Do not dereference a NULL pointer in tab_for_lexmin
[isl.git] / isl_map_simplify.c
bloba575db0d91666f5276da25e7d26e94afd829ae8c
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 #include <strings.h>
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
16 #include <isl/map.h>
17 #include <isl/seq.h>
18 #include "isl_tab.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
22 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
24 isl_int *t = bmap->eq[a];
25 bmap->eq[a] = bmap->eq[b];
26 bmap->eq[b] = t;
29 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
31 if (a != b) {
32 isl_int *t = bmap->ineq[a];
33 bmap->ineq[a] = bmap->ineq[b];
34 bmap->ineq[b] = t;
38 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
40 isl_seq_cpy(c, c + n, rem);
41 isl_seq_clr(c + rem, n);
44 /* Drop n dimensions starting at first.
46 * In principle, this frees up some extra variables as the number
47 * of columns remains constant, but we would have to extend
48 * the div array too as the number of rows in this array is assumed
49 * to be equal to extra.
51 struct isl_basic_set *isl_basic_set_drop_dims(
52 struct isl_basic_set *bset, unsigned first, unsigned n)
54 int i;
56 if (!bset)
57 goto error;
59 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
61 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
62 return bset;
64 bset = isl_basic_set_cow(bset);
65 if (!bset)
66 return NULL;
68 for (i = 0; i < bset->n_eq; ++i)
69 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
70 (bset->dim->n_out-first-n)+bset->extra);
72 for (i = 0; i < bset->n_ineq; ++i)
73 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_div; ++i)
77 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
81 if (!bset->dim)
82 goto error;
84 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
85 bset = isl_basic_set_simplify(bset);
86 return isl_basic_set_finalize(bset);
87 error:
88 isl_basic_set_free(bset);
89 return NULL;
92 struct isl_set *isl_set_drop_dims(
93 struct isl_set *set, unsigned first, unsigned n)
95 int i;
97 if (!set)
98 goto error;
100 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
102 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
103 return set;
104 set = isl_set_cow(set);
105 if (!set)
106 goto error;
107 set->dim = isl_space_drop_outputs(set->dim, first, n);
108 if (!set->dim)
109 goto error;
111 for (i = 0; i < set->n; ++i) {
112 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
113 if (!set->p[i])
114 goto error;
117 ISL_F_CLR(set, ISL_SET_NORMALIZED);
118 return set;
119 error:
120 isl_set_free(set);
121 return NULL;
124 /* Move "n" divs starting at "first" to the end of the list of divs.
126 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
127 unsigned first, unsigned n)
129 isl_int **div;
130 int i;
132 if (first + n == bmap->n_div)
133 return bmap;
135 div = isl_alloc_array(bmap->ctx, isl_int *, n);
136 if (!div)
137 goto error;
138 for (i = 0; i < n; ++i)
139 div[i] = bmap->div[first + i];
140 for (i = 0; i < bmap->n_div - first - n; ++i)
141 bmap->div[first + i] = bmap->div[first + n + i];
142 for (i = 0; i < n; ++i)
143 bmap->div[bmap->n_div - n + i] = div[i];
144 free(div);
145 return bmap;
146 error:
147 isl_basic_map_free(bmap);
148 return NULL;
151 /* Drop "n" dimensions of type "type" starting at "first".
153 * In principle, this frees up some extra variables as the number
154 * of columns remains constant, but we would have to extend
155 * the div array too as the number of rows in this array is assumed
156 * to be equal to extra.
158 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
159 enum isl_dim_type type, unsigned first, unsigned n)
161 int i;
162 unsigned dim;
163 unsigned offset;
164 unsigned left;
166 if (!bmap)
167 goto error;
169 dim = isl_basic_map_dim(bmap, type);
170 isl_assert(bmap->ctx, first + n <= dim, goto error);
172 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
173 return bmap;
175 bmap = isl_basic_map_cow(bmap);
176 if (!bmap)
177 return NULL;
179 offset = isl_basic_map_offset(bmap, type) + first;
180 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
181 for (i = 0; i < bmap->n_eq; ++i)
182 constraint_drop_vars(bmap->eq[i]+offset, n, left);
184 for (i = 0; i < bmap->n_ineq; ++i)
185 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
187 for (i = 0; i < bmap->n_div; ++i)
188 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
190 if (type == isl_dim_div) {
191 bmap = move_divs_last(bmap, first, n);
192 if (!bmap)
193 goto error;
194 isl_basic_map_free_div(bmap, n);
195 } else
196 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
197 if (!bmap->dim)
198 goto error;
200 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
201 bmap = isl_basic_map_simplify(bmap);
202 return isl_basic_map_finalize(bmap);
203 error:
204 isl_basic_map_free(bmap);
205 return NULL;
208 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
209 enum isl_dim_type type, unsigned first, unsigned n)
211 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
212 type, first, n);
215 struct isl_basic_map *isl_basic_map_drop_inputs(
216 struct isl_basic_map *bmap, unsigned first, unsigned n)
218 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
221 struct isl_map *isl_map_drop(struct isl_map *map,
222 enum isl_dim_type type, unsigned first, unsigned n)
224 int i;
226 if (!map)
227 goto error;
229 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
231 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
232 return map;
233 map = isl_map_cow(map);
234 if (!map)
235 goto error;
236 map->dim = isl_space_drop_dims(map->dim, type, first, n);
237 if (!map->dim)
238 goto error;
240 for (i = 0; i < map->n; ++i) {
241 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
242 if (!map->p[i])
243 goto error;
245 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
247 return map;
248 error:
249 isl_map_free(map);
250 return NULL;
253 struct isl_set *isl_set_drop(struct isl_set *set,
254 enum isl_dim_type type, unsigned first, unsigned n)
256 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
259 struct isl_map *isl_map_drop_inputs(
260 struct isl_map *map, unsigned first, unsigned n)
262 return isl_map_drop(map, isl_dim_in, first, n);
266 * We don't cow, as the div is assumed to be redundant.
268 static struct isl_basic_map *isl_basic_map_drop_div(
269 struct isl_basic_map *bmap, unsigned div)
271 int i;
272 unsigned pos;
274 if (!bmap)
275 goto error;
277 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
279 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
281 for (i = 0; i < bmap->n_eq; ++i)
282 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
284 for (i = 0; i < bmap->n_ineq; ++i) {
285 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
286 isl_basic_map_drop_inequality(bmap, i);
287 --i;
288 continue;
290 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
293 for (i = 0; i < bmap->n_div; ++i)
294 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
296 if (div != bmap->n_div - 1) {
297 int j;
298 isl_int *t = bmap->div[div];
300 for (j = div; j < bmap->n_div - 1; ++j)
301 bmap->div[j] = bmap->div[j+1];
303 bmap->div[bmap->n_div - 1] = t;
305 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
306 isl_basic_map_free_div(bmap, 1);
308 return bmap;
309 error:
310 isl_basic_map_free(bmap);
311 return NULL;
314 struct isl_basic_map *isl_basic_map_normalize_constraints(
315 struct isl_basic_map *bmap)
317 int i;
318 isl_int gcd;
319 unsigned total = isl_basic_map_total_dim(bmap);
321 if (!bmap)
322 return NULL;
324 isl_int_init(gcd);
325 for (i = bmap->n_eq - 1; i >= 0; --i) {
326 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
327 if (isl_int_is_zero(gcd)) {
328 if (!isl_int_is_zero(bmap->eq[i][0])) {
329 bmap = isl_basic_map_set_to_empty(bmap);
330 break;
332 isl_basic_map_drop_equality(bmap, i);
333 continue;
335 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
336 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
337 if (isl_int_is_one(gcd))
338 continue;
339 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
340 bmap = isl_basic_map_set_to_empty(bmap);
341 break;
343 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
346 for (i = bmap->n_ineq - 1; i >= 0; --i) {
347 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
348 if (isl_int_is_zero(gcd)) {
349 if (isl_int_is_neg(bmap->ineq[i][0])) {
350 bmap = isl_basic_map_set_to_empty(bmap);
351 break;
353 isl_basic_map_drop_inequality(bmap, i);
354 continue;
356 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
357 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
358 if (isl_int_is_one(gcd))
359 continue;
360 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
361 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
363 isl_int_clear(gcd);
365 return bmap;
368 struct isl_basic_set *isl_basic_set_normalize_constraints(
369 struct isl_basic_set *bset)
371 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
372 (struct isl_basic_map *)bset);
375 /* Remove any common factor in numerator and denominator of the div expression,
376 * not taking into account the constant term.
377 * That is, if the div is of the form
379 * floor((a + m f(x))/(m d))
381 * then replace it by
383 * floor((floor(a/m) + f(x))/d)
385 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
386 * and can therefore not influence the result of the floor.
388 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
390 unsigned total = isl_basic_map_total_dim(bmap);
391 isl_ctx *ctx = bmap->ctx;
393 if (isl_int_is_zero(bmap->div[div][0]))
394 return;
395 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
396 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
397 if (isl_int_is_one(ctx->normalize_gcd))
398 return;
399 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
400 ctx->normalize_gcd);
401 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
402 ctx->normalize_gcd);
403 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
404 ctx->normalize_gcd, total);
407 /* Remove any common factor in numerator and denominator of a div expression,
408 * not taking into account the constant term.
409 * That is, look for any div of the form
411 * floor((a + m f(x))/(m d))
413 * and replace it by
415 * floor((floor(a/m) + f(x))/d)
417 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
418 * and can therefore not influence the result of the floor.
420 static __isl_give isl_basic_map *normalize_div_expressions(
421 __isl_take isl_basic_map *bmap)
423 int i;
425 if (!bmap)
426 return NULL;
427 if (bmap->n_div == 0)
428 return bmap;
430 for (i = 0; i < bmap->n_div; ++i)
431 normalize_div_expression(bmap, i);
433 return bmap;
436 /* Assumes divs have been ordered if keep_divs is set.
438 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
439 unsigned pos, isl_int *eq, int keep_divs, int *progress)
441 unsigned total;
442 unsigned space_total;
443 int k;
444 int last_div;
446 total = isl_basic_map_total_dim(bmap);
447 space_total = isl_space_dim(bmap->dim, isl_dim_all);
448 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
449 for (k = 0; k < bmap->n_eq; ++k) {
450 if (bmap->eq[k] == eq)
451 continue;
452 if (isl_int_is_zero(bmap->eq[k][1+pos]))
453 continue;
454 if (progress)
455 *progress = 1;
456 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
457 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
460 for (k = 0; k < bmap->n_ineq; ++k) {
461 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
462 continue;
463 if (progress)
464 *progress = 1;
465 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
466 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
467 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
470 for (k = 0; k < bmap->n_div; ++k) {
471 if (isl_int_is_zero(bmap->div[k][0]))
472 continue;
473 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
474 continue;
475 if (progress)
476 *progress = 1;
477 /* We need to be careful about circular definitions,
478 * so for now we just remove the definition of div k
479 * if the equality contains any divs.
