isl_scheduler.c: split_scaled: reuse compute_component_schedule
[isl.git] / isl_map_simplify.c
blobfdde7308288fc9fef11303f8bb0ac16de89b30f8
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
15 #include <strings.h>
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
19 #include <isl/map.h>
20 #include <isl_seq.h>
21 #include "isl_tab.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
28 isl_int *t = bmap->eq[a];
29 bmap->eq[a] = bmap->eq[b];
30 bmap->eq[b] = t;
33 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
35 if (a != b) {
36 isl_int *t = bmap->ineq[a];
37 bmap->ineq[a] = bmap->ineq[b];
38 bmap->ineq[b] = t;
42 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
44 isl_seq_cpy(c, c + n, rem);
45 isl_seq_clr(c + rem, n);
48 /* Drop n dimensions starting at first.
50 * In principle, this frees up some extra variables as the number
51 * of columns remains constant, but we would have to extend
52 * the div array too as the number of rows in this array is assumed
53 * to be equal to extra.
55 struct isl_basic_set *isl_basic_set_drop_dims(
56 struct isl_basic_set *bset, unsigned first, unsigned n)
58 int i;
60 if (!bset)
61 goto error;
63 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
65 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
66 return bset;
68 bset = isl_basic_set_cow(bset);
69 if (!bset)
70 return NULL;
72 for (i = 0; i < bset->n_eq; ++i)
73 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_ineq; ++i)
77 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 for (i = 0; i < bset->n_div; ++i)
81 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
82 (bset->dim->n_out-first-n)+bset->extra);
84 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
85 if (!bset->dim)
86 goto error;
88 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
89 bset = isl_basic_set_simplify(bset);
90 return isl_basic_set_finalize(bset);
91 error:
92 isl_basic_set_free(bset);
93 return NULL;
96 struct isl_set *isl_set_drop_dims(
97 struct isl_set *set, unsigned first, unsigned n)
99 int i;
101 if (!set)
102 goto error;
104 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
106 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
107 return set;
108 set = isl_set_cow(set);
109 if (!set)
110 goto error;
111 set->dim = isl_space_drop_outputs(set->dim, first, n);
112 if (!set->dim)
113 goto error;
115 for (i = 0; i < set->n; ++i) {
116 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
117 if (!set->p[i])
118 goto error;
121 ISL_F_CLR(set, ISL_SET_NORMALIZED);
122 return set;
123 error:
124 isl_set_free(set);
125 return NULL;
128 /* Move "n" divs starting at "first" to the end of the list of divs.
130 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
131 unsigned first, unsigned n)
133 isl_int **div;
134 int i;
136 if (first + n == bmap->n_div)
137 return bmap;
139 div = isl_alloc_array(bmap->ctx, isl_int *, n);
140 if (!div)
141 goto error;
142 for (i = 0; i < n; ++i)
143 div[i] = bmap->div[first + i];
144 for (i = 0; i < bmap->n_div - first - n; ++i)
145 bmap->div[first + i] = bmap->div[first + n + i];
146 for (i = 0; i < n; ++i)
147 bmap->div[bmap->n_div - n + i] = div[i];
148 free(div);
149 return bmap;
150 error:
151 isl_basic_map_free(bmap);
152 return NULL;
155 /* Drop "n" dimensions of type "type" starting at "first".
157 * In principle, this frees up some extra variables as the number
158 * of columns remains constant, but we would have to extend
159 * the div array too as the number of rows in this array is assumed
160 * to be equal to extra.
162 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
163 enum isl_dim_type type, unsigned first, unsigned n)
165 int i;
166 unsigned dim;
167 unsigned offset;
168 unsigned left;
170 if (!bmap)
171 goto error;
173 dim = isl_basic_map_dim(bmap, type);
174 isl_assert(bmap->ctx, first + n <= dim, goto error);
176 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
177 return bmap;
179 bmap = isl_basic_map_cow(bmap);
180 if (!bmap)
181 return NULL;
183 offset = isl_basic_map_offset(bmap, type) + first;
184 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
185 for (i = 0; i < bmap->n_eq; ++i)
186 constraint_drop_vars(bmap->eq[i]+offset, n, left);
188 for (i = 0; i < bmap->n_ineq; ++i)
189 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
191 for (i = 0; i < bmap->n_div; ++i)
192 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
194 if (type == isl_dim_div) {
195 bmap = move_divs_last(bmap, first, n);
196 if (!bmap)
197 goto error;
198 isl_basic_map_free_div(bmap, n);
199 } else
200 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
201 if (!bmap->dim)
202 goto error;
204 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
205 bmap = isl_basic_map_simplify(bmap);
206 return isl_basic_map_finalize(bmap);
207 error:
208 isl_basic_map_free(bmap);
209 return NULL;
212 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
213 enum isl_dim_type type, unsigned first, unsigned n)
215 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
216 type, first, n);
219 struct isl_basic_map *isl_basic_map_drop_inputs(
220 struct isl_basic_map *bmap, unsigned first, unsigned n)
222 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
225 struct isl_map *isl_map_drop(struct isl_map *map,
226 enum isl_dim_type type, unsigned first, unsigned n)
228 int i;
230 if (!map)
231 goto error;
233 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
235 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
236 return map;
237 map = isl_map_cow(map);
238 if (!map)
239 goto error;
240 map->dim = isl_space_drop_dims(map->dim, type, first, n);
241 if (!map->dim)
242 goto error;
244 for (i = 0; i < map->n; ++i) {
245 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
246 if (!map->p[i])
247 goto error;
249 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
251 return map;
252 error:
253 isl_map_free(map);
254 return NULL;
257 struct isl_set *isl_set_drop(struct isl_set *set,
258 enum isl_dim_type type, unsigned first, unsigned n)
260 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
263 struct isl_map *isl_map_drop_inputs(
264 struct isl_map *map, unsigned first, unsigned n)
266 return isl_map_drop(map, isl_dim_in, first, n);
270 * We don't cow, as the div is assumed to be redundant.
272 static struct isl_basic_map *isl_basic_map_drop_div(
273 struct isl_basic_map *bmap, unsigned div)
275 int i;
276 unsigned pos;
278 if (!bmap)
279 goto error;
281 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
283 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
285 for (i = 0; i < bmap->n_eq; ++i)
286 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
288 for (i = 0; i < bmap->n_ineq; ++i) {
289 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
290 isl_basic_map_drop_inequality(bmap, i);
291 --i;
292 continue;
294 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
297 for (i = 0; i < bmap->n_div; ++i)
298 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
300 if (div != bmap->n_div - 1) {
301 int j;
302 isl_int *t = bmap->div[div];
304 for (j = div; j < bmap->n_div - 1; ++j)
305 bmap->div[j] = bmap->div[j+1];
307 bmap->div[bmap->n_div - 1] = t;
309 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
310 isl_basic_map_free_div(bmap, 1);
312 return bmap;
313 error:
314 isl_basic_map_free(bmap);
315 return NULL;
318 struct isl_basic_map *isl_basic_map_normalize_constraints(
319 struct isl_basic_map *bmap)
321 int i;
322 isl_int gcd;
323 unsigned total = isl_basic_map_total_dim(bmap);
325 if (!bmap)
326 return NULL;
328 isl_int_init(gcd);
329 for (i = bmap->n_eq - 1; i >= 0; --i) {
330 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
331 if (isl_int_is_zero(gcd)) {
332 if (!isl_int_is_zero(bmap->eq[i][0])) {
333 bmap = isl_basic_map_set_to_empty(bmap);
334 break;
336 isl_basic_map_drop_equality(bmap, i);
337 continue;
339 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
340 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
341 if (isl_int_is_one(gcd))
342 continue;
343 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
344 bmap = isl_basic_map_set_to_empty(bmap);
345 break;
347 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
350 for (i = bmap->n_ineq - 1; i >= 0; --i) {
351 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
352 if (isl_int_is_zero(gcd)) {
353 if (isl_int_is_neg(bmap->ineq[i][0])) {
354 bmap = isl_basic_map_set_to_empty(bmap);
355 break;
357 isl_basic_map_drop_inequality(bmap, i);
358 continue;
360 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
361 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
362 if (isl_int_is_one(gcd))
363 continue;
364 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
365 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
367 isl_int_clear(gcd);
369 return bmap;
372 struct isl_basic_set *isl_basic_set_normalize_constraints(
373 struct isl_basic_set *bset)
375 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
376 (struct isl_basic_map *)bset);
379 /* Remove any common factor in numerator and denominator of the div expression,
380 * not taking into account the constant term.
381 * That is, if the div is of the form
383 * floor((a + m f(x))/(m d))
385 * then replace it by
387 * floor((floor(a/m) + f(x))/d)
389 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
390 * and can therefore not influence the result of the floor.
392 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
394 unsigned total = isl_basic_map_total_dim(bmap);
395 isl_ctx *ctx = bmap->ctx;
397 if (isl_int_is_zero(bmap->div[div][0]))
398 return;
399 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
400 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
401 if (isl_int_is_one(ctx->normalize_gcd))
402 return;
403 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
404 ctx->normalize_gcd);
405 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
406 ctx->normalize_gcd);
407 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
408 ctx->normalize_gcd, total);
411 /* Remove any common factor in numerator and denominator of a div expression,
412 * not taking into account the constant term.
413 * That is, look for any div of the form
415 * floor((a + m f(x))/(m d))
417 * and replace it by
419 * floor((floor(a/m) + f(x))/d)
421 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
422 * and can therefore not influence the result of the floor.
424 static __isl_give isl_basic_map *normalize_div_expressions(
425 __isl_take isl_basic_map *bmap)
427 int i;
429 if (!bmap)
430 return NULL;
431 if (bmap->n_div == 0)
432 return bmap;
434 for (i = 0; i < bmap->n_div; ++i)
435 normalize_div_expression(bmap, i);
437 return bmap;
440 /* Assumes divs have been ordered if keep_divs is set.
442 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
443 unsigned pos, isl_int *eq, int keep_divs, int *progress)
445 unsigned total;
446 unsigned space_total;
447 int k;
448 int last_div;
450 total = isl_basic_map_total_dim(bmap);
451 space_total = isl_space_dim(bmap->dim, isl_dim_all);
452 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
453 for (k = 0; k < bmap->n_eq; ++k) {
454 if (bmap->eq[k] == eq)
455 continue;
456 if (isl_int_is_zero(bmap->eq[k][1+pos]))
457 continue;
458 if (progress)
459 *progress = 1;
460 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
461 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
464 for (k = 0; k < bmap->n_ineq; ++k) {
465 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
466 continue;
467 if (progress)
468 *progress = 1;
469 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
470 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
471 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
474 for (k = 0; k < bmap->n_div; ++k) {
475 if (isl_int_is_zero(bmap->div[k][0]))
476 continue;
477 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
478 continue;
479 if (progress)
480 *progress = 1;
481 /* We need to be careful about circular definitions,
482 * so for now we just remove the definition of div k
483 * if the equality contains any divs.
484 * If keep_divs is set, then the divs have been ordered
485 * and we can keep the definition as long as the result
486 * is still ordered.
488 if (last_div == -1 || (keep_divs && last_div < k)) {
489 isl_seq_elim(bmap->div[k]+1, eq,
490 1+pos, 1+total, &bmap->div[k][0]);
491 normalize_div_expression(bmap, k);
492 } else
493 isl_seq_clr(bmap->div[k], 1 + total);
494 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
498 /* Assumes divs have been ordered if keep_divs is set.
500 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
501 unsigned div, int keep_divs)
503 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
505 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
507 isl_basic_map_drop_div(bmap, div);
510 /* Check if elimination of div "div" using equality "eq" would not
511 * result in a div depending on a later div.
