2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 #include "isl_map_private.h"
17 #include <isl/options.h>
19 #include <isl_mat_private.h>
20 #include <isl_local_space_private.h>
22 #define STATUS_ERROR -1
23 #define STATUS_REDUNDANT 1
24 #define STATUS_VALID 2
25 #define STATUS_SEPARATE 3
27 #define STATUS_ADJ_EQ 5
28 #define STATUS_ADJ_INEQ 6
30 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
32 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
35 case isl_ineq_error
: return STATUS_ERROR
;
36 case isl_ineq_redundant
: return STATUS_VALID
;
37 case isl_ineq_separate
: return STATUS_SEPARATE
;
38 case isl_ineq_cut
: return STATUS_CUT
;
39 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
40 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
44 /* Compute the position of the equalities of basic map "bmap_i"
45 * with respect to the basic map represented by "tab_j".
46 * The resulting array has twice as many entries as the number
47 * of equalities corresponding to the two inequalties to which
48 * each equality corresponds.
50 static int *eq_status_in(__isl_keep isl_basic_map
*bmap_i
,
51 struct isl_tab
*tab_j
)
54 int *eq
= isl_calloc_array(bmap_i
->ctx
, int, 2 * bmap_i
->n_eq
);
57 dim
= isl_basic_map_total_dim(bmap_i
);
58 for (k
= 0; k
< bmap_i
->n_eq
; ++k
) {
59 for (l
= 0; l
< 2; ++l
) {
60 isl_seq_neg(bmap_i
->eq
[k
], bmap_i
->eq
[k
], 1+dim
);
61 eq
[2 * k
+ l
] = status_in(bmap_i
->eq
[k
], tab_j
);
62 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
65 if (eq
[2 * k
] == STATUS_SEPARATE
||
66 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
76 /* Compute the position of the inequalities of basic map "bmap_i"
77 * (also represented by "tab_i", if not NULL) with respect to the basic map
78 * represented by "tab_j".
80 static int *ineq_status_in(__isl_keep isl_basic_map
*bmap_i
,
81 struct isl_tab
*tab_i
, struct isl_tab
*tab_j
)
84 unsigned n_eq
= bmap_i
->n_eq
;
85 int *ineq
= isl_calloc_array(bmap_i
->ctx
, int, bmap_i
->n_ineq
);
87 for (k
= 0; k
< bmap_i
->n_ineq
; ++k
) {
88 if (tab_i
&& isl_tab_is_redundant(tab_i
, n_eq
+ k
)) {
89 ineq
[k
] = STATUS_REDUNDANT
;
92 ineq
[k
] = status_in(bmap_i
->ineq
[k
], tab_j
);
93 if (ineq
[k
] == STATUS_ERROR
)
95 if (ineq
[k
] == STATUS_SEPARATE
)
105 static int any(int *con
, unsigned len
, int status
)
109 for (i
= 0; i
< len
; ++i
)
110 if (con
[i
] == status
)
115 static int count(int *con
, unsigned len
, int status
)
120 for (i
= 0; i
< len
; ++i
)
121 if (con
[i
] == status
)
126 static int all(int *con
, unsigned len
, int status
)
130 for (i
= 0; i
< len
; ++i
) {
131 if (con
[i
] == STATUS_REDUNDANT
)
133 if (con
[i
] != status
)
139 static void drop(struct isl_map
*map
, int i
, struct isl_tab
**tabs
)
141 isl_basic_map_free(map
->p
[i
]);
142 isl_tab_free(tabs
[i
]);
144 if (i
!= map
->n
- 1) {
145 map
->p
[i
] = map
->p
[map
->n
- 1];
146 tabs
[i
] = tabs
[map
->n
- 1];
148 tabs
[map
->n
- 1] = NULL
;
152 /* Replace the pair of basic maps i and j by the basic map bounded
153 * by the valid constraints in both basic maps and the constraint
154 * in extra (if not NULL).