480 * If keep_divs is set, then the divs have been ordered
481 * and we can keep the definition as long as the result
482 * is still ordered.
484 if (last_div == -1 || (keep_divs && last_div < k)) {
485 isl_seq_elim(bmap->div[k]+1, eq,
486 1+pos, 1+total, &bmap->div[k][0]);
487 normalize_div_expression(bmap, k);
488 } else
489 isl_seq_clr(bmap->div[k], 1 + total);
490 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
494 /* Assumes divs have been ordered if keep_divs is set.
496 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
497 unsigned div, int keep_divs)
499 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
501 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
503 isl_basic_map_drop_div(bmap, div);
506 /* Check if elimination of div "div" using equality "eq" would not
507 * result in a div depending on a later div.
509 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
510 unsigned div)
512 int k;
513 int last_div;
514 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
515 unsigned pos = space_total + div;
517 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
518 if (last_div < 0 || last_div <= div)
519 return 1;
521 for (k = 0; k <= last_div; ++k) {
522 if (isl_int_is_zero(bmap->div[k][0]))
523 return 1;
524 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
525 return 0;
528 return 1;
531 /* Elimininate divs based on equalities
533 static struct isl_basic_map *eliminate_divs_eq(
534 struct isl_basic_map *bmap, int *progress)
536 int d;
537 int i;
538 int modified = 0;
539 unsigned off;
541 bmap = isl_basic_map_order_divs(bmap);
543 if (!bmap)
544 return NULL;
546 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
548 for (d = bmap->n_div - 1; d >= 0 ; --d) {
549 for (i = 0; i < bmap->n_eq; ++i) {
550 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
551 !isl_int_is_negone(bmap->eq[i][off + d]))
552 continue;
553 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
554 continue;
555 modified = 1;
556 *progress = 1;
557 eliminate_div(bmap, bmap->eq[i], d, 1);
558 isl_basic_map_drop_equality(bmap, i);
559 break;
562 if (modified)
563 return eliminate_divs_eq(bmap, progress);
564 return bmap;
567 /* Elimininate divs based on inequalities
569 static struct isl_basic_map *eliminate_divs_ineq(
570 struct isl_basic_map *bmap, int *progress)
572 int d;
573 int i;
574 unsigned off;
575 struct isl_ctx *ctx;
577 if (!bmap)
578 return NULL;
580 ctx = bmap->ctx;
581 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
583 for (d = bmap->n_div - 1; d >= 0 ; --d) {
584 for (i = 0; i < bmap->n_eq; ++i)
585 if (!isl_int_is_zero(bmap->eq[i][off + d]))
586 break;
587 if (i < bmap->n_eq)
588 continue;
589 for (i = 0; i < bmap->n_ineq; ++i)
590 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
591 break;
592 if (i < bmap->n_ineq)
593 continue;
594 *progress = 1;
595 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
596 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
597 break;
598 bmap = isl_basic_map_drop_div(bmap, d);
599 if (!bmap)
600 break;
602 return bmap;
605 struct isl_basic_map *isl_basic_map_gauss(
606 struct isl_basic_map *bmap, int *progress)
608 int k;
609 int done;
610 int last_var;
611 unsigned total_var;
612 unsigned total;
614 bmap = isl_basic_map_order_divs(bmap);
616 if (!bmap)
617 return NULL;
619 total = isl_basic_map_total_dim(bmap);
620 total_var = total - bmap->n_div;
622 last_var = total - 1;
623 for (done = 0; done < bmap->n_eq; ++done) {
624 for (; last_var >= 0; --last_var) {
625 for (k = done; k < bmap->n_eq; ++k)
626 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
627 break;
628 if (k < bmap->n_eq)
629 break;
631 if (last_var < 0)
632 break;
633 if (k != done)
634 swap_equality(bmap, k, done);
635 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
636 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
638 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
639 progress);
641 if (last_var >= total_var &&
642 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
643 unsigned div = last_var - total_var;
644 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
645 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
646 isl_int_set(bmap->div[div][0],
647 bmap->eq[done][1+last_var]);
648 if (progress)
649 *progress = 1;
650 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
653 if (done == bmap->n_eq)
654 return bmap;
655 for (k = done; k < bmap->n_eq; ++k) {
656 if (isl_int_is_zero(bmap->eq[k][0]))
657 continue;
658 return isl_basic_map_set_to_empty(bmap);
660 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
661 return bmap;
664 struct isl_basic_set *isl_basic_set_gauss(
665 struct isl_basic_set *bset, int *progress)
667 return (struct isl_basic_set*)isl_basic_map_gauss(
668 (struct isl_basic_map *)bset, progress);
672 static unsigned int round_up(unsigned int v)
674 int old_v = v;
676 while (v) {
677 old_v = v;
678 v ^= v & -v;
680 return old_v << 1;
683 static int hash_index(isl_int ***index, unsigned int size, int bits,
684 struct isl_basic_map *bmap, int k)
686 int h;
687 unsigned total = isl_basic_map_total_dim(bmap);
688 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
689 for (h = hash; index[h]; h = (h+1) % size)
690 if (&bmap->ineq[k] != index[h] &&
691 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
692 break;
693 return h;
696 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
697 struct isl_basic_set *bset, int k)
699 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
702 /* If we can eliminate more than one div, then we need to make
703 * sure we do it from last div to first div, in order not to
704 * change the position of the other divs that still need to
705 * be removed.
707 static struct isl_basic_map *remove_duplicate_divs(
708 struct isl_basic_map *bmap, int *progress)
710 unsigned int size;
711 int *index;
712 int *elim_for;
713 int k, l, h;
714 int bits;
715 struct isl_blk eq;
716 unsigned total_var;
717 unsigned total;
718 struct isl_ctx *ctx;
720 bmap = isl_basic_map_order_divs(bmap);
721 if (!bmap || bmap->n_div <= 1)
722 return bmap;
724 total_var = isl_space_dim(bmap->dim, isl_dim_all);
725 total = total_var + bmap->n_div;
727 ctx = bmap->ctx;
728 for (k = bmap->n_div - 1; k >= 0; --k)
729 if (!isl_int_is_zero(bmap->div[k][0]))
730 break;
731 if (k <= 0)
732 return bmap;
734 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
735 size = round_up(4 * bmap->n_div / 3 - 1);
736 bits = ffs(size) - 1;
737 index = isl_calloc_array(ctx, int, size);
738 if (!index)
739 return bmap;
740 eq = isl_blk_alloc(ctx, 1+total);
741 if (isl_blk_is_error(eq))
742 goto out;
744 isl_seq_clr(eq.data, 1+total);
745 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
746 for (--k; k >= 0; --k) {
747 uint32_t hash;
749 if (isl_int_is_zero(bmap->div[k][0]))
750 continue;
752 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
753 for (h = hash; index[h]; h = (h+1) % size)
754 if (isl_seq_eq(bmap->div[k],
755 bmap->div[index[h]-1], 2+total))
756 break;
757 if (index[h]) {
758 *progress = 1;
759 l = index[h] - 1;
760 elim_for[l] = k + 1;
762 index[h] = k+1;
764 for (l = bmap->n_div - 1; l >= 0; --l) {
765 if (!elim_for[l])
766 continue;
767 k = elim_for[l] - 1;
768 isl_int_set_si(eq.data[1+total_var+k], -1);
769 isl_int_set_si(eq.data[1+total_var+l], 1);
770 eliminate_div(bmap, eq.data, l, 1);
771 isl_int_set_si(eq.data[1+total_var+k], 0);
772 isl_int_set_si(eq.data[1+total_var+l], 0);
775 isl_blk_free(ctx, eq);
776 out:
777 free(index);
778 free(elim_for);
779 return bmap;
782 static int n_pure_div_eq(struct isl_basic_map *bmap)
784 int i, j;
785 unsigned total;
787 total = isl_space_dim(bmap->dim, isl_dim_all);
788 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
789 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
790 --j;
791 if (j < 0)
792 break;
793 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
794 return 0;
796 return i;
799 /* Normalize divs that appear in equalities.
801 * In particular, we assume that bmap contains some equalities
802 * of the form
804 * a x = m * e_i
806 * and we want to replace the set of e_i by a minimal set and
807 * such that the new e_i have a canonical representation in terms
808 * of the vector x.
809 * If any of the equalities involves more than one divs, then
810 * we currently simply bail out.
812 * Let us first additionally assume that all equalities involve
813 * a div. The equalities then express modulo constraints on the
814 * remaining variables and we can use "parameter compression"
815 * to find a minimal set of constraints. The result is a transformation
817 * x = T(x') = x_0 + G x'
819 * with G a lower-triangular matrix with all elements below the diagonal
820 * non-negative and smaller than the diagonal element on the same row.
821 * We first normalize x_0 by making the same property hold in the affine
822 * T matrix.
823 * The rows i of G with a 1 on the diagonal do not impose any modulo
824 * constraint and simply express x_i = x'_i.
825 * For each of the remaining rows i, we introduce a div and a corresponding
826 * equality. In particular
828 * g_ii e_j = x_i - g_i(x')
830 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
831 * corresponding div (if g_kk != 1).
833 * If there are any equalities not involving any div, then we
834 * first apply a variable compression on the variables x:
836 * x = C x'' x'' = C_2 x
838 * and perform the above parameter compression on A C instead of on A.
839 * The resulting compression is then of the form
841 * x'' = T(x') = x_0 + G x'
843 * and in constructing the new divs and the corresponding equalities,
844 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
845 * by the corresponding row from C_2.