513 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
514 unsigned div)
516 int k;
517 int last_div;
518 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
519 unsigned pos = space_total + div;
521 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
522 if (last_div < 0 || last_div <= div)
523 return 1;
525 for (k = 0; k <= last_div; ++k) {
526 if (isl_int_is_zero(bmap->div[k][0]))
527 return 1;
528 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
529 return 0;
532 return 1;
535 /* Elimininate divs based on equalities
537 static struct isl_basic_map *eliminate_divs_eq(
538 struct isl_basic_map *bmap, int *progress)
540 int d;
541 int i;
542 int modified = 0;
543 unsigned off;
545 bmap = isl_basic_map_order_divs(bmap);
547 if (!bmap)
548 return NULL;
550 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
552 for (d = bmap->n_div - 1; d >= 0 ; --d) {
553 for (i = 0; i < bmap->n_eq; ++i) {
554 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
555 !isl_int_is_negone(bmap->eq[i][off + d]))
556 continue;
557 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
558 continue;
559 modified = 1;
560 *progress = 1;
561 eliminate_div(bmap, bmap->eq[i], d, 1);
562 isl_basic_map_drop_equality(bmap, i);
563 break;
566 if (modified)
567 return eliminate_divs_eq(bmap, progress);
568 return bmap;
571 /* Elimininate divs based on inequalities
573 static struct isl_basic_map *eliminate_divs_ineq(
574 struct isl_basic_map *bmap, int *progress)
576 int d;
577 int i;
578 unsigned off;
579 struct isl_ctx *ctx;
581 if (!bmap)
582 return NULL;
584 ctx = bmap->ctx;
585 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
587 for (d = bmap->n_div - 1; d >= 0 ; --d) {
588 for (i = 0; i < bmap->n_eq; ++i)
589 if (!isl_int_is_zero(bmap->eq[i][off + d]))
590 break;
591 if (i < bmap->n_eq)
592 continue;
593 for (i = 0; i < bmap->n_ineq; ++i)
594 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
595 break;
596 if (i < bmap->n_ineq)
597 continue;
598 *progress = 1;
599 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
600 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
601 break;
602 bmap = isl_basic_map_drop_div(bmap, d);
603 if (!bmap)
604 break;
606 return bmap;
609 struct isl_basic_map *isl_basic_map_gauss(
610 struct isl_basic_map *bmap, int *progress)
612 int k;
613 int done;
614 int last_var;
615 unsigned total_var;
616 unsigned total;
618 bmap = isl_basic_map_order_divs(bmap);
620 if (!bmap)
621 return NULL;
623 total = isl_basic_map_total_dim(bmap);
624 total_var = total - bmap->n_div;
626 last_var = total - 1;
627 for (done = 0; done < bmap->n_eq; ++done) {
628 for (; last_var >= 0; --last_var) {
629 for (k = done; k < bmap->n_eq; ++k)
630 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
631 break;
632 if (k < bmap->n_eq)
633 break;
635 if (last_var < 0)
636 break;
637 if (k != done)
638 swap_equality(bmap, k, done);
639 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
640 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
642 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
643 progress);
645 if (last_var >= total_var &&
646 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
647 unsigned div = last_var - total_var;
648 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
649 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
650 isl_int_set(bmap->div[div][0],
651 bmap->eq[done][1+last_var]);
652 if (progress)
653 *progress = 1;
654 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
657 if (done == bmap->n_eq)
658 return bmap;
659 for (k = done; k < bmap->n_eq; ++k) {
660 if (isl_int_is_zero(bmap->eq[k][0]))
661 continue;
662 return isl_basic_map_set_to_empty(bmap);
664 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
665 return bmap;
668 struct isl_basic_set *isl_basic_set_gauss(
669 struct isl_basic_set *bset, int *progress)
671 return (struct isl_basic_set*)isl_basic_map_gauss(
672 (struct isl_basic_map *)bset, progress);
676 static unsigned int round_up(unsigned int v)
678 int old_v = v;
680 while (v) {
681 old_v = v;
682 v ^= v & -v;
684 return old_v << 1;
687 static int hash_index(isl_int ***index, unsigned int size, int bits,
688 struct isl_basic_map *bmap, int k)
690 int h;
691 unsigned total = isl_basic_map_total_dim(bmap);
692 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
693 for (h = hash; index[h]; h = (h+1) % size)
694 if (&bmap->ineq[k] != index[h] &&
695 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
696 break;
697 return h;
700 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
701 struct isl_basic_set *bset, int k)
703 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
706 /* If we can eliminate more than one div, then we need to make
707 * sure we do it from last div to first div, in order not to
708 * change the position of the other divs that still need to
709 * be removed.
711 static struct isl_basic_map *remove_duplicate_divs(
712 struct isl_basic_map *bmap, int *progress)
714 unsigned int size;
715 int *index;
716 int *elim_for;
717 int k, l, h;
718 int bits;
719 struct isl_blk eq;
720 unsigned total_var;
721 unsigned total;
722 struct isl_ctx *ctx;
724 bmap = isl_basic_map_order_divs(bmap);
725 if (!bmap || bmap->n_div <= 1)
726 return bmap;
728 total_var = isl_space_dim(bmap->dim, isl_dim_all);
729 total = total_var + bmap->n_div;
731 ctx = bmap->ctx;
732 for (k = bmap->n_div - 1; k >= 0; --k)
733 if (!isl_int_is_zero(bmap->div[k][0]))
734 break;
735 if (k <= 0)
736 return bmap;
738 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
739 size = round_up(4 * bmap->n_div / 3 - 1);
740 bits = ffs(size) - 1;
741 index = isl_calloc_array(ctx, int, size);
742 if (!index)
743 return bmap;
744 eq = isl_blk_alloc(ctx, 1+total);
745 if (isl_blk_is_error(eq))
746 goto out;
748 isl_seq_clr(eq.data, 1+total);
749 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
750 for (--k; k >= 0; --k) {
751 uint32_t hash;
753 if (isl_int_is_zero(bmap->div[k][0]))
754 continue;
756 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
757 for (h = hash; index[h]; h = (h+1) % size)
758 if (isl_seq_eq(bmap->div[k],
759 bmap->div[index[h]-1], 2+total))
760 break;
761 if (index[h]) {
762 *progress = 1;
763 l = index[h] - 1;
764 elim_for[l] = k + 1;
766 index[h] = k+1;
768 for (l = bmap->n_div - 1; l >= 0; --l) {
769 if (!elim_for[l])
770 continue;
771 k = elim_for[l] - 1;
772 isl_int_set_si(eq.data[1+total_var+k], -1);
773 isl_int_set_si(eq.data[1+total_var+l], 1);
774 eliminate_div(bmap, eq.data, l, 1);
775 isl_int_set_si(eq.data[1+total_var+k], 0);
776 isl_int_set_si(eq.data[1+total_var+l], 0);
779 isl_blk_free(ctx, eq);
780 out:
781 free(index);
782 free(elim_for);
783 return bmap;
786 static int n_pure_div_eq(struct isl_basic_map *bmap)
788 int i, j;
789 unsigned total;
791 total = isl_space_dim(bmap->dim, isl_dim_all);
792 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
793 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
794 --j;
795 if (j < 0)
796 break;
797 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
798 return 0;
800 return i;
803 /* Normalize divs that appear in equalities.
805 * In particular, we assume that bmap contains some equalities
806 * of the form
808 * a x = m * e_i
810 * and we want to replace the set of e_i by a minimal set and
811 * such that the new e_i have a canonical representation in terms
812 * of the vector x.
813 * If any of the equalities involves more than one divs, then
814 * we currently simply bail out.
816 * Let us first additionally assume that all equalities involve
817 * a div. The equalities then express modulo constraints on the
818 * remaining variables and we can use "parameter compression"
819 * to find a minimal set of constraints. The result is a transformation
821 * x = T(x') = x_0 + G x'
823 * with G a lower-triangular matrix with all elements below the diagonal
824 * non-negative and smaller than the diagonal element on the same row.
825 * We first normalize x_0 by making the same property hold in the affine
826 * T matrix.
827 * The rows i of G with a 1 on the diagonal do not impose any modulo
828 * constraint and simply express x_i = x'_i.
829 * For each of the remaining rows i, we introduce a div and a corresponding
830 * equality. In particular
832 * g_ii e_j = x_i - g_i(x')
834 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
835 * corresponding div (if g_kk != 1).
837 * If there are any equalities not involving any div, then we
838 * first apply a variable compression on the variables x:
840 * x = C x'' x'' = C_2 x
842 * and perform the above parameter compression on A C instead of on A.
843 * The resulting compression is then of the form
845 * x'' = T(x') = x_0 + G x'
847 * and in constructing the new divs and the corresponding equalities,
848 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
849 * by the corresponding row from C_2.
851 static struct isl_basic_map *normalize_divs(
852 struct isl_basic_map *bmap, int *progress)
854 int i, j, k;
855 int total;
856 int div_eq;
857 struct isl_mat *B;
858 struct isl_vec *d;
859 struct isl_mat *T = NULL;
860 struct isl_mat *C = NULL;
861 struct isl_mat *C2 = NULL;
862 isl_int v;
863 int *pos;
864 int dropped, needed;
866 if (!bmap)
867 return NULL;
869 if (bmap->n_div == 0)
870 return bmap;
872 if (bmap->n_eq == 0)
873 return bmap;
875 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
876 return bmap;
878 total = isl_space_dim(bmap->dim, isl_dim_all);
879 div_eq = n_pure_div_eq(bmap);
880 if (div_eq == 0)
881 return bmap;
883 if (div_eq < bmap->n_eq) {
884 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
885 bmap->n_eq - div_eq, 0, 1 + total);
886 C = isl_mat_variable_compression(B, &C2);
887 if (!C || !C2)
888 goto error;
889 if (C->n_col == 0) {
890 bmap = isl_basic_map_set_to_empty(bmap);
891 isl_mat_free(C);
892 isl_mat_free(C2);
893 goto done;
897 d = isl_vec_alloc(bmap->ctx, div_eq);
898 if (!d)
899 goto error;
900 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
901 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
902 --j;
903 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
905 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
907 if (C) {
908 B = isl_mat_product(B, C);
909 C = NULL;
912 T = isl_mat_parameter_compression(B, d);
913 if (!T)
914 goto error;
915 if (T->n_col == 0) {
916 bmap = isl_basic_map_set_to_empty(bmap);
917 isl_mat_free(C2);
918 isl_mat_free(T);
919 goto done;
921 isl_int_init(v);
922 for (i = 0; i < T->n_row - 1; ++i) {
923 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
924 if (isl_int_is_zero(v))
925 continue;
926 isl_mat_col_submul(T, 0, v, 1 + i);
928 isl_int_clear(v);
929 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
930 if (!pos)
931 goto error;
932 /* We have to be careful because dropping equalities may reorder them */
933 dropped = 0;
934 for (j = bmap->n_div - 1; j >= 0; --j) {
935 for (i = 0; i < bmap->n_eq; ++i)
936 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
937 break;
938 if (i < bmap->n_eq) {
939 bmap = isl_basic_map_drop_div(bmap, j);
940 isl_basic_map_drop_equality(bmap, i);
941 ++dropped;
944 pos[0] = 0;
945 needed = 0;
946 for (i = 1; i < T->n_row; ++i) {
947 if (isl_int_is_one(T->row[i][i]))
948 pos[i] = i;
949 else
950 needed++;
952 if (needed > dropped) {
953 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
954 needed, needed, 0);
955 if (!bmap)
956 goto error;
958 for (i = 1; i < T->n_row; ++i) {
959 if (isl_int_is_one(T->row[i][i]))
960 continue;
961 k = isl_basic_map_alloc_div(bmap);
962 pos[i] = 1 + total + k;
963 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
964 isl_int_set(bmap->div[k][0], T->row[i][i]);
965 if (C2)
966 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
967 else
968 isl_int_set_si(bmap->div[k][1 + i], 1);
969 for (j = 0; j < i; ++j) {
970 if (isl_int_is_zero(T->row[i][j]))
971 continue;
972 if (pos[j] < T->n_row && C2)
973 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
974 C2->row[pos[j]], 1 + total);
975 else
976 isl_int_neg(bmap->div[k][1 + pos[j]],
977 T->row[i][j]);
979 j = isl_basic_map_alloc_equality(bmap);
980 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
981 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
983 free(pos);
984 isl_mat_free(C2);
985 isl_mat_free(T);
987 if (progress)
988 *progress = 1;
989 done:
990 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
992 return bmap;
993 error:
994 isl_mat_free(C);
995 isl_mat_free(C2);
996 isl_mat_free(T);
997 return bmap;
1000 static struct isl_basic_map *set_div_from_lower_bound(
1001 struct isl_basic_map *bmap, int div, int ineq)
1003 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1005 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1006 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1007 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1008 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1009 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1011 return bmap;
1014 /* Check whether it is ok to define a div based on an inequality.
