2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
14 #include <isl_mat_private.h>
17 #include "isl_equalities.h"
20 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
22 static void swap_ineq(struct isl_basic_map
*bmap
, unsigned i
, unsigned j
)
28 bmap
->ineq
[i
] = bmap
->ineq
[j
];
33 /* Return 1 if constraint c is redundant with respect to the constraints
34 * in bmap. If c is a lower [upper] bound in some variable and bmap
35 * does not have a lower [upper] bound in that variable, then c cannot
36 * be redundant and we do not need solve any lp.
38 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
39 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
41 enum isl_lp_result res
;
48 total
= isl_basic_map_total_dim(*bmap
);
49 for (i
= 0; i
< total
; ++i
) {
51 if (isl_int_is_zero(c
[1+i
]))
53 sign
= isl_int_sgn(c
[1+i
]);
54 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
55 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
57 if (j
== (*bmap
)->n_ineq
)
63 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
65 if (res
== isl_lp_unbounded
)
67 if (res
== isl_lp_error
)
69 if (res
== isl_lp_empty
) {
70 *bmap
= isl_basic_map_set_to_empty(*bmap
);
73 return !isl_int_is_neg(*opt_n
);
76 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
77 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
79 return isl_basic_map_constraint_is_redundant(
80 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
84 * constraints. If the minimal value along the normal of a constraint
85 * is the same if the constraint is removed, then the constraint is redundant.
87 * Alternatively, we could have intersected the basic map with the
88 * corresponding equality and the checked if the dimension was that
91 __isl_give isl_basic_map
*isl_basic_map_remove_redundancies(
92 __isl_take isl_basic_map
*bmap
)
99 bmap
= isl_basic_map_gauss(bmap
, NULL
);
100 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
102 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
104 if (bmap
->n_ineq
<= 1)
107 tab
= isl_tab_from_basic_map(bmap
);
108 if (isl_tab_detect_implicit_equalities(tab
) < 0)
110 if (isl_tab_detect_redundant(tab
) < 0)
112 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
114 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
115 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
119 isl_basic_map_free(bmap
);
123 __isl_give isl_basic_set
*isl_basic_set_remove_redundancies(
124 __isl_take isl_basic_set
*bset
)
126 return (struct isl_basic_set
*)
127 isl_basic_map_remove_redundancies((struct isl_basic_map
*)bset
);
130 /* Check if the set set is bound in the direction of the affine
131 * constraint c and if so, set the constant term such that the
132 * resulting constraint is a bounding constraint for the set.
134 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
142 isl_int_init(opt_denom
);
144 for (j
= 0; j
< set
->n
; ++j
) {
145 enum isl_lp_result res
;
147 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
150 res
= isl_basic_set_solve_lp(set
->p
[j
],
151 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
152 if (res
== isl_lp_unbounded
)
154 if (res
== isl_lp_error
)
156 if (res
== isl_lp_empty
) {
157 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
162 if (first
|| isl_int_is_neg(opt
)) {
163 if (!isl_int_is_one(opt_denom
))
164 isl_seq_scale(c
, c
, opt_denom
, len
);
165 isl_int_sub(c
[0], c
[0], opt
);
170 isl_int_clear(opt_denom
);
174 isl_int_clear(opt_denom
);
178 __isl_give isl_basic_map
*isl_basic_map_set_rational(
179 __isl_take isl_basic_set
*bmap
)
184 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
187 bmap
= isl_basic_map_cow(bmap
);
191 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
193 return isl_basic_map_finalize(bmap
);
196 __isl_give isl_basic_set
*isl_basic_set_set_rational(
197 __isl_take isl_basic_set
*bset
)
199 return isl_basic_map_set_rational(bset
);
202 static struct isl_set
*isl_set_set_rational(struct isl_set
*set
)
206 set
= isl_set_cow(set
);
209 for (i
= 0; i
< set
->n
; ++i
) {
210 set
->p
[i
] = isl_basic_set_set_rational(set
->p
[i
]);
220 static struct isl_basic_set
*isl_basic_set_add_equality(
221 struct isl_basic_set
*bset
, isl_int
*c
)
229 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
232 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
233 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
234 dim
= isl_basic_set_n_dim(bset
);
235 bset
= isl_basic_set_cow(bset
);
236 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
237 i
= isl_basic_set_alloc_equality(bset
);
240 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
243 isl_basic_set_free(bset
);
247 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
251 set
= isl_set_cow(set
);
254 for (i
= 0; i
< set
->n
; ++i
) {
255 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
265 /* Given a union of basic sets, construct the constraints for wrapping
266 * a facet around one of its ridges.
267 * In particular, if each of n the d-dimensional basic sets i in "set"
268 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
269 * and is defined by the constraints
273 * then the resulting set is of dimension n*(1+d) and has as constraints
282 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
284 struct isl_basic_set
*lp
;
288 unsigned dim
, lp_dim
;
293 dim
= 1 + isl_set_n_dim(set
);
296 for (i
= 0; i
< set
->n
; ++i
) {
297 n_eq
+= set
->p
[i
]->n_eq
;
298 n_ineq
+= set
->p
[i
]->n_ineq
;
300 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
301 lp
= isl_basic_set_set_rational(lp
);
304 lp_dim
= isl_basic_set_n_dim(lp
);
305 k
= isl_basic_set_alloc_equality(lp
);
306 isl_int_set_si(lp
->eq
[k
][0], -1);
307 for (i
= 0; i
< set
->n
; ++i
) {
308 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
309 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
310 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
312 for (i
= 0; i
< set
->n
; ++i
) {
313 k
= isl_basic_set_alloc_inequality(lp
);
314 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
315 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
317 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
318 k
= isl_basic_set_alloc_equality(lp
);
319 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
320 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
321 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
324 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
325 k
= isl_basic_set_alloc_inequality(lp
);
326 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
327 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
328 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
334 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
335 * of that facet, compute the other facet of the convex hull that contains
338 * We first transform the set such that the facet constraint becomes
342 * I.e., the facet lies in
346 * and on that facet, the constraint that defines the ridge is
350 * (This transformation is not strictly needed, all that is needed is
351 * that the ridge contains the origin.)
353 * Since the ridge contains the origin, the cone of the convex hull
354 * will be of the form
359 * with this second constraint defining the new facet.
360 * The constant a is obtained by settting x_1 in the cone of the
361 * convex hull to 1 and minimizing x_2.
362 * Now, each element in the cone of the convex hull is the sum
363 * of elements in the cones of the basic sets.