847 static struct isl_basic_map *normalize_divs(
848 struct isl_basic_map *bmap, int *progress)
850 int i, j, k;
851 int total;
852 int div_eq;
853 struct isl_mat *B;
854 struct isl_vec *d;
855 struct isl_mat *T = NULL;
856 struct isl_mat *C = NULL;
857 struct isl_mat *C2 = NULL;
858 isl_int v;
859 int *pos;
860 int dropped, needed;
862 if (!bmap)
863 return NULL;
865 if (bmap->n_div == 0)
866 return bmap;
868 if (bmap->n_eq == 0)
869 return bmap;
871 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
872 return bmap;
874 total = isl_space_dim(bmap->dim, isl_dim_all);
875 div_eq = n_pure_div_eq(bmap);
876 if (div_eq == 0)
877 return bmap;
879 if (div_eq < bmap->n_eq) {
880 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
881 bmap->n_eq - div_eq, 0, 1 + total);
882 C = isl_mat_variable_compression(B, &C2);
883 if (!C || !C2)
884 goto error;
885 if (C->n_col == 0) {
886 bmap = isl_basic_map_set_to_empty(bmap);
887 isl_mat_free(C);
888 isl_mat_free(C2);
889 goto done;
893 d = isl_vec_alloc(bmap->ctx, div_eq);
894 if (!d)
895 goto error;
896 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
897 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
898 --j;
899 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
901 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
903 if (C) {
904 B = isl_mat_product(B, C);
905 C = NULL;
908 T = isl_mat_parameter_compression(B, d);
909 if (!T)
910 goto error;
911 if (T->n_col == 0) {
912 bmap = isl_basic_map_set_to_empty(bmap);
913 isl_mat_free(C2);
914 isl_mat_free(T);
915 goto done;
917 isl_int_init(v);
918 for (i = 0; i < T->n_row - 1; ++i) {
919 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
920 if (isl_int_is_zero(v))
921 continue;
922 isl_mat_col_submul(T, 0, v, 1 + i);
924 isl_int_clear(v);
925 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
926 if (!pos)
927 goto error;
928 /* We have to be careful because dropping equalities may reorder them */
929 dropped = 0;
930 for (j = bmap->n_div - 1; j >= 0; --j) {
931 for (i = 0; i < bmap->n_eq; ++i)
932 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
933 break;
934 if (i < bmap->n_eq) {
935 bmap = isl_basic_map_drop_div(bmap, j);
936 isl_basic_map_drop_equality(bmap, i);
937 ++dropped;
940 pos[0] = 0;
941 needed = 0;
942 for (i = 1; i < T->n_row; ++i) {
943 if (isl_int_is_one(T->row[i][i]))
944 pos[i] = i;
945 else
946 needed++;
948 if (needed > dropped) {
949 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
950 needed, needed, 0);
951 if (!bmap)
952 goto error;
954 for (i = 1; i < T->n_row; ++i) {
955 if (isl_int_is_one(T->row[i][i]))
956 continue;
957 k = isl_basic_map_alloc_div(bmap);
958 pos[i] = 1 + total + k;
959 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
960 isl_int_set(bmap->div[k][0], T->row[i][i]);
961 if (C2)
962 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
963 else
964 isl_int_set_si(bmap->div[k][1 + i], 1);
965 for (j = 0; j < i; ++j) {
966 if (isl_int_is_zero(T->row[i][j]))
967 continue;
968 if (pos[j] < T->n_row && C2)
969 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
970 C2->row[pos[j]], 1 + total);
971 else
972 isl_int_neg(bmap->div[k][1 + pos[j]],
973 T->row[i][j]);
975 j = isl_basic_map_alloc_equality(bmap);
976 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
977 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
979 free(pos);
980 isl_mat_free(C2);
981 isl_mat_free(T);
983 if (progress)
984 *progress = 1;
985 done:
986 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
988 return bmap;
989 error:
990 isl_mat_free(C);
991 isl_mat_free(C2);
992 isl_mat_free(T);
993 return bmap;
996 static struct isl_basic_map *set_div_from_lower_bound(
997 struct isl_basic_map *bmap, int div, int ineq)
999 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1001 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1002 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1003 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1004 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1005 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1007 return bmap;
1010 /* Check whether it is ok to define a div based on an inequality.
1011 * To avoid the introduction of circular definitions of divs, we
1012 * do not allow such a definition if the resulting expression would refer to
1013 * any other undefined divs or if any known div is defined in
1014 * terms of the unknown div.
1016 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1017 int div, int ineq)
1019 int j;
1020 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1022 /* Not defined in terms of unknown divs */
1023 for (j = 0; j < bmap->n_div; ++j) {
1024 if (div == j)
1025 continue;
1026 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1027 continue;
1028 if (isl_int_is_zero(bmap->div[j][0]))
1029 return 0;
1032 /* No other div defined in terms of this one => avoid loops */
1033 for (j = 0; j < bmap->n_div; ++j) {
1034 if (div == j)
1035 continue;
1036 if (isl_int_is_zero(bmap->div[j][0]))
1037 continue;
1038 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1039 return 0;
1042 return 1;
1045 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1046 * be a better expression than the current one?
1048 * If we do not have any expression yet, then any expression would be better.
1049 * Otherwise we check if the last variable involved in the inequality
1050 * (disregarding the div that it would define) is in an earlier position
1051 * than the last variable involved in the current div expression.
1053 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1054 int div, int ineq)
1056 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1057 int last_div;
1058 int last_ineq;
1060 if (isl_int_is_zero(bmap->div[div][0]))
1061 return 1;
1063 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1064 bmap->n_div - (div + 1)) >= 0)
1065 return 0;
1067 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1068 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1069 total + bmap->n_div);
1071 return last_ineq < last_div;
1074 /* Given two constraints "k" and "l" that are opposite to each other,
1075 * except for the constant term, check if we can use them
1076 * to obtain an expression for one of the hitherto unknown divs or
1077 * a "better" expression for a div for which we already have an expression.
1078 * "sum" is the sum of the constant terms of the constraints.
1079 * If this sum is strictly smaller than the coefficient of one
1080 * of the divs, then this pair can be used define the div.
1081 * To avoid the introduction of circular definitions of divs, we
1082 * do not use the pair if the resulting expression would refer to
1083 * any other undefined divs or if any known div is defined in
1084 * terms of the unknown div.
1086 static struct isl_basic_map *check_for_div_constraints(
1087 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1089 int i;
1090 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1092 for (i = 0; i < bmap->n_div; ++i) {
1093 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1094 continue;
1095 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1096 continue;
1097 if (!better_div_constraint(bmap, i, k))
1098 continue;
1099 if (!ok_to_set_div_from_bound(bmap, i, k))
1100 break;
1101 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1102 bmap = set_div_from_lower_bound(bmap, i, k);
1103 else
1104 bmap = set_div_from_lower_bound(bmap, i, l);
1105 if (progress)
1106 *progress = 1;
1107 break;
1109 return bmap;
1112 static struct isl_basic_map *remove_duplicate_constraints(
1113 struct isl_basic_map *bmap, int *progress, int detect_divs)
1115 unsigned int size;
1116 isl_int ***index;
1117 int k, l, h;
1118 int bits;
1119 unsigned total = isl_basic_map_total_dim(bmap);
1120 isl_int sum;
1121 isl_ctx *ctx;
1123 if (!bmap || bmap->n_ineq <= 1)
1124 return bmap;
1126 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1127 bits = ffs(size) - 1;
1128 ctx = isl_basic_map_get_ctx(bmap);
1129 index = isl_calloc_array(ctx, isl_int **, size);
1130 if (!index)
1131 return bmap;
1133 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1134 for (k = 1; k < bmap->n_ineq; ++k) {
1135 h = hash_index(index, size, bits, bmap, k);
1136 if (!index[h]) {
1137 index[h] = &bmap->ineq[k];
1138 continue;
1140 if (progress)
1141 *progress = 1;
1142 l = index[h] - &bmap->ineq[0];
1143 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1144 swap_inequality(bmap, k, l);
1145 isl_basic_map_drop_inequality(bmap, k);
1146 --k;
1148 isl_int_init(sum);
1149 for (k = 0; k < bmap->n_ineq-1; ++k) {
1150 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1151 h = hash_index(index, size, bits, bmap, k);
1152 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1153 if (!index[h])
1154 continue;
1155 l = index[h] - &bmap->ineq[0];
1156 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1157 if (isl_int_is_pos(sum)) {
1158 if (detect_divs)
1159 bmap = check_for_div_constraints(bmap, k, l,
1160 sum, progress);
1161 continue;
1163 if (isl_int_is_zero(sum)) {
1164 /* We need to break out of the loop after these
1165 * changes since the contents of the hash
1166 * will no longer be valid.
1167 * Plus, we probably we want to regauss first.
1169 if (progress)
1170 *progress = 1;
1171 isl_basic_map_drop_inequality(bmap, l);
1172 isl_basic_map_inequality_to_equality(bmap, k);
1173 } else
1174 bmap = isl_basic_map_set_to_empty(bmap);
1175 break;
1177 isl_int_clear(sum);
1179 free(index);
1180 return bmap;
1184 /* Eliminate knowns divs from constraints where they appear with
1185 * a (positive or negative) unit coefficient.
1187 * That is, replace
1189 * floor(e/m) + f >= 0
1191 * by
1193 * e + m f >= 0
1195 * and
1197 * -floor(e/m) + f >= 0
1199 * by
1201 * -e + m f + m - 1 >= 0
1203 * The first conversion is valid because floor(e/m) >= -f is equivalent
1204 * to e/m >= -f because -f is an integral expression.
1205 * The second conversion follows from the fact that
1207 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1210 * Note that one of the div constraints may have been eliminated
1211 * due to being redundant with respect to the constraint that is
1212 * being modified by this function. The modified constraint may
1213 * no longer imply this div constraint, so we add it back to make
1214 * sure we do not lose any information.
1216 * We skip integral divs, i.e., those with denominator 1, as we would
1217 * risk eliminating the div from the div constraints. We do not need
1218 * to handle those divs here anyway since the div constraints will turn
1219 * out to form an equality and this equality can then be use to eliminate
1220 * the div from all constraints.
