2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12 #include "isl_map_private.h"
13 #include <isl_mat_private.h>
16 #include "isl_equalities.h"
19 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
21 static void swap_ineq(struct isl_basic_map
*bmap
, unsigned i
, unsigned j
)
27 bmap
->ineq
[i
] = bmap
->ineq
[j
];
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
38 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
40 enum isl_lp_result res
;
47 total
= isl_basic_map_total_dim(*bmap
);
48 for (i
= 0; i
< total
; ++i
) {
50 if (isl_int_is_zero(c
[1+i
]))
52 sign
= isl_int_sgn(c
[1+i
]);
53 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
54 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
56 if (j
== (*bmap
)->n_ineq
)
62 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
64 if (res
== isl_lp_unbounded
)
66 if (res
== isl_lp_error
)
68 if (res
== isl_lp_empty
) {
69 *bmap
= isl_basic_map_set_to_empty(*bmap
);
72 return !isl_int_is_neg(*opt_n
);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
76 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
90 __isl_give isl_basic_map
*isl_basic_map_remove_redundancies(
91 __isl_take isl_basic_map
*bmap
)
98 bmap
= isl_basic_map_gauss(bmap
, NULL
);
99 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
101 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
103 if (bmap
->n_ineq
<= 1)
106 tab
= isl_tab_from_basic_map(bmap
);
107 if (isl_tab_detect_implicit_equalities(tab
) < 0)
109 if (isl_tab_detect_redundant(tab
) < 0)
111 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
113 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
114 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
118 isl_basic_map_free(bmap
);
122 __isl_give isl_basic_set
*isl_basic_set_remove_redundancies(
123 __isl_take isl_basic_set
*bset
)
125 return (struct isl_basic_set
*)
126 isl_basic_map_remove_redundancies((struct isl_basic_map
*)bset
);
129 /* Check if the set set is bound in the direction of the affine
130 * constraint c and if so, set the constant term such that the
131 * resulting constraint is a bounding constraint for the set.
133 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
141 isl_int_init(opt_denom
);
143 for (j
= 0; j
< set
->n
; ++j
) {
144 enum isl_lp_result res
;
146 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
149 res
= isl_basic_set_solve_lp(set
->p
[j
],
150 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
151 if (res
== isl_lp_unbounded
)
153 if (res
== isl_lp_error
)
155 if (res
== isl_lp_empty
) {
156 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
161 if (first
|| isl_int_is_neg(opt
)) {
162 if (!isl_int_is_one(opt_denom
))
163 isl_seq_scale(c
, c
, opt_denom
, len
);
164 isl_int_sub(c
[0], c
[0], opt
);
169 isl_int_clear(opt_denom
);
173 isl_int_clear(opt_denom
);
177 struct isl_basic_set
*isl_basic_set_set_rational(struct isl_basic_set
*bset
)
182 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
185 bset
= isl_basic_set_cow(bset
);
189 ISL_F_SET(bset
, ISL_BASIC_MAP_RATIONAL
);
191 return isl_basic_set_finalize(bset
);
194 static struct isl_set
*isl_set_set_rational(struct isl_set
*set
)
198 set
= isl_set_cow(set
);
201 for (i
= 0; i
< set
->n
; ++i
) {
202 set
->p
[i
] = isl_basic_set_set_rational(set
->p
[i
]);
212 static struct isl_basic_set
*isl_basic_set_add_equality(
213 struct isl_basic_set
*bset
, isl_int
*c
)
221 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
224 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
225 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
226 dim
= isl_basic_set_n_dim(bset
);
227 bset
= isl_basic_set_cow(bset
);
228 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
229 i
= isl_basic_set_alloc_equality(bset
);
232 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
235 isl_basic_set_free(bset
);
239 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
243 set
= isl_set_cow(set
);
246 for (i
= 0; i
< set
->n
; ++i
) {
247 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
257 /* Given a union of basic sets, construct the constraints for wrapping
258 * a facet around one of its ridges.
259 * In particular, if each of n the d-dimensional basic sets i in "set"
260 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
261 * and is defined by the constraints
265 * then the resulting set is of dimension n*(1+d) and has as constraints
274 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
276 struct isl_basic_set
*lp
;
280 unsigned dim
, lp_dim
;
285 dim
= 1 + isl_set_n_dim(set
);
288 for (i
= 0; i
< set
->n
; ++i
) {
289 n_eq
+= set
->p
[i
]->n_eq
;
290 n_ineq
+= set
->p
[i
]->n_ineq
;
292 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
295 lp_dim
= isl_basic_set_n_dim(lp
);
296 k
= isl_basic_set_alloc_equality(lp
);
297 isl_int_set_si(lp
->eq
[k
][0], -1);
298 for (i
= 0; i
< set
->n
; ++i
) {
299 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
300 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
301 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
303 for (i
= 0; i
< set
->n
; ++i
) {
304 k
= isl_basic_set_alloc_inequality(lp
);
305 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
306 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
308 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
309 k
= isl_basic_set_alloc_equality(lp
);
310 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
311 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
312 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
315 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
316 k
= isl_basic_set_alloc_inequality(lp
);
317 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
318 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
319 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
325 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
326 * of that facet, compute the other facet of the convex hull that contains
329 * We first transform the set such that the facet constraint becomes
333 * I.e., the facet lies in
337 * and on that facet, the constraint that defines the ridge is
341 * (This transformation is not strictly needed, all that is needed is
342 * that the ridge contains the origin.)
344 * Since the ridge contains the origin, the cone of the convex hull
345 * will be of the form
350 * with this second constraint defining the new facet.
351 * The constant a is obtained by settting x_1 in the cone of the
352 * convex hull to 1 and minimizing x_2.
353 * Now, each element in the cone of the convex hull is the sum
354 * of elements in the cones of the basic sets.
355 * If a_i is the dilation factor of basic set i, then the problem
356 * we need to solve is
369 * the constraints of each (transformed) basic set.