156 static int fuse(struct isl_map
*map
, int i
, int j
,
157 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
,
158 __isl_keep isl_mat
*extra
)
161 struct isl_basic_map
*fused
= NULL
;
162 struct isl_tab
*fused_tab
= NULL
;
163 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
164 unsigned extra_rows
= extra
? extra
->n_row
: 0;
166 fused
= isl_basic_map_alloc_space(isl_space_copy(map
->p
[i
]->dim
),
168 map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
,
169 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
+ extra_rows
);
173 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
174 if (eq_i
&& (eq_i
[2 * k
] != STATUS_VALID
||
175 eq_i
[2 * k
+ 1] != STATUS_VALID
))
177 l
= isl_basic_map_alloc_equality(fused
);
180 isl_seq_cpy(fused
->eq
[l
], map
->p
[i
]->eq
[k
], 1 + total
);
183 for (k
= 0; k
< map
->p
[j
]->n_eq
; ++k
) {
184 if (eq_j
&& (eq_j
[2 * k
] != STATUS_VALID
||
185 eq_j
[2 * k
+ 1] != STATUS_VALID
))
187 l
= isl_basic_map_alloc_equality(fused
);
190 isl_seq_cpy(fused
->eq
[l
], map
->p
[j
]->eq
[k
], 1 + total
);
193 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
194 if (ineq_i
[k
] != STATUS_VALID
)
196 l
= isl_basic_map_alloc_inequality(fused
);
199 isl_seq_cpy(fused
->ineq
[l
], map
->p
[i
]->ineq
[k
], 1 + total
);
202 for (k
= 0; k
< map
->p
[j
]->n_ineq
; ++k
) {
203 if (ineq_j
[k
] != STATUS_VALID
)
205 l
= isl_basic_map_alloc_inequality(fused
);
208 isl_seq_cpy(fused
->ineq
[l
], map
->p
[j
]->ineq
[k
], 1 + total
);
211 for (k
= 0; k
< map
->p
[i
]->n_div
; ++k
) {
212 int l
= isl_basic_map_alloc_div(fused
);
215 isl_seq_cpy(fused
->div
[l
], map
->p
[i
]->div
[k
], 1 + 1 + total
);
218 for (k
= 0; k
< extra_rows
; ++k
) {
219 l
= isl_basic_map_alloc_inequality(fused
);
222 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
225 fused
= isl_basic_map_gauss(fused
, NULL
);
226 ISL_F_SET(fused
, ISL_BASIC_MAP_FINAL
);
227 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) &&
228 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
229 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
231 fused_tab
= isl_tab_from_basic_map(fused
, 0);
232 if (isl_tab_detect_redundant(fused_tab
) < 0)
235 isl_basic_map_free(map
->p
[i
]);
237 isl_tab_free(tabs
[i
]);
243 isl_tab_free(fused_tab
);
244 isl_basic_map_free(fused
);
248 /* Given a pair of basic maps i and j such that all constraints are either
249 * "valid" or "cut", check if the facets corresponding to the "cut"
250 * constraints of i lie entirely within basic map j.
251 * If so, replace the pair by the basic map consisting of the valid
252 * constraints in both basic maps.
254 * To see that we are not introducing any extra points, call the
255 * two basic maps A and B and the resulting map U and let x
256 * be an element of U \setminus ( A \cup B ).
257 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
258 * violates them. Let X be the intersection of U with the opposites
259 * of these constraints. Then x \in X.
260 * The facet corresponding to c_1 contains the corresponding facet of A.
261 * This facet is entirely contained in B, so c_2 is valid on the facet.
262 * However, since it is also (part of) a facet of X, -c_2 is also valid
263 * on the facet. This means c_2 is saturated on the facet, so c_1 and
264 * c_2 must be opposites of each other, but then x could not violate
267 static int check_facets(struct isl_map
*map
, int i
, int j
,
268 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
271 struct isl_tab_undo
*snap
;
272 unsigned n_eq
= map
->p
[i
]->n_eq
;
274 snap
= isl_tab_snap(tabs
[i
]);
276 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
277 if (ineq_i
[k
] != STATUS_CUT
)
279 if (isl_tab_select_facet(tabs
[i
], n_eq
+ k
) < 0)
281 for (l
= 0; l
< map
->p
[j
]->n_ineq
; ++l
) {
283 if (ineq_j
[l
] != STATUS_CUT
)
285 stat
= status_in(map
->p
[j
]->ineq
[l
], tabs
[i
]);
286 if (stat
!= STATUS_VALID
)
289 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
291 if (l
< map
->p
[j
]->n_ineq
)
295 if (k
< map
->p
[i
]->n_ineq
)
298 return fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
301 /* Both basic maps have at least one inequality with and adjacent
302 * (but opposite) inequality in the other basic map.
303 * Check that there are no cut constraints and that there is only
304 * a single pair of adjacent inequalities.
305 * If so, we can replace the pair by a single basic map described
306 * by all but the pair of adjacent inequalities.
307 * Any additional points introduced lie strictly between the two
308 * adjacent hyperplanes and can therefore be integral.
317 * The test for a single pair of adjancent inequalities is important
318 * for avoiding the combination of two basic maps like the following
328 static int check_adj_ineq(struct isl_map
*map
, int i
, int j
,
329 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
333 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
) ||
334 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_CUT
))
337 else if (count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) == 1 &&
338 count(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
) == 1)
339 changed
= fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
340 /* else ADJ INEQ TOO MANY */
345 /* Check if basic map "i" contains the basic map represented
346 * by the tableau "tab".
348 static int contains(struct isl_map
*map
, int i
, int *ineq_i
,
354 dim
= isl_basic_map_total_dim(map
->p
[i
]);
355 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
356 for (l
= 0; l
< 2; ++l
) {
358 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
359 stat
= status_in(map
->p
[i
]->eq
[k
], tab
);
360 if (stat
!= STATUS_VALID
)
365 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
367 if (ineq_i
[k
] == STATUS_REDUNDANT
)
369 stat
= status_in(map
->p
[i
]->ineq
[k
], tab
);
370 if (stat
!= STATUS_VALID
)
376 /* Basic map "i" has an inequality "k" that is adjacent to some equality
377 * of basic map "j". All the other inequalities are valid for "j".
378 * Check if basic map "j" forms an extension of basic map "i".
380 * In particular, we relax constraint "k", compute the corresponding
381 * facet and check whether it is included in the other basic map.
382 * If so, we know that relaxing the constraint extends the basic
383 * map with exactly the other basic map (we already know that this
384 * other basic map is included in the extension, because there
385 * were no "cut" inequalities in "i") and we can replace the
386 * two basic maps by thie extension.