1222 static __isl_give isl_basic_map *eliminate_unit_divs(
1223 __isl_take isl_basic_map *bmap, int *progress)
1225 int i, j;
1226 isl_ctx *ctx;
1227 unsigned total;
1229 if (!bmap)
1230 return NULL;
1232 ctx = isl_basic_map_get_ctx(bmap);
1233 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1235 for (i = 0; i < bmap->n_div; ++i) {
1236 if (isl_int_is_zero(bmap->div[i][0]))
1237 continue;
1238 if (isl_int_is_one(bmap->div[i][0]))
1239 continue;
1240 for (j = 0; j < bmap->n_ineq; ++j) {
1241 int s;
1243 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1244 !isl_int_is_negone(bmap->ineq[j][total + i]))
1245 continue;
1247 *progress = 1;
1249 s = isl_int_sgn(bmap->ineq[j][total + i]);
1250 isl_int_set_si(bmap->ineq[j][total + i], 0);
1251 if (s < 0)
1252 isl_seq_combine(bmap->ineq[j],
1253 ctx->negone, bmap->div[i] + 1,
1254 bmap->div[i][0], bmap->ineq[j],
1255 total + bmap->n_div);
1256 else
1257 isl_seq_combine(bmap->ineq[j],
1258 ctx->one, bmap->div[i] + 1,
1259 bmap->div[i][0], bmap->ineq[j],
1260 total + bmap->n_div);
1261 if (s < 0) {
1262 isl_int_add(bmap->ineq[j][0],
1263 bmap->ineq[j][0], bmap->div[i][0]);
1264 isl_int_sub_ui(bmap->ineq[j][0],
1265 bmap->ineq[j][0], 1);
1268 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1269 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1270 return isl_basic_map_free(bmap);
1274 return bmap;
1277 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1279 int progress = 1;
1280 if (!bmap)
1281 return NULL;
1282 while (progress) {
1283 progress = 0;
1284 if (!bmap)
1285 break;
1286 if (isl_basic_map_plain_is_empty(bmap))
1287 break;
1288 bmap = isl_basic_map_normalize_constraints(bmap);
1289 bmap = normalize_div_expressions(bmap);
1290 bmap = remove_duplicate_divs(bmap, &progress);
1291 bmap = eliminate_unit_divs(bmap, &progress);
1292 bmap = eliminate_divs_eq(bmap, &progress);
1293 bmap = eliminate_divs_ineq(bmap, &progress);
1294 bmap = isl_basic_map_gauss(bmap, &progress);
1295 /* requires equalities in normal form */
1296 bmap = normalize_divs(bmap, &progress);
1297 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1299 return bmap;
1302 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1304 return (struct isl_basic_set *)
1305 isl_basic_map_simplify((struct isl_basic_map *)bset);
1309 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1310 isl_int *constraint, unsigned div)
1312 unsigned pos;
1314 if (!bmap)
1315 return -1;
1317 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1319 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1320 int neg;
1321 isl_int_sub(bmap->div[div][1],
1322 bmap->div[div][1], bmap->div[div][0]);
1323 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1324 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1325 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1326 isl_int_add(bmap->div[div][1],
1327 bmap->div[div][1], bmap->div[div][0]);
1328 if (!neg)
1329 return 0;
1330 if (isl_seq_first_non_zero(constraint+pos+1,
1331 bmap->n_div-div-1) != -1)
1332 return 0;
1333 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1334 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1335 return 0;
1336 if (isl_seq_first_non_zero(constraint+pos+1,
1337 bmap->n_div-div-1) != -1)
1338 return 0;
1339 } else
1340 return 0;
1342 return 1;
1345 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1346 isl_int *constraint, unsigned div)
1348 return isl_basic_map_is_div_constraint(bset, constraint, div);
1352 /* If the only constraints a div d=floor(f/m)
1353 * appears in are its two defining constraints
1355 * f - m d >=0
1356 * -(f - (m - 1)) + m d >= 0
1358 * then it can safely be removed.
1360 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1362 int i;
1363 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1365 for (i = 0; i < bmap->n_eq; ++i)
1366 if (!isl_int_is_zero(bmap->eq[i][pos]))
1367 return 0;
1369 for (i = 0; i < bmap->n_ineq; ++i) {
1370 if (isl_int_is_zero(bmap->ineq[i][pos]))
1371 continue;
1372 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1373 return 0;
1376 for (i = 0; i < bmap->n_div; ++i) {
1377 if (isl_int_is_zero(bmap->div[i][0]))
1378 continue;
1379 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1380 return 0;
1383 return 1;
1387 * Remove divs that don't occur in any of the constraints or other divs.
1388 * These can arise when dropping some of the variables in a quast
1389 * returned by piplib.
1391 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1393 int i;
1395 if (!bmap)
1396 return NULL;
1398 for (i = bmap->n_div-1; i >= 0; --i) {
1399 if (!div_is_redundant(bmap, i))
1400 continue;
1401 bmap = isl_basic_map_drop_div(bmap, i);
1403 return bmap;
1406 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1408 bmap = remove_redundant_divs(bmap);
1409 if (!bmap)
1410 return NULL;
1411 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1412 return bmap;
1415 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1417 return (struct isl_basic_set *)
1418 isl_basic_map_finalize((struct isl_basic_map *)bset);
1421 struct isl_set *isl_set_finalize(struct isl_set *set)
1423 int i;
1425 if (!set)
1426 return NULL;
1427 for (i = 0; i < set->n; ++i) {
1428 set->p[i] = isl_basic_set_finalize(set->p[i]);
1429 if (!set->p[i])
1430 goto error;
1432 return set;
1433 error:
1434 isl_set_free(set);
1435 return NULL;
1438 struct isl_map *isl_map_finalize(struct isl_map *map)
1440 int i;
1442 if (!map)
1443 return NULL;
1444 for (i = 0; i < map->n; ++i) {
1445 map->p[i] = isl_basic_map_finalize(map->p[i]);
1446 if (!map->p[i])
1447 goto error;
1449 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1450 return map;
1451 error:
1452 isl_map_free(map);
1453 return NULL;
1457 /* Remove definition of any div that is defined in terms of the given variable.
1458 * The div itself is not removed. Functions such as
1459 * eliminate_divs_ineq depend on the other divs remaining in place.
1461 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1462 int pos)
1464 int i;
1466 if (!bmap)
1467 return NULL;
1469 for (i = 0; i < bmap->n_div; ++i) {
1470 if (isl_int_is_zero(bmap->div[i][0]))
1471 continue;
1472 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1473 continue;
1474 isl_int_set_si(bmap->div[i][0], 0);
1476 return bmap;
1479 /* Eliminate the specified variables from the constraints using
1480 * Fourier-Motzkin. The variables themselves are not removed.
1482 struct isl_basic_map *isl_basic_map_eliminate_vars(
1483 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1485 int d;
1486 int i, j, k;
1487 unsigned total;
1488 int need_gauss = 0;
1490 if (n == 0)
1491 return bmap;
1492 if (!bmap)
1493 return NULL;
1494 total = isl_basic_map_total_dim(bmap);
1496 bmap = isl_basic_map_cow(bmap);
1497 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1498 bmap = remove_dependent_vars(bmap, d);
1499 if (!bmap)
1500 return NULL;
1502 for (d = pos + n - 1;
1503 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1504 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1505 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1506 int n_lower, n_upper;
1507 if (!bmap)
1508 return NULL;
1509 for (i = 0; i < bmap->n_eq; ++i) {
1510 if (isl_int_is_zero(bmap->eq[i][1+d]))
1511 continue;
1512 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1513 isl_basic_map_drop_equality(bmap, i);
1514 need_gauss = 1;
1515 break;
1517 if (i < bmap->n_eq)
1518 continue;
1519 n_lower = 0;
1520 n_upper = 0;
1521 for (i = 0; i < bmap->n_ineq; ++i) {
1522 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1523 n_lower++;
1524 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1525 n_upper++;
1527 bmap = isl_basic_map_extend_constraints(bmap,
1528 0, n_lower * n_upper);
1529 if (!bmap)
1530 goto error;
1531 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1532 int last;
1533 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1534 continue;
1535 last = -1;
1536 for (j = 0; j < i; ++j) {
1537 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1538 continue;
1539 last = j;
1540 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1541 isl_int_sgn(bmap->ineq[j][1+d]))
1542 continue;
1543 k = isl_basic_map_alloc_inequality(bmap);
1544 if (k < 0)
1545 goto error;
1546 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1547 1+total);
1548 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1549 1+d, 1+total, NULL);
1551 isl_basic_map_drop_inequality(bmap, i);
1552 i = last + 1;
1554 if (n_lower > 0 && n_upper > 0) {
1555 bmap = isl_basic_map_normalize_constraints(bmap);
1556 bmap = remove_duplicate_constraints(bmap, NULL, 0);
1557 bmap = isl_basic_map_gauss(bmap, NULL);
1558 bmap = isl_basic_map_remove_redundancies(bmap);
1559 need_gauss = 0;
1560 if (!bmap)
1561 goto error;
1562 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1563 break;
1566 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1567 if (need_gauss)
1568 bmap = isl_basic_map_gauss(bmap, NULL);
1569 return bmap;
1570 error:
1571 isl_basic_map_free(bmap);
1572 return NULL;
1575 struct isl_basic_set *isl_basic_set_eliminate_vars(
1576 struct isl_basic_set *bset, unsigned pos, unsigned n)
1578 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1579 (struct isl_basic_map *)bset, pos, n);
1582 /* Eliminate the specified n dimensions starting at first from the
1583 * constraints, without removing the dimensions from the space.
1584 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1585 * Otherwise, they are projected out and the original space is restored.
1587 __isl_give isl_basic_map *isl_basic_map_eliminate(
1588 __isl_take isl_basic_map *bmap,
1589 enum isl_dim_type type, unsigned first, unsigned n)
1591 isl_space *space;
1593 if (!bmap)
1594 return NULL;
1595 if (n == 0)
1596 return bmap;
1598 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1599 isl_die(bmap->ctx, isl_error_invalid,
1600 "index out of bounds", goto error);
1602 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1603 first += isl_basic_map_offset(bmap, type) - 1;
1604 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1605 return isl_basic_map_finalize(bmap);
1608 space = isl_basic_map_get_space(bmap);
1609 bmap = isl_basic_map_project_out(bmap, type, first, n);
1610 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1611 bmap = isl_basic_map_reset_space(bmap, space);
1612 return bmap;
1613 error:
1614 isl_basic_map_free(bmap);
1615 return NULL;
1618 __isl_give isl_basic_set *isl_basic_set_eliminate(
1619 __isl_take isl_basic_set *bset,
1620 enum isl_dim_type type, unsigned first, unsigned n)
1622 return isl_basic_map_eliminate(bset, type, first, n);
1625 /* Don't assume equalities are in order, because align_divs
1626 * may have changed the order of the divs.