364 * If a_i is the dilation factor of basic set i, then the problem
365 * we need to solve is
378 * the constraints of each (transformed) basic set.
379 * If a = n/d, then the constraint defining the new facet (in the transformed
382 * -n x_1 + d x_2 >= 0
384 * In the original space, we need to take the same combination of the
385 * corresponding constraints "facet" and "ridge".
387 * If a = -infty = "-1/0", then we just return the original facet constraint.
388 * This means that the facet is unbounded, but has a bounded intersection
389 * with the union of sets.
391 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
392 isl_int
*facet
, isl_int
*ridge
)
396 struct isl_mat
*T
= NULL
;
397 struct isl_basic_set
*lp
= NULL
;
399 enum isl_lp_result res
;
406 set
= isl_set_copy(set
);
407 set
= isl_set_set_rational(set
);
409 dim
= 1 + isl_set_n_dim(set
);
410 T
= isl_mat_alloc(ctx
, 3, dim
);
413 isl_int_set_si(T
->row
[0][0], 1);
414 isl_seq_clr(T
->row
[0]+1, dim
- 1);
415 isl_seq_cpy(T
->row
[1], facet
, dim
);
416 isl_seq_cpy(T
->row
[2], ridge
, dim
);
417 T
= isl_mat_right_inverse(T
);
418 set
= isl_set_preimage(set
, T
);
422 lp
= wrap_constraints(set
);
423 obj
= isl_vec_alloc(ctx
, 1 + dim
*set
->n
);
426 isl_int_set_si(obj
->block
.data
[0], 0);
427 for (i
= 0; i
< set
->n
; ++i
) {
428 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
429 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
430 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
434 res
= isl_basic_set_solve_lp(lp
, 0,
435 obj
->block
.data
, ctx
->one
, &num
, &den
, NULL
);
436 if (res
== isl_lp_ok
) {
437 isl_int_neg(num
, num
);
438 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
439 isl_seq_normalize(ctx
, facet
, dim
);
444 isl_basic_set_free(lp
);
446 if (res
== isl_lp_error
)
448 isl_assert(ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
452 isl_basic_set_free(lp
);
458 /* Compute the constraint of a facet of "set".
460 * We first compute the intersection with a bounding constraint
461 * that is orthogonal to one of the coordinate axes.
462 * If the affine hull of this intersection has only one equality,
463 * we have found a facet.
464 * Otherwise, we wrap the current bounding constraint around
465 * one of the equalities of the face (one that is not equal to
466 * the current bounding constraint).
467 * This process continues until we have found a facet.
468 * The dimension of the intersection increases by at least
469 * one on each iteration, so termination is guaranteed.
471 static __isl_give isl_mat
*initial_facet_constraint(__isl_keep isl_set
*set
)
473 struct isl_set
*slice
= NULL
;
474 struct isl_basic_set
*face
= NULL
;
476 unsigned dim
= isl_set_n_dim(set
);
480 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
481 bounds
= isl_mat_alloc(set
->ctx
, 1, 1 + dim
);
485 isl_seq_clr(bounds
->row
[0], dim
);
486 isl_int_set_si(bounds
->row
[0][1 + dim
- 1], 1);
487 is_bound
= uset_is_bound(set
, bounds
->row
[0], 1 + dim
);
490 isl_assert(set
->ctx
, is_bound
, goto error
);
491 isl_seq_normalize(set
->ctx
, bounds
->row
[0], 1 + dim
);
495 slice
= isl_set_copy(set
);
496 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
497 face
= isl_set_affine_hull(slice
);
500 if (face
->n_eq
== 1) {
501 isl_basic_set_free(face
);
504 for (i
= 0; i
< face
->n_eq
; ++i
)
505 if (!isl_seq_eq(bounds
->row
[0], face
->eq
[i
], 1 + dim
) &&
506 !isl_seq_is_neg(bounds
->row
[0],
507 face
->eq
[i
], 1 + dim
))
509 isl_assert(set
->ctx
, i
< face
->n_eq
, goto error
);
510 if (!isl_set_wrap_facet(set
, bounds
->row
[0], face
->eq
[i
]))
512 isl_seq_normalize(set
->ctx
, bounds
->row
[0], bounds
->n_col
);
513 isl_basic_set_free(face
);
518 isl_basic_set_free(face
);
519 isl_mat_free(bounds
);
523 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
524 * compute a hyperplane description of the facet, i.e., compute the facets
527 * We compute an affine transformation that transforms the constraint
536 * by computing the right inverse U of a matrix that starts with the rows
549 * Since z_1 is zero, we can drop this variable as well as the corresponding
550 * column of U to obtain
558 * with Q' equal to Q, but without the corresponding row.
559 * After computing the facets of the facet in the z' space,
560 * we convert them back to the x space through Q.
562 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
564 struct isl_mat
*m
, *U
, *Q
;
565 struct isl_basic_set
*facet
= NULL
;
570 set
= isl_set_copy(set
);
571 dim
= isl_set_n_dim(set
);
572 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
575 isl_int_set_si(m
->row
[0][0], 1);
576 isl_seq_clr(m
->row
[0]+1, dim
);
577 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
578 U
= isl_mat_right_inverse(m
);
579 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
580 U
= isl_mat_drop_cols(U
, 1, 1);
581 Q
= isl_mat_drop_rows(Q
, 1, 1);
582 set
= isl_set_preimage(set
, U
);
583 facet
= uset_convex_hull_wrap_bounded(set
);
584 facet
= isl_basic_set_preimage(facet
, Q
);
586 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
589 isl_basic_set_free(facet
);
594 /* Given an initial facet constraint, compute the remaining facets.
595 * We do this by running through all facets found so far and computing
596 * the adjacent facets through wrapping, adding those facets that we
597 * hadn't already found before.
599 * For each facet we have found so far, we first compute its facets
600 * in the resulting convex hull. That is, we compute the ridges
601 * of the resulting convex hull contained in the facet.
602 * We also compute the corresponding facet in the current approximation
603 * of the convex hull. There is no need to wrap around the ridges
604 * in this facet since that would result in a facet that is already
605 * present in the current approximation.
607 * This function can still be significantly optimized by checking which of
608 * the facets of the basic sets are also facets of the convex hull and
609 * using all the facets so far to help in constructing the facets of the
612 * using the technique in section "3.1 Ridge Generation" of
613 * "Extended Convex Hull" by Fukuda et al.
