2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
22 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
24 isl_int
*t
= bmap
->eq
[a
];
25 bmap
->eq
[a
] = bmap
->eq
[b
];
29 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
32 isl_int
*t
= bmap
->ineq
[a
];
33 bmap
->ineq
[a
] = bmap
->ineq
[b
];
38 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
40 isl_seq_cpy(c
, c
+ n
, rem
);
41 isl_seq_clr(c
+ rem
, n
);
44 /* Drop n dimensions starting at first.
46 * In principle, this frees up some extra variables as the number
47 * of columns remains constant, but we would have to extend
48 * the div array too as the number of rows in this array is assumed
49 * to be equal to extra.
51 struct isl_basic_set
*isl_basic_set_drop_dims(
52 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
59 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
61 if (n
== 0 && !isl_space_get_tuple_name(bset
->dim
, isl_dim_set
))
64 bset
= isl_basic_set_cow(bset
);
68 for (i
= 0; i
< bset
->n_eq
; ++i
)
69 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
70 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
72 for (i
= 0; i
< bset
->n_ineq
; ++i
)
73 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
74 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
76 for (i
= 0; i
< bset
->n_div
; ++i
)
77 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
78 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
80 bset
->dim
= isl_space_drop_outputs(bset
->dim
, first
, n
);
84 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
85 bset
= isl_basic_set_simplify(bset
);
86 return isl_basic_set_finalize(bset
);
88 isl_basic_set_free(bset
);
92 struct isl_set
*isl_set_drop_dims(
93 struct isl_set
*set
, unsigned first
, unsigned n
)
100 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
102 if (n
== 0 && !isl_space_get_tuple_name(set
->dim
, isl_dim_set
))
104 set
= isl_set_cow(set
);
107 set
->dim
= isl_space_drop_outputs(set
->dim
, first
, n
);
111 for (i
= 0; i
< set
->n
; ++i
) {
112 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
117 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
124 /* Move "n" divs starting at "first" to the end of the list of divs.
126 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
127 unsigned first
, unsigned n
)
132 if (first
+ n
== bmap
->n_div
)
135 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
138 for (i
= 0; i
< n
; ++i
)
139 div
[i
] = bmap
->div
[first
+ i
];
140 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
141 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
142 for (i
= 0; i
< n
; ++i
)
143 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
147 isl_basic_map_free(bmap
);
151 /* Drop "n" dimensions of type "type" starting at "first".
153 * In principle, this frees up some extra variables as the number
154 * of columns remains constant, but we would have to extend
155 * the div array too as the number of rows in this array is assumed
156 * to be equal to extra.
158 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
159 enum isl_dim_type type
, unsigned first
, unsigned n
)
169 dim
= isl_basic_map_dim(bmap
, type
);
170 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
172 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
175 bmap
= isl_basic_map_cow(bmap
);
179 offset
= isl_basic_map_offset(bmap
, type
) + first
;
180 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
181 for (i
= 0; i
< bmap
->n_eq
; ++i
)
182 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
184 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
185 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
187 for (i
= 0; i
< bmap
->n_div
; ++i
)
188 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
190 if (type
== isl_dim_div
) {
191 bmap
= move_divs_last(bmap
, first
, n
);
194 isl_basic_map_free_div(bmap
, n
);
196 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
200 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
201 bmap
= isl_basic_map_simplify(bmap
);
202 return isl_basic_map_finalize(bmap
);
204 isl_basic_map_free(bmap
);
208 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
209 enum isl_dim_type type
, unsigned first
, unsigned n
)
211 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
215 struct isl_basic_map
*isl_basic_map_drop_inputs(
216 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
218 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
221 struct isl_map
*isl_map_drop(struct isl_map
*map
,
222 enum isl_dim_type type
, unsigned first
, unsigned n
)
229 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
231 if (n
== 0 && !isl_space_get_tuple_name(map
->dim
, type
))
233 map
= isl_map_cow(map
);
236 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
240 for (i
= 0; i
< map
->n
; ++i
) {
241 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
245 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
253 struct isl_set
*isl_set_drop(struct isl_set
*set
,
254 enum isl_dim_type type
, unsigned first
, unsigned n
)
256 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
259 struct isl_map
*isl_map_drop_inputs(
260 struct isl_map
*map
, unsigned first
, unsigned n
)
262 return isl_map_drop(map
, isl_dim_in
, first
, n
);
266 * We don't cow, as the div is assumed to be redundant.
268 static struct isl_basic_map
*isl_basic_map_drop_div(
269 struct isl_basic_map
*bmap
, unsigned div
)
277 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
279 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
281 for (i
= 0; i
< bmap
->n_eq
; ++i
)
282 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
284 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
285 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
286 isl_basic_map_drop_inequality(bmap
, i
);
290 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
293 for (i
= 0; i
< bmap
->n_div
; ++i
)
294 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
296 if (div
!= bmap
->n_div
- 1) {
298 isl_int
*t
= bmap
->div
[div
];
300 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
301 bmap
->div
[j
] = bmap
->div
[j
+1];
303 bmap
->div
[bmap
->n_div
- 1] = t
;
305 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
306 isl_basic_map_free_div(bmap
, 1);
310 isl_basic_map_free(bmap
);
314 struct isl_basic_map
*isl_basic_map_normalize_constraints(
315 struct isl_basic_map
*bmap
)
319 unsigned total
= isl_basic_map_total_dim(bmap
);
325 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
326 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
327 if (isl_int_is_zero(gcd
)) {
328 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
329 bmap
= isl_basic_map_set_to_empty(bmap
);
332 isl_basic_map_drop_equality(bmap
, i
);
335 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
336 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
337 if (isl_int_is_one(gcd
))
339 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
340 bmap
= isl_basic_map_set_to_empty(bmap
);
343 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
346 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
347 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
348 if (isl_int_is_zero(gcd
)) {
349 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
350 bmap
= isl_basic_map_set_to_empty(bmap
);
353 isl_basic_map_drop_inequality(bmap
, i
);
356 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
357 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
358 if (isl_int_is_one(gcd
))
360 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
361 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
368 struct isl_basic_set
*isl_basic_set_normalize_constraints(
369 struct isl_basic_set
*bset
)
371 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
372 (struct isl_basic_map
*)bset
);
375 /* Remove any common factor in numerator and denominator of the div expression,
376 * not taking into account the constant term.
377 * That is, if the div is of the form
379 * floor((a + m f(x))/(m d))
383 * floor((floor(a/m) + f(x))/d)
385 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
386 * and can therefore not influence the result of the floor.
388 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
390 unsigned total
= isl_basic_map_total_dim(bmap
);
391 isl_ctx
*ctx
= bmap
->ctx
;
393 if (isl_int_is_zero(bmap
->div
[div
][0]))
395 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
396 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
397 if (isl_int_is_one(ctx
->normalize_gcd
))
399 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
401 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
403 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
404 ctx
->normalize_gcd
, total
);
407 /* Remove any common factor in numerator and denominator of a div expression,
408 * not taking into account the constant term.
409 * That is, look for any div of the form
411 * floor((a + m f(x))/(m d))
415 * floor((floor(a/m) + f(x))/d)
417 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
418 * and can therefore not influence the result of the floor.
420 static __isl_give isl_basic_map
*normalize_div_expressions(
421 __isl_take isl_basic_map
*bmap
)
427 if (bmap
->n_div
== 0)
430 for (i
= 0; i
< bmap
->n_div
; ++i
)
431 normalize_div_expression(bmap
, i
);
436 /* Assumes divs have been ordered if keep_divs is set.
