isl_dim_move: update parameters of nested spaces
[isl.git] / isl_convex_hull.c
blob40cca1b74ed4fa4c51bc3e6645a6bcc1099cdc04
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl/lp.h>
11 #include <isl/map.h>
12 #include "isl_map_private.h"
13 #include <isl_mat_private.h>
14 #include <isl/set.h>
15 #include <isl/seq.h>
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Remove redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
91 __isl_take isl_basic_map *bmap)
93 struct isl_tab *tab;
95 if (!bmap)
96 return NULL;
98 bmap = isl_basic_map_gauss(bmap, NULL);
99 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
100 return bmap;
101 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
102 return bmap;
103 if (bmap->n_ineq <= 1)
104 return bmap;
106 tab = isl_tab_from_basic_map(bmap);
107 if (isl_tab_detect_implicit_equalities(tab) < 0)
108 goto error;
109 if (isl_tab_detect_redundant(tab) < 0)
110 goto error;
111 bmap = isl_basic_map_update_from_tab(bmap, tab);
112 isl_tab_free(tab);
113 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
114 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
115 return bmap;
116 error:
117 isl_tab_free(tab);
118 isl_basic_map_free(bmap);
119 return NULL;
122 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
123 __isl_take isl_basic_set *bset)
125 return (struct isl_basic_set *)
126 isl_basic_map_remove_redundancies((struct isl_basic_map *)bset);
129 /* Check if the set set is bound in the direction of the affine
130 * constraint c and if so, set the constant term such that the
131 * resulting constraint is a bounding constraint for the set.
133 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
135 int first;
136 int j;
137 isl_int opt;
138 isl_int opt_denom;
140 isl_int_init(opt);
141 isl_int_init(opt_denom);
142 first = 1;
143 for (j = 0; j < set->n; ++j) {
144 enum isl_lp_result res;
146 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
147 continue;
149 res = isl_basic_set_solve_lp(set->p[j],
150 0, c, set->ctx->one, &opt, &opt_denom, NULL);
151 if (res == isl_lp_unbounded)
152 break;
153 if (res == isl_lp_error)
154 goto error;
155 if (res == isl_lp_empty) {
156 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
157 if (!set->p[j])
158 goto error;
159 continue;
161 if (first || isl_int_is_neg(opt)) {
162 if (!isl_int_is_one(opt_denom))
163 isl_seq_scale(c, c, opt_denom, len);
164 isl_int_sub(c[0], c[0], opt);
166 first = 0;
168 isl_int_clear(opt);
169 isl_int_clear(opt_denom);
170 return j >= set->n;
171 error:
172 isl_int_clear(opt);
173 isl_int_clear(opt_denom);
174 return -1;
177 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
179 if (!bset)
180 return NULL;
182 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
183 return bset;
185 bset = isl_basic_set_cow(bset);
186 if (!bset)
187 return NULL;
189 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
191 return isl_basic_set_finalize(bset);
194 static struct isl_set *isl_set_set_rational(struct isl_set *set)
196 int i;
198 set = isl_set_cow(set);
199 if (!set)
200 return NULL;
201 for (i = 0; i < set->n; ++i) {
202 set->p[i] = isl_basic_set_set_rational(set->p[i]);
203 if (!set->p[i])
204 goto error;
206 return set;
207 error:
208 isl_set_free(set);
209 return NULL;
212 static struct isl_basic_set *isl_basic_set_add_equality(
213 struct isl_basic_set *bset, isl_int *c)
215 int i;
216 unsigned dim;
218 if (!bset)
219 return NULL;
221 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
222 return bset;
224 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
225 isl_assert(bset->ctx, bset->n_div == 0, goto error);
226 dim = isl_basic_set_n_dim(bset);
227 bset = isl_basic_set_cow(bset);
228 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
229 i = isl_basic_set_alloc_equality(bset);
230 if (i < 0)
231 goto error;
232 isl_seq_cpy(bset->eq[i], c, 1 + dim);
233 return bset;
234 error:
235 isl_basic_set_free(bset);
236 return NULL;
239 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
241 int i;
243 set = isl_set_cow(set);
244 if (!set)
245 return NULL;
246 for (i = 0; i < set->n; ++i) {
247 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
248 if (!set->p[i])
249 goto error;
251 return set;
252 error:
253 isl_set_free(set);
254 return NULL;
257 /* Given a union of basic sets, construct the constraints for wrapping
258 * a facet around one of its ridges.
259 * In particular, if each of n the d-dimensional basic sets i in "set"
260 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
261 * and is defined by the constraints
262 * [ 1 ]
263 * A_i [ x ] >= 0
265 * then the resulting set is of dimension n*(1+d) and has as constraints
267 * [ a_i ]
268 * A_i [ x_i ] >= 0
270 * a_i >= 0
272 * \sum_i x_{i,1} = 1
274 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
276 struct isl_basic_set *lp;
277 unsigned n_eq;
278 unsigned n_ineq;
279 int i, j, k;
280 unsigned dim, lp_dim;
282 if (!set)
283 return NULL;
285 dim = 1 + isl_set_n_dim(set);
286 n_eq = 1;
287 n_ineq = set->n;
288 for (i = 0; i < set->n; ++i) {
289 n_eq += set->p[i]->n_eq;
290 n_ineq += set->p[i]->n_ineq;
292 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
293 if (!lp)
294 return NULL;
295 lp_dim = isl_basic_set_n_dim(lp);
296 k = isl_basic_set_alloc_equality(lp);
297 isl_int_set_si(lp->eq[k][0], -1);
298 for (i = 0; i < set->n; ++i) {
299 isl_int_set_si(lp->eq[k][1+dim*i], 0);
300 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
301 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
303 for (i = 0; i < set->n; ++i) {
304 k = isl_basic_set_alloc_inequality(lp);
305 isl_seq_clr(lp->ineq[k], 1+lp_dim);
306 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
308 for (j = 0; j < set->p[i]->n_eq; ++j) {
309 k = isl_basic_set_alloc_equality(lp);
310 isl_seq_clr(lp->eq[k], 1+dim*i);
311 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
312 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
315 for (j = 0; j < set->p[i]->n_ineq; ++j) {
316 k = isl_basic_set_alloc_inequality(lp);
317 isl_seq_clr(lp->ineq[k], 1+dim*i);
318 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
319 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
322 return lp;
325 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
326 * of that facet, compute the other facet of the convex hull that contains
327 * the ridge.
329 * We first transform the set such that the facet constraint becomes
331 * x_1 >= 0
333 * I.e., the facet lies in
335 * x_1 = 0
337 * and on that facet, the constraint that defines the ridge is
339 * x_2 >= 0
341 * (This transformation is not strictly needed, all that is needed is
342 * that the ridge contains the origin.)
344 * Since the ridge contains the origin, the cone of the convex hull
345 * will be of the form
347 * x_1 >= 0
348 * x_2 >= a x_1
350 * with this second constraint defining the new facet.
351 * The constant a is obtained by settting x_1 in the cone of the
352 * convex hull to 1 and minimizing x_2.
353 * Now, each element in the cone of the convex hull is the sum
354 * of elements in the cones of the basic sets.
355 * If a_i is the dilation factor of basic set i, then the problem
356 * we need to solve is
358 * min \sum_i x_{i,2}
359 * st
360 * \sum_i x_{i,1} = 1
361 * a_i >= 0
362 * [ a_i ]
363 * A [ x_i ] >= 0
365 * with
366 * [ 1 ]
367 * A_i [ x_i ] >= 0
369 * the constraints of each (transformed) basic set.
370 * If a = n/d, then the constraint defining the new facet (in the transformed
371 * space) is
373 * -n x_1 + d x_2 >= 0
375 * In the original space, we need to take the same combination of the
376 * corresponding constraints "facet" and "ridge".
378 * If a = -infty = "-1/0", then we just return the original facet constraint.
379 * This means that the facet is unbounded, but has a bounded intersection
380 * with the union of sets.