1628 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1630 int d, i;
1631 unsigned total;
1633 total = isl_space_dim(bmap->dim, isl_dim_all);
1634 for (d = 0; d < total; ++d)
1635 elim[d] = -1;
1636 for (i = 0; i < bmap->n_eq; ++i) {
1637 for (d = total - 1; d >= 0; --d) {
1638 if (isl_int_is_zero(bmap->eq[i][1+d]))
1639 continue;
1640 elim[d] = i;
1641 break;
1646 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1648 compute_elimination_index((struct isl_basic_map *)bset, elim);
1651 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1652 struct isl_basic_map *bmap, int *elim)
1654 int d;
1655 int copied = 0;
1656 unsigned total;
1658 total = isl_space_dim(bmap->dim, isl_dim_all);
1659 for (d = total - 1; d >= 0; --d) {
1660 if (isl_int_is_zero(src[1+d]))
1661 continue;
1662 if (elim[d] == -1)
1663 continue;
1664 if (!copied) {
1665 isl_seq_cpy(dst, src, 1 + total);
1666 copied = 1;
1668 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1670 return copied;
1673 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1674 struct isl_basic_set *bset, int *elim)
1676 return reduced_using_equalities(dst, src,
1677 (struct isl_basic_map *)bset, elim);
1680 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1681 struct isl_basic_set *bset, struct isl_basic_set *context)
1683 int i;
1684 int *elim;
1686 if (!bset || !context)
1687 goto error;
1689 if (context->n_eq == 0) {
1690 isl_basic_set_free(context);
1691 return bset;
1694 bset = isl_basic_set_cow(bset);
1695 if (!bset)
1696 goto error;
1698 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1699 if (!elim)
1700 goto error;
1701 set_compute_elimination_index(context, elim);
1702 for (i = 0; i < bset->n_eq; ++i)
1703 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1704 context, elim);
1705 for (i = 0; i < bset->n_ineq; ++i)
1706 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1707 context, elim);
1708 isl_basic_set_free(context);
1709 free(elim);
1710 bset = isl_basic_set_simplify(bset);
1711 bset = isl_basic_set_finalize(bset);
1712 return bset;
1713 error:
1714 isl_basic_set_free(bset);
1715 isl_basic_set_free(context);
1716 return NULL;
1719 static struct isl_basic_set *remove_shifted_constraints(
1720 struct isl_basic_set *bset, struct isl_basic_set *context)
1722 unsigned int size;
1723 isl_int ***index;
1724 int bits;
1725 int k, h, l;
1726 isl_ctx *ctx;
1728 if (!bset)
1729 return NULL;
1731 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1732 bits = ffs(size) - 1;
1733 ctx = isl_basic_set_get_ctx(bset);
1734 index = isl_calloc_array(ctx, isl_int **, size);
1735 if (!index)
1736 return bset;
1738 for (k = 0; k < context->n_ineq; ++k) {
1739 h = set_hash_index(index, size, bits, context, k);
1740 index[h] = &context->ineq[k];
1742 for (k = 0; k < bset->n_ineq; ++k) {
1743 h = set_hash_index(index, size, bits, bset, k);
1744 if (!index[h])
1745 continue;
1746 l = index[h] - &context->ineq[0];
1747 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1748 continue;
1749 bset = isl_basic_set_cow(bset);
1750 if (!bset)
1751 goto error;
1752 isl_basic_set_drop_inequality(bset, k);
1753 --k;
1755 free(index);
1756 return bset;
1757 error:
1758 free(index);
1759 return bset;
1762 /* Does the (linear part of a) constraint "c" involve any of the "len"
1763 * "relevant" dimensions?
1765 static int is_related(isl_int *c, int len, int *relevant)
1767 int i;
1769 for (i = 0; i < len; ++i) {
1770 if (!relevant[i])
1771 continue;
1772 if (!isl_int_is_zero(c[i]))
1773 return 1;
1776 return 0;
1779 /* Drop constraints from "bset" that do not involve any of
1780 * the dimensions marked "relevant".
1782 static __isl_give isl_basic_set *drop_unrelated_constraints(
1783 __isl_take isl_basic_set *bset, int *relevant)
1785 int i, dim;
1787 dim = isl_basic_set_dim(bset, isl_dim_set);
1788 for (i = 0; i < dim; ++i)
1789 if (!relevant[i])
1790 break;
1791 if (i >= dim)
1792 return bset;
1794 for (i = bset->n_eq - 1; i >= 0; --i)
1795 if (!is_related(bset->eq[i] + 1, dim, relevant))
1796 isl_basic_set_drop_equality(bset, i);
1798 for (i = bset->n_ineq - 1; i >= 0; --i)
1799 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1800 isl_basic_set_drop_inequality(bset, i);
1802 return bset;
1805 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1807 * In particular, for any variable involved in the constraint,
1808 * find the actual group id from before and replace the group
1809 * of the corresponding variable by the minimal group of all
1810 * the variables involved in the constraint considered so far
1811 * (if this minimum is smaller) or replace the minimum by this group
1812 * (if the minimum is larger).
1814 * At the end, all the variables in "c" will (indirectly) point
1815 * to the minimal of the groups that they referred to originally.
1817 static void update_groups(int dim, int *group, isl_int *c)
1819 int j;
1820 int min = dim;
1822 for (j = 0; j < dim; ++j) {
1823 if (isl_int_is_zero(c[j]))
1824 continue;
1825 while (group[j] >= 0 && group[group[j]] != group[j])
1826 group[j] = group[group[j]];
1827 if (group[j] == min)
1828 continue;
1829 if (group[j] < min) {
1830 if (min >= 0 && min < dim)
1831 group[min] = group[j];
1832 min = group[j];
1833 } else
1834 group[group[j]] = min;
1838 /* Drop constraints from "context" that are irrelevant for computing
1839 * the gist of "bset".
1841 * In particular, drop constraints in variables that are not related
1842 * to any of the variables involved in the constraints of "bset"
1843 * in the sense that there is no sequence of constraints that connects them.
1845 * We construct groups of variables that collect variables that
1846 * (indirectly) appear in some common constraint of "context".
1847 * Each group is identified by the first variable in the group,
1848 * except for the special group of variables that appear in "bset"
1849 * (or are related to those variables), which is identified by -1.
1850 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1851 * otherwise the group of i is the group of group[i].
1853 * We first initialize the -1 group with the variables that appear in "bset".
1854 * Then we initialize groups for the remaining variables.
1855 * Then we iterate over the constraints of "context" and update the
1856 * group of the variables in the constraint by the smallest group.
1857 * Finally, we resolve indirect references to groups by running over
1858 * the variables.
1860 * After computing the groups, we drop constraints that do not involve
1861 * any variables in the -1 group.
1863 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1864 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1866 isl_ctx *ctx;
1867 int *group;
1868 int dim;
1869 int i, j;
1870 int last;
1872 if (!context || !bset)
1873 return isl_basic_set_free(context);
1875 dim = isl_basic_set_dim(bset, isl_dim_set);
1876 ctx = isl_basic_set_get_ctx(bset);
1877 group = isl_calloc_array(ctx, int, dim);
1879 if (!group)
1880 goto error;
1882 for (i = 0; i < dim; ++i) {
1883 for (j = 0; j < bset->n_eq; ++j)
1884 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1885 break;
1886 if (j < bset->n_eq) {
1887 group[i] = -1;
1888 continue;
1890 for (j = 0; j < bset->n_ineq; ++j)
1891 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1892 break;
1893 if (j < bset->n_ineq)
1894 group[i] = -1;
1897 last = -1;
1898 for (i = 0; i < dim; ++i)
1899 if (group[i] >= 0)
1900 last = group[i] = i;
1901 if (last < 0) {
1902 free(group);
1903 return context;
1906 for (i = 0; i < context->n_eq; ++i)
1907 update_groups(dim, group, context->eq[i] + 1);
1908 for (i = 0; i < context->n_ineq; ++i)
1909 update_groups(dim, group, context->ineq[i] + 1);
1911 for (i = 0; i < dim; ++i)
1912 if (group[i] >= 0)
1913 group[i] = group[group[i]];
1915 for (i = 0; i < dim; ++i)
1916 group[i] = group[i] == -1;
1918 context = drop_unrelated_constraints(context, group);
1920 free(group);
1921 return context;
1922 error:
1923 free(group);
1924 return isl_basic_set_free(context);
1927 /* Remove all information from bset that is redundant in the context
1928 * of context. Both bset and context are assumed to be full-dimensional.
1930 * We first remove the inequalities from "bset"
1931 * that are obviously redundant with respect to some inequality in "context".
1932 * Then we remove those constraints from "context" that have become
1933 * irrelevant for computing the gist of "bset".
1934 * Note that this removal of constraints cannot be replaced by
1935 * a factorization because factors in "bset" may still be connected
1936 * to each other through constraints in "context".
1938 * If there are any inequalities left, we construct a tableau for
1939 * the context and then add the inequalities of "bset".
1940 * Before adding these inequalities, we freeze all constraints such that
1941 * they won't be considered redundant in terms of the constraints of "bset".
1942 * Then we detect all redundant constraints (among the
1943 * constraints that weren't frozen), first by checking for redundancy in the
1944 * the tableau and then by checking if replacing a constraint by its negation
1945 * would lead to an empty set. This last step is fairly expensive
1946 * and could be optimized by more reuse of the tableau.
1947 * Finally, we update bset according to the results.
1949 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1950 __isl_take isl_basic_set *context)
1952 int i, k;
1953 isl_basic_set *combined = NULL;
1954 struct isl_tab *tab = NULL;
1955 unsigned context_ineq;
1956 unsigned total;
1958 if (!bset || !context)
1959 goto error;
1961 if (isl_basic_set_is_universe(bset)) {
1962 isl_basic_set_free(context);
1963 return bset;
1966 if (isl_basic_set_is_universe(context)) {
1967 isl_basic_set_free(context);
1968 return bset;
1971 bset = remove_shifted_constraints(bset, context);
1972 if (!bset)
1973 goto error;
1974 if (bset->n_ineq == 0)
1975 goto done;
1977 context = drop_irrelevant_constraints(context, bset);
1978 if (!context)
1979 goto error;
1980 if (isl_basic_set_is_universe(context)) {
1981 isl_basic_set_free(context);
1982 return bset;
1985 context_ineq = context->n_ineq;
1986 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1987 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1988 tab = isl_tab_from_basic_set(combined, 0);
1989 for (i = 0; i < context_ineq; ++i)
1990 if (isl_tab_freeze_constraint(tab, i) < 0)
1991 goto error;
1992 tab = isl_tab_extend(tab, bset->n_ineq);
1993 for (i = 0; i < bset->n_ineq; ++i)
1994 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1995 goto error;
1996 bset = isl_basic_set_add_constraints(combined, bset, 0);
1997 combined = NULL;
1998 if (!bset)
1999 goto error;
2000 if (isl_tab_detect_redundant(tab) < 0)
2001 goto error;
2002 total = isl_basic_set_total_dim(bset);
2003 for (i = context_ineq; i < bset->n_ineq; ++i) {
2004 int is_empty;
2005 if (tab->con[i].is_redundant)
2006 continue;
2007 tab->con[i].is_redundant = 1;
2008 combined = isl_basic_set_dup(bset);
2009 combined = isl_basic_set_update_from_tab(combined, tab);
2010 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2011 k = isl_basic_set_alloc_inequality(combined);
2012 if (k < 0)
2013 goto error;
2014 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2015 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2016 is_empty = isl_basic_set_is_empty(combined);
2017 if (is_empty < 0)
2018 goto error;
2019 isl_basic_set_free(combined);
2020 combined = NULL;
2021 if (!is_empty)
2022 tab->con[i].is_redundant = 0;
2024 for (i = 0; i < context_ineq; ++i)
2025 tab->con[i].is_redundant = 1;
2026 bset = isl_basic_set_update_from_tab(bset, tab);
2027 if (bset) {
2028 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2029 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2032 isl_tab_free(tab);
2033 done:
2034 bset = isl_basic_set_simplify(bset);
2035 bset = isl_basic_set_finalize(bset);
2036 isl_basic_set_free(context);
2037 return bset;
2038 error:
2039 isl_tab_free(tab);
2040 isl_basic_set_free(combined);
2041 isl_basic_set_free(context);
2042 isl_basic_set_free(bset);
2043 return NULL;
2046 /* Remove all information from bset that is redundant in the context
2047 * of context. In particular, equalities that are linear combinations
2048 * of those in context are removed. Then the inequalities that are
2049 * redundant in the context of the equalities and inequalities of
2050 * context are removed.