438 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
439 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
442 unsigned space_total
;
446 total
= isl_basic_map_total_dim(bmap
);
447 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
448 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
449 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
450 if (bmap
->eq
[k
] == eq
)
452 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
456 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
457 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
460 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
461 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
465 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
466 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
467 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
470 for (k
= 0; k
< bmap
->n_div
; ++k
) {
471 if (isl_int_is_zero(bmap
->div
[k
][0]))
473 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
477 /* We need to be careful about circular definitions,
478 * so for now we just remove the definition of div k
479 * if the equality contains any divs.
480 * If keep_divs is set, then the divs have been ordered
481 * and we can keep the definition as long as the result
484 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
485 isl_seq_elim(bmap
->div
[k
]+1, eq
,
486 1+pos
, 1+total
, &bmap
->div
[k
][0]);
487 normalize_div_expression(bmap
, k
);
489 isl_seq_clr(bmap
->div
[k
], 1 + total
);
490 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
494 /* Assumes divs have been ordered if keep_divs is set.
496 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
497 unsigned div
, int keep_divs
)
499 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
501 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
503 isl_basic_map_drop_div(bmap
, div
);
506 /* Check if elimination of div "div" using equality "eq" would not
507 * result in a div depending on a later div.
509 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
514 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
515 unsigned pos
= space_total
+ div
;
517 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
518 if (last_div
< 0 || last_div
<= div
)
521 for (k
= 0; k
<= last_div
; ++k
) {
522 if (isl_int_is_zero(bmap
->div
[k
][0]))
524 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
531 /* Elimininate divs based on equalities
533 static struct isl_basic_map
*eliminate_divs_eq(
534 struct isl_basic_map
*bmap
, int *progress
)
541 bmap
= isl_basic_map_order_divs(bmap
);
546 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
548 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
549 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
550 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
551 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
553 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
557 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
558 isl_basic_map_drop_equality(bmap
, i
);
563 return eliminate_divs_eq(bmap
, progress
);
567 /* Elimininate divs based on inequalities
569 static struct isl_basic_map
*eliminate_divs_ineq(
570 struct isl_basic_map
*bmap
, int *progress
)
581 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
583 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
584 for (i
= 0; i
< bmap
->n_eq
; ++i
)
585 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
589 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
590 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
592 if (i
< bmap
->n_ineq
)
595 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
596 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
598 bmap
= isl_basic_map_drop_div(bmap
, d
);
605 struct isl_basic_map
*isl_basic_map_gauss(
606 struct isl_basic_map
*bmap
, int *progress
)
614 bmap
= isl_basic_map_order_divs(bmap
);
619 total
= isl_basic_map_total_dim(bmap
);
620 total_var
= total
- bmap
->n_div
;
622 last_var
= total
- 1;
623 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
624 for (; last_var
>= 0; --last_var
) {
625 for (k
= done
; k
< bmap
->n_eq
; ++k
)
626 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
634 swap_equality(bmap
, k
, done
);
635 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
636 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
638 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
641 if (last_var
>= total_var
&&
642 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
643 unsigned div
= last_var
- total_var
;
644 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
645 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
646 isl_int_set(bmap
->div
[div
][0],
647 bmap
->eq
[done
][1+last_var
]);
650 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
653 if (done
== bmap
->n_eq
)
655 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
656 if (isl_int_is_zero(bmap
->eq
[k
][0]))
658 return isl_basic_map_set_to_empty(bmap
);
660 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
664 struct isl_basic_set
*isl_basic_set_gauss(
665 struct isl_basic_set
*bset
, int *progress
)
667 return (struct isl_basic_set
*)isl_basic_map_gauss(
668 (struct isl_basic_map
*)bset
, progress
);
672 static unsigned int round_up(unsigned int v
)
683 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
684 struct isl_basic_map
*bmap
, int k
)
687 unsigned total
= isl_basic_map_total_dim(bmap
);
688 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
689 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
690 if (&bmap
->ineq
[k
] != index
[h
] &&
691 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
696 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
697 struct isl_basic_set
*bset
, int k
)
699 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
702 /* If we can eliminate more than one div, then we need to make
703 * sure we do it from last div to first div, in order not to
704 * change the position of the other divs that still need to
707 static struct isl_basic_map
*remove_duplicate_divs(
708 struct isl_basic_map
*bmap
, int *progress
)
720 bmap
= isl_basic_map_order_divs(bmap
);
721 if (!bmap
|| bmap
->n_div
<= 1)
724 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
725 total
= total_var
+ bmap
->n_div
;
728 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
729 if (!isl_int_is_zero(bmap
->div
[k
][0]))
734 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
735 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
736 bits
= ffs(size
) - 1;
737 index
= isl_calloc_array(ctx
, int, size
);
740 eq
= isl_blk_alloc(ctx
, 1+total
);
741 if (isl_blk_is_error(eq
))
744 isl_seq_clr(eq
.data
, 1+total
);
745 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
746 for (--k
; k
>= 0; --k
) {
749 if (isl_int_is_zero(bmap
->div
[k
][0]))
752 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
753 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
754 if (isl_seq_eq(bmap
->div
[k
],
755 bmap
->div
[index
[h
]-1], 2+total
))
764 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
768 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
769 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
770 eliminate_div(bmap
, eq
.data
, l
, 1);
771 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
772 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
775 isl_blk_free(ctx
, eq
);
782 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
787 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
788 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
789 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
793 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
799 /* Normalize divs that appear in equalities.
801 * In particular, we assume that bmap contains some equalities
806 * and we want to replace the set of e_i by a minimal set and
807 * such that the new e_i have a canonical representation in terms
809 * If any of the equalities involves more than one divs, then
810 * we currently simply bail out.
812 * Let us first additionally assume that all equalities involve
813 * a div. The equalities then express modulo constraints on the
814 * remaining variables and we can use "parameter compression"
815 * to find a minimal set of constraints. The result is a transformation
817 * x = T(x') = x_0 + G x'
819 * with G a lower-triangular matrix with all elements below the diagonal
820 * non-negative and smaller than the diagonal element on the same row.
821 * We first normalize x_0 by making the same property hold in the affine
823 * The rows i of G with a 1 on the diagonal do not impose any modulo
824 * constraint and simply express x_i = x'_i.
825 * For each of the remaining rows i, we introduce a div and a corresponding
826 * equality. In particular
828 * g_ii e_j = x_i - g_i(x')
830 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
831 * corresponding div (if g_kk != 1).
833 * If there are any equalities not involving any div, then we
834 * first apply a variable compression on the variables x:
836 * x = C x'' x'' = C_2 x
838 * and perform the above parameter compression on A C instead of on A.
839 * The resulting compression is then of the form
841 * x'' = T(x') = x_0 + G x'
843 * and in constructing the new divs and the corresponding equalities,
844 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
845 * by the corresponding row from C_2.
