isl_scheduler.c: fix whitespace
[isl.git] / isl_scheduler.c
blobc884d7546b1b639866928c177032a70612791369
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_space_private.h>
17 #include <isl_aff_private.h>
18 #include <isl/hash.h>
19 #include <isl/constraint.h>
20 #include <isl/schedule.h>
21 #include <isl/schedule_node.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl/set.h>
25 #include <isl/union_set.h>
26 #include <isl_seq.h>
27 #include <isl_tab.h>
28 #include <isl_dim_map.h>
29 #include <isl/map_to_basic_set.h>
30 #include <isl_sort.h>
31 #include <isl_options_private.h>
32 #include <isl_tarjan.h>
33 #include <isl_morph.h>
36 * The scheduling algorithm implemented in this file was inspired by
37 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
38 * Parallelization and Locality Optimization in the Polyhedral Model".
41 enum isl_edge_type {
42 isl_edge_validity = 0,
43 isl_edge_first = isl_edge_validity,
44 isl_edge_coincidence,
45 isl_edge_condition,
46 isl_edge_conditional_validity,
47 isl_edge_proximity,
48 isl_edge_last = isl_edge_proximity,
49 isl_edge_local
52 /* The constraints that need to be satisfied by a schedule on "domain".
54 * "context" specifies extra constraints on the parameters.
56 * "validity" constraints map domain elements i to domain elements
57 * that should be scheduled after i. (Hard constraint)
58 * "proximity" constraints map domain elements i to domains elements
59 * that should be scheduled as early as possible after i (or before i).
60 * (Soft constraint)
62 * "condition" and "conditional_validity" constraints map possibly "tagged"
63 * domain elements i -> s to "tagged" domain elements j -> t.
64 * The elements of the "conditional_validity" constraints, but without the
65 * tags (i.e., the elements i -> j) are treated as validity constraints,
66 * except that during the construction of a tilable band,
67 * the elements of the "conditional_validity" constraints may be violated
68 * provided that all adjacent elements of the "condition" constraints
69 * are local within the band.
70 * A dependence is local within a band if domain and range are mapped
71 * to the same schedule point by the band.
73 struct isl_schedule_constraints {
74 isl_union_set *domain;
75 isl_set *context;
77 isl_union_map *constraint[isl_edge_last + 1];
80 __isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
81 __isl_keep isl_schedule_constraints *sc)
83 isl_ctx *ctx;
84 isl_schedule_constraints *sc_copy;
85 enum isl_edge_type i;
87 ctx = isl_union_set_get_ctx(sc->domain);
88 sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
89 if (!sc_copy)
90 return NULL;
92 sc_copy->domain = isl_union_set_copy(sc->domain);
93 sc_copy->context = isl_set_copy(sc->context);
94 if (!sc_copy->domain || !sc_copy->context)
95 return isl_schedule_constraints_free(sc_copy);
97 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
98 sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
99 if (!sc_copy->constraint[i])
100 return isl_schedule_constraints_free(sc_copy);
103 return sc_copy;
107 /* Construct an isl_schedule_constraints object for computing a schedule
108 * on "domain". The initial object does not impose any constraints.
110 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
111 __isl_take isl_union_set *domain)
113 isl_ctx *ctx;
114 isl_space *space;
115 isl_schedule_constraints *sc;
116 isl_union_map *empty;
117 enum isl_edge_type i;
119 if (!domain)
120 return NULL;
122 ctx = isl_union_set_get_ctx(domain);
123 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
124 if (!sc)
125 goto error;
127 space = isl_union_set_get_space(domain);
128 sc->domain = domain;
129 sc->context = isl_set_universe(isl_space_copy(space));
130 empty = isl_union_map_empty(space);
131 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
132 sc->constraint[i] = isl_union_map_copy(empty);
133 if (!sc->constraint[i])
134 sc->domain = isl_union_set_free(sc->domain);
136 isl_union_map_free(empty);
138 if (!sc->domain || !sc->context)
139 return isl_schedule_constraints_free(sc);
141 return sc;
142 error:
143 isl_union_set_free(domain);
144 return NULL;
147 /* Replace the context of "sc" by "context".
149 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_context(
150 __isl_take isl_schedule_constraints *sc, __isl_take isl_set *context)
152 if (!sc || !context)
153 goto error;
155 isl_set_free(sc->context);
156 sc->context = context;
158 return sc;
159 error:
160 isl_schedule_constraints_free(sc);
161 isl_set_free(context);
162 return NULL;
165 /* Replace the validity constraints of "sc" by "validity".
167 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
168 __isl_take isl_schedule_constraints *sc,
169 __isl_take isl_union_map *validity)
171 if (!sc || !validity)
172 goto error;
174 isl_union_map_free(sc->constraint[isl_edge_validity]);
175 sc->constraint[isl_edge_validity] = validity;
177 return sc;
178 error:
179 isl_schedule_constraints_free(sc);
180 isl_union_map_free(validity);
181 return NULL;
184 /* Replace the coincidence constraints of "sc" by "coincidence".
186 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
187 __isl_take isl_schedule_constraints *sc,
188 __isl_take isl_union_map *coincidence)
190 if (!sc || !coincidence)
191 goto error;
193 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
194 sc->constraint[isl_edge_coincidence] = coincidence;
196 return sc;
197 error:
198 isl_schedule_constraints_free(sc);
199 isl_union_map_free(coincidence);
200 return NULL;
203 /* Replace the proximity constraints of "sc" by "proximity".
205 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
206 __isl_take isl_schedule_constraints *sc,
207 __isl_take isl_union_map *proximity)
209 if (!sc || !proximity)
210 goto error;
212 isl_union_map_free(sc->constraint[isl_edge_proximity]);
213 sc->constraint[isl_edge_proximity] = proximity;
215 return sc;
216 error:
217 isl_schedule_constraints_free(sc);
218 isl_union_map_free(proximity);
219 return NULL;
222 /* Replace the conditional validity constraints of "sc" by "condition"
223 * and "validity".
225 __isl_give isl_schedule_constraints *
226 isl_schedule_constraints_set_conditional_validity(
227 __isl_take isl_schedule_constraints *sc,
228 __isl_take isl_union_map *condition,
229 __isl_take isl_union_map *validity)
231 if (!sc || !condition || !validity)
232 goto error;
234 isl_union_map_free(sc->constraint[isl_edge_condition]);
235 sc->constraint[isl_edge_condition] = condition;
236 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
237 sc->constraint[isl_edge_conditional_validity] = validity;
239 return sc;
240 error:
241 isl_schedule_constraints_free(sc);
242 isl_union_map_free(condition);
243 isl_union_map_free(validity);
244 return NULL;
247 __isl_null isl_schedule_constraints *isl_schedule_constraints_free(
248 __isl_take isl_schedule_constraints *sc)
250 enum isl_edge_type i;
252 if (!sc)
253 return NULL;
255 isl_union_set_free(sc->domain);
256 isl_set_free(sc->context);
257 for (i = isl_edge_first; i <= isl_edge_last; ++i)
258 isl_union_map_free(sc->constraint[i]);
260 free(sc);
262 return NULL;
265 isl_ctx *isl_schedule_constraints_get_ctx(
266 __isl_keep isl_schedule_constraints *sc)
268 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
271 /* Return the domain of "sc".
273 __isl_give isl_union_set *isl_schedule_constraints_get_domain(
274 __isl_keep isl_schedule_constraints *sc)
276 if (!sc)
277 return NULL;
279 return isl_union_set_copy(sc->domain);
282 /* Return the validity constraints of "sc".
284 __isl_give isl_union_map *isl_schedule_constraints_get_validity(
285 __isl_keep isl_schedule_constraints *sc)
287 if (!sc)
288 return NULL;
290 return isl_union_map_copy(sc->constraint[isl_edge_validity]);
293 /* Return the coincidence constraints of "sc".
295 __isl_give isl_union_map *isl_schedule_constraints_get_coincidence(
296 __isl_keep isl_schedule_constraints *sc)
298 if (!sc)
299 return NULL;
301 return isl_union_map_copy(sc->constraint[isl_edge_coincidence]);
304 /* Return the proximity constraints of "sc".
306 __isl_give isl_union_map *isl_schedule_constraints_get_proximity(
307 __isl_keep isl_schedule_constraints *sc)
309 if (!sc)
310 return NULL;
312 return isl_union_map_copy(sc->constraint[isl_edge_proximity]);
315 /* Return the conditional validity constraints of "sc".
317 __isl_give isl_union_map *isl_schedule_constraints_get_conditional_validity(
318 __isl_keep isl_schedule_constraints *sc)
320 if (!sc)
321 return NULL;
323 return
324 isl_union_map_copy(sc->constraint[isl_edge_conditional_validity]);
327 /* Return the conditions for the conditional validity constraints of "sc".
329 __isl_give isl_union_map *
330 isl_schedule_constraints_get_conditional_validity_condition(
331 __isl_keep isl_schedule_constraints *sc)
333 if (!sc)
334 return NULL;
336 return isl_union_map_copy(sc->constraint[isl_edge_condition]);
339 /* Can a schedule constraint of type "type" be tagged?
341 static int may_be_tagged(enum isl_edge_type type)
343 if (type == isl_edge_condition || type == isl_edge_conditional_validity)
344 return 1;
345 return 0;
348 /* Apply "umap" to the domains of the wrapped relations
349 * inside the domain and range of "c".
351 * That is, for each map of the form
353 * [D -> S] -> [E -> T]
355 * in "c", apply "umap" to D and E.
357 * D is exposed by currying the relation to
359 * D -> [S -> [E -> T]]
361 * E is exposed by doing the same to the inverse of "c".
363 static __isl_give isl_union_map *apply_factor_domain(
364 __isl_take isl_union_map *c, __isl_keep isl_union_map *umap)
366 c = isl_union_map_curry(c);
367 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
368 c = isl_union_map_uncurry(c);
370 c = isl_union_map_reverse(c);
371 c = isl_union_map_curry(c);
372 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
373 c = isl_union_map_uncurry(c);
374 c = isl_union_map_reverse(c);
376 return c;
379 /* Apply "umap" to domain and range of "c".
380 * If "tag" is set, then "c" may contain tags and then "umap"
381 * needs to be applied to the domains of the wrapped relations
382 * inside the domain and range of "c".
384 static __isl_give isl_union_map *apply(__isl_take isl_union_map *c,
385 __isl_keep isl_union_map *umap, int tag)
387 isl_union_map *t;
389 if (tag)
390 t = isl_union_map_copy(c);
391 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
392 c = isl_union_map_apply_range(c, isl_union_map_copy(umap));
393 if (!tag)
394 return c;
395 t = apply_factor_domain(t, umap);
396 c = isl_union_map_union(c, t);
397 return c;
400 /* Apply "umap" to the domain of the schedule constraints "sc".
402 * The two sides of the various schedule constraints are adjusted
403 * accordingly.
405 __isl_give isl_schedule_constraints *isl_schedule_constraints_apply(
406 __isl_take isl_schedule_constraints *sc,
407 __isl_take isl_union_map *umap)
409 enum isl_edge_type i;
411 if (!sc || !umap)
412 goto error;
414 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
415 int tag = may_be_tagged(i);
417 sc->constraint[i] = apply(sc->constraint[i], umap, tag);
418 if (!sc->constraint[i])
419 goto error;
421 sc->domain = isl_union_set_apply(sc->domain, umap);
422 if (!sc->domain)
423 return isl_schedule_constraints_free(sc);
425 return sc;
426 error:
427 isl_schedule_constraints_free(sc);
428 isl_union_map_free(umap);
429 return NULL;
432 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
434 if (!sc)
435 return;
437 fprintf(stderr, "domain: ");
438 isl_union_set_dump(sc->domain);
439 fprintf(stderr, "context: ");
440 isl_set_dump(sc->context);
441 fprintf(stderr, "validity: ");
442 isl_union_map_dump(sc->constraint[isl_edge_validity]);
443 fprintf(stderr, "proximity: ");
444 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
445 fprintf(stderr, "coincidence: ");
446 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
447 fprintf(stderr, "condition: ");
448 isl_union_map_dump(sc->constraint[isl_edge_condition]);
449 fprintf(stderr, "conditional_validity: ");
450 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
453 /* Align the parameters of the fields of "sc".
455 static __isl_give isl_schedule_constraints *
456 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
458 isl_space *space;
459 enum isl_edge_type i;
461 if (!sc)
462 return NULL;
464 space = isl_union_set_get_space(sc->domain);
465 space = isl_space_align_params(space, isl_set_get_space(sc->context));
466 for (i = isl_edge_first; i <= isl_edge_last; ++i)
467 space = isl_space_align_params(space,
468 isl_union_map_get_space(sc->constraint[i]));
470 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
471 sc->constraint[i] = isl_union_map_align_params(
472 sc->constraint[i], isl_space_copy(space));
473 if (!sc->constraint[i])
474 space = isl_space_free(space);
476 sc->context = isl_set_align_params(sc->context, isl_space_copy(space));
477 sc->domain = isl_union_set_align_params(sc->domain, space);
478 if (!sc->context || !sc->domain)
479 return isl_schedule_constraints_free(sc);
481 return sc;
484 /* Return the total number of isl_maps in the constraints of "sc".
486 static __isl_give int isl_schedule_constraints_n_map(
487 __isl_keep isl_schedule_constraints *sc)
489 enum isl_edge_type i;
490 int n = 0;
492 for (i = isl_edge_first; i <= isl_edge_last; ++i)
493 n += isl_union_map_n_map(sc->constraint[i]);
495 return n;
498 /* Internal information about a node that is used during the construction
499 * of a schedule.
500 * space represents the space in which the domain lives
501 * sched is a matrix representation of the schedule being constructed
502 * for this node; if compressed is set, then this schedule is
503 * defined over the compressed domain space
504 * sched_map is an isl_map representation of the same (partial) schedule
505 * sched_map may be NULL; if compressed is set, then this map
506 * is defined over the uncompressed domain space
507 * rank is the number of linearly independent rows in the linear part
508 * of sched
509 * the columns of cmap represent a change of basis for the schedule
510 * coefficients; the first rank columns span the linear part of
511 * the schedule rows
512 * cinv is the inverse of cmap.
513 * ctrans is the transpose of cmap.
514 * start is the first variable in the LP problem in the sequences that
515 * represents the schedule coefficients of this node
516 * nvar is the dimension of the domain
517 * nparam is the number of parameters or 0 if we are not constructing
518 * a parametric schedule
520 * If compressed is set, then hull represents the constraints
521 * that were used to derive the compression, while compress and
522 * decompress map the original space to the compressed space and
523 * vice versa.
525 * scc is the index of SCC (or WCC) this node belongs to
527 * "cluster" is only used inside extract_clusters and identifies
528 * the cluster of SCCs that the node belongs to.
530 * coincident contains a boolean for each of the rows of the schedule,
531 * indicating whether the corresponding scheduling dimension satisfies
532 * the coincidence constraints in the sense that the corresponding
533 * dependence distances are zero.
535 struct isl_sched_node {
536 isl_space *space;
537 int compressed;
538 isl_set *hull;
539 isl_multi_aff *compress;
540 isl_multi_aff *decompress;
541 isl_mat *sched;
542 isl_map *sched_map;
543 int rank;
544 isl_mat *cmap;
545 isl_mat *cinv;
546 isl_mat *ctrans;
547 int start;
548 int nvar;
549 int nparam;
551 int scc;
552 int cluster;
554 int *coincident;
557 static int node_has_space(const void *entry, const void *val)
559 struct isl_sched_node *node = (struct isl_sched_node *)entry;
560 isl_space *dim = (isl_space *)val;
562 return isl_space_is_equal(node->space, dim);
565 static int node_scc_exactly(struct isl_sched_node *node, int scc)
567 return node->scc == scc;
570 static int node_scc_at_most(struct isl_sched_node *node, int scc)
572 return node->scc <= scc;
575 static int node_scc_at_least(struct isl_sched_node *node, int scc)
577 return node->scc >= scc;
580 /* An edge in the dependence graph. An edge may be used to
581 * ensure validity of the generated schedule, to minimize the dependence
582 * distance or both
584 * map is the dependence relation, with i -> j in the map if j depends on i
585 * tagged_condition and tagged_validity contain the union of all tagged
586 * condition or conditional validity dependence relations that
587 * specialize the dependence relation "map"; that is,
588 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
589 * or "tagged_validity", then i -> j is an element of "map".
590 * If these fields are NULL, then they represent the empty relation.
591 * src is the source node
592 * dst is the sink node
594 * types is a bit vector containing the types of this edge.
595 * validity is set if the edge is used to ensure correctness
596 * coincidence is used to enforce zero dependence distances
597 * proximity is set if the edge is used to minimize dependence distances
598 * condition is set if the edge represents a condition
599 * for a conditional validity schedule constraint
600 * local can only be set for condition edges and indicates that
601 * the dependence distance over the edge should be zero
602 * conditional_validity is set if the edge is used to conditionally
603 * ensure correctness
605 * For validity edges, start and end mark the sequence of inequality
606 * constraints in the LP problem that encode the validity constraint
607 * corresponding to this edge.
609 * During clustering, an edge may be marked "no_merge" if it should
610 * not be used to merge clusters.
611 * The weight is also only used during clustering and it is
612 * an indication of how many schedule dimensions on either side
613 * of the schedule constraints can be aligned.
614 * If the weight is negative, then this means that this edge was postponed
615 * by has_bounded_distances or any_no_merge. The original weight can
616 * be retrieved by adding 1 + graph->max_weight, with "graph"
617 * the graph containing this edge.
619 struct isl_sched_edge {
620 isl_map *map;
621 isl_union_map *tagged_condition;
622 isl_union_map *tagged_validity;
624 struct isl_sched_node *src;
625 struct isl_sched_node *dst;
627 unsigned types;
629 int start;
630 int end;
632 int no_merge;
633 int weight;
636 /* Is "edge" marked as being of type "type"?
638 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
640 return ISL_FL_ISSET(edge->types, 1 << type);
643 /* Mark "edge" as being of type "type".
645 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
647 ISL_FL_SET(edge->types, 1 << type);
650 /* No longer mark "edge" as being of type "type"?
652 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
654 ISL_FL_CLR(edge->types, 1 << type);
657 /* Is "edge" marked as a validity edge?
659 static int is_validity(struct isl_sched_edge *edge)
661 return is_type(edge, isl_edge_validity);
664 /* Mark "edge" as a validity edge.
666 static void set_validity(struct isl_sched_edge *edge)
668 set_type(edge, isl_edge_validity);
671 /* Is "edge" marked as a proximity edge?
673 static int is_proximity(struct isl_sched_edge *edge)
675 return is_type(edge, isl_edge_proximity);
678 /* Is "edge" marked as a local edge?
680 static int is_local(struct isl_sched_edge *edge)
682 return is_type(edge, isl_edge_local);
685 /* Mark "edge" as a local edge.
687 static void set_local(struct isl_sched_edge *edge)
689 set_type(edge, isl_edge_local);
692 /* No longer mark "edge" as a local edge.
694 static void clear_local(struct isl_sched_edge *edge)
696 clear_type(edge, isl_edge_local);
699 /* Is "edge" marked as a coincidence edge?
701 static int is_coincidence(struct isl_sched_edge *edge)
703 return is_type(edge, isl_edge_coincidence);
706 /* Is "edge" marked as a condition edge?
708 static int is_condition(struct isl_sched_edge *edge)
710 return is_type(edge, isl_edge_condition);
713 /* Is "edge" marked as a conditional validity edge?
715 static int is_conditional_validity(struct isl_sched_edge *edge)
717 return is_type(edge, isl_edge_conditional_validity);
720 /* Internal information about the dependence graph used during
721 * the construction of the schedule.
723 * intra_hmap is a cache, mapping dependence relations to their dual,
724 * for dependences from a node to itself
725 * inter_hmap is a cache, mapping dependence relations to their dual,
726 * for dependences between distinct nodes
727 * if compression is involved then the key for these maps
728 * is the original, uncompressed dependence relation, while
729 * the value is the dual of the compressed dependence relation.
731 * n is the number of nodes
732 * node is the list of nodes
733 * maxvar is the maximal number of variables over all nodes
734 * max_row is the allocated number of rows in the schedule
735 * n_row is the current (maximal) number of linearly independent
736 * rows in the node schedules
737 * n_total_row is the current number of rows in the node schedules
738 * band_start is the starting row in the node schedules of the current band
739 * root is set if this graph is the original dependence graph,
740 * without any splitting
742 * sorted contains a list of node indices sorted according to the
743 * SCC to which a node belongs
745 * n_edge is the number of edges
746 * edge is the list of edges
747 * max_edge contains the maximal number of edges of each type;
748 * in particular, it contains the number of edges in the inital graph.
749 * edge_table contains pointers into the edge array, hashed on the source
750 * and sink spaces; there is one such table for each type;
751 * a given edge may be referenced from more than one table
752 * if the corresponding relation appears in more than one of the
753 * sets of dependences; however, for each type there is only
754 * a single edge between a given pair of source and sink space
755 * in the entire graph
757 * node_table contains pointers into the node array, hashed on the space
759 * region contains a list of variable sequences that should be non-trivial
761 * lp contains the (I)LP problem used to obtain new schedule rows
763 * src_scc and dst_scc are the source and sink SCCs of an edge with
764 * conflicting constraints
766 * scc represents the number of components
767 * weak is set if the components are weakly connected
769 * max_weight is used during clustering and represents the maximal
770 * weight of the relevant proximity edges.
772 struct isl_sched_graph {
773 isl_map_to_basic_set *intra_hmap;
774 isl_map_to_basic_set *inter_hmap;
776 struct isl_sched_node *node;
777 int n;
778 int maxvar;
779 int max_row;
780 int n_row;
782 int *sorted;
784 int n_total_row;
785 int band_start;
787 int root;
789 struct isl_sched_edge *edge;
790 int n_edge;
791 int max_edge[isl_edge_last + 1];
792 struct isl_hash_table *edge_table[isl_edge_last + 1];
794 struct isl_hash_table *node_table;
795 struct isl_region *region;
797 isl_basic_set *lp;
799 int src_scc;
800 int dst_scc;
802 int scc;
803 int weak;
805 int max_weight;
808 /* Initialize node_table based on the list of nodes.
810 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
812 int i;
814 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
815 if (!graph->node_table)
816 return -1;
818 for (i = 0; i < graph->n; ++i) {
819 struct isl_hash_table_entry *entry;
820 uint32_t hash;
822 hash = isl_space_get_hash(graph->node[i].space);
823 entry = isl_hash_table_find(ctx, graph->node_table, hash,
824 &node_has_space,
825 graph->node[i].space, 1);
826 if (!entry)
827 return -1;
828 entry->data = &graph->node[i];
831 return 0;
834 /* Return a pointer to the node that lives within the given space,
835 * or NULL if there is no such node.