370 * If a = n/d, then the constraint defining the new facet (in the transformed
373 * -n x_1 + d x_2 >= 0
375 * In the original space, we need to take the same combination of the
376 * corresponding constraints "facet" and "ridge".
378 * If a = -infty = "-1/0", then we just return the original facet constraint.
379 * This means that the facet is unbounded, but has a bounded intersection
380 * with the union of sets.
382 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
383 isl_int
*facet
, isl_int
*ridge
)
387 struct isl_mat
*T
= NULL
;
388 struct isl_basic_set
*lp
= NULL
;
390 enum isl_lp_result res
;
397 set
= isl_set_copy(set
);
398 set
= isl_set_set_rational(set
);
400 dim
= 1 + isl_set_n_dim(set
);
401 T
= isl_mat_alloc(ctx
, 3, dim
);
404 isl_int_set_si(T
->row
[0][0], 1);
405 isl_seq_clr(T
->row
[0]+1, dim
- 1);
406 isl_seq_cpy(T
->row
[1], facet
, dim
);
407 isl_seq_cpy(T
->row
[2], ridge
, dim
);
408 T
= isl_mat_right_inverse(T
);
409 set
= isl_set_preimage(set
, T
);
413 lp
= wrap_constraints(set
);
414 obj
= isl_vec_alloc(ctx
, 1 + dim
*set
->n
);
417 isl_int_set_si(obj
->block
.data
[0], 0);
418 for (i
= 0; i
< set
->n
; ++i
) {
419 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
420 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
421 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
425 res
= isl_basic_set_solve_lp(lp
, 0,
426 obj
->block
.data
, ctx
->one
, &num
, &den
, NULL
);
427 if (res
== isl_lp_ok
) {
428 isl_int_neg(num
, num
);
429 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
430 isl_seq_normalize(ctx
, facet
, dim
);
435 isl_basic_set_free(lp
);
437 if (res
== isl_lp_error
)
439 isl_assert(ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
443 isl_basic_set_free(lp
);
449 /* Compute the constraint of a facet of "set".
451 * We first compute the intersection with a bounding constraint
452 * that is orthogonal to one of the coordinate axes.
453 * If the affine hull of this intersection has only one equality,
454 * we have found a facet.
455 * Otherwise, we wrap the current bounding constraint around
456 * one of the equalities of the face (one that is not equal to
457 * the current bounding constraint).
458 * This process continues until we have found a facet.
459 * The dimension of the intersection increases by at least
460 * one on each iteration, so termination is guaranteed.
462 static __isl_give isl_mat
*initial_facet_constraint(__isl_keep isl_set
*set
)
464 struct isl_set
*slice
= NULL
;
465 struct isl_basic_set
*face
= NULL
;
467 unsigned dim
= isl_set_n_dim(set
);
471 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
472 bounds
= isl_mat_alloc(set
->ctx
, 1, 1 + dim
);
476 isl_seq_clr(bounds
->row
[0], dim
);
477 isl_int_set_si(bounds
->row
[0][1 + dim
- 1], 1);
478 is_bound
= uset_is_bound(set
, bounds
->row
[0], 1 + dim
);
481 isl_assert(set
->ctx
, is_bound
, goto error
);
482 isl_seq_normalize(set
->ctx
, bounds
->row
[0], 1 + dim
);
486 slice
= isl_set_copy(set
);
487 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
488 face
= isl_set_affine_hull(slice
);
491 if (face
->n_eq
== 1) {
492 isl_basic_set_free(face
);
495 for (i
= 0; i
< face
->n_eq
; ++i
)
496 if (!isl_seq_eq(bounds
->row
[0], face
->eq
[i
], 1 + dim
) &&
497 !isl_seq_is_neg(bounds
->row
[0],
498 face
->eq
[i
], 1 + dim
))
500 isl_assert(set
->ctx
, i
< face
->n_eq
, goto error
);
501 if (!isl_set_wrap_facet(set
, bounds
->row
[0], face
->eq
[i
]))
503 isl_seq_normalize(set
->ctx
, bounds
->row
[0], bounds
->n_col
);
504 isl_basic_set_free(face
);
509 isl_basic_set_free(face
);
510 isl_mat_free(bounds
);
514 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
515 * compute a hyperplane description of the facet, i.e., compute the facets
518 * We compute an affine transformation that transforms the constraint
527 * by computing the right inverse U of a matrix that starts with the rows
540 * Since z_1 is zero, we can drop this variable as well as the corresponding
541 * column of U to obtain
549 * with Q' equal to Q, but without the corresponding row.
550 * After computing the facets of the facet in the z' space,
551 * we convert them back to the x space through Q.
553 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
555 struct isl_mat
*m
, *U
, *Q
;
556 struct isl_basic_set
*facet
= NULL
;
561 set
= isl_set_copy(set
);
562 dim
= isl_set_n_dim(set
);
563 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
566 isl_int_set_si(m
->row
[0][0], 1);
567 isl_seq_clr(m
->row
[0]+1, dim
);
568 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
569 U
= isl_mat_right_inverse(m
);
570 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
571 U
= isl_mat_drop_cols(U
, 1, 1);
572 Q
= isl_mat_drop_rows(Q
, 1, 1);
573 set
= isl_set_preimage(set
, U
);
574 facet
= uset_convex_hull_wrap_bounded(set
);
575 facet
= isl_basic_set_preimage(facet
, Q
);
577 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
580 isl_basic_set_free(facet
);
585 /* Given an initial facet constraint, compute the remaining facets.
586 * We do this by running through all facets found so far and computing
587 * the adjacent facets through wrapping, adding those facets that we
588 * hadn't already found before.
590 * For each facet we have found so far, we first compute its facets
591 * in the resulting convex hull. That is, we compute the ridges
592 * of the resulting convex hull contained in the facet.
593 * We also compute the corresponding facet in the current approximation
594 * of the convex hull. There is no need to wrap around the ridges
595 * in this facet since that would result in a facet that is already
596 * present in the current approximation.