1015 * To avoid the introduction of circular definitions of divs, we
1016 * do not allow such a definition if the resulting expression would refer to
1017 * any other undefined divs or if any known div is defined in
1018 * terms of the unknown div.
1020 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1021 int div, int ineq)
1023 int j;
1024 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1026 /* Not defined in terms of unknown divs */
1027 for (j = 0; j < bmap->n_div; ++j) {
1028 if (div == j)
1029 continue;
1030 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1031 continue;
1032 if (isl_int_is_zero(bmap->div[j][0]))
1033 return 0;
1036 /* No other div defined in terms of this one => avoid loops */
1037 for (j = 0; j < bmap->n_div; ++j) {
1038 if (div == j)
1039 continue;
1040 if (isl_int_is_zero(bmap->div[j][0]))
1041 continue;
1042 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1043 return 0;
1046 return 1;
1049 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1050 * be a better expression than the current one?
1052 * If we do not have any expression yet, then any expression would be better.
1053 * Otherwise we check if the last variable involved in the inequality
1054 * (disregarding the div that it would define) is in an earlier position
1055 * than the last variable involved in the current div expression.
1057 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1058 int div, int ineq)
1060 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1061 int last_div;
1062 int last_ineq;
1064 if (isl_int_is_zero(bmap->div[div][0]))
1065 return 1;
1067 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1068 bmap->n_div - (div + 1)) >= 0)
1069 return 0;
1071 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1072 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1073 total + bmap->n_div);
1075 return last_ineq < last_div;
1078 /* Given two constraints "k" and "l" that are opposite to each other,
1079 * except for the constant term, check if we can use them
1080 * to obtain an expression for one of the hitherto unknown divs or
1081 * a "better" expression for a div for which we already have an expression.
1082 * "sum" is the sum of the constant terms of the constraints.
1083 * If this sum is strictly smaller than the coefficient of one
1084 * of the divs, then this pair can be used define the div.
1085 * To avoid the introduction of circular definitions of divs, we
1086 * do not use the pair if the resulting expression would refer to
1087 * any other undefined divs or if any known div is defined in
1088 * terms of the unknown div.
1090 static struct isl_basic_map *check_for_div_constraints(
1091 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1093 int i;
1094 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1096 for (i = 0; i < bmap->n_div; ++i) {
1097 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1098 continue;
1099 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1100 continue;
1101 if (!better_div_constraint(bmap, i, k))
1102 continue;
1103 if (!ok_to_set_div_from_bound(bmap, i, k))
1104 break;
1105 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1106 bmap = set_div_from_lower_bound(bmap, i, k);
1107 else
1108 bmap = set_div_from_lower_bound(bmap, i, l);
1109 if (progress)
1110 *progress = 1;
1111 break;
1113 return bmap;
1116 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1117 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1119 unsigned int size;
1120 isl_int ***index;
1121 int k, l, h;
1122 int bits;
1123 unsigned total = isl_basic_map_total_dim(bmap);
1124 isl_int sum;
1125 isl_ctx *ctx;
1127 if (!bmap || bmap->n_ineq <= 1)
1128 return bmap;
1130 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1131 bits = ffs(size) - 1;
1132 ctx = isl_basic_map_get_ctx(bmap);
1133 index = isl_calloc_array(ctx, isl_int **, size);
1134 if (!index)
1135 return bmap;
1137 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1138 for (k = 1; k < bmap->n_ineq; ++k) {
1139 h = hash_index(index, size, bits, bmap, k);
1140 if (!index[h]) {
1141 index[h] = &bmap->ineq[k];
1142 continue;
1144 if (progress)
1145 *progress = 1;
1146 l = index[h] - &bmap->ineq[0];
1147 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1148 swap_inequality(bmap, k, l);
1149 isl_basic_map_drop_inequality(bmap, k);
1150 --k;
1152 isl_int_init(sum);
1153 for (k = 0; k < bmap->n_ineq-1; ++k) {
1154 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1155 h = hash_index(index, size, bits, bmap, k);
1156 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1157 if (!index[h])
1158 continue;
1159 l = index[h] - &bmap->ineq[0];
1160 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1161 if (isl_int_is_pos(sum)) {
1162 if (detect_divs)
1163 bmap = check_for_div_constraints(bmap, k, l,
1164 sum, progress);
1165 continue;
1167 if (isl_int_is_zero(sum)) {
1168 /* We need to break out of the loop after these
1169 * changes since the contents of the hash
1170 * will no longer be valid.
1171 * Plus, we probably we want to regauss first.
1173 if (progress)
1174 *progress = 1;
1175 isl_basic_map_drop_inequality(bmap, l);
1176 isl_basic_map_inequality_to_equality(bmap, k);
1177 } else
1178 bmap = isl_basic_map_set_to_empty(bmap);
1179 break;
1181 isl_int_clear(sum);
1183 free(index);
1184 return bmap;
1187 /* Detect all pairs of inequalities that form an equality.
1189 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1190 * Call it repeatedly while it is making progress.
1192 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1193 __isl_take isl_basic_map *bmap, int *progress)
1195 int duplicate;
1197 do {
1198 duplicate = 0;
1199 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1200 &duplicate, 0);
1201 if (progress && duplicate)
1202 *progress = 1;
1203 } while (duplicate);
1205 return bmap;
1208 /* Eliminate knowns divs from constraints where they appear with
1209 * a (positive or negative) unit coefficient.
1211 * That is, replace
1213 * floor(e/m) + f >= 0
1215 * by
1217 * e + m f >= 0
1219 * and
1221 * -floor(e/m) + f >= 0
1223 * by
1225 * -e + m f + m - 1 >= 0
1227 * The first conversion is valid because floor(e/m) >= -f is equivalent
1228 * to e/m >= -f because -f is an integral expression.
1229 * The second conversion follows from the fact that
1231 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1234 * Note that one of the div constraints may have been eliminated
1235 * due to being redundant with respect to the constraint that is
1236 * being modified by this function. The modified constraint may
1237 * no longer imply this div constraint, so we add it back to make
1238 * sure we do not lose any information.
1240 * We skip integral divs, i.e., those with denominator 1, as we would
1241 * risk eliminating the div from the div constraints. We do not need
1242 * to handle those divs here anyway since the div constraints will turn
1243 * out to form an equality and this equality can then be use to eliminate
1244 * the div from all constraints.
1246 static __isl_give isl_basic_map *eliminate_unit_divs(
1247 __isl_take isl_basic_map *bmap, int *progress)
1249 int i, j;
1250 isl_ctx *ctx;
1251 unsigned total;
1253 if (!bmap)
1254 return NULL;
1256 ctx = isl_basic_map_get_ctx(bmap);
1257 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1259 for (i = 0; i < bmap->n_div; ++i) {
1260 if (isl_int_is_zero(bmap->div[i][0]))
1261 continue;
1262 if (isl_int_is_one(bmap->div[i][0]))
1263 continue;
1264 for (j = 0; j < bmap->n_ineq; ++j) {
1265 int s;
1267 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1268 !isl_int_is_negone(bmap->ineq[j][total + i]))
1269 continue;
1271 *progress = 1;
1273 s = isl_int_sgn(bmap->ineq[j][total + i]);
1274 isl_int_set_si(bmap->ineq[j][total + i], 0);
1275 if (s < 0)
1276 isl_seq_combine(bmap->ineq[j],
1277 ctx->negone, bmap->div[i] + 1,
1278 bmap->div[i][0], bmap->ineq[j],
1279 total + bmap->n_div);
1280 else
1281 isl_seq_combine(bmap->ineq[j],
1282 ctx->one, bmap->div[i] + 1,
1283 bmap->div[i][0], bmap->ineq[j],
1284 total + bmap->n_div);
1285 if (s < 0) {
1286 isl_int_add(bmap->ineq[j][0],
1287 bmap->ineq[j][0], bmap->div[i][0]);
1288 isl_int_sub_ui(bmap->ineq[j][0],
1289 bmap->ineq[j][0], 1);
1292 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1293 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1294 return isl_basic_map_free(bmap);
1298 return bmap;
1301 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1303 int progress = 1;
1304 if (!bmap)
1305 return NULL;
1306 while (progress) {
1307 progress = 0;
1308 if (!bmap)
1309 break;
1310 if (isl_basic_map_plain_is_empty(bmap))
1311 break;
1312 bmap = isl_basic_map_normalize_constraints(bmap);
1313 bmap = normalize_div_expressions(bmap);
1314 bmap = remove_duplicate_divs(bmap, &progress);
1315 bmap = eliminate_unit_divs(bmap, &progress);
1316 bmap = eliminate_divs_eq(bmap, &progress);
1317 bmap = eliminate_divs_ineq(bmap, &progress);
1318 bmap = isl_basic_map_gauss(bmap, &progress);
1319 /* requires equalities in normal form */
1320 bmap = normalize_divs(bmap, &progress);
1321 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1322 &progress, 1);
1323 if (bmap && progress)
1324 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1326 return bmap;
1329 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1331 return (struct isl_basic_set *)
1332 isl_basic_map_simplify((struct isl_basic_map *)bset);
1336 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1337 isl_int *constraint, unsigned div)
1339 unsigned pos;
1341 if (!bmap)
1342 return -1;
1344 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1346 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1347 int neg;
1348 isl_int_sub(bmap->div[div][1],
1349 bmap->div[div][1], bmap->div[div][0]);
1350 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1351 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1352 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1353 isl_int_add(bmap->div[div][1],
1354 bmap->div[div][1], bmap->div[div][0]);
1355 if (!neg)
1356 return 0;
1357 if (isl_seq_first_non_zero(constraint+pos+1,
1358 bmap->n_div-div-1) != -1)
1359 return 0;
1360 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1361 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1362 return 0;
1363 if (isl_seq_first_non_zero(constraint+pos+1,
1364 bmap->n_div-div-1) != -1)
1365 return 0;
1366 } else
1367 return 0;
1369 return 1;
1372 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1373 isl_int *constraint, unsigned div)
1375 return isl_basic_map_is_div_constraint(bset, constraint, div);
1379 /* If the only constraints a div d=floor(f/m)
1380 * appears in are its two defining constraints
1382 * f - m d >=0
1383 * -(f - (m - 1)) + m d >= 0
1385 * then it can safely be removed.
1387 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1389 int i;
1390 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1392 for (i = 0; i < bmap->n_eq; ++i)
1393 if (!isl_int_is_zero(bmap->eq[i][pos]))
1394 return 0;
1396 for (i = 0; i < bmap->n_ineq; ++i) {
1397 if (isl_int_is_zero(bmap->ineq[i][pos]))
1398 continue;
1399 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1400 return 0;
1403 for (i = 0; i < bmap->n_div; ++i) {
1404 if (isl_int_is_zero(bmap->div[i][0]))
1405 continue;
1406 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1407 return 0;
1410 return 1;
1414 * Remove divs that don't occur in any of the constraints or other divs.
1415 * These can arise when dropping constraints from a basic map or
1416 * when the divs of a basic map have been temporarily aligned
1417 * with the divs of another basic map.