847 static struct isl_basic_map
*normalize_divs(
848 struct isl_basic_map
*bmap
, int *progress
)
855 struct isl_mat
*T
= NULL
;
856 struct isl_mat
*C
= NULL
;
857 struct isl_mat
*C2
= NULL
;
865 if (bmap
->n_div
== 0)
871 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
874 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
875 div_eq
= n_pure_div_eq(bmap
);
879 if (div_eq
< bmap
->n_eq
) {
880 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
881 bmap
->n_eq
- div_eq
, 0, 1 + total
);
882 C
= isl_mat_variable_compression(B
, &C2
);
886 bmap
= isl_basic_map_set_to_empty(bmap
);
893 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
896 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
897 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
899 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
901 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
904 B
= isl_mat_product(B
, C
);
908 T
= isl_mat_parameter_compression(B
, d
);
912 bmap
= isl_basic_map_set_to_empty(bmap
);
918 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
919 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
920 if (isl_int_is_zero(v
))
922 isl_mat_col_submul(T
, 0, v
, 1 + i
);
925 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
928 /* We have to be careful because dropping equalities may reorder them */
930 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
931 for (i
= 0; i
< bmap
->n_eq
; ++i
)
932 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
934 if (i
< bmap
->n_eq
) {
935 bmap
= isl_basic_map_drop_div(bmap
, j
);
936 isl_basic_map_drop_equality(bmap
, i
);
942 for (i
= 1; i
< T
->n_row
; ++i
) {
943 if (isl_int_is_one(T
->row
[i
][i
]))
948 if (needed
> dropped
) {
949 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
954 for (i
= 1; i
< T
->n_row
; ++i
) {
955 if (isl_int_is_one(T
->row
[i
][i
]))
957 k
= isl_basic_map_alloc_div(bmap
);
958 pos
[i
] = 1 + total
+ k
;
959 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
960 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
962 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
964 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
965 for (j
= 0; j
< i
; ++j
) {
966 if (isl_int_is_zero(T
->row
[i
][j
]))
968 if (pos
[j
] < T
->n_row
&& C2
)
969 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
970 C2
->row
[pos
[j
]], 1 + total
);
972 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
975 j
= isl_basic_map_alloc_equality(bmap
);
976 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
977 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
986 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
996 static struct isl_basic_map
*set_div_from_lower_bound(
997 struct isl_basic_map
*bmap
, int div
, int ineq
)
999 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1001 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1002 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1003 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1004 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1005 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1010 /* Check whether it is ok to define a div based on an inequality.
1011 * To avoid the introduction of circular definitions of divs, we
1012 * do not allow such a definition if the resulting expression would refer to
1013 * any other undefined divs or if any known div is defined in
1014 * terms of the unknown div.
1016 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
1020 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1022 /* Not defined in terms of unknown divs */
1023 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1026 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1028 if (isl_int_is_zero(bmap
->div
[j
][0]))
1032 /* No other div defined in terms of this one => avoid loops */
1033 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1036 if (isl_int_is_zero(bmap
->div
[j
][0]))
1038 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1045 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1046 * be a better expression than the current one?
1048 * If we do not have any expression yet, then any expression would be better.
1049 * Otherwise we check if the last variable involved in the inequality
1050 * (disregarding the div that it would define) is in an earlier position
1051 * than the last variable involved in the current div expression.
1053 static int better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1056 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1060 if (isl_int_is_zero(bmap
->div
[div
][0]))
1063 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1064 bmap
->n_div
- (div
+ 1)) >= 0)
1067 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1068 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1069 total
+ bmap
->n_div
);
1071 return last_ineq
< last_div
;
1074 /* Given two constraints "k" and "l" that are opposite to each other,
1075 * except for the constant term, check if we can use them
1076 * to obtain an expression for one of the hitherto unknown divs or
1077 * a "better" expression for a div for which we already have an expression.
1078 * "sum" is the sum of the constant terms of the constraints.
1079 * If this sum is strictly smaller than the coefficient of one
1080 * of the divs, then this pair can be used define the div.
1081 * To avoid the introduction of circular definitions of divs, we
1082 * do not use the pair if the resulting expression would refer to
1083 * any other undefined divs or if any known div is defined in
1084 * terms of the unknown div.
1086 static struct isl_basic_map
*check_for_div_constraints(
1087 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
1090 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1092 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1093 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1095 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1097 if (!better_div_constraint(bmap
, i
, k
))
1099 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1101 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1102 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1104 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1112 static struct isl_basic_map
*remove_duplicate_constraints(
1113 struct isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1119 unsigned total
= isl_basic_map_total_dim(bmap
);
1123 if (!bmap
|| bmap
->n_ineq
<= 1)
1126 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1127 bits
= ffs(size
) - 1;
1128 ctx
= isl_basic_map_get_ctx(bmap
);
1129 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1133 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1134 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1135 h
= hash_index(index
, size
, bits
, bmap
, k
);
1137 index
[h
] = &bmap
->ineq
[k
];
1142 l
= index
[h
] - &bmap
->ineq
[0];
1143 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1144 swap_inequality(bmap
, k
, l
);
1145 isl_basic_map_drop_inequality(bmap
, k
);
1149 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1150 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1151 h
= hash_index(index
, size
, bits
, bmap
, k
);
1152 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1155 l
= index
[h
] - &bmap
->ineq
[0];
1156 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1157 if (isl_int_is_pos(sum
)) {
1159 bmap
= check_for_div_constraints(bmap
, k
, l
,
1163 if (isl_int_is_zero(sum
)) {
1164 /* We need to break out of the loop after these
1165 * changes since the contents of the hash
1166 * will no longer be valid.
1167 * Plus, we probably we want to regauss first.
1171 isl_basic_map_drop_inequality(bmap
, l
);
1172 isl_basic_map_inequality_to_equality(bmap
, k
);
1174 bmap
= isl_basic_map_set_to_empty(bmap
);
1184 /* Eliminate knowns divs from constraints where they appear with
1185 * a (positive or negative) unit coefficient.
1189 * floor(e/m) + f >= 0
1197 * -floor(e/m) + f >= 0
1201 * -e + m f + m - 1 >= 0
1203 * The first conversion is valid because floor(e/m) >= -f is equivalent
1204 * to e/m >= -f because -f is an integral expression.
1205 * The second conversion follows from the fact that
1207 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1210 * Note that one of the div constraints may have been eliminated
1211 * due to being redundant with respect to the constraint that is
1212 * being modified by this function. The modified constraint may
1213 * no longer imply this div constraint, so we add it back to make
1214 * sure we do not lose any information.
1216 * We skip integral divs, i.e., those with denominator 1, as we would
1217 * risk eliminating the div from the div constraints. We do not need
1218 * to handle those divs here anyway since the div constraints will turn
1219 * out to form an equality and this equality can then be use to eliminate
1220 * the div from all constraints.