382 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
383 isl_int *facet, isl_int *ridge)
385 int i;
386 isl_ctx *ctx;
387 struct isl_mat *T = NULL;
388 struct isl_basic_set *lp = NULL;
389 struct isl_vec *obj;
390 enum isl_lp_result res;
391 isl_int num, den;
392 unsigned dim;
394 if (!set)
395 return NULL;
396 ctx = set->ctx;
397 set = isl_set_copy(set);
398 set = isl_set_set_rational(set);
400 dim = 1 + isl_set_n_dim(set);
401 T = isl_mat_alloc(ctx, 3, dim);
402 if (!T)
403 goto error;
404 isl_int_set_si(T->row[0][0], 1);
405 isl_seq_clr(T->row[0]+1, dim - 1);
406 isl_seq_cpy(T->row[1], facet, dim);
407 isl_seq_cpy(T->row[2], ridge, dim);
408 T = isl_mat_right_inverse(T);
409 set = isl_set_preimage(set, T);
410 T = NULL;
411 if (!set)
412 goto error;
413 lp = wrap_constraints(set);
414 obj = isl_vec_alloc(ctx, 1 + dim*set->n);
415 if (!obj)
416 goto error;
417 isl_int_set_si(obj->block.data[0], 0);
418 for (i = 0; i < set->n; ++i) {
419 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
420 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
421 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
423 isl_int_init(num);
424 isl_int_init(den);
425 res = isl_basic_set_solve_lp(lp, 0,
426 obj->block.data, ctx->one, &num, &den, NULL);
427 if (res == isl_lp_ok) {
428 isl_int_neg(num, num);
429 isl_seq_combine(facet, num, facet, den, ridge, dim);
430 isl_seq_normalize(ctx, facet, dim);
432 isl_int_clear(num);
433 isl_int_clear(den);
434 isl_vec_free(obj);
435 isl_basic_set_free(lp);
436 isl_set_free(set);
437 if (res == isl_lp_error)
438 return NULL;
439 isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
440 return NULL);
441 return facet;
442 error:
443 isl_basic_set_free(lp);
444 isl_mat_free(T);
445 isl_set_free(set);
446 return NULL;
449 /* Compute the constraint of a facet of "set".
451 * We first compute the intersection with a bounding constraint
452 * that is orthogonal to one of the coordinate axes.
453 * If the affine hull of this intersection has only one equality,
454 * we have found a facet.
455 * Otherwise, we wrap the current bounding constraint around
456 * one of the equalities of the face (one that is not equal to
457 * the current bounding constraint).
458 * This process continues until we have found a facet.
459 * The dimension of the intersection increases by at least
460 * one on each iteration, so termination is guaranteed.
462 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
464 struct isl_set *slice = NULL;
465 struct isl_basic_set *face = NULL;
466 int i;
467 unsigned dim = isl_set_n_dim(set);
468 int is_bound;
469 isl_mat *bounds;
471 isl_assert(set->ctx, set->n > 0, goto error);
472 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
473 if (!bounds)
474 return NULL;
476 isl_seq_clr(bounds->row[0], dim);
477 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
478 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
479 if (is_bound < 0)
480 goto error;
481 isl_assert(set->ctx, is_bound, goto error);
482 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
483 bounds->n_row = 1;
485 for (;;) {
486 slice = isl_set_copy(set);
487 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
488 face = isl_set_affine_hull(slice);
489 if (!face)
490 goto error;
491 if (face->n_eq == 1) {
492 isl_basic_set_free(face);
493 break;
495 for (i = 0; i < face->n_eq; ++i)
496 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
497 !isl_seq_is_neg(bounds->row[0],
498 face->eq[i], 1 + dim))
499 break;
500 isl_assert(set->ctx, i < face->n_eq, goto error);
501 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
502 goto error;
503 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
504 isl_basic_set_free(face);
507 return bounds;
508 error:
509 isl_basic_set_free(face);
510 isl_mat_free(bounds);
511 return NULL;
514 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
515 * compute a hyperplane description of the facet, i.e., compute the facets
516 * of the facet.
518 * We compute an affine transformation that transforms the constraint
520 * [ 1 ]
521 * c [ x ] = 0
523 * to the constraint
525 * z_1 = 0
527 * by computing the right inverse U of a matrix that starts with the rows
529 * [ 1 0 ]
530 * [ c ]
532 * Then
533 * [ 1 ] [ 1 ]
534 * [ x ] = U [ z ]
535 * and
536 * [ 1 ] [ 1 ]
537 * [ z ] = Q [ x ]
539 * with Q = U^{-1}
540 * Since z_1 is zero, we can drop this variable as well as the corresponding
541 * column of U to obtain
543 * [ 1 ] [ 1 ]
544 * [ x ] = U' [ z' ]
545 * and
546 * [ 1 ] [ 1 ]
547 * [ z' ] = Q' [ x ]
549 * with Q' equal to Q, but without the corresponding row.
550 * After computing the facets of the facet in the z' space,
551 * we convert them back to the x space through Q.
553 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
555 struct isl_mat *m, *U, *Q;
556 struct isl_basic_set *facet = NULL;
557 struct isl_ctx *ctx;
558 unsigned dim;
560 ctx = set->ctx;
561 set = isl_set_copy(set);
562 dim = isl_set_n_dim(set);
563 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
564 if (!m)
565 goto error;
566 isl_int_set_si(m->row[0][0], 1);
567 isl_seq_clr(m->row[0]+1, dim);
568 isl_seq_cpy(m->row[1], c, 1+dim);
569 U = isl_mat_right_inverse(m);
570 Q = isl_mat_right_inverse(isl_mat_copy(U));
571 U = isl_mat_drop_cols(U, 1, 1);
572 Q = isl_mat_drop_rows(Q, 1, 1);
573 set = isl_set_preimage(set, U);
574 facet = uset_convex_hull_wrap_bounded(set);
575 facet = isl_basic_set_preimage(facet, Q);
576 if (facet)
577 isl_assert(ctx, facet->n_eq == 0, goto error);
578 return facet;
579 error:
580 isl_basic_set_free(facet);
581 isl_set_free(set);
582 return NULL;
585 /* Given an initial facet constraint, compute the remaining facets.
586 * We do this by running through all facets found so far and computing
587 * the adjacent facets through wrapping, adding those facets that we
588 * hadn't already found before.
590 * For each facet we have found so far, we first compute its facets
591 * in the resulting convex hull. That is, we compute the ridges
592 * of the resulting convex hull contained in the facet.
593 * We also compute the corresponding facet in the current approximation
594 * of the convex hull. There is no need to wrap around the ridges
595 * in this facet since that would result in a facet that is already
596 * present in the current approximation.
598 * This function can still be significantly optimized by checking which of
599 * the facets of the basic sets are also facets of the convex hull and
600 * using all the facets so far to help in constructing the facets of the
601 * facets
602 * and/or
603 * using the technique in section "3.1 Ridge Generation" of
604 * "Extended Convex Hull" by Fukuda et al.
606 static struct isl_basic_set *extend(struct isl_basic_set *hull,
607 struct isl_set *set)
609 int i, j, f;
610 int k;
611 struct isl_basic_set *facet = NULL;
612 struct isl_basic_set *hull_facet = NULL;
613 unsigned dim;
615 if (!hull)
616 return NULL;
618 isl_assert(set->ctx, set->n > 0, goto error);
620 dim = isl_set_n_dim(set);
622 for (i = 0; i < hull->n_ineq; ++i) {
623 facet = compute_facet(set, hull->ineq[i]);
624 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
625 facet = isl_basic_set_gauss(facet, NULL);
626 facet = isl_basic_set_normalize_constraints(facet);
627 hull_facet = isl_basic_set_copy(hull);
628 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
629 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
630 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
631 if (!facet || !hull_facet)
632 goto error;
633 hull = isl_basic_set_cow(hull);
634 hull = isl_basic_set_extend_dim(hull,
635 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
636 if (!hull)
637 goto error;
638 for (j = 0; j < facet->n_ineq; ++j) {
639 for (f = 0; f < hull_facet->n_ineq; ++f)
640 if (isl_seq_eq(facet->ineq[j],
641 hull_facet->ineq[f], 1 + dim))
642 break;
643 if (f < hull_facet->n_ineq)
644 continue;
645 k = isl_basic_set_alloc_inequality(hull);
646 if (k < 0)
647 goto error;
648 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
649 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
650 goto error;
652 isl_basic_set_free(hull_facet);
653 isl_basic_set_free(facet);
655 hull = isl_basic_set_simplify(hull);
656 hull = isl_basic_set_finalize(hull);
657 return hull;
658 error:
659 isl_basic_set_free(hull_facet);
660 isl_basic_set_free(facet);
661 isl_basic_set_free(hull);
662 return NULL;
665 /* Special case for computing the convex hull of a one dimensional set.