1419 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1421 int i;
1423 if (!bmap)
1424 return NULL;
1426 for (i = bmap->n_div-1; i >= 0; --i) {
1427 if (!div_is_redundant(bmap, i))
1428 continue;
1429 bmap = isl_basic_map_drop_div(bmap, i);
1431 return bmap;
1434 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1436 bmap = remove_redundant_divs(bmap);
1437 if (!bmap)
1438 return NULL;
1439 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1440 return bmap;
1443 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1445 return (struct isl_basic_set *)
1446 isl_basic_map_finalize((struct isl_basic_map *)bset);
1449 struct isl_set *isl_set_finalize(struct isl_set *set)
1451 int i;
1453 if (!set)
1454 return NULL;
1455 for (i = 0; i < set->n; ++i) {
1456 set->p[i] = isl_basic_set_finalize(set->p[i]);
1457 if (!set->p[i])
1458 goto error;
1460 return set;
1461 error:
1462 isl_set_free(set);
1463 return NULL;
1466 struct isl_map *isl_map_finalize(struct isl_map *map)
1468 int i;
1470 if (!map)
1471 return NULL;
1472 for (i = 0; i < map->n; ++i) {
1473 map->p[i] = isl_basic_map_finalize(map->p[i]);
1474 if (!map->p[i])
1475 goto error;
1477 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1478 return map;
1479 error:
1480 isl_map_free(map);
1481 return NULL;
1485 /* Remove definition of any div that is defined in terms of the given variable.
1486 * The div itself is not removed. Functions such as
1487 * eliminate_divs_ineq depend on the other divs remaining in place.
1489 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1490 int pos)
1492 int i;
1494 if (!bmap)
1495 return NULL;
1497 for (i = 0; i < bmap->n_div; ++i) {
1498 if (isl_int_is_zero(bmap->div[i][0]))
1499 continue;
1500 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1501 continue;
1502 isl_int_set_si(bmap->div[i][0], 0);
1504 return bmap;
1507 /* Eliminate the specified variables from the constraints using
1508 * Fourier-Motzkin. The variables themselves are not removed.
1510 struct isl_basic_map *isl_basic_map_eliminate_vars(
1511 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1513 int d;
1514 int i, j, k;
1515 unsigned total;
1516 int need_gauss = 0;
1518 if (n == 0)
1519 return bmap;
1520 if (!bmap)
1521 return NULL;
1522 total = isl_basic_map_total_dim(bmap);
1524 bmap = isl_basic_map_cow(bmap);
1525 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1526 bmap = remove_dependent_vars(bmap, d);
1527 if (!bmap)
1528 return NULL;
1530 for (d = pos + n - 1;
1531 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1532 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1533 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1534 int n_lower, n_upper;
1535 if (!bmap)
1536 return NULL;
1537 for (i = 0; i < bmap->n_eq; ++i) {
1538 if (isl_int_is_zero(bmap->eq[i][1+d]))
1539 continue;
1540 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1541 isl_basic_map_drop_equality(bmap, i);
1542 need_gauss = 1;
1543 break;
1545 if (i < bmap->n_eq)
1546 continue;
1547 n_lower = 0;
1548 n_upper = 0;
1549 for (i = 0; i < bmap->n_ineq; ++i) {
1550 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1551 n_lower++;
1552 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1553 n_upper++;
1555 bmap = isl_basic_map_extend_constraints(bmap,
1556 0, n_lower * n_upper);
1557 if (!bmap)
1558 goto error;
1559 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1560 int last;
1561 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1562 continue;
1563 last = -1;
1564 for (j = 0; j < i; ++j) {
1565 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1566 continue;
1567 last = j;
1568 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1569 isl_int_sgn(bmap->ineq[j][1+d]))
1570 continue;
1571 k = isl_basic_map_alloc_inequality(bmap);
1572 if (k < 0)
1573 goto error;
1574 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1575 1+total);
1576 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1577 1+d, 1+total, NULL);
1579 isl_basic_map_drop_inequality(bmap, i);
1580 i = last + 1;
1582 if (n_lower > 0 && n_upper > 0) {
1583 bmap = isl_basic_map_normalize_constraints(bmap);
1584 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1585 NULL, 0);
1586 bmap = isl_basic_map_gauss(bmap, NULL);
1587 bmap = isl_basic_map_remove_redundancies(bmap);
1588 need_gauss = 0;
1589 if (!bmap)
1590 goto error;
1591 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1592 break;
1595 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1596 if (need_gauss)
1597 bmap = isl_basic_map_gauss(bmap, NULL);
1598 return bmap;
1599 error:
1600 isl_basic_map_free(bmap);
1601 return NULL;
1604 struct isl_basic_set *isl_basic_set_eliminate_vars(
1605 struct isl_basic_set *bset, unsigned pos, unsigned n)
1607 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1608 (struct isl_basic_map *)bset, pos, n);
1611 /* Eliminate the specified n dimensions starting at first from the
1612 * constraints, without removing the dimensions from the space.
1613 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1614 * Otherwise, they are projected out and the original space is restored.
1616 __isl_give isl_basic_map *isl_basic_map_eliminate(
1617 __isl_take isl_basic_map *bmap,
1618 enum isl_dim_type type, unsigned first, unsigned n)
1620 isl_space *space;
1622 if (!bmap)
1623 return NULL;
1624 if (n == 0)
1625 return bmap;
1627 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1628 isl_die(bmap->ctx, isl_error_invalid,
1629 "index out of bounds", goto error);
1631 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1632 first += isl_basic_map_offset(bmap, type) - 1;
1633 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1634 return isl_basic_map_finalize(bmap);
1637 space = isl_basic_map_get_space(bmap);
1638 bmap = isl_basic_map_project_out(bmap, type, first, n);
1639 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1640 bmap = isl_basic_map_reset_space(bmap, space);
1641 return bmap;
1642 error:
1643 isl_basic_map_free(bmap);
1644 return NULL;
1647 __isl_give isl_basic_set *isl_basic_set_eliminate(
1648 __isl_take isl_basic_set *bset,
1649 enum isl_dim_type type, unsigned first, unsigned n)
1651 return isl_basic_map_eliminate(bset, type, first, n);
1654 /* Don't assume equalities are in order, because align_divs
1655 * may have changed the order of the divs.
1657 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1659 int d, i;
1660 unsigned total;
1662 total = isl_space_dim(bmap->dim, isl_dim_all);
1663 for (d = 0; d < total; ++d)
1664 elim[d] = -1;
1665 for (i = 0; i < bmap->n_eq; ++i) {
1666 for (d = total - 1; d >= 0; --d) {
1667 if (isl_int_is_zero(bmap->eq[i][1+d]))
1668 continue;
1669 elim[d] = i;
1670 break;
1675 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1677 compute_elimination_index((struct isl_basic_map *)bset, elim);
1680 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1681 struct isl_basic_map *bmap, int *elim)
1683 int d;
1684 int copied = 0;
1685 unsigned total;
1687 total = isl_space_dim(bmap->dim, isl_dim_all);
1688 for (d = total - 1; d >= 0; --d) {
1689 if (isl_int_is_zero(src[1+d]))
1690 continue;
1691 if (elim[d] == -1)
1692 continue;
1693 if (!copied) {
1694 isl_seq_cpy(dst, src, 1 + total);
1695 copied = 1;
1697 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1699 return copied;
1702 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1703 struct isl_basic_set *bset, int *elim)
1705 return reduced_using_equalities(dst, src,
1706 (struct isl_basic_map *)bset, elim);
1709 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1710 struct isl_basic_set *bset, struct isl_basic_set *context)
1712 int i;
1713 int *elim;
1715 if (!bset || !context)
1716 goto error;
1718 if (context->n_eq == 0) {
1719 isl_basic_set_free(context);
1720 return bset;
1723 bset = isl_basic_set_cow(bset);
1724 if (!bset)
1725 goto error;
1727 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1728 if (!elim)
1729 goto error;
1730 set_compute_elimination_index(context, elim);
1731 for (i = 0; i < bset->n_eq; ++i)
1732 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1733 context, elim);
1734 for (i = 0; i < bset->n_ineq; ++i)
1735 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1736 context, elim);
1737 isl_basic_set_free(context);
1738 free(elim);
1739 bset = isl_basic_set_simplify(bset);
1740 bset = isl_basic_set_finalize(bset);
1741 return bset;
1742 error:
1743 isl_basic_set_free(bset);
1744 isl_basic_set_free(context);
1745 return NULL;
1748 static struct isl_basic_set *remove_shifted_constraints(
1749 struct isl_basic_set *bset, struct isl_basic_set *context)
1751 unsigned int size;
1752 isl_int ***index;
1753 int bits;
1754 int k, h, l;
1755 isl_ctx *ctx;
1757 if (!bset)
1758 return NULL;
1760 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1761 bits = ffs(size) - 1;
1762 ctx = isl_basic_set_get_ctx(bset);
1763 index = isl_calloc_array(ctx, isl_int **, size);
1764 if (!index)
1765 return bset;
1767 for (k = 0; k < context->n_ineq; ++k) {
1768 h = set_hash_index(index, size, bits, context, k);
1769 index[h] = &context->ineq[k];
1771 for (k = 0; k < bset->n_ineq; ++k) {
1772 h = set_hash_index(index, size, bits, bset, k);
1773 if (!index[h])
1774 continue;
1775 l = index[h] - &context->ineq[0];
1776 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1777 continue;
1778 bset = isl_basic_set_cow(bset);
1779 if (!bset)
1780 goto error;
1781 isl_basic_set_drop_inequality(bset, k);
1782 --k;
1784 free(index);
1785 return bset;
1786 error:
1787 free(index);
1788 return bset;
1791 /* Remove constraints from "bmap" that are identical to constraints
1792 * in "context" or that are more relaxed (greater constant term).
1794 * We perform the test for shifted copies on the pure constraints
1795 * in remove_shifted_constraints.
1797 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
1798 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
1800 isl_basic_set *bset, *bset_context;
1802 if (!bmap || !context)
1803 goto error;
1805 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
1806 isl_basic_map_free(context);
1807 return bmap;
1810 context = isl_basic_map_align_divs(context, bmap);
1811 bmap = isl_basic_map_align_divs(bmap, context);
1813 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1814 bset_context = isl_basic_map_underlying_set(context);
1815 bset = remove_shifted_constraints(bset, bset_context);
1816 isl_basic_set_free(bset_context);
1818 bmap = isl_basic_map_overlying_set(bset, bmap);
1820 return bmap;
1821 error:
1822 isl_basic_map_free(bmap);
1823 isl_basic_map_free(context);
1824 return NULL;
1827 /* Does the (linear part of a) constraint "c" involve any of the "len"
1828 * "relevant" dimensions?
1830 static int is_related(isl_int *c, int len, int *relevant)
1832 int i;
1834 for (i = 0; i < len; ++i) {
1835 if (!relevant[i])
1836 continue;
1837 if (!isl_int_is_zero(c[i]))
1838 return 1;
1841 return 0;
1844 /* Drop constraints from "bset" that do not involve any of
1845 * the dimensions marked "relevant".
1847 static __isl_give isl_basic_set *drop_unrelated_constraints(
1848 __isl_take isl_basic_set *bset, int *relevant)
1850 int i, dim;
1852 dim = isl_basic_set_dim(bset, isl_dim_set);
1853 for (i = 0; i < dim; ++i)
1854 if (!relevant[i])
1855 break;
1856 if (i >= dim)
1857 return bset;
1859 for (i = bset->n_eq - 1; i >= 0; --i)
1860 if (!is_related(bset->eq[i] + 1, dim, relevant))
1861 isl_basic_set_drop_equality(bset, i);
1863 for (i = bset->n_ineq - 1; i >= 0; --i)
1864 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1865 isl_basic_set_drop_inequality(bset, i);
1867 return bset;
1870 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1872 * In particular, for any variable involved in the constraint,
1873 * find the actual group id from before and replace the group
1874 * of the corresponding variable by the minimal group of all
1875 * the variables involved in the constraint considered so far
1876 * (if this minimum is smaller) or replace the minimum by this group
1877 * (if the minimum is larger).
1879 * At the end, all the variables in "c" will (indirectly) point
1880 * to the minimal of the groups that they referred to originally.