837 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
838 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
840 struct isl_hash_table_entry *entry;
841 uint32_t hash;
843 hash = isl_space_get_hash(dim);
844 entry = isl_hash_table_find(ctx, graph->node_table, hash,
845 &node_has_space, dim, 0);
847 return entry ? entry->data : NULL;
850 static int edge_has_src_and_dst(const void *entry, const void *val)
852 const struct isl_sched_edge *edge = entry;
853 const struct isl_sched_edge *temp = val;
855 return edge->src == temp->src && edge->dst == temp->dst;
858 /* Add the given edge to graph->edge_table[type].
860 static isl_stat graph_edge_table_add(isl_ctx *ctx,
861 struct isl_sched_graph *graph, enum isl_edge_type type,
862 struct isl_sched_edge *edge)
864 struct isl_hash_table_entry *entry;
865 uint32_t hash;
867 hash = isl_hash_init();
868 hash = isl_hash_builtin(hash, edge->src);
869 hash = isl_hash_builtin(hash, edge->dst);
870 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
871 &edge_has_src_and_dst, edge, 1);
872 if (!entry)
873 return isl_stat_error;
874 entry->data = edge;
876 return isl_stat_ok;
879 /* Allocate the edge_tables based on the maximal number of edges of
880 * each type.
882 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
884 int i;
886 for (i = 0; i <= isl_edge_last; ++i) {
887 graph->edge_table[i] = isl_hash_table_alloc(ctx,
888 graph->max_edge[i]);
889 if (!graph->edge_table[i])
890 return -1;
893 return 0;
896 /* If graph->edge_table[type] contains an edge from the given source
897 * to the given destination, then return the hash table entry of this edge.
898 * Otherwise, return NULL.
900 static struct isl_hash_table_entry *graph_find_edge_entry(
901 struct isl_sched_graph *graph,
902 enum isl_edge_type type,
903 struct isl_sched_node *src, struct isl_sched_node *dst)
905 isl_ctx *ctx = isl_space_get_ctx(src->space);
906 uint32_t hash;
907 struct isl_sched_edge temp = { .src = src, .dst = dst };
909 hash = isl_hash_init();
910 hash = isl_hash_builtin(hash, temp.src);
911 hash = isl_hash_builtin(hash, temp.dst);
912 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
913 &edge_has_src_and_dst, &temp, 0);
917 /* If graph->edge_table[type] contains an edge from the given source
918 * to the given destination, then return this edge.
919 * Otherwise, return NULL.
921 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
922 enum isl_edge_type type,
923 struct isl_sched_node *src, struct isl_sched_node *dst)
925 struct isl_hash_table_entry *entry;
927 entry = graph_find_edge_entry(graph, type, src, dst);
928 if (!entry)
929 return NULL;
931 return entry->data;
934 /* Check whether the dependence graph has an edge of the given type
935 * between the given two nodes.
937 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
938 enum isl_edge_type type,
939 struct isl_sched_node *src, struct isl_sched_node *dst)
941 struct isl_sched_edge *edge;
942 isl_bool empty;
944 edge = graph_find_edge(graph, type, src, dst);
945 if (!edge)
946 return 0;
948 empty = isl_map_plain_is_empty(edge->map);
949 if (empty < 0)
950 return isl_bool_error;
952 return !empty;
955 /* Look for any edge with the same src, dst and map fields as "model".
957 * Return the matching edge if one can be found.
958 * Return "model" if no matching edge is found.
959 * Return NULL on error.
961 static struct isl_sched_edge *graph_find_matching_edge(
962 struct isl_sched_graph *graph, struct isl_sched_edge *model)
964 enum isl_edge_type i;
965 struct isl_sched_edge *edge;
967 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
968 int is_equal;
970 edge = graph_find_edge(graph, i, model->src, model->dst);
971 if (!edge)
972 continue;
973 is_equal = isl_map_plain_is_equal(model->map, edge->map);
974 if (is_equal < 0)
975 return NULL;
976 if (is_equal)
977 return edge;
980 return model;
983 /* Remove the given edge from all the edge_tables that refer to it.
985 static void graph_remove_edge(struct isl_sched_graph *graph,
986 struct isl_sched_edge *edge)
988 isl_ctx *ctx = isl_map_get_ctx(edge->map);
989 enum isl_edge_type i;
991 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
992 struct isl_hash_table_entry *entry;
994 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
995 if (!entry)
996 continue;
997 if (entry->data != edge)
998 continue;
999 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
1003 /* Check whether the dependence graph has any edge
1004 * between the given two nodes.
1006 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
1007 struct isl_sched_node *src, struct isl_sched_node *dst)
1009 enum isl_edge_type i;
1010 isl_bool r;
1012 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1013 r = graph_has_edge(graph, i, src, dst);
1014 if (r < 0 || r)
1015 return r;
1018 return r;
1021 /* Check whether the dependence graph has a validity edge
1022 * between the given two nodes.
1024 * Conditional validity edges are essentially validity edges that
1025 * can be ignored if the corresponding condition edges are iteration private.
1026 * Here, we are only checking for the presence of validity
1027 * edges, so we need to consider the conditional validity edges too.
1028 * In particular, this function is used during the detection
1029 * of strongly connected components and we cannot ignore
1030 * conditional validity edges during this detection.
1032 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
1033 struct isl_sched_node *src, struct isl_sched_node *dst)
1035 isl_bool r;
1037 r = graph_has_edge(graph, isl_edge_validity, src, dst);
1038 if (r < 0 || r)
1039 return r;
1041 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
1044 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
1045 int n_node, int n_edge)
1047 int i;
1049 graph->n = n_node;
1050 graph->n_edge = n_edge;
1051 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
1052 graph->sorted = isl_calloc_array(ctx, int, graph->n);
1053 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
1054 graph->edge = isl_calloc_array(ctx,
1055 struct isl_sched_edge, graph->n_edge);
1057 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
1058 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
1060 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
1061 !graph->sorted)
1062 return -1;
1064 for(i = 0; i < graph->n; ++i)
1065 graph->sorted[i] = i;
1067 return 0;
1070 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
1072 int i;
1074 isl_map_to_basic_set_free(graph->intra_hmap);
1075 isl_map_to_basic_set_free(graph->inter_hmap);
1077 if (graph->node)
1078 for (i = 0; i < graph->n; ++i) {
1079 isl_space_free(graph->node[i].space);
1080 isl_set_free(graph->node[i].hull);
1081 isl_multi_aff_free(graph->node[i].compress);
1082 isl_multi_aff_free(graph->node[i].decompress);
1083 isl_mat_free(graph->node[i].sched);
1084 isl_map_free(graph->node[i].sched_map);
1085 isl_mat_free(graph->node[i].cmap);
1086 isl_mat_free(graph->node[i].cinv);
1087 isl_mat_free(graph->node[i].ctrans);
1088 if (graph->root)
1089 free(graph->node[i].coincident);
1091 free(graph->node);
1092 free(graph->sorted);
1093 if (graph->edge)
1094 for (i = 0; i < graph->n_edge; ++i) {
1095 isl_map_free(graph->edge[i].map);
1096 isl_union_map_free(graph->edge[i].tagged_condition);
1097 isl_union_map_free(graph->edge[i].tagged_validity);
1099 free(graph->edge);
1100 free(graph->region);
1101 for (i = 0; i <= isl_edge_last; ++i)
1102 isl_hash_table_free(ctx, graph->edge_table[i]);
1103 isl_hash_table_free(ctx, graph->node_table);
1104 isl_basic_set_free(graph->lp);
1107 /* For each "set" on which this function is called, increment
1108 * graph->n by one and update graph->maxvar.
1110 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
1112 struct isl_sched_graph *graph = user;
1113 int nvar = isl_set_dim(set, isl_dim_set);
1115 graph->n++;
1116 if (nvar > graph->maxvar)
1117 graph->maxvar = nvar;
1119 isl_set_free(set);
1121 return isl_stat_ok;
1124 /* Add the number of basic maps in "map" to *n.
1126 static isl_stat add_n_basic_map(__isl_take isl_map *map, void *user)
1128 int *n = user;
1130 *n += isl_map_n_basic_map(map);
1131 isl_map_free(map);
1133 return isl_stat_ok;
1136 /* Compute the number of rows that should be allocated for the schedule.
1137 * In particular, we need one row for each variable or one row
1138 * for each basic map in the dependences.
1139 * Note that it is practically impossible to exhaust both
1140 * the number of dependences and the number of variables.
1142 static int compute_max_row(struct isl_sched_graph *graph,
1143 __isl_keep isl_schedule_constraints *sc)
1145 enum isl_edge_type i;
1146 int n_edge;
1148 graph->n = 0;
1149 graph->maxvar = 0;
1150 if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0)
1151 return -1;
1152 n_edge = 0;
1153 for (i = isl_edge_first; i <= isl_edge_last; ++i)
1154 if (isl_union_map_foreach_map(sc->constraint[i],
1155 &add_n_basic_map, &n_edge) < 0)
1156 return -1;
1157 graph->max_row = n_edge + graph->maxvar;
1159 return 0;
1162 /* Does "bset" have any defining equalities for its set variables?
1164 static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
1166 int i, n;
1168 if (!bset)
1169 return -1;
1171 n = isl_basic_set_dim(bset, isl_dim_set);
1172 for (i = 0; i < n; ++i) {
1173 int has;
1175 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
1176 NULL);
1177 if (has < 0 || has)
1178 return has;
1181 return 0;
1184 /* Add a new node to the graph representing the given space.
1185 * "nvar" is the (possibly compressed) number of variables and
1186 * may be smaller than then number of set variables in "space"
1187 * if "compressed" is set.
1188 * If "compressed" is set, then "hull" represents the constraints
1189 * that were used to derive the compression, while "compress" and
1190 * "decompress" map the original space to the compressed space and
1191 * vice versa.
1192 * If "compressed" is not set, then "hull", "compress" and "decompress"
1193 * should be NULL.
1195 static isl_stat add_node(struct isl_sched_graph *graph,
1196 __isl_take isl_space *space, int nvar, int compressed,
1197 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
1198 __isl_take isl_multi_aff *decompress)
1200 int nparam;
1201 isl_ctx *ctx;
1202 isl_mat *sched;
1203 int *coincident;
1205 if (!space)
1206 return isl_stat_error;
1208 ctx = isl_space_get_ctx(space);
1209 nparam = isl_space_dim(space, isl_dim_param);
1210 if (!ctx->opt->schedule_parametric)
1211 nparam = 0;
1212 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
1213 graph->node[graph->n].space = space;
1214 graph->node[graph->n].nvar = nvar;
1215 graph->node[graph->n].nparam = nparam;
1216 graph->node[graph->n].sched = sched;
1217 graph->node[graph->n].sched_map = NULL;
1218 coincident = isl_calloc_array(ctx, int, graph->max_row);
1219 graph->node[graph->n].coincident = coincident;
1220 graph->node[graph->n].compressed = compressed;
1221 graph->node[graph->n].hull = hull;
1222 graph->node[graph->n].compress = compress;
1223 graph->node[graph->n].decompress = decompress;
1224 graph->n++;
1226 if (!space || !sched || (graph->max_row && !coincident))
1227 return isl_stat_error;
1228 if (compressed && (!hull || !compress || !decompress))
1229 return isl_stat_error;
1231 return isl_stat_ok;
1234 /* Add a new node to the graph representing the given set.
1236 * If any of the set variables is defined by an equality, then
1237 * we perform variable compression such that we can perform
1238 * the scheduling on the compressed domain.
1240 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1242 int nvar;
1243 int has_equality;
1244 isl_space *space;
1245 isl_basic_set *hull;
1246 isl_set *hull_set;
1247 isl_morph *morph;
1248 isl_multi_aff *compress, *decompress;
1249 struct isl_sched_graph *graph = user;
1251 space = isl_set_get_space(set);
1252 hull = isl_set_affine_hull(set);
1253 hull = isl_basic_set_remove_divs(hull);
1254 nvar = isl_space_dim(space, isl_dim_set);
1255 has_equality = has_any_defining_equality(hull);
1257 if (has_equality < 0)
1258 goto error;
1259 if (!has_equality) {
1260 isl_basic_set_free(hull);
1261 return add_node(graph, space, nvar, 0, NULL, NULL, NULL);
1264 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
1265 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1266 compress = isl_morph_get_var_multi_aff(morph);
1267 morph = isl_morph_inverse(morph);
1268 decompress = isl_morph_get_var_multi_aff(morph);
1269 isl_morph_free(morph);
1271 hull_set = isl_set_from_basic_set(hull);
1272 return add_node(graph, space, nvar, 1, hull_set, compress, decompress);
1273 error:
1274 isl_basic_set_free(hull);
1275 isl_space_free(space);
1276 return isl_stat_error;
1279 struct isl_extract_edge_data {
1280 enum isl_edge_type type;
1281 struct isl_sched_graph *graph;
1284 /* Merge edge2 into edge1, freeing the contents of edge2.
1285 * Return 0 on success and -1 on failure.
1287 * edge1 and edge2 are assumed to have the same value for the map field.
1289 static int merge_edge(struct isl_sched_edge *edge1,
1290 struct isl_sched_edge *edge2)
1292 edge1->types |= edge2->types;
1293 isl_map_free(edge2->map);
1295 if (is_condition(edge2)) {
1296 if (!edge1->tagged_condition)
1297 edge1->tagged_condition = edge2->tagged_condition;
1298 else
1299 edge1->tagged_condition =
1300 isl_union_map_union(edge1->tagged_condition,
1301 edge2->tagged_condition);
1304 if (is_conditional_validity(edge2)) {
1305 if (!edge1->tagged_validity)
1306 edge1->tagged_validity = edge2->tagged_validity;
1307 else
1308 edge1->tagged_validity =
1309 isl_union_map_union(edge1->tagged_validity,
1310 edge2->tagged_validity);
1313 if (is_condition(edge2) && !edge1->tagged_condition)
1314 return -1;
1315 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1316 return -1;
1318 return 0;
1321 /* Insert dummy tags in domain and range of "map".
1323 * In particular, if "map" is of the form
1325 * A -> B
1327 * then return
1329 * [A -> dummy_tag] -> [B -> dummy_tag]
1331 * where the dummy_tags are identical and equal to any dummy tags
1332 * introduced by any other call to this function.
1334 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1336 static char dummy;
1337 isl_ctx *ctx;
1338 isl_id *id;
1339 isl_space *space;
1340 isl_set *domain, *range;
1342 ctx = isl_map_get_ctx(map);
1344 id = isl_id_alloc(ctx, NULL, &dummy);
1345 space = isl_space_params(isl_map_get_space(map));
1346 space = isl_space_set_from_params(space);
1347 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1348 space = isl_space_map_from_set(space);
1350 domain = isl_map_wrap(map);
1351 range = isl_map_wrap(isl_map_universe(space));
1352 map = isl_map_from_domain_and_range(domain, range);
1353 map = isl_map_zip(map);
1355 return map;
1358 /* Given that at least one of "src" or "dst" is compressed, return
1359 * a map between the spaces of these nodes restricted to the affine
1360 * hull that was used in the compression.
1362 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1363 struct isl_sched_node *dst)
1365 isl_set *dom, *ran;
1367 if (src->compressed)
1368 dom = isl_set_copy(src->hull);
1369 else
1370 dom = isl_set_universe(isl_space_copy(src->space));
1371 if (dst->compressed)
1372 ran = isl_set_copy(dst->hull);
1373 else
1374 ran = isl_set_universe(isl_space_copy(dst->space));
1376 return isl_map_from_domain_and_range(dom, ran);
1379 /* Intersect the domains of the nested relations in domain and range
1380 * of "tagged" with "map".
1382 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1383 __isl_keep isl_map *map)
1385 isl_set *set;
1387 tagged = isl_map_zip(tagged);
1388 set = isl_map_wrap(isl_map_copy(map));
1389 tagged = isl_map_intersect_domain(tagged, set);
1390 tagged = isl_map_zip(tagged);
1391 return tagged;
1394 /* Return a pointer to the node that lives in the domain space of "map"
1395 * or NULL if there is no such node.
1397 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1398 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1400 struct isl_sched_node *node;
1401 isl_space *space;
1403 space = isl_space_domain(isl_map_get_space(map));
1404 node = graph_find_node(ctx, graph, space);
1405 isl_space_free(space);
1407 return node;
1410 /* Return a pointer to the node that lives in the range space of "map"
1411 * or NULL if there is no such node.
1413 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1414 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1416 struct isl_sched_node *node;
1417 isl_space *space;
1419 space = isl_space_range(isl_map_get_space(map));
1420 node = graph_find_node(ctx, graph, space);
1421 isl_space_free(space);
1423 return node;
1426 /* Add a new edge to the graph based on the given map
1427 * and add it to data->graph->edge_table[data->type].
1428 * If a dependence relation of a given type happens to be identical
1429 * to one of the dependence relations of a type that was added before,
1430 * then we don't create a new edge, but instead mark the original edge
1431 * as also representing a dependence of the current type.
1433 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1434 * may be specified as "tagged" dependence relations. That is, "map"
1435 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1436 * the dependence on iterations and a and b are tags.
1437 * edge->map is set to the relation containing the elements i -> j,
1438 * while edge->tagged_condition and edge->tagged_validity contain
1439 * the union of all the "map" relations
1440 * for which extract_edge is called that result in the same edge->map.
1442 * If the source or the destination node is compressed, then
1443 * intersect both "map" and "tagged" with the constraints that
1444 * were used to construct the compression.
1445 * This ensures that there are no schedule constraints defined
1446 * outside of these domains, while the scheduler no longer has
1447 * any control over those outside parts.
1449 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1451 isl_ctx *ctx = isl_map_get_ctx(map);
1452 struct isl_extract_edge_data *data = user;
1453 struct isl_sched_graph *graph = data->graph;
1454 struct isl_sched_node *src, *dst;
1455 struct isl_sched_edge *edge;
1456 isl_map *tagged = NULL;
1458 if (data->type == isl_edge_condition ||
1459 data->type == isl_edge_conditional_validity) {
1460 if (isl_map_can_zip(map)) {
1461 tagged = isl_map_copy(map);
1462 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1463 } else {
1464 tagged = insert_dummy_tags(isl_map_copy(map));
1468 src = find_domain_node(ctx, graph, map);
1469 dst = find_range_node(ctx, graph, map);
1471 if (!src || !dst) {
1472 isl_map_free(map);
1473 isl_map_free(tagged);
1474 return isl_stat_ok;
1477 if (src->compressed || dst->compressed) {
1478 isl_map *hull;
1479 hull = extract_hull(src, dst);
1480 if (tagged)
1481 tagged = map_intersect_domains(tagged, hull);
1482 map = isl_map_intersect(map, hull);
1485 graph->edge[graph->n_edge].src = src;
1486 graph->edge[graph->n_edge].dst = dst;
1487 graph->edge[graph->n_edge].map = map;
1488 graph->edge[graph->n_edge].types = 0;
1489 graph->edge[graph->n_edge].tagged_condition = NULL;
1490 graph->edge[graph->n_edge].tagged_validity = NULL;
1491 set_type(&graph->edge[graph->n_edge], data->type);
1492 if (data->type == isl_edge_condition)
1493 graph->edge[graph->n_edge].tagged_condition =
1494 isl_union_map_from_map(tagged);
1495 if (data->type == isl_edge_conditional_validity)
1496 graph->edge[graph->n_edge].tagged_validity =
1497 isl_union_map_from_map(tagged);
1499 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1500 if (!edge) {
1501 graph->n_edge++;
1502 return isl_stat_error;
1504 if (edge == &graph->edge[graph->n_edge])
1505 return graph_edge_table_add(ctx, graph, data->type,
1506 &graph->edge[graph->n_edge++]);
1508 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1509 return -1;
1511 return graph_edge_table_add(ctx, graph, data->type, edge);
1514 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1516 * The context is included in the domain before the nodes of
1517 * the graphs are extracted in order to be able to exploit
1518 * any possible additional equalities.
1519 * Note that this intersection is only performed locally here.
1521 static isl_stat graph_init(struct isl_sched_graph *graph,
1522 __isl_keep isl_schedule_constraints *sc)
1524 isl_ctx *ctx;
1525 isl_union_set *domain;
1526 struct isl_extract_edge_data data;
1527 enum isl_edge_type i;
1528 isl_stat r;
1530 if (!sc)
1531 return isl_stat_error;
1533 ctx = isl_schedule_constraints_get_ctx(sc);
1535 domain = isl_schedule_constraints_get_domain(sc);
1536 graph->n = isl_union_set_n_set(domain);
1537 isl_union_set_free(domain);
1539 if (graph_alloc(ctx, graph, graph->n,
1540 isl_schedule_constraints_n_map(sc)) < 0)
1541 return isl_stat_error;
1543 if (compute_max_row(graph, sc) < 0)
1544 return isl_stat_error;
1545 graph->root = 1;
1546 graph->n = 0;
1547 domain = isl_schedule_constraints_get_domain(sc);
1548 domain = isl_union_set_intersect_params(domain,
1549 isl_set_copy(sc->context));
1550 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1551 isl_union_set_free(domain);
1552 if (r < 0)
1553 return isl_stat_error;
1554 if (graph_init_table(ctx, graph) < 0)
1555 return isl_stat_error;
1556 for (i = isl_edge_first; i <= isl_edge_last; ++i)
1557 graph->max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
1558 if (graph_init_edge_tables(ctx, graph) < 0)
1559 return isl_stat_error;
1560 graph->n_edge = 0;
1561 data.graph = graph;
1562 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1563 data.type = i;
1564 if (isl_union_map_foreach_map(sc->constraint[i],
1565 &extract_edge, &data) < 0)
1566 return isl_stat_error;
1569 return isl_stat_ok;
1572 /* Check whether there is any dependence from node[j] to node[i]
1573 * or from node[i] to node[j].
1575 static isl_bool node_follows_weak(int i, int j, void *user)
1577 isl_bool f;
1578 struct isl_sched_graph *graph = user;
1580 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1581 if (f < 0 || f)
1582 return f;
1583 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1586 /* Check whether there is a (conditional) validity dependence from node[j]
1587 * to node[i], forcing node[i] to follow node[j].
1589 static isl_bool node_follows_strong(int i, int j, void *user)
1591 struct isl_sched_graph *graph = user;
1593 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1596 /* Use Tarjan's algorithm for computing the strongly connected components
1597 * in the dependence graph only considering those edges defined by "follows".
1599 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1600 isl_bool (*follows)(int i, int j, void *user))
1602 int i, n;
1603 struct isl_tarjan_graph *g = NULL;
1605 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1606 if (!g)
1607 return -1;
1609 graph->scc = 0;
1610 i = 0;
1611 n = graph->n;
1612 while (n) {
1613 while (g->order[i] != -1) {
1614 graph->node[g->order[i]].scc = graph->scc;
1615 --n;
1616 ++i;
1618 ++i;
1619 graph->scc++;
1622 isl_tarjan_graph_free(g);
1624 return 0;
1627 /* Apply Tarjan's algorithm to detect the strongly connected components
1628 * in the dependence graph.