666 * We simply collect the lower and upper bounds of each basic set
667 * and the biggest of those.
669 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
671 struct isl_mat *c = NULL;
672 isl_int *lower = NULL;
673 isl_int *upper = NULL;
674 int i, j, k;
675 isl_int a, b;
676 struct isl_basic_set *hull;
678 for (i = 0; i < set->n; ++i) {
679 set->p[i] = isl_basic_set_simplify(set->p[i]);
680 if (!set->p[i])
681 goto error;
683 set = isl_set_remove_empty_parts(set);
684 if (!set)
685 goto error;
686 isl_assert(set->ctx, set->n > 0, goto error);
687 c = isl_mat_alloc(set->ctx, 2, 2);
688 if (!c)
689 goto error;
691 if (set->p[0]->n_eq > 0) {
692 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
693 lower = c->row[0];
694 upper = c->row[1];
695 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
696 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
697 isl_seq_neg(upper, set->p[0]->eq[0], 2);
698 } else {
699 isl_seq_neg(lower, set->p[0]->eq[0], 2);
700 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
702 } else {
703 for (j = 0; j < set->p[0]->n_ineq; ++j) {
704 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
705 lower = c->row[0];
706 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
707 } else {
708 upper = c->row[1];
709 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
714 isl_int_init(a);
715 isl_int_init(b);
716 for (i = 0; i < set->n; ++i) {
717 struct isl_basic_set *bset = set->p[i];
718 int has_lower = 0;
719 int has_upper = 0;
721 for (j = 0; j < bset->n_eq; ++j) {
722 has_lower = 1;
723 has_upper = 1;
724 if (lower) {
725 isl_int_mul(a, lower[0], bset->eq[j][1]);
726 isl_int_mul(b, lower[1], bset->eq[j][0]);
727 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
728 isl_seq_cpy(lower, bset->eq[j], 2);
729 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
730 isl_seq_neg(lower, bset->eq[j], 2);
732 if (upper) {
733 isl_int_mul(a, upper[0], bset->eq[j][1]);
734 isl_int_mul(b, upper[1], bset->eq[j][0]);
735 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
736 isl_seq_neg(upper, bset->eq[j], 2);
737 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
738 isl_seq_cpy(upper, bset->eq[j], 2);
741 for (j = 0; j < bset->n_ineq; ++j) {
742 if (isl_int_is_pos(bset->ineq[j][1]))
743 has_lower = 1;
744 if (isl_int_is_neg(bset->ineq[j][1]))
745 has_upper = 1;
746 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
747 isl_int_mul(a, lower[0], bset->ineq[j][1]);
748 isl_int_mul(b, lower[1], bset->ineq[j][0]);
749 if (isl_int_lt(a, b))
750 isl_seq_cpy(lower, bset->ineq[j], 2);
752 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
753 isl_int_mul(a, upper[0], bset->ineq[j][1]);
754 isl_int_mul(b, upper[1], bset->ineq[j][0]);
755 if (isl_int_gt(a, b))
756 isl_seq_cpy(upper, bset->ineq[j], 2);
759 if (!has_lower)
760 lower = NULL;
761 if (!has_upper)
762 upper = NULL;
764 isl_int_clear(a);
765 isl_int_clear(b);
767 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
768 hull = isl_basic_set_set_rational(hull);
769 if (!hull)
770 goto error;
771 if (lower) {
772 k = isl_basic_set_alloc_inequality(hull);
773 isl_seq_cpy(hull->ineq[k], lower, 2);
775 if (upper) {
776 k = isl_basic_set_alloc_inequality(hull);
777 isl_seq_cpy(hull->ineq[k], upper, 2);
779 hull = isl_basic_set_finalize(hull);
780 isl_set_free(set);
781 isl_mat_free(c);
782 return hull;
783 error:
784 isl_set_free(set);
785 isl_mat_free(c);
786 return NULL;
789 /* Project out final n dimensions using Fourier-Motzkin */
790 static struct isl_set *set_project_out(struct isl_ctx *ctx,
791 struct isl_set *set, unsigned n)
793 return isl_set_remove_dims(set, isl_dim_set, isl_set_n_dim(set) - n, n);
796 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
798 struct isl_basic_set *convex_hull;
800 if (!set)
801 return NULL;
803 if (isl_set_is_empty(set))
804 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
805 else
806 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
807 isl_set_free(set);
808 return convex_hull;
811 /* Compute the convex hull of a pair of basic sets without any parameters or
812 * integer divisions using Fourier-Motzkin elimination.
813 * The convex hull is the set of all points that can be written as
814 * the sum of points from both basic sets (in homogeneous coordinates).
815 * We set up the constraints in a space with dimensions for each of
816 * the three sets and then project out the dimensions corresponding
817 * to the two original basic sets, retaining only those corresponding
818 * to the convex hull.
820 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
821 struct isl_basic_set *bset2)
823 int i, j, k;
824 struct isl_basic_set *bset[2];
825 struct isl_basic_set *hull = NULL;
826 unsigned dim;
828 if (!bset1 || !bset2)
829 goto error;
831 dim = isl_basic_set_n_dim(bset1);
832 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
833 1 + dim + bset1->n_eq + bset2->n_eq,
834 2 + bset1->n_ineq + bset2->n_ineq);
835 bset[0] = bset1;
836 bset[1] = bset2;
837 for (i = 0; i < 2; ++i) {
838 for (j = 0; j < bset[i]->n_eq; ++j) {
839 k = isl_basic_set_alloc_equality(hull);
840 if (k < 0)
841 goto error;
842 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
843 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
844 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
845 1+dim);
847 for (j = 0; j < bset[i]->n_ineq; ++j) {
848 k = isl_basic_set_alloc_inequality(hull);
849 if (k < 0)
850 goto error;
851 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
852 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
853 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
854 bset[i]->ineq[j], 1+dim);
856 k = isl_basic_set_alloc_inequality(hull);
857 if (k < 0)
858 goto error;
859 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
860 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
862 for (j = 0; j < 1+dim; ++j) {
863 k = isl_basic_set_alloc_equality(hull);
864 if (k < 0)
865 goto error;
866 isl_seq_clr(hull->eq[k], 1+2+3*dim);
867 isl_int_set_si(hull->eq[k][j], -1);
868 isl_int_set_si(hull->eq[k][1+dim+j], 1);
869 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
871 hull = isl_basic_set_set_rational(hull);
872 hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim));
873 hull = isl_basic_set_remove_redundancies(hull);
874 isl_basic_set_free(bset1);
875 isl_basic_set_free(bset2);
876 return hull;
877 error:
878 isl_basic_set_free(bset1);
879 isl_basic_set_free(bset2);
880 isl_basic_set_free(hull);
881 return NULL;
884 /* Is the set bounded for each value of the parameters?
886 int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
888 struct isl_tab *tab;
889 int bounded;
891 if (!bset)
892 return -1;
893 if (isl_basic_set_fast_is_empty(bset))
894 return 1;
896 tab = isl_tab_from_recession_cone(bset, 1);
897 bounded = isl_tab_cone_is_bounded(tab);
898 isl_tab_free(tab);
899 return bounded;
902 /* Is the image bounded for each value of the parameters and
903 * the domain variables?
905 int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap)
907 unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param);
908 unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in);
909 int bounded;
911 bmap = isl_basic_map_copy(bmap);
912 bmap = isl_basic_map_cow(bmap);
913 bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam,
914 isl_dim_in, 0, n_in);
915 bounded = isl_basic_set_is_bounded((isl_basic_set *)bmap);
916 isl_basic_map_free(bmap);
918 return bounded;
921 /* Is the set bounded for each value of the parameters?
923 int isl_set_is_bounded(__isl_keep isl_set *set)
925 int i;
927 if (!set)
928 return -1;
930 for (i = 0; i < set->n; ++i) {
931 int bounded = isl_basic_set_is_bounded(set->p[i]);
932 if (!bounded || bounded < 0)
933 return bounded;
935 return 1;
938 /* Compute the lineality space of the convex hull of bset1 and bset2.
940 * We first compute the intersection of the recession cone of bset1
941 * with the negative of the recession cone of bset2 and then compute
942 * the linear hull of the resulting cone.