1882 static void update_groups(int dim, int *group, isl_int *c)
1884 int j;
1885 int min = dim;
1887 for (j = 0; j < dim; ++j) {
1888 if (isl_int_is_zero(c[j]))
1889 continue;
1890 while (group[j] >= 0 && group[group[j]] != group[j])
1891 group[j] = group[group[j]];
1892 if (group[j] == min)
1893 continue;
1894 if (group[j] < min) {
1895 if (min >= 0 && min < dim)
1896 group[min] = group[j];
1897 min = group[j];
1898 } else
1899 group[group[j]] = min;
1903 /* Drop constraints from "context" that are irrelevant for computing
1904 * the gist of "bset".
1906 * In particular, drop constraints in variables that are not related
1907 * to any of the variables involved in the constraints of "bset"
1908 * in the sense that there is no sequence of constraints that connects them.
1910 * We construct groups of variables that collect variables that
1911 * (indirectly) appear in some common constraint of "context".
1912 * Each group is identified by the first variable in the group,
1913 * except for the special group of variables that appear in "bset"
1914 * (or are related to those variables), which is identified by -1.
1915 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1916 * otherwise the group of i is the group of group[i].
1918 * We first initialize the -1 group with the variables that appear in "bset".
1919 * Then we initialize groups for the remaining variables.
1920 * Then we iterate over the constraints of "context" and update the
1921 * group of the variables in the constraint by the smallest group.
1922 * Finally, we resolve indirect references to groups by running over
1923 * the variables.
1925 * After computing the groups, we drop constraints that do not involve
1926 * any variables in the -1 group.
1928 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1929 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1931 isl_ctx *ctx;
1932 int *group;
1933 int dim;
1934 int i, j;
1935 int last;
1937 if (!context || !bset)
1938 return isl_basic_set_free(context);
1940 dim = isl_basic_set_dim(bset, isl_dim_set);
1941 ctx = isl_basic_set_get_ctx(bset);
1942 group = isl_calloc_array(ctx, int, dim);
1944 if (!group)
1945 goto error;
1947 for (i = 0; i < dim; ++i) {
1948 for (j = 0; j < bset->n_eq; ++j)
1949 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1950 break;
1951 if (j < bset->n_eq) {
1952 group[i] = -1;
1953 continue;
1955 for (j = 0; j < bset->n_ineq; ++j)
1956 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1957 break;
1958 if (j < bset->n_ineq)
1959 group[i] = -1;
1962 last = -1;
1963 for (i = 0; i < dim; ++i)
1964 if (group[i] >= 0)
1965 last = group[i] = i;
1966 if (last < 0) {
1967 free(group);
1968 return context;
1971 for (i = 0; i < context->n_eq; ++i)
1972 update_groups(dim, group, context->eq[i] + 1);
1973 for (i = 0; i < context->n_ineq; ++i)
1974 update_groups(dim, group, context->ineq[i] + 1);
1976 for (i = 0; i < dim; ++i)
1977 if (group[i] >= 0)
1978 group[i] = group[group[i]];
1980 for (i = 0; i < dim; ++i)
1981 group[i] = group[i] == -1;
1983 context = drop_unrelated_constraints(context, group);
1985 free(group);
1986 return context;
1987 error:
1988 free(group);
1989 return isl_basic_set_free(context);
1992 /* Remove all information from bset that is redundant in the context
1993 * of context. Both bset and context are assumed to be full-dimensional.
1995 * We first remove the inequalities from "bset"
1996 * that are obviously redundant with respect to some inequality in "context".
1997 * Then we remove those constraints from "context" that have become
1998 * irrelevant for computing the gist of "bset".
1999 * Note that this removal of constraints cannot be replaced by
2000 * a factorization because factors in "bset" may still be connected
2001 * to each other through constraints in "context".
2003 * If there are any inequalities left, we construct a tableau for
2004 * the context and then add the inequalities of "bset".
2005 * Before adding these inequalities, we freeze all constraints such that
2006 * they won't be considered redundant in terms of the constraints of "bset".
2007 * Then we detect all redundant constraints (among the
2008 * constraints that weren't frozen), first by checking for redundancy in the
2009 * the tableau and then by checking if replacing a constraint by its negation
2010 * would lead to an empty set. This last step is fairly expensive
2011 * and could be optimized by more reuse of the tableau.
2012 * Finally, we update bset according to the results.
2014 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2015 __isl_take isl_basic_set *context)
2017 int i, k;
2018 isl_basic_set *combined = NULL;
2019 struct isl_tab *tab = NULL;
2020 unsigned context_ineq;
2021 unsigned total;
2023 if (!bset || !context)
2024 goto error;
2026 if (isl_basic_set_is_universe(bset)) {
2027 isl_basic_set_free(context);
2028 return bset;
2031 if (isl_basic_set_is_universe(context)) {
2032 isl_basic_set_free(context);
2033 return bset;
2036 bset = remove_shifted_constraints(bset, context);
2037 if (!bset)
2038 goto error;
2039 if (bset->n_ineq == 0)
2040 goto done;
2042 context = drop_irrelevant_constraints(context, bset);
2043 if (!context)
2044 goto error;
2045 if (isl_basic_set_is_universe(context)) {
2046 isl_basic_set_free(context);
2047 return bset;
2050 context_ineq = context->n_ineq;
2051 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2052 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2053 tab = isl_tab_from_basic_set(combined, 0);
2054 for (i = 0; i < context_ineq; ++i)
2055 if (isl_tab_freeze_constraint(tab, i) < 0)
2056 goto error;
2057 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2058 goto error;
2059 for (i = 0; i < bset->n_ineq; ++i)
2060 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
2061 goto error;
2062 bset = isl_basic_set_add_constraints(combined, bset, 0);
2063 combined = NULL;
2064 if (!bset)
2065 goto error;
2066 if (isl_tab_detect_redundant(tab) < 0)
2067 goto error;
2068 total = isl_basic_set_total_dim(bset);
2069 for (i = context_ineq; i < bset->n_ineq; ++i) {
2070 int is_empty;
2071 if (tab->con[i].is_redundant)
2072 continue;
2073 tab->con[i].is_redundant = 1;
2074 combined = isl_basic_set_dup(bset);
2075 combined = isl_basic_set_update_from_tab(combined, tab);
2076 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2077 k = isl_basic_set_alloc_inequality(combined);
2078 if (k < 0)
2079 goto error;
2080 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2081 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2082 is_empty = isl_basic_set_is_empty(combined);
2083 if (is_empty < 0)
2084 goto error;
2085 isl_basic_set_free(combined);
2086 combined = NULL;
2087 if (!is_empty)
2088 tab->con[i].is_redundant = 0;
2090 for (i = 0; i < context_ineq; ++i)
2091 tab->con[i].is_redundant = 1;
2092 bset = isl_basic_set_update_from_tab(bset, tab);
2093 if (bset) {
2094 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2095 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2098 isl_tab_free(tab);
2099 done:
2100 bset = isl_basic_set_simplify(bset);
2101 bset = isl_basic_set_finalize(bset);
2102 isl_basic_set_free(context);
2103 return bset;
2104 error:
2105 isl_tab_free(tab);
2106 isl_basic_set_free(combined);
2107 isl_basic_set_free(context);
2108 isl_basic_set_free(bset);
2109 return NULL;
2112 /* Remove all information from bset that is redundant in the context
2113 * of context. In particular, equalities that are linear combinations
2114 * of those in context are removed. Then the inequalities that are
2115 * redundant in the context of the equalities and inequalities of
2116 * context are removed.
2118 * First of all, we drop those constraints from "context"
2119 * that are irrelevant for computing the gist of "bset".
2120 * Alternatively, we could factorize the intersection of "context" and "bset".
2122 * We first compute the integer affine hull of the intersection,
2123 * compute the gist inside this affine hull and then add back
2124 * those equalities that are not implied by the context.
2126 * If two constraints are mutually redundant, then uset_gist_full
2127 * will remove the second of those constraints. We therefore first
2128 * sort the constraints so that constraints not involving existentially
2129 * quantified variables are given precedence over those that do.
2130 * We have to perform this sorting before the variable compression,
2131 * because that may effect the order of the variables.
2133 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2134 __isl_take isl_basic_set *context)
2136 isl_mat *eq;
2137 isl_mat *T, *T2;
2138 isl_basic_set *aff;
2139 isl_basic_set *aff_context;
2140 unsigned total;
2142 if (!bset || !context)
2143 goto error;
2145 context = drop_irrelevant_constraints(context, bset);
2147 aff = isl_basic_set_copy(bset);
2148 aff = isl_basic_set_intersect(aff, isl_basic_set_copy(context));
2149 aff = isl_basic_set_affine_hull(aff);
2150 if (!aff)
2151 goto error;
2152 if (isl_basic_set_plain_is_empty(aff)) {
2153 isl_basic_set_free(bset);
2154 isl_basic_set_free(context);
2155 return aff;
2157 bset = isl_basic_set_sort_constraints(bset);
2158 if (aff->n_eq == 0) {
2159 isl_basic_set_free(aff);
2160 return uset_gist_full(bset, context);
2162 total = isl_basic_set_total_dim(bset);
2163 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2164 eq = isl_mat_cow(eq);
2165 T = isl_mat_variable_compression(eq, &T2);
2166 if (T && T->n_col == 0) {
2167 isl_mat_free(T);
2168 isl_mat_free(T2);
2169 isl_basic_set_free(context);
2170 isl_basic_set_free(aff);
2171 return isl_basic_set_set_to_empty(bset);
2174 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2176 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2177 context = isl_basic_set_preimage(context, T);
2179 bset = uset_gist_full(bset, context);
2180 bset = isl_basic_set_preimage(bset, T2);
2181 bset = isl_basic_set_intersect(bset, aff);
2182 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2184 if (bset) {
2185 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2186 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2189 return bset;
2190 error:
2191 isl_basic_set_free(bset);
2192 isl_basic_set_free(context);
2193 return NULL;
2196 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2197 * We simply add the equalities in context to bmap and then do a regular
2198 * div normalizations. Better results can be obtained by normalizing
2199 * only the divs in bmap than do not also appear in context.
2200 * We need to be careful to reduce the divs using the equalities
2201 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2202 * spurious constraints.
2204 static struct isl_basic_map *normalize_divs_in_context(
2205 struct isl_basic_map *bmap, struct isl_basic_map *context)
2207 int i;
2208 unsigned total_context;
2209 int div_eq;
2211 div_eq = n_pure_div_eq(bmap);
2212 if (div_eq == 0)
2213 return bmap;
2215 bmap = isl_basic_map_cow(bmap);
2216 if (context->n_div > 0)
2217 bmap = isl_basic_map_align_divs(bmap, context);
2219 total_context = isl_basic_map_total_dim(context);
2220 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2221 for (i = 0; i < context->n_eq; ++i) {
2222 int k;
2223 k = isl_basic_map_alloc_equality(bmap);
2224 if (k < 0)
2225 return isl_basic_map_free(bmap);
2226 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2227 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2228 isl_basic_map_total_dim(bmap) - total_context);
2230 bmap = isl_basic_map_gauss(bmap, NULL);
2231 bmap = normalize_divs(bmap, NULL);
2232 bmap = isl_basic_map_gauss(bmap, NULL);
2233 return bmap;
2236 /* Return a basic map that has the same intersection with "context" as "bmap"
2237 * and that is as "simple" as possible.
2239 * The core computation is performed on the pure constraints.
2240 * When we add back the meaning of the integer divisions, we need
2241 * to (re)introduce the div constraints. If we happen to have
2242 * discovered that some of these integer divisions are equal to
2243 * some affine combination of other variables, then these div
2244 * constraints may end up getting simplified in terms of the equalities,
2245 * resulting in extra inequalities on the other variables that
2246 * may have been removed already or that may not even have been
2247 * part of the input. We try and remove those constraints of
2248 * this form that are most obviously redundant with respect to
2249 * the context. We also remove those div constraints that are
2250 * redundant with respect to the other constraints in the result.