598 * This function can still be significantly optimized by checking which of
599 * the facets of the basic sets are also facets of the convex hull and
600 * using all the facets so far to help in constructing the facets of the
603 * using the technique in section "3.1 Ridge Generation" of
604 * "Extended Convex Hull" by Fukuda et al.
606 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
611 struct isl_basic_set
*facet
= NULL
;
612 struct isl_basic_set
*hull_facet
= NULL
;
618 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
620 dim
= isl_set_n_dim(set
);
622 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
623 facet
= compute_facet(set
, hull
->ineq
[i
]);
624 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
625 facet
= isl_basic_set_gauss(facet
, NULL
);
626 facet
= isl_basic_set_normalize_constraints(facet
);
627 hull_facet
= isl_basic_set_copy(hull
);
628 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
629 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
630 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
631 if (!facet
|| !hull_facet
)
633 hull
= isl_basic_set_cow(hull
);
634 hull
= isl_basic_set_extend_dim(hull
,
635 isl_dim_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
638 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
639 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
640 if (isl_seq_eq(facet
->ineq
[j
],
641 hull_facet
->ineq
[f
], 1 + dim
))
643 if (f
< hull_facet
->n_ineq
)
645 k
= isl_basic_set_alloc_inequality(hull
);
648 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
649 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
652 isl_basic_set_free(hull_facet
);
653 isl_basic_set_free(facet
);
655 hull
= isl_basic_set_simplify(hull
);
656 hull
= isl_basic_set_finalize(hull
);
659 isl_basic_set_free(hull_facet
);
660 isl_basic_set_free(facet
);
661 isl_basic_set_free(hull
);
665 /* Special case for computing the convex hull of a one dimensional set.
666 * We simply collect the lower and upper bounds of each basic set
667 * and the biggest of those.
669 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
671 struct isl_mat
*c
= NULL
;
672 isl_int
*lower
= NULL
;
673 isl_int
*upper
= NULL
;
676 struct isl_basic_set
*hull
;
678 for (i
= 0; i
< set
->n
; ++i
) {
679 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
683 set
= isl_set_remove_empty_parts(set
);
686 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
687 c
= isl_mat_alloc(set
->ctx
, 2, 2);
691 if (set
->p
[0]->n_eq
> 0) {
692 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
695 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
696 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
697 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
699 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
700 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
703 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
704 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
706 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
709 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
716 for (i
= 0; i
< set
->n
; ++i
) {
717 struct isl_basic_set
*bset
= set
->p
[i
];
721 for (j
= 0; j
< bset
->n_eq
; ++j
) {
725 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
726 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
727 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
728 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
729 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
730 isl_seq_neg(lower
, bset
->eq
[j
], 2);
733 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
734 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
735 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
736 isl_seq_neg(upper
, bset
->eq
[j
], 2);
737 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
738 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
741 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
742 if (isl_int_is_pos(bset
->ineq
[j
][1]))
744 if (isl_int_is_neg(bset
->ineq
[j
][1]))
746 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
747 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
748 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
749 if (isl_int_lt(a
, b
))
750 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
752 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
753 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
754 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
755 if (isl_int_gt(a
, b
))
756 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
767 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
768 hull
= isl_basic_set_set_rational(hull
);
772 k
= isl_basic_set_alloc_inequality(hull
);
773 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
776 k
= isl_basic_set_alloc_inequality(hull
);
777 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
779 hull
= isl_basic_set_finalize(hull
);
789 /* Project out final n dimensions using Fourier-Motzkin */
790 static struct isl_set
*set_project_out(struct isl_ctx
*ctx
,
791 struct isl_set
*set
, unsigned n
)
793 return isl_set_remove_dims(set
, isl_dim_set
, isl_set_n_dim(set
) - n
, n
);
796 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
798 struct isl_basic_set
*convex_hull
;
803 if (isl_set_is_empty(set
))
804 convex_hull
= isl_basic_set_empty(isl_dim_copy(set
->dim
));
806 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
811 /* Compute the convex hull of a pair of basic sets without any parameters or
812 * integer divisions using Fourier-Motzkin elimination.
813 * The convex hull is the set of all points that can be written as
814 * the sum of points from both basic sets (in homogeneous coordinates).
815 * We set up the constraints in a space with dimensions for each of
816 * the three sets and then project out the dimensions corresponding
817 * to the two original basic sets, retaining only those corresponding
818 * to the convex hull.
820 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
821 struct isl_basic_set
*bset2
)
824 struct isl_basic_set
*bset
[2];
825 struct isl_basic_set
*hull
= NULL
;
828 if (!bset1
|| !bset2
)
831 dim
= isl_basic_set_n_dim(bset1
);
832 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
833 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
834 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
837 for (i
= 0; i
< 2; ++i
) {
838 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
839 k
= isl_basic_set_alloc_equality(hull
);
842 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
843 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
844 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
847 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
848 k
= isl_basic_set_alloc_inequality(hull
);
851 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
852 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
853 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
854 bset
[i
]->ineq
[j
], 1+dim
);
856 k
= isl_basic_set_alloc_inequality(hull
);
859 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
860 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
862 for (j
= 0; j
< 1+dim
; ++j
) {
863 k
= isl_basic_set_alloc_equality(hull
);
866 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
867 isl_int_set_si(hull
->eq
[k
][j
], -1);
868 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
869 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
871 hull
= isl_basic_set_set_rational(hull
);
872 hull
= isl_basic_set_remove_dims(hull
, isl_dim_set
, dim
, 2*(1+dim
));
873 hull
= isl_basic_set_remove_redundancies(hull
);
874 isl_basic_set_free(bset1
);
875 isl_basic_set_free(bset2
);
878 isl_basic_set_free(bset1
);
879 isl_basic_set_free(bset2
);
880 isl_basic_set_free(hull
);
884 /* Is the set bounded for each value of the parameters?