944 static struct isl_basic_set *induced_lineality_space(
945 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
947 int i, k;
948 struct isl_basic_set *lin = NULL;
949 unsigned dim;
951 if (!bset1 || !bset2)
952 goto error;
954 dim = isl_basic_set_total_dim(bset1);
955 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
956 bset1->n_eq + bset2->n_eq,
957 bset1->n_ineq + bset2->n_ineq);
958 lin = isl_basic_set_set_rational(lin);
959 if (!lin)
960 goto error;
961 for (i = 0; i < bset1->n_eq; ++i) {
962 k = isl_basic_set_alloc_equality(lin);
963 if (k < 0)
964 goto error;
965 isl_int_set_si(lin->eq[k][0], 0);
966 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
968 for (i = 0; i < bset1->n_ineq; ++i) {
969 k = isl_basic_set_alloc_inequality(lin);
970 if (k < 0)
971 goto error;
972 isl_int_set_si(lin->ineq[k][0], 0);
973 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
975 for (i = 0; i < bset2->n_eq; ++i) {
976 k = isl_basic_set_alloc_equality(lin);
977 if (k < 0)
978 goto error;
979 isl_int_set_si(lin->eq[k][0], 0);
980 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
982 for (i = 0; i < bset2->n_ineq; ++i) {
983 k = isl_basic_set_alloc_inequality(lin);
984 if (k < 0)
985 goto error;
986 isl_int_set_si(lin->ineq[k][0], 0);
987 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
990 isl_basic_set_free(bset1);
991 isl_basic_set_free(bset2);
992 return isl_basic_set_affine_hull(lin);
993 error:
994 isl_basic_set_free(lin);
995 isl_basic_set_free(bset1);
996 isl_basic_set_free(bset2);
997 return NULL;
1000 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
1002 /* Given a set and a linear space "lin" of dimension n > 0,
1003 * project the linear space from the set, compute the convex hull
1004 * and then map the set back to the original space.
1006 * Let
1008 * M x = 0
1010 * describe the linear space. We first compute the Hermite normal
1011 * form H = M U of M = H Q, to obtain
1013 * H Q x = 0
1015 * The last n rows of H will be zero, so the last n variables of x' = Q x
1016 * are the one we want to project out. We do this by transforming each
1017 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1018 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1019 * we transform the hull back to the original space as A' Q_1 x >= b',
1020 * with Q_1 all but the last n rows of Q.
1022 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
1023 struct isl_basic_set *lin)
1025 unsigned total = isl_basic_set_total_dim(lin);
1026 unsigned lin_dim;
1027 struct isl_basic_set *hull;
1028 struct isl_mat *M, *U, *Q;
1030 if (!set || !lin)
1031 goto error;
1032 lin_dim = total - lin->n_eq;
1033 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1034 M = isl_mat_left_hermite(M, 0, &U, &Q);
1035 if (!M)
1036 goto error;
1037 isl_mat_free(M);
1038 isl_basic_set_free(lin);
1040 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1042 U = isl_mat_lin_to_aff(U);
1043 Q = isl_mat_lin_to_aff(Q);
1045 set = isl_set_preimage(set, U);
1046 set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim);
1047 hull = uset_convex_hull(set);
1048 hull = isl_basic_set_preimage(hull, Q);
1050 return hull;
1051 error:
1052 isl_basic_set_free(lin);
1053 isl_set_free(set);
1054 return NULL;
1057 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1058 * set up an LP for solving
1060 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1062 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1063 * The next \alpha{ij} correspond to the equalities and come in pairs.
1064 * The final \alpha{ij} correspond to the inequalities.
1066 static struct isl_basic_set *valid_direction_lp(
1067 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1069 struct isl_dim *dim;
1070 struct isl_basic_set *lp;
1071 unsigned d;
1072 int n;
1073 int i, j, k;
1075 if (!bset1 || !bset2)
1076 goto error;
1077 d = 1 + isl_basic_set_total_dim(bset1);
1078 n = 2 +
1079 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1080 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1081 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1082 if (!lp)
1083 goto error;
1084 for (i = 0; i < n; ++i) {
1085 k = isl_basic_set_alloc_inequality(lp);
1086 if (k < 0)
1087 goto error;
1088 isl_seq_clr(lp->ineq[k] + 1, n);
1089 isl_int_set_si(lp->ineq[k][0], -1);
1090 isl_int_set_si(lp->ineq[k][1 + i], 1);
1092 for (i = 0; i < d; ++i) {
1093 k = isl_basic_set_alloc_equality(lp);
1094 if (k < 0)
1095 goto error;
1096 n = 0;
1097 isl_int_set_si(lp->eq[k][n], 0); n++;
1098 /* positivity constraint 1 >= 0 */
1099 isl_int_set_si(lp->eq[k][n], i == 0); n++;
1100 for (j = 0; j < bset1->n_eq; ++j) {
1101 isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++;
1102 isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++;
1104 for (j = 0; j < bset1->n_ineq; ++j) {
1105 isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++;
1107 /* positivity constraint 1 >= 0 */
1108 isl_int_set_si(lp->eq[k][n], -(i == 0)); n++;
1109 for (j = 0; j < bset2->n_eq; ++j) {
1110 isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++;
1111 isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++;
1113 for (j = 0; j < bset2->n_ineq; ++j) {
1114 isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++;
1117 lp = isl_basic_set_gauss(lp, NULL);
1118 isl_basic_set_free(bset1);
1119 isl_basic_set_free(bset2);
1120 return lp;
1121 error:
1122 isl_basic_set_free(bset1);
1123 isl_basic_set_free(bset2);
1124 return NULL;
1127 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1128 * for all rays in the homogeneous space of the two cones that correspond
1129 * to the input polyhedra bset1 and bset2.
1131 * We compute s as a vector that satisfies
1133 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1135 * with h_{ij} the normals of the facets of polyhedron i
1136 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1137 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1138 * We first set up an LP with as variables the \alpha{ij}.
1139 * In this formulation, for each polyhedron i,
1140 * the first constraint is the positivity constraint, followed by pairs
1141 * of variables for the equalities, followed by variables for the inequalities.
1142 * We then simply pick a feasible solution and compute s using (*).
1144 * Note that we simply pick any valid direction and make no attempt
1145 * to pick a "good" or even the "best" valid direction.
1147 static struct isl_vec *valid_direction(
1148 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1150 struct isl_basic_set *lp;
1151 struct isl_tab *tab;
1152 struct isl_vec *sample = NULL;
1153 struct isl_vec *dir;
1154 unsigned d;
1155 int i;
1156 int n;
1158 if (!bset1 || !bset2)
1159 goto error;
1160 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1161 isl_basic_set_copy(bset2));
1162 tab = isl_tab_from_basic_set(lp);
1163 sample = isl_tab_get_sample_value(tab);
1164 isl_tab_free(tab);
1165 isl_basic_set_free(lp);
1166 if (!sample)
1167 goto error;
1168 d = isl_basic_set_total_dim(bset1);
1169 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1170 if (!dir)
1171 goto error;
1172 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1173 n = 1;
1174 /* positivity constraint 1 >= 0 */
1175 isl_int_set(dir->block.data[0], sample->block.data[n]); n++;
1176 for (i = 0; i < bset1->n_eq; ++i) {
1177 isl_int_sub(sample->block.data[n],
1178 sample->block.data[n], sample->block.data[n+1]);
1179 isl_seq_combine(dir->block.data,
1180 bset1->ctx->one, dir->block.data,
1181 sample->block.data[n], bset1->eq[i], 1 + d);
1183 n += 2;
1185 for (i = 0; i < bset1->n_ineq; ++i)
1186 isl_seq_combine(dir->block.data,
1187 bset1->ctx->one, dir->block.data,
1188 sample->block.data[n++], bset1->ineq[i], 1 + d);
1189 isl_vec_free(sample);
1190 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1191 isl_basic_set_free(bset1);
1192 isl_basic_set_free(bset2);
1193 return dir;
1194 error:
1195 isl_vec_free(sample);
1196 isl_basic_set_free(bset1);
1197 isl_basic_set_free(bset2);
1198 return NULL;
1201 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1202 * compute b_i' + A_i' x' >= 0, with
1204 * [ b_i A_i ] [ y' ] [ y' ]
1205 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1207 * In particular, add the "positivity constraint" and then perform
1208 * the mapping.