2252 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2253 struct isl_basic_map *context)
2255 isl_basic_set *bset, *eq;
2256 isl_basic_map *eq_bmap;
2257 unsigned n_div, n_eq, n_ineq;
2259 if (!bmap || !context)
2260 goto error;
2262 if (isl_basic_map_is_universe(bmap)) {
2263 isl_basic_map_free(context);
2264 return bmap;
2266 if (isl_basic_map_plain_is_empty(context)) {
2267 isl_space *space = isl_basic_map_get_space(bmap);
2268 isl_basic_map_free(bmap);
2269 isl_basic_map_free(context);
2270 return isl_basic_map_universe(space);
2272 if (isl_basic_map_plain_is_empty(bmap)) {
2273 isl_basic_map_free(context);
2274 return bmap;
2277 bmap = isl_basic_map_remove_redundancies(bmap);
2278 context = isl_basic_map_remove_redundancies(context);
2279 if (!context)
2280 goto error;
2282 if (context->n_eq)
2283 bmap = normalize_divs_in_context(bmap, context);
2285 context = isl_basic_map_align_divs(context, bmap);
2286 bmap = isl_basic_map_align_divs(bmap, context);
2287 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2289 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2290 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
2292 if (!bset || bset->n_eq == 0 || n_div == 0 ||
2293 isl_basic_set_plain_is_empty(bset)) {
2294 isl_basic_map_free(context);
2295 return isl_basic_map_overlying_set(bset, bmap);
2298 n_eq = bset->n_eq;
2299 n_ineq = bset->n_ineq;
2300 eq = isl_basic_set_copy(bset);
2301 eq = isl_basic_set_cow(bset);
2302 if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
2303 eq = isl_basic_set_free(eq);
2304 if (isl_basic_set_free_equality(bset, n_eq) < 0)
2305 bset = isl_basic_set_free(bset);
2307 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
2308 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
2309 bmap = isl_basic_map_overlying_set(bset, bmap);
2310 bmap = isl_basic_map_intersect(bmap, eq_bmap);
2311 bmap = isl_basic_map_remove_redundancies(bmap);
2313 return bmap;
2314 error:
2315 isl_basic_map_free(bmap);
2316 isl_basic_map_free(context);
2317 return NULL;
2321 * Assumes context has no implicit divs.
2323 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2324 __isl_take isl_basic_map *context)
2326 int i;
2328 if (!map || !context)
2329 goto error;
2331 if (isl_basic_map_plain_is_empty(context)) {
2332 isl_space *space = isl_map_get_space(map);
2333 isl_map_free(map);
2334 isl_basic_map_free(context);
2335 return isl_map_universe(space);
2338 context = isl_basic_map_remove_redundancies(context);
2339 map = isl_map_cow(map);
2340 if (!map || !context)
2341 goto error;
2342 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2343 map = isl_map_compute_divs(map);
2344 if (!map)
2345 goto error;
2346 for (i = map->n - 1; i >= 0; --i) {
2347 map->p[i] = isl_basic_map_gist(map->p[i],
2348 isl_basic_map_copy(context));
2349 if (!map->p[i])
2350 goto error;
2351 if (isl_basic_map_plain_is_empty(map->p[i])) {
2352 isl_basic_map_free(map->p[i]);
2353 if (i != map->n - 1)
2354 map->p[i] = map->p[map->n - 1];
2355 map->n--;
2358 isl_basic_map_free(context);
2359 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2360 return map;
2361 error:
2362 isl_map_free(map);
2363 isl_basic_map_free(context);
2364 return NULL;
2367 /* Return a map that has the same intersection with "context" as "map"
2368 * and that is as "simple" as possible.
2370 * If "map" is already the universe, then we cannot make it any simpler.
2371 * Similarly, if "context" is the universe, then we cannot exploit it
2372 * to simplify "map"
2373 * If "map" and "context" are identical to each other, then we can
2374 * return the corresponding universe.
2376 * If none of these cases apply, we have to work a bit harder.
2377 * During this computation, we make use of a single disjunct context,
2378 * so if the original context consists of more than one disjunct
2379 * then we need to approximate the context by a single disjunct set.
2380 * Simply taking the simple hull may drop constraints that are
2381 * only implicitly available in each disjunct. We therefore also
2382 * look for constraints among those defining "map" that are valid
2383 * for the context. These can then be used to simplify away
2384 * the corresponding constraints in "map".
2386 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2387 __isl_take isl_map *context)
2389 int equal;
2390 int is_universe;
2391 isl_basic_map *hull;
2393 is_universe = isl_map_plain_is_universe(map);
2394 if (is_universe >= 0 && !is_universe)
2395 is_universe = isl_map_plain_is_universe(context);
2396 if (is_universe < 0)
2397 goto error;
2398 if (is_universe) {
2399 isl_map_free(context);
2400 return map;
2403 equal = isl_map_plain_is_equal(map, context);
2404 if (equal < 0)
2405 goto error;
2406 if (equal) {
2407 isl_map *res = isl_map_universe(isl_map_get_space(map));
2408 isl_map_free(map);
2409 isl_map_free(context);
2410 return res;
2413 context = isl_map_compute_divs(context);
2414 if (!context)
2415 goto error;
2416 if (isl_map_n_basic_map(context) == 1) {
2417 hull = isl_map_simple_hull(context);
2418 } else {
2419 isl_ctx *ctx;
2420 isl_map_list *list;
2422 ctx = isl_map_get_ctx(map);
2423 list = isl_map_list_alloc(ctx, 2);
2424 list = isl_map_list_add(list, isl_map_copy(context));
2425 list = isl_map_list_add(list, isl_map_copy(map));
2426 hull = isl_map_unshifted_simple_hull_from_map_list(context,
2427 list);
2429 return isl_map_gist_basic_map(map, hull);
2430 error:
2431 isl_map_free(map);
2432 isl_map_free(context);
2433 return NULL;
2436 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2437 __isl_take isl_map *context)
2439 return isl_map_align_params_map_map_and(map, context, &map_gist);
2442 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2443 struct isl_basic_set *context)
2445 return (struct isl_basic_set *)isl_basic_map_gist(
2446 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2449 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2450 __isl_take isl_basic_set *context)
2452 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2453 (struct isl_basic_map *)context);
2456 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2457 __isl_take isl_basic_set *context)
2459 isl_space *space = isl_set_get_space(set);
2460 isl_basic_set *dom_context = isl_basic_set_universe(space);
2461 dom_context = isl_basic_set_intersect_params(dom_context, context);
2462 return isl_set_gist_basic_set(set, dom_context);
2465 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2466 __isl_take isl_set *context)
2468 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2469 (struct isl_map *)context);
2472 /* Compute the gist of "bmap" with respect to the constraints "context"
2473 * on the domain.
2475 __isl_give isl_basic_map *isl_basic_map_gist_domain(
2476 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
2478 isl_space *space = isl_basic_map_get_space(bmap);
2479 isl_basic_map *bmap_context = isl_basic_map_universe(space);
2481 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
2482 return isl_basic_map_gist(bmap, bmap_context);
2485 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2486 __isl_take isl_set *context)
2488 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2489 map_context = isl_map_intersect_domain(map_context, context);
2490 return isl_map_gist(map, map_context);
2493 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2494 __isl_take isl_set *context)
2496 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2497 map_context = isl_map_intersect_range(map_context, context);
2498 return isl_map_gist(map, map_context);
2501 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2502 __isl_take isl_set *context)
2504 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2505 map_context = isl_map_intersect_params(map_context, context);
2506 return isl_map_gist(map, map_context);
2509 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2510 __isl_take isl_set *context)
2512 return isl_map_gist_params(set, context);
2515 /* Quick check to see if two basic maps are disjoint.
2516 * In particular, we reduce the equalities and inequalities of
2517 * one basic map in the context of the equalities of the other
2518 * basic map and check if we get a contradiction.
2520 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2521 __isl_keep isl_basic_map *bmap2)
2523 struct isl_vec *v = NULL;
2524 int *elim = NULL;
2525 unsigned total;
2526 int i;
2528 if (!bmap1 || !bmap2)
2529 return -1;
2530 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2531 return -1);
2532 if (bmap1->n_div || bmap2->n_div)
2533 return 0;
2534 if (!bmap1->n_eq && !bmap2->n_eq)
2535 return 0;
2537 total = isl_space_dim(bmap1->dim, isl_dim_all);
2538 if (total == 0)
2539 return 0;
2540 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2541 if (!v)
2542 goto error;
2543 elim = isl_alloc_array(bmap1->ctx, int, total);
2544 if (!elim)
2545 goto error;
2546 compute_elimination_index(bmap1, elim);
2547 for (i = 0; i < bmap2->n_eq; ++i) {
2548 int reduced;
2549 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2550 bmap1, elim);
2551 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2552 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2553 goto disjoint;
2555 for (i = 0; i < bmap2->n_ineq; ++i) {
2556 int reduced;
2557 reduced = reduced_using_equalities(v->block.data,
2558 bmap2->ineq[i], bmap1, elim);
2559 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2560 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2561 goto disjoint;
2563 compute_elimination_index(bmap2, elim);
2564 for (i = 0; i < bmap1->n_ineq; ++i) {
2565 int reduced;
2566 reduced = reduced_using_equalities(v->block.data,
2567 bmap1->ineq[i], bmap2, elim);
2568 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2569 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2570 goto disjoint;
2572 isl_vec_free(v);
2573 free(elim);
2574 return 0;
2575 disjoint:
2576 isl_vec_free(v);
2577 free(elim);
2578 return 1;
2579 error:
2580 isl_vec_free(v);
2581 free(elim);
2582 return -1;
2585 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2586 __isl_keep isl_basic_set *bset2)
2588 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2589 (struct isl_basic_map *)bset2);
2592 /* Are "map1" and "map2" obviously disjoint?
2594 * If one of them is empty or if they live in different spaces (ignoring
2595 * parameters), then they are clearly disjoint.
2597 * If they have different parameters, then we skip any further tests.
2599 * If they are obviously equal, but not obviously empty, then we will
2600 * not be able to detect if they are disjoint.
2602 * Otherwise we check if each basic map in "map1" is obviously disjoint
2603 * from each basic map in "map2".
2605 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2606 __isl_keep isl_map *map2)
2608 int i, j;
2609 int disjoint;
2610 int intersect;
2611 int match;
2613 if (!map1 || !map2)
2614 return -1;
2616 disjoint = isl_map_plain_is_empty(map1);
2617 if (disjoint < 0 || disjoint)
2618 return disjoint;
2620 disjoint = isl_map_plain_is_empty(map2);
2621 if (disjoint < 0 || disjoint)
2622 return disjoint;
2624 match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
2625 map2->dim, isl_dim_in);
2626 if (match < 0 || !match)
2627 return match < 0 ? -1 : 1;
2629 match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
2630 map2->dim, isl_dim_out);
2631 if (match < 0 || !match)
2632 return match < 0 ? -1 : 1;
2634 match = isl_space_match(map1->dim, isl_dim_param,
2635 map2->dim, isl_dim_param);
2636 if (match < 0 || !match)
2637 return match < 0 ? -1 : 0;
2639 intersect = isl_map_plain_is_equal(map1, map2);
2640 if (intersect < 0 || intersect)
2641 return intersect < 0 ? -1 : 0;
2643 for (i = 0; i < map1->n; ++i) {
2644 for (j = 0; j < map2->n; ++j) {
2645 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2646 map2->p[j]);
2647 if (d != 1)
2648 return d;
2651 return 1;
2654 /* Are "map1" and "map2" disjoint?
2656 * They are disjoint if they are "obviously disjoint" or if one of them
2657 * is empty. Otherwise, they are not disjoint if one of them is universal.
2658 * If none of these cases apply, we compute the intersection and see if
2659 * the result is empty.
2661 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2663 int disjoint;
2664 int intersect;
2665 isl_map *test;
2667 disjoint = isl_map_plain_is_disjoint(map1, map2);
2668 if (disjoint < 0 || disjoint)
2669 return disjoint;
2671 disjoint = isl_map_is_empty(map1);
2672 if (disjoint < 0 || disjoint)
2673 return disjoint;
2675 disjoint = isl_map_is_empty(map2);
2676 if (disjoint < 0 || disjoint)
2677 return disjoint;
2679 intersect = isl_map_plain_is_universe(map1);
2680 if (intersect < 0 || intersect)
2681 return intersect < 0 ? -1 : 0;
2683 intersect = isl_map_plain_is_universe(map2);
2684 if (intersect < 0 || intersect)
2685 return intersect < 0 ? -1 : 0;
2687 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2688 disjoint = isl_map_is_empty(test);
2689 isl_map_free(test);
2691 return disjoint;
2694 /* Are "bmap1" and "bmap2" disjoint?