1629 * Only consider the (conditional) validity dependences and clear "weak".
1631 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1633 graph->weak = 0;
1634 return detect_ccs(ctx, graph, &node_follows_strong);
1637 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1638 * in the dependence graph.
1639 * Consider all dependences and set "weak".
1641 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1643 graph->weak = 1;
1644 return detect_ccs(ctx, graph, &node_follows_weak);
1647 static int cmp_scc(const void *a, const void *b, void *data)
1649 struct isl_sched_graph *graph = data;
1650 const int *i1 = a;
1651 const int *i2 = b;
1653 return graph->node[*i1].scc - graph->node[*i2].scc;
1656 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1658 static int sort_sccs(struct isl_sched_graph *graph)
1660 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1663 /* Given a dependence relation R from "node" to itself,
1664 * construct the set of coefficients of valid constraints for elements
1665 * in that dependence relation.
1666 * In particular, the result contains tuples of coefficients
1667 * c_0, c_n, c_x such that
1669 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1671 * or, equivalently,
1673 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1675 * We choose here to compute the dual of delta R.
1676 * Alternatively, we could have computed the dual of R, resulting
1677 * in a set of tuples c_0, c_n, c_x, c_y, and then
1678 * plugged in (c_0, c_n, c_x, -c_x).
1680 * If "node" has been compressed, then the dependence relation
1681 * is also compressed before the set of coefficients is computed.
1683 static __isl_give isl_basic_set *intra_coefficients(
1684 struct isl_sched_graph *graph, struct isl_sched_node *node,
1685 __isl_take isl_map *map)
1687 isl_set *delta;
1688 isl_map *key;
1689 isl_basic_set *coef;
1690 isl_maybe_isl_basic_set m;
1692 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1693 if (m.valid < 0 || m.valid) {
1694 isl_map_free(map);
1695 return m.value;
1698 key = isl_map_copy(map);
1699 if (node->compressed) {
1700 map = isl_map_preimage_domain_multi_aff(map,
1701 isl_multi_aff_copy(node->decompress));
1702 map = isl_map_preimage_range_multi_aff(map,
1703 isl_multi_aff_copy(node->decompress));
1705 delta = isl_set_remove_divs(isl_map_deltas(map));
1706 coef = isl_set_coefficients(delta);
1707 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1708 isl_basic_set_copy(coef));
1710 return coef;
1713 /* Given a dependence relation R, construct the set of coefficients
1714 * of valid constraints for elements in that dependence relation.
1715 * In particular, the result contains tuples of coefficients
1716 * c_0, c_n, c_x, c_y such that
1718 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1720 * If the source or destination nodes of "edge" have been compressed,
1721 * then the dependence relation is also compressed before
1722 * the set of coefficients is computed.
1724 static __isl_give isl_basic_set *inter_coefficients(
1725 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1726 __isl_take isl_map *map)
1728 isl_set *set;
1729 isl_map *key;
1730 isl_basic_set *coef;
1731 isl_maybe_isl_basic_set m;
1733 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1734 if (m.valid < 0 || m.valid) {
1735 isl_map_free(map);
1736 return m.value;
1739 key = isl_map_copy(map);
1740 if (edge->src->compressed)
1741 map = isl_map_preimage_domain_multi_aff(map,
1742 isl_multi_aff_copy(edge->src->decompress));
1743 if (edge->dst->compressed)
1744 map = isl_map_preimage_range_multi_aff(map,
1745 isl_multi_aff_copy(edge->dst->decompress));
1746 set = isl_map_wrap(isl_map_remove_divs(map));
1747 coef = isl_set_coefficients(set);
1748 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1749 isl_basic_set_copy(coef));
1751 return coef;
1754 /* Add constraints to graph->lp that force validity for the given
1755 * dependence from a node i to itself.
1756 * That is, add constraints that enforce
1758 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1759 * = c_i_x (y - x) >= 0
1761 * for each (x,y) in R.
1762 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1763 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1764 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1765 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1767 * Actually, we do not construct constraints for the c_i_x themselves,
1768 * but for the coefficients of c_i_x written as a linear combination
1769 * of the columns in node->cmap.
1771 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
1772 struct isl_sched_edge *edge)
1774 unsigned total;
1775 isl_map *map = isl_map_copy(edge->map);
1776 isl_ctx *ctx = isl_map_get_ctx(map);
1777 isl_space *dim;
1778 isl_dim_map *dim_map;
1779 isl_basic_set *coef;
1780 struct isl_sched_node *node = edge->src;
1782 coef = intra_coefficients(graph, node, map);
1784 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1786 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1787 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1788 if (!coef)
1789 goto error;
1791 total = isl_basic_set_total_dim(graph->lp);
1792 dim_map = isl_dim_map_alloc(ctx, total);
1793 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1794 isl_space_dim(dim, isl_dim_set), 1,
1795 node->nvar, -1);
1796 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1797 isl_space_dim(dim, isl_dim_set), 1,
1798 node->nvar, 1);
1799 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1800 coef->n_eq, coef->n_ineq);
1801 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1802 coef, dim_map);
1803 isl_space_free(dim);
1805 return 0;
1806 error:
1807 isl_space_free(dim);
1808 return -1;
1811 /* Add constraints to graph->lp that force validity for the given
1812 * dependence from node i to node j.
1813 * That is, add constraints that enforce
1815 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1817 * for each (x,y) in R.
1818 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1819 * of valid constraints for R and then plug in
1820 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1821 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1822 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1823 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1825 * Actually, we do not construct constraints for the c_*_x themselves,
1826 * but for the coefficients of c_*_x written as a linear combination
1827 * of the columns in node->cmap.
1829 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
1830 struct isl_sched_edge *edge)
1832 unsigned total;
1833 isl_map *map = isl_map_copy(edge->map);
1834 isl_ctx *ctx = isl_map_get_ctx(map);
1835 isl_space *dim;
1836 isl_dim_map *dim_map;
1837 isl_basic_set *coef;
1838 struct isl_sched_node *src = edge->src;
1839 struct isl_sched_node *dst = edge->dst;
1841 coef = inter_coefficients(graph, edge, map);
1843 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1845 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1846 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1847 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1848 isl_space_dim(dim, isl_dim_set) + src->nvar,
1849 isl_mat_copy(dst->cmap));
1850 if (!coef)
1851 goto error;
1853 total = isl_basic_set_total_dim(graph->lp);
1854 dim_map = isl_dim_map_alloc(ctx, total);
1856 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1857 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1858 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1859 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1860 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1861 dst->nvar, -1);
1862 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1863 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1864 dst->nvar, 1);
1866 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1867 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1868 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1869 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1870 isl_space_dim(dim, isl_dim_set), 1,
1871 src->nvar, 1);
1872 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1873 isl_space_dim(dim, isl_dim_set), 1,
1874 src->nvar, -1);
1876 edge->start = graph->lp->n_ineq;
1877 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1878 coef->n_eq, coef->n_ineq);
1879 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1880 coef, dim_map);
1881 if (!graph->lp)
1882 goto error;
1883 isl_space_free(dim);
1884 edge->end = graph->lp->n_ineq;
1886 return 0;
1887 error:
1888 isl_space_free(dim);
1889 return -1;
1892 /* Add constraints to graph->lp that bound the dependence distance for the given
1893 * dependence from a node i to itself.
1894 * If s = 1, we add the constraint
1896 * c_i_x (y - x) <= m_0 + m_n n
1898 * or
1900 * -c_i_x (y - x) + m_0 + m_n n >= 0
1902 * for each (x,y) in R.
1903 * If s = -1, we add the constraint
1905 * -c_i_x (y - x) <= m_0 + m_n n
1907 * or
1909 * c_i_x (y - x) + m_0 + m_n n >= 0
1911 * for each (x,y) in R.
1912 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1913 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1914 * with each coefficient (except m_0) represented as a pair of non-negative
1915 * coefficients.
1917 * Actually, we do not construct constraints for the c_i_x themselves,
1918 * but for the coefficients of c_i_x written as a linear combination
1919 * of the columns in node->cmap.
1922 * If "local" is set, then we add constraints
1924 * c_i_x (y - x) <= 0
1926 * or
1928 * -c_i_x (y - x) <= 0
1930 * instead, forcing the dependence distance to be (less than or) equal to 0.
1931 * That is, we plug in (0, 0, -s * c_i_x),
1932 * Note that dependences marked local are treated as validity constraints
1933 * by add_all_validity_constraints and therefore also have
1934 * their distances bounded by 0 from below.
1936 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1937 struct isl_sched_edge *edge, int s, int local)
1939 unsigned total;
1940 unsigned nparam;
1941 isl_map *map = isl_map_copy(edge->map);
1942 isl_ctx *ctx = isl_map_get_ctx(map);
1943 isl_space *dim;
1944 isl_dim_map *dim_map;
1945 isl_basic_set *coef;
1946 struct isl_sched_node *node = edge->src;
1948 coef = intra_coefficients(graph, node, map);
1950 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1952 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1953 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1954 if (!coef)
1955 goto error;
1957 nparam = isl_space_dim(node->space, isl_dim_param);
1958 total = isl_basic_set_total_dim(graph->lp);
1959 dim_map = isl_dim_map_alloc(ctx, total);
1961 if (!local) {
1962 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1963 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1964 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1966 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1967 isl_space_dim(dim, isl_dim_set), 1,
1968 node->nvar, s);
1969 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1970 isl_space_dim(dim, isl_dim_set), 1,
1971 node->nvar, -s);
1972 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1973 coef->n_eq, coef->n_ineq);
1974 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1975 coef, dim_map);
1976 isl_space_free(dim);
1978 return 0;
1979 error:
1980 isl_space_free(dim);
1981 return -1;
1984 /* Add constraints to graph->lp that bound the dependence distance for the given
1985 * dependence from node i to node j.
1986 * If s = 1, we add the constraint
1988 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1989 * <= m_0 + m_n n
1991 * or
1993 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1994 * m_0 + m_n n >= 0
1996 * for each (x,y) in R.
1997 * If s = -1, we add the constraint
1999 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2000 * <= m_0 + m_n n
2002 * or
2004 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2005 * m_0 + m_n n >= 0
2007 * for each (x,y) in R.
2008 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2009 * of valid constraints for R and then plug in
2010 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2011 * -s*c_j_x+s*c_i_x)
2012 * with each coefficient (except m_0, c_j_0 and c_i_0)
2013 * represented as a pair of non-negative coefficients.
2015 * Actually, we do not construct constraints for the c_*_x themselves,
2016 * but for the coefficients of c_*_x written as a linear combination
2017 * of the columns in node->cmap.
2020 * If "local" is set, then we add constraints
2022 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2024 * or
2026 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
2028 * instead, forcing the dependence distance to be (less than or) equal to 0.
2029 * That is, we plug in
2030 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
2031 * Note that dependences marked local are treated as validity constraints
2032 * by add_all_validity_constraints and therefore also have
2033 * their distances bounded by 0 from below.
2035 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
2036 struct isl_sched_edge *edge, int s, int local)
2038 unsigned total;
2039 unsigned nparam;
2040 isl_map *map = isl_map_copy(edge->map);
2041 isl_ctx *ctx = isl_map_get_ctx(map);
2042 isl_space *dim;
2043 isl_dim_map *dim_map;
2044 isl_basic_set *coef;
2045 struct isl_sched_node *src = edge->src;
2046 struct isl_sched_node *dst = edge->dst;
2048 coef = inter_coefficients(graph, edge, map);
2050 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2052 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2053 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
2054 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2055 isl_space_dim(dim, isl_dim_set) + src->nvar,
2056 isl_mat_copy(dst->cmap));
2057 if (!coef)
2058 goto error;
2060 nparam = isl_space_dim(src->space, isl_dim_param);
2061 total = isl_basic_set_total_dim(graph->lp);
2062 dim_map = isl_dim_map_alloc(ctx, total);
2064 if (!local) {
2065 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2066 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2067 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2070 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
2071 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
2072 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
2073 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2074 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2075 dst->nvar, s);
2076 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2077 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2078 dst->nvar, -s);
2080 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
2081 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
2082 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
2083 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2084 isl_space_dim(dim, isl_dim_set), 1,
2085 src->nvar, -s);
2086 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2087 isl_space_dim(dim, isl_dim_set), 1,
2088 src->nvar, s);
2090 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2091 coef->n_eq, coef->n_ineq);
2092 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2093 coef, dim_map);
2094 isl_space_free(dim);
2096 return 0;
2097 error:
2098 isl_space_free(dim);
2099 return -1;
2102 /* Add all validity constraints to graph->lp.
2104 * An edge that is forced to be local needs to have its dependence
2105 * distances equal to zero. We take care of bounding them by 0 from below
2106 * here. add_all_proximity_constraints takes care of bounding them by 0
2107 * from above.
2109 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2110 * Otherwise, we ignore them.
2112 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2113 int use_coincidence)
2115 int i;
2117 for (i = 0; i < graph->n_edge; ++i) {
2118 struct isl_sched_edge *edge= &graph->edge[i];
2119 int local;
2121 local = is_local(edge) ||
2122 (is_coincidence(edge) && use_coincidence);
2123 if (!is_validity(edge) && !local)
2124 continue;
2125 if (edge->src != edge->dst)
2126 continue;
2127 if (add_intra_validity_constraints(graph, edge) < 0)
2128 return -1;
2131 for (i = 0; i < graph->n_edge; ++i) {
2132 struct isl_sched_edge *edge = &graph->edge[i];
2133 int local;
2135 local = is_local(edge) ||
2136 (is_coincidence(edge) && use_coincidence);
2137 if (!is_validity(edge) && !local)
2138 continue;
2139 if (edge->src == edge->dst)
2140 continue;
2141 if (add_inter_validity_constraints(graph, edge) < 0)
2142 return -1;
2145 return 0;
2148 /* Add constraints to graph->lp that bound the dependence distance
2149 * for all dependence relations.
2150 * If a given proximity dependence is identical to a validity
2151 * dependence, then the dependence distance is already bounded
2152 * from below (by zero), so we only need to bound the distance
2153 * from above. (This includes the case of "local" dependences
2154 * which are treated as validity dependence by add_all_validity_constraints.)
2155 * Otherwise, we need to bound the distance both from above and from below.
2157 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2158 * Otherwise, we ignore them.
2160 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2161 int use_coincidence)
2163 int i;
2165 for (i = 0; i < graph->n_edge; ++i) {
2166 struct isl_sched_edge *edge= &graph->edge[i];
2167 int local;
2169 local = is_local(edge) ||
2170 (is_coincidence(edge) && use_coincidence);
2171 if (!is_proximity(edge) && !local)
2172 continue;
2173 if (edge->src == edge->dst &&
2174 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
2175 return -1;
2176 if (edge->src != edge->dst &&
2177 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
2178 return -1;
2179 if (is_validity(edge) || local)
2180 continue;
2181 if (edge->src == edge->dst &&
2182 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2183 return -1;
2184 if (edge->src != edge->dst &&
2185 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2186 return -1;
2189 return 0;
2192 /* Compute a basis for the rows in the linear part of the schedule
2193 * and extend this basis to a full basis. The remaining rows
2194 * can then be used to force linear independence from the rows
2195 * in the schedule.
2197 * In particular, given the schedule rows S, we compute
2199 * S = H Q
2200 * S U = H
2202 * with H the Hermite normal form of S. That is, all but the
2203 * first rank columns of H are zero and so each row in S is
2204 * a linear combination of the first rank rows of Q.
2205 * The matrix Q is then transposed because we will write the
2206 * coefficients of the next schedule row as a column vector s
2207 * and express this s as a linear combination s = Q c of the
2208 * computed basis.
2209 * Similarly, the matrix U is transposed such that we can
2210 * compute the coefficients c = U s from a schedule row s.
2212 static int node_update_cmap(struct isl_sched_node *node)
2214 isl_mat *H, *U, *Q;
2215 int n_row = isl_mat_rows(node->sched);
2217 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2218 1 + node->nparam, node->nvar);
2220 H = isl_mat_left_hermite(H, 0, &U, &Q);
2221 isl_mat_free(node->cmap);
2222 isl_mat_free(node->cinv);
2223 isl_mat_free(node->ctrans);
2224 node->ctrans = isl_mat_copy(Q);
2225 node->cmap = isl_mat_transpose(Q);
2226 node->cinv = isl_mat_transpose(U);
2227 node->rank = isl_mat_initial_non_zero_cols(H);
2228 isl_mat_free(H);
2230 if (!node->cmap || !node->cinv || !node->ctrans || node->rank < 0)
2231 return -1;
2232 return 0;
2235 /* How many times should we count the constraints in "edge"?
2237 * If carry is set, then we are counting the number of
2238 * (validity or conditional validity) constraints that will be added
2239 * in setup_carry_lp and we count each edge exactly once.
2241 * Otherwise, we count as follows
2242 * validity -> 1 (>= 0)
2243 * validity+proximity -> 2 (>= 0 and upper bound)
2244 * proximity -> 2 (lower and upper bound)
2245 * local(+any) -> 2 (>= 0 and <= 0)
2247 * If an edge is only marked conditional_validity then it counts
2248 * as zero since it is only checked afterwards.
2250 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2251 * Otherwise, we ignore them.
2253 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
2254 int use_coincidence)
2256 if (carry && !is_validity(edge) && !is_conditional_validity(edge))
2257 return 0;
2258 if (carry)
2259 return 1;
2260 if (is_proximity(edge) || is_local(edge))
2261 return 2;
2262 if (use_coincidence && is_coincidence(edge))
2263 return 2;
2264 if (is_validity(edge))
2265 return 1;
2266 return 0;
2269 /* Count the number of equality and inequality constraints
2270 * that will be added for the given map.
2272 * "use_coincidence" is set if we should take into account coincidence edges.
2274 static int count_map_constraints(struct isl_sched_graph *graph,
2275 struct isl_sched_edge *edge, __isl_take isl_map *map,
2276 int *n_eq, int *n_ineq, int carry, int use_coincidence)
2278 isl_basic_set *coef;
2279 int f = edge_multiplicity(edge, carry, use_coincidence);
2281 if (f == 0) {
2282 isl_map_free(map);
2283 return 0;
2286 if (edge->src == edge->dst)
2287 coef = intra_coefficients(graph, edge->src, map);
2288 else
2289 coef = inter_coefficients(graph, edge, map);
2290 if (!coef)
2291 return -1;
2292 *n_eq += f * coef->n_eq;
2293 *n_ineq += f * coef->n_ineq;
2294 isl_basic_set_free(coef);
2296 return 0;
2299 /* Count the number of equality and inequality constraints
2300 * that will be added to the main lp problem.
2301 * We count as follows
2302 * validity -> 1 (>= 0)
2303 * validity+proximity -> 2 (>= 0 and upper bound)
2304 * proximity -> 2 (lower and upper bound)
2305 * local(+any) -> 2 (>= 0 and <= 0)
2307 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2308 * Otherwise, we ignore them.
2310 static int count_constraints(struct isl_sched_graph *graph,
2311 int *n_eq, int *n_ineq, int use_coincidence)
2313 int i;
2315 *n_eq = *n_ineq = 0;
2316 for (i = 0; i < graph->n_edge; ++i) {
2317 struct isl_sched_edge *edge= &graph->edge[i];
2318 isl_map *map = isl_map_copy(edge->map);
2320 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2321 0, use_coincidence) < 0)
2322 return -1;
2325 return 0;
2328 /* Count the number of constraints that will be added by
2329 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2330 * accordingly.
2332 * In practice, add_bound_coefficient_constraints only adds inequalities.
2334 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2335 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2337 int i;
2339 if (ctx->opt->schedule_max_coefficient == -1)
2340 return 0;
2342 for (i = 0; i < graph->n; ++i)
2343 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
2345 return 0;
2348 /* Add constraints that bound the values of the variable and parameter
2349 * coefficients of the schedule.
2351 * The maximal value of the coefficients is defined by the option
2352 * 'schedule_max_coefficient'.
2354 static int add_bound_coefficient_constraints(isl_ctx *ctx,
2355 struct isl_sched_graph *graph)
2357 int i, j, k;
2358 int max_coefficient;
2359 int total;
2361 max_coefficient = ctx->opt->schedule_max_coefficient;
2363 if (max_coefficient == -1)
2364 return 0;
2366 total = isl_basic_set_total_dim(graph->lp);
2368 for (i = 0; i < graph->n; ++i) {
2369 struct isl_sched_node *node = &graph->node[i];
2370 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
2371 int dim;
2372 k = isl_basic_set_alloc_inequality(graph->lp);
2373 if (k < 0)
2374 return -1;
2375 dim = 1 + node->start + 1 + j;
2376 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2377 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2378 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
2382 return 0;
2385 /* Construct an ILP problem for finding schedule coefficients
2386 * that result in non-negative, but small dependence distances
2387 * over all dependences.
2388 * In particular, the dependence distances over proximity edges
2389 * are bounded by m_0 + m_n n and we compute schedule coefficients
2390 * with small values (preferably zero) of m_n and m_0.
2392 * All variables of the ILP are non-negative. The actual coefficients
2393 * may be negative, so each coefficient is represented as the difference
2394 * of two non-negative variables. The negative part always appears
2395 * immediately before the positive part.
2396 * Other than that, the variables have the following order
2398 * - sum of positive and negative parts of m_n coefficients
2399 * - m_0
2400 * - sum of positive and negative parts of all c_n coefficients
2401 * (unconstrained when computing non-parametric schedules)
2402 * - sum of positive and negative parts of all c_x coefficients
2403 * - positive and negative parts of m_n coefficients
2404 * - for each node
2405 * - c_i_0
2406 * - positive and negative parts of c_i_n (if parametric)
2407 * - positive and negative parts of c_i_x
2409 * The c_i_x are not represented directly, but through the columns of
2410 * node->cmap. That is, the computed values are for variable t_i_x
2411 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2413 * The constraints are those from the edges plus two or three equalities
2414 * to express the sums.
2416 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2417 * Otherwise, we ignore them.