615 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
620 struct isl_basic_set
*facet
= NULL
;
621 struct isl_basic_set
*hull_facet
= NULL
;
627 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
629 dim
= isl_set_n_dim(set
);
631 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
632 facet
= compute_facet(set
, hull
->ineq
[i
]);
633 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
634 facet
= isl_basic_set_gauss(facet
, NULL
);
635 facet
= isl_basic_set_normalize_constraints(facet
);
636 hull_facet
= isl_basic_set_copy(hull
);
637 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
638 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
639 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
640 if (!facet
|| !hull_facet
)
642 hull
= isl_basic_set_cow(hull
);
643 hull
= isl_basic_set_extend_dim(hull
,
644 isl_dim_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
647 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
648 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
649 if (isl_seq_eq(facet
->ineq
[j
],
650 hull_facet
->ineq
[f
], 1 + dim
))
652 if (f
< hull_facet
->n_ineq
)
654 k
= isl_basic_set_alloc_inequality(hull
);
657 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
658 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
661 isl_basic_set_free(hull_facet
);
662 isl_basic_set_free(facet
);
664 hull
= isl_basic_set_simplify(hull
);
665 hull
= isl_basic_set_finalize(hull
);
668 isl_basic_set_free(hull_facet
);
669 isl_basic_set_free(facet
);
670 isl_basic_set_free(hull
);
674 /* Special case for computing the convex hull of a one dimensional set.
675 * We simply collect the lower and upper bounds of each basic set
676 * and the biggest of those.
678 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
680 struct isl_mat
*c
= NULL
;
681 isl_int
*lower
= NULL
;
682 isl_int
*upper
= NULL
;
685 struct isl_basic_set
*hull
;
687 for (i
= 0; i
< set
->n
; ++i
) {
688 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
692 set
= isl_set_remove_empty_parts(set
);
695 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
696 c
= isl_mat_alloc(set
->ctx
, 2, 2);
700 if (set
->p
[0]->n_eq
> 0) {
701 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
704 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
705 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
706 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
708 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
709 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
712 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
713 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
715 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
718 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
725 for (i
= 0; i
< set
->n
; ++i
) {
726 struct isl_basic_set
*bset
= set
->p
[i
];
730 for (j
= 0; j
< bset
->n_eq
; ++j
) {
734 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
735 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
736 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
737 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
738 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
739 isl_seq_neg(lower
, bset
->eq
[j
], 2);
742 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
743 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
744 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
745 isl_seq_neg(upper
, bset
->eq
[j
], 2);
746 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
747 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
750 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
751 if (isl_int_is_pos(bset
->ineq
[j
][1]))
753 if (isl_int_is_neg(bset
->ineq
[j
][1]))
755 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
756 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
757 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
758 if (isl_int_lt(a
, b
))
759 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
761 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
762 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
763 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
764 if (isl_int_gt(a
, b
))
765 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
776 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
777 hull
= isl_basic_set_set_rational(hull
);
781 k
= isl_basic_set_alloc_inequality(hull
);
782 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
785 k
= isl_basic_set_alloc_inequality(hull
);
786 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
788 hull
= isl_basic_set_finalize(hull
);
798 /* Project out final n dimensions using Fourier-Motzkin */
799 static struct isl_set
*set_project_out(struct isl_ctx
*ctx
,
800 struct isl_set
*set
, unsigned n
)
802 return isl_set_remove_dims(set
, isl_dim_set
, isl_set_n_dim(set
) - n
, n
);
805 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
807 struct isl_basic_set
*convex_hull
;
812 if (isl_set_is_empty(set
))
813 convex_hull
= isl_basic_set_empty(isl_dim_copy(set
->dim
));
815 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
820 /* Compute the convex hull of a pair of basic sets without any parameters or
821 * integer divisions using Fourier-Motzkin elimination.
822 * The convex hull is the set of all points that can be written as
823 * the sum of points from both basic sets (in homogeneous coordinates).
824 * We set up the constraints in a space with dimensions for each of
825 * the three sets and then project out the dimensions corresponding
826 * to the two original basic sets, retaining only those corresponding
827 * to the convex hull.
829 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
830 struct isl_basic_set
*bset2
)
833 struct isl_basic_set
*bset
[2];
834 struct isl_basic_set
*hull
= NULL
;
837 if (!bset1
|| !bset2
)
840 dim
= isl_basic_set_n_dim(bset1
);
841 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
842 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
843 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
846 for (i
= 0; i
< 2; ++i
) {
847 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
848 k
= isl_basic_set_alloc_equality(hull
);
851 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
852 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
853 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
856 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
857 k
= isl_basic_set_alloc_inequality(hull
);
860 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
861 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
862 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
863 bset
[i
]->ineq
[j
], 1+dim
);
865 k
= isl_basic_set_alloc_inequality(hull
);
868 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
869 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
871 for (j
= 0; j
< 1+dim
; ++j
) {
872 k
= isl_basic_set_alloc_equality(hull
);
875 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
876 isl_int_set_si(hull
->eq
[k
][j
], -1);
877 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
878 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
880 hull
= isl_basic_set_set_rational(hull
);
881 hull
= isl_basic_set_remove_dims(hull
, isl_dim_set
, dim
, 2*(1+dim
));
882 hull
= isl_basic_set_remove_redundancies(hull
);
883 isl_basic_set_free(bset1
);
884 isl_basic_set_free(bset2
);
887 isl_basic_set_free(bset1
);
888 isl_basic_set_free(bset2
);
889 isl_basic_set_free(hull
);
893 /* Is the set bounded for each value of the parameters?
895 int isl_basic_set_is_bounded(__isl_keep isl_basic_set
*bset
)
902 if (isl_basic_set_plain_is_empty(bset
))
905 tab
= isl_tab_from_recession_cone(bset
, 1);
906 bounded
= isl_tab_cone_is_bounded(tab
);
911 /* Is the image bounded for each value of the parameters and
912 * the domain variables?
914 int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map
*bmap
)
916 unsigned nparam
= isl_basic_map_dim(bmap
, isl_dim_param
);
917 unsigned n_in
= isl_basic_map_dim(bmap
, isl_dim_in
);
920 bmap
= isl_basic_map_copy(bmap
);
921 bmap
= isl_basic_map_cow(bmap
);
922 bmap
= isl_basic_map_move_dims(bmap
, isl_dim_param
, nparam
,
923 isl_dim_in
, 0, n_in
);
924 bounded
= isl_basic_set_is_bounded((isl_basic_set
*)bmap
);
925 isl_basic_map_free(bmap
);
930 /* Is the set bounded for each value of the parameters?
932 int isl_set_is_bounded(__isl_keep isl_set
*set
)
939 for (i
= 0; i
< set
->n
; ++i
) {
940 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
941 if (!bounded
|| bounded
< 0)
947 /* Compute the lineality space of the convex hull of bset1 and bset2.