886 int isl_basic_set_is_bounded(__isl_keep isl_basic_set
*bset
)
893 if (isl_basic_set_fast_is_empty(bset
))
896 tab
= isl_tab_from_recession_cone(bset
, 1);
897 bounded
= isl_tab_cone_is_bounded(tab
);
902 /* Is the image bounded for each value of the parameters and
903 * the domain variables?
905 int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map
*bmap
)
907 unsigned nparam
= isl_basic_map_dim(bmap
, isl_dim_param
);
908 unsigned n_in
= isl_basic_map_dim(bmap
, isl_dim_in
);
911 bmap
= isl_basic_map_copy(bmap
);
912 bmap
= isl_basic_map_cow(bmap
);
913 bmap
= isl_basic_map_move_dims(bmap
, isl_dim_param
, nparam
,
914 isl_dim_in
, 0, n_in
);
915 bounded
= isl_basic_set_is_bounded((isl_basic_set
*)bmap
);
916 isl_basic_map_free(bmap
);
921 /* Is the set bounded for each value of the parameters?
923 int isl_set_is_bounded(__isl_keep isl_set
*set
)
930 for (i
= 0; i
< set
->n
; ++i
) {
931 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
932 if (!bounded
|| bounded
< 0)
938 /* Compute the lineality space of the convex hull of bset1 and bset2.
940 * We first compute the intersection of the recession cone of bset1
941 * with the negative of the recession cone of bset2 and then compute
942 * the linear hull of the resulting cone.
944 static struct isl_basic_set
*induced_lineality_space(
945 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
948 struct isl_basic_set
*lin
= NULL
;
951 if (!bset1
|| !bset2
)
954 dim
= isl_basic_set_total_dim(bset1
);
955 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1
), 0,
956 bset1
->n_eq
+ bset2
->n_eq
,
957 bset1
->n_ineq
+ bset2
->n_ineq
);
958 lin
= isl_basic_set_set_rational(lin
);
961 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
962 k
= isl_basic_set_alloc_equality(lin
);
965 isl_int_set_si(lin
->eq
[k
][0], 0);
966 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
968 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
969 k
= isl_basic_set_alloc_inequality(lin
);
972 isl_int_set_si(lin
->ineq
[k
][0], 0);
973 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
975 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
976 k
= isl_basic_set_alloc_equality(lin
);
979 isl_int_set_si(lin
->eq
[k
][0], 0);
980 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
982 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
983 k
= isl_basic_set_alloc_inequality(lin
);
986 isl_int_set_si(lin
->ineq
[k
][0], 0);
987 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
990 isl_basic_set_free(bset1
);
991 isl_basic_set_free(bset2
);
992 return isl_basic_set_affine_hull(lin
);
994 isl_basic_set_free(lin
);
995 isl_basic_set_free(bset1
);
996 isl_basic_set_free(bset2
);
1000 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
1002 /* Given a set and a linear space "lin" of dimension n > 0,
1003 * project the linear space from the set, compute the convex hull
1004 * and then map the set back to the original space.
1010 * describe the linear space. We first compute the Hermite normal
1011 * form H = M U of M = H Q, to obtain
1015 * The last n rows of H will be zero, so the last n variables of x' = Q x
1016 * are the one we want to project out. We do this by transforming each
1017 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1018 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1019 * we transform the hull back to the original space as A' Q_1 x >= b',
1020 * with Q_1 all but the last n rows of Q.
1022 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1023 struct isl_basic_set
*lin
)
1025 unsigned total
= isl_basic_set_total_dim(lin
);
1027 struct isl_basic_set
*hull
;
1028 struct isl_mat
*M
, *U
, *Q
;
1032 lin_dim
= total
- lin
->n_eq
;
1033 M
= isl_mat_sub_alloc(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1034 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1038 isl_basic_set_free(lin
);
1040 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1042 U
= isl_mat_lin_to_aff(U
);
1043 Q
= isl_mat_lin_to_aff(Q
);
1045 set
= isl_set_preimage(set
, U
);
1046 set
= isl_set_remove_dims(set
, isl_dim_set
, total
- lin_dim
, lin_dim
);
1047 hull
= uset_convex_hull(set
);
1048 hull
= isl_basic_set_preimage(hull
, Q
);
1052 isl_basic_set_free(lin
);
1057 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1058 * set up an LP for solving
1060 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1062 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1063 * The next \alpha{ij} correspond to the equalities and come in pairs.
1064 * The final \alpha{ij} correspond to the inequalities.
1066 static struct isl_basic_set
*valid_direction_lp(
1067 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1069 struct isl_dim
*dim
;
1070 struct isl_basic_set
*lp
;
1075 if (!bset1
|| !bset2
)
1077 d
= 1 + isl_basic_set_total_dim(bset1
);
1079 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1080 dim
= isl_dim_set_alloc(bset1
->ctx
, 0, n
);
1081 lp
= isl_basic_set_alloc_dim(dim
, 0, d
, n
);
1084 for (i
= 0; i
< n
; ++i
) {
1085 k
= isl_basic_set_alloc_inequality(lp
);
1088 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1089 isl_int_set_si(lp
->ineq
[k
][0], -1);
1090 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1092 for (i
= 0; i
< d
; ++i
) {
1093 k
= isl_basic_set_alloc_equality(lp
);
1097 isl_int_set_si(lp
->eq
[k
][n
], 0); n
++;
1098 /* positivity constraint 1 >= 0 */
1099 isl_int_set_si(lp
->eq
[k
][n
], i
== 0); n
++;
1100 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1101 isl_int_set(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1102 isl_int_neg(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1104 for (j
= 0; j
< bset1
->n_ineq
; ++j
) {
1105 isl_int_set(lp
->eq
[k
][n
], bset1
->ineq
[j
][i
]); n
++;
1107 /* positivity constraint 1 >= 0 */
1108 isl_int_set_si(lp
->eq
[k
][n
], -(i
== 0)); n
++;
1109 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1110 isl_int_neg(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1111 isl_int_set(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1113 for (j
= 0; j
< bset2
->n_ineq
; ++j
) {
1114 isl_int_neg(lp
->eq
[k
][n
], bset2
->ineq
[j
][i
]); n
++;
1117 lp
= isl_basic_set_gauss(lp
, NULL
);
1118 isl_basic_set_free(bset1
);
1119 isl_basic_set_free(bset2
);
1122 isl_basic_set_free(bset1
);
1123 isl_basic_set_free(bset2
);
1127 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1128 * for all rays in the homogeneous space of the two cones that correspond
1129 * to the input polyhedra bset1 and bset2.
