isl_convex_hull.c: explicitly mark wrapping lp problem as rational
[isl.git] / isl_range.c
blob359ae28db6b1ca7901b24db506ad5d0373bfc9ff
1 #include <isl/constraint.h>
2 #include <isl/set.h>
3 #include <isl_polynomial_private.h>
4 #include <isl_morph.h>
5 #include <isl_range.h>
7 struct range_data {
8 struct isl_bound *bound;
9 int *signs;
10 int sign;
11 int test_monotonicity;
12 int monotonicity;
13 int tight;
14 isl_qpolynomial *poly;
15 isl_pw_qpolynomial_fold *pwf;
16 isl_pw_qpolynomial_fold *pwf_tight;
19 static int propagate_on_domain(__isl_take isl_basic_set *bset,
20 __isl_take isl_qpolynomial *poly, struct range_data *data);
22 /* Check whether the polynomial "poly" has sign "sign" over "bset",
23 * i.e., if sign == 1, check that the lower bound on the polynomial
24 * is non-negative and if sign == -1, check that the upper bound on
25 * the polynomial is non-positive.
27 static int has_sign(__isl_keep isl_basic_set *bset,
28 __isl_keep isl_qpolynomial *poly, int sign, int *signs)
30 struct range_data data_m;
31 unsigned nvar;
32 unsigned nparam;
33 isl_dim *dim;
34 isl_qpolynomial *opt;
35 int r;
36 enum isl_fold type;
38 nparam = isl_basic_set_dim(bset, isl_dim_param);
39 nvar = isl_basic_set_dim(bset, isl_dim_set);
41 bset = isl_basic_set_copy(bset);
42 poly = isl_qpolynomial_copy(poly);
44 bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
45 isl_dim_param, 0, nparam);
46 poly = isl_qpolynomial_move_dims(poly, isl_dim_set, 0,
47 isl_dim_param, 0, nparam);
49 dim = isl_qpolynomial_get_dim(poly);
50 dim = isl_dim_drop(dim, isl_dim_set, 0, isl_dim_size(dim, isl_dim_set));
52 data_m.test_monotonicity = 0;
53 data_m.signs = signs;
54 data_m.sign = -sign;
55 type = data_m.sign < 0 ? isl_fold_min : isl_fold_max;
56 data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type);
57 data_m.tight = 0;
58 data_m.pwf_tight = NULL;
60 if (propagate_on_domain(bset, poly, &data_m) < 0)
61 goto error;
63 if (sign > 0)
64 opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
65 else
66 opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
68 if (!opt)
69 r = -1;
70 else if (isl_qpolynomial_is_nan(opt) ||
71 isl_qpolynomial_is_infty(opt) ||
72 isl_qpolynomial_is_neginfty(opt))
73 r = 0;
74 else
75 r = sign * isl_qpolynomial_sgn(opt) >= 0;
77 isl_qpolynomial_free(opt);
79 return r;
80 error:
81 isl_pw_qpolynomial_fold_free(data_m.pwf);
82 return -1;
85 /* Return 1 if poly is monotonically increasing in the last set variable,
86 * -1 if poly is monotonically decreasing in the last set variable,
87 * 0 if no conclusion,
88 * -2 on error.
90 * We simply check the sign of p(x+1)-p(x)
92 static int monotonicity(__isl_keep isl_basic_set *bset,
93 __isl_keep isl_qpolynomial *poly, struct range_data *data)
95 isl_ctx *ctx;
96 isl_dim *dim;
97 isl_qpolynomial *sub = NULL;
98 isl_qpolynomial *diff = NULL;
99 int result = 0;
100 int s;
101 unsigned nvar;
103 ctx = isl_qpolynomial_get_ctx(poly);
104 dim = isl_qpolynomial_get_dim(poly);
106 nvar = isl_basic_set_dim(bset, isl_dim_set);
108 sub = isl_qpolynomial_var(isl_dim_copy(dim), isl_dim_set, nvar - 1);
109 sub = isl_qpolynomial_add(sub,
110 isl_qpolynomial_rat_cst(dim, ctx->one, ctx->one));
112 diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
113 isl_dim_set, nvar - 1, 1, &sub);
114 diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
116 s = has_sign(bset, diff, 1, data->signs);
117 if (s < 0)
118 goto error;
119 if (s)
120 result = 1;
121 else {
122 s = has_sign(bset, diff, -1, data->signs);
123 if (s < 0)
124 goto error;
125 if (s)
126 result = -1;
129 isl_qpolynomial_free(diff);
130 isl_qpolynomial_free(sub);
132 return result;
133 error:
134 isl_qpolynomial_free(diff);
135 isl_qpolynomial_free(sub);
136 return -2;
139 static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
140 __isl_take isl_dim *dim, unsigned pos, int sign)
142 if (!bound) {
143 if (sign > 0)
144 return isl_qpolynomial_infty(dim);
145 else
146 return isl_qpolynomial_neginfty(dim);
148 isl_dim_free(dim);
149 return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
152 static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos)
154 isl_int c;
155 int is_int;
157 if (!bound)
158 return 1;
160 isl_int_init(c);
161 isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
162 is_int = isl_int_is_one(c) || isl_int_is_negone(c);
163 isl_int_clear(c);
165 return is_int;
168 struct isl_fixed_sign_data {
169 int *signs;
170 int sign;
171 isl_qpolynomial *poly;
174 /* Add term "term" to data->poly if it has sign data->sign.