394 static int is_extension(struct isl_map
*map
, int i
, int j
, int k
,
395 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
399 struct isl_tab_undo
*snap
, *snap2
;
400 unsigned n_eq
= map
->p
[i
]->n_eq
;
402 if (isl_tab_is_equality(tabs
[i
], n_eq
+ k
))
405 snap
= isl_tab_snap(tabs
[i
]);
406 tabs
[i
] = isl_tab_relax(tabs
[i
], n_eq
+ k
);
407 snap2
= isl_tab_snap(tabs
[i
]);
408 if (isl_tab_select_facet(tabs
[i
], n_eq
+ k
) < 0)
410 super
= contains(map
, j
, ineq_j
, tabs
[i
]);
412 if (isl_tab_rollback(tabs
[i
], snap2
) < 0)
414 map
->p
[i
] = isl_basic_map_cow(map
->p
[i
]);
417 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
418 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_FINAL
);
422 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
428 /* Data structure that keeps track of the wrapping constraints
429 * and of information to bound the coefficients of those constraints.
431 * bound is set if we want to apply a bound on the coefficients
432 * mat contains the wrapping constraints
433 * max is the bound on the coefficients (if bound is set)
441 /* Update wraps->max to be greater than or equal to the coefficients
442 * in the equalities and inequalities of bmap that can be removed if we end up
445 static void wraps_update_max(struct isl_wraps
*wraps
,
446 __isl_keep isl_basic_map
*bmap
, int *eq
, int *ineq
)
450 unsigned total
= isl_basic_map_total_dim(bmap
);
454 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
455 if (eq
[2 * k
] == STATUS_VALID
&&
456 eq
[2 * k
+ 1] == STATUS_VALID
)
458 isl_seq_abs_max(bmap
->eq
[k
] + 1, total
, &max_k
);
459 if (isl_int_abs_gt(max_k
, wraps
->max
))
460 isl_int_set(wraps
->max
, max_k
);
463 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
464 if (ineq
[k
] == STATUS_VALID
|| ineq
[k
] == STATUS_REDUNDANT
)
466 isl_seq_abs_max(bmap
->ineq
[k
] + 1, total
, &max_k
);
467 if (isl_int_abs_gt(max_k
, wraps
->max
))
468 isl_int_set(wraps
->max
, max_k
);
471 isl_int_clear(max_k
);
474 /* Initialize the isl_wraps data structure.
475 * If we want to bound the coefficients of the wrapping constraints,
476 * we set wraps->max to the largest coefficient
477 * in the equalities and inequalities that can be removed if we end up
480 static void wraps_init(struct isl_wraps
*wraps
, __isl_take isl_mat
*mat
,
481 __isl_keep isl_map
*map
, int i
, int j
,
482 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
490 ctx
= isl_mat_get_ctx(mat
);
491 wraps
->bound
= isl_options_get_coalesce_bounded_wrapping(ctx
);
494 isl_int_init(wraps
->max
);
495 isl_int_set_si(wraps
->max
, 0);
496 wraps_update_max(wraps
, map
->p
[i
], eq_i
, ineq_i
);
497 wraps_update_max(wraps
, map
->p
[j
], eq_j
, ineq_j
);
500 /* Free the contents of the isl_wraps data structure.
502 static void wraps_free(struct isl_wraps
*wraps
)
504 isl_mat_free(wraps
->mat
);
506 isl_int_clear(wraps
->max
);
509 /* Is the wrapping constraint in row "row" allowed?
511 * If wraps->bound is set, we check that none of the coefficients
512 * is greater than wraps->max.
514 static int allow_wrap(struct isl_wraps
*wraps
, int row
)
521 for (i
= 1; i
< wraps
->mat
->n_col
; ++i
)
522 if (isl_int_abs_gt(wraps
->mat
->row
[row
][i
], wraps
->max
))
528 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
529 * wrap the constraint around "bound" such that it includes the whole
530 * set "set" and append the resulting constraint to "wraps".
531 * "wraps" is assumed to have been pre-allocated to the appropriate size.
532 * wraps->n_row is the number of actual wrapped constraints that have
534 * If any of the wrapping problems results in a constraint that is
535 * identical to "bound", then this means that "set" is unbounded in such
536 * way that no wrapping is possible. If this happens then wraps->n_row
538 * Similarly, if we want to bound the coefficients of the wrapping
539 * constraints and a newly added wrapping constraint does not
540 * satisfy the bound, then wraps->n_row is also reset to zero.
542 static int add_wraps(struct isl_wraps
*wraps
, __isl_keep isl_basic_map
*bmap
,
543 struct isl_tab
*tab
, isl_int
*bound
, __isl_keep isl_set
*set
)
547 unsigned total
= isl_basic_map_total_dim(bmap
);
549 w
= wraps
->mat
->n_row
;
551 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
552 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], 1 + total
))
554 if (isl_seq_eq(bound
, bmap
->ineq
[l
], 1 + total
))
556 if (isl_tab_is_redundant(tab
, bmap
->n_eq
+ l
))
559 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
560 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], bmap
->ineq
[l
]))
562 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
564 if (!allow_wrap(wraps
, w
))
568 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
569 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], 1 + total
))
571 if (isl_seq_eq(bound
, bmap
->eq
[l
], 1 + total
))
574 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
575 isl_seq_neg(wraps
->mat
->row
[w
+ 1], bmap
->eq
[l
], 1 + total
);
576 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
],
577 wraps
->mat
->row
[w
+ 1]))
579 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
581 if (!allow_wrap(wraps
, w
))
585 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
586 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], bmap
->eq
[l
]))
588 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
590 if (!allow_wrap(wraps
, w
))
595 wraps
->mat
->n_row
= w
;
598 wraps
->mat
->n_row
= 0;
602 /* Check if the constraints in "wraps" from "first" until the last
603 * are all valid for the basic set represented by "tab".