2419 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2420 int use_coincidence)
2422 int i, j;
2423 int k;
2424 unsigned nparam;
2425 unsigned total;
2426 isl_space *dim;
2427 int parametric;
2428 int param_pos;
2429 int n_eq, n_ineq;
2430 int max_constant_term;
2432 max_constant_term = ctx->opt->schedule_max_constant_term;
2434 parametric = ctx->opt->schedule_parametric;
2435 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2436 param_pos = 4;
2437 total = param_pos + 2 * nparam;
2438 for (i = 0; i < graph->n; ++i) {
2439 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2440 if (node_update_cmap(node) < 0)
2441 return -1;
2442 node->start = total;
2443 total += 1 + 2 * (node->nparam + node->nvar);
2446 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2447 return -1;
2448 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2449 return -1;
2451 dim = isl_space_set_alloc(ctx, 0, total);
2452 isl_basic_set_free(graph->lp);
2453 n_eq += 2 + parametric;
2454 if (max_constant_term != -1)
2455 n_ineq += graph->n;
2457 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2459 k = isl_basic_set_alloc_equality(graph->lp);
2460 if (k < 0)
2461 return -1;
2462 isl_seq_clr(graph->lp->eq[k], 1 + total);
2463 isl_int_set_si(graph->lp->eq[k][1], -1);
2464 for (i = 0; i < 2 * nparam; ++i)
2465 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
2467 if (parametric) {
2468 k = isl_basic_set_alloc_equality(graph->lp);
2469 if (k < 0)
2470 return -1;
2471 isl_seq_clr(graph->lp->eq[k], 1 + total);
2472 isl_int_set_si(graph->lp->eq[k][3], -1);
2473 for (i = 0; i < graph->n; ++i) {
2474 int pos = 1 + graph->node[i].start + 1;
2476 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2477 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2481 k = isl_basic_set_alloc_equality(graph->lp);
2482 if (k < 0)
2483 return -1;
2484 isl_seq_clr(graph->lp->eq[k], 1 + total);
2485 isl_int_set_si(graph->lp->eq[k][4], -1);
2486 for (i = 0; i < graph->n; ++i) {
2487 struct isl_sched_node *node = &graph->node[i];
2488 int pos = 1 + node->start + 1 + 2 * node->nparam;
2490 for (j = 0; j < 2 * node->nvar; ++j)
2491 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2494 if (max_constant_term != -1)
2495 for (i = 0; i < graph->n; ++i) {
2496 struct isl_sched_node *node = &graph->node[i];
2497 k = isl_basic_set_alloc_inequality(graph->lp);
2498 if (k < 0)
2499 return -1;
2500 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2501 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2502 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
2505 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2506 return -1;
2507 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2508 return -1;
2509 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2510 return -1;
2512 return 0;
2515 /* Analyze the conflicting constraint found by
2516 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2517 * constraint of one of the edges between distinct nodes, living, moreover
2518 * in distinct SCCs, then record the source and sink SCC as this may
2519 * be a good place to cut between SCCs.
2521 static int check_conflict(int con, void *user)
2523 int i;
2524 struct isl_sched_graph *graph = user;
2526 if (graph->src_scc >= 0)
2527 return 0;
2529 con -= graph->lp->n_eq;
2531 if (con >= graph->lp->n_ineq)
2532 return 0;
2534 for (i = 0; i < graph->n_edge; ++i) {
2535 if (!is_validity(&graph->edge[i]))
2536 continue;
2537 if (graph->edge[i].src == graph->edge[i].dst)
2538 continue;
2539 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2540 continue;
2541 if (graph->edge[i].start > con)
2542 continue;
2543 if (graph->edge[i].end <= con)
2544 continue;
2545 graph->src_scc = graph->edge[i].src->scc;
2546 graph->dst_scc = graph->edge[i].dst->scc;
2549 return 0;
2552 /* Check whether the next schedule row of the given node needs to be
2553 * non-trivial. Lower-dimensional domains may have some trivial rows,
2554 * but as soon as the number of remaining required non-trivial rows
2555 * is as large as the number or remaining rows to be computed,
2556 * all remaining rows need to be non-trivial.
2558 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2560 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2563 /* Solve the ILP problem constructed in setup_lp.
2564 * For each node such that all the remaining rows of its schedule
2565 * need to be non-trivial, we construct a non-triviality region.
2566 * This region imposes that the next row is independent of previous rows.
2567 * In particular the coefficients c_i_x are represented by t_i_x
2568 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2569 * its first columns span the rows of the previously computed part
2570 * of the schedule. The non-triviality region enforces that at least
2571 * one of the remaining components of t_i_x is non-zero, i.e.,
2572 * that the new schedule row depends on at least one of the remaining
2573 * columns of Q.
2575 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2577 int i;
2578 isl_vec *sol;
2579 isl_basic_set *lp;
2581 for (i = 0; i < graph->n; ++i) {
2582 struct isl_sched_node *node = &graph->node[i];
2583 int skip = node->rank;
2584 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
2585 if (needs_row(graph, node))
2586 graph->region[i].len = 2 * (node->nvar - skip);
2587 else
2588 graph->region[i].len = 0;
2590 lp = isl_basic_set_copy(graph->lp);
2591 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2592 graph->region, &check_conflict, graph);
2593 return sol;
2596 /* Update the schedules of all nodes based on the given solution
2597 * of the LP problem.
2598 * The new row is added to the current band.
2599 * All possibly negative coefficients are encoded as a difference
2600 * of two non-negative variables, so we need to perform the subtraction
2601 * here. Moreover, if use_cmap is set, then the solution does
2602 * not refer to the actual coefficients c_i_x, but instead to variables
2603 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2604 * In this case, we then also need to perform this multiplication
2605 * to obtain the values of c_i_x.
2607 * If coincident is set, then the caller guarantees that the new
2608 * row satisfies the coincidence constraints.
2610 static int update_schedule(struct isl_sched_graph *graph,
2611 __isl_take isl_vec *sol, int use_cmap, int coincident)
2613 int i, j;
2614 isl_vec *csol = NULL;
2616 if (!sol)
2617 goto error;
2618 if (sol->size == 0)
2619 isl_die(sol->ctx, isl_error_internal,
2620 "no solution found", goto error);
2621 if (graph->n_total_row >= graph->max_row)
2622 isl_die(sol->ctx, isl_error_internal,
2623 "too many schedule rows", goto error);
2625 for (i = 0; i < graph->n; ++i) {
2626 struct isl_sched_node *node = &graph->node[i];
2627 int pos = node->start;
2628 int row = isl_mat_rows(node->sched);
2630 isl_vec_free(csol);
2631 csol = isl_vec_alloc(sol->ctx, node->nvar);
2632 if (!csol)
2633 goto error;
2635 isl_map_free(node->sched_map);
2636 node->sched_map = NULL;
2637 node->sched = isl_mat_add_rows(node->sched, 1);
2638 if (!node->sched)
2639 goto error;
2640 node->sched = isl_mat_set_element(node->sched, row, 0,
2641 sol->el[1 + pos]);
2642 for (j = 0; j < node->nparam + node->nvar; ++j)
2643 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
2644 sol->el[1 + pos + 1 + 2 * j + 1],
2645 sol->el[1 + pos + 1 + 2 * j]);
2646 for (j = 0; j < node->nparam; ++j)
2647 node->sched = isl_mat_set_element(node->sched,
2648 row, 1 + j, sol->el[1+pos+1+2*j+1]);
2649 for (j = 0; j < node->nvar; ++j)
2650 isl_int_set(csol->el[j],
2651 sol->el[1+pos+1+2*(node->nparam+j)+1]);
2652 if (use_cmap)
2653 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2654 csol);
2655 if (!csol)
2656 goto error;
2657 for (j = 0; j < node->nvar; ++j)
2658 node->sched = isl_mat_set_element(node->sched,
2659 row, 1 + node->nparam + j, csol->el[j]);
2660 node->coincident[graph->n_total_row] = coincident;
2662 isl_vec_free(sol);
2663 isl_vec_free(csol);
2665 graph->n_row++;
2666 graph->n_total_row++;
2668 return 0;
2669 error:
2670 isl_vec_free(sol);
2671 isl_vec_free(csol);
2672 return -1;
2675 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2676 * and return this isl_aff.
2678 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2679 struct isl_sched_node *node, int row)
2681 int j;
2682 isl_int v;
2683 isl_aff *aff;
2685 isl_int_init(v);
2687 aff = isl_aff_zero_on_domain(ls);
2688 isl_mat_get_element(node->sched, row, 0, &v);
2689 aff = isl_aff_set_constant(aff, v);
2690 for (j = 0; j < node->nparam; ++j) {
2691 isl_mat_get_element(node->sched, row, 1 + j, &v);
2692 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2694 for (j = 0; j < node->nvar; ++j) {
2695 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2696 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2699 isl_int_clear(v);
2701 return aff;
2704 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2705 * and return this multi_aff.
2707 * The result is defined over the uncompressed node domain.
2709 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2710 struct isl_sched_node *node, int first, int n)
2712 int i;
2713 isl_space *space;
2714 isl_local_space *ls;
2715 isl_aff *aff;
2716 isl_multi_aff *ma;
2717 int nrow;
2719 if (!node)
2720 return NULL;
2721 nrow = isl_mat_rows(node->sched);
2722 if (node->compressed)
2723 space = isl_multi_aff_get_domain_space(node->decompress);
2724 else
2725 space = isl_space_copy(node->space);
2726 ls = isl_local_space_from_space(isl_space_copy(space));
2727 space = isl_space_from_domain(space);
2728 space = isl_space_add_dims(space, isl_dim_out, n);
2729 ma = isl_multi_aff_zero(space);
2731 for (i = first; i < first + n; ++i) {
2732 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2733 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2736 isl_local_space_free(ls);
2738 if (node->compressed)
2739 ma = isl_multi_aff_pullback_multi_aff(ma,
2740 isl_multi_aff_copy(node->compress));
2742 return ma;
2745 /* Convert node->sched into a multi_aff and return this multi_aff.
2747 * The result is defined over the uncompressed node domain.
2749 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2750 struct isl_sched_node *node)
2752 int nrow;
2754 nrow = isl_mat_rows(node->sched);
2755 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2758 /* Convert node->sched into a map and return this map.
2760 * The result is cached in node->sched_map, which needs to be released
2761 * whenever node->sched is updated.
2762 * It is defined over the uncompressed node domain.
2764 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2766 if (!node->sched_map) {
2767 isl_multi_aff *ma;
2769 ma = node_extract_schedule_multi_aff(node);
2770 node->sched_map = isl_map_from_multi_aff(ma);
2773 return isl_map_copy(node->sched_map);
2776 /* Construct a map that can be used to update a dependence relation
2777 * based on the current schedule.
2778 * That is, construct a map expressing that source and sink
2779 * are executed within the same iteration of the current schedule.
2780 * This map can then be intersected with the dependence relation.
2781 * This is not the most efficient way, but this shouldn't be a critical
2782 * operation.
2784 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2785 struct isl_sched_node *dst)
2787 isl_map *src_sched, *dst_sched;
2789 src_sched = node_extract_schedule(src);
2790 dst_sched = node_extract_schedule(dst);
2791 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2794 /* Intersect the domains of the nested relations in domain and range
2795 * of "umap" with "map".
2797 static __isl_give isl_union_map *intersect_domains(
2798 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2800 isl_union_set *uset;
2802 umap = isl_union_map_zip(umap);
2803 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2804 umap = isl_union_map_intersect_domain(umap, uset);
2805 umap = isl_union_map_zip(umap);
2806 return umap;
2809 /* Update the dependence relation of the given edge based
2810 * on the current schedule.
2811 * If the dependence is carried completely by the current schedule, then
2812 * it is removed from the edge_tables. It is kept in the list of edges
2813 * as otherwise all edge_tables would have to be recomputed.
2815 static int update_edge(struct isl_sched_graph *graph,
2816 struct isl_sched_edge *edge)
2818 int empty;
2819 isl_map *id;
2821 id = specializer(edge->src, edge->dst);
2822 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2823 if (!edge->map)
2824 goto error;
2826 if (edge->tagged_condition) {
2827 edge->tagged_condition =
2828 intersect_domains(edge->tagged_condition, id);
2829 if (!edge->tagged_condition)
2830 goto error;
2832 if (edge->tagged_validity) {
2833 edge->tagged_validity =
2834 intersect_domains(edge->tagged_validity, id);
2835 if (!edge->tagged_validity)
2836 goto error;
2839 empty = isl_map_plain_is_empty(edge->map);
2840 if (empty < 0)
2841 goto error;
2842 if (empty)
2843 graph_remove_edge(graph, edge);
2845 isl_map_free(id);
2846 return 0;
2847 error:
2848 isl_map_free(id);
2849 return -1;
2852 /* Does the domain of "umap" intersect "uset"?
2854 static int domain_intersects(__isl_keep isl_union_map *umap,
2855 __isl_keep isl_union_set *uset)
2857 int empty;
2859 umap = isl_union_map_copy(umap);
2860 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2861 empty = isl_union_map_is_empty(umap);
2862 isl_union_map_free(umap);
2864 return empty < 0 ? -1 : !empty;
2867 /* Does the range of "umap" intersect "uset"?
2869 static int range_intersects(__isl_keep isl_union_map *umap,
2870 __isl_keep isl_union_set *uset)
2872 int empty;
2874 umap = isl_union_map_copy(umap);
2875 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2876 empty = isl_union_map_is_empty(umap);
2877 isl_union_map_free(umap);
2879 return empty < 0 ? -1 : !empty;
2882 /* Are the condition dependences of "edge" local with respect to
2883 * the current schedule?
2885 * That is, are domain and range of the condition dependences mapped
2886 * to the same point?
2888 * In other words, is the condition false?
2890 static int is_condition_false(struct isl_sched_edge *edge)
2892 isl_union_map *umap;
2893 isl_map *map, *sched, *test;
2894 int empty, local;
2896 empty = isl_union_map_is_empty(edge->tagged_condition);
2897 if (empty < 0 || empty)
2898 return empty;
2900 umap = isl_union_map_copy(edge->tagged_condition);
2901 umap = isl_union_map_zip(umap);
2902 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2903 map = isl_map_from_union_map(umap);
2905 sched = node_extract_schedule(edge->src);
2906 map = isl_map_apply_domain(map, sched);
2907 sched = node_extract_schedule(edge->dst);
2908 map = isl_map_apply_range(map, sched);
2910 test = isl_map_identity(isl_map_get_space(map));
2911 local = isl_map_is_subset(map, test);
2912 isl_map_free(map);
2913 isl_map_free(test);
2915 return local;
2918 /* For each conditional validity constraint that is adjacent
2919 * to a condition with domain in condition_source or range in condition_sink,
2920 * turn it into an unconditional validity constraint.
2922 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2923 __isl_take isl_union_set *condition_source,
2924 __isl_take isl_union_set *condition_sink)
2926 int i;
2928 condition_source = isl_union_set_coalesce(condition_source);
2929 condition_sink = isl_union_set_coalesce(condition_sink);
2931 for (i = 0; i < graph->n_edge; ++i) {
2932 int adjacent;
2933 isl_union_map *validity;
2935 if (!is_conditional_validity(&graph->edge[i]))
2936 continue;
2937 if (is_validity(&graph->edge[i]))
2938 continue;
2940 validity = graph->edge[i].tagged_validity;
2941 adjacent = domain_intersects(validity, condition_sink);
2942 if (adjacent >= 0 && !adjacent)
2943 adjacent = range_intersects(validity, condition_source);
2944 if (adjacent < 0)
2945 goto error;
2946 if (!adjacent)
2947 continue;
2949 set_validity(&graph->edge[i]);
2952 isl_union_set_free(condition_source);
2953 isl_union_set_free(condition_sink);
2954 return 0;
2955 error:
2956 isl_union_set_free(condition_source);
2957 isl_union_set_free(condition_sink);
2958 return -1;
2961 /* Update the dependence relations of all edges based on the current schedule
2962 * and enforce conditional validity constraints that are adjacent
2963 * to satisfied condition constraints.
2965 * First check if any of the condition constraints are satisfied
2966 * (i.e., not local to the outer schedule) and keep track of
2967 * their domain and range.
2968 * Then update all dependence relations (which removes the non-local
2969 * constraints).
2970 * Finally, if any condition constraints turned out to be satisfied,
2971 * then turn all adjacent conditional validity constraints into
2972 * unconditional validity constraints.
2974 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2976 int i;
2977 int any = 0;
2978 isl_union_set *source, *sink;
2980 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2981 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2982 for (i = 0; i < graph->n_edge; ++i) {
2983 int local;
2984 isl_union_set *uset;
2985 isl_union_map *umap;
2987 if (!is_condition(&graph->edge[i]))
2988 continue;
2989 if (is_local(&graph->edge[i]))
2990 continue;
2991 local = is_condition_false(&graph->edge[i]);
2992 if (local < 0)
2993 goto error;
2994 if (local)
2995 continue;
2997 any = 1;
2999 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3000 uset = isl_union_map_domain(umap);
3001 source = isl_union_set_union(source, uset);
3003 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3004 uset = isl_union_map_range(umap);
3005 sink = isl_union_set_union(sink, uset);
3008 for (i = graph->n_edge - 1; i >= 0; --i) {
3009 if (update_edge(graph, &graph->edge[i]) < 0)
3010 goto error;
3013 if (any)
3014 return unconditionalize_adjacent_validity(graph, source, sink);
3016 isl_union_set_free(source);
3017 isl_union_set_free(sink);
3018 return 0;
3019 error:
3020 isl_union_set_free(source);
3021 isl_union_set_free(sink);
3022 return -1;
3025 static void next_band(struct isl_sched_graph *graph)
3027 graph->band_start = graph->n_total_row;
3030 /* Return the union of the universe domains of the nodes in "graph"
3031 * that satisfy "pred".
3033 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3034 struct isl_sched_graph *graph,
3035 int (*pred)(struct isl_sched_node *node, int data), int data)
3037 int i;
3038 isl_set *set;
3039 isl_union_set *dom;
3041 for (i = 0; i < graph->n; ++i)
3042 if (pred(&graph->node[i], data))
3043 break;
3045 if (i >= graph->n)
3046 isl_die(ctx, isl_error_internal,
3047 "empty component", return NULL);
3049 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3050 dom = isl_union_set_from_set(set);
3052 for (i = i + 1; i < graph->n; ++i) {
3053 if (!pred(&graph->node[i], data))
3054 continue;
3055 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3056 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3059 return dom;
3062 /* Return a list of unions of universe domains, where each element
3063 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3065 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3066 struct isl_sched_graph *graph)
3068 int i;
3069 isl_union_set_list *filters;
3071 filters = isl_union_set_list_alloc(ctx, graph->scc);
3072 for (i = 0; i < graph->scc; ++i) {
3073 isl_union_set *dom;
3075 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3076 filters = isl_union_set_list_add(filters, dom);
3079 return filters;
3082 /* Return a list of two unions of universe domains, one for the SCCs up
3083 * to and including graph->src_scc and another for the other SCCs.
3085 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3086 struct isl_sched_graph *graph)
3088 isl_union_set *dom;
3089 isl_union_set_list *filters;
3091 filters = isl_union_set_list_alloc(ctx, 2);
3092 dom = isl_sched_graph_domain(ctx, graph,
3093 &node_scc_at_most, graph->src_scc);
3094 filters = isl_union_set_list_add(filters, dom);
3095 dom = isl_sched_graph_domain(ctx, graph,
3096 &node_scc_at_least, graph->src_scc + 1);
3097 filters = isl_union_set_list_add(filters, dom);
3099 return filters;
3102 /* Copy nodes that satisfy node_pred from the src dependence graph
3103 * to the dst dependence graph.
3105 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3106 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3108 int i;
3110 dst->n = 0;
3111 for (i = 0; i < src->n; ++i) {
3112 int j;
3114 if (!node_pred(&src->node[i], data))
3115 continue;
3117 j = dst->n;
3118 dst->node[j].space = isl_space_copy(src->node[i].space);
3119 dst->node[j].compressed = src->node[i].compressed;
3120 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3121 dst->node[j].compress =
3122 isl_multi_aff_copy(src->node[i].compress);
3123 dst->node[j].decompress =
3124 isl_multi_aff_copy(src->node[i].decompress);
3125 dst->node[j].nvar = src->node[i].nvar;
3126 dst->node[j].nparam = src->node[i].nparam;
3127 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3128 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3129 dst->node[j].coincident = src->node[i].coincident;
3130 dst->n++;
3132 if (!dst->node[j].space || !dst->node[j].sched)
3133 return -1;
3134 if (dst->node[j].compressed &&
3135 (!dst->node[j].hull || !dst->node[j].compress ||
3136 !dst->node[j].decompress))
3137 return -1;
3140 return 0;
3143 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3144 * to the dst dependence graph.
3145 * If the source or destination node of the edge is not in the destination
3146 * graph, then it must be a backward proximity edge and it should simply
3147 * be ignored.
3149 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3150 struct isl_sched_graph *src,
3151 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3153 int i;
3154 enum isl_edge_type t;
3156 dst->n_edge = 0;
3157 for (i = 0; i < src->n_edge; ++i) {
3158 struct isl_sched_edge *edge = &src->edge[i];
3159 isl_map *map;
3160 isl_union_map *tagged_condition;
3161 isl_union_map *tagged_validity;
3162 struct isl_sched_node *dst_src, *dst_dst;
3164 if (!edge_pred(edge, data))
3165 continue;
3167 if (isl_map_plain_is_empty(edge->map))
3168 continue;
3170 dst_src = graph_find_node(ctx, dst, edge->src->space);
3171 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3172 if (!dst_src || !dst_dst) {
3173 if (is_validity(edge) || is_conditional_validity(edge))
3174 isl_die(ctx, isl_error_internal,
3175 "backward (conditional) validity edge",
3176 return -1);
3177 continue;
3180 map = isl_map_copy(edge->map);
3181 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3182 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3184 dst->edge[dst->n_edge].src = dst_src;
3185 dst->edge[dst->n_edge].dst = dst_dst;
3186 dst->edge[dst->n_edge].map = map;
3187 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3188 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3189 dst->edge[dst->n_edge].types = edge->types;
3190 dst->n_edge++;
3192 if (edge->tagged_condition && !tagged_condition)
3193 return -1;
3194 if (edge->tagged_validity && !tagged_validity)
3195 return -1;
3197 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3198 if (edge !=
3199 graph_find_edge(src, t, edge->src, edge->dst))
3200 continue;
3201 if (graph_edge_table_add(ctx, dst, t,
3202 &dst->edge[dst->n_edge - 1]) < 0)
3203 return -1;
3207 return 0;
3210 /* Compute the maximal number of variables over all nodes.
3211 * This is the maximal number of linearly independent schedule
3212 * rows that we need to compute.
3213 * Just in case we end up in a part of the dependence graph
3214 * with only lower-dimensional domains, we make sure we will
3215 * compute the required amount of extra linearly independent rows.
3217 static int compute_maxvar(struct isl_sched_graph *graph)
3219 int i;
3221 graph->maxvar = 0;
3222 for (i = 0; i < graph->n; ++i) {
3223 struct isl_sched_node *node = &graph->node[i];
3224 int nvar;
3226 if (node_update_cmap(node) < 0)
3227 return -1;
3228 nvar = node->nvar + graph->n_row - node->rank;
3229 if (nvar > graph->maxvar)
3230 graph->maxvar = nvar;
3233 return 0;
3236 /* Extract the subgraph of "graph" that consists of the node satisfying
3237 * "node_pred" and the edges satisfying "edge_pred" and store
3238 * the result in "sub".