949 * We first compute the intersection of the recession cone of bset1
950 * with the negative of the recession cone of bset2 and then compute
951 * the linear hull of the resulting cone.
953 static struct isl_basic_set
*induced_lineality_space(
954 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
957 struct isl_basic_set
*lin
= NULL
;
960 if (!bset1
|| !bset2
)
963 dim
= isl_basic_set_total_dim(bset1
);
964 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1
), 0,
965 bset1
->n_eq
+ bset2
->n_eq
,
966 bset1
->n_ineq
+ bset2
->n_ineq
);
967 lin
= isl_basic_set_set_rational(lin
);
970 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
971 k
= isl_basic_set_alloc_equality(lin
);
974 isl_int_set_si(lin
->eq
[k
][0], 0);
975 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
977 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
978 k
= isl_basic_set_alloc_inequality(lin
);
981 isl_int_set_si(lin
->ineq
[k
][0], 0);
982 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
984 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
985 k
= isl_basic_set_alloc_equality(lin
);
988 isl_int_set_si(lin
->eq
[k
][0], 0);
989 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
991 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
992 k
= isl_basic_set_alloc_inequality(lin
);
995 isl_int_set_si(lin
->ineq
[k
][0], 0);
996 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
999 isl_basic_set_free(bset1
);
1000 isl_basic_set_free(bset2
);
1001 return isl_basic_set_affine_hull(lin
);
1003 isl_basic_set_free(lin
);
1004 isl_basic_set_free(bset1
);
1005 isl_basic_set_free(bset2
);
1009 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
1011 /* Given a set and a linear space "lin" of dimension n > 0,
1012 * project the linear space from the set, compute the convex hull
1013 * and then map the set back to the original space.
1019 * describe the linear space. We first compute the Hermite normal
1020 * form H = M U of M = H Q, to obtain
1024 * The last n rows of H will be zero, so the last n variables of x' = Q x
1025 * are the one we want to project out. We do this by transforming each
1026 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1027 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1028 * we transform the hull back to the original space as A' Q_1 x >= b',
1029 * with Q_1 all but the last n rows of Q.
1031 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1032 struct isl_basic_set
*lin
)
1034 unsigned total
= isl_basic_set_total_dim(lin
);
1036 struct isl_basic_set
*hull
;
1037 struct isl_mat
*M
, *U
, *Q
;
1041 lin_dim
= total
- lin
->n_eq
;
1042 M
= isl_mat_sub_alloc6(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1043 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1047 isl_basic_set_free(lin
);
1049 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1051 U
= isl_mat_lin_to_aff(U
);
1052 Q
= isl_mat_lin_to_aff(Q
);
1054 set
= isl_set_preimage(set
, U
);
1055 set
= isl_set_remove_dims(set
, isl_dim_set
, total
- lin_dim
, lin_dim
);
1056 hull
= uset_convex_hull(set
);
1057 hull
= isl_basic_set_preimage(hull
, Q
);
1061 isl_basic_set_free(lin
);
1066 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1067 * set up an LP for solving
1069 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1071 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1072 * The next \alpha{ij} correspond to the equalities and come in pairs.
1073 * The final \alpha{ij} correspond to the inequalities.
1075 static struct isl_basic_set
*valid_direction_lp(
1076 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1078 struct isl_dim
*dim
;
1079 struct isl_basic_set
*lp
;
1084 if (!bset1
|| !bset2
)
1086 d
= 1 + isl_basic_set_total_dim(bset1
);
1088 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1089 dim
= isl_dim_set_alloc(bset1
->ctx
, 0, n
);
1090 lp
= isl_basic_set_alloc_dim(dim
, 0, d
, n
);
1093 for (i
= 0; i
< n
; ++i
) {
1094 k
= isl_basic_set_alloc_inequality(lp
);
1097 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1098 isl_int_set_si(lp
->ineq
[k
][0], -1);
1099 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1101 for (i
= 0; i
< d
; ++i
) {
1102 k
= isl_basic_set_alloc_equality(lp
);
1106 isl_int_set_si(lp
->eq
[k
][n
], 0); n
++;
1107 /* positivity constraint 1 >= 0 */
1108 isl_int_set_si(lp
->eq
[k
][n
], i
== 0); n
++;
1109 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1110 isl_int_set(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1111 isl_int_neg(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1113 for (j
= 0; j
< bset1
->n_ineq
; ++j
) {
1114 isl_int_set(lp
->eq
[k
][n
], bset1
->ineq
[j
][i
]); n
++;
1116 /* positivity constraint 1 >= 0 */
1117 isl_int_set_si(lp
->eq
[k
][n
], -(i
== 0)); n
++;
1118 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1119 isl_int_neg(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1120 isl_int_set(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1122 for (j
= 0; j
< bset2
->n_ineq
; ++j
) {
1123 isl_int_neg(lp
->eq
[k
][n
], bset2
->ineq
[j
][i
]); n
++;
1126 lp
= isl_basic_set_gauss(lp
, NULL
);
1127 isl_basic_set_free(bset1
);
1128 isl_basic_set_free(bset2
);
1131 isl_basic_set_free(bset1
);
1132 isl_basic_set_free(bset2
);
1136 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1137 * for all rays in the homogeneous space of the two cones that correspond
1138 * to the input polyhedra bset1 and bset2.
1140 * We compute s as a vector that satisfies
1142 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1144 * with h_{ij} the normals of the facets of polyhedron i
1145 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1146 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1147 * We first set up an LP with as variables the \alpha{ij}.
1148 * In this formulation, for each polyhedron i,
1149 * the first constraint is the positivity constraint, followed by pairs
1150 * of variables for the equalities, followed by variables for the inequalities.
1151 * We then simply pick a feasible solution and compute s using (*).
1153 * Note that we simply pick any valid direction and make no attempt
1154 * to pick a "good" or even the "best" valid direction.