604 * If not, wraps->n_row is set to zero.
606 static int check_wraps(__isl_keep isl_mat
*wraps
, int first
,
611 for (i
= first
; i
< wraps
->n_row
; ++i
) {
612 enum isl_ineq_type type
;
613 type
= isl_tab_ineq_type(tab
, wraps
->row
[i
]);
614 if (type
== isl_ineq_error
)
616 if (type
== isl_ineq_redundant
)
625 /* Return a set that corresponds to the non-redudant constraints
626 * (as recorded in tab) of bmap.
628 * It's important to remove the redundant constraints as some
629 * of the other constraints may have been modified after the
630 * constraints were marked redundant.
631 * In particular, a constraint may have been relaxed.
632 * Redundant constraints are ignored when a constraint is relaxed
633 * and should therefore continue to be ignored ever after.
634 * Otherwise, the relaxation might be thwarted by some of
637 static __isl_give isl_set
*set_from_updated_bmap(__isl_keep isl_basic_map
*bmap
,
640 bmap
= isl_basic_map_copy(bmap
);
641 bmap
= isl_basic_map_cow(bmap
);
642 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
643 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap
));
646 /* Given a basic set i with a constraint k that is adjacent to either the
647 * whole of basic set j or a facet of basic set j, check if we can wrap
648 * both the facet corresponding to k and the facet of j (or the whole of j)
649 * around their ridges to include the other set.
650 * If so, replace the pair of basic sets by their union.
652 * All constraints of i (except k) are assumed to be valid for j.
654 * However, the constraints of j may not be valid for i and so
655 * we have to check that the wrapping constraints for j are valid for i.
657 * In the case where j has a facet adjacent to i, tab[j] is assumed
658 * to have been restricted to this facet, so that the non-redundant
659 * constraints in tab[j] are the ridges of the facet.
660 * Note that for the purpose of wrapping, it does not matter whether
661 * we wrap the ridges of i around the whole of j or just around
662 * the facet since all the other constraints are assumed to be valid for j.
663 * In practice, we wrap to include the whole of j.
672 static int can_wrap_in_facet(struct isl_map
*map
, int i
, int j
, int k
,
673 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
676 struct isl_wraps wraps
;
678 struct isl_set
*set_i
= NULL
;
679 struct isl_set
*set_j
= NULL
;
680 struct isl_vec
*bound
= NULL
;
681 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
682 struct isl_tab_undo
*snap
;
685 set_i
= set_from_updated_bmap(map
->p
[i
], tabs
[i
]);
686 set_j
= set_from_updated_bmap(map
->p
[j
], tabs
[j
]);
687 mat
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
688 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
690 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
691 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
692 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
695 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
696 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
698 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
699 wraps
.mat
->n_row
= 1;
701 if (add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
703 if (!wraps
.mat
->n_row
)
706 snap
= isl_tab_snap(tabs
[i
]);
708 if (isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ k
) < 0)
710 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
713 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
715 n
= wraps
.mat
->n_row
;
716 if (add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
719 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
721 if (check_wraps(wraps
.mat
, n
, tabs
[i
]) < 0)
723 if (!wraps
.mat
->n_row
)
726 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
745 /* Set the is_redundant property of the "n" constraints in "cuts",
747 * This is a fairly tricky operation as it bypasses isl_tab.c.
748 * The reason we want to temporarily mark some constraints redundant
749 * is that we want to ignore them in add_wraps.
751 * Initially all cut constraints are non-redundant, but the
752 * selection of a facet right before the call to this function
753 * may have made some of them redundant.
754 * Likewise, the same constraints are marked non-redundant
755 * in the second call to this function, before they are officially
756 * made non-redundant again in the subsequent rollback.
758 static void set_is_redundant(struct isl_tab
*tab
, unsigned n_eq
,
759 int *cuts
, int n
, int k
, int v
)
763 for (l
= 0; l
< n
; ++l
) {
766 tab
->con
[n_eq
+ cuts
[l
]].is_redundant
= v
;
770 /* Given a pair of basic maps i and j such that j sticks out
771 * of i at n cut constraints, each time by at most one,
772 * try to compute wrapping constraints and replace the two
773 * basic maps by a single basic map.
774 * The other constraints of i are assumed to be valid for j.
776 * The facets of i corresponding to the cut constraints are
777 * wrapped around their ridges, except those ridges determined
778 * by any of the other cut constraints.
779 * The intersections of cut constraints need to be ignored
780 * as the result of wrapping one cut constraint around another
781 * would result in a constraint cutting the union.
782 * In each case, the facets are wrapped to include the union
783 * of the two basic maps.
785 * The pieces of j that lie at an offset of exactly one from
786 * one of the cut constraints of i are wrapped around their edges.