2696 * They are disjoint if they are "obviously disjoint" or if one of them
2697 * is empty. Otherwise, they are not disjoint if one of them is universal.
2698 * If none of these cases apply, we compute the intersection and see if
2699 * the result is empty.
2701 int isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
2702 __isl_keep isl_basic_map *bmap2)
2704 int disjoint;
2705 int intersect;
2706 isl_basic_map *test;
2708 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
2709 if (disjoint < 0 || disjoint)
2710 return disjoint;
2712 disjoint = isl_basic_map_is_empty(bmap1);
2713 if (disjoint < 0 || disjoint)
2714 return disjoint;
2716 disjoint = isl_basic_map_is_empty(bmap2);
2717 if (disjoint < 0 || disjoint)
2718 return disjoint;
2720 intersect = isl_basic_map_is_universe(bmap1);
2721 if (intersect < 0 || intersect)
2722 return intersect < 0 ? -1 : 0;
2724 intersect = isl_basic_map_is_universe(bmap2);
2725 if (intersect < 0 || intersect)
2726 return intersect < 0 ? -1 : 0;
2728 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
2729 isl_basic_map_copy(bmap2));
2730 disjoint = isl_basic_map_is_empty(test);
2731 isl_basic_map_free(test);
2733 return disjoint;
2736 /* Are "bset1" and "bset2" disjoint?
2738 int isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
2739 __isl_keep isl_basic_set *bset2)
2741 return isl_basic_map_is_disjoint(bset1, bset2);
2744 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2745 __isl_keep isl_set *set2)
2747 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2748 (struct isl_map *)set2);
2751 /* Are "set1" and "set2" disjoint?
2753 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2755 return isl_map_is_disjoint(set1, set2);
2758 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2760 return isl_set_plain_is_disjoint(set1, set2);
2763 /* Check if we can combine a given div with lower bound l and upper
2764 * bound u with some other div and if so return that other div.
2765 * Otherwise return -1.
2767 * We first check that
2768 * - the bounds are opposites of each other (except for the constant
2769 * term)
2770 * - the bounds do not reference any other div
2771 * - no div is defined in terms of this div
2773 * Let m be the size of the range allowed on the div by the bounds.
2774 * That is, the bounds are of the form
2776 * e <= a <= e + m - 1
2778 * with e some expression in the other variables.
2779 * We look for another div b such that no third div is defined in terms
2780 * of this second div b and such that in any constraint that contains
2781 * a (except for the given lower and upper bound), also contains b
2782 * with a coefficient that is m times that of b.
2783 * That is, all constraints (execpt for the lower and upper bound)
2784 * are of the form
2786 * e + f (a + m b) >= 0
2788 * If so, we return b so that "a + m b" can be replaced by
2789 * a single div "c = a + m b".
2791 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2792 unsigned div, unsigned l, unsigned u)
2794 int i, j;
2795 unsigned dim;
2796 int coalesce = -1;
2798 if (bmap->n_div <= 1)
2799 return -1;
2800 dim = isl_space_dim(bmap->dim, isl_dim_all);
2801 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2802 return -1;
2803 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2804 bmap->n_div - div - 1) != -1)
2805 return -1;
2806 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2807 dim + bmap->n_div))
2808 return -1;
2810 for (i = 0; i < bmap->n_div; ++i) {
2811 if (isl_int_is_zero(bmap->div[i][0]))
2812 continue;
2813 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2814 return -1;
2817 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2818 if (isl_int_is_neg(bmap->ineq[l][0])) {
2819 isl_int_sub(bmap->ineq[l][0],
2820 bmap->ineq[l][0], bmap->ineq[u][0]);
2821 bmap = isl_basic_map_copy(bmap);
2822 bmap = isl_basic_map_set_to_empty(bmap);
2823 isl_basic_map_free(bmap);
2824 return -1;
2826 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2827 for (i = 0; i < bmap->n_div; ++i) {
2828 if (i == div)
2829 continue;
2830 if (!pairs[i])
2831 continue;
2832 for (j = 0; j < bmap->n_div; ++j) {
2833 if (isl_int_is_zero(bmap->div[j][0]))
2834 continue;
2835 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2836 break;
2838 if (j < bmap->n_div)
2839 continue;
2840 for (j = 0; j < bmap->n_ineq; ++j) {
2841 int valid;
2842 if (j == l || j == u)
2843 continue;
2844 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2845 continue;
2846 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2847 break;
2848 isl_int_mul(bmap->ineq[j][1 + dim + div],
2849 bmap->ineq[j][1 + dim + div],
2850 bmap->ineq[l][0]);
2851 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2852 bmap->ineq[j][1 + dim + i]);
2853 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2854 bmap->ineq[j][1 + dim + div],
2855 bmap->ineq[l][0]);
2856 if (!valid)
2857 break;
2859 if (j < bmap->n_ineq)
2860 continue;
2861 coalesce = i;
2862 break;
2864 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2865 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2866 return coalesce;
2869 /* Given a lower and an upper bound on div i, construct an inequality
2870 * that when nonnegative ensures that this pair of bounds always allows
2871 * for an integer value of the given div.
2872 * The lower bound is inequality l, while the upper bound is inequality u.
2873 * The constructed inequality is stored in ineq.
2874 * g, fl, fu are temporary scalars.
2876 * Let the upper bound be
2878 * -n_u a + e_u >= 0
2880 * and the lower bound
2882 * n_l a + e_l >= 0
2884 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2885 * We have
2887 * - f_u e_l <= f_u f_l g a <= f_l e_u
2889 * Since all variables are integer valued, this is equivalent to
2891 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2893 * If this interval is at least f_u f_l g, then it contains at least
2894 * one integer value for a.
2895 * That is, the test constraint is
2897 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2899 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2900 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2902 unsigned dim;
2903 dim = isl_space_dim(bmap->dim, isl_dim_all);
2905 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2906 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2907 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2908 isl_int_neg(fu, fu);
2909 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2910 1 + dim + bmap->n_div);
2911 isl_int_add(ineq[0], ineq[0], fl);
2912 isl_int_add(ineq[0], ineq[0], fu);
2913 isl_int_sub_ui(ineq[0], ineq[0], 1);
2914 isl_int_mul(g, g, fl);
2915 isl_int_mul(g, g, fu);
2916 isl_int_sub(ineq[0], ineq[0], g);
2919 /* Remove more kinds of divs that are not strictly needed.
2920 * In particular, if all pairs of lower and upper bounds on a div
2921 * are such that they allow at least one integer value of the div,
2922 * the we can eliminate the div using Fourier-Motzkin without
2923 * introducing any spurious solutions.
2925 static struct isl_basic_map *drop_more_redundant_divs(
2926 struct isl_basic_map *bmap, int *pairs, int n)
2928 struct isl_tab *tab = NULL;
2929 struct isl_vec *vec = NULL;
2930 unsigned dim;
2931 int remove = -1;
2932 isl_int g, fl, fu;
2934 isl_int_init(g);
2935 isl_int_init(fl);
2936 isl_int_init(fu);
2938 if (!bmap)
2939 goto error;
2941 dim = isl_space_dim(bmap->dim, isl_dim_all);
2942 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2943 if (!vec)
2944 goto error;
2946 tab = isl_tab_from_basic_map(bmap, 0);
2948 while (n > 0) {
2949 int i, l, u;
2950 int best = -1;
2951 enum isl_lp_result res;
2953 for (i = 0; i < bmap->n_div; ++i) {
2954 if (!pairs[i])
2955 continue;
2956 if (best >= 0 && pairs[best] <= pairs[i])
2957 continue;
2958 best = i;
2961 i = best;
2962 for (l = 0; l < bmap->n_ineq; ++l) {
2963 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2964 continue;
2965 for (u = 0; u < bmap->n_ineq; ++u) {
2966 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2967 continue;
2968 construct_test_ineq(bmap, i, l, u,
2969 vec->el, g, fl, fu);
2970 res = isl_tab_min(tab, vec->el,
2971 bmap->ctx->one, &g, NULL, 0);
2972 if (res == isl_lp_error)
2973 goto error;
2974 if (res == isl_lp_empty) {
2975 bmap = isl_basic_map_set_to_empty(bmap);
2976 break;
2978 if (res != isl_lp_ok || isl_int_is_neg(g))
2979 break;
2981 if (u < bmap->n_ineq)
2982 break;
2984 if (l == bmap->n_ineq) {
2985 remove = i;
2986 break;
2988 pairs[i] = 0;
2989 --n;
2992 isl_tab_free(tab);
2993 isl_vec_free(vec);
2995 isl_int_clear(g);
2996 isl_int_clear(fl);
2997 isl_int_clear(fu);
2999 free(pairs);
3001 if (remove < 0)
3002 return bmap;
3004 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
3005 return isl_basic_map_drop_redundant_divs(bmap);
3006 error:
3007 free(pairs);
3008 isl_basic_map_free(bmap);
3009 isl_tab_free(tab);
3010 isl_vec_free(vec);
3011 isl_int_clear(g);
3012 isl_int_clear(fl);
3013 isl_int_clear(fu);
3014 return NULL;
3017 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
3018 * and the upper bound u, div1 always occurs together with div2 in the form
3019 * (div1 + m div2), where m is the constant range on the variable div1
3020 * allowed by l and u, replace the pair div1 and div2 by a single
3021 * div that is equal to div1 + m div2.
3023 * The new div will appear in the location that contains div2.
3024 * We need to modify all constraints that contain
3025 * div2 = (div - div1) / m
3026 * (If a constraint does not contain div2, it will also not contain div1.)
3027 * If the constraint also contains div1, then we know they appear
3028 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
3029 * i.e., the coefficient of div is f.
3031 * Otherwise, we first need to introduce div1 into the constraint.
3032 * Let the l be
3034 * div1 + f >=0
3036 * and u
3038 * -div1 + f' >= 0
3040 * A lower bound on div2
3042 * n div2 + t >= 0
3044 * can be replaced by
3046 * (n * (m div 2 + div1) + m t + n f)/g >= 0
3048 * with g = gcd(m,n).
3049 * An upper bound
3051 * -n div2 + t >= 0
3053 * can be replaced by
3055 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3057 * These constraint are those that we would obtain from eliminating
3058 * div1 using Fourier-Motzkin.
3060 * After all constraints have been modified, we drop the lower and upper
3061 * bound and then drop div1.
3063 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
3064 unsigned div1, unsigned div2, unsigned l, unsigned u)
3066 isl_int a;
3067 isl_int b;
3068 isl_int m;
3069 unsigned dim, total;
3070 int i;
3072 dim = isl_space_dim(bmap->dim, isl_dim_all);
3073 total = 1 + dim + bmap->n_div;
3075 isl_int_init(a);
3076 isl_int_init(b);
3077 isl_int_init(m);
3078 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
3079 isl_int_add_ui(m, m, 1);
3081 for (i = 0; i < bmap->n_ineq; ++i) {
3082 if (i == l || i == u)
3083 continue;
3084 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
3085 continue;
3086 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
3087 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
3088 isl_int_divexact(a, m, b);
3089 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
3090 if (isl_int_is_pos(b)) {
3091 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3092 b, bmap->ineq[l], total);
3093 } else {
3094 isl_int_neg(b, b);
3095 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3096 b, bmap->ineq[u], total);
3099 isl_int_set(bmap->ineq[i][1 + dim + div2],
3100 bmap->ineq[i][1 + dim + div1]);
3101 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
3104 isl_int_clear(a);
3105 isl_int_clear(b);
3106 isl_int_clear(m);
3107 if (l > u) {
3108 isl_basic_map_drop_inequality(bmap, l);
3109 isl_basic_map_drop_inequality(bmap, u);
3110 } else {
3111 isl_basic_map_drop_inequality(bmap, u);
3112 isl_basic_map_drop_inequality(bmap, l);
3114 bmap = isl_basic_map_drop_div(bmap, div1);
3115 return bmap;
3118 /* First check if we can coalesce any pair of divs and
3119 * then continue with dropping more redundant divs.