1156 static struct isl_vec
*valid_direction(
1157 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1159 struct isl_basic_set
*lp
;
1160 struct isl_tab
*tab
;
1161 struct isl_vec
*sample
= NULL
;
1162 struct isl_vec
*dir
;
1167 if (!bset1
|| !bset2
)
1169 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1170 isl_basic_set_copy(bset2
));
1171 tab
= isl_tab_from_basic_set(lp
);
1172 sample
= isl_tab_get_sample_value(tab
);
1174 isl_basic_set_free(lp
);
1177 d
= isl_basic_set_total_dim(bset1
);
1178 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1181 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1183 /* positivity constraint 1 >= 0 */
1184 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
]); n
++;
1185 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1186 isl_int_sub(sample
->block
.data
[n
],
1187 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1188 isl_seq_combine(dir
->block
.data
,
1189 bset1
->ctx
->one
, dir
->block
.data
,
1190 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1194 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1195 isl_seq_combine(dir
->block
.data
,
1196 bset1
->ctx
->one
, dir
->block
.data
,
1197 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1198 isl_vec_free(sample
);
1199 isl_seq_normalize(bset1
->ctx
, dir
->el
, dir
->size
);
1200 isl_basic_set_free(bset1
);
1201 isl_basic_set_free(bset2
);
1204 isl_vec_free(sample
);
1205 isl_basic_set_free(bset1
);
1206 isl_basic_set_free(bset2
);
1210 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1211 * compute b_i' + A_i' x' >= 0, with
1213 * [ b_i A_i ] [ y' ] [ y' ]
1214 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1216 * In particular, add the "positivity constraint" and then perform
1219 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1226 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1227 k
= isl_basic_set_alloc_inequality(bset
);
1230 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1231 isl_int_set_si(bset
->ineq
[k
][0], 1);
1232 bset
= isl_basic_set_preimage(bset
, T
);
1236 isl_basic_set_free(bset
);
1240 /* Compute the convex hull of a pair of basic sets without any parameters or
1241 * integer divisions, where the convex hull is known to be pointed,
1242 * but the basic sets may be unbounded.
1244 * We turn this problem into the computation of a convex hull of a pair
1245 * _bounded_ polyhedra by "changing the direction of the homogeneous
1246 * dimension". This idea is due to Matthias Koeppe.
1248 * Consider the cones in homogeneous space that correspond to the
1249 * input polyhedra. The rays of these cones are also rays of the
1250 * polyhedra if the coordinate that corresponds to the homogeneous
1251 * dimension is zero. That is, if the inner product of the rays
1252 * with the homogeneous direction is zero.
1253 * The cones in the homogeneous space can also be considered to
1254 * correspond to other pairs of polyhedra by chosing a different
1255 * homogeneous direction. To ensure that both of these polyhedra
1256 * are bounded, we need to make sure that all rays of the cones
1257 * correspond to vertices and not to rays.
1258 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1259 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1260 * The vector s is computed in valid_direction.
1262 * Note that we need to consider _all_ rays of the cones and not just
1263 * the rays that correspond to rays in the polyhedra. If we were to
1264 * only consider those rays and turn them into vertices, then we
1265 * may inadvertently turn some vertices into rays.
1267 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1268 * We therefore transform the two polyhedra such that the selected
1269 * direction is mapped onto this standard direction and then proceed
1270 * with the normal computation.
1271 * Let S be a non-singular square matrix with s as its first row,
1272 * then we want to map the polyhedra to the space
1274 * [ y' ] [ y ] [ y ] [ y' ]
1275 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1277 * We take S to be the unimodular completion of s to limit the growth
1278 * of the coefficients in the following computations.
1280 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1281 * We first move to the homogeneous dimension
1283 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1284 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1286 * Then we change directoin
1288 * [ b_i A_i ] [ y' ] [ y' ]
1289 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1291 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1292 * resulting in b' + A' x' >= 0, which we then convert back
1295 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1297 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1299 static struct isl_basic_set
*convex_hull_pair_pointed(
1300 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1302 struct isl_ctx
*ctx
= NULL
;
1303 struct isl_vec
*dir
= NULL
;
1304 struct isl_mat
*T
= NULL
;
1305 struct isl_mat
*T2
= NULL
;
1306 struct isl_basic_set
*hull
;
1307 struct isl_set
*set
;
1309 if (!bset1
|| !bset2
)
1312 dir
= valid_direction(isl_basic_set_copy(bset1
),
1313 isl_basic_set_copy(bset2
));
1316 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1319 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1320 T
= isl_mat_unimodular_complete(T
, 1);
1321 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1323 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1324 bset2
= homogeneous_map(bset2
, T2
);
1325 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1326 set
= isl_set_add_basic_set(set
, bset1
);
1327 set
= isl_set_add_basic_set(set
, bset2
);
1328 hull
= uset_convex_hull(set
);
1329 hull
= isl_basic_set_preimage(hull
, T
);
1336 isl_basic_set_free(bset1
);
1337 isl_basic_set_free(bset2
);
1341 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
);
1342 static struct isl_basic_set
*modulo_affine_hull(
1343 struct isl_set
*set
, struct isl_basic_set
*affine_hull
);
1345 /* Compute the convex hull of a pair of basic sets without any parameters or
1346 * integer divisions.
1348 * This function is called from uset_convex_hull_unbounded, which
1349 * means that the complete convex hull is unbounded. Some pairs
1350 * of basic sets may still be bounded, though.
1351 * They may even lie inside a lower dimensional space, in which
1352 * case they need to be handled inside their affine hull since
1353 * the main algorithm assumes that the result is full-dimensional.
1355 * If the convex hull of the two basic sets would have a non-trivial
1356 * lineality space, we first project out this lineality space.
1358 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1359 struct isl_basic_set
*bset2
)
1361 isl_basic_set
*lin
, *aff
;
1362 int bounded1
, bounded2
;
1364 if (bset1
->ctx
->opt
->convex
== ISL_CONVEX_HULL_FM
)
1365 return convex_hull_pair_elim(bset1
, bset2
);
1367 aff
= isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1
),
1368 isl_basic_set_copy(bset2
)));
1372 return modulo_affine_hull(isl_basic_set_union(bset1
, bset2
), aff
);
1373 isl_basic_set_free(aff
);
1375 bounded1
= isl_basic_set_is_bounded(bset1
);
1376 bounded2
= isl_basic_set_is_bounded(bset2
);
1378 if (bounded1
< 0 || bounded2
< 0)
1381 if (bounded1
&& bounded2
)
1382 uset_convex_hull_wrap(isl_basic_set_union(bset1
, bset2
));
1384 if (bounded1
|| bounded2
)
1385 return convex_hull_pair_pointed(bset1
, bset2
);
1387 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1388 isl_basic_set_copy(bset2
));
1391 if (isl_basic_set_is_universe(lin
)) {
1392 isl_basic_set_free(bset1
);
1393 isl_basic_set_free(bset2
);
1396 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1397 struct isl_set
*set
;
1398 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1399 set
= isl_set_add_basic_set(set
, bset1
);
1400 set
= isl_set_add_basic_set(set
, bset2
);
1401 return modulo_lineality(set
, lin
);
1403 isl_basic_set_free(lin
);
1405 return convex_hull_pair_pointed(bset1
, bset2
);
1407 isl_basic_set_free(bset1
);
1408 isl_basic_set_free(bset2
);
1412 /* Compute the lineality space of a basic set.