787 * Here, there is no need to ignore intersections because we
788 * are wrapping around the union of the two basic maps.
790 * If any wrapping fails, i.e., if we cannot wrap to touch
791 * the union, then we give up.
792 * Otherwise, the pair of basic maps is replaced by their union.
794 static int wrap_in_facets(struct isl_map
*map
, int i
, int j
,
795 int *cuts
, int n
, struct isl_tab
**tabs
,
796 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
799 struct isl_wraps wraps
;
802 isl_vec
*bound
= NULL
;
803 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
806 struct isl_tab_undo
*snap_i
, *snap_j
;
808 if (isl_tab_extend_cons(tabs
[j
], 1) < 0)
811 max_wrap
= 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
812 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
;
815 set
= isl_set_union(set_from_updated_bmap(map
->p
[i
], tabs
[i
]),
816 set_from_updated_bmap(map
->p
[j
], tabs
[j
]));
817 mat
= isl_mat_alloc(map
->ctx
, max_wrap
, 1 + total
);
818 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
819 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
820 if (!set
|| !wraps
.mat
|| !bound
)
823 snap_i
= isl_tab_snap(tabs
[i
]);
824 snap_j
= isl_tab_snap(tabs
[j
]);
826 wraps
.mat
->n_row
= 0;
828 for (k
= 0; k
< n
; ++k
) {
829 if (isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ cuts
[k
]) < 0)
831 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
833 set_is_redundant(tabs
[i
], map
->p
[i
]->n_eq
, cuts
, n
, k
, 1);
835 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[cuts
[k
]], 1 + total
);
836 if (!tabs
[i
]->empty
&&
837 add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set
) < 0)
840 set_is_redundant(tabs
[i
], map
->p
[i
]->n_eq
, cuts
, n
, k
, 0);
841 if (isl_tab_rollback(tabs
[i
], snap_i
) < 0)
846 if (!wraps
.mat
->n_row
)
849 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[cuts
[k
]], 1 + total
);
850 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
851 if (isl_tab_add_eq(tabs
[j
], bound
->el
) < 0)
853 if (isl_tab_detect_redundant(tabs
[j
]) < 0)
856 if (!tabs
[j
]->empty
&&
857 add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set
) < 0)
860 if (isl_tab_rollback(tabs
[j
], snap_j
) < 0)
863 if (!wraps
.mat
->n_row
)
868 changed
= fuse(map
, i
, j
, tabs
,
869 eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
883 /* Given two basic sets i and j such that i has no cut equalities,
884 * check if relaxing all the cut inequalities of i by one turns
885 * them into valid constraint for j and check if we can wrap in
886 * the bits that are sticking out.
887 * If so, replace the pair by their union.
889 * We first check if all relaxed cut inequalities of i are valid for j
890 * and then try to wrap in the intersections of the relaxed cut inequalities
893 * During this wrapping, we consider the points of j that lie at a distance
894 * of exactly 1 from i. In particular, we ignore the points that lie in
895 * between this lower-dimensional space and the basic map i.
896 * We can therefore only apply this to integer maps.
922 * Wrapping can fail if the result of wrapping one of the facets
923 * around its edges does not produce any new facet constraint.
924 * In particular, this happens when we try to wrap in unbounded sets.
926 * _______________________________________________________________________
930 * |_| |_________________________________________________________________
933 * The following is not an acceptable result of coalescing the above two
934 * sets as it includes extra integer points.
935 * _______________________________________________________________________
940 * \______________________________________________________________________
942 static int can_wrap_in_set(struct isl_map
*map
, int i
, int j
,
943 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
950 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) ||
951 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
954 n
= count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
);
958 cuts
= isl_alloc_array(map
->ctx
, int, n
);
962 for (k
= 0, m
= 0; m
< n
; ++k
) {
963 enum isl_ineq_type type
;
965 if (ineq_i
[k
] != STATUS_CUT
)
968 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
969 type
= isl_tab_ineq_type(tabs
[j
], map
->p
[i
]->ineq
[k
]);
970 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
971 if (type
== isl_ineq_error
)
973 if (type
!= isl_ineq_redundant
)
980 changed
= wrap_in_facets(map
, i
, j
, cuts
, n
, tabs
,
981 eq_i
, ineq_i
, eq_j
, ineq_j
);
991 /* Check if either i or j has a single cut constraint that can
992 * be used to wrap in (a facet of) the other basic set.
993 * if so, replace the pair by their union.
995 static int check_wrap(struct isl_map
*map
, int i
, int j
,
996 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1000 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
))
1001 changed
= can_wrap_in_set(map
, i
, j
, tabs
,
1002 eq_i
, ineq_i
, eq_j
, ineq_j
);
1006 if (!any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1007 changed
= can_wrap_in_set(map
, j
, i
, tabs
,
1008 eq_j
, ineq_j
, eq_i
, ineq_i
);
1012 /* At least one of the basic maps has an equality that is adjacent
1013 * to inequality. Make sure that only one of the basic maps has
1014 * such an equality and that the other basic map has exactly one
1015 * inequality adjacent to an equality.
1016 * We call the basic map that has the inequality "i" and the basic
1017 * map that has the equality "j".