1131 * We compute s as a vector that satisfies
1133 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1135 * with h_{ij} the normals of the facets of polyhedron i
1136 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1137 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1138 * We first set up an LP with as variables the \alpha{ij}.
1139 * In this formulation, for each polyhedron i,
1140 * the first constraint is the positivity constraint, followed by pairs
1141 * of variables for the equalities, followed by variables for the inequalities.
1142 * We then simply pick a feasible solution and compute s using (*).
1144 * Note that we simply pick any valid direction and make no attempt
1145 * to pick a "good" or even the "best" valid direction.
1147 static struct isl_vec
*valid_direction(
1148 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1150 struct isl_basic_set
*lp
;
1151 struct isl_tab
*tab
;
1152 struct isl_vec
*sample
= NULL
;
1153 struct isl_vec
*dir
;
1158 if (!bset1
|| !bset2
)
1160 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1161 isl_basic_set_copy(bset2
));
1162 tab
= isl_tab_from_basic_set(lp
);
1163 sample
= isl_tab_get_sample_value(tab
);
1165 isl_basic_set_free(lp
);
1168 d
= isl_basic_set_total_dim(bset1
);
1169 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1172 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1174 /* positivity constraint 1 >= 0 */
1175 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
]); n
++;
1176 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1177 isl_int_sub(sample
->block
.data
[n
],
1178 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1179 isl_seq_combine(dir
->block
.data
,
1180 bset1
->ctx
->one
, dir
->block
.data
,
1181 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1185 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1186 isl_seq_combine(dir
->block
.data
,
1187 bset1
->ctx
->one
, dir
->block
.data
,
1188 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1189 isl_vec_free(sample
);
1190 isl_seq_normalize(bset1
->ctx
, dir
->el
, dir
->size
);
1191 isl_basic_set_free(bset1
);
1192 isl_basic_set_free(bset2
);
1195 isl_vec_free(sample
);
1196 isl_basic_set_free(bset1
);
1197 isl_basic_set_free(bset2
);
1201 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1202 * compute b_i' + A_i' x' >= 0, with
1204 * [ b_i A_i ] [ y' ] [ y' ]
1205 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1207 * In particular, add the "positivity constraint" and then perform
1210 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1217 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1218 k
= isl_basic_set_alloc_inequality(bset
);
1221 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1222 isl_int_set_si(bset
->ineq
[k
][0], 1);
1223 bset
= isl_basic_set_preimage(bset
, T
);
1227 isl_basic_set_free(bset
);
1231 /* Compute the convex hull of a pair of basic sets without any parameters or
1232 * integer divisions, where the convex hull is known to be pointed,
1233 * but the basic sets may be unbounded.
1235 * We turn this problem into the computation of a convex hull of a pair
1236 * _bounded_ polyhedra by "changing the direction of the homogeneous
1237 * dimension". This idea is due to Matthias Koeppe.
1239 * Consider the cones in homogeneous space that correspond to the
1240 * input polyhedra. The rays of these cones are also rays of the
1241 * polyhedra if the coordinate that corresponds to the homogeneous
1242 * dimension is zero. That is, if the inner product of the rays
1243 * with the homogeneous direction is zero.
1244 * The cones in the homogeneous space can also be considered to
1245 * correspond to other pairs of polyhedra by chosing a different
1246 * homogeneous direction. To ensure that both of these polyhedra
1247 * are bounded, we need to make sure that all rays of the cones
1248 * correspond to vertices and not to rays.
1249 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1250 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1251 * The vector s is computed in valid_direction.
1253 * Note that we need to consider _all_ rays of the cones and not just
1254 * the rays that correspond to rays in the polyhedra. If we were to
1255 * only consider those rays and turn them into vertices, then we
1256 * may inadvertently turn some vertices into rays.
1258 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1259 * We therefore transform the two polyhedra such that the selected
1260 * direction is mapped onto this standard direction and then proceed
1261 * with the normal computation.
1262 * Let S be a non-singular square matrix with s as its first row,
1263 * then we want to map the polyhedra to the space
1265 * [ y' ] [ y ] [ y ] [ y' ]
1266 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1268 * We take S to be the unimodular completion of s to limit the growth
1269 * of the coefficients in the following computations.
1271 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1272 * We first move to the homogeneous dimension
1274 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1275 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1277 * Then we change directoin
1279 * [ b_i A_i ] [ y' ] [ y' ]
1280 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1282 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1283 * resulting in b' + A' x' >= 0, which we then convert back
1286 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1288 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1290 static struct isl_basic_set
*convex_hull_pair_pointed(
1291 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1293 struct isl_ctx
*ctx
= NULL
;
1294 struct isl_vec
*dir
= NULL
;
1295 struct isl_mat
*T
= NULL
;
1296 struct isl_mat
*T2
= NULL
;
1297 struct isl_basic_set
*hull
;
1298 struct isl_set
*set
;
1300 if (!bset1
|| !bset2
)
1303 dir
= valid_direction(isl_basic_set_copy(bset1
),
1304 isl_basic_set_copy(bset2
));
1307 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1310 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1311 T
= isl_mat_unimodular_complete(T
, 1);
1312 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1314 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1315 bset2
= homogeneous_map(bset2
, T2
);
1316 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1317 set
= isl_set_add_basic_set(set
, bset1
);
1318 set
= isl_set_add_basic_set(set
, bset2
);
1319 hull
= uset_convex_hull(set
);
1320 hull
= isl_basic_set_preimage(hull
, T
);
1327 isl_basic_set_free(bset1
);
1328 isl_basic_set_free(bset2
);
1332 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
);
1333 static struct isl_basic_set
*modulo_affine_hull(
1334 struct isl_set
*set
, struct isl_basic_set
*affine_hull
);
1336 /* Compute the convex hull of a pair of basic sets without any parameters or
1337 * integer divisions.