175 * The sign is determined based on the signs of the parameters
176 * and variables in data->signs. The integer divisions, if
177 * any, are assumed to be non-negative.
179 static int collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
181 struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
182 isl_int n;
183 int i;
184 int sign;
185 unsigned nparam;
186 unsigned nvar;
188 if (!term)
189 return -1;
191 nparam = isl_term_dim(term, isl_dim_param);
192 nvar = isl_term_dim(term, isl_dim_set);
194 isl_int_init(n);
196 isl_term_get_num(term, &n);
198 sign = isl_int_sgn(n);
199 for (i = 0; i < nparam; ++i) {
200 if (data->signs[i] > 0)
201 continue;
202 if (isl_term_get_exp(term, isl_dim_param, i) % 2)
203 sign = -sign;
205 for (i = 0; i < nvar; ++i) {
206 if (data->signs[nparam + i] > 0)
207 continue;
208 if (isl_term_get_exp(term, isl_dim_set, i) % 2)
209 sign = -sign;
212 if (sign == data->sign) {
213 isl_qpolynomial *t = isl_qpolynomial_from_term(term);
215 data->poly = isl_qpolynomial_add(data->poly, t);
216 } else
217 isl_term_free(term);
219 isl_int_clear(n);
221 return 0;
224 /* Construct and return a polynomial that consists of the terms
225 * in "poly" that have sign "sign". The integer divisions, if
226 * any, are assumed to be non-negative.
228 __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign(
229 __isl_keep isl_qpolynomial *poly, int *signs, int sign)
231 struct isl_fixed_sign_data data = { signs, sign };
232 data.poly = isl_qpolynomial_zero(isl_qpolynomial_get_dim(poly));
234 if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
235 goto error;
237 return data.poly;
238 error:
239 isl_qpolynomial_free(data.poly);
240 return NULL;
243 /* Helper function to add a guarded polynomial to either pwf_tight or pwf,
244 * depending on whether the result has been determined to be tight.
246 static int add_guarded_poly(__isl_take isl_basic_set *bset,
247 __isl_take isl_qpolynomial *poly, struct range_data *data)
249 enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
250 isl_set *set;
251 isl_qpolynomial_fold *fold;
252 isl_pw_qpolynomial_fold *pwf;
254 fold = isl_qpolynomial_fold_alloc(type, poly);
255 set = isl_set_from_basic_set(bset);
256 pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold);
257 if (data->tight)
258 data->pwf_tight = isl_pw_qpolynomial_fold_fold(
259 data->pwf_tight, pwf);
260 else
261 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
263 return 0;
266 /* Given a lower and upper bound on the final variable and constraints
267 * on the remaining variables where these bounds are active,
268 * eliminate the variable from data->poly based on these bounds.
269 * If the polynomial has been determined to be monotonic
270 * in the variable, then simply plug in the appropriate bound.
271 * If the current polynomial is tight and if this bound is integer,
272 * then the result is still tight. In all other cases, the results
273 * may not be tight.
274 * Otherwise, plug in the largest bound (in absolute value) in
275 * the positive terms (if an upper bound is wanted) or the negative terms
276 * (if a lower bounded is wanted) and the other bound in the other terms.
278 * If all variables have been eliminated, then record the result.
279 * Ohterwise, recurse on the next variable.