1018 * If "i" has any "cut" (in)equality, then relaxing the inequality
1019 * by one would not result in a basic map that contains the other
1022 static int check_adj_eq(struct isl_map
*map
, int i
, int j
,
1023 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1028 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) &&
1029 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
))
1030 /* ADJ EQ TOO MANY */
1033 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
))
1034 return check_adj_eq(map
, j
, i
, tabs
,
1035 eq_j
, ineq_j
, eq_i
, ineq_i
);
1037 /* j has an equality adjacent to an inequality in i */
1039 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
))
1041 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
))
1044 if (count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) != 1 ||
1045 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
) ||
1046 any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
1047 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
))
1048 /* ADJ EQ TOO MANY */
1051 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
1052 if (ineq_i
[k
] == STATUS_ADJ_EQ
)
1055 changed
= is_extension(map
, i
, j
, k
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1059 if (count(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
) != 1)
1062 changed
= can_wrap_in_facet(map
, i
, j
, k
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1067 /* The two basic maps lie on adjacent hyperplanes. In particular,
1068 * basic map "i" has an equality that lies parallel to basic map "j".
1069 * Check if we can wrap the facets around the parallel hyperplanes
1070 * to include the other set.
1072 * We perform basically the same operations as can_wrap_in_facet,
1073 * except that we don't need to select a facet of one of the sets.
1079 * We only allow one equality of "i" to be adjacent to an equality of "j"
1080 * to avoid coalescing
1082 * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
1083 * x <= 10 and y <= 10;
1084 * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
1085 * y >= 5 and y <= 15 }
1089 * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
1090 * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
1091 * y2 <= 1 + x + y - x2 and y2 >= y and
1092 * y2 >= 1 + x + y - x2 }
1094 static int check_eq_adj_eq(struct isl_map
*map
, int i
, int j
,
1095 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1099 struct isl_wraps wraps
;
1101 struct isl_set
*set_i
= NULL
;
1102 struct isl_set
*set_j
= NULL
;
1103 struct isl_vec
*bound
= NULL
;
1104 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
1106 if (count(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
) != 1)
1109 for (k
= 0; k
< 2 * map
->p
[i
]->n_eq
; ++k
)
1110 if (eq_i
[k
] == STATUS_ADJ_EQ
)
1113 set_i
= set_from_updated_bmap(map
->p
[i
], tabs
[i
]);
1114 set_j
= set_from_updated_bmap(map
->p
[j
], tabs
[j
]);
1115 mat
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
1116 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
1118 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1119 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
1120 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
1124 isl_seq_neg(bound
->el
, map
->p
[i
]->eq
[k
/ 2], 1 + total
);
1126 isl_seq_cpy(bound
->el
, map
->p
[i
]->eq
[k
/ 2], 1 + total
);
1127 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1129 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1130 wraps
.mat
->n_row
= 1;
1132 if (add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
1134 if (!wraps
.mat
->n_row
)
1137 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
1138 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
1140 isl_seq_cpy(wraps
.mat
->row
[wraps
.mat
->n_row
], bound
->el
, 1 + total
);
1143 if (add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
1145 if (!wraps
.mat
->n_row
)
1148 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
1151 error
: changed
= -1;
1156 isl_set_free(set_i
);
1157 isl_set_free(set_j
);
1158 isl_vec_free(bound
);
1163 /* Check if the union of the given pair of basic maps
1164 * can be represented by a single basic map.
1165 * If so, replace the pair by the single basic map and return 1.
1166 * Otherwise, return 0;
1167 * The two basic maps are assumed to live in the same local space.
1169 * We first check the effect of each constraint of one basic map
1170 * on the other basic map.
1171 * The constraint may be
1172 * redundant the constraint is redundant in its own
1173 * basic map and should be ignore and removed
1175 * valid all (integer) points of the other basic map
1176 * satisfy the constraint
1177 * separate no (integer) point of the other basic map
1178 * satisfies the constraint
1179 * cut some but not all points of the other basic map
1180 * satisfy the constraint
1181 * adj_eq the given constraint is adjacent (on the outside)
1182 * to an equality of the other basic map
1183 * adj_ineq the given constraint is adjacent (on the outside)
1184 * to an inequality of the other basic map
1186 * We consider seven cases in which we can replace the pair by a single
1187 * basic map. We ignore all "redundant" constraints.
1189 * 1. all constraints of one basic map are valid
1190 * => the other basic map is a subset and can be removed
1192 * 2. all constraints of both basic maps are either "valid" or "cut"
1193 * and the facets corresponding to the "cut" constraints
1194 * of one of the basic maps lies entirely inside the other basic map
1195 * => the pair can be replaced by a basic map consisting
1196 * of the valid constraints in both basic maps
1198 * 3. there is a single pair of adjacent inequalities
1199 * (all other constraints are "valid")
1200 * => the pair can be replaced by a basic map consisting
1201 * of the valid constraints in both basic maps
1203 * 4. there is a single adjacent pair of an inequality and an equality,
1204 * the other constraints of the basic map containing the inequality are
1205 * "valid". Moreover, if the inequality the basic map is relaxed
1206 * and then turned into an equality, then resulting facet lies
1207 * entirely inside the other basic map
1208 * => the pair can be replaced by the basic map containing
1209 * the inequality, with the inequality relaxed.