1339 * This function is called from uset_convex_hull_unbounded, which
1340 * means that the complete convex hull is unbounded. Some pairs
1341 * of basic sets may still be bounded, though.
1342 * They may even lie inside a lower dimensional space, in which
1343 * case they need to be handled inside their affine hull since
1344 * the main algorithm assumes that the result is full-dimensional.
1346 * If the convex hull of the two basic sets would have a non-trivial
1347 * lineality space, we first project out this lineality space.
1349 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1350 struct isl_basic_set
*bset2
)
1352 isl_basic_set
*lin
, *aff
;
1353 int bounded1
, bounded2
;
1355 aff
= isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1
),
1356 isl_basic_set_copy(bset2
)));
1360 return modulo_affine_hull(isl_basic_set_union(bset1
, bset2
), aff
);
1361 isl_basic_set_free(aff
);
1363 bounded1
= isl_basic_set_is_bounded(bset1
);
1364 bounded2
= isl_basic_set_is_bounded(bset2
);
1366 if (bounded1
< 0 || bounded2
< 0)
1369 if (bounded1
&& bounded2
)
1370 uset_convex_hull_wrap(isl_basic_set_union(bset1
, bset2
));
1372 if (bounded1
|| bounded2
)
1373 return convex_hull_pair_pointed(bset1
, bset2
);
1375 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1376 isl_basic_set_copy(bset2
));
1379 if (isl_basic_set_is_universe(lin
)) {
1380 isl_basic_set_free(bset1
);
1381 isl_basic_set_free(bset2
);
1384 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1385 struct isl_set
*set
;
1386 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1387 set
= isl_set_add_basic_set(set
, bset1
);
1388 set
= isl_set_add_basic_set(set
, bset2
);
1389 return modulo_lineality(set
, lin
);
1391 isl_basic_set_free(lin
);
1393 return convex_hull_pair_pointed(bset1
, bset2
);
1395 isl_basic_set_free(bset1
);
1396 isl_basic_set_free(bset2
);
1400 /* Compute the lineality space of a basic set.
1401 * We currently do not allow the basic set to have any divs.
1402 * We basically just drop the constants and turn every inequality
1405 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1408 struct isl_basic_set
*lin
= NULL
;
1413 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1414 dim
= isl_basic_set_total_dim(bset
);
1416 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
), 0, dim
, 0);
1419 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1420 k
= isl_basic_set_alloc_equality(lin
);
1423 isl_int_set_si(lin
->eq
[k
][0], 0);
1424 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1426 lin
= isl_basic_set_gauss(lin
, NULL
);
1429 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1430 k
= isl_basic_set_alloc_equality(lin
);
1433 isl_int_set_si(lin
->eq
[k
][0], 0);
1434 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1435 lin
= isl_basic_set_gauss(lin
, NULL
);
1439 isl_basic_set_free(bset
);
1442 isl_basic_set_free(lin
);
1443 isl_basic_set_free(bset
);
1447 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1448 * "underlying" set "set".
1450 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1453 struct isl_set
*lin
= NULL
;
1458 struct isl_dim
*dim
= isl_set_get_dim(set
);
1460 return isl_basic_set_empty(dim
);
1463 lin
= isl_set_alloc_dim(isl_set_get_dim(set
), set
->n
, 0);
1464 for (i
= 0; i
< set
->n
; ++i
)
1465 lin
= isl_set_add_basic_set(lin
,
1466 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1468 return isl_set_affine_hull(lin
);
1471 /* Compute the convex hull of a set without any parameters or
1472 * integer divisions.
1473 * In each step, we combined two basic sets until only one
1474 * basic set is left.
1475 * The input basic sets are assumed not to have a non-trivial
1476 * lineality space. If any of the intermediate results has
1477 * a non-trivial lineality space, it is projected out.
1479 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1481 struct isl_basic_set
*convex_hull
= NULL
;
1483 convex_hull
= isl_set_copy_basic_set(set
);
1484 set
= isl_set_drop_basic_set(set
, convex_hull
);
1487 while (set
->n
> 0) {
1488 struct isl_basic_set
*t
;
1489 t
= isl_set_copy_basic_set(set
);
1492 set
= isl_set_drop_basic_set(set
, t
);
1495 convex_hull
= convex_hull_pair(convex_hull
, t
);
1498 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1501 if (isl_basic_set_is_universe(t
)) {
1502 isl_basic_set_free(convex_hull
);
1506 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1507 set
= isl_set_add_basic_set(set
, convex_hull
);
1508 return modulo_lineality(set
, t
);
1510 isl_basic_set_free(t
);
1516 isl_basic_set_free(convex_hull
);
1520 /* Compute an initial hull for wrapping containing a single initial
1522 * This function assumes that the given set is bounded.