2052 * First of all, we drop those constraints from "context"
2053 * that are irrelevant for computing the gist of "bset".
2054 * Alternatively, we could factorize the intersection of "context" and "bset".
2056 * We first compute the integer affine hull of the intersection,
2057 * compute the gist inside this affine hull and then add back
2058 * those equalities that are not implied by the context.
2060 * If two constraints are mutually redundant, then uset_gist_full
2061 * will remove the second of those constraints. We therefore first
2062 * sort the constraints so that constraints not involving existentially
2063 * quantified variables are given precedence over those that do.
2064 * We have to perform this sorting before the variable compression,
2065 * because that may effect the order of the variables.
2067 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2068 __isl_take isl_basic_set *context)
2070 isl_mat *eq;
2071 isl_mat *T, *T2;
2072 isl_basic_set *aff;
2073 isl_basic_set *aff_context;
2074 unsigned total;
2076 if (!bset || !context)
2077 goto error;
2079 context = drop_irrelevant_constraints(context, bset);
2081 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
2082 if (isl_basic_set_plain_is_empty(bset)) {
2083 isl_basic_set_free(context);
2084 return bset;
2086 bset = isl_basic_set_sort_constraints(bset);
2087 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
2088 if (!aff)
2089 goto error;
2090 if (isl_basic_set_plain_is_empty(aff)) {
2091 isl_basic_set_free(aff);
2092 isl_basic_set_free(context);
2093 return bset;
2095 if (aff->n_eq == 0) {
2096 isl_basic_set_free(aff);
2097 return uset_gist_full(bset, context);
2099 total = isl_basic_set_total_dim(bset);
2100 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2101 eq = isl_mat_cow(eq);
2102 T = isl_mat_variable_compression(eq, &T2);
2103 if (T && T->n_col == 0) {
2104 isl_mat_free(T);
2105 isl_mat_free(T2);
2106 isl_basic_set_free(context);
2107 isl_basic_set_free(aff);
2108 return isl_basic_set_set_to_empty(bset);
2111 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2113 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2114 context = isl_basic_set_preimage(context, T);
2116 bset = uset_gist_full(bset, context);
2117 bset = isl_basic_set_preimage(bset, T2);
2118 bset = isl_basic_set_intersect(bset, aff);
2119 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2121 if (bset) {
2122 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2123 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2126 return bset;
2127 error:
2128 isl_basic_set_free(bset);
2129 isl_basic_set_free(context);
2130 return NULL;
2133 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2134 * We simply add the equalities in context to bmap and then do a regular
2135 * div normalizations. Better results can be obtained by normalizing
2136 * only the divs in bmap than do not also appear in context.
2137 * We need to be careful to reduce the divs using the equalities
2138 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2139 * spurious constraints.
2141 static struct isl_basic_map *normalize_divs_in_context(
2142 struct isl_basic_map *bmap, struct isl_basic_map *context)
2144 int i;
2145 unsigned total_context;
2146 int div_eq;
2148 div_eq = n_pure_div_eq(bmap);
2149 if (div_eq == 0)
2150 return bmap;
2152 if (context->n_div > 0)
2153 bmap = isl_basic_map_align_divs(bmap, context);
2155 total_context = isl_basic_map_total_dim(context);
2156 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2157 for (i = 0; i < context->n_eq; ++i) {
2158 int k;
2159 k = isl_basic_map_alloc_equality(bmap);
2160 if (k < 0)
2161 return isl_basic_map_free(bmap);
2162 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2163 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2164 isl_basic_map_total_dim(bmap) - total_context);
2166 bmap = isl_basic_map_gauss(bmap, NULL);
2167 bmap = normalize_divs(bmap, NULL);
2168 bmap = isl_basic_map_gauss(bmap, NULL);
2169 return bmap;
2172 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2173 struct isl_basic_map *context)
2175 struct isl_basic_set *bset;
2177 if (!bmap || !context)
2178 goto error;
2180 if (isl_basic_map_is_universe(bmap)) {
2181 isl_basic_map_free(context);
2182 return bmap;
2184 if (isl_basic_map_plain_is_empty(context)) {
2185 isl_basic_map_free(bmap);
2186 return context;
2188 if (isl_basic_map_plain_is_empty(bmap)) {
2189 isl_basic_map_free(context);
2190 return bmap;
2193 bmap = isl_basic_map_remove_redundancies(bmap);
2194 context = isl_basic_map_remove_redundancies(context);
2195 if (!context)
2196 goto error;
2198 if (context->n_eq)
2199 bmap = normalize_divs_in_context(bmap, context);
2201 context = isl_basic_map_align_divs(context, bmap);
2202 bmap = isl_basic_map_align_divs(bmap, context);
2204 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2205 isl_basic_map_underlying_set(context));
2207 return isl_basic_map_overlying_set(bset, bmap);
2208 error:
2209 isl_basic_map_free(bmap);
2210 isl_basic_map_free(context);
2211 return NULL;
2215 * Assumes context has no implicit divs.
2217 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2218 __isl_take isl_basic_map *context)
2220 int i;
2222 if (!map || !context)
2223 goto error;;
2225 if (isl_basic_map_plain_is_empty(context)) {
2226 isl_map_free(map);
2227 return isl_map_from_basic_map(context);
2230 context = isl_basic_map_remove_redundancies(context);
2231 map = isl_map_cow(map);
2232 if (!map || !context)
2233 goto error;;
2234 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2235 map = isl_map_compute_divs(map);
2236 if (!map)
2237 goto error;
2238 for (i = map->n - 1; i >= 0; --i) {
2239 map->p[i] = isl_basic_map_gist(map->p[i],
2240 isl_basic_map_copy(context));
2241 if (!map->p[i])
2242 goto error;
2243 if (isl_basic_map_plain_is_empty(map->p[i])) {
2244 isl_basic_map_free(map->p[i]);
2245 if (i != map->n - 1)
2246 map->p[i] = map->p[map->n - 1];
2247 map->n--;
2250 isl_basic_map_free(context);
2251 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2252 return map;
2253 error:
2254 isl_map_free(map);
2255 isl_basic_map_free(context);
2256 return NULL;
2259 /* Return a map that has the same intersection with "context" as "map"
2260 * and that as "simple" as possible.
2262 * If "map" is already the universe, then we cannot make it any simpler.
2263 * Similarly, if "context" is the universe, then we cannot exploit it
2264 * to simplify "map"
2265 * If "map" and "context" are identical to each other, then we can
2266 * return the corresponding universe.
2268 * If none of these cases apply, we have to work a bit harder.
2270 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2271 __isl_take isl_map *context)
2273 int equal;
2274 int is_universe;
2276 is_universe = isl_map_plain_is_universe(map);
2277 if (is_universe >= 0 && !is_universe)
2278 is_universe = isl_map_plain_is_universe(context);
2279 if (is_universe < 0)
2280 goto error;
2281 if (is_universe) {
2282 isl_map_free(context);
2283 return map;
2286 equal = isl_map_plain_is_equal(map, context);
2287 if (equal < 0)
2288 goto error;
2289 if (equal) {
2290 isl_map *res = isl_map_universe(isl_map_get_space(map));
2291 isl_map_free(map);
2292 isl_map_free(context);
2293 return res;
2296 context = isl_map_compute_divs(context);
2297 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
2298 error:
2299 isl_map_free(map);
2300 isl_map_free(context);
2301 return NULL;
2304 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2305 __isl_take isl_map *context)
2307 return isl_map_align_params_map_map_and(map, context, &map_gist);
2310 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2311 struct isl_basic_set *context)
2313 return (struct isl_basic_set *)isl_basic_map_gist(
2314 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2317 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2318 __isl_take isl_basic_set *context)
2320 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2321 (struct isl_basic_map *)context);
2324 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2325 __isl_take isl_basic_set *context)
2327 isl_space *space = isl_set_get_space(set);
2328 isl_basic_set *dom_context = isl_basic_set_universe(space);
2329 dom_context = isl_basic_set_intersect_params(dom_context, context);
2330 return isl_set_gist_basic_set(set, dom_context);
2333 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2334 __isl_take isl_set *context)
2336 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2337 (struct isl_map *)context);
2340 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2341 __isl_take isl_set *context)
2343 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2344 map_context = isl_map_intersect_domain(map_context, context);
2345 return isl_map_gist(map, map_context);
2348 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2349 __isl_take isl_set *context)
2351 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2352 map_context = isl_map_intersect_range(map_context, context);
2353 return isl_map_gist(map, map_context);
2356 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2357 __isl_take isl_set *context)
2359 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2360 map_context = isl_map_intersect_params(map_context, context);
2361 return isl_map_gist(map, map_context);
2364 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2365 __isl_take isl_set *context)
2367 return isl_map_gist_params(set, context);
2370 /* Quick check to see if two basic maps are disjoint.
2371 * In particular, we reduce the equalities and inequalities of
2372 * one basic map in the context of the equalities of the other
2373 * basic map and check if we get a contradiction.