1211 * 5. there is a single adjacent pair of an inequality and an equality,
1212 * the other constraints of the basic map containing the inequality are
1213 * "valid". Moreover, the facets corresponding to both
1214 * the inequality and the equality can be wrapped around their
1215 * ridges to include the other basic map
1216 * => the pair can be replaced by a basic map consisting
1217 * of the valid constraints in both basic maps together
1218 * with all wrapping constraints
1220 * 6. one of the basic maps extends beyond the other by at most one.
1221 * Moreover, the facets corresponding to the cut constraints and
1222 * the pieces of the other basic map at offset one from these cut
1223 * constraints can be wrapped around their ridges to include
1224 * the union of the two basic maps
1225 * => the pair can be replaced by a basic map consisting
1226 * of the valid constraints in both basic maps together
1227 * with all wrapping constraints
1229 * 7. the two basic maps live in adjacent hyperplanes. In principle
1230 * such sets can always be combined through wrapping, but we impose
1231 * that there is only one such pair, to avoid overeager coalescing.
1233 * Throughout the computation, we maintain a collection of tableaus
1234 * corresponding to the basic maps. When the basic maps are dropped
1235 * or combined, the tableaus are modified accordingly.
1237 static int coalesce_local_pair(__isl_keep isl_map
*map
, int i
, int j
,
1238 struct isl_tab
**tabs
)
1246 eq_i
= eq_status_in(map
->p
[i
], tabs
[j
]);
1249 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ERROR
))
1251 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_SEPARATE
))
1254 eq_j
= eq_status_in(map
->p
[j
], tabs
[i
]);
1257 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ERROR
))
1259 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_SEPARATE
))
1262 ineq_i
= ineq_status_in(map
->p
[i
], tabs
[i
], tabs
[j
]);
1265 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ERROR
))
1267 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_SEPARATE
))
1270 ineq_j
= ineq_status_in(map
->p
[j
], tabs
[j
], tabs
[i
]);
1273 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ERROR
))
1275 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_SEPARATE
))
1278 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
1279 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
1282 } else if (all(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_VALID
) &&
1283 all(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_VALID
)) {
1286 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
)) {
1287 changed
= check_eq_adj_eq(map
, i
, j
, tabs
,
1288 eq_i
, ineq_i
, eq_j
, ineq_j
);
1289 } else if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_EQ
)) {
1290 changed
= check_eq_adj_eq(map
, j
, i
, tabs
,
1291 eq_j
, ineq_j
, eq_i
, ineq_i
);
1292 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) ||
1293 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
)) {
1294 changed
= check_adj_eq(map
, i
, j
, tabs
,
1295 eq_i
, ineq_i
, eq_j
, ineq_j
);
1296 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) ||
1297 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
)) {
1300 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
1301 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
)) {
1302 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) &&
1303 !any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1304 changed
= check_adj_ineq(map
, i
, j
, tabs
,
1307 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) &&
1308 !any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1309 changed
= check_facets(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
1311 changed
= check_wrap(map
, i
, j
, tabs
,
1312 eq_i
, ineq_i
, eq_j
, ineq_j
);
1329 /* Do the two basic maps live in the same local space, i.e.,
1330 * do they have the same (known) divs?
1331 * If either basic map has any unknown divs, then we can only assume
1332 * that they do not live in the same local space.
1334 static int same_divs(__isl_keep isl_basic_map
*bmap1
,
1335 __isl_keep isl_basic_map
*bmap2
)
1341 if (!bmap1
|| !bmap2
)
1343 if (bmap1
->n_div
!= bmap2
->n_div
)
1346 if (bmap1
->n_div
== 0)
1349 known
= isl_basic_map_divs_known(bmap1
);
1350 if (known
< 0 || !known
)
1352 known
= isl_basic_map_divs_known(bmap2
);
1353 if (known
< 0 || !known
)
1356 total
= isl_basic_map_total_dim(bmap1
);
1357 for (i
= 0; i
< bmap1
->n_div
; ++i
)
1358 if (!isl_seq_eq(bmap1
->div
[i
], bmap2
->div
[i
], 2 + total
))
1364 /* Given two basic maps "i" and "j", where the divs of "i" form a subset
1365 * of those of "j", check if basic map "j" is a subset of basic map "i"
1366 * and, if so, drop basic map "j".
1368 * We first expand the divs of basic map "i" to match those of basic map "j",
1369 * using the divs and expansion computed by the caller.
1370 * Then we check if all constraints of the expanded "i" are valid for "j".
1372 static int coalesce_subset(__isl_keep isl_map
*map
, int i
, int j
,
1373 struct isl_tab
**tabs
, __isl_keep isl_mat
*div
, int *exp
)
1375 isl_basic_map
*bmap
;
1380 bmap
= isl_basic_map_copy(map
->p
[i
]);
1381 bmap
= isl_basic_set_expand_divs(bmap
, isl_mat_copy(div
), exp
);
1386 eq_i
= eq_status_in(bmap
, tabs
[j
]);
1389 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_ERROR
))
1391 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_SEPARATE
))
1394 ineq_i
= ineq_status_in(bmap
, NULL
, tabs
[j
]);
1397 if (any(ineq_i
, bmap
->n_ineq
, STATUS_ERROR
))
1399 if (any(ineq_i
, bmap
->n_ineq
, STATUS_SEPARATE
))
1402 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
1403 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
1409 isl_basic_map_free(bmap
);
1414 isl_basic_map_free(bmap
);
1420 /* Check if the basic map "j" is a subset of basic map "i",
1421 * assuming that "i" has fewer divs that "j".