1524 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1525 struct isl_set
*set
)
1527 struct isl_mat
*bounds
= NULL
;
1533 bounds
= initial_facet_constraint(set
);
1536 k
= isl_basic_set_alloc_inequality(hull
);
1539 dim
= isl_set_n_dim(set
);
1540 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1541 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1542 isl_mat_free(bounds
);
1546 isl_basic_set_free(hull
);
1547 isl_mat_free(bounds
);
1551 struct max_constraint
{
1557 static int max_constraint_equal(const void *entry
, const void *val
)
1559 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1560 isl_int
*b
= (isl_int
*)val
;
1562 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1565 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1566 isl_int
*con
, unsigned len
, int n
, int ineq
)
1568 struct isl_hash_table_entry
*entry
;
1569 struct max_constraint
*c
;
1572 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1573 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1579 isl_hash_table_remove(ctx
, table
, entry
);
1583 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1585 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1590 c
->c
= isl_mat_cow(c
->c
);
1591 isl_int_set(c
->c
->row
[0][0], con
[0]);
1595 /* Check whether the constraint hash table "table" constains the constraint
1598 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1599 isl_int
*con
, unsigned len
, int n
)
1601 struct isl_hash_table_entry
*entry
;
1602 struct max_constraint
*c
;
1605 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1606 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1613 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1616 /* Check for inequality constraints of a basic set without equalities
1617 * such that the same or more stringent copies of the constraint appear
1618 * in all of the basic sets. Such constraints are necessarily facet
1619 * constraints of the convex hull.
1621 * If the resulting basic set is by chance identical to one of
1622 * the basic sets in "set", then we know that this basic set contains
1623 * all other basic sets and is therefore the convex hull of set.
1624 * In this case we set *is_hull to 1.
1626 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1627 struct isl_set
*set
, int *is_hull
)
1630 int min_constraints
;
1632 struct max_constraint
*constraints
= NULL
;
1633 struct isl_hash_table
*table
= NULL
;
1638 for (i
= 0; i
< set
->n
; ++i
)
1639 if (set
->p
[i
]->n_eq
== 0)
1643 min_constraints
= set
->p
[i
]->n_ineq
;
1645 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1646 if (set
->p
[i
]->n_eq
!= 0)
1648 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1650 min_constraints
= set
->p
[i
]->n_ineq
;
1653 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1657 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1658 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1661 total
= isl_dim_total(set
->dim
);
1662 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1663 constraints
[i
].c
= isl_mat_sub_alloc(hull
->ctx
,
1664 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1665 if (!constraints
[i
].c
)
1667 constraints
[i
].ineq
= 1;
1669 for (i
= 0; i
< min_constraints
; ++i
) {
1670 struct isl_hash_table_entry
*entry
;
1672 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1673 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1674 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1677 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1678 entry
->data
= &constraints
[i
];
1682 for (s
= 0; s
< set
->n
; ++s
) {
1686 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1687 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1688 for (j
= 0; j
< 2; ++j
) {
1689 isl_seq_neg(eq
, eq
, 1 + total
);
1690 update_constraint(hull
->ctx
, table
,
1694 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1695 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1696 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1697 set
->p
[s
]->n_eq
== 0);
1702 for (i
= 0; i
< min_constraints
; ++i
) {
1703 if (constraints
[i
].count
< n
)
1705 if (!constraints
[i
].ineq
)
1707 j
= isl_basic_set_alloc_inequality(hull
);
1710 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1713 for (s
= 0; s
< set
->n
; ++s
) {
1714 if (set
->p
[s
]->n_eq
)
1716 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1718 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1719 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1720 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1723 if (i
== set
->p
[s
]->n_ineq
)
1727 isl_hash_table_clear(table
);
1728 for (i
= 0; i
< min_constraints
; ++i
)
1729 isl_mat_free(constraints
[i
].c
);
1734 isl_hash_table_clear(table
);
1737 for (i
= 0; i
< min_constraints
; ++i
)
1738 isl_mat_free(constraints
[i
].c
);
1743 /* Create a template for the convex hull of "set" and fill it up
1744 * obvious facet constraints, if any. If the result happens to
1745 * be the convex hull of "set" then *is_hull is set to 1.
1747 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1749 struct isl_basic_set
*hull
;
1754 for (i
= 0; i
< set
->n
; ++i
) {
1755 n_ineq
+= set
->p
[i
]->n_eq
;
1756 n_ineq
+= set
->p
[i
]->n_ineq
;
1758 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
1759 hull
= isl_basic_set_set_rational(hull
);
1762 return common_constraints(hull
, set
, is_hull
);
1765 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1767 struct isl_basic_set
*hull
;
1770 hull
= proto_hull(set
, &is_hull
);
1771 if (hull
&& !is_hull
) {
1772 if (hull
->n_ineq
== 0)
1773 hull
= initial_hull(hull
, set
);
1774 hull
= extend(hull
, set
);
1781 /* Compute the convex hull of a set without any parameters or
1782 * integer divisions. Depending on whether the set is bounded,
1783 * we pass control to the wrapping based convex hull or
1784 * the Fourier-Motzkin elimination based convex hull.
1785 * We also handle a few special cases before checking the boundedness.
1787 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1789 struct isl_basic_set
*convex_hull
= NULL
;
1790 struct isl_basic_set
*lin
;
1792 if (isl_set_n_dim(set
) == 0)
1793 return convex_hull_0d(set
);
1795 set
= isl_set_coalesce(set
);
1796 set
= isl_set_set_rational(set
);
1803 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1807 if (isl_set_n_dim(set
) == 1)
1808 return convex_hull_1d(set
);
1810 if (isl_set_is_bounded(set
))
1811 return uset_convex_hull_wrap(set
);
1813 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1816 if (isl_basic_set_is_universe(lin
)) {
1820 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1821 return modulo_lineality(set
, lin
);
1822 isl_basic_set_free(lin
);
1824 return uset_convex_hull_unbounded(set
);
1827 isl_basic_set_free(convex_hull
);
1831 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1832 * without parameters or divs and where the convex hull of set is
1833 * known to be full-dimensional.
1835 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1837 struct isl_basic_set
*convex_hull
= NULL
;
1842 if (isl_set_n_dim(set
) == 0) {
1843 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
1845 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1849 set
= isl_set_set_rational(set
);
1850 set
= isl_set_coalesce(set
);
1854 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1858 if (isl_set_n_dim(set
) == 1)
1859 return convex_hull_1d(set
);
1861 return uset_convex_hull_wrap(set
);
1867 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1868 * We first remove the equalities (transforming the set), compute the
1869 * convex hull of the transformed set and then add the equalities back
1870 * (after performing the inverse transformation.