3240 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3241 int (*node_pred)(struct isl_sched_node *node, int data),
3242 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3243 int data, struct isl_sched_graph *sub)
3245 int i, n = 0, n_edge = 0;
3246 int t;
3248 for (i = 0; i < graph->n; ++i)
3249 if (node_pred(&graph->node[i], data))
3250 ++n;
3251 for (i = 0; i < graph->n_edge; ++i)
3252 if (edge_pred(&graph->edge[i], data))
3253 ++n_edge;
3254 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3255 return -1;
3256 if (copy_nodes(sub, graph, node_pred, data) < 0)
3257 return -1;
3258 if (graph_init_table(ctx, sub) < 0)
3259 return -1;
3260 for (t = 0; t <= isl_edge_last; ++t)
3261 sub->max_edge[t] = graph->max_edge[t];
3262 if (graph_init_edge_tables(ctx, sub) < 0)
3263 return -1;
3264 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3265 return -1;
3266 sub->n_row = graph->n_row;
3267 sub->max_row = graph->max_row;
3268 sub->n_total_row = graph->n_total_row;
3269 sub->band_start = graph->band_start;
3271 return 0;
3274 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3275 struct isl_sched_graph *graph);
3276 static __isl_give isl_schedule_node *compute_schedule_wcc(
3277 isl_schedule_node *node, struct isl_sched_graph *graph);
3279 /* Compute a schedule for a subgraph of "graph". In particular, for
3280 * the graph composed of nodes that satisfy node_pred and edges that
3281 * that satisfy edge_pred.
3282 * If the subgraph is known to consist of a single component, then wcc should
3283 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3284 * Otherwise, we call compute_schedule, which will check whether the subgraph
3285 * is connected.
3287 * The schedule is inserted at "node" and the updated schedule node
3288 * is returned.
3290 static __isl_give isl_schedule_node *compute_sub_schedule(
3291 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3292 struct isl_sched_graph *graph,
3293 int (*node_pred)(struct isl_sched_node *node, int data),
3294 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3295 int data, int wcc)
3297 struct isl_sched_graph split = { 0 };
3299 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3300 &split) < 0)
3301 goto error;
3303 if (wcc)
3304 node = compute_schedule_wcc(node, &split);
3305 else
3306 node = compute_schedule(node, &split);
3308 graph_free(ctx, &split);
3309 return node;
3310 error:
3311 graph_free(ctx, &split);
3312 return isl_schedule_node_free(node);
3315 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3317 return edge->src->scc == scc && edge->dst->scc == scc;
3320 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3322 return edge->dst->scc <= scc;
3325 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3327 return edge->src->scc >= scc;
3330 /* Reset the current band by dropping all its schedule rows.
3332 static int reset_band(struct isl_sched_graph *graph)
3334 int i;
3335 int drop;
3337 drop = graph->n_total_row - graph->band_start;
3338 graph->n_total_row -= drop;
3339 graph->n_row -= drop;
3341 for (i = 0; i < graph->n; ++i) {
3342 struct isl_sched_node *node = &graph->node[i];
3344 isl_map_free(node->sched_map);
3345 node->sched_map = NULL;
3347 node->sched = isl_mat_drop_rows(node->sched,
3348 graph->band_start, drop);
3350 if (!node->sched)
3351 return -1;
3354 return 0;
3357 /* Split the current graph into two parts and compute a schedule for each
3358 * part individually. In particular, one part consists of all SCCs up
3359 * to and including graph->src_scc, while the other part contains the other
3360 * SCCs. The split is enforced by a sequence node inserted at position "node"
3361 * in the schedule tree. Return the updated schedule node.
3362 * If either of these two parts consists of a sequence, then it is spliced
3363 * into the sequence containing the two parts.
3365 * The current band is reset. It would be possible to reuse
3366 * the previously computed rows as the first rows in the next
3367 * band, but recomputing them may result in better rows as we are looking
3368 * at a smaller part of the dependence graph.
3370 static __isl_give isl_schedule_node *compute_split_schedule(
3371 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3373 int is_seq;
3374 isl_ctx *ctx;
3375 isl_union_set_list *filters;
3377 if (!node)
3378 return NULL;
3380 if (reset_band(graph) < 0)
3381 return isl_schedule_node_free(node);
3383 next_band(graph);
3385 ctx = isl_schedule_node_get_ctx(node);
3386 filters = extract_split(ctx, graph);
3387 node = isl_schedule_node_insert_sequence(node, filters);
3388 node = isl_schedule_node_child(node, 1);
3389 node = isl_schedule_node_child(node, 0);
3391 node = compute_sub_schedule(node, ctx, graph,
3392 &node_scc_at_least, &edge_src_scc_at_least,
3393 graph->src_scc + 1, 0);
3394 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3395 node = isl_schedule_node_parent(node);
3396 node = isl_schedule_node_parent(node);
3397 if (is_seq)
3398 node = isl_schedule_node_sequence_splice_child(node, 1);
3399 node = isl_schedule_node_child(node, 0);
3400 node = isl_schedule_node_child(node, 0);
3401 node = compute_sub_schedule(node, ctx, graph,
3402 &node_scc_at_most, &edge_dst_scc_at_most,
3403 graph->src_scc, 0);
3404 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3405 node = isl_schedule_node_parent(node);
3406 node = isl_schedule_node_parent(node);
3407 if (is_seq)
3408 node = isl_schedule_node_sequence_splice_child(node, 0);
3410 return node;
3413 /* Insert a band node at position "node" in the schedule tree corresponding
3414 * to the current band in "graph". Mark the band node permutable
3415 * if "permutable" is set.
3416 * The partial schedules and the coincidence property are extracted
3417 * from the graph nodes.
3418 * Return the updated schedule node.
3420 static __isl_give isl_schedule_node *insert_current_band(
3421 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3422 int permutable)
3424 int i;
3425 int start, end, n;
3426 isl_multi_aff *ma;
3427 isl_multi_pw_aff *mpa;
3428 isl_multi_union_pw_aff *mupa;
3430 if (!node)
3431 return NULL;
3433 if (graph->n < 1)
3434 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3435 "graph should have at least one node",
3436 return isl_schedule_node_free(node));
3438 start = graph->band_start;
3439 end = graph->n_total_row;
3440 n = end - start;
3442 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3443 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3444 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3446 for (i = 1; i < graph->n; ++i) {
3447 isl_multi_union_pw_aff *mupa_i;
3449 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3450 start, n);
3451 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3452 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3453 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3455 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3457 for (i = 0; i < n; ++i)
3458 node = isl_schedule_node_band_member_set_coincident(node, i,
3459 graph->node[0].coincident[start + i]);
3460 node = isl_schedule_node_band_set_permutable(node, permutable);
3462 return node;
3465 /* Update the dependence relations based on the current schedule,
3466 * add the current band to "node" and then continue with the computation
3467 * of the next band.
3468 * Return the updated schedule node.
3470 static __isl_give isl_schedule_node *compute_next_band(
3471 __isl_take isl_schedule_node *node,
3472 struct isl_sched_graph *graph, int permutable)
3474 isl_ctx *ctx;
3476 if (!node)
3477 return NULL;
3479 ctx = isl_schedule_node_get_ctx(node);
3480 if (update_edges(ctx, graph) < 0)
3481 return isl_schedule_node_free(node);
3482 node = insert_current_band(node, graph, permutable);
3483 next_band(graph);
3485 node = isl_schedule_node_child(node, 0);
3486 node = compute_schedule(node, graph);
3487 node = isl_schedule_node_parent(node);
3489 return node;
3492 /* Add constraints to graph->lp that force the dependence "map" (which
3493 * is part of the dependence relation of "edge")
3494 * to be respected and attempt to carry it, where the edge is one from
3495 * a node j to itself. "pos" is the sequence number of the given map.
3496 * That is, add constraints that enforce
3498 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3499 * = c_j_x (y - x) >= e_i
3501 * for each (x,y) in R.
3502 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3503 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3504 * with each coefficient in c_j_x represented as a pair of non-negative
3505 * coefficients.
3507 static int add_intra_constraints(struct isl_sched_graph *graph,
3508 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3510 unsigned total;
3511 isl_ctx *ctx = isl_map_get_ctx(map);
3512 isl_space *dim;
3513 isl_dim_map *dim_map;
3514 isl_basic_set *coef;
3515 struct isl_sched_node *node = edge->src;
3517 coef = intra_coefficients(graph, node, map);
3518 if (!coef)
3519 return -1;
3521 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
3523 total = isl_basic_set_total_dim(graph->lp);
3524 dim_map = isl_dim_map_alloc(ctx, total);
3525 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3526 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
3527 isl_space_dim(dim, isl_dim_set), 1,
3528 node->nvar, -1);
3529 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
3530 isl_space_dim(dim, isl_dim_set), 1,
3531 node->nvar, 1);
3532 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3533 coef->n_eq, coef->n_ineq);
3534 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3535 coef, dim_map);
3536 isl_space_free(dim);
3538 return 0;
3541 /* Add constraints to graph->lp that force the dependence "map" (which
3542 * is part of the dependence relation of "edge")
3543 * to be respected and attempt to carry it, where the edge is one from
3544 * node j to node k. "pos" is the sequence number of the given map.
3545 * That is, add constraints that enforce
3547 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3549 * for each (x,y) in R.
3550 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3551 * of valid constraints for R and then plug in
3552 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3553 * with each coefficient (except e_i, c_k_0 and c_j_0)
3554 * represented as a pair of non-negative coefficients.
3556 static int add_inter_constraints(struct isl_sched_graph *graph,
3557 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3559 unsigned total;
3560 isl_ctx *ctx = isl_map_get_ctx(map);
3561 isl_space *dim;
3562 isl_dim_map *dim_map;
3563 isl_basic_set *coef;
3564 struct isl_sched_node *src = edge->src;
3565 struct isl_sched_node *dst = edge->dst;
3567 coef = inter_coefficients(graph, edge, map);
3568 if (!coef)
3569 return -1;
3571 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
3573 total = isl_basic_set_total_dim(graph->lp);
3574 dim_map = isl_dim_map_alloc(ctx, total);
3576 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3578 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
3579 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
3580 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
3581 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
3582 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
3583 dst->nvar, -1);
3584 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
3585 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
3586 dst->nvar, 1);
3588 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
3589 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
3590 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
3591 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
3592 isl_space_dim(dim, isl_dim_set), 1,
3593 src->nvar, 1);
3594 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
3595 isl_space_dim(dim, isl_dim_set), 1,
3596 src->nvar, -1);
3598 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3599 coef->n_eq, coef->n_ineq);
3600 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3601 coef, dim_map);
3602 isl_space_free(dim);
3604 return 0;
3607 /* Add constraints to graph->lp that force all (conditional) validity
3608 * dependences to be respected and attempt to carry them.
3610 static int add_all_constraints(struct isl_sched_graph *graph)
3612 int i, j;
3613 int pos;
3615 pos = 0;
3616 for (i = 0; i < graph->n_edge; ++i) {
3617 struct isl_sched_edge *edge= &graph->edge[i];
3619 if (!is_validity(edge) && !is_conditional_validity(edge))
3620 continue;
3622 for (j = 0; j < edge->map->n; ++j) {
3623 isl_basic_map *bmap;
3624 isl_map *map;
3626 bmap = isl_basic_map_copy(edge->map->p[j]);
3627 map = isl_map_from_basic_map(bmap);
3629 if (edge->src == edge->dst &&
3630 add_intra_constraints(graph, edge, map, pos) < 0)
3631 return -1;
3632 if (edge->src != edge->dst &&
3633 add_inter_constraints(graph, edge, map, pos) < 0)
3634 return -1;
3635 ++pos;
3639 return 0;
3642 /* Count the number of equality and inequality constraints
3643 * that will be added to the carry_lp problem.
3644 * We count each edge exactly once.
3646 static int count_all_constraints(struct isl_sched_graph *graph,
3647 int *n_eq, int *n_ineq)
3649 int i, j;
3651 *n_eq = *n_ineq = 0;
3652 for (i = 0; i < graph->n_edge; ++i) {
3653 struct isl_sched_edge *edge= &graph->edge[i];
3654 for (j = 0; j < edge->map->n; ++j) {
3655 isl_basic_map *bmap;
3656 isl_map *map;
3658 bmap = isl_basic_map_copy(edge->map->p[j]);
3659 map = isl_map_from_basic_map(bmap);
3661 if (count_map_constraints(graph, edge, map,
3662 n_eq, n_ineq, 1, 0) < 0)
3663 return -1;
3667 return 0;
3670 /* Construct an LP problem for finding schedule coefficients
3671 * such that the schedule carries as many dependences as possible.
3672 * In particular, for each dependence i, we bound the dependence distance
3673 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3674 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3675 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3676 * Note that if the dependence relation is a union of basic maps,
3677 * then we have to consider each basic map individually as it may only
3678 * be possible to carry the dependences expressed by some of those
3679 * basic maps and not all of them.
3680 * Below, we consider each of those basic maps as a separate "edge".
3682 * All variables of the LP are non-negative. The actual coefficients
3683 * may be negative, so each coefficient is represented as the difference
3684 * of two non-negative variables. The negative part always appears
3685 * immediately before the positive part.
3686 * Other than that, the variables have the following order
3688 * - sum of (1 - e_i) over all edges
3689 * - sum of positive and negative parts of all c_n coefficients
3690 * (unconstrained when computing non-parametric schedules)
3691 * - sum of positive and negative parts of all c_x coefficients
3692 * - for each edge
3693 * - e_i
3694 * - for each node
3695 * - c_i_0
3696 * - positive and negative parts of c_i_n (if parametric)
3697 * - positive and negative parts of c_i_x
3699 * The constraints are those from the (validity) edges plus three equalities
3700 * to express the sums and n_edge inequalities to express e_i <= 1.
3702 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
3704 int i, j;
3705 int k;
3706 isl_space *dim;
3707 unsigned total;
3708 int n_eq, n_ineq;
3709 int n_edge;
3711 n_edge = 0;
3712 for (i = 0; i < graph->n_edge; ++i)
3713 n_edge += graph->edge[i].map->n;
3715 total = 3 + n_edge;
3716 for (i = 0; i < graph->n; ++i) {
3717 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3718 node->start = total;
3719 total += 1 + 2 * (node->nparam + node->nvar);
3722 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
3723 return -1;
3725 dim = isl_space_set_alloc(ctx, 0, total);
3726 isl_basic_set_free(graph->lp);
3727 n_eq += 3;
3728 n_ineq += n_edge;
3729 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3730 graph->lp = isl_basic_set_set_rational(graph->lp);
3732 k = isl_basic_set_alloc_equality(graph->lp);
3733 if (k < 0)
3734 return -1;
3735 isl_seq_clr(graph->lp->eq[k], 1 + total);
3736 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3737 isl_int_set_si(graph->lp->eq[k][1], 1);
3738 for (i = 0; i < n_edge; ++i)
3739 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3741 k = isl_basic_set_alloc_equality(graph->lp);
3742 if (k < 0)
3743 return -1;
3744 isl_seq_clr(graph->lp->eq[k], 1 + total);
3745 isl_int_set_si(graph->lp->eq[k][2], -1);
3746 for (i = 0; i < graph->n; ++i) {
3747 int pos = 1 + graph->node[i].start + 1;
3749 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
3750 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3753 k = isl_basic_set_alloc_equality(graph->lp);
3754 if (k < 0)
3755 return -1;
3756 isl_seq_clr(graph->lp->eq[k], 1 + total);
3757 isl_int_set_si(graph->lp->eq[k][3], -1);
3758 for (i = 0; i < graph->n; ++i) {
3759 struct isl_sched_node *node = &graph->node[i];
3760 int pos = 1 + node->start + 1 + 2 * node->nparam;
3762 for (j = 0; j < 2 * node->nvar; ++j)
3763 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3766 for (i = 0; i < n_edge; ++i) {
3767 k = isl_basic_set_alloc_inequality(graph->lp);
3768 if (k < 0)
3769 return -1;
3770 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3771 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3772 isl_int_set_si(graph->lp->ineq[k][0], 1);
3775 if (add_all_constraints(graph) < 0)
3776 return -1;
3778 return 0;
3781 static __isl_give isl_schedule_node *compute_component_schedule(
3782 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3783 int wcc);
3785 /* Comparison function for sorting the statements based on
3786 * the corresponding value in "r".
3788 static int smaller_value(const void *a, const void *b, void *data)
3790 isl_vec *r = data;
3791 const int *i1 = a;
3792 const int *i2 = b;
3794 return isl_int_cmp(r->el[*i1], r->el[*i2]);
3797 /* If the schedule_split_scaled option is set and if the linear
3798 * parts of the scheduling rows for all nodes in the graphs have
3799 * a non-trivial common divisor, then split off the remainder of the
3800 * constant term modulo this common divisor from the linear part.
3801 * Otherwise, insert a band node directly and continue with
3802 * the construction of the schedule.
3804 * If a non-trivial common divisor is found, then
3805 * the linear part is reduced and the remainder is enforced
3806 * by a sequence node with the children placed in the order
3807 * of this remainder.
3808 * In particular, we assign an scc index based on the remainder and
3809 * then rely on compute_component_schedule to insert the sequence and
3810 * to continue the schedule construction on each part.
3812 static __isl_give isl_schedule_node *split_scaled(
3813 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3815 int i;
3816 int row;
3817 int scc;
3818 isl_ctx *ctx;
3819 isl_int gcd, gcd_i;
3820 isl_vec *r;
3821 int *order;
3823 if (!node)
3824 return NULL;
3826 ctx = isl_schedule_node_get_ctx(node);
3827 if (!ctx->opt->schedule_split_scaled)
3828 return compute_next_band(node, graph, 0);
3829 if (graph->n <= 1)
3830 return compute_next_band(node, graph, 0);
3832 isl_int_init(gcd);
3833 isl_int_init(gcd_i);
3835 isl_int_set_si(gcd, 0);
3837 row = isl_mat_rows(graph->node[0].sched) - 1;
3839 for (i = 0; i < graph->n; ++i) {
3840 struct isl_sched_node *node = &graph->node[i];
3841 int cols = isl_mat_cols(node->sched);
3843 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3844 isl_int_gcd(gcd, gcd, gcd_i);
3847 isl_int_clear(gcd_i);
3849 if (isl_int_cmp_si(gcd, 1) <= 0) {
3850 isl_int_clear(gcd);
3851 return compute_next_band(node, graph, 0);
3854 r = isl_vec_alloc(ctx, graph->n);
3855 order = isl_calloc_array(ctx, int, graph->n);
3856 if (!r || !order)
3857 goto error;
3859 for (i = 0; i < graph->n; ++i) {
3860 struct isl_sched_node *node = &graph->node[i];
3862 order[i] = i;
3863 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
3864 isl_int_fdiv_q(node->sched->row[row][0],
3865 node->sched->row[row][0], gcd);
3866 isl_int_mul(node->sched->row[row][0],
3867 node->sched->row[row][0], gcd);
3868 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3869 if (!node->sched)
3870 goto error;
3873 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
3874 goto error;
3876 scc = 0;
3877 for (i = 0; i < graph->n; ++i) {
3878 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
3879 ++scc;
3880 graph->node[order[i]].scc = scc;
3882 graph->scc = ++scc;
3883 graph->weak = 0;
3885 isl_int_clear(gcd);
3886 isl_vec_free(r);
3887 free(order);
3889 if (update_edges(ctx, graph) < 0)
3890 return isl_schedule_node_free(node);
3891 node = insert_current_band(node, graph, 0);
3892 next_band(graph);
3894 node = isl_schedule_node_child(node, 0);
3895 node = compute_component_schedule(node, graph, 0);
3896 node = isl_schedule_node_parent(node);
3898 return node;
3899 error:
3900 isl_vec_free(r);
3901 free(order);
3902 isl_int_clear(gcd);
3903 return isl_schedule_node_free(node);
3906 /* Is the schedule row "sol" trivial on node "node"?
3907 * That is, is the solution zero on the dimensions orthogonal to
3908 * the previously found solutions?
3909 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3911 * Each coefficient is represented as the difference between
3912 * two non-negative values in "sol". "sol" has been computed
3913 * in terms of the original iterators (i.e., without use of cmap).
3914 * We construct the schedule row s and write it as a linear
3915 * combination of (linear combinations of) previously computed schedule rows.
3916 * s = Q c or c = U s.
3917 * If the final entries of c are all zero, then the solution is trivial.
3919 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3921 int i;
3922 int pos;
3923 int trivial;
3924 isl_ctx *ctx;
3925 isl_vec *node_sol;
3927 if (!sol)
3928 return -1;
3929 if (node->nvar == node->rank)
3930 return 0;
3932 ctx = isl_vec_get_ctx(sol);
3933 node_sol = isl_vec_alloc(ctx, node->nvar);
3934 if (!node_sol)
3935 return -1;
3937 pos = 1 + node->start + 1 + 2 * node->nparam;
3939 for (i = 0; i < node->nvar; ++i)
3940 isl_int_sub(node_sol->el[i],
3941 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3943 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3945 if (!node_sol)
3946 return -1;
3948 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3949 node->nvar - node->rank) == -1;
3951 isl_vec_free(node_sol);
3953 return trivial;
3956 /* Is the schedule row "sol" trivial on any node where it should
3957 * not be trivial?
3958 * "sol" has been computed in terms of the original iterators
3959 * (i.e., without use of cmap).
3960 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3962 static int is_any_trivial(struct isl_sched_graph *graph,
3963 __isl_keep isl_vec *sol)
3965 int i;
3967 for (i = 0; i < graph->n; ++i) {
3968 struct isl_sched_node *node = &graph->node[i];
3969 int trivial;
3971 if (!needs_row(graph, node))
3972 continue;
3973 trivial = is_trivial(node, sol);
3974 if (trivial < 0 || trivial)
3975 return trivial;
3978 return 0;
3981 /* Construct a schedule row for each node such that as many dependences
3982 * as possible are carried and then continue with the next band.
3984 * Note that despite the fact that the problem is solved using a rational
3985 * solver, the solution is guaranteed to be integral.
3986 * Specifically, the dependence distance lower bounds e_i (and therefore
3987 * also their sum) are integers. See Lemma 5 of [1].
3989 * If the computed schedule row turns out to be trivial on one or
3990 * more nodes where it should not be trivial, then we throw it away
3991 * and try again on each component separately.
3993 * If there is only one component, then we accept the schedule row anyway,
3994 * but we do not consider it as a complete row and therefore do not
3995 * increment graph->n_row. Note that the ranks of the nodes that
3996 * do get a non-trivial schedule part will get updated regardless and
3997 * graph->maxvar is computed based on these ranks. The test for
3998 * whether more schedule rows are required in compute_schedule_wcc
3999 * is therefore not affected.
4001 * Insert a band corresponding to the schedule row at position "node"
4002 * of the schedule tree and continue with the construction of the schedule.
4003 * This insertion and the continued construction is performed by split_scaled
4004 * after optionally checking for non-trivial common divisors.
4006 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4007 * Problem, Part II: Multi-Dimensional Time.
4008 * In Intl. Journal of Parallel Programming, 1992.