3121 * We loop over all pairs of lower and upper bounds on a div
3122 * with coefficient 1 and -1, respectively, check if there
3123 * is any other div "c" with which we can coalesce the div
3124 * and if so, perform the coalescing.
3126 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
3127 struct isl_basic_map *bmap, int *pairs, int n)
3129 int i, l, u;
3130 unsigned dim;
3132 dim = isl_space_dim(bmap->dim, isl_dim_all);
3134 for (i = 0; i < bmap->n_div; ++i) {
3135 if (!pairs[i])
3136 continue;
3137 for (l = 0; l < bmap->n_ineq; ++l) {
3138 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
3139 continue;
3140 for (u = 0; u < bmap->n_ineq; ++u) {
3141 int c;
3143 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
3144 continue;
3145 c = div_find_coalesce(bmap, pairs, i, l, u);
3146 if (c < 0)
3147 continue;
3148 free(pairs);
3149 bmap = coalesce_divs(bmap, i, c, l, u);
3150 return isl_basic_map_drop_redundant_divs(bmap);
3155 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
3156 return bmap;
3158 return drop_more_redundant_divs(bmap, pairs, n);
3161 /* Remove divs that are not strictly needed.
3162 * In particular, if a div only occurs positively (or negatively)
3163 * in constraints, then it can simply be dropped.
3164 * Also, if a div occurs in only two constraints and if moreover
3165 * those two constraints are opposite to each other, except for the constant
3166 * term and if the sum of the constant terms is such that for any value
3167 * of the other values, there is always at least one integer value of the
3168 * div, i.e., if one plus this sum is greater than or equal to
3169 * the (absolute value) of the coefficent of the div in the constraints,
3170 * then we can also simply drop the div.
3172 * We skip divs that appear in equalities or in the definition of other divs.
3173 * Divs that appear in the definition of other divs usually occur in at least
3174 * 4 constraints, but the constraints may have been simplified.
3176 * If any divs are left after these simple checks then we move on
3177 * to more complicated cases in drop_more_redundant_divs.
3179 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
3180 struct isl_basic_map *bmap)
3182 int i, j;
3183 unsigned off;
3184 int *pairs = NULL;
3185 int n = 0;
3187 if (!bmap)
3188 goto error;
3189 if (bmap->n_div == 0)
3190 return bmap;
3192 off = isl_space_dim(bmap->dim, isl_dim_all);
3193 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3194 if (!pairs)
3195 goto error;
3197 for (i = 0; i < bmap->n_div; ++i) {
3198 int pos, neg;
3199 int last_pos, last_neg;
3200 int redundant;
3201 int defined;
3203 defined = !isl_int_is_zero(bmap->div[i][0]);
3204 for (j = i; j < bmap->n_div; ++j)
3205 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3206 break;
3207 if (j < bmap->n_div)
3208 continue;
3209 for (j = 0; j < bmap->n_eq; ++j)
3210 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3211 break;
3212 if (j < bmap->n_eq)
3213 continue;
3214 ++n;
3215 pos = neg = 0;
3216 for (j = 0; j < bmap->n_ineq; ++j) {
3217 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3218 last_pos = j;
3219 ++pos;
3221 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3222 last_neg = j;
3223 ++neg;
3226 pairs[i] = pos * neg;
3227 if (pairs[i] == 0) {
3228 for (j = bmap->n_ineq - 1; j >= 0; --j)
3229 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3230 isl_basic_map_drop_inequality(bmap, j);
3231 bmap = isl_basic_map_drop_div(bmap, i);
3232 free(pairs);
3233 return isl_basic_map_drop_redundant_divs(bmap);
3235 if (pairs[i] != 1)
3236 continue;
3237 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3238 bmap->ineq[last_neg] + 1,
3239 off + bmap->n_div))
3240 continue;
3242 isl_int_add(bmap->ineq[last_pos][0],
3243 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3244 isl_int_add_ui(bmap->ineq[last_pos][0],
3245 bmap->ineq[last_pos][0], 1);
3246 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3247 bmap->ineq[last_pos][1+off+i]);
3248 isl_int_sub_ui(bmap->ineq[last_pos][0],
3249 bmap->ineq[last_pos][0], 1);
3250 isl_int_sub(bmap->ineq[last_pos][0],
3251 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3252 if (!redundant) {
3253 if (defined ||
3254 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3255 pairs[i] = 0;
3256 --n;
3257 continue;
3259 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3260 bmap = isl_basic_map_simplify(bmap);
3261 free(pairs);
3262 return isl_basic_map_drop_redundant_divs(bmap);
3264 if (last_pos > last_neg) {
3265 isl_basic_map_drop_inequality(bmap, last_pos);
3266 isl_basic_map_drop_inequality(bmap, last_neg);
3267 } else {
3268 isl_basic_map_drop_inequality(bmap, last_neg);
3269 isl_basic_map_drop_inequality(bmap, last_pos);
3271 bmap = isl_basic_map_drop_div(bmap, i);
3272 free(pairs);
3273 return isl_basic_map_drop_redundant_divs(bmap);
3276 if (n > 0)
3277 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3279 free(pairs);
3280 return bmap;
3281 error:
3282 free(pairs);
3283 isl_basic_map_free(bmap);
3284 return NULL;
3287 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3288 struct isl_basic_set *bset)
3290 return (struct isl_basic_set *)
3291 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3294 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3296 int i;
3298 if (!map)
3299 return NULL;
3300 for (i = 0; i < map->n; ++i) {
3301 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3302 if (!map->p[i])
3303 goto error;
3305 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3306 return map;
3307 error:
3308 isl_map_free(map);
3309 return NULL;
3312 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3314 return (struct isl_set *)
3315 isl_map_drop_redundant_divs((struct isl_map *)set);
3318 /* Does "bmap" satisfy any equality that involves more than 2 variables
3319 * and/or has coefficients different from -1 and 1?
3321 static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
3323 int i;
3324 unsigned total;
3326 total = isl_basic_map_dim(bmap, isl_dim_all);
3328 for (i = 0; i < bmap->n_eq; ++i) {
3329 int j, k;
3331 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
3332 if (j < 0)
3333 continue;
3334 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3335 !isl_int_is_negone(bmap->eq[i][1 + j]))
3336 return 1;
3338 j += 1;
3339 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3340 if (k < 0)
3341 continue;
3342 j += k;
3343 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3344 !isl_int_is_negone(bmap->eq[i][1 + j]))
3345 return 1;
3347 j += 1;
3348 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3349 if (k >= 0)
3350 return 1;
3353 return 0;
3356 /* Remove any common factor g from the constraint coefficients in "v".
3357 * The constant term is stored in the first position and is replaced
3358 * by floor(c/g). If any common factor is removed and if this results
3359 * in a tightening of the constraint, then set *tightened.
3361 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
3362 int *tightened)
3364 isl_ctx *ctx;
3366 if (!v)
3367 return NULL;
3368 ctx = isl_vec_get_ctx(v);
3369 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
3370 if (isl_int_is_zero(ctx->normalize_gcd))
3371 return v;
3372 if (isl_int_is_one(ctx->normalize_gcd))
3373 return v;
3374 v = isl_vec_cow(v);
3375 if (!v)
3376 return NULL;
3377 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
3378 *tightened = 1;
3379 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
3380 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
3381 v->size - 1);
3382 return v;
3385 /* If "bmap" is an integer set that satisfies any equality involving
3386 * more than 2 variables and/or has coefficients different from -1 and 1,
3387 * then use variable compression to reduce the coefficients by removing
3388 * any (hidden) common factor.
3389 * In particular, apply the variable compression to each constraint,
3390 * factor out any common factor in the non-constant coefficients and
3391 * then apply the inverse of the compression.
3392 * At the end, we mark the basic map as having reduced constants.
3393 * If this flag is still set on the next invocation of this function,
3394 * then we skip the computation.
3396 * Removing a common factor may result in a tightening of some of
3397 * the constraints. If this happens, then we may end up with two
3398 * opposite inequalities that can be replaced by an equality.
3399 * We therefore call isl_basic_map_detect_inequality_pairs,
3400 * which checks for such pairs of inequalities as well as eliminate_divs_eq
3401 * if such a pair was found.
3403 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
3404 __isl_take isl_basic_map *bmap)
3406 unsigned total;
3407 isl_ctx *ctx;
3408 isl_vec *v;
3409 isl_mat *eq, *T, *T2;
3410 int i;
3411 int tightened;
3413 if (!bmap)
3414 return NULL;
3415 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
3416 return bmap;
3417 if (isl_basic_map_is_rational(bmap))
3418 return bmap;
3419 if (bmap->n_eq == 0)
3420 return bmap;
3421 if (!has_multiple_var_equality(bmap))
3422 return bmap;
3424 total = isl_basic_map_dim(bmap, isl_dim_all);
3425 ctx = isl_basic_map_get_ctx(bmap);
3426 v = isl_vec_alloc(ctx, 1 + total);
3427 if (!v)
3428 return isl_basic_map_free(bmap);
3430 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
3431 T = isl_mat_variable_compression(eq, &T2);
3432 if (!T || !T2)
3433 goto error;
3434 if (T->n_col == 0) {
3435 isl_mat_free(T);
3436 isl_mat_free(T2);
3437 isl_vec_free(v);
3438 return isl_basic_map_set_to_empty(bmap);
3441 tightened = 0;
3442 for (i = 0; i < bmap->n_ineq; ++i) {
3443 isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
3444 v = isl_vec_mat_product(v, isl_mat_copy(T));
3445 v = normalize_constraint(v, &tightened);
3446 v = isl_vec_mat_product(v, isl_mat_copy(T2));
3447 if (!v)
3448 goto error;
3449 isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
3452 isl_mat_free(T);
3453 isl_mat_free(T2);
3454 isl_vec_free(v);
3456 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
3458 if (tightened) {
3459 int progress = 0;
3461 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
3462 if (progress)
3463 bmap = eliminate_divs_eq(bmap, &progress);
3466 return bmap;
3467 error:
3468 isl_mat_free(T);
3469 isl_mat_free(T2);
3470 isl_vec_free(v);
3471 return isl_basic_map_free(bmap);
3474 /* Shift the integer division at position "div" of "bmap" by "shift".
3476 * That is, if the integer division has the form
3478 * floor(f(x)/d)
3480 * then replace it by
3482 * floor((f(x) + shift * d)/d) - shift
3484 __isl_give isl_basic_map *isl_basic_map_shift_div(
3485 __isl_take isl_basic_map *bmap, int div, isl_int shift)
3487 int i;
3488 unsigned total;
3490 if (!bmap)
3491 return NULL;
3493 total = isl_basic_map_dim(bmap, isl_dim_all);
3494 total -= isl_basic_map_dim(bmap, isl_dim_div);
3496 isl_int_addmul(bmap->div[div][1], shift, bmap->div[div][0]);
3498 for (i = 0; i < bmap->n_eq; ++i) {
3499 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
3500 continue;
3501 isl_int_submul(bmap->eq[i][0],
3502 shift, bmap->eq[i][1 + total + div]);
3504 for (i = 0; i < bmap->n_ineq; ++i) {
3505 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
3506 continue;
3507 isl_int_submul(bmap->ineq[i][0],
3508 shift, bmap->ineq[i][1 + total + div]);
3510 for (i = 0; i < bmap->n_div; ++i) {
3511 if (isl_int_is_zero(bmap->div[i][0]))
3512 continue;
3513 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
3514 continue;
3515 isl_int_submul(bmap->div[i][1],
3516 shift, bmap->div[i][1 + 1 + total + div]);
3519 return bmap;