1222 static __isl_give isl_basic_map
*eliminate_unit_divs(
1223 __isl_take isl_basic_map
*bmap
, int *progress
)
1232 ctx
= isl_basic_map_get_ctx(bmap
);
1233 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1235 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1236 if (isl_int_is_zero(bmap
->div
[i
][0]))
1238 if (isl_int_is_one(bmap
->div
[i
][0]))
1240 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1243 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1244 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1249 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1250 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1252 isl_seq_combine(bmap
->ineq
[j
],
1253 ctx
->negone
, bmap
->div
[i
] + 1,
1254 bmap
->div
[i
][0], bmap
->ineq
[j
],
1255 total
+ bmap
->n_div
);
1257 isl_seq_combine(bmap
->ineq
[j
],
1258 ctx
->one
, bmap
->div
[i
] + 1,
1259 bmap
->div
[i
][0], bmap
->ineq
[j
],
1260 total
+ bmap
->n_div
);
1262 isl_int_add(bmap
->ineq
[j
][0],
1263 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1264 isl_int_sub_ui(bmap
->ineq
[j
][0],
1265 bmap
->ineq
[j
][0], 1);
1268 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1269 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1270 return isl_basic_map_free(bmap
);
1277 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1286 if (isl_basic_map_plain_is_empty(bmap
))
1288 bmap
= isl_basic_map_normalize_constraints(bmap
);
1289 bmap
= normalize_div_expressions(bmap
);
1290 bmap
= remove_duplicate_divs(bmap
, &progress
);
1291 bmap
= eliminate_unit_divs(bmap
, &progress
);
1292 bmap
= eliminate_divs_eq(bmap
, &progress
);
1293 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1294 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1295 /* requires equalities in normal form */
1296 bmap
= normalize_divs(bmap
, &progress
);
1297 bmap
= remove_duplicate_constraints(bmap
, &progress
, 1);
1302 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1304 return (struct isl_basic_set
*)
1305 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1309 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1310 isl_int
*constraint
, unsigned div
)
1317 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1319 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1321 isl_int_sub(bmap
->div
[div
][1],
1322 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1323 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1324 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1325 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1326 isl_int_add(bmap
->div
[div
][1],
1327 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1330 if (isl_seq_first_non_zero(constraint
+pos
+1,
1331 bmap
->n_div
-div
-1) != -1)
1333 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1334 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1336 if (isl_seq_first_non_zero(constraint
+pos
+1,
1337 bmap
->n_div
-div
-1) != -1)
1345 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1346 isl_int
*constraint
, unsigned div
)
1348 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1352 /* If the only constraints a div d=floor(f/m)
1353 * appears in are its two defining constraints
1356 * -(f - (m - 1)) + m d >= 0
1358 * then it can safely be removed.
1360 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1363 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1365 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1366 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1369 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1370 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1372 if (!isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
))
1376 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1377 if (isl_int_is_zero(bmap
->div
[i
][0]))
1379 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1387 * Remove divs that don't occur in any of the constraints or other divs.
1388 * These can arise when dropping some of the variables in a quast
1389 * returned by piplib.
1391 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1398 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1399 if (!div_is_redundant(bmap
, i
))
1401 bmap
= isl_basic_map_drop_div(bmap
, i
);
1406 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1408 bmap
= remove_redundant_divs(bmap
);
1411 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1415 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1417 return (struct isl_basic_set
*)
1418 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1421 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1427 for (i
= 0; i
< set
->n
; ++i
) {
1428 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1438 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1444 for (i
= 0; i
< map
->n
; ++i
) {
1445 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1449 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1457 /* Remove definition of any div that is defined in terms of the given variable.
1458 * The div itself is not removed. Functions such as
1459 * eliminate_divs_ineq depend on the other divs remaining in place.
1461 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1469 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1470 if (isl_int_is_zero(bmap
->div
[i
][0]))
1472 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1474 isl_int_set_si(bmap
->div
[i
][0], 0);
1479 /* Eliminate the specified variables from the constraints using
1480 * Fourier-Motzkin. The variables themselves are not removed.
1482 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1483 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1494 total
= isl_basic_map_total_dim(bmap
);
1496 bmap
= isl_basic_map_cow(bmap
);
1497 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1498 bmap
= remove_dependent_vars(bmap
, d
);
1502 for (d
= pos
+ n
- 1;
1503 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1504 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1505 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1506 int n_lower
, n_upper
;
1509 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1510 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1512 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1513 isl_basic_map_drop_equality(bmap
, i
);
1521 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1522 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1524 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1527 bmap
= isl_basic_map_extend_constraints(bmap
,
1528 0, n_lower
* n_upper
);
1531 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1533 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1536 for (j
= 0; j
< i
; ++j
) {
1537 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1540 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1541 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1543 k
= isl_basic_map_alloc_inequality(bmap
);
1546 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1548 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1549 1+d
, 1+total
, NULL
);
1551 isl_basic_map_drop_inequality(bmap
, i
);
1554 if (n_lower
> 0 && n_upper
> 0) {
1555 bmap
= isl_basic_map_normalize_constraints(bmap
);
1556 bmap
= remove_duplicate_constraints(bmap
, NULL
, 0);
1557 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1558 bmap
= isl_basic_map_remove_redundancies(bmap
);
1562 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1566 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1568 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1571 isl_basic_map_free(bmap
);
1575 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1576 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1578 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1579 (struct isl_basic_map
*)bset
, pos
, n
);
1582 /* Eliminate the specified n dimensions starting at first from the
1583 * constraints, without removing the dimensions from the space.
1584 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1585 * Otherwise, they are projected out and the original space is restored.
1587 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1588 __isl_take isl_basic_map
*bmap
,
1589 enum isl_dim_type type
, unsigned first
, unsigned n
)
1598 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1599 isl_die(bmap
->ctx
, isl_error_invalid
,
1600 "index out of bounds", goto error
);
1602 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1603 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1604 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1605 return isl_basic_map_finalize(bmap
);
1608 space
= isl_basic_map_get_space(bmap
);
1609 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1610 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1611 bmap
= isl_basic_map_reset_space(bmap
, space
);
1614 isl_basic_map_free(bmap
);
1618 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1619 __isl_take isl_basic_set
*bset
,
1620 enum isl_dim_type type
, unsigned first
, unsigned n
)
1622 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1625 /* Don't assume equalities are in order, because align_divs
1626 * may have changed the order of the divs.
1628 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1633 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1634 for (d
= 0; d
< total
; ++d
)
1636 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1637 for (d
= total
- 1; d
>= 0; --d
) {
1638 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1646 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1648 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1651 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1652 struct isl_basic_map
*bmap
, int *elim
)
1658 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1659 for (d
= total
- 1; d
>= 0; --d
) {
1660 if (isl_int_is_zero(src
[1+d
]))
1665 isl_seq_cpy(dst
, src
, 1 + total
);
1668 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1673 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1674 struct isl_basic_set
*bset
, int *elim
)
1676 return reduced_using_equalities(dst
, src
,
1677 (struct isl_basic_map
*)bset
, elim
);
1680 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1681 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1686 if (!bset
|| !context
)
1689 if (context
->n_eq
== 0) {
1690 isl_basic_set_free(context
);
1694 bset
= isl_basic_set_cow(bset
);
1698 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1701 set_compute_elimination_index(context
, elim
);
1702 for (i
= 0; i
< bset
->n_eq
; ++i
)
1703 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1705 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1706 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1708 isl_basic_set_free(context
);
1710 bset
= isl_basic_set_simplify(bset
);
1711 bset
= isl_basic_set_finalize(bset
);
1714 isl_basic_set_free(bset
);
1715 isl_basic_set_free(context
);
1719 static struct isl_basic_set
*remove_shifted_constraints(
1720 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1731 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1732 bits
= ffs(size
) - 1;
1733 ctx
= isl_basic_set_get_ctx(bset
);
1734 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1738 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1739 h
= set_hash_index(index
, size
, bits
, context
, k
);
1740 index
[h
] = &context
->ineq
[k
];
1742 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1743 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1746 l
= index
[h
] - &context
->ineq
[0];
1747 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1749 bset
= isl_basic_set_cow(bset
);
1752 isl_basic_set_drop_inequality(bset
, k
);
1762 /* Does the (linear part of a) constraint "c" involve any of the "len"
1763 * "relevant" dimensions?
1765 static int is_related(isl_int
*c
, int len
, int *relevant
)
1769 for (i
= 0; i
< len
; ++i
) {
1772 if (!isl_int_is_zero(c
[i
]))
1779 /* Drop constraints from "bset" that do not involve any of
1780 * the dimensions marked "relevant".