1413 * We currently do not allow the basic set to have any divs.
1414 * We basically just drop the constants and turn every inequality
1417 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1420 struct isl_basic_set
*lin
= NULL
;
1425 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1426 dim
= isl_basic_set_total_dim(bset
);
1428 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
), 0, dim
, 0);
1431 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1432 k
= isl_basic_set_alloc_equality(lin
);
1435 isl_int_set_si(lin
->eq
[k
][0], 0);
1436 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1438 lin
= isl_basic_set_gauss(lin
, NULL
);
1441 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1442 k
= isl_basic_set_alloc_equality(lin
);
1445 isl_int_set_si(lin
->eq
[k
][0], 0);
1446 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1447 lin
= isl_basic_set_gauss(lin
, NULL
);
1451 isl_basic_set_free(bset
);
1454 isl_basic_set_free(lin
);
1455 isl_basic_set_free(bset
);
1459 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1460 * "underlying" set "set".
1462 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1465 struct isl_set
*lin
= NULL
;
1470 struct isl_dim
*dim
= isl_set_get_dim(set
);
1472 return isl_basic_set_empty(dim
);
1475 lin
= isl_set_alloc_dim(isl_set_get_dim(set
), set
->n
, 0);
1476 for (i
= 0; i
< set
->n
; ++i
)
1477 lin
= isl_set_add_basic_set(lin
,
1478 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1480 return isl_set_affine_hull(lin
);
1483 /* Compute the convex hull of a set without any parameters or
1484 * integer divisions.
1485 * In each step, we combined two basic sets until only one
1486 * basic set is left.
1487 * The input basic sets are assumed not to have a non-trivial
1488 * lineality space. If any of the intermediate results has
1489 * a non-trivial lineality space, it is projected out.
1491 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1493 struct isl_basic_set
*convex_hull
= NULL
;
1495 convex_hull
= isl_set_copy_basic_set(set
);
1496 set
= isl_set_drop_basic_set(set
, convex_hull
);
1499 while (set
->n
> 0) {
1500 struct isl_basic_set
*t
;
1501 t
= isl_set_copy_basic_set(set
);
1504 set
= isl_set_drop_basic_set(set
, t
);
1507 convex_hull
= convex_hull_pair(convex_hull
, t
);
1510 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1513 if (isl_basic_set_is_universe(t
)) {
1514 isl_basic_set_free(convex_hull
);
1518 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1519 set
= isl_set_add_basic_set(set
, convex_hull
);
1520 return modulo_lineality(set
, t
);
1522 isl_basic_set_free(t
);
1528 isl_basic_set_free(convex_hull
);
1532 /* Compute an initial hull for wrapping containing a single initial
1534 * This function assumes that the given set is bounded.
1536 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1537 struct isl_set
*set
)
1539 struct isl_mat
*bounds
= NULL
;
1545 bounds
= initial_facet_constraint(set
);
1548 k
= isl_basic_set_alloc_inequality(hull
);
1551 dim
= isl_set_n_dim(set
);
1552 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1553 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1554 isl_mat_free(bounds
);
1558 isl_basic_set_free(hull
);
1559 isl_mat_free(bounds
);
1563 struct max_constraint
{
1569 static int max_constraint_equal(const void *entry
, const void *val
)
1571 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1572 isl_int
*b
= (isl_int
*)val
;
1574 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1577 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1578 isl_int
*con
, unsigned len
, int n
, int ineq
)
1580 struct isl_hash_table_entry
*entry
;
1581 struct max_constraint
*c
;
1584 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1585 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1591 isl_hash_table_remove(ctx
, table
, entry
);
1595 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1597 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1602 c
->c
= isl_mat_cow(c
->c
);
1603 isl_int_set(c
->c
->row
[0][0], con
[0]);
1607 /* Check whether the constraint hash table "table" constains the constraint
1610 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1611 isl_int
*con
, unsigned len
, int n
)
1613 struct isl_hash_table_entry
*entry
;
1614 struct max_constraint
*c
;
1617 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1618 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1625 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1628 /* Check for inequality constraints of a basic set without equalities
1629 * such that the same or more stringent copies of the constraint appear
1630 * in all of the basic sets. Such constraints are necessarily facet
1631 * constraints of the convex hull.
1633 * If the resulting basic set is by chance identical to one of
1634 * the basic sets in "set", then we know that this basic set contains
1635 * all other basic sets and is therefore the convex hull of set.
1636 * In this case we set *is_hull to 1.
1638 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1639 struct isl_set
*set
, int *is_hull
)
1642 int min_constraints
;
1644 struct max_constraint
*constraints
= NULL
;
1645 struct isl_hash_table
*table
= NULL
;
1650 for (i
= 0; i
< set
->n
; ++i
)
1651 if (set
->p
[i
]->n_eq
== 0)
1655 min_constraints
= set
->p
[i
]->n_ineq
;
1657 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1658 if (set
->p
[i
]->n_eq
!= 0)
1660 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1662 min_constraints
= set
->p
[i
]->n_ineq
;
1665 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1669 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1670 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1673 total
= isl_dim_total(set
->dim
);
1674 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1675 constraints
[i
].c
= isl_mat_sub_alloc6(hull
->ctx
,
1676 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1677 if (!constraints
[i
].c
)
1679 constraints
[i
].ineq
= 1;
1681 for (i
= 0; i
< min_constraints
; ++i
) {
1682 struct isl_hash_table_entry
*entry
;
1684 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1685 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1686 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1689 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1690 entry
->data
= &constraints
[i
];
1694 for (s
= 0; s
< set
->n
; ++s
) {
1698 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1699 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1700 for (j
= 0; j
< 2; ++j
) {
1701 isl_seq_neg(eq
, eq
, 1 + total
);
1702 update_constraint(hull
->ctx
, table
,
1706 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1707 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1708 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1709 set
->p
[s
]->n_eq
== 0);
1714 for (i
= 0; i
< min_constraints
; ++i
) {
1715 if (constraints
[i
].count
< n
)
1717 if (!constraints
[i
].ineq
)
1719 j
= isl_basic_set_alloc_inequality(hull
);
1722 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1725 for (s
= 0; s
< set
->n
; ++s
) {
1726 if (set
->p
[s
]->n_eq
)
1728 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1730 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1731 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1732 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1735 if (i
== set
->p
[s
]->n_ineq
)
1739 isl_hash_table_clear(table
);
1740 for (i
= 0; i
< min_constraints
; ++i
)
1741 isl_mat_free(constraints
[i
].c
);
1746 isl_hash_table_clear(table
);
1749 for (i
= 0; i
< min_constraints
; ++i
)
1750 isl_mat_free(constraints
[i
].c
);
1755 /* Create a template for the convex hull of "set" and fill it up
1756 * obvious facet constraints, if any. If the result happens to
1757 * be the convex hull of "set" then *is_hull is set to 1.
