);
4733 isl_qpolynomial_free(qp);
4734 isl_basic_map_free(bmap);
4735 return NULL;