1210 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1211 struct isl_mat *T)
1213 int k;
1215 if (!bset)
1216 goto error;
1217 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1218 k = isl_basic_set_alloc_inequality(bset);
1219 if (k < 0)
1220 goto error;
1221 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1222 isl_int_set_si(bset->ineq[k][0], 1);
1223 bset = isl_basic_set_preimage(bset, T);
1224 return bset;
1225 error:
1226 isl_mat_free(T);
1227 isl_basic_set_free(bset);
1228 return NULL;
1231 /* Compute the convex hull of a pair of basic sets without any parameters or
1232 * integer divisions, where the convex hull is known to be pointed,
1233 * but the basic sets may be unbounded.
1235 * We turn this problem into the computation of a convex hull of a pair
1236 * _bounded_ polyhedra by "changing the direction of the homogeneous
1237 * dimension". This idea is due to Matthias Koeppe.
1239 * Consider the cones in homogeneous space that correspond to the
1240 * input polyhedra. The rays of these cones are also rays of the
1241 * polyhedra if the coordinate that corresponds to the homogeneous
1242 * dimension is zero. That is, if the inner product of the rays
1243 * with the homogeneous direction is zero.
1244 * The cones in the homogeneous space can also be considered to
1245 * correspond to other pairs of polyhedra by chosing a different
1246 * homogeneous direction. To ensure that both of these polyhedra
1247 * are bounded, we need to make sure that all rays of the cones
1248 * correspond to vertices and not to rays.
1249 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1250 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1251 * The vector s is computed in valid_direction.
1253 * Note that we need to consider _all_ rays of the cones and not just
1254 * the rays that correspond to rays in the polyhedra. If we were to
1255 * only consider those rays and turn them into vertices, then we
1256 * may inadvertently turn some vertices into rays.
1258 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1259 * We therefore transform the two polyhedra such that the selected
1260 * direction is mapped onto this standard direction and then proceed
1261 * with the normal computation.
1262 * Let S be a non-singular square matrix with s as its first row,
1263 * then we want to map the polyhedra to the space
1265 * [ y' ] [ y ] [ y ] [ y' ]
1266 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1268 * We take S to be the unimodular completion of s to limit the growth
1269 * of the coefficients in the following computations.
1271 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1272 * We first move to the homogeneous dimension
1274 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1275 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1277 * Then we change directoin
1279 * [ b_i A_i ] [ y' ] [ y' ]
1280 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1282 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1283 * resulting in b' + A' x' >= 0, which we then convert back
1285 * [ y ] [ y ]
1286 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1288 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1290 static struct isl_basic_set *convex_hull_pair_pointed(
1291 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1293 struct isl_ctx *ctx = NULL;
1294 struct isl_vec *dir = NULL;
1295 struct isl_mat *T = NULL;
1296 struct isl_mat *T2 = NULL;
1297 struct isl_basic_set *hull;
1298 struct isl_set *set;
1300 if (!bset1 || !bset2)
1301 goto error;
1302 ctx = bset1->ctx;
1303 dir = valid_direction(isl_basic_set_copy(bset1),
1304 isl_basic_set_copy(bset2));
1305 if (!dir)
1306 goto error;
1307 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1308 if (!T)
1309 goto error;
1310 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1311 T = isl_mat_unimodular_complete(T, 1);
1312 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1314 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1315 bset2 = homogeneous_map(bset2, T2);
1316 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1317 set = isl_set_add_basic_set(set, bset1);
1318 set = isl_set_add_basic_set(set, bset2);
1319 hull = uset_convex_hull(set);
1320 hull = isl_basic_set_preimage(hull, T);
1322 isl_vec_free(dir);
1324 return hull;
1325 error:
1326 isl_vec_free(dir);
1327 isl_basic_set_free(bset1);
1328 isl_basic_set_free(bset2);
1329 return NULL;
1332 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
1333 static struct isl_basic_set *modulo_affine_hull(
1334 struct isl_set *set, struct isl_basic_set *affine_hull);
1336 /* Compute the convex hull of a pair of basic sets without any parameters or
1337 * integer divisions.
1339 * This function is called from uset_convex_hull_unbounded, which
1340 * means that the complete convex hull is unbounded. Some pairs
1341 * of basic sets may still be bounded, though.
1342 * They may even lie inside a lower dimensional space, in which
1343 * case they need to be handled inside their affine hull since
1344 * the main algorithm assumes that the result is full-dimensional.
1346 * If the convex hull of the two basic sets would have a non-trivial
1347 * lineality space, we first project out this lineality space.
1349 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1350 struct isl_basic_set *bset2)
1352 isl_basic_set *lin, *aff;
1353 int bounded1, bounded2;
1355 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1356 isl_basic_set_copy(bset2)));
1357 if (!aff)
1358 goto error;
1359 if (aff->n_eq != 0)
1360 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1361 isl_basic_set_free(aff);
1363 bounded1 = isl_basic_set_is_bounded(bset1);
1364 bounded2 = isl_basic_set_is_bounded(bset2);
1366 if (bounded1 < 0 || bounded2 < 0)
1367 goto error;
1369 if (bounded1 && bounded2)
1370 uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1372 if (bounded1 || bounded2)
1373 return convex_hull_pair_pointed(bset1, bset2);
1375 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1376 isl_basic_set_copy(bset2));
1377 if (!lin)
1378 goto error;
1379 if (isl_basic_set_is_universe(lin)) {
1380 isl_basic_set_free(bset1);
1381 isl_basic_set_free(bset2);
1382 return lin;
1384 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1385 struct isl_set *set;
1386 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1387 set = isl_set_add_basic_set(set, bset1);
1388 set = isl_set_add_basic_set(set, bset2);
1389 return modulo_lineality(set, lin);
1391 isl_basic_set_free(lin);
1393 return convex_hull_pair_pointed(bset1, bset2);
1394 error:
1395 isl_basic_set_free(bset1);
1396 isl_basic_set_free(bset2);
1397 return NULL;
1400 /* Compute the lineality space of a basic set.
1401 * We currently do not allow the basic set to have any divs.
1402 * We basically just drop the constants and turn every inequality
1403 * into an equality.
1405 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1407 int i, k;
1408 struct isl_basic_set *lin = NULL;
1409 unsigned dim;
1411 if (!bset)
1412 goto error;
1413 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1414 dim = isl_basic_set_total_dim(bset);
1416 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1417 if (!lin)
1418 goto error;
1419 for (i = 0; i < bset->n_eq; ++i) {
1420 k = isl_basic_set_alloc_equality(lin);
1421 if (k < 0)
1422 goto error;
1423 isl_int_set_si(lin->eq[k][0], 0);
1424 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1426 lin = isl_basic_set_gauss(lin, NULL);
1427 if (!lin)
1428 goto error;
1429 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1430 k = isl_basic_set_alloc_equality(lin);
1431 if (k < 0)
1432 goto error;
1433 isl_int_set_si(lin->eq[k][0], 0);
1434 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1435 lin = isl_basic_set_gauss(lin, NULL);
1436 if (!lin)
1437 goto error;
1439 isl_basic_set_free(bset);
1440 return lin;
1441 error:
1442 isl_basic_set_free(lin);
1443 isl_basic_set_free(bset);
1444 return NULL;
1447 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1448 * "underlying" set "set".
1450 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1452 int i;
1453 struct isl_set *lin = NULL;
1455 if (!set)
1456 return NULL;
1457 if (set->n == 0) {
1458 struct isl_dim *dim = isl_set_get_dim(set);
1459 isl_set_free(set);
1460 return isl_basic_set_empty(dim);
1463 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1464 for (i = 0; i < set->n; ++i)
1465 lin = isl_set_add_basic_set(lin,
1466 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1467 isl_set_free(set);
1468 return isl_set_affine_hull(lin);
1471 /* Compute the convex hull of a set without any parameters or
1472 * integer divisions.
1473 * In each step, we combined two basic sets until only one
1474 * basic set is left.
1475 * The input basic sets are assumed not to have a non-trivial
1476 * lineality space. If any of the intermediate results has
1477 * a non-trivial lineality space, it is projected out.