1759 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1761 struct isl_basic_set
*hull
;
1766 for (i
= 0; i
< set
->n
; ++i
) {
1767 n_ineq
+= set
->p
[i
]->n_eq
;
1768 n_ineq
+= set
->p
[i
]->n_ineq
;
1770 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
1771 hull
= isl_basic_set_set_rational(hull
);
1774 return common_constraints(hull
, set
, is_hull
);
1777 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1779 struct isl_basic_set
*hull
;
1782 hull
= proto_hull(set
, &is_hull
);
1783 if (hull
&& !is_hull
) {
1784 if (hull
->n_ineq
== 0)
1785 hull
= initial_hull(hull
, set
);
1786 hull
= extend(hull
, set
);
1793 /* Compute the convex hull of a set without any parameters or
1794 * integer divisions. Depending on whether the set is bounded,
1795 * we pass control to the wrapping based convex hull or
1796 * the Fourier-Motzkin elimination based convex hull.
1797 * We also handle a few special cases before checking the boundedness.
1799 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1801 struct isl_basic_set
*convex_hull
= NULL
;
1802 struct isl_basic_set
*lin
;
1804 if (isl_set_n_dim(set
) == 0)
1805 return convex_hull_0d(set
);
1807 set
= isl_set_coalesce(set
);
1808 set
= isl_set_set_rational(set
);
1815 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1819 if (isl_set_n_dim(set
) == 1)
1820 return convex_hull_1d(set
);
1822 if (isl_set_is_bounded(set
) &&
1823 set
->ctx
->opt
->convex
== ISL_CONVEX_HULL_WRAP
)
1824 return uset_convex_hull_wrap(set
);
1826 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1829 if (isl_basic_set_is_universe(lin
)) {
1833 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1834 return modulo_lineality(set
, lin
);
1835 isl_basic_set_free(lin
);
1837 return uset_convex_hull_unbounded(set
);
1840 isl_basic_set_free(convex_hull
);
1844 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1845 * without parameters or divs and where the convex hull of set is
1846 * known to be full-dimensional.
1848 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1850 struct isl_basic_set
*convex_hull
= NULL
;
1855 if (isl_set_n_dim(set
) == 0) {
1856 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
1858 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1862 set
= isl_set_set_rational(set
);
1863 set
= isl_set_coalesce(set
);
1867 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1871 if (isl_set_n_dim(set
) == 1)
1872 return convex_hull_1d(set
);
1874 return uset_convex_hull_wrap(set
);
1880 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1881 * We first remove the equalities (transforming the set), compute the
1882 * convex hull of the transformed set and then add the equalities back
1883 * (after performing the inverse transformation.
1885 static struct isl_basic_set
*modulo_affine_hull(
1886 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1890 struct isl_basic_set
*dummy
;
1891 struct isl_basic_set
*convex_hull
;
1893 dummy
= isl_basic_set_remove_equalities(
1894 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1897 isl_basic_set_free(dummy
);
1898 set
= isl_set_preimage(set
, T
);
1899 convex_hull
= uset_convex_hull(set
);
1900 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1901 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1904 isl_basic_set_free(affine_hull
);
1909 /* Compute the convex hull of a map.
1911 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1912 * specifically, the wrapping of facets to obtain new facets.
1914 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1916 struct isl_basic_set
*bset
;
1917 struct isl_basic_map
*model
= NULL
;
1918 struct isl_basic_set
*affine_hull
= NULL
;
1919 struct isl_basic_map
*convex_hull
= NULL
;
1920 struct isl_set
*set
= NULL
;
1921 struct isl_ctx
*ctx
;
1928 convex_hull
= isl_basic_map_empty_like_map(map
);
1933 map
= isl_map_detect_equalities(map
);
1934 map
= isl_map_align_divs(map
);
1937 model
= isl_basic_map_copy(map
->p
[0]);
1938 set
= isl_map_underlying_set(map
);
1942 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1945 if (affine_hull
->n_eq
!= 0)
1946 bset
= modulo_affine_hull(set
, affine_hull
);
1948 isl_basic_set_free(affine_hull
);
1949 bset
= uset_convex_hull(set
);
1952 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1956 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1957 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1958 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1962 isl_basic_map_free(model
);
1966 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1968 return (struct isl_basic_set
*)
1969 isl_map_convex_hull((struct isl_map
*)set
);
1972 __isl_give isl_basic_map
*isl_map_polyhedral_hull(__isl_take isl_map
*map
)
1974 isl_basic_map
*hull
;
1976 hull
= isl_map_convex_hull(map
);
1977 return isl_basic_map_remove_divs(hull
);
1980 __isl_give isl_basic_set
*isl_set_polyhedral_hull(__isl_take isl_set
*set
)
1982 return (isl_basic_set
*)isl_map_polyhedral_hull((isl_map
*)set
);
1985 struct sh_data_entry
{
1986 struct isl_hash_table
*table
;
1987 struct isl_tab
*tab
;
1990 /* Holds the data needed during the simple hull computation.
1992 * n the number of basic sets in the original set
1993 * hull_table a hash table of already computed constraints
1994 * in the simple hull
1995 * p for each basic set,
1996 * table a hash table of the constraints
1997 * tab the tableau corresponding to the basic set
2000 struct isl_ctx
*ctx
;
2002 struct isl_hash_table
*hull_table
;
2003 struct sh_data_entry p
[1];
2006 static void sh_data_free(struct sh_data
*data
)
2012 isl_hash_table_free(data
->ctx
, data
->hull_table
);
2013 for (i
= 0; i
< data
->n
; ++i
) {
2014 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
2015 isl_tab_free(data
->p
[i
].tab
);
2020 struct ineq_cmp_data
{
2025 static int has_ineq(const void *entry
, const void *val
)
2027 isl_int
*row
= (isl_int
*)entry
;
2028 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2030 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2031 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2034 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2035 isl_int
*ineq
, unsigned len
)
2038 struct ineq_cmp_data v
;
2039 struct isl_hash_table_entry
*entry
;
2043 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
2044 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2051 /* Fill hash table "table" with the constraints of "bset".