1782 static __isl_give isl_basic_set
*drop_unrelated_constraints(
1783 __isl_take isl_basic_set
*bset
, int *relevant
)
1787 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1788 for (i
= 0; i
< dim
; ++i
)
1794 for (i
= bset
->n_eq
- 1; i
>= 0; --i
)
1795 if (!is_related(bset
->eq
[i
] + 1, dim
, relevant
))
1796 isl_basic_set_drop_equality(bset
, i
);
1798 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
)
1799 if (!is_related(bset
->ineq
[i
] + 1, dim
, relevant
))
1800 isl_basic_set_drop_inequality(bset
, i
);
1805 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1807 * In particular, for any variable involved in the constraint,
1808 * find the actual group id from before and replace the group
1809 * of the corresponding variable by the minimal group of all
1810 * the variables involved in the constraint considered so far
1811 * (if this minimum is smaller) or replace the minimum by this group
1812 * (if the minimum is larger).
1814 * At the end, all the variables in "c" will (indirectly) point
1815 * to the minimal of the groups that they referred to originally.
1817 static void update_groups(int dim
, int *group
, isl_int
*c
)
1822 for (j
= 0; j
< dim
; ++j
) {
1823 if (isl_int_is_zero(c
[j
]))
1825 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
1826 group
[j
] = group
[group
[j
]];
1827 if (group
[j
] == min
)
1829 if (group
[j
] < min
) {
1830 if (min
>= 0 && min
< dim
)
1831 group
[min
] = group
[j
];
1834 group
[group
[j
]] = min
;
1838 /* Drop constraints from "context" that are irrelevant for computing
1839 * the gist of "bset".
1841 * In particular, drop constraints in variables that are not related
1842 * to any of the variables involved in the constraints of "bset"
1843 * in the sense that there is no sequence of constraints that connects them.
1845 * We construct groups of variables that collect variables that
1846 * (indirectly) appear in some common constraint of "context".
1847 * Each group is identified by the first variable in the group,
1848 * except for the special group of variables that appear in "bset"
1849 * (or are related to those variables), which is identified by -1.
1850 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1851 * otherwise the group of i is the group of group[i].
1853 * We first initialize the -1 group with the variables that appear in "bset".
1854 * Then we initialize groups for the remaining variables.
1855 * Then we iterate over the constraints of "context" and update the
1856 * group of the variables in the constraint by the smallest group.
1857 * Finally, we resolve indirect references to groups by running over
1860 * After computing the groups, we drop constraints that do not involve
1861 * any variables in the -1 group.
1863 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
1864 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
1872 if (!context
|| !bset
)
1873 return isl_basic_set_free(context
);
1875 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1876 ctx
= isl_basic_set_get_ctx(bset
);
1877 group
= isl_calloc_array(ctx
, int, dim
);
1882 for (i
= 0; i
< dim
; ++i
) {
1883 for (j
= 0; j
< bset
->n_eq
; ++j
)
1884 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
1886 if (j
< bset
->n_eq
) {
1890 for (j
= 0; j
< bset
->n_ineq
; ++j
)
1891 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
1893 if (j
< bset
->n_ineq
)
1898 for (i
= 0; i
< dim
; ++i
)
1900 last
= group
[i
] = i
;
1906 for (i
= 0; i
< context
->n_eq
; ++i
)
1907 update_groups(dim
, group
, context
->eq
[i
] + 1);
1908 for (i
= 0; i
< context
->n_ineq
; ++i
)
1909 update_groups(dim
, group
, context
->ineq
[i
] + 1);
1911 for (i
= 0; i
< dim
; ++i
)
1913 group
[i
] = group
[group
[i
]];
1915 for (i
= 0; i
< dim
; ++i
)
1916 group
[i
] = group
[i
] == -1;
1918 context
= drop_unrelated_constraints(context
, group
);
1924 return isl_basic_set_free(context
);
1927 /* Remove all information from bset that is redundant in the context
1928 * of context. Both bset and context are assumed to be full-dimensional.
1930 * We first remove the inequalities from "bset"
1931 * that are obviously redundant with respect to some inequality in "context".
1932 * Then we remove those constraints from "context" that have become
1933 * irrelevant for computing the gist of "bset".
1934 * Note that this removal of constraints cannot be replaced by
1935 * a factorization because factors in "bset" may still be connected
1936 * to each other through constraints in "context".
1938 * If there are any inequalities left, we construct a tableau for
1939 * the context and then add the inequalities of "bset".
1940 * Before adding these inequalities, we freeze all constraints such that
1941 * they won't be considered redundant in terms of the constraints of "bset".
1942 * Then we detect all redundant constraints (among the
1943 * constraints that weren't frozen), first by checking for redundancy in the
1944 * the tableau and then by checking if replacing a constraint by its negation
1945 * would lead to an empty set. This last step is fairly expensive
1946 * and could be optimized by more reuse of the tableau.
1947 * Finally, we update bset according to the results.
1949 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
1950 __isl_take isl_basic_set
*context
)
1953 isl_basic_set
*combined
= NULL
;
1954 struct isl_tab
*tab
= NULL
;
1955 unsigned context_ineq
;
1958 if (!bset
|| !context
)
1961 if (isl_basic_set_is_universe(bset
)) {
1962 isl_basic_set_free(context
);
1966 if (isl_basic_set_is_universe(context
)) {
1967 isl_basic_set_free(context
);
1971 bset
= remove_shifted_constraints(bset
, context
);
1974 if (bset
->n_ineq
== 0)
1977 context
= drop_irrelevant_constraints(context
, bset
);
1980 if (isl_basic_set_is_universe(context
)) {
1981 isl_basic_set_free(context
);
1985 context_ineq
= context
->n_ineq
;
1986 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1987 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
1988 tab
= isl_tab_from_basic_set(combined
, 0);
1989 for (i
= 0; i
< context_ineq
; ++i
)
1990 if (isl_tab_freeze_constraint(tab
, i
) < 0)
1992 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1993 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1994 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
1996 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
2000 if (isl_tab_detect_redundant(tab
) < 0)
2002 total
= isl_basic_set_total_dim(bset
);
2003 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
2005 if (tab
->con
[i
].is_redundant
)
2007 tab
->con
[i
].is_redundant
= 1;
2008 combined
= isl_basic_set_dup(bset
);
2009 combined
= isl_basic_set_update_from_tab(combined
, tab
);
2010 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
2011 k
= isl_basic_set_alloc_inequality(combined
);
2014 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
2015 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
2016 is_empty
= isl_basic_set_is_empty(combined
);
2019 isl_basic_set_free(combined
);
2022 tab
->con
[i
].is_redundant
= 0;
2024 for (i
= 0; i
< context_ineq
; ++i
)
2025 tab
->con
[i
].is_redundant
= 1;
2026 bset
= isl_basic_set_update_from_tab(bset
, tab
);
2028 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2029 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2034 bset
= isl_basic_set_simplify(bset
);
2035 bset
= isl_basic_set_finalize(bset
);
2036 isl_basic_set_free(context
);
2040 isl_basic_set_free(combined
);
2041 isl_basic_set_free(context
);
2042 isl_basic_set_free(bset
);
2046 /* Remove all information from bset that is redundant in the context
2047 * of context. In particular, equalities that are linear combinations
2048 * of those in context are removed. Then the inequalities that are
2049 * redundant in the context of the equalities and inequalities of
2050 * context are removed.
2052 * First of all, we drop those constraints from "context"
2053 * that are irrelevant for computing the gist of "bset".
2054 * Alternatively, we could factorize the intersection of "context" and "bset".
2056 * We first compute the integer affine hull of the intersection,
2057 * compute the gist inside this affine hull and then add back
2058 * those equalities that are not implied by the context.