4010 static __isl_give isl_schedule_node *carry_dependences(
4011 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4013 int i;
4014 int n_edge;
4015 int trivial;
4016 isl_ctx *ctx;
4017 isl_vec *sol;
4018 isl_basic_set *lp;
4020 if (!node)
4021 return NULL;
4023 n_edge = 0;
4024 for (i = 0; i < graph->n_edge; ++i)
4025 n_edge += graph->edge[i].map->n;
4027 ctx = isl_schedule_node_get_ctx(node);
4028 if (setup_carry_lp(ctx, graph) < 0)
4029 return isl_schedule_node_free(node);
4031 lp = isl_basic_set_copy(graph->lp);
4032 sol = isl_tab_basic_set_non_neg_lexmin(lp);
4033 if (!sol)
4034 return isl_schedule_node_free(node);
4036 if (sol->size == 0) {
4037 isl_vec_free(sol);
4038 isl_die(ctx, isl_error_internal,
4039 "error in schedule construction",
4040 return isl_schedule_node_free(node));
4043 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4044 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
4045 isl_vec_free(sol);
4046 isl_die(ctx, isl_error_unknown,
4047 "unable to carry dependences",
4048 return isl_schedule_node_free(node));
4051 trivial = is_any_trivial(graph, sol);
4052 if (trivial < 0) {
4053 sol = isl_vec_free(sol);
4054 } else if (trivial && graph->scc > 1) {
4055 isl_vec_free(sol);
4056 return compute_component_schedule(node, graph, 1);
4059 if (update_schedule(graph, sol, 0, 0) < 0)
4060 return isl_schedule_node_free(node);
4061 if (trivial)
4062 graph->n_row--;
4064 return split_scaled(node, graph);
4067 /* Topologically sort statements mapped to the same schedule iteration
4068 * and add insert a sequence node in front of "node"
4069 * corresponding to this order.
4070 * If "initialized" is set, then it may be assumed that compute_maxvar
4071 * has been called on the current band. Otherwise, call
4072 * compute_maxvar if and before carry_dependences gets called.
4074 * If it turns out to be impossible to sort the statements apart,
4075 * because different dependences impose different orderings
4076 * on the statements, then we extend the schedule such that
4077 * it carries at least one more dependence.
4079 static __isl_give isl_schedule_node *sort_statements(
4080 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4081 int initialized)
4083 isl_ctx *ctx;
4084 isl_union_set_list *filters;
4086 if (!node)
4087 return NULL;
4089 ctx = isl_schedule_node_get_ctx(node);
4090 if (graph->n < 1)
4091 isl_die(ctx, isl_error_internal,
4092 "graph should have at least one node",
4093 return isl_schedule_node_free(node));
4095 if (graph->n == 1)
4096 return node;
4098 if (update_edges(ctx, graph) < 0)
4099 return isl_schedule_node_free(node);
4101 if (graph->n_edge == 0)
4102 return node;
4104 if (detect_sccs(ctx, graph) < 0)
4105 return isl_schedule_node_free(node);
4107 next_band(graph);
4108 if (graph->scc < graph->n) {
4109 if (!initialized && compute_maxvar(graph) < 0)
4110 return isl_schedule_node_free(node);
4111 return carry_dependences(node, graph);
4114 filters = extract_sccs(ctx, graph);
4115 node = isl_schedule_node_insert_sequence(node, filters);
4117 return node;
4120 /* Are there any (non-empty) (conditional) validity edges in the graph?
4122 static int has_validity_edges(struct isl_sched_graph *graph)
4124 int i;
4126 for (i = 0; i < graph->n_edge; ++i) {
4127 int empty;
4129 empty = isl_map_plain_is_empty(graph->edge[i].map);
4130 if (empty < 0)
4131 return -1;
4132 if (empty)
4133 continue;
4134 if (is_validity(&graph->edge[i]) ||
4135 is_conditional_validity(&graph->edge[i]))
4136 return 1;
4139 return 0;
4142 /* Should we apply a Feautrier step?
4143 * That is, did the user request the Feautrier algorithm and are
4144 * there any validity dependences (left)?
4146 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4148 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4149 return 0;
4151 return has_validity_edges(graph);
4154 /* Compute a schedule for a connected dependence graph using Feautrier's
4155 * multi-dimensional scheduling algorithm and return the updated schedule node.
4157 * The original algorithm is described in [1].
4158 * The main idea is to minimize the number of scheduling dimensions, by
4159 * trying to satisfy as many dependences as possible per scheduling dimension.
4161 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4162 * Problem, Part II: Multi-Dimensional Time.
4163 * In Intl. Journal of Parallel Programming, 1992.
4165 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4166 isl_schedule_node *node, struct isl_sched_graph *graph)
4168 return carry_dependences(node, graph);
4171 /* Turn off the "local" bit on all (condition) edges.
4173 static void clear_local_edges(struct isl_sched_graph *graph)
4175 int i;
4177 for (i = 0; i < graph->n_edge; ++i)
4178 if (is_condition(&graph->edge[i]))
4179 clear_local(&graph->edge[i]);
4182 /* Does "graph" have both condition and conditional validity edges?
4184 static int need_condition_check(struct isl_sched_graph *graph)
4186 int i;
4187 int any_condition = 0;
4188 int any_conditional_validity = 0;
4190 for (i = 0; i < graph->n_edge; ++i) {
4191 if (is_condition(&graph->edge[i]))
4192 any_condition = 1;
4193 if (is_conditional_validity(&graph->edge[i]))
4194 any_conditional_validity = 1;
4197 return any_condition && any_conditional_validity;
4200 /* Does "graph" contain any coincidence edge?
4202 static int has_any_coincidence(struct isl_sched_graph *graph)
4204 int i;
4206 for (i = 0; i < graph->n_edge; ++i)
4207 if (is_coincidence(&graph->edge[i]))
4208 return 1;
4210 return 0;
4213 /* Extract the final schedule row as a map with the iteration domain
4214 * of "node" as domain.
4216 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4218 isl_local_space *ls;
4219 isl_aff *aff;
4220 int row;
4222 row = isl_mat_rows(node->sched) - 1;
4223 ls = isl_local_space_from_space(isl_space_copy(node->space));
4224 aff = extract_schedule_row(ls, node, row);
4225 return isl_map_from_aff(aff);
4228 /* Is the conditional validity dependence in the edge with index "edge_index"
4229 * violated by the latest (i.e., final) row of the schedule?
4230 * That is, is i scheduled after j
4231 * for any conditional validity dependence i -> j?
4233 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4235 isl_map *src_sched, *dst_sched, *map;
4236 struct isl_sched_edge *edge = &graph->edge[edge_index];
4237 int empty;
4239 src_sched = final_row(edge->src);
4240 dst_sched = final_row(edge->dst);
4241 map = isl_map_copy(edge->map);
4242 map = isl_map_apply_domain(map, src_sched);
4243 map = isl_map_apply_range(map, dst_sched);
4244 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4245 empty = isl_map_is_empty(map);
4246 isl_map_free(map);
4248 if (empty < 0)
4249 return -1;
4251 return !empty;
4254 /* Does "graph" have any satisfied condition edges that
4255 * are adjacent to the conditional validity constraint with
4256 * domain "conditional_source" and range "conditional_sink"?
4258 * A satisfied condition is one that is not local.
4259 * If a condition was forced to be local already (i.e., marked as local)
4260 * then there is no need to check if it is in fact local.
4262 * Additionally, mark all adjacent condition edges found as local.
4264 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4265 __isl_keep isl_union_set *conditional_source,
4266 __isl_keep isl_union_set *conditional_sink)
4268 int i;
4269 int any = 0;
4271 for (i = 0; i < graph->n_edge; ++i) {
4272 int adjacent, local;
4273 isl_union_map *condition;
4275 if (!is_condition(&graph->edge[i]))
4276 continue;
4277 if (is_local(&graph->edge[i]))
4278 continue;
4280 condition = graph->edge[i].tagged_condition;
4281 adjacent = domain_intersects(condition, conditional_sink);
4282 if (adjacent >= 0 && !adjacent)
4283 adjacent = range_intersects(condition,
4284 conditional_source);
4285 if (adjacent < 0)
4286 return -1;
4287 if (!adjacent)
4288 continue;
4290 set_local(&graph->edge[i]);
4292 local = is_condition_false(&graph->edge[i]);
4293 if (local < 0)
4294 return -1;
4295 if (!local)
4296 any = 1;
4299 return any;
4302 /* Are there any violated conditional validity dependences with
4303 * adjacent condition dependences that are not local with respect
4304 * to the current schedule?
4305 * That is, is the conditional validity constraint violated?
4307 * Additionally, mark all those adjacent condition dependences as local.
4308 * We also mark those adjacent condition dependences that were not marked
4309 * as local before, but just happened to be local already. This ensures
4310 * that they remain local if the schedule is recomputed.
4312 * We first collect domain and range of all violated conditional validity
4313 * dependences and then check if there are any adjacent non-local
4314 * condition dependences.
4316 static int has_violated_conditional_constraint(isl_ctx *ctx,
4317 struct isl_sched_graph *graph)
4319 int i;
4320 int any = 0;
4321 isl_union_set *source, *sink;
4323 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4324 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4325 for (i = 0; i < graph->n_edge; ++i) {
4326 isl_union_set *uset;
4327 isl_union_map *umap;
4328 int violated;
4330 if (!is_conditional_validity(&graph->edge[i]))
4331 continue;
4333 violated = is_violated(graph, i);
4334 if (violated < 0)
4335 goto error;
4336 if (!violated)
4337 continue;
4339 any = 1;
4341 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4342 uset = isl_union_map_domain(umap);
4343 source = isl_union_set_union(source, uset);
4344 source = isl_union_set_coalesce(source);
4346 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4347 uset = isl_union_map_range(umap);
4348 sink = isl_union_set_union(sink, uset);
4349 sink = isl_union_set_coalesce(sink);
4352 if (any)
4353 any = has_adjacent_true_conditions(graph, source, sink);
4355 isl_union_set_free(source);
4356 isl_union_set_free(sink);
4357 return any;
4358 error:
4359 isl_union_set_free(source);
4360 isl_union_set_free(sink);
4361 return -1;
4364 /* Examine the current band (the rows between graph->band_start and
4365 * graph->n_total_row), deciding whether to drop it or add it to "node"
4366 * and then continue with the computation of the next band, if any.
4367 * If "initialized" is set, then it may be assumed that compute_maxvar
4368 * has been called on the current band. Otherwise, call
4369 * compute_maxvar if and before carry_dependences gets called.
4371 * The caller keeps looking for a new row as long as
4372 * graph->n_row < graph->maxvar. If the latest attempt to find
4373 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4374 * then we either
4375 * - split between SCCs and start over (assuming we found an interesting
4376 * pair of SCCs between which to split)
4377 * - continue with the next band (assuming the current band has at least
4378 * one row)
4379 * - try to carry as many dependences as possible and continue with the next
4380 * band
4381 * In each case, we first insert a band node in the schedule tree
4382 * if any rows have been computed.
4384 * If the caller managed to complete the schedule, we insert a band node
4385 * (if any schedule rows were computed) and we finish off by topologically
4386 * sorting the statements based on the remaining dependences.
4388 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4389 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4390 int initialized)
4392 int insert;
4394 if (!node)
4395 return NULL;
4397 if (graph->n_row < graph->maxvar) {
4398 isl_ctx *ctx;
4399 int empty = graph->n_total_row == graph->band_start;
4401 ctx = isl_schedule_node_get_ctx(node);
4402 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4403 return compute_next_band(node, graph, 1);
4404 if (graph->src_scc >= 0)
4405 return compute_split_schedule(node, graph);
4406 if (!empty)
4407 return compute_next_band(node, graph, 1);
4408 if (!initialized && compute_maxvar(graph) < 0)
4409 return isl_schedule_node_free(node);
4410 return carry_dependences(node, graph);
4413 insert = graph->n_total_row > graph->band_start;
4414 if (insert) {
4415 node = insert_current_band(node, graph, 1);
4416 node = isl_schedule_node_child(node, 0);
4418 node = sort_statements(node, graph, initialized);
4419 if (insert)
4420 node = isl_schedule_node_parent(node);
4422 return node;
4425 /* Construct a band of schedule rows for a connected dependence graph.
4426 * The caller is responsible for determining the strongly connected
4427 * components and calling compute_maxvar first.
4429 * We try to find a sequence of as many schedule rows as possible that result
4430 * in non-negative dependence distances (independent of the previous rows
4431 * in the sequence, i.e., such that the sequence is tilable), with as
4432 * many of the initial rows as possible satisfying the coincidence constraints.
4433 * The computation stops if we can't find any more rows or if we have found
4434 * all the rows we wanted to find.
4436 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4437 * outermost dimension to satisfy the coincidence constraints. If this
4438 * turns out to be impossible, we fall back on the general scheme above
4439 * and try to carry as many dependences as possible.
4441 * If "graph" contains both condition and conditional validity dependences,
4442 * then we need to check that that the conditional schedule constraint
4443 * is satisfied, i.e., there are no violated conditional validity dependences
4444 * that are adjacent to any non-local condition dependences.
4445 * If there are, then we mark all those adjacent condition dependences
4446 * as local and recompute the current band. Those dependences that
4447 * are marked local will then be forced to be local.
4448 * The initial computation is performed with no dependences marked as local.
4449 * If we are lucky, then there will be no violated conditional validity
4450 * dependences adjacent to any non-local condition dependences.
4451 * Otherwise, we mark some additional condition dependences as local and
4452 * recompute. We continue this process until there are no violations left or
4453 * until we are no longer able to compute a schedule.
4454 * Since there are only a finite number of dependences,
4455 * there will only be a finite number of iterations.
4457 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
4458 struct isl_sched_graph *graph)
4460 int has_coincidence;
4461 int use_coincidence;
4462 int force_coincidence = 0;
4463 int check_conditional;
4465 if (sort_sccs(graph) < 0)
4466 return isl_stat_error;
4468 clear_local_edges(graph);
4469 check_conditional = need_condition_check(graph);
4470 has_coincidence = has_any_coincidence(graph);
4472 if (ctx->opt->schedule_outer_coincidence)
4473 force_coincidence = 1;
4475 use_coincidence = has_coincidence;
4476 while (graph->n_row < graph->maxvar) {
4477 isl_vec *sol;
4478 int violated;
4479 int coincident;
4481 graph->src_scc = -1;
4482 graph->dst_scc = -1;
4484 if (setup_lp(ctx, graph, use_coincidence) < 0)
4485 return isl_stat_error;
4486 sol = solve_lp(graph);
4487 if (!sol)
4488 return isl_stat_error;
4489 if (sol->size == 0) {
4490 int empty = graph->n_total_row == graph->band_start;
4492 isl_vec_free(sol);
4493 if (use_coincidence && (!force_coincidence || !empty)) {
4494 use_coincidence = 0;
4495 continue;
4497 return isl_stat_ok;
4499 coincident = !has_coincidence || use_coincidence;
4500 if (update_schedule(graph, sol, 1, coincident) < 0)
4501 return isl_stat_error;
4503 if (!check_conditional)
4504 continue;
4505 violated = has_violated_conditional_constraint(ctx, graph);
4506 if (violated < 0)
4507 return isl_stat_error;
4508 if (!violated)
4509 continue;
4510 if (reset_band(graph) < 0)
4511 return isl_stat_error;
4512 use_coincidence = has_coincidence;
4515 return isl_stat_ok;
4518 /* Compute a schedule for a connected dependence graph by considering
4519 * the graph as a whole and return the updated schedule node.
4521 * The actual schedule rows of the current band are computed by
4522 * compute_schedule_wcc_band. compute_schedule_finish_band takes
4523 * care of integrating the band into "node" and continuing
4524 * the computation.
4526 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
4527 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4529 isl_ctx *ctx;
4531 if (!node)
4532 return NULL;
4534 ctx = isl_schedule_node_get_ctx(node);
4535 if (compute_schedule_wcc_band(ctx, graph) < 0)
4536 return isl_schedule_node_free(node);
4538 return compute_schedule_finish_band(node, graph, 1);
4541 /* Clustering information used by compute_schedule_wcc_clustering.
4543 * "n" is the number of SCCs in the original dependence graph
4544 * "scc" is an array of "n" elements, each representing an SCC
4545 * of the original dependence graph. All entries in the same cluster
4546 * have the same number of schedule rows.
4547 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
4548 * where each cluster is represented by the index of the first SCC
4549 * in the cluster. Initially, each SCC belongs to a cluster containing
4550 * only that SCC.
4552 * "scc_in_merge" is used by merge_clusters_along_edge to keep
4553 * track of which SCCs need to be merged.
4555 * "cluster" contains the merged clusters of SCCs after the clustering
4556 * has completed.
4558 * "scc_node" is a temporary data structure used inside copy_partial.
4559 * For each SCC, it keeps track of the number of nodes in the SCC
4560 * that have already been copied.
4562 struct isl_clustering {
4563 int n;
4564 struct isl_sched_graph *scc;
4565 struct isl_sched_graph *cluster;
4566 int *scc_cluster;
4567 int *scc_node;
4568 int *scc_in_merge;
4571 /* Initialize the clustering data structure "c" from "graph".
4573 * In particular, allocate memory, extract the SCCs from "graph"
4574 * into c->scc, initialize scc_cluster and construct
4575 * a band of schedule rows for each SCC.
4576 * Within each SCC, there is only one SCC by definition.
4577 * Each SCC initially belongs to a cluster containing only that SCC.
4579 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
4580 struct isl_sched_graph *graph)
4582 int i;
4584 c->n = graph->scc;
4585 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4586 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4587 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
4588 c->scc_node = isl_calloc_array(ctx, int, c->n);
4589 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
4590 if (!c->scc || !c->cluster ||
4591 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
4592 return isl_stat_error;
4594 for (i = 0; i < c->n; ++i) {
4595 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
4596 &edge_scc_exactly, i, &c->scc[i]) < 0)
4597 return isl_stat_error;
4598 c->scc[i].scc = 1;
4599 if (compute_maxvar(&c->scc[i]) < 0)
4600 return isl_stat_error;
4601 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
4602 return isl_stat_error;
4603 c->scc_cluster[i] = i;
4606 return isl_stat_ok;
4609 /* Free all memory allocated for "c".
4611 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
4613 int i;
4615 if (c->scc)
4616 for (i = 0; i < c->n; ++i)
4617 graph_free(ctx, &c->scc[i]);
4618 free(c->scc);
4619 if (c->cluster)
4620 for (i = 0; i < c->n; ++i)
4621 graph_free(ctx, &c->cluster[i]);
4622 free(c->cluster);
4623 free(c->scc_cluster);
4624 free(c->scc_node);
4625 free(c->scc_in_merge);
4628 /* Should we refrain from merging the cluster in "graph" with
4629 * any other cluster?
4630 * In particular, is its current schedule band empty and incomplete.
4632 static int bad_cluster(struct isl_sched_graph *graph)
4634 return graph->n_row < graph->maxvar &&
4635 graph->n_total_row == graph->band_start;
4638 /* Return the index of an edge in "graph" that can be used to merge
4639 * two clusters in "c".
4640 * Return graph->n_edge if no such edge can be found.
4641 * Return -1 on error.
4643 * In particular, return a proximity edge between two clusters
4644 * that is not marked "no_merge" and such that neither of the
4645 * two clusters has an incomplete, empty band.
4647 * If there are multiple such edges, then try and find the most
4648 * appropriate edge to use for merging. In particular, pick the edge
4649 * with the greatest weight. If there are multiple of those,
4650 * then pick one with the shortest distance between
4651 * the two cluster representatives.
4653 static int find_proximity(struct isl_sched_graph *graph,
4654 struct isl_clustering *c)
4656 int i, best = graph->n_edge, best_dist, best_weight;
4658 for (i = 0; i < graph->n_edge; ++i) {
4659 struct isl_sched_edge *edge = &graph->edge[i];
4660 int dist, weight;
4662 if (!is_proximity(edge))
4663 continue;
4664 if (edge->no_merge)
4665 continue;
4666 if (bad_cluster(&c->scc[edge->src->scc]) ||
4667 bad_cluster(&c->scc[edge->dst->scc]))
4668 continue;
4669 dist = c->scc_cluster[edge->dst->scc] -
4670 c->scc_cluster[edge->src->scc];
4671 if (dist == 0)
4672 continue;
4673 weight = edge->weight;
4674 if (best < graph->n_edge) {
4675 if (best_weight > weight)
4676 continue;
4677 if (best_weight == weight && best_dist <= dist)
4678 continue;
4680 best = i;
4681 best_dist = dist;
4682 best_weight = weight;
4685 return best;
4688 /* Internal data structure used in mark_merge_sccs.
4690 * "graph" is the dependence graph in which a strongly connected
4691 * component is constructed.
4692 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
4693 * "src" and "dst" are the indices of the nodes that are being merged.
4695 struct isl_mark_merge_sccs_data {
4696 struct isl_sched_graph *graph;
4697 int *scc_cluster;
4698 int src;
4699 int dst;
4702 /* Check whether the cluster containing node "i" depends on the cluster
4703 * containing node "j". If "i" and "j" belong to the same cluster,
4704 * then they are taken to depend on each other to ensure that
4705 * the resulting strongly connected component consists of complete
4706 * clusters. Furthermore, if "i" and "j" are the two nodes that
4707 * are being merged, then they are taken to depend on each other as well.
4708 * Otherwise, check if there is a (conditional) validity dependence
4709 * from node[j] to node[i], forcing node[i] to follow node[j].
4711 static isl_bool cluster_follows(int i, int j, void *user)
4713 struct isl_mark_merge_sccs_data *data = user;
4714 struct isl_sched_graph *graph = data->graph;
4715 int *scc_cluster = data->scc_cluster;
4717 if (data->src == i && data->dst == j)
4718 return isl_bool_true;
4719 if (data->src == j && data->dst == i)
4720 return isl_bool_true;
4721 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
4722 return isl_bool_true;
4724 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
4727 /* Mark all SCCs that belong to either of the two clusters in "c"
4728 * connected by the edge in "graph" with index "edge", or to any
4729 * of the intermediate clusters.
4730 * The marking is recorded in c->scc_in_merge.
4732 * The given edge has been selected for merging two clusters,
4733 * meaning that there is at least a proximity edge between the two nodes.
4734 * However, there may also be (indirect) validity dependences
4735 * between the two nodes. When merging the two clusters, all clusters
4736 * containing one or more of the intermediate nodes along the
4737 * indirect validity dependences need to be merged in as well.
4739 * First collect all such nodes by computing the strongly connected
4740 * component (SCC) containing the two nodes connected by the edge, where
4741 * the two nodes are considered to depend on each other to make
4742 * sure they end up in the same SCC. Similarly, each node is considered
4743 * to depend on every other node in the same cluster to ensure
4744 * that the SCC consists of complete clusters.
4746 * Then the original SCCs that contain any of these nodes are marked
4747 * in c->scc_in_merge.