1479 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1481 struct isl_basic_set *convex_hull = NULL;
1483 convex_hull = isl_set_copy_basic_set(set);
1484 set = isl_set_drop_basic_set(set, convex_hull);
1485 if (!set)
1486 goto error;
1487 while (set->n > 0) {
1488 struct isl_basic_set *t;
1489 t = isl_set_copy_basic_set(set);
1490 if (!t)
1491 goto error;
1492 set = isl_set_drop_basic_set(set, t);
1493 if (!set)
1494 goto error;
1495 convex_hull = convex_hull_pair(convex_hull, t);
1496 if (set->n == 0)
1497 break;
1498 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1499 if (!t)
1500 goto error;
1501 if (isl_basic_set_is_universe(t)) {
1502 isl_basic_set_free(convex_hull);
1503 convex_hull = t;
1504 break;
1506 if (t->n_eq < isl_basic_set_total_dim(t)) {
1507 set = isl_set_add_basic_set(set, convex_hull);
1508 return modulo_lineality(set, t);
1510 isl_basic_set_free(t);
1512 isl_set_free(set);
1513 return convex_hull;
1514 error:
1515 isl_set_free(set);
1516 isl_basic_set_free(convex_hull);
1517 return NULL;
1520 /* Compute an initial hull for wrapping containing a single initial
1521 * facet.
1522 * This function assumes that the given set is bounded.
1524 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1525 struct isl_set *set)
1527 struct isl_mat *bounds = NULL;
1528 unsigned dim;
1529 int k;
1531 if (!hull)
1532 goto error;
1533 bounds = initial_facet_constraint(set);
1534 if (!bounds)
1535 goto error;
1536 k = isl_basic_set_alloc_inequality(hull);
1537 if (k < 0)
1538 goto error;
1539 dim = isl_set_n_dim(set);
1540 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1541 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1542 isl_mat_free(bounds);
1544 return hull;
1545 error:
1546 isl_basic_set_free(hull);
1547 isl_mat_free(bounds);
1548 return NULL;
1551 struct max_constraint {
1552 struct isl_mat *c;
1553 int count;
1554 int ineq;
1557 static int max_constraint_equal(const void *entry, const void *val)
1559 struct max_constraint *a = (struct max_constraint *)entry;
1560 isl_int *b = (isl_int *)val;
1562 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1565 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1566 isl_int *con, unsigned len, int n, int ineq)
1568 struct isl_hash_table_entry *entry;
1569 struct max_constraint *c;
1570 uint32_t c_hash;
1572 c_hash = isl_seq_get_hash(con + 1, len);
1573 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1574 con + 1, 0);
1575 if (!entry)
1576 return;
1577 c = entry->data;
1578 if (c->count < n) {
1579 isl_hash_table_remove(ctx, table, entry);
1580 return;
1582 c->count++;
1583 if (isl_int_gt(c->c->row[0][0], con[0]))
1584 return;
1585 if (isl_int_eq(c->c->row[0][0], con[0])) {
1586 if (ineq)
1587 c->ineq = ineq;
1588 return;
1590 c->c = isl_mat_cow(c->c);
1591 isl_int_set(c->c->row[0][0], con[0]);
1592 c->ineq = ineq;
1595 /* Check whether the constraint hash table "table" constains the constraint
1596 * "con".
1598 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1599 isl_int *con, unsigned len, int n)
1601 struct isl_hash_table_entry *entry;
1602 struct max_constraint *c;
1603 uint32_t c_hash;
1605 c_hash = isl_seq_get_hash(con + 1, len);
1606 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1607 con + 1, 0);
1608 if (!entry)
1609 return 0;
1610 c = entry->data;
1611 if (c->count < n)
1612 return 0;
1613 return isl_int_eq(c->c->row[0][0], con[0]);
1616 /* Check for inequality constraints of a basic set without equalities
1617 * such that the same or more stringent copies of the constraint appear
1618 * in all of the basic sets. Such constraints are necessarily facet
1619 * constraints of the convex hull.
1621 * If the resulting basic set is by chance identical to one of
1622 * the basic sets in "set", then we know that this basic set contains
1623 * all other basic sets and is therefore the convex hull of set.
1624 * In this case we set *is_hull to 1.
1626 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1627 struct isl_set *set, int *is_hull)
1629 int i, j, s, n;
1630 int min_constraints;
1631 int best;
1632 struct max_constraint *constraints = NULL;
1633 struct isl_hash_table *table = NULL;
1634 unsigned total;
1636 *is_hull = 0;
1638 for (i = 0; i < set->n; ++i)
1639 if (set->p[i]->n_eq == 0)
1640 break;
1641 if (i >= set->n)
1642 return hull;
1643 min_constraints = set->p[i]->n_ineq;
1644 best = i;
1645 for (i = best + 1; i < set->n; ++i) {
1646 if (set->p[i]->n_eq != 0)
1647 continue;
1648 if (set->p[i]->n_ineq >= min_constraints)
1649 continue;
1650 min_constraints = set->p[i]->n_ineq;
1651 best = i;
1653 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1654 min_constraints);
1655 if (!constraints)
1656 return hull;
1657 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1658 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1659 goto error;
1661 total = isl_dim_total(set->dim);
1662 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1663 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1664 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1665 if (!constraints[i].c)
1666 goto error;
1667 constraints[i].ineq = 1;
1669 for (i = 0; i < min_constraints; ++i) {
1670 struct isl_hash_table_entry *entry;
1671 uint32_t c_hash;
1672 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1673 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1674 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1675 if (!entry)
1676 goto error;
1677 isl_assert(hull->ctx, !entry->data, goto error);
1678 entry->data = &constraints[i];
1681 n = 0;
1682 for (s = 0; s < set->n; ++s) {
1683 if (s == best)
1684 continue;
1686 for (i = 0; i < set->p[s]->n_eq; ++i) {
1687 isl_int *eq = set->p[s]->eq[i];
1688 for (j = 0; j < 2; ++j) {
1689 isl_seq_neg(eq, eq, 1 + total);
1690 update_constraint(hull->ctx, table,
1691 eq, total, n, 0);
1694 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1695 isl_int *ineq = set->p[s]->ineq[i];
1696 update_constraint(hull->ctx, table, ineq, total, n,
1697 set->p[s]->n_eq == 0);
1699 ++n;
1702 for (i = 0; i < min_constraints; ++i) {
1703 if (constraints[i].count < n)
1704 continue;
1705 if (!constraints[i].ineq)
1706 continue;
1707 j = isl_basic_set_alloc_inequality(hull);
1708 if (j < 0)
1709 goto error;
1710 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1713 for (s = 0; s < set->n; ++s) {
1714 if (set->p[s]->n_eq)
1715 continue;
1716 if (set->p[s]->n_ineq != hull->n_ineq)
1717 continue;
1718 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1719 isl_int *ineq = set->p[s]->ineq[i];
1720 if (!has_constraint(hull->ctx, table, ineq, total, n))
1721 break;
1723 if (i == set->p[s]->n_ineq)
1724 *is_hull = 1;
1727 isl_hash_table_clear(table);
1728 for (i = 0; i < min_constraints; ++i)
1729 isl_mat_free(constraints[i].c);
1730 free(constraints);
1731 free(table);
1732 return hull;
1733 error:
1734 isl_hash_table_clear(table);
1735 free(table);
1736 if (constraints)
1737 for (i = 0; i < min_constraints; ++i)
1738 isl_mat_free(constraints[i].c);
1739 free(constraints);
1740 return hull;
1743 /* Create a template for the convex hull of "set" and fill it up
1744 * obvious facet constraints, if any. If the result happens to
1745 * be the convex hull of "set" then *is_hull is set to 1.
1747 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1749 struct isl_basic_set *hull;
1750 unsigned n_ineq;
1751 int i;
1753 n_ineq = 1;
1754 for (i = 0; i < set->n; ++i) {
1755 n_ineq += set->p[i]->n_eq;
1756 n_ineq += set->p[i]->n_ineq;
1758 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1759 hull = isl_basic_set_set_rational(hull);
1760 if (!hull)
1761 return NULL;
1762 return common_constraints(hull, set, is_hull);
1765 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1767 struct isl_basic_set *hull;
1768 int is_hull;
1770 hull = proto_hull(set, &is_hull);
1771 if (hull && !is_hull) {
1772 if (hull->n_ineq == 0)
1773 hull = initial_hull(hull, set);
1774 hull = extend(hull, set);
1776 isl_set_free(set);
1778 return hull;
1781 /* Compute the convex hull of a set without any parameters or
1782 * integer divisions. Depending on whether the set is bounded,
1783 * we pass control to the wrapping based convex hull or
1784 * the Fourier-Motzkin elimination based convex hull.