281 static int propagate_on_bound_pair(__isl_take isl_constraint *lower,
282 __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
283 void *user)
285 struct range_data *data = (struct range_data *)user;
286 int save_tight = data->tight;
287 isl_qpolynomial *poly;
288 int r;
289 unsigned nvar;
291 nvar = isl_basic_set_dim(bset, isl_dim_set);
293 if (data->monotonicity) {
294 isl_qpolynomial *sub;
295 isl_dim *dim = isl_qpolynomial_get_dim(data->poly);
296 if (data->monotonicity * data->sign > 0) {
297 if (data->tight)
298 data->tight = bound_is_integer(upper, nvar);
299 sub = bound2poly(upper, dim, nvar, 1);
300 isl_constraint_free(lower);
301 } else {
302 if (data->tight)
303 data->tight = bound_is_integer(lower, nvar);
304 sub = bound2poly(lower, dim, nvar, -1);
305 isl_constraint_free(upper);
307 poly = isl_qpolynomial_copy(data->poly);
308 poly = isl_qpolynomial_substitute(poly, isl_dim_set, nvar, 1, &sub);
309 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, nvar, 1);
311 isl_qpolynomial_free(sub);
312 } else {
313 isl_qpolynomial *l, *u;
314 isl_qpolynomial *pos, *neg;
315 isl_dim *dim = isl_qpolynomial_get_dim(data->poly);
316 unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
317 int sign = data->sign * data->signs[nparam + nvar];
319 data->tight = 0;
321 u = bound2poly(upper, isl_dim_copy(dim), nvar, 1);
322 l = bound2poly(lower, dim, nvar, -1);
324 pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
325 neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);
327 pos = isl_qpolynomial_substitute(pos, isl_dim_set, nvar, 1, &u);
328 neg = isl_qpolynomial_substitute(neg, isl_dim_set, nvar, 1, &l);
330 poly = isl_qpolynomial_add(pos, neg);
331 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, nvar, 1);
333 isl_qpolynomial_free(u);
334 isl_qpolynomial_free(l);
337 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
338 r = add_guarded_poly(bset, poly, data);
339 else
340 r = propagate_on_domain(bset, poly, data);
342 data->tight = save_tight;
344 return r;
347 /* Recursively perform range propagation on the polynomial "poly"
348 * defined over the basic set "bset" and collect the results in "data".
350 static int propagate_on_domain(__isl_take isl_basic_set *bset,
351 __isl_take isl_qpolynomial *poly, struct range_data *data)
353 isl_ctx *ctx;
354 isl_qpolynomial *save_poly = data->poly;
355 int save_monotonicity = data->monotonicity;
356 unsigned d;
358 if (!bset || !poly)
359 goto error;
361 ctx = isl_basic_set_get_ctx(bset);
362 d = isl_basic_set_dim(bset, isl_dim_set);
363 isl_assert(ctx, d >= 1, goto error);
365 if (isl_qpolynomial_is_cst(poly, NULL, NULL)) {
366 bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
367 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, d);
368 return add_guarded_poly(bset, poly, data);
371 if (data->test_monotonicity)
372 data->monotonicity = monotonicity(bset, poly, data);
373 else
374 data->monotonicity = 0;
375 if (data->monotonicity < -1)
376 goto error;
378 data->poly = poly;
379 if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
380 &propagate_on_bound_pair, data) < 0)
381 goto error;
383 isl_basic_set_free(bset);
384 isl_qpolynomial_free(poly);
385 data->monotonicity = save_monotonicity;
386 data->poly = save_poly;
388 return 0;
389 error:
390 isl_basic_set_free(bset);
391 isl_qpolynomial_free(poly);
392 data->monotonicity = save_monotonicity;
393 data->poly = save_poly;
394 return -1;
397 static int basic_guarded_poly_bound(__isl_take isl_basic_set *bset, void *user)
399 struct range_data *data = (struct range_data *)user;
400 isl_ctx *ctx;
401 unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
402 unsigned dim = isl_basic_set_dim(bset, isl_dim_set);
403 int r;
405 data->signs = NULL;
407 ctx = isl_basic_set_get_ctx(bset);
408 data->signs = isl_alloc_array(ctx, int,
409 isl_basic_set_dim(bset, isl_dim_all));
411 if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
412 data->signs + nparam) < 0)
413 goto error;
414 if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
415 data->signs) < 0)
416 goto error;
418 r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
420 free(data->signs);
422 return r;
423 error:
424 free(data->signs);
425 isl_basic_set_free(bset);
426 return -1;
429 static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
430 __isl_take isl_qpolynomial *poly, struct range_data *data)
432 unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
433 unsigned nvar = isl_basic_set_dim(bset, isl_dim_set);
434 isl_set *set;
436 if (!bset)
437 goto error;
439 if (nvar == 0)
440 return add_guarded_poly(bset, poly, data);
442 set = isl_set_from_basic_set(bset);
443 set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
444 set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
446 data->poly = poly;
448 data->test_monotonicity = 1;
449 if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
450 goto error;
452 isl_set_free(set);
453 isl_qpolynomial_free(poly);
455 return 0;
456 error:
457 isl_set_free(set);
458 isl_qpolynomial_free(poly);
459 return -1;
462 int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
463 __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
465 struct range_data data;
466 int r;
468 data.pwf = bound->pwf;
469 data.pwf_tight = bound->pwf_tight;
470 data.tight = bound->check_tight;
471 if (bound->type == isl_fold_min)
472 data.sign = -1;
473 else
474 data.sign = 1;
476 r = qpolynomial_bound_on_domain_range(bset, poly, &data);
478 bound->pwf = data.pwf;
479 bound->pwf_tight = data.pwf_tight;
481 return r;