4749 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
4750 int edge, struct isl_clustering *c)
4752 struct isl_mark_merge_sccs_data data;
4753 struct isl_tarjan_graph *g;
4754 int i;
4756 for (i = 0; i < c->n; ++i)
4757 c->scc_in_merge[i] = 0;
4759 data.graph = graph;
4760 data.scc_cluster = c->scc_cluster;
4761 data.src = graph->edge[edge].src - graph->node;
4762 data.dst = graph->edge[edge].dst - graph->node;
4764 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
4765 &cluster_follows, &data);
4766 if (!g)
4767 goto error;
4769 i = g->op;
4770 if (i < 3)
4771 isl_die(ctx, isl_error_internal,
4772 "expecting at least two nodes in component",
4773 goto error);
4774 if (g->order[--i] != -1)
4775 isl_die(ctx, isl_error_internal,
4776 "expecting end of component marker", goto error);
4778 for (--i; i >= 0 && g->order[i] != -1; --i) {
4779 int scc = graph->node[g->order[i]].scc;
4780 c->scc_in_merge[scc] = 1;
4783 isl_tarjan_graph_free(g);
4784 return isl_stat_ok;
4785 error:
4786 isl_tarjan_graph_free(g);
4787 return isl_stat_error;
4790 /* Construct the identifier "cluster_i".
4792 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
4794 char name[40];
4796 snprintf(name, sizeof(name), "cluster_%d", i);
4797 return isl_id_alloc(ctx, name, NULL);
4800 /* Construct the space of the cluster with index "i" containing
4801 * the strongly connected component "scc".
4803 * In particular, construct a space called cluster_i with dimension equal
4804 * to the number of schedule rows in the current band of "scc".
4806 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
4808 int nvar;
4809 isl_space *space;
4810 isl_id *id;
4812 nvar = scc->n_total_row - scc->band_start;
4813 space = isl_space_copy(scc->node[0].space);
4814 space = isl_space_params(space);
4815 space = isl_space_set_from_params(space);
4816 space = isl_space_add_dims(space, isl_dim_set, nvar);
4817 id = cluster_id(isl_space_get_ctx(space), i);
4818 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4820 return space;
4823 /* Collect the domain of the graph for merging clusters.
4825 * In particular, for each cluster with first SCC "i", construct
4826 * a set in the space called cluster_i with dimension equal
4827 * to the number of schedule rows in the current band of the cluster.
4829 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
4830 struct isl_sched_graph *graph, struct isl_clustering *c)
4832 int i;
4833 isl_space *space;
4834 isl_union_set *domain;
4836 space = isl_space_params_alloc(ctx, 0);
4837 domain = isl_union_set_empty(space);
4839 for (i = 0; i < graph->scc; ++i) {
4840 isl_space *space;
4842 if (!c->scc_in_merge[i])
4843 continue;
4844 if (c->scc_cluster[i] != i)
4845 continue;
4846 space = cluster_space(&c->scc[i], i);
4847 domain = isl_union_set_add_set(domain, isl_set_universe(space));
4850 return domain;
4853 /* Construct a map from the original instances to the corresponding
4854 * cluster instance in the current bands of the clusters in "c".
4856 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
4857 struct isl_sched_graph *graph, struct isl_clustering *c)
4859 int i, j;
4860 isl_space *space;
4861 isl_union_map *cluster_map;
4863 space = isl_space_params_alloc(ctx, 0);
4864 cluster_map = isl_union_map_empty(space);
4865 for (i = 0; i < graph->scc; ++i) {
4866 int start, n;
4867 isl_id *id;
4869 if (!c->scc_in_merge[i])
4870 continue;
4872 id = cluster_id(ctx, c->scc_cluster[i]);
4873 start = c->scc[i].band_start;
4874 n = c->scc[i].n_total_row - start;
4875 for (j = 0; j < c->scc[i].n; ++j) {
4876 isl_multi_aff *ma;
4877 isl_map *map;
4878 struct isl_sched_node *node = &c->scc[i].node[j];
4880 ma = node_extract_partial_schedule_multi_aff(node,
4881 start, n);
4882 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
4883 isl_id_copy(id));
4884 map = isl_map_from_multi_aff(ma);
4885 cluster_map = isl_union_map_add_map(cluster_map, map);
4887 isl_id_free(id);
4890 return cluster_map;
4893 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
4894 * that are not isl_edge_condition or isl_edge_conditional_validity.
4896 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
4897 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
4898 __isl_take isl_schedule_constraints *sc)
4900 enum isl_edge_type t;
4902 if (!sc)
4903 return NULL;
4905 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
4906 if (t == isl_edge_condition ||
4907 t == isl_edge_conditional_validity)
4908 continue;
4909 if (!is_type(edge, t))
4910 continue;
4911 sc->constraint[t] = isl_union_map_union(sc->constraint[t],
4912 isl_union_map_copy(umap));
4913 if (!sc->constraint[t])
4914 return isl_schedule_constraints_free(sc);
4917 return sc;
4920 /* Add schedule constraints of types isl_edge_condition and
4921 * isl_edge_conditional_validity to "sc" by applying "umap" to
4922 * the domains of the wrapped relations in domain and range
4923 * of the corresponding tagged constraints of "edge".
4925 static __isl_give isl_schedule_constraints *add_conditional_constraints(
4926 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
4927 __isl_take isl_schedule_constraints *sc)
4929 enum isl_edge_type t;
4930 isl_union_map *tagged;
4932 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
4933 if (!is_type(edge, t))
4934 continue;
4935 if (t == isl_edge_condition)
4936 tagged = isl_union_map_copy(edge->tagged_condition);
4937 else
4938 tagged = isl_union_map_copy(edge->tagged_validity);
4939 tagged = isl_union_map_zip(tagged);
4940 tagged = isl_union_map_apply_domain(tagged,
4941 isl_union_map_copy(umap));
4942 tagged = isl_union_map_zip(tagged);
4943 sc->constraint[t] = isl_union_map_union(sc->constraint[t],
4944 tagged);
4945 if (!sc->constraint[t])
4946 return isl_schedule_constraints_free(sc);
4949 return sc;
4952 /* Given a mapping "cluster_map" from the original instances to
4953 * the cluster instances, add schedule constraints on the clusters
4954 * to "sc" corresponding to the original constraints represented by "edge".
4956 * For non-tagged dependence constraints, the cluster constraints
4957 * are obtained by applying "cluster_map" to the edge->map.
4959 * For tagged dependence constraints, "cluster_map" needs to be applied
4960 * to the domains of the wrapped relations in domain and range
4961 * of the tagged dependence constraints. Pick out the mappings
4962 * from these domains from "cluster_map" and construct their product.
4963 * This mapping can then be applied to the pair of domains.
4965 static __isl_give isl_schedule_constraints *collect_edge_constraints(
4966 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
4967 __isl_take isl_schedule_constraints *sc)
4969 isl_union_map *umap;
4970 isl_space *space;
4971 isl_union_set *uset;
4972 isl_union_map *umap1, *umap2;
4974 if (!sc)
4975 return NULL;
4977 umap = isl_union_map_from_map(isl_map_copy(edge->map));
4978 umap = isl_union_map_apply_domain(umap,
4979 isl_union_map_copy(cluster_map));
4980 umap = isl_union_map_apply_range(umap,
4981 isl_union_map_copy(cluster_map));
4982 sc = add_non_conditional_constraints(edge, umap, sc);
4983 isl_union_map_free(umap);
4985 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
4986 return sc;
4988 space = isl_space_domain(isl_map_get_space(edge->map));
4989 uset = isl_union_set_from_set(isl_set_universe(space));
4990 umap1 = isl_union_map_copy(cluster_map);
4991 umap1 = isl_union_map_intersect_domain(umap1, uset);
4992 space = isl_space_range(isl_map_get_space(edge->map));
4993 uset = isl_union_set_from_set(isl_set_universe(space));
4994 umap2 = isl_union_map_copy(cluster_map);
4995 umap2 = isl_union_map_intersect_domain(umap2, uset);
4996 umap = isl_union_map_product(umap1, umap2);
4998 sc = add_conditional_constraints(edge, umap, sc);
5000 isl_union_map_free(umap);
5001 return sc;
5004 /* Given a mapping "cluster_map" from the original instances to
5005 * the cluster instances, add schedule constraints on the clusters
5006 * to "sc" corresponding to all edges in "graph" between nodes that
5007 * belong to SCCs that are marked for merging in "scc_in_merge".
5009 static __isl_give isl_schedule_constraints *collect_constraints(
5010 struct isl_sched_graph *graph, int *scc_in_merge,
5011 __isl_keep isl_union_map *cluster_map,
5012 __isl_take isl_schedule_constraints *sc)
5014 int i;
5016 for (i = 0; i < graph->n_edge; ++i) {
5017 struct isl_sched_edge *edge = &graph->edge[i];
5019 if (!scc_in_merge[edge->src->scc])
5020 continue;
5021 if (!scc_in_merge[edge->dst->scc])
5022 continue;
5023 sc = collect_edge_constraints(edge, cluster_map, sc);
5026 return sc;
5029 /* Construct a dependence graph for scheduling clusters with respect
5030 * to each other and store the result in "merge_graph".
5031 * In particular, the nodes of the graph correspond to the schedule
5032 * dimensions of the current bands of those clusters that have been
5033 * marked for merging in "c".
5035 * First construct an isl_schedule_constraints object for this domain
5036 * by transforming the edges in "graph" to the domain.
5037 * Then initialize a dependence graph for scheduling from these
5038 * constraints.
5040 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5041 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5043 isl_union_set *domain;
5044 isl_union_map *cluster_map;
5045 isl_schedule_constraints *sc;
5046 isl_stat r;
5048 domain = collect_domain(ctx, graph, c);
5049 sc = isl_schedule_constraints_on_domain(domain);
5050 if (!sc)
5051 return isl_stat_error;
5052 cluster_map = collect_cluster_map(ctx, graph, c);
5053 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5054 isl_union_map_free(cluster_map);
5056 r = graph_init(merge_graph, sc);
5058 isl_schedule_constraints_free(sc);
5060 return r;
5063 /* Compute the maximal number of remaining schedule rows that still need
5064 * to be computed for the nodes that belong to clusters with the maximal
5065 * dimension for the current band (i.e., the band that is to be merged).
5066 * Only clusters that are about to be merged are considered.
5067 * "maxvar" is the maximal dimension for the current band.
5068 * "c" contains information about the clusters.
5070 * Return the maximal number of remaining schedule rows or -1 on error.
5072 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5074 int i, j;
5075 int max_slack;
5077 max_slack = 0;
5078 for (i = 0; i < c->n; ++i) {
5079 int nvar;
5080 struct isl_sched_graph *scc;
5082 if (!c->scc_in_merge[i])
5083 continue;
5084 scc = &c->scc[i];
5085 nvar = scc->n_total_row - scc->band_start;
5086 if (nvar != maxvar)
5087 continue;
5088 for (j = 0; j < scc->n; ++j) {
5089 struct isl_sched_node *node = &scc->node[j];
5090 int slack;
5092 if (node_update_cmap(node) < 0)
5093 return -1;
5094 slack = node->nvar - node->rank;
5095 if (slack > max_slack)
5096 max_slack = slack;
5100 return max_slack;
5103 /* If there are any clusters where the dimension of the current band
5104 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5105 * if there are any nodes in such a cluster where the number
5106 * of remaining schedule rows that still need to be computed
5107 * is greater than "max_slack", then return the smallest current band
5108 * dimension of all these clusters. Otherwise return the original value
5109 * of "maxvar". Return -1 in case of any error.
5110 * Only clusters that are about to be merged are considered.
5111 * "c" contains information about the clusters.
5113 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5114 struct isl_clustering *c)
5116 int i, j;
5118 for (i = 0; i < c->n; ++i) {
5119 int nvar;
5120 struct isl_sched_graph *scc;
5122 if (!c->scc_in_merge[i])
5123 continue;
5124 scc = &c->scc[i];
5125 nvar = scc->n_total_row - scc->band_start;
5126 if (nvar >= maxvar)
5127 continue;
5128 for (j = 0; j < scc->n; ++j) {
5129 struct isl_sched_node *node = &scc->node[j];
5130 int slack;
5132 if (node_update_cmap(node) < 0)
5133 return -1;
5134 slack = node->nvar - node->rank;
5135 if (slack > max_slack) {
5136 maxvar = nvar;
5137 break;
5142 return maxvar;
5145 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5146 * that still need to be computed. In particular, if there is a node
5147 * in a cluster where the dimension of the current band is smaller
5148 * than merge_graph->maxvar, but the number of remaining schedule rows
5149 * is greater than that of any node in a cluster with the maximal
5150 * dimension for the current band (i.e., merge_graph->maxvar),
5151 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5152 * of those clusters. Without this adjustment, the total number of
5153 * schedule dimensions would be increased, resulting in a skewed view
5154 * of the number of coincident dimensions.
5155 * "c" contains information about the clusters.
5157 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5158 * then there is no point in attempting any merge since it will be rejected
5159 * anyway. Set merge_graph->maxvar to zero in such cases.
5161 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5162 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5164 int max_slack, maxvar;
5166 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5167 if (max_slack < 0)
5168 return isl_stat_error;
5169 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5170 if (maxvar < 0)
5171 return isl_stat_error;
5173 if (maxvar < merge_graph->maxvar) {
5174 if (isl_options_get_schedule_maximize_band_depth(ctx))
5175 merge_graph->maxvar = 0;
5176 else
5177 merge_graph->maxvar = maxvar;
5180 return isl_stat_ok;
5183 /* Return the number of coincident dimensions in the current band of "graph",
5184 * where the nodes of "graph" are assumed to be scheduled by a single band.
5186 static int get_n_coincident(struct isl_sched_graph *graph)
5188 int i;
5190 for (i = graph->band_start; i < graph->n_total_row; ++i)
5191 if (!graph->node[0].coincident[i])
5192 break;
5194 return i - graph->band_start;
5197 /* Should the clusters be merged based on the cluster schedule
5198 * in the current (and only) band of "merge_graph", given that
5199 * coincidence should be maximized?
5201 * If the number of coincident schedule dimensions in the merged band
5202 * would be less than the maximal number of coincident schedule dimensions
5203 * in any of the merged clusters, then the clusters should not be merged.
5205 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5206 struct isl_sched_graph *merge_graph)
5208 int i;
5209 int n_coincident;
5210 int max_coincident;
5212 max_coincident = 0;
5213 for (i = 0; i < c->n; ++i) {
5214 if (!c->scc_in_merge[i])
5215 continue;
5216 n_coincident = get_n_coincident(&c->scc[i]);
5217 if (n_coincident > max_coincident)
5218 max_coincident = n_coincident;
5221 n_coincident = get_n_coincident(merge_graph);
5223 return n_coincident >= max_coincident;
5226 /* Return the transformation on "node" expressed by the current (and only)
5227 * band of "merge_graph" applied to the clusters in "c".
5229 * First find the representation of "node" in its SCC in "c" and
5230 * extract the transformation expressed by the current band.
5231 * Then extract the transformation applied by "merge_graph"
5232 * to the cluster to which this SCC belongs.
5233 * Combine the two to obtain the complete transformation on the node.
5235 * Note that the range of the first transformation is an anonymous space,
5236 * while the domain of the second is named "cluster_X". The range
5237 * of the former therefore needs to be adjusted before the two
5238 * can be combined.
5240 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5241 struct isl_sched_node *node, struct isl_clustering *c,
5242 struct isl_sched_graph *merge_graph)
5244 struct isl_sched_node *scc_node, *cluster_node;
5245 int start, n;
5246 isl_id *id;
5247 isl_space *space;
5248 isl_multi_aff *ma, *ma2;
5250 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5251 start = c->scc[node->scc].band_start;
5252 n = c->scc[node->scc].n_total_row - start;
5253 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5254 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5255 cluster_node = graph_find_node(ctx, merge_graph, space);
5256 if (space && !cluster_node)
5257 isl_die(ctx, isl_error_internal, "unable to find cluster",
5258 space = isl_space_free(space));
5259 id = isl_space_get_tuple_id(space, isl_dim_set);
5260 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5261 isl_space_free(space);
5262 n = merge_graph->n_total_row;
5263 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5264 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5266 return isl_map_from_multi_aff(ma);
5269 /* Give a set of distances "set", are they bounded by a small constant
5270 * in direction "pos"?
5271 * In practice, check if they are bounded by 2 by checking that there
5272 * are no elements with a value greater than or equal to 3 or
5273 * smaller than or equal to -3.
5275 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5277 isl_bool bounded;
5278 isl_set *test;
5280 if (!set)
5281 return isl_bool_error;
5283 test = isl_set_copy(set);
5284 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5285 bounded = isl_set_is_empty(test);
5286 isl_set_free(test);
5288 if (bounded < 0 || !bounded)
5289 return bounded;
5291 test = isl_set_copy(set);
5292 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5293 bounded = isl_set_is_empty(test);
5294 isl_set_free(test);
5296 return bounded;
5299 /* Does the set "set" have a fixed (but possible parametric) value
5300 * at dimension "pos"?
5302 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5304 int n;
5305 isl_bool single;
5307 if (!set)
5308 return isl_bool_error;
5309 set = isl_set_copy(set);
5310 n = isl_set_dim(set, isl_dim_set);
5311 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5312 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5313 single = isl_set_is_singleton(set);
5314 isl_set_free(set);
5316 return single;
5319 /* Does "map" have a fixed (but possible parametric) value
5320 * at dimension "pos" of either its domain or its range?
5322 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5324 isl_set *set;
5325 isl_bool single;
5327 set = isl_map_domain(isl_map_copy(map));
5328 single = has_single_value(set, pos);
5329 isl_set_free(set);
5331 if (single < 0 || single)
5332 return single;
5334 set = isl_map_range(isl_map_copy(map));
5335 single = has_single_value(set, pos);
5336 isl_set_free(set);
5338 return single;
5341 /* Does the edge "edge" from "graph" have bounded dependence distances
5342 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5344 * Extract the complete transformations of the source and destination
5345 * nodes of the edge, apply them to the edge constraints and
5346 * compute the differences. Finally, check if these differences are bounded
5347 * in each direction.
5349 * If the dimension of the band is greater than the number of
5350 * dimensions that can be expected to be optimized by the edge
5351 * (based on its weight), then also allow the differences to be unbounded
5352 * in the remaining dimensions, but only if either the source or
5353 * the destination has a fixed value in that direction.
5354 * This allows a statement that produces values that are used by
5355 * several instance of another statement to be merged with that
5356 * other statement.
5357 * However, merging such clusters will introduce an inherently
5358 * large proximity distance inside the merged cluster, meaning
5359 * that proximity distances will no longer be optimized in
5360 * subsequent merges. These merges are therefore only allowed
5361 * after all other possible merges have been tried.
5362 * The first time such a merge is encountered, the weight of the edge
5363 * is replaced by a negative weight. The second time (i.e., after
5364 * all merges over edges with a non-negative weight have been tried),
5365 * the merge is allowed.
5367 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5368 struct isl_sched_graph *graph, struct isl_clustering *c,
5369 struct isl_sched_graph *merge_graph)
5371 int i, n, n_slack;
5372 isl_bool bounded;
5373 isl_map *map, *t;
5374 isl_set *dist;
5376 map = isl_map_copy(edge->map);
5377 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5378 map = isl_map_apply_domain(map, t);
5379 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5380 map = isl_map_apply_range(map, t);
5381 dist = isl_map_deltas(isl_map_copy(map));
5383 bounded = isl_bool_true;
5384 n = isl_set_dim(dist, isl_dim_set);
5385 n_slack = n - edge->weight;
5386 if (edge->weight < 0)
5387 n_slack -= graph->max_weight + 1;
5388 for (i = 0; i < n; ++i) {
5389 isl_bool bounded_i, singular_i;
5391 bounded_i = distance_is_bounded(dist, i);
5392 if (bounded_i < 0)
5393 goto error;
5394 if (bounded_i)
5395 continue;
5396 if (edge->weight >= 0)
5397 bounded = isl_bool_false;
5398 n_slack--;
5399 if (n_slack < 0)
5400 break;
5401 singular_i = has_singular_src_or_dst(map, i);
5402 if (singular_i < 0)
5403 goto error;
5404 if (singular_i)
5405 continue;
5406 bounded = isl_bool_false;
5407 break;
5409 if (!bounded && i >= n && edge->weight >= 0)
5410 edge->weight -= graph->max_weight + 1;
5411 isl_map_free(map);
5412 isl_set_free(dist);
5414 return bounded;
5415 error:
5416 isl_map_free(map);
5417 isl_set_free(dist);
5418 return isl_bool_error;
5421 /* Should the clusters be merged based on the cluster schedule
5422 * in the current (and only) band of "merge_graph"?
5423 * "graph" is the original dependence graph, while "c" records
5424 * which SCCs are involved in the latest merge.
5426 * In particular, is there at least one proximity constraint
5427 * that is optimized by the merge?
5429 * A proximity constraint is considered to be optimized
5430 * if the dependence distances are small.
5432 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
5433 struct isl_sched_graph *graph, struct isl_clustering *c,
5434 struct isl_sched_graph *merge_graph)
5436 int i;
5438 for (i = 0; i < graph->n_edge; ++i) {
5439 struct isl_sched_edge *edge = &graph->edge[i];
5440 isl_bool bounded;
5442 if (!is_proximity(edge))
5443 continue;
5444 if (!c->scc_in_merge[edge->src->scc])
5445 continue;
5446 if (!c->scc_in_merge[edge->dst->scc])
5447 continue;
5448 if (c->scc_cluster[edge->dst->scc] ==
5449 c->scc_cluster[edge->src->scc])
5450 continue;
5451 bounded = has_bounded_distances(ctx, edge, graph, c,
5452 merge_graph);
5453 if (bounded < 0 || bounded)
5454 return bounded;
5457 return isl_bool_false;
5460 /* Should the clusters be merged based on the cluster schedule
5461 * in the current (and only) band of "merge_graph"?
5462 * "graph" is the original dependence graph, while "c" records
5463 * which SCCs are involved in the latest merge.
5465 * If the current band is empty, then the clusters should not be merged.
5467 * If the band depth should be maximized and the merge schedule
5468 * is incomplete (meaning that the dimension of some of the schedule
5469 * bands in the original schedule will be reduced), then the clusters
5470 * should not be merged.
5472 * If the schedule_maximize_coincidence option is set, then check that
5473 * the number of coincident schedule dimensions is not reduced.
5475 * Finally, only allow the merge if at least one proximity
5476 * constraint is optimized.
5478 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5479 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5481 if (merge_graph->n_total_row == merge_graph->band_start)
5482 return isl_bool_false;
5484 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
5485 merge_graph->n_total_row < merge_graph->maxvar)
5486 return isl_bool_false;
5488 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
5489 isl_bool ok;
5491 ok = ok_to_merge_coincident(c, merge_graph);
5492 if (ok < 0 || !ok)
5493 return ok;
5496 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
5499 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
5500 * of the schedule in "node" and return the result.