1785 * We also handle a few special cases before checking the boundedness.
1787 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1789 struct isl_basic_set *convex_hull = NULL;
1790 struct isl_basic_set *lin;
1792 if (isl_set_n_dim(set) == 0)
1793 return convex_hull_0d(set);
1795 set = isl_set_coalesce(set);
1796 set = isl_set_set_rational(set);
1798 if (!set)
1799 goto error;
1800 if (!set)
1801 return NULL;
1802 if (set->n == 1) {
1803 convex_hull = isl_basic_set_copy(set->p[0]);
1804 isl_set_free(set);
1805 return convex_hull;
1807 if (isl_set_n_dim(set) == 1)
1808 return convex_hull_1d(set);
1810 if (isl_set_is_bounded(set))
1811 return uset_convex_hull_wrap(set);
1813 lin = uset_combined_lineality_space(isl_set_copy(set));
1814 if (!lin)
1815 goto error;
1816 if (isl_basic_set_is_universe(lin)) {
1817 isl_set_free(set);
1818 return lin;
1820 if (lin->n_eq < isl_basic_set_total_dim(lin))
1821 return modulo_lineality(set, lin);
1822 isl_basic_set_free(lin);
1824 return uset_convex_hull_unbounded(set);
1825 error:
1826 isl_set_free(set);
1827 isl_basic_set_free(convex_hull);
1828 return NULL;
1831 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1832 * without parameters or divs and where the convex hull of set is
1833 * known to be full-dimensional.
1835 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1837 struct isl_basic_set *convex_hull = NULL;
1839 if (!set)
1840 goto error;
1842 if (isl_set_n_dim(set) == 0) {
1843 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1844 isl_set_free(set);
1845 convex_hull = isl_basic_set_set_rational(convex_hull);
1846 return convex_hull;
1849 set = isl_set_set_rational(set);
1850 set = isl_set_coalesce(set);
1851 if (!set)
1852 goto error;
1853 if (set->n == 1) {
1854 convex_hull = isl_basic_set_copy(set->p[0]);
1855 isl_set_free(set);
1856 return convex_hull;
1858 if (isl_set_n_dim(set) == 1)
1859 return convex_hull_1d(set);
1861 return uset_convex_hull_wrap(set);
1862 error:
1863 isl_set_free(set);
1864 return NULL;
1867 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1868 * We first remove the equalities (transforming the set), compute the
1869 * convex hull of the transformed set and then add the equalities back
1870 * (after performing the inverse transformation.
1872 static struct isl_basic_set *modulo_affine_hull(
1873 struct isl_set *set, struct isl_basic_set *affine_hull)
1875 struct isl_mat *T;
1876 struct isl_mat *T2;
1877 struct isl_basic_set *dummy;
1878 struct isl_basic_set *convex_hull;
1880 dummy = isl_basic_set_remove_equalities(
1881 isl_basic_set_copy(affine_hull), &T, &T2);
1882 if (!dummy)
1883 goto error;
1884 isl_basic_set_free(dummy);
1885 set = isl_set_preimage(set, T);
1886 convex_hull = uset_convex_hull(set);
1887 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1888 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1889 return convex_hull;
1890 error:
1891 isl_basic_set_free(affine_hull);
1892 isl_set_free(set);
1893 return NULL;
1896 /* Compute the convex hull of a map.
1898 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1899 * specifically, the wrapping of facets to obtain new facets.
1901 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1903 struct isl_basic_set *bset;
1904 struct isl_basic_map *model = NULL;
1905 struct isl_basic_set *affine_hull = NULL;
1906 struct isl_basic_map *convex_hull = NULL;
1907 struct isl_set *set = NULL;
1908 struct isl_ctx *ctx;
1910 if (!map)
1911 goto error;
1913 ctx = map->ctx;
1914 if (map->n == 0) {
1915 convex_hull = isl_basic_map_empty_like_map(map);
1916 isl_map_free(map);
1917 return convex_hull;
1920 map = isl_map_detect_equalities(map);
1921 map = isl_map_align_divs(map);
1922 if (!map)
1923 goto error;
1924 model = isl_basic_map_copy(map->p[0]);
1925 set = isl_map_underlying_set(map);
1926 if (!set)
1927 goto error;
1929 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1930 if (!affine_hull)
1931 goto error;
1932 if (affine_hull->n_eq != 0)
1933 bset = modulo_affine_hull(set, affine_hull);
1934 else {
1935 isl_basic_set_free(affine_hull);
1936 bset = uset_convex_hull(set);
1939 convex_hull = isl_basic_map_overlying_set(bset, model);
1940 if (!convex_hull)
1941 return NULL;
1943 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1944 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1945 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1946 return convex_hull;
1947 error:
1948 isl_set_free(set);
1949 isl_basic_map_free(model);
1950 return NULL;
1953 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1955 return (struct isl_basic_set *)
1956 isl_map_convex_hull((struct isl_map *)set);
1959 __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map)
1961 isl_basic_map *hull;
1963 hull = isl_map_convex_hull(map);
1964 return isl_basic_map_remove_divs(hull);
1967 __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set)
1969 return (isl_basic_set *)isl_map_polyhedral_hull((isl_map *)set);
1972 struct sh_data_entry {
1973 struct isl_hash_table *table;
1974 struct isl_tab *tab;
1977 /* Holds the data needed during the simple hull computation.
1978 * In particular,
1979 * n the number of basic sets in the original set
1980 * hull_table a hash table of already computed constraints
1981 * in the simple hull
1982 * p for each basic set,
1983 * table a hash table of the constraints
1984 * tab the tableau corresponding to the basic set
1986 struct sh_data {
1987 struct isl_ctx *ctx;
1988 unsigned n;
1989 struct isl_hash_table *hull_table;
1990 struct sh_data_entry p[1];
1993 static void sh_data_free(struct sh_data *data)
1995 int i;
1997 if (!data)
1998 return;
1999 isl_hash_table_free(data->ctx, data->hull_table);
2000 for (i = 0; i < data->n; ++i) {
2001 isl_hash_table_free(data->ctx, data->p[i].table);
2002 isl_tab_free(data->p[i].tab);
2004 free(data);
2007 struct ineq_cmp_data {
2008 unsigned len;
2009 isl_int *p;
2012 static int has_ineq(const void *entry, const void *val)
2014 isl_int *row = (isl_int *)entry;
2015 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
2017 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
2018 isl_seq_is_neg(row + 1, v->p + 1, v->len);
2021 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
2022 isl_int *ineq, unsigned len)
2024 uint32_t c_hash;
2025 struct ineq_cmp_data v;
2026 struct isl_hash_table_entry *entry;
2028 v.len = len;
2029 v.p = ineq;
2030 c_hash = isl_seq_get_hash(ineq + 1, len);
2031 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
2032 if (!entry)
2033 return - 1;
2034 entry->data = ineq;
2035 return 0;
2038 /* Fill hash table "table" with the constraints of "bset".
2039 * Equalities are added as two inequalities.
2040 * The value in the hash table is a pointer to the (in)equality of "bset".
2042 static int hash_basic_set(struct isl_hash_table *table,
2043 struct isl_basic_set *bset)
2045 int i, j;
2046 unsigned dim = isl_basic_set_total_dim(bset);
2048 for (i = 0; i < bset->n_eq; ++i) {
2049 for (j = 0; j < 2; ++j) {
2050 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2051 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2052 return -1;
2055 for (i = 0; i < bset->n_ineq; ++i) {
2056 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2057 return -1;
2059 return 0;
2062 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2064 struct sh_data *data;
2065 int i;
2067 data = isl_calloc(set->ctx, struct sh_data,
2068 sizeof(struct sh_data) +
2069 (set->n - 1) * sizeof(struct sh_data_entry));
2070 if (!data)
2071 return NULL;
2072 data->ctx = set->ctx;
2073 data->n = set->n;
2074 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2075 if (!data->hull_table)
2076 goto error;
2077 for (i = 0; i < set->n; ++i) {
2078 data->p[i].table = isl_hash_table_alloc(set->ctx,
2079 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2080 if (!data->p[i].table)
2081 goto error;
2082 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2083 goto error;
2085 return data;
2086 error:
2087 sh_data_free(data);
2088 return NULL;
2091 /* Check if inequality "ineq" is a bound for basic set "j" or if
2092 * it can be relaxed (by increasing the constant term) to become
2093 * a bound for that basic set. In the latter case, the constant
2094 * term is updated.