2060 * If two constraints are mutually redundant, then uset_gist_full
2061 * will remove the second of those constraints. We therefore first
2062 * sort the constraints so that constraints not involving existentially
2063 * quantified variables are given precedence over those that do.
2064 * We have to perform this sorting before the variable compression,
2065 * because that may effect the order of the variables.
2067 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2068 __isl_take isl_basic_set
*context
)
2073 isl_basic_set
*aff_context
;
2076 if (!bset
|| !context
)
2079 context
= drop_irrelevant_constraints(context
, bset
);
2081 bset
= isl_basic_set_intersect(bset
, isl_basic_set_copy(context
));
2082 if (isl_basic_set_plain_is_empty(bset
)) {
2083 isl_basic_set_free(context
);
2086 bset
= isl_basic_set_sort_constraints(bset
);
2087 aff
= isl_basic_set_affine_hull(isl_basic_set_copy(bset
));
2090 if (isl_basic_set_plain_is_empty(aff
)) {
2091 isl_basic_set_free(aff
);
2092 isl_basic_set_free(context
);
2095 if (aff
->n_eq
== 0) {
2096 isl_basic_set_free(aff
);
2097 return uset_gist_full(bset
, context
);
2099 total
= isl_basic_set_total_dim(bset
);
2100 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2101 eq
= isl_mat_cow(eq
);
2102 T
= isl_mat_variable_compression(eq
, &T2
);
2103 if (T
&& T
->n_col
== 0) {
2106 isl_basic_set_free(context
);
2107 isl_basic_set_free(aff
);
2108 return isl_basic_set_set_to_empty(bset
);
2111 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2113 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
2114 context
= isl_basic_set_preimage(context
, T
);
2116 bset
= uset_gist_full(bset
, context
);
2117 bset
= isl_basic_set_preimage(bset
, T2
);
2118 bset
= isl_basic_set_intersect(bset
, aff
);
2119 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2122 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2123 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2128 isl_basic_set_free(bset
);
2129 isl_basic_set_free(context
);
2133 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2134 * We simply add the equalities in context to bmap and then do a regular
2135 * div normalizations. Better results can be obtained by normalizing
2136 * only the divs in bmap than do not also appear in context.
2137 * We need to be careful to reduce the divs using the equalities
2138 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2139 * spurious constraints.
2141 static struct isl_basic_map
*normalize_divs_in_context(
2142 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
2145 unsigned total_context
;
2148 div_eq
= n_pure_div_eq(bmap
);
2152 if (context
->n_div
> 0)
2153 bmap
= isl_basic_map_align_divs(bmap
, context
);
2155 total_context
= isl_basic_map_total_dim(context
);
2156 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
2157 for (i
= 0; i
< context
->n_eq
; ++i
) {
2159 k
= isl_basic_map_alloc_equality(bmap
);
2161 return isl_basic_map_free(bmap
);
2162 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
2163 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
2164 isl_basic_map_total_dim(bmap
) - total_context
);
2166 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2167 bmap
= normalize_divs(bmap
, NULL
);
2168 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2172 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
2173 struct isl_basic_map
*context
)
2175 struct isl_basic_set
*bset
;
2177 if (!bmap
|| !context
)
2180 if (isl_basic_map_is_universe(bmap
)) {
2181 isl_basic_map_free(context
);
2184 if (isl_basic_map_plain_is_empty(context
)) {
2185 isl_basic_map_free(bmap
);
2188 if (isl_basic_map_plain_is_empty(bmap
)) {
2189 isl_basic_map_free(context
);
2193 bmap
= isl_basic_map_remove_redundancies(bmap
);
2194 context
= isl_basic_map_remove_redundancies(context
);
2199 bmap
= normalize_divs_in_context(bmap
, context
);
2201 context
= isl_basic_map_align_divs(context
, bmap
);
2202 bmap
= isl_basic_map_align_divs(bmap
, context
);
2204 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
2205 isl_basic_map_underlying_set(context
));
2207 return isl_basic_map_overlying_set(bset
, bmap
);
2209 isl_basic_map_free(bmap
);
2210 isl_basic_map_free(context
);
2215 * Assumes context has no implicit divs.
2217 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
2218 __isl_take isl_basic_map
*context
)
2222 if (!map
|| !context
)
2225 if (isl_basic_map_plain_is_empty(context
)) {
2227 return isl_map_from_basic_map(context
);
2230 context
= isl_basic_map_remove_redundancies(context
);
2231 map
= isl_map_cow(map
);
2232 if (!map
|| !context
)
2234 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
2235 map
= isl_map_compute_divs(map
);
2238 for (i
= map
->n
- 1; i
>= 0; --i
) {
2239 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
2240 isl_basic_map_copy(context
));
2243 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
2244 isl_basic_map_free(map
->p
[i
]);
2245 if (i
!= map
->n
- 1)
2246 map
->p
[i
] = map
->p
[map
->n
- 1];
2250 isl_basic_map_free(context
);
2251 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2255 isl_basic_map_free(context
);
2259 /* Return a map that has the same intersection with "context" as "map"
2260 * and that as "simple" as possible.
2262 * If "map" is already the universe, then we cannot make it any simpler.
2263 * Similarly, if "context" is the universe, then we cannot exploit it
2265 * If "map" and "context" are identical to each other, then we can
2266 * return the corresponding universe.
2268 * If none of these cases apply, we have to work a bit harder.
2270 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
2271 __isl_take isl_map
*context
)
2276 is_universe
= isl_map_plain_is_universe(map
);
2277 if (is_universe
>= 0 && !is_universe
)
2278 is_universe
= isl_map_plain_is_universe(context
);
2279 if (is_universe
< 0)
2282 isl_map_free(context
);
2286 equal
= isl_map_plain_is_equal(map
, context
);
2290 isl_map
*res
= isl_map_universe(isl_map_get_space(map
));
2292 isl_map_free(context
);
2296 context
= isl_map_compute_divs(context
);
2297 return isl_map_gist_basic_map(map
, isl_map_simple_hull(context
));
2300 isl_map_free(context
);
2304 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
2305 __isl_take isl_map
*context
)
2307 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
2310 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
2311 struct isl_basic_set
*context
)
2313 return (struct isl_basic_set
*)isl_basic_map_gist(
2314 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
2317 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
2318 __isl_take isl_basic_set
*context
)
2320 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
2321 (struct isl_basic_map
*)context
);
2324 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
2325 __isl_take isl_basic_set
*context
)
2327 isl_space
*space
= isl_set_get_space(set
);
2328 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
2329 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
2330 return isl_set_gist_basic_set(set
, dom_context
);
2333 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
2334 __isl_take isl_set
*context
)
2336 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
2337 (struct isl_map
*)context
);
2340 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
2341 __isl_take isl_set
*context
)
2343 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2344 map_context
= isl_map_intersect_domain(map_context
, context
);
2345 return isl_map_gist(map
, map_context
);
2348 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
2349 __isl_take isl_set
*context
)
2351 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2352 map_context
= isl_map_intersect_range(map_context
, context
);
2353 return isl_map_gist(map
, map_context
);
2356 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
2357 __isl_take isl_set
*context
)
2359 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2360 map_context
= isl_map_intersect_params(map_context
, context
);
2361 return isl_map_gist(map
, map_context
);
2364 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
2365 __isl_take isl_set
*context
)
2367 return isl_map_gist_params(set
, context
);
2370 /* Quick check to see if two basic maps are disjoint.