5502 * That is, essentially compute
5504 * T * N(first:first+n-1)
5506 * taking into account the constant term and the parameter coefficients
5507 * in "t_node".
5509 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
5510 struct isl_sched_node *t_node, struct isl_sched_node *node,
5511 int first, int n)
5513 int i, j;
5514 isl_mat *t;
5515 int n_row, n_col, n_param, n_var;
5517 n_param = node->nparam;
5518 n_var = node->nvar;
5519 n_row = isl_mat_rows(t_node->sched);
5520 n_col = isl_mat_cols(node->sched);
5521 t = isl_mat_alloc(ctx, n_row, n_col);
5522 if (!t)
5523 return NULL;
5524 for (i = 0; i < n_row; ++i) {
5525 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
5526 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
5527 for (j = 0; j < n; ++j)
5528 isl_seq_addmul(t->row[i],
5529 t_node->sched->row[i][1 + n_param + j],
5530 node->sched->row[first + j],
5531 1 + n_param + n_var);
5533 return t;
5536 /* Apply the cluster schedule in "t_node" to the current band
5537 * schedule of the nodes in "graph".
5539 * In particular, replace the rows starting at band_start
5540 * by the result of applying the cluster schedule in "t_node"
5541 * to the original rows.
5543 * The coincidence of the schedule is determined by the coincidence
5544 * of the cluster schedule.
5546 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
5547 struct isl_sched_node *t_node)
5549 int i, j;
5550 int n_new;
5551 int start, n;
5553 start = graph->band_start;
5554 n = graph->n_total_row - start;
5556 n_new = isl_mat_rows(t_node->sched);
5557 for (i = 0; i < graph->n; ++i) {
5558 struct isl_sched_node *node = &graph->node[i];
5559 isl_mat *t;
5561 t = node_transformation(ctx, t_node, node, start, n);
5562 node->sched = isl_mat_drop_rows(node->sched, start, n);
5563 node->sched = isl_mat_concat(node->sched, t);
5564 node->sched_map = isl_map_free(node->sched_map);
5565 if (!node->sched)
5566 return isl_stat_error;
5567 for (j = 0; j < n_new; ++j)
5568 node->coincident[start + j] = t_node->coincident[j];
5570 graph->n_total_row -= n;
5571 graph->n_row -= n;
5572 graph->n_total_row += n_new;
5573 graph->n_row += n_new;
5576 return isl_stat_ok;
5579 /* Merge the clusters marked for merging in "c" into a single
5580 * cluster using the cluster schedule in the current band of "merge_graph".
5581 * The representative SCC for the new cluster is the SCC with
5582 * the smallest index.
5584 * The current band schedule of each SCC in the new cluster is obtained
5585 * by applying the schedule of the corresponding original cluster
5586 * to the original band schedule.
5587 * All SCCs in the new cluster have the same number of schedule rows.
5589 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
5590 struct isl_sched_graph *merge_graph)
5592 int i;
5593 int cluster = -1;
5594 isl_space *space;
5596 for (i = 0; i < c->n; ++i) {
5597 struct isl_sched_node *node;
5599 if (!c->scc_in_merge[i])
5600 continue;
5601 if (cluster < 0)
5602 cluster = i;
5603 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
5604 if (!space)
5605 return isl_stat_error;
5606 node = graph_find_node(ctx, merge_graph, space);
5607 isl_space_free(space);
5608 if (!node)
5609 isl_die(ctx, isl_error_internal,
5610 "unable to find cluster",
5611 return isl_stat_error);
5612 if (transform(ctx, &c->scc[i], node) < 0)
5613 return isl_stat_error;
5614 c->scc_cluster[i] = cluster;
5617 return isl_stat_ok;
5620 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
5621 * by scheduling the current cluster bands with respect to each other.
5623 * Construct a dependence graph with a space for each cluster and
5624 * with the coordinates of each space corresponding to the schedule
5625 * dimensions of the current band of that cluster.
5626 * Construct a cluster schedule in this cluster dependence graph and
5627 * apply it to the current cluster bands if it is applicable
5628 * according to ok_to_merge.
5630 * If the number of remaining schedule dimensions in a cluster
5631 * with a non-maximal current schedule dimension is greater than
5632 * the number of remaining schedule dimensions in clusters
5633 * with a maximal current schedule dimension, then restrict
5634 * the number of rows to be computed in the cluster schedule
5635 * to the minimal such non-maximal current schedule dimension.
5636 * Do this by adjusting merge_graph.maxvar.
5638 * Return isl_bool_true if the clusters have effectively been merged
5639 * into a single cluster.
5641 * Note that since the standard scheduling algorithm minimizes the maximal
5642 * distance over proximity constraints, the proximity constraints between
5643 * the merged clusters may not be optimized any further than what is
5644 * sufficient to bring the distances within the limits of the internal
5645 * proximity constraints inside the individual clusters.
5646 * It may therefore make sense to perform an additional translation step
5647 * to bring the clusters closer to each other, while maintaining
5648 * the linear part of the merging schedule found using the standard
5649 * scheduling algorithm.
5651 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5652 struct isl_clustering *c)
5654 struct isl_sched_graph merge_graph = { 0 };
5655 isl_bool merged;
5657 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
5658 goto error;
5660 if (compute_maxvar(&merge_graph) < 0)
5661 goto error;
5662 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
5663 goto error;
5664 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
5665 goto error;
5666 merged = ok_to_merge(ctx, graph, c, &merge_graph);
5667 if (merged && merge(ctx, c, &merge_graph) < 0)
5668 goto error;
5670 graph_free(ctx, &merge_graph);
5671 return merged;
5672 error:
5673 graph_free(ctx, &merge_graph);
5674 return isl_bool_error;
5677 /* Is there any edge marked "no_merge" between two SCCs that are
5678 * about to be merged (i.e., that are set in "scc_in_merge")?
5679 * "merge_edge" is the proximity edge along which the clusters of SCCs
5680 * are going to be merged.
5682 * If there is any edge between two SCCs with a negative weight,
5683 * while the weight of "merge_edge" is non-negative, then this
5684 * means that the edge was postponed. "merge_edge" should then
5685 * also be postponed since merging along the edge with negative weight should
5686 * be postponed until all edges with non-negative weight have been tried.
5687 * Replace the weight of "merge_edge" by a negative weight as well and
5688 * tell the caller not to attempt a merge.
5690 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
5691 struct isl_sched_edge *merge_edge)
5693 int i;
5695 for (i = 0; i < graph->n_edge; ++i) {
5696 struct isl_sched_edge *edge = &graph->edge[i];
5698 if (!scc_in_merge[edge->src->scc])
5699 continue;
5700 if (!scc_in_merge[edge->dst->scc])
5701 continue;
5702 if (edge->no_merge)
5703 return 1;
5704 if (merge_edge->weight >= 0 && edge->weight < 0) {
5705 merge_edge->weight -= graph->max_weight + 1;
5706 return 1;
5710 return 0;
5713 /* Merge the two clusters in "c" connected by the edge in "graph"
5714 * with index "edge" into a single cluster.
5715 * If it turns out to be impossible to merge these two clusters,
5716 * then mark the edge as "no_merge" such that it will not be
5717 * considered again.
5719 * First mark all SCCs that need to be merged. This includes the SCCs
5720 * in the two clusters, but it may also include the SCCs
5721 * of intermediate clusters.
5722 * If there is already a no_merge edge between any pair of such SCCs,
5723 * then simply mark the current edge as no_merge as well.
5724 * Likewise, if any of those edges was postponed by has_bounded_distances,
5725 * then postpone the current edge as well.
5726 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
5727 * if the clusters did not end up getting merged, unless the non-merge
5728 * is due to the fact that the edge was postponed. This postponement
5729 * can be recognized by a change in weight (from non-negative to negative).
5731 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
5732 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
5734 isl_bool merged;
5735 int edge_weight = graph->edge[edge].weight;
5737 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
5738 return isl_stat_error;
5740 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
5741 merged = isl_bool_false;
5742 else
5743 merged = try_merge(ctx, graph, c);
5744 if (merged < 0)
5745 return isl_stat_error;
5746 if (!merged && edge_weight == graph->edge[edge].weight)
5747 graph->edge[edge].no_merge = 1;
5749 return isl_stat_ok;
5752 /* Does "node" belong to the cluster identified by "cluster"?
5754 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
5756 return node->cluster == cluster;
5759 /* Does "edge" connect two nodes belonging to the cluster
5760 * identified by "cluster"?
5762 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
5764 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
5767 /* Swap the schedule of "node1" and "node2".
5768 * Both nodes have been derived from the same node in a common parent graph.
5769 * Since the "coincident" field is shared with that node
5770 * in the parent graph, there is no need to also swap this field.
5772 static void swap_sched(struct isl_sched_node *node1,
5773 struct isl_sched_node *node2)
5775 isl_mat *sched;
5776 isl_map *sched_map;
5778 sched = node1->sched;
5779 node1->sched = node2->sched;
5780 node2->sched = sched;
5782 sched_map = node1->sched_map;
5783 node1->sched_map = node2->sched_map;
5784 node2->sched_map = sched_map;
5787 /* Copy the current band schedule from the SCCs that form the cluster
5788 * with index "pos" to the actual cluster at position "pos".
5789 * By construction, the index of the first SCC that belongs to the cluster
5790 * is also "pos".
5792 * The order of the nodes inside both the SCCs and the cluster
5793 * is assumed to be same as the order in the original "graph".
5795 * Since the SCC graphs will no longer be used after this function,
5796 * the schedules are actually swapped rather than copied.
5798 static isl_stat copy_partial(struct isl_sched_graph *graph,
5799 struct isl_clustering *c, int pos)
5801 int i, j;
5803 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
5804 c->cluster[pos].n_row = c->scc[pos].n_row;
5805 c->cluster[pos].maxvar = c->scc[pos].maxvar;
5806 j = 0;
5807 for (i = 0; i < graph->n; ++i) {
5808 int k;
5809 int s;
5811 if (graph->node[i].cluster != pos)
5812 continue;
5813 s = graph->node[i].scc;
5814 k = c->scc_node[s]++;
5815 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
5816 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
5817 c->cluster[pos].maxvar = c->scc[s].maxvar;
5818 ++j;
5821 return isl_stat_ok;
5824 /* Is there a (conditional) validity dependence from node[j] to node[i],
5825 * forcing node[i] to follow node[j] or do the nodes belong to the same
5826 * cluster?
5828 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
5830 struct isl_sched_graph *graph = user;
5832 if (graph->node[i].cluster == graph->node[j].cluster)
5833 return isl_bool_true;
5834 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5837 /* Extract the merged clusters of SCCs in "graph", sort them, and
5838 * store them in c->clusters. Update c->scc_cluster accordingly.
5840 * First keep track of the cluster containing the SCC to which a node
5841 * belongs in the node itself.
5842 * Then extract the clusters into c->clusters, copying the current
5843 * band schedule from the SCCs that belong to the cluster.
5844 * Do this only once per cluster.
5846 * Finally, topologically sort the clusters and update c->scc_cluster
5847 * to match the new scc numbering. While the SCCs were originally
5848 * sorted already, some SCCs that depend on some other SCCs may
5849 * have been merged with SCCs that appear before these other SCCs.
5850 * A reordering may therefore be required.
5852 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
5853 struct isl_clustering *c)
5855 int i;
5857 for (i = 0; i < graph->n; ++i)
5858 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
5860 for (i = 0; i < graph->scc; ++i) {
5861 if (c->scc_cluster[i] != i)
5862 continue;
5863 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
5864 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
5865 return isl_stat_error;
5866 c->cluster[i].src_scc = -1;
5867 c->cluster[i].dst_scc = -1;
5868 if (copy_partial(graph, c, i) < 0)
5869 return isl_stat_error;
5872 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
5873 return isl_stat_error;
5874 for (i = 0; i < graph->n; ++i)
5875 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
5877 return isl_stat_ok;
5880 /* Compute weights on the proximity edges of "graph" that can
5881 * be used by find_proximity to find the most appropriate
5882 * proximity edge to use to merge two clusters in "c".
5883 * The weights are also used by has_bounded_distances to determine
5884 * whether the merge should be allowed.
5885 * Store the maximum of the computed weights in graph->max_weight.
5887 * The computed weight is a measure for the number of remaining schedule
5888 * dimensions that can still be completely aligned.
5889 * In particular, compute the number of equalities between
5890 * input dimensions and output dimensions in the proximity constraints.
5891 * The directions that are already handled by outer schedule bands
5892 * are projected out prior to determining this number.
5894 * Edges that will never be considered by find_proximity are ignored.
5896 static isl_stat compute_weights(struct isl_sched_graph *graph,
5897 struct isl_clustering *c)
5899 int i;
5901 graph->max_weight = 0;
5903 for (i = 0; i < graph->n_edge; ++i) {
5904 struct isl_sched_edge *edge = &graph->edge[i];
5905 struct isl_sched_node *src = edge->src;
5906 struct isl_sched_node *dst = edge->dst;
5907 isl_basic_map *hull;
5908 int n_in, n_out;
5910 if (!is_proximity(edge))
5911 continue;
5912 if (bad_cluster(&c->scc[edge->src->scc]) ||
5913 bad_cluster(&c->scc[edge->dst->scc]))
5914 continue;
5915 if (c->scc_cluster[edge->dst->scc] ==
5916 c->scc_cluster[edge->src->scc])
5917 continue;
5919 hull = isl_map_affine_hull(isl_map_copy(edge->map));
5920 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
5921 isl_mat_copy(src->ctrans));
5922 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
5923 isl_mat_copy(dst->ctrans));
5924 hull = isl_basic_map_project_out(hull,
5925 isl_dim_in, 0, src->rank);
5926 hull = isl_basic_map_project_out(hull,
5927 isl_dim_out, 0, dst->rank);
5928 hull = isl_basic_map_remove_divs(hull);
5929 n_in = isl_basic_map_dim(hull, isl_dim_in);
5930 n_out = isl_basic_map_dim(hull, isl_dim_out);
5931 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
5932 isl_dim_in, 0, n_in);
5933 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
5934 isl_dim_out, 0, n_out);
5935 if (!hull)
5936 return isl_stat_error;
5937 edge->weight = hull->n_eq;
5938 isl_basic_map_free(hull);
5940 if (edge->weight > graph->max_weight)
5941 graph->max_weight = edge->weight;
5944 return isl_stat_ok;
5947 /* Call compute_schedule_finish_band on each of the clusters in "c"
5948 * in their topological order. This order is determined by the scc
5949 * fields of the nodes in "graph".
5950 * Combine the results in a sequence expressing the topological order.
5952 * If there is only one cluster left, then there is no need to introduce
5953 * a sequence node. Also, in this case, the cluster necessarily contains
5954 * the SCC at position 0 in the original graph and is therefore also
5955 * stored in the first cluster of "c".
5957 static __isl_give isl_schedule_node *finish_bands_clustering(
5958 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5959 struct isl_clustering *c)
5961 int i;
5962 isl_ctx *ctx;
5963 isl_union_set_list *filters;
5965 if (graph->scc == 1)
5966 return compute_schedule_finish_band(node, &c->cluster[0], 0);
5968 ctx = isl_schedule_node_get_ctx(node);
5970 filters = extract_sccs(ctx, graph);
5971 node = isl_schedule_node_insert_sequence(node, filters);
5973 for (i = 0; i < graph->scc; ++i) {
5974 int j = c->scc_cluster[i];
5975 node = isl_schedule_node_child(node, i);
5976 node = isl_schedule_node_child(node, 0);
5977 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
5978 node = isl_schedule_node_parent(node);
5979 node = isl_schedule_node_parent(node);
5982 return node;
5985 /* Compute a schedule for a connected dependence graph by first considering
5986 * each strongly connected component (SCC) in the graph separately and then
5987 * incrementally combining them into clusters.
5988 * Return the updated schedule node.
5990 * Initially, each cluster consists of a single SCC, each with its
5991 * own band schedule. The algorithm then tries to merge pairs
5992 * of clusters along a proximity edge until no more suitable
5993 * proximity edges can be found. During this merging, the schedule
5994 * is maintained in the individual SCCs.
5995 * After the merging is completed, the full resulting clusters
5996 * are extracted and in finish_bands_clustering,
5997 * compute_schedule_finish_band is called on each of them to integrate
5998 * the band into "node" and to continue the computation.
6000 * compute_weights initializes the weights that are used by find_proximity.
6002 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6003 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6005 isl_ctx *ctx;
6006 struct isl_clustering c;
6007 int i;
6009 ctx = isl_schedule_node_get_ctx(node);
6011 if (clustering_init(ctx, &c, graph) < 0)
6012 goto error;
6014 if (compute_weights(graph, &c) < 0)
6015 goto error;
6017 for (;;) {
6018 i = find_proximity(graph, &c);
6019 if (i < 0)
6020 goto error;
6021 if (i >= graph->n_edge)
6022 break;
6023 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6024 goto error;
6027 if (extract_clusters(ctx, graph, &c) < 0)
6028 goto error;
6030 node = finish_bands_clustering(node, graph, &c);
6032 clustering_free(ctx, &c);
6033 return node;
6034 error:
6035 clustering_free(ctx, &c);
6036 return isl_schedule_node_free(node);
6039 /* Compute a schedule for a connected dependence graph and return
6040 * the updated schedule node.
6042 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6043 * as many validity dependences as possible. When all validity dependences
6044 * are satisfied we extend the schedule to a full-dimensional schedule.
6046 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6047 * depending on whether the user has selected the option to try and
6048 * compute a schedule for the entire (weakly connected) component first.
6049 * If there is only a single strongly connected component (SCC), then
6050 * there is no point in trying to combine SCCs
6051 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6052 * is called instead.
6054 static __isl_give isl_schedule_node *compute_schedule_wcc(
6055 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6057 isl_ctx *ctx;
6059 if (!node)
6060 return NULL;
6062 ctx = isl_schedule_node_get_ctx(node);
6063 if (detect_sccs(ctx, graph) < 0)
6064 return isl_schedule_node_free(node);
6066 if (compute_maxvar(graph) < 0)
6067 return isl_schedule_node_free(node);
6069 if (need_feautrier_step(ctx, graph))
6070 return compute_schedule_wcc_feautrier(node, graph);
6072 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6073 return compute_schedule_wcc_whole(node, graph);
6074 else
6075 return compute_schedule_wcc_clustering(node, graph);
6078 /* Compute a schedule for each group of nodes identified by node->scc
6079 * separately and then combine them in a sequence node (or as set node
6080 * if graph->weak is set) inserted at position "node" of the schedule tree.
6081 * Return the updated schedule node.
6083 * If "wcc" is set then each of the groups belongs to a single
6084 * weakly connected component in the dependence graph so that
6085 * there is no need for compute_sub_schedule to look for weakly
6086 * connected components.
6088 static __isl_give isl_schedule_node *compute_component_schedule(
6089 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6090 int wcc)
6092 int component;
6093 isl_ctx *ctx;
6094 isl_union_set_list *filters;
6096 if (!node)
6097 return NULL;
6098 ctx = isl_schedule_node_get_ctx(node);
6100 filters = extract_sccs(ctx, graph);
6101 if (graph->weak)
6102 node = isl_schedule_node_insert_set(node, filters);
6103 else
6104 node = isl_schedule_node_insert_sequence(node, filters);
6106 for (component = 0; component < graph->scc; ++component) {
6107 node = isl_schedule_node_child(node, component);
6108 node = isl_schedule_node_child(node, 0);
6109 node = compute_sub_schedule(node, ctx, graph,
6110 &node_scc_exactly,
6111 &edge_scc_exactly, component, wcc);
6112 node = isl_schedule_node_parent(node);
6113 node = isl_schedule_node_parent(node);
6116 return node;
6119 /* Compute a schedule for the given dependence graph and insert it at "node".
6120 * Return the updated schedule node.
6122 * We first check if the graph is connected (through validity and conditional
6123 * validity dependences) and, if not, compute a schedule
6124 * for each component separately.
6125 * If the schedule_serialize_sccs option is set, then we check for strongly
6126 * connected components instead and compute a separate schedule for
6127 * each such strongly connected component.
6129 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6130 struct isl_sched_graph *graph)
6132 isl_ctx *ctx;
6134 if (!node)
6135 return NULL;
6137 ctx = isl_schedule_node_get_ctx(node);
6138 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6139 if (detect_sccs(ctx, graph) < 0)
6140 return isl_schedule_node_free(node);
6141 } else {
6142 if (detect_wccs(ctx, graph) < 0)
6143 return isl_schedule_node_free(node);
6146 if (graph->scc > 1)
6147 return compute_component_schedule(node, graph, 1);
6149 return compute_schedule_wcc(node, graph);
6152 /* Compute a schedule on sc->domain that respects the given schedule
6153 * constraints.
6155 * In particular, the schedule respects all the validity dependences.
6156 * If the default isl scheduling algorithm is used, it tries to minimize
6157 * the dependence distances over the proximity dependences.
6158 * If Feautrier's scheduling algorithm is used, the proximity dependence
6159 * distances are only minimized during the extension to a full-dimensional
6160 * schedule.
6162 * If there are any condition and conditional validity dependences,
6163 * then the conditional validity dependences may be violated inside
6164 * a tilable band, provided they have no adjacent non-local
6165 * condition dependences.
6167 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6168 __isl_take isl_schedule_constraints *sc)
6170 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6171 struct isl_sched_graph graph = { 0 };
6172 isl_schedule *sched;
6173 isl_schedule_node *node;
6174 isl_union_set *domain;
6176 sc = isl_schedule_constraints_align_params(sc);
6178 domain = isl_schedule_constraints_get_domain(sc);
6179 if (isl_union_set_n_set(domain) == 0) {
6180 isl_schedule_constraints_free(sc);
6181 return isl_schedule_from_domain(domain);
6184 if (graph_init(&graph, sc) < 0)
6185 domain = isl_union_set_free(domain);
6187 node = isl_schedule_node_from_domain(domain);
6188 node = isl_schedule_node_child(node, 0);
6189 if (graph.n > 0)
6190 node = compute_schedule(node, &graph);
6191 sched = isl_schedule_node_get_schedule(node);
6192 isl_schedule_node_free(node);
6194 graph_free(ctx, &graph);
6195 isl_schedule_constraints_free(sc);
6197 return sched;
6200 /* Compute a schedule for the given union of domains that respects
6201 * all the validity dependences and minimizes
6202 * the dependence distances over the proximity dependences.
6204 * This function is kept for backward compatibility.
6206 __isl_give isl_schedule *isl_union_set_compute_schedule(
6207 __isl_take isl_union_set *domain,
6208 __isl_take isl_union_map *validity,
6209 __isl_take isl_union_map *proximity)
6211 isl_schedule_constraints *sc;
6213 sc = isl_schedule_constraints_on_domain(domain);
6214 sc = isl_schedule_constraints_set_validity(sc, validity);
6215 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6217 return isl_schedule_constraints_compute_schedule(sc);