2375 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2376 __isl_keep isl_basic_map *bmap2)
2378 struct isl_vec *v = NULL;
2379 int *elim = NULL;
2380 unsigned total;
2381 int i;
2383 if (!bmap1 || !bmap2)
2384 return -1;
2385 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2386 return -1);
2387 if (bmap1->n_div || bmap2->n_div)
2388 return 0;
2389 if (!bmap1->n_eq && !bmap2->n_eq)
2390 return 0;
2392 total = isl_space_dim(bmap1->dim, isl_dim_all);
2393 if (total == 0)
2394 return 0;
2395 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2396 if (!v)
2397 goto error;
2398 elim = isl_alloc_array(bmap1->ctx, int, total);
2399 if (!elim)
2400 goto error;
2401 compute_elimination_index(bmap1, elim);
2402 for (i = 0; i < bmap2->n_eq; ++i) {
2403 int reduced;
2404 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2405 bmap1, elim);
2406 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2407 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2408 goto disjoint;
2410 for (i = 0; i < bmap2->n_ineq; ++i) {
2411 int reduced;
2412 reduced = reduced_using_equalities(v->block.data,
2413 bmap2->ineq[i], bmap1, elim);
2414 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2415 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2416 goto disjoint;
2418 compute_elimination_index(bmap2, elim);
2419 for (i = 0; i < bmap1->n_ineq; ++i) {
2420 int reduced;
2421 reduced = reduced_using_equalities(v->block.data,
2422 bmap1->ineq[i], bmap2, elim);
2423 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2424 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2425 goto disjoint;
2427 isl_vec_free(v);
2428 free(elim);
2429 return 0;
2430 disjoint:
2431 isl_vec_free(v);
2432 free(elim);
2433 return 1;
2434 error:
2435 isl_vec_free(v);
2436 free(elim);
2437 return -1;
2440 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2441 __isl_keep isl_basic_set *bset2)
2443 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2444 (struct isl_basic_map *)bset2);
2447 /* Are "map1" and "map2" obviously disjoint?
2449 * If they have different parameters, then we skip any further tests.
2450 * In particular, the outcome of the subsequent calls to
2451 * isl_space_tuple_match may be affected by the different parameters
2452 * in nested spaces.
2454 * If one of them is empty or if they live in different spaces (assuming
2455 * they have the same parameters), then they are clearly disjoint.
2457 * If they are obviously equal, but not obviously empty, then we will
2458 * not be able to detect if they are disjoint.
2460 * Otherwise we check if each basic map in "map1" is obviously disjoint
2461 * from each basic map in "map2".
2463 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2464 __isl_keep isl_map *map2)
2466 int i, j;
2467 int disjoint;
2468 int intersect;
2469 int match;
2471 if (!map1 || !map2)
2472 return -1;
2474 disjoint = isl_map_plain_is_empty(map1);
2475 if (disjoint < 0 || disjoint)
2476 return disjoint;
2478 disjoint = isl_map_plain_is_empty(map2);
2479 if (disjoint < 0 || disjoint)
2480 return disjoint;
2482 match = isl_space_match(map1->dim, isl_dim_param,
2483 map2->dim, isl_dim_param);
2484 if (match < 0 || !match)
2485 return match < 0 ? -1 : 0;
2487 match = isl_space_tuple_match(map1->dim, isl_dim_in,
2488 map2->dim, isl_dim_in);
2489 if (match < 0 || !match)
2490 return match < 0 ? -1 : 1;
2492 match = isl_space_tuple_match(map1->dim, isl_dim_out,
2493 map2->dim, isl_dim_out);
2494 if (match < 0 || !match)
2495 return match < 0 ? -1 : 1;
2497 intersect = isl_map_plain_is_equal(map1, map2);
2498 if (intersect < 0 || intersect)
2499 return intersect < 0 ? -1 : 0;
2501 for (i = 0; i < map1->n; ++i) {
2502 for (j = 0; j < map2->n; ++j) {
2503 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2504 map2->p[j]);
2505 if (d != 1)
2506 return d;
2509 return 1;
2512 /* Are "map1" and "map2" disjoint?
2514 * They are disjoint if they are "obviously disjoint" or if one of them
2515 * is empty. Otherwise, they are not disjoint if one of them is universal.
2516 * If none of these cases apply, we compute the intersection and see if
2517 * the result is empty.
2519 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2521 int disjoint;
2522 int intersect;
2523 isl_map *test;
2525 disjoint = isl_map_plain_is_disjoint(map1, map2);
2526 if (disjoint < 0 || disjoint)
2527 return disjoint;
2529 disjoint = isl_map_is_empty(map1);
2530 if (disjoint < 0 || disjoint)
2531 return disjoint;
2533 disjoint = isl_map_is_empty(map2);
2534 if (disjoint < 0 || disjoint)
2535 return disjoint;
2537 intersect = isl_map_plain_is_universe(map1);
2538 if (intersect < 0 || intersect)
2539 return intersect < 0 ? -1 : 0;
2541 intersect = isl_map_plain_is_universe(map2);
2542 if (intersect < 0 || intersect)
2543 return intersect < 0 ? -1 : 0;
2545 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2546 disjoint = isl_map_is_empty(test);
2547 isl_map_free(test);
2549 return disjoint;
2552 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2553 __isl_keep isl_set *set2)
2555 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2556 (struct isl_map *)set2);
2559 /* Are "set1" and "set2" disjoint?
2561 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2563 return isl_map_is_disjoint(set1, set2);
2566 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2568 return isl_set_plain_is_disjoint(set1, set2);
2571 /* Check if we can combine a given div with lower bound l and upper
2572 * bound u with some other div and if so return that other div.
2573 * Otherwise return -1.
2575 * We first check that
2576 * - the bounds are opposites of each other (except for the constant
2577 * term)
2578 * - the bounds do not reference any other div
2579 * - no div is defined in terms of this div
2581 * Let m be the size of the range allowed on the div by the bounds.
2582 * That is, the bounds are of the form
2584 * e <= a <= e + m - 1
2586 * with e some expression in the other variables.
2587 * We look for another div b such that no third div is defined in terms
2588 * of this second div b and such that in any constraint that contains
2589 * a (except for the given lower and upper bound), also contains b
2590 * with a coefficient that is m times that of b.
2591 * That is, all constraints (execpt for the lower and upper bound)
2592 * are of the form
2594 * e + f (a + m b) >= 0
2596 * If so, we return b so that "a + m b" can be replaced by
2597 * a single div "c = a + m b".
2599 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2600 unsigned div, unsigned l, unsigned u)
2602 int i, j;
2603 unsigned dim;
2604 int coalesce = -1;
2606 if (bmap->n_div <= 1)
2607 return -1;
2608 dim = isl_space_dim(bmap->dim, isl_dim_all);
2609 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2610 return -1;
2611 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2612 bmap->n_div - div - 1) != -1)
2613 return -1;
2614 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2615 dim + bmap->n_div))
2616 return -1;
2618 for (i = 0; i < bmap->n_div; ++i) {
2619 if (isl_int_is_zero(bmap->div[i][0]))
2620 continue;
2621 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2622 return -1;
2625 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2626 if (isl_int_is_neg(bmap->ineq[l][0])) {
2627 isl_int_sub(bmap->ineq[l][0],
2628 bmap->ineq[l][0], bmap->ineq[u][0]);
2629 bmap = isl_basic_map_copy(bmap);
2630 bmap = isl_basic_map_set_to_empty(bmap);
2631 isl_basic_map_free(bmap);
2632 return -1;
2634 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2635 for (i = 0; i < bmap->n_div; ++i) {
2636 if (i == div)
2637 continue;
2638 if (!pairs[i])
2639 continue;
2640 for (j = 0; j < bmap->n_div; ++j) {
2641 if (isl_int_is_zero(bmap->div[j][0]))
2642 continue;
2643 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2644 break;
2646 if (j < bmap->n_div)
2647 continue;
2648 for (j = 0; j < bmap->n_ineq; ++j) {
2649 int valid;
2650 if (j == l || j == u)
2651 continue;
2652 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2653 continue;
2654 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2655 break;
2656 isl_int_mul(bmap->ineq[j][1 + dim + div],
2657 bmap->ineq[j][1 + dim + div],
2658 bmap->ineq[l][0]);
2659 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2660 bmap->ineq[j][1 + dim + i]);
2661 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2662 bmap->ineq[j][1 + dim + div],
2663 bmap->ineq[l][0]);
2664 if (!valid)
2665 break;
2667 if (j < bmap->n_ineq)
2668 continue;
2669 coalesce = i;
2670 break;
2672 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2673 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2674 return coalesce;
2677 /* Given a lower and an upper bound on div i, construct an inequality
2678 * that when nonnegative ensures that this pair of bounds always allows
2679 * for an integer value of the given div.
2680 * The lower bound is inequality l, while the upper bound is inequality u.
2681 * The constructed inequality is stored in ineq.
2682 * g, fl, fu are temporary scalars.
2684 * Let the upper bound be
2686 * -n_u a + e_u >= 0
2688 * and the lower bound
2690 * n_l a + e_l >= 0
2692 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2693 * We have
2695 * - f_u e_l <= f_u f_l g a <= f_l e_u
2697 * Since all variables are integer valued, this is equivalent to
2699 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2701 * If this interval is at least f_u f_l g, then it contains at least
2702 * one integer value for a.
2703 * That is, the test constraint is
2705 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2707 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2708 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2710 unsigned dim;
2711 dim = isl_space_dim(bmap->dim, isl_dim_all);
2713 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2714 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2715 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2716 isl_int_neg(fu, fu);
2717 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2718 1 + dim + bmap->n_div);
2719 isl_int_add(ineq[0], ineq[0], fl);
2720 isl_int_add(ineq[0], ineq[0], fu);
2721 isl_int_sub_ui(ineq[0], ineq[0], 1);
2722 isl_int_mul(g, g, fl);
2723 isl_int_mul(g, g, fu);
2724 isl_int_sub(ineq[0], ineq[0], g);
2727 /* Remove more kinds of divs that are not strictly needed.
2728 * In particular, if all pairs of lower and upper bounds on a div
2729 * are such that they allow at least one integer value of the div,
2730 * the we can eliminate the div using Fourier-Motzkin without
2731 * introducing any spurious solutions.