2371 * In particular, we reduce the equalities and inequalities of
2372 * one basic map in the context of the equalities of the other
2373 * basic map and check if we get a contradiction.
2375 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2376 __isl_keep isl_basic_map
*bmap2
)
2378 struct isl_vec
*v
= NULL
;
2383 if (!bmap1
|| !bmap2
)
2385 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
2387 if (bmap1
->n_div
|| bmap2
->n_div
)
2389 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
2392 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
2395 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
2398 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
2401 compute_elimination_index(bmap1
, elim
);
2402 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
2404 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
2406 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
2407 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2410 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
2412 reduced
= reduced_using_equalities(v
->block
.data
,
2413 bmap2
->ineq
[i
], bmap1
, elim
);
2414 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2415 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2418 compute_elimination_index(bmap2
, elim
);
2419 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
2421 reduced
= reduced_using_equalities(v
->block
.data
,
2422 bmap1
->ineq
[i
], bmap2
, elim
);
2423 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2424 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2440 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2441 __isl_keep isl_basic_set
*bset2
)
2443 return isl_basic_map_plain_is_disjoint((struct isl_basic_map
*)bset1
,
2444 (struct isl_basic_map
*)bset2
);
2447 /* Are "map1" and "map2" obviously disjoint?
2449 * If they have different parameters, then we skip any further tests.
2450 * In particular, the outcome of the subsequent calls to
2451 * isl_space_tuple_match may be affected by the different parameters
2454 * If one of them is empty or if they live in different spaces (assuming
2455 * they have the same parameters), then they are clearly disjoint.
2457 * If they are obviously equal, but not obviously empty, then we will
2458 * not be able to detect if they are disjoint.
2460 * Otherwise we check if each basic map in "map1" is obviously disjoint
2461 * from each basic map in "map2".
2463 int isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
2464 __isl_keep isl_map
*map2
)
2474 disjoint
= isl_map_plain_is_empty(map1
);
2475 if (disjoint
< 0 || disjoint
)
2478 disjoint
= isl_map_plain_is_empty(map2
);
2479 if (disjoint
< 0 || disjoint
)
2482 match
= isl_space_match(map1
->dim
, isl_dim_param
,
2483 map2
->dim
, isl_dim_param
);
2484 if (match
< 0 || !match
)
2485 return match
< 0 ? -1 : 0;
2487 match
= isl_space_tuple_match(map1
->dim
, isl_dim_in
,
2488 map2
->dim
, isl_dim_in
);
2489 if (match
< 0 || !match
)
2490 return match
< 0 ? -1 : 1;
2492 match
= isl_space_tuple_match(map1
->dim
, isl_dim_out
,
2493 map2
->dim
, isl_dim_out
);
2494 if (match
< 0 || !match
)
2495 return match
< 0 ? -1 : 1;
2497 intersect
= isl_map_plain_is_equal(map1
, map2
);
2498 if (intersect
< 0 || intersect
)
2499 return intersect
< 0 ? -1 : 0;
2501 for (i
= 0; i
< map1
->n
; ++i
) {
2502 for (j
= 0; j
< map2
->n
; ++j
) {
2503 int d
= isl_basic_map_plain_is_disjoint(map1
->p
[i
],
2512 /* Are "map1" and "map2" disjoint?
2514 * They are disjoint if they are "obviously disjoint" or if one of them
2515 * is empty. Otherwise, they are not disjoint if one of them is universal.
2516 * If none of these cases apply, we compute the intersection and see if
2517 * the result is empty.
2519 int isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
2525 disjoint
= isl_map_plain_is_disjoint(map1
, map2
);
2526 if (disjoint
< 0 || disjoint
)
2529 disjoint
= isl_map_is_empty(map1
);
2530 if (disjoint
< 0 || disjoint
)
2533 disjoint
= isl_map_is_empty(map2
);
2534 if (disjoint
< 0 || disjoint
)
2537 intersect
= isl_map_plain_is_universe(map1
);
2538 if (intersect
< 0 || intersect
)
2539 return intersect
< 0 ? -1 : 0;
2541 intersect
= isl_map_plain_is_universe(map2
);
2542 if (intersect
< 0 || intersect
)
2543 return intersect
< 0 ? -1 : 0;
2545 test
= isl_map_intersect(isl_map_copy(map1
), isl_map_copy(map2
));
2546 disjoint
= isl_map_is_empty(test
);
2552 int isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
2553 __isl_keep isl_set
*set2
)
2555 return isl_map_plain_is_disjoint((struct isl_map
*)set1
,
2556 (struct isl_map
*)set2
);
2559 /* Are "set1" and "set2" disjoint?
2561 int isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2563 return isl_map_is_disjoint(set1
, set2
);
2566 int isl_set_fast_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2568 return isl_set_plain_is_disjoint(set1
, set2
);
2571 /* Check if we can combine a given div with lower bound l and upper
2572 * bound u with some other div and if so return that other div.
2573 * Otherwise return -1.
2575 * We first check that
2576 * - the bounds are opposites of each other (except for the constant
2578 * - the bounds do not reference any other div
2579 * - no div is defined in terms of this div
2581 * Let m be the size of the range allowed on the div by the bounds.
2582 * That is, the bounds are of the form
2584 * e <= a <= e + m - 1
2586 * with e some expression in the other variables.
2587 * We look for another div b such that no third div is defined in terms
2588 * of this second div b and such that in any constraint that contains
2589 * a (except for the given lower and upper bound), also contains b
2590 * with a coefficient that is m times that of b.
2591 * That is, all constraints (execpt for the lower and upper bound)
2594 * e + f (a + m b) >= 0
2596 * If so, we return b so that "a + m b" can be replaced by
2597 * a single div "c = a + m b".
2599 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2600 unsigned div
, unsigned l
, unsigned u
)
2606 if (bmap
->n_div
<= 1)
2608 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2609 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2611 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2612 bmap
->n_div
- div
- 1) != -1)
2614 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2618 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2619 if (isl_int_is_zero(bmap
->div
[i
][0]))
2621 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2625 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2626 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2627 isl_int_sub(bmap
->ineq
[l
][0],
2628 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2629 bmap
= isl_basic_map_copy(bmap
);
2630 bmap
= isl_basic_map_set_to_empty(bmap
);
2631 isl_basic_map_free(bmap
);
2634 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2635 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2640 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2641 if (isl_int_is_zero(bmap
->div
[j
][0]))
2643 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2646 if (j
< bmap
->n_div
)
2648 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2650 if (j
== l
|| j
== u
)
2652 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2654 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2656 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2657 bmap
->ineq
[j
][1 + dim
+ div
],
2659 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2660 bmap
->ineq
[j
][1 + dim
+ i
]);
2661 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2662 bmap
->ineq
[j
][1 + dim
+ div
],
2667 if (j
< bmap
->n_ineq
)
2672 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2673 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2677 /* Given a lower and an upper bound on div i, construct an inequality
2678 * that when nonnegative ensures that this pair of bounds always allows
2679 * for an integer value of the given div.
2680 * The lower bound is inequality l, while the upper bound is inequality u.
2681 * The constructed inequality is stored in ineq.
2682 * g, fl, fu are temporary scalars.
2684 * Let the upper bound be
2688 * and the lower bound
2692 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2695 * - f_u e_l <= f_u f_l g a <= f_l e_u
2697 * Since all variables are integer valued, this is equivalent to
2699 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2701 * If this interval is at least f_u f_l g, then it contains at least
2702 * one integer value for a.