2095 * Return 1 if "ineq" is a bound
2096 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2097 * -1 if some error occurred
2099 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2100 isl_int *ineq)
2102 enum isl_lp_result res;
2103 isl_int opt;
2105 if (!data->p[j].tab) {
2106 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2107 if (!data->p[j].tab)
2108 return -1;
2111 isl_int_init(opt);
2113 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2114 &opt, NULL, 0);
2115 if (res == isl_lp_ok && isl_int_is_neg(opt))
2116 isl_int_sub(ineq[0], ineq[0], opt);
2118 isl_int_clear(opt);
2120 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2121 res == isl_lp_unbounded ? 0 : -1;
2124 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2125 * become a bound on the whole set. If so, add the (relaxed) inequality
2126 * to "hull".
2128 * We first check if "hull" already contains a translate of the inequality.
2129 * If so, we are done.
2130 * Then, we check if any of the previous basic sets contains a translate
2131 * of the inequality. If so, then we have already considered this
2132 * inequality and we are done.
2133 * Otherwise, for each basic set other than "i", we check if the inequality
2134 * is a bound on the basic set.
2135 * For previous basic sets, we know that they do not contain a translate
2136 * of the inequality, so we directly call is_bound.
2137 * For following basic sets, we first check if a translate of the
2138 * inequality appears in its description and if so directly update
2139 * the inequality accordingly.
2141 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2142 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2144 uint32_t c_hash;
2145 struct ineq_cmp_data v;
2146 struct isl_hash_table_entry *entry;
2147 int j, k;
2149 if (!hull)
2150 return NULL;
2152 v.len = isl_basic_set_total_dim(hull);
2153 v.p = ineq;
2154 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2156 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2157 has_ineq, &v, 0);
2158 if (entry)
2159 return hull;
2161 for (j = 0; j < i; ++j) {
2162 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2163 c_hash, has_ineq, &v, 0);
2164 if (entry)
2165 break;
2167 if (j < i)
2168 return hull;
2170 k = isl_basic_set_alloc_inequality(hull);
2171 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2172 if (k < 0)
2173 goto error;
2175 for (j = 0; j < i; ++j) {
2176 int bound;
2177 bound = is_bound(data, set, j, hull->ineq[k]);
2178 if (bound < 0)
2179 goto error;
2180 if (!bound)
2181 break;
2183 if (j < i) {
2184 isl_basic_set_free_inequality(hull, 1);
2185 return hull;
2188 for (j = i + 1; j < set->n; ++j) {
2189 int bound, neg;
2190 isl_int *ineq_j;
2191 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2192 c_hash, has_ineq, &v, 0);
2193 if (entry) {
2194 ineq_j = entry->data;
2195 neg = isl_seq_is_neg(ineq_j + 1,
2196 hull->ineq[k] + 1, v.len);
2197 if (neg)
2198 isl_int_neg(ineq_j[0], ineq_j[0]);
2199 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2200 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2201 if (neg)
2202 isl_int_neg(ineq_j[0], ineq_j[0]);
2203 continue;
2205 bound = is_bound(data, set, j, hull->ineq[k]);
2206 if (bound < 0)
2207 goto error;
2208 if (!bound)
2209 break;
2211 if (j < set->n) {
2212 isl_basic_set_free_inequality(hull, 1);
2213 return hull;
2216 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2217 has_ineq, &v, 1);
2218 if (!entry)
2219 goto error;
2220 entry->data = hull->ineq[k];
2222 return hull;
2223 error:
2224 isl_basic_set_free(hull);
2225 return NULL;
2228 /* Check if any inequality from basic set "i" can be relaxed to
2229 * become a bound on the whole set. If so, add the (relaxed) inequality
2230 * to "hull".
2232 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2233 struct sh_data *data, struct isl_set *set, int i)
2235 int j, k;
2236 unsigned dim = isl_basic_set_total_dim(bset);
2238 for (j = 0; j < set->p[i]->n_eq; ++j) {
2239 for (k = 0; k < 2; ++k) {
2240 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2241 bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
2244 for (j = 0; j < set->p[i]->n_ineq; ++j)
2245 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2246 return bset;
2249 /* Compute a superset of the convex hull of set that is described
2250 * by only translates of the constraints in the constituents of set.
2252 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2254 struct sh_data *data = NULL;
2255 struct isl_basic_set *hull = NULL;
2256 unsigned n_ineq;
2257 int i;
2259 if (!set)
2260 return NULL;
2262 n_ineq = 0;
2263 for (i = 0; i < set->n; ++i) {
2264 if (!set->p[i])
2265 goto error;
2266 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2269 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2270 if (!hull)
2271 goto error;
2273 data = sh_data_alloc(set, n_ineq);
2274 if (!data)
2275 goto error;
2277 for (i = 0; i < set->n; ++i)
2278 hull = add_bounds(hull, data, set, i);
2280 sh_data_free(data);
2281 isl_set_free(set);
2283 return hull;
2284 error:
2285 sh_data_free(data);
2286 isl_basic_set_free(hull);
2287 isl_set_free(set);
2288 return NULL;
2291 /* Compute a superset of the convex hull of map that is described
2292 * by only translates of the constraints in the constituents of map.
2294 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2296 struct isl_set *set = NULL;
2297 struct isl_basic_map *model = NULL;
2298 struct isl_basic_map *hull;
2299 struct isl_basic_map *affine_hull;
2300 struct isl_basic_set *bset = NULL;
2302 if (!map)
2303 return NULL;
2304 if (map->n == 0) {
2305 hull = isl_basic_map_empty_like_map(map);
2306 isl_map_free(map);
2307 return hull;
2309 if (map->n == 1) {
2310 hull = isl_basic_map_copy(map->p[0]);
2311 isl_map_free(map);
2312 return hull;
2315 map = isl_map_detect_equalities(map);
2316 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2317 map = isl_map_align_divs(map);
2318 model = isl_basic_map_copy(map->p[0]);
2320 set = isl_map_underlying_set(map);
2322 bset = uset_simple_hull(set);
2324 hull = isl_basic_map_overlying_set(bset, model);
2326 hull = isl_basic_map_intersect(hull, affine_hull);
2327 hull = isl_basic_map_remove_redundancies(hull);
2328 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2329 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2331 return hull;
2334 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2336 return (struct isl_basic_set *)
2337 isl_map_simple_hull((struct isl_map *)set);
2340 /* Given a set "set", return parametric bounds on the dimension "dim".
2342 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2344 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2345 set = isl_set_copy(set);
2346 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2347 set = isl_set_eliminate_dims(set, 0, dim);
2348 return isl_set_convex_hull(set);
2351 /* Computes a "simple hull" and then check if each dimension in the
2352 * resulting hull is bounded by a symbolic constant. If not, the
2353 * hull is intersected with the corresponding bounds on the whole set.
2355 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2357 int i, j;
2358 struct isl_basic_set *hull;
2359 unsigned nparam, left;
2360 int removed_divs = 0;
2362 hull = isl_set_simple_hull(isl_set_copy(set));
2363 if (!hull)
2364 goto error;
2366 nparam = isl_basic_set_dim(hull, isl_dim_param);
2367 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2368 int lower = 0, upper = 0;
2369 struct isl_basic_set *bounds;
2371 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2372 for (j = 0; j < hull->n_eq; ++j) {
2373 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2374 continue;
2375 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2376 left) == -1)
2377 break;
2379 if (j < hull->n_eq)
2380 continue;
2382 for (j = 0; j < hull->n_ineq; ++j) {
2383 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2384 continue;
2385 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2386 left) != -1 ||
2387 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2388 i) != -1)
2389 continue;
2390 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2391 lower = 1;
2392 else
2393 upper = 1;
2394 if (lower && upper)
2395 break;
2398 if (lower && upper)
2399 continue;
2401 if (!removed_divs) {
2402 set = isl_set_remove_divs(set);
2403 if (!set)
2404 goto error;
2405 removed_divs = 1;
2407 bounds = set_bounds(set, i);
2408 hull = isl_basic_set_intersect(hull, bounds);
2409 if (!hull)
2410 goto error;
2413 isl_set_free(set);
2414 return hull;
2415 error:
2416 isl_set_free(set);
2417 return NULL;