2052 * Equalities are added as two inequalities.
2053 * The value in the hash table is a pointer to the (in)equality of "bset".
2055 static int hash_basic_set(struct isl_hash_table
*table
,
2056 struct isl_basic_set
*bset
)
2059 unsigned dim
= isl_basic_set_total_dim(bset
);
2061 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2062 for (j
= 0; j
< 2; ++j
) {
2063 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2064 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2068 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2069 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2075 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2077 struct sh_data
*data
;
2080 data
= isl_calloc(set
->ctx
, struct sh_data
,
2081 sizeof(struct sh_data
) +
2082 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2085 data
->ctx
= set
->ctx
;
2087 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2088 if (!data
->hull_table
)
2090 for (i
= 0; i
< set
->n
; ++i
) {
2091 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2092 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2093 if (!data
->p
[i
].table
)
2095 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2104 /* Check if inequality "ineq" is a bound for basic set "j" or if
2105 * it can be relaxed (by increasing the constant term) to become
2106 * a bound for that basic set. In the latter case, the constant
2108 * Return 1 if "ineq" is a bound
2109 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2110 * -1 if some error occurred
2112 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2115 enum isl_lp_result res
;
2118 if (!data
->p
[j
].tab
) {
2119 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2120 if (!data
->p
[j
].tab
)
2126 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2128 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2129 isl_int_sub(ineq
[0], ineq
[0], opt
);
2133 return (res
== isl_lp_ok
|| res
== isl_lp_empty
) ? 1 :
2134 res
== isl_lp_unbounded
? 0 : -1;
2137 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2138 * become a bound on the whole set. If so, add the (relaxed) inequality
2141 * We first check if "hull" already contains a translate of the inequality.
2142 * If so, we are done.
2143 * Then, we check if any of the previous basic sets contains a translate
2144 * of the inequality. If so, then we have already considered this
2145 * inequality and we are done.
2146 * Otherwise, for each basic set other than "i", we check if the inequality
2147 * is a bound on the basic set.
2148 * For previous basic sets, we know that they do not contain a translate
2149 * of the inequality, so we directly call is_bound.
2150 * For following basic sets, we first check if a translate of the
2151 * inequality appears in its description and if so directly update
2152 * the inequality accordingly.
2154 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2155 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2158 struct ineq_cmp_data v
;
2159 struct isl_hash_table_entry
*entry
;
2165 v
.len
= isl_basic_set_total_dim(hull
);
2167 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2169 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2174 for (j
= 0; j
< i
; ++j
) {
2175 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2176 c_hash
, has_ineq
, &v
, 0);
2183 k
= isl_basic_set_alloc_inequality(hull
);
2184 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2188 for (j
= 0; j
< i
; ++j
) {
2190 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2197 isl_basic_set_free_inequality(hull
, 1);
2201 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2204 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2205 c_hash
, has_ineq
, &v
, 0);
2207 ineq_j
= entry
->data
;
2208 neg
= isl_seq_is_neg(ineq_j
+ 1,
2209 hull
->ineq
[k
] + 1, v
.len
);
2211 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2212 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2213 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2215 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2218 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2225 isl_basic_set_free_inequality(hull
, 1);
2229 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2233 entry
->data
= hull
->ineq
[k
];
2237 isl_basic_set_free(hull
);
2241 /* Check if any inequality from basic set "i" can be relaxed to
2242 * become a bound on the whole set. If so, add the (relaxed) inequality
2245 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2246 struct sh_data
*data
, struct isl_set
*set
, int i
)
2249 unsigned dim
= isl_basic_set_total_dim(bset
);
2251 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2252 for (k
= 0; k
< 2; ++k
) {
2253 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2254 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2257 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2258 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2262 /* Compute a superset of the convex hull of set that is described
2263 * by only translates of the constraints in the constituents of set.
2265 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2267 struct sh_data
*data
= NULL
;
2268 struct isl_basic_set
*hull
= NULL
;
2276 for (i
= 0; i
< set
->n
; ++i
) {
2279 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2282 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
2286 data
= sh_data_alloc(set
, n_ineq
);
2290 for (i
= 0; i
< set
->n
; ++i
)
2291 hull
= add_bounds(hull
, data
, set
, i
);
2299 isl_basic_set_free(hull
);
2304 /* Compute a superset of the convex hull of map that is described
2305 * by only translates of the constraints in the constituents of map.
2307 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2309 struct isl_set
*set
= NULL
;
2310 struct isl_basic_map
*model
= NULL
;
2311 struct isl_basic_map
*hull
;
2312 struct isl_basic_map
*affine_hull
;
2313 struct isl_basic_set
*bset
= NULL
;
2318 hull
= isl_basic_map_empty_like_map(map
);
2323 hull
= isl_basic_map_copy(map
->p
[0]);
2328 map
= isl_map_detect_equalities(map
);
2329 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2330 map
= isl_map_align_divs(map
);
2331 model
= isl_basic_map_copy(map
->p
[0]);
2333 set
= isl_map_underlying_set(map
);
2335 bset
= uset_simple_hull(set
);
2337 hull
= isl_basic_map_overlying_set(bset
, model
);
2339 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2340 hull
= isl_basic_map_remove_redundancies(hull
);
2341 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2342 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2347 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2349 return (struct isl_basic_set
*)
2350 isl_map_simple_hull((struct isl_map
*)set
);
2353 /* Given a set "set", return parametric bounds on the dimension "dim".
2355 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2357 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2358 set
= isl_set_copy(set
);
2359 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2360 set
= isl_set_eliminate_dims(set
, 0, dim
);
2361 return isl_set_convex_hull(set
);
2364 /* Computes a "simple hull" and then check if each dimension in the
2365 * resulting hull is bounded by a symbolic constant. If not, the
2366 * hull is intersected with the corresponding bounds on the whole set.
2368 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2371 struct isl_basic_set
*hull
;
2372 unsigned nparam
, left
;
2373 int removed_divs
= 0;
2375 hull
= isl_set_simple_hull(isl_set_copy(set
));
2379 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2380 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2381 int lower
= 0, upper
= 0;
2382 struct isl_basic_set
*bounds
;
2384 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2385 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2386 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2388 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2395 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2396 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2398 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2400 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2403 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2414 if (!removed_divs
) {
2415 set
= isl_set_remove_divs(set
);
2420 bounds
= set_bounds(set
, i
);
2421 hull
= isl_basic_set_intersect(hull
, bounds
);