2703 * That is, the test constraint is
2705 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2707 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2708 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2711 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2713 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2714 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2715 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2716 isl_int_neg(fu
, fu
);
2717 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2718 1 + dim
+ bmap
->n_div
);
2719 isl_int_add(ineq
[0], ineq
[0], fl
);
2720 isl_int_add(ineq
[0], ineq
[0], fu
);
2721 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2722 isl_int_mul(g
, g
, fl
);
2723 isl_int_mul(g
, g
, fu
);
2724 isl_int_sub(ineq
[0], ineq
[0], g
);
2727 /* Remove more kinds of divs that are not strictly needed.
2728 * In particular, if all pairs of lower and upper bounds on a div
2729 * are such that they allow at least one integer value of the div,
2730 * the we can eliminate the div using Fourier-Motzkin without
2731 * introducing any spurious solutions.
2733 static struct isl_basic_map
*drop_more_redundant_divs(
2734 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2736 struct isl_tab
*tab
= NULL
;
2737 struct isl_vec
*vec
= NULL
;
2749 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2750 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2754 tab
= isl_tab_from_basic_map(bmap
, 0);
2759 enum isl_lp_result res
;
2761 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2764 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2770 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2771 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2773 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2774 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2776 construct_test_ineq(bmap
, i
, l
, u
,
2777 vec
->el
, g
, fl
, fu
);
2778 res
= isl_tab_min(tab
, vec
->el
,
2779 bmap
->ctx
->one
, &g
, NULL
, 0);
2780 if (res
== isl_lp_error
)
2782 if (res
== isl_lp_empty
) {
2783 bmap
= isl_basic_map_set_to_empty(bmap
);
2786 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2789 if (u
< bmap
->n_ineq
)
2792 if (l
== bmap
->n_ineq
) {
2812 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
2813 return isl_basic_map_drop_redundant_divs(bmap
);
2816 isl_basic_map_free(bmap
);
2825 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2826 * and the upper bound u, div1 always occurs together with div2 in the form
2827 * (div1 + m div2), where m is the constant range on the variable div1
2828 * allowed by l and u, replace the pair div1 and div2 by a single
2829 * div that is equal to div1 + m div2.
2831 * The new div will appear in the location that contains div2.
2832 * We need to modify all constraints that contain
2833 * div2 = (div - div1) / m
2834 * (If a constraint does not contain div2, it will also not contain div1.)
2835 * If the constraint also contains div1, then we know they appear
2836 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2837 * i.e., the coefficient of div is f.
2839 * Otherwise, we first need to introduce div1 into the constraint.
2848 * A lower bound on div2
2852 * can be replaced by
2854 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2856 * with g = gcd(m,n).
2861 * can be replaced by
2863 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2865 * These constraint are those that we would obtain from eliminating
2866 * div1 using Fourier-Motzkin.
2868 * After all constraints have been modified, we drop the lower and upper
2869 * bound and then drop div1.
2871 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2872 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2877 unsigned dim
, total
;
2880 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2881 total
= 1 + dim
+ bmap
->n_div
;
2886 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2887 isl_int_add_ui(m
, m
, 1);
2889 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2890 if (i
== l
|| i
== u
)
2892 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2894 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2895 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2896 isl_int_divexact(a
, m
, b
);
2897 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2898 if (isl_int_is_pos(b
)) {
2899 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2900 b
, bmap
->ineq
[l
], total
);
2903 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2904 b
, bmap
->ineq
[u
], total
);
2907 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2908 bmap
->ineq
[i
][1 + dim
+ div1
]);
2909 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2916 isl_basic_map_drop_inequality(bmap
, l
);
2917 isl_basic_map_drop_inequality(bmap
, u
);
2919 isl_basic_map_drop_inequality(bmap
, u
);
2920 isl_basic_map_drop_inequality(bmap
, l
);
2922 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2926 /* First check if we can coalesce any pair of divs and
2927 * then continue with dropping more redundant divs.
2929 * We loop over all pairs of lower and upper bounds on a div
2930 * with coefficient 1 and -1, respectively, check if there
2931 * is any other div "c" with which we can coalesce the div
2932 * and if so, perform the coalescing.
2934 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2935 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2940 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2942 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2945 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2946 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
2948 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2951 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
2953 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
2957 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
2958 return isl_basic_map_drop_redundant_divs(bmap
);
2963 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
2966 return drop_more_redundant_divs(bmap
, pairs
, n
);
2969 /* Remove divs that are not strictly needed.
2970 * In particular, if a div only occurs positively (or negatively)
2971 * in constraints, then it can simply be dropped.
2972 * Also, if a div occurs in only two constraints and if moreover
2973 * those two constraints are opposite to each other, except for the constant
2974 * term and if the sum of the constant terms is such that for any value
2975 * of the other values, there is always at least one integer value of the
2976 * div, i.e., if one plus this sum is greater than or equal to
2977 * the (absolute value) of the coefficent of the div in the constraints,
2978 * then we can also simply drop the div.
2980 * We skip divs that appear in equalities or in the definition of other divs.
2981 * Divs that appear in the definition of other divs usually occur in at least
2982 * 4 constraints, but the constraints may have been simplified.
2984 * If any divs are left after these simple checks then we move on
2985 * to more complicated cases in drop_more_redundant_divs.
2987 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
2988 struct isl_basic_map
*bmap
)
2997 if (bmap
->n_div
== 0)
3000 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3001 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
3005 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3007 int last_pos
, last_neg
;
3011 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
3012 for (j
= i
; j
< bmap
->n_div
; ++j
)
3013 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
3015 if (j
< bmap
->n_div
)
3017 for (j
= 0; j
< bmap
->n_eq
; ++j
)
3018 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
3024 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
3025 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
3029 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
3034 pairs
[i
] = pos
* neg
;
3035 if (pairs
[i
] == 0) {
3036 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
3037 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
3038 isl_basic_map_drop_inequality(bmap
, j
);
3039 bmap
= isl_basic_map_drop_div(bmap
, i
);
3041 return isl_basic_map_drop_redundant_divs(bmap
);
3045 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
3046 bmap
->ineq
[last_neg
] + 1,
3050 isl_int_add(bmap
->ineq
[last_pos
][0],
3051 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3052 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
3053 bmap
->ineq
[last_pos
][0], 1);
3054 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
3055 bmap
->ineq
[last_pos
][1+off
+i
]);
3056 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
3057 bmap
->ineq
[last_pos
][0], 1);
3058 isl_int_sub(bmap
->ineq
[last_pos
][0],
3059 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3062 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
3067 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
3068 bmap
= isl_basic_map_simplify(bmap
);
3070 return isl_basic_map_drop_redundant_divs(bmap
);
3072 if (last_pos
> last_neg
) {
3073 isl_basic_map_drop_inequality(bmap
, last_pos
);
3074 isl_basic_map_drop_inequality(bmap
, last_neg
);
3076 isl_basic_map_drop_inequality(bmap
, last_neg
);
3077 isl_basic_map_drop_inequality(bmap
, last_pos
);
3079 bmap
= isl_basic_map_drop_div(bmap
, i
);
3081 return isl_basic_map_drop_redundant_divs(bmap
);
3085 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
3091 isl_basic_map_free(bmap
);
3095 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
3096 struct isl_basic_set
*bset
)
3098 return (struct isl_basic_set
*)
3099 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
3102 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
3108 for (i
= 0; i
< map
->n
; ++i
) {
3109 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
3113 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3120 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
3122 return (struct isl_set
*)
3123 isl_map_drop_redundant_divs((struct isl_map
*)set
);