2733 static struct isl_basic_map *drop_more_redundant_divs(
2734 struct isl_basic_map *bmap, int *pairs, int n)
2736 struct isl_tab *tab = NULL;
2737 struct isl_vec *vec = NULL;
2738 unsigned dim;
2739 int remove = -1;
2740 isl_int g, fl, fu;
2742 isl_int_init(g);
2743 isl_int_init(fl);
2744 isl_int_init(fu);
2746 if (!bmap)
2747 goto error;
2749 dim = isl_space_dim(bmap->dim, isl_dim_all);
2750 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2751 if (!vec)
2752 goto error;
2754 tab = isl_tab_from_basic_map(bmap, 0);
2756 while (n > 0) {
2757 int i, l, u;
2758 int best = -1;
2759 enum isl_lp_result res;
2761 for (i = 0; i < bmap->n_div; ++i) {
2762 if (!pairs[i])
2763 continue;
2764 if (best >= 0 && pairs[best] <= pairs[i])
2765 continue;
2766 best = i;
2769 i = best;
2770 for (l = 0; l < bmap->n_ineq; ++l) {
2771 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2772 continue;
2773 for (u = 0; u < bmap->n_ineq; ++u) {
2774 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2775 continue;
2776 construct_test_ineq(bmap, i, l, u,
2777 vec->el, g, fl, fu);
2778 res = isl_tab_min(tab, vec->el,
2779 bmap->ctx->one, &g, NULL, 0);
2780 if (res == isl_lp_error)
2781 goto error;
2782 if (res == isl_lp_empty) {
2783 bmap = isl_basic_map_set_to_empty(bmap);
2784 break;
2786 if (res != isl_lp_ok || isl_int_is_neg(g))
2787 break;
2789 if (u < bmap->n_ineq)
2790 break;
2792 if (l == bmap->n_ineq) {
2793 remove = i;
2794 break;
2796 pairs[i] = 0;
2797 --n;
2800 isl_tab_free(tab);
2801 isl_vec_free(vec);
2803 isl_int_clear(g);
2804 isl_int_clear(fl);
2805 isl_int_clear(fu);
2807 free(pairs);
2809 if (remove < 0)
2810 return bmap;
2812 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2813 return isl_basic_map_drop_redundant_divs(bmap);
2814 error:
2815 free(pairs);
2816 isl_basic_map_free(bmap);
2817 isl_tab_free(tab);
2818 isl_vec_free(vec);
2819 isl_int_clear(g);
2820 isl_int_clear(fl);
2821 isl_int_clear(fu);
2822 return NULL;
2825 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2826 * and the upper bound u, div1 always occurs together with div2 in the form
2827 * (div1 + m div2), where m is the constant range on the variable div1
2828 * allowed by l and u, replace the pair div1 and div2 by a single
2829 * div that is equal to div1 + m div2.
2831 * The new div will appear in the location that contains div2.
2832 * We need to modify all constraints that contain
2833 * div2 = (div - div1) / m
2834 * (If a constraint does not contain div2, it will also not contain div1.)
2835 * If the constraint also contains div1, then we know they appear
2836 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2837 * i.e., the coefficient of div is f.
2839 * Otherwise, we first need to introduce div1 into the constraint.
2840 * Let the l be
2842 * div1 + f >=0
2844 * and u
2846 * -div1 + f' >= 0
2848 * A lower bound on div2
2850 * n div2 + t >= 0
2852 * can be replaced by
2854 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2856 * with g = gcd(m,n).
2857 * An upper bound
2859 * -n div2 + t >= 0
2861 * can be replaced by
2863 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2865 * These constraint are those that we would obtain from eliminating
2866 * div1 using Fourier-Motzkin.
2868 * After all constraints have been modified, we drop the lower and upper
2869 * bound and then drop div1.
2871 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2872 unsigned div1, unsigned div2, unsigned l, unsigned u)
2874 isl_int a;
2875 isl_int b;
2876 isl_int m;
2877 unsigned dim, total;
2878 int i;
2880 dim = isl_space_dim(bmap->dim, isl_dim_all);
2881 total = 1 + dim + bmap->n_div;
2883 isl_int_init(a);
2884 isl_int_init(b);
2885 isl_int_init(m);
2886 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2887 isl_int_add_ui(m, m, 1);
2889 for (i = 0; i < bmap->n_ineq; ++i) {
2890 if (i == l || i == u)
2891 continue;
2892 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2893 continue;
2894 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2895 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2896 isl_int_divexact(a, m, b);
2897 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2898 if (isl_int_is_pos(b)) {
2899 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2900 b, bmap->ineq[l], total);
2901 } else {
2902 isl_int_neg(b, b);
2903 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2904 b, bmap->ineq[u], total);
2907 isl_int_set(bmap->ineq[i][1 + dim + div2],
2908 bmap->ineq[i][1 + dim + div1]);
2909 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2912 isl_int_clear(a);
2913 isl_int_clear(b);
2914 isl_int_clear(m);
2915 if (l > u) {
2916 isl_basic_map_drop_inequality(bmap, l);
2917 isl_basic_map_drop_inequality(bmap, u);
2918 } else {
2919 isl_basic_map_drop_inequality(bmap, u);
2920 isl_basic_map_drop_inequality(bmap, l);
2922 bmap = isl_basic_map_drop_div(bmap, div1);
2923 return bmap;
2926 /* First check if we can coalesce any pair of divs and
2927 * then continue with dropping more redundant divs.
2929 * We loop over all pairs of lower and upper bounds on a div
2930 * with coefficient 1 and -1, respectively, check if there
2931 * is any other div "c" with which we can coalesce the div
2932 * and if so, perform the coalescing.
2934 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2935 struct isl_basic_map *bmap, int *pairs, int n)
2937 int i, l, u;
2938 unsigned dim;
2940 dim = isl_space_dim(bmap->dim, isl_dim_all);
2942 for (i = 0; i < bmap->n_div; ++i) {
2943 if (!pairs[i])
2944 continue;
2945 for (l = 0; l < bmap->n_ineq; ++l) {
2946 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2947 continue;
2948 for (u = 0; u < bmap->n_ineq; ++u) {
2949 int c;
2951 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2952 continue;
2953 c = div_find_coalesce(bmap, pairs, i, l, u);
2954 if (c < 0)
2955 continue;
2956 free(pairs);
2957 bmap = coalesce_divs(bmap, i, c, l, u);
2958 return isl_basic_map_drop_redundant_divs(bmap);
2963 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2964 return bmap;
2966 return drop_more_redundant_divs(bmap, pairs, n);
2969 /* Remove divs that are not strictly needed.
2970 * In particular, if a div only occurs positively (or negatively)
2971 * in constraints, then it can simply be dropped.
2972 * Also, if a div occurs in only two constraints and if moreover
2973 * those two constraints are opposite to each other, except for the constant
2974 * term and if the sum of the constant terms is such that for any value
2975 * of the other values, there is always at least one integer value of the
2976 * div, i.e., if one plus this sum is greater than or equal to
2977 * the (absolute value) of the coefficent of the div in the constraints,
2978 * then we can also simply drop the div.
2980 * We skip divs that appear in equalities or in the definition of other divs.
2981 * Divs that appear in the definition of other divs usually occur in at least
2982 * 4 constraints, but the constraints may have been simplified.
2984 * If any divs are left after these simple checks then we move on
2985 * to more complicated cases in drop_more_redundant_divs.
2987 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2988 struct isl_basic_map *bmap)
2990 int i, j;
2991 unsigned off;
2992 int *pairs = NULL;
2993 int n = 0;
2995 if (!bmap)
2996 goto error;
2997 if (bmap->n_div == 0)
2998 return bmap;
3000 off = isl_space_dim(bmap->dim, isl_dim_all);
3001 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3002 if (!pairs)
3003 goto error;
3005 for (i = 0; i < bmap->n_div; ++i) {
3006 int pos, neg;
3007 int last_pos, last_neg;
3008 int redundant;
3009 int defined;
3011 defined = !isl_int_is_zero(bmap->div[i][0]);
3012 for (j = i; j < bmap->n_div; ++j)
3013 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3014 break;
3015 if (j < bmap->n_div)
3016 continue;
3017 for (j = 0; j < bmap->n_eq; ++j)
3018 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3019 break;
3020 if (j < bmap->n_eq)
3021 continue;
3022 ++n;
3023 pos = neg = 0;
3024 for (j = 0; j < bmap->n_ineq; ++j) {
3025 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3026 last_pos = j;
3027 ++pos;
3029 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3030 last_neg = j;
3031 ++neg;
3034 pairs[i] = pos * neg;
3035 if (pairs[i] == 0) {
3036 for (j = bmap->n_ineq - 1; j >= 0; --j)
3037 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3038 isl_basic_map_drop_inequality(bmap, j);
3039 bmap = isl_basic_map_drop_div(bmap, i);
3040 free(pairs);
3041 return isl_basic_map_drop_redundant_divs(bmap);
3043 if (pairs[i] != 1)
3044 continue;
3045 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3046 bmap->ineq[last_neg] + 1,
3047 off + bmap->n_div))
3048 continue;
3050 isl_int_add(bmap->ineq[last_pos][0],
3051 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3052 isl_int_add_ui(bmap->ineq[last_pos][0],
3053 bmap->ineq[last_pos][0], 1);
3054 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3055 bmap->ineq[last_pos][1+off+i]);
3056 isl_int_sub_ui(bmap->ineq[last_pos][0],
3057 bmap->ineq[last_pos][0], 1);
3058 isl_int_sub(bmap->ineq[last_pos][0],
3059 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3060 if (!redundant) {
3061 if (defined ||
3062 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3063 pairs[i] = 0;
3064 --n;
3065 continue;
3067 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3068 bmap = isl_basic_map_simplify(bmap);
3069 free(pairs);
3070 return isl_basic_map_drop_redundant_divs(bmap);
3072 if (last_pos > last_neg) {
3073 isl_basic_map_drop_inequality(bmap, last_pos);
3074 isl_basic_map_drop_inequality(bmap, last_neg);
3075 } else {
3076 isl_basic_map_drop_inequality(bmap, last_neg);
3077 isl_basic_map_drop_inequality(bmap, last_pos);
3079 bmap = isl_basic_map_drop_div(bmap, i);
3080 free(pairs);
3081 return isl_basic_map_drop_redundant_divs(bmap);
3084 if (n > 0)
3085 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3087 free(pairs);
3088 return bmap;
3089 error:
3090 free(pairs);
3091 isl_basic_map_free(bmap);
3092 return NULL;
3095 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3096 struct isl_basic_set *bset)
3098 return (struct isl_basic_set *)
3099 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3102 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3104 int i;
3106 if (!map)
3107 return NULL;
3108 for (i = 0; i < map->n; ++i) {
3109 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3110 if (!map->p[i])
3111 goto error;
3113 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3114 return map;
3115 error:
3116 isl_map_free(map);
3117 return NULL;
3120 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3122 return (struct isl_set *)
3123 isl_map_drop_redundant_divs((struct isl_map *)set);