1422 * If not, then we change the order.
1424 * If the two basic maps have the same number of divs, then
1425 * they must necessarily be different. Otherwise, we would have
1426 * called coalesce_local_pair. We therefore don't do try anyhing
1429 * We first check if the divs of "i" are all known and form a subset
1430 * of those of "j". If so, we pass control over to coalesce_subset.
1432 static int check_coalesce_subset(__isl_keep isl_map
*map
, int i
, int j
,
1433 struct isl_tab
**tabs
)
1436 isl_mat
*div_i
, *div_j
, *div
;
1442 if (map
->p
[i
]->n_div
== map
->p
[j
]->n_div
)
1444 if (map
->p
[j
]->n_div
< map
->p
[i
]->n_div
)
1445 return check_coalesce_subset(map
, j
, i
, tabs
);
1447 known
= isl_basic_map_divs_known(map
->p
[i
]);
1448 if (known
< 0 || !known
)
1451 ctx
= isl_map_get_ctx(map
);
1453 div_i
= isl_basic_map_get_divs(map
->p
[i
]);
1454 div_j
= isl_basic_map_get_divs(map
->p
[j
]);
1456 if (!div_i
|| !div_j
)
1459 exp1
= isl_alloc_array(ctx
, int, div_i
->n_row
);
1460 exp2
= isl_alloc_array(ctx
, int, div_j
->n_row
);
1464 div
= isl_merge_divs(div_i
, div_j
, exp1
, exp2
);
1468 if (div
->n_row
== div_j
->n_row
)
1469 subset
= coalesce_subset(map
, i
, j
, tabs
, div
, exp1
);
1475 isl_mat_free(div_i
);
1476 isl_mat_free(div_j
);
1483 isl_mat_free(div_i
);
1484 isl_mat_free(div_j
);
1490 /* Check if the union of the given pair of basic maps
1491 * can be represented by a single basic map.
1492 * If so, replace the pair by the single basic map and return 1.
1493 * Otherwise, return 0;
1495 * We first check if the two basic maps live in the same local space.
1496 * If so, we do the complete check. Otherwise, we check if one is
1497 * an obvious subset of the other.
1499 static int coalesce_pair(__isl_keep isl_map
*map
, int i
, int j
,
1500 struct isl_tab
**tabs
)
1504 same
= same_divs(map
->p
[i
], map
->p
[j
]);
1508 return coalesce_local_pair(map
, i
, j
, tabs
);
1510 return check_coalesce_subset(map
, i
, j
, tabs
);
1513 static struct isl_map
*coalesce(struct isl_map
*map
, struct isl_tab
**tabs
)
1517 for (i
= map
->n
- 2; i
>= 0; --i
)
1519 for (j
= i
+ 1; j
< map
->n
; ++j
) {
1521 changed
= coalesce_pair(map
, i
, j
, tabs
);
1533 /* For each pair of basic maps in the map, check if the union of the two
1534 * can be represented by a single basic map.
1535 * If so, replace the pair by the single basic map and start over.
1537 * Since we are constructing the tableaus of the basic maps anyway,
1538 * we exploit them to detect implicit equalities and redundant constraints.
1539 * This also helps the coalescing as it can ignore the redundant constraints.
1540 * In order to avoid confusion, we make all implicit equalities explicit
1541 * in the basic maps. We don't call isl_basic_map_gauss, though,
1542 * as that may affect the number of constraints.
1543 * This means that we have to call isl_basic_map_gauss at the end
1544 * of the computation to ensure that the basic maps are not left
1545 * in an unexpected state.
1547 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
1551 struct isl_tab
**tabs
= NULL
;
1553 map
= isl_map_remove_empty_parts(map
);
1560 map
= isl_map_sort_divs(map
);
1561 map
= isl_map_cow(map
);
1563 tabs
= isl_calloc_array(map
->ctx
, struct isl_tab
*, map
->n
);
1568 for (i
= 0; i
< map
->n
; ++i
) {
1569 tabs
[i
] = isl_tab_from_basic_map(map
->p
[i
], 0);
1572 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
))
1573 if (isl_tab_detect_implicit_equalities(tabs
[i
]) < 0)
1575 map
->p
[i
] = isl_tab_make_equalities_explicit(tabs
[i
],
1579 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
))
1580 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
1583 for (i
= map
->n
- 1; i
>= 0; --i
)
1587 map
= coalesce(map
, tabs
);
1590 for (i
= 0; i
< map
->n
; ++i
) {
1591 map
->p
[i
] = isl_basic_map_update_from_tab(map
->p
[i
],
1593 map
->p
[i
] = isl_basic_map_gauss(map
->p
[i
], NULL
);
1594 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1597 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
);
1598 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
);
1601 for (i
= 0; i
< n
; ++i
)
1602 isl_tab_free(tabs
[i
]);
1609 for (i
= 0; i
< n
; ++i
)
1610 isl_tab_free(tabs
[i
]);
1616 /* For each pair of basic sets in the set, check if the union of the two
1617 * can be represented by a single basic set.
1618 * If so, replace the pair by the single basic set and start over.
1620 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
1622 return (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);