1872 static struct isl_basic_set
*modulo_affine_hull(
1873 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1877 struct isl_basic_set
*dummy
;
1878 struct isl_basic_set
*convex_hull
;
1880 dummy
= isl_basic_set_remove_equalities(
1881 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1884 isl_basic_set_free(dummy
);
1885 set
= isl_set_preimage(set
, T
);
1886 convex_hull
= uset_convex_hull(set
);
1887 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1888 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1891 isl_basic_set_free(affine_hull
);
1896 /* Compute the convex hull of a map.
1898 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1899 * specifically, the wrapping of facets to obtain new facets.
1901 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1903 struct isl_basic_set
*bset
;
1904 struct isl_basic_map
*model
= NULL
;
1905 struct isl_basic_set
*affine_hull
= NULL
;
1906 struct isl_basic_map
*convex_hull
= NULL
;
1907 struct isl_set
*set
= NULL
;
1908 struct isl_ctx
*ctx
;
1915 convex_hull
= isl_basic_map_empty_like_map(map
);
1920 map
= isl_map_detect_equalities(map
);
1921 map
= isl_map_align_divs(map
);
1924 model
= isl_basic_map_copy(map
->p
[0]);
1925 set
= isl_map_underlying_set(map
);
1929 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1932 if (affine_hull
->n_eq
!= 0)
1933 bset
= modulo_affine_hull(set
, affine_hull
);
1935 isl_basic_set_free(affine_hull
);
1936 bset
= uset_convex_hull(set
);
1939 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1943 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1944 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1945 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1949 isl_basic_map_free(model
);
1953 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1955 return (struct isl_basic_set
*)
1956 isl_map_convex_hull((struct isl_map
*)set
);
1959 __isl_give isl_basic_map
*isl_map_polyhedral_hull(__isl_take isl_map
*map
)
1961 isl_basic_map
*hull
;
1963 hull
= isl_map_convex_hull(map
);
1964 return isl_basic_map_remove_divs(hull
);
1967 __isl_give isl_basic_set
*isl_set_polyhedral_hull(__isl_take isl_set
*set
)
1969 return (isl_basic_set
*)isl_map_polyhedral_hull((isl_map
*)set
);
1972 struct sh_data_entry
{
1973 struct isl_hash_table
*table
;
1974 struct isl_tab
*tab
;
1977 /* Holds the data needed during the simple hull computation.
1979 * n the number of basic sets in the original set
1980 * hull_table a hash table of already computed constraints
1981 * in the simple hull
1982 * p for each basic set,
1983 * table a hash table of the constraints
1984 * tab the tableau corresponding to the basic set
1987 struct isl_ctx
*ctx
;
1989 struct isl_hash_table
*hull_table
;
1990 struct sh_data_entry p
[1];
1993 static void sh_data_free(struct sh_data
*data
)
1999 isl_hash_table_free(data
->ctx
, data
->hull_table
);
2000 for (i
= 0; i
< data
->n
; ++i
) {
2001 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
2002 isl_tab_free(data
->p
[i
].tab
);
2007 struct ineq_cmp_data
{
2012 static int has_ineq(const void *entry
, const void *val
)
2014 isl_int
*row
= (isl_int
*)entry
;
2015 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2017 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2018 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2021 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2022 isl_int
*ineq
, unsigned len
)
2025 struct ineq_cmp_data v
;
2026 struct isl_hash_table_entry
*entry
;
2030 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
2031 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2038 /* Fill hash table "table" with the constraints of "bset".
2039 * Equalities are added as two inequalities.
2040 * The value in the hash table is a pointer to the (in)equality of "bset".
2042 static int hash_basic_set(struct isl_hash_table
*table
,
2043 struct isl_basic_set
*bset
)
2046 unsigned dim
= isl_basic_set_total_dim(bset
);
2048 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2049 for (j
= 0; j
< 2; ++j
) {
2050 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2051 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2055 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2056 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2062 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2064 struct sh_data
*data
;
2067 data
= isl_calloc(set
->ctx
, struct sh_data
,
2068 sizeof(struct sh_data
) +
2069 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2072 data
->ctx
= set
->ctx
;
2074 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2075 if (!data
->hull_table
)
2077 for (i
= 0; i
< set
->n
; ++i
) {
2078 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2079 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2080 if (!data
->p
[i
].table
)
2082 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2091 /* Check if inequality "ineq" is a bound for basic set "j" or if
2092 * it can be relaxed (by increasing the constant term) to become
2093 * a bound for that basic set. In the latter case, the constant
2095 * Return 1 if "ineq" is a bound
2096 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2097 * -1 if some error occurred
2099 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2102 enum isl_lp_result res
;
2105 if (!data
->p
[j
].tab
) {
2106 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2107 if (!data
->p
[j
].tab
)
2113 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2115 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2116 isl_int_sub(ineq
[0], ineq
[0], opt
);
2120 return (res
== isl_lp_ok
|| res
== isl_lp_empty
) ? 1 :
2121 res
== isl_lp_unbounded
? 0 : -1;
2124 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2125 * become a bound on the whole set. If so, add the (relaxed) inequality
2128 * We first check if "hull" already contains a translate of the inequality.
2129 * If so, we are done.
2130 * Then, we check if any of the previous basic sets contains a translate
2131 * of the inequality. If so, then we have already considered this
2132 * inequality and we are done.
2133 * Otherwise, for each basic set other than "i", we check if the inequality
2134 * is a bound on the basic set.
2135 * For previous basic sets, we know that they do not contain a translate
2136 * of the inequality, so we directly call is_bound.
2137 * For following basic sets, we first check if a translate of the
2138 * inequality appears in its description and if so directly update
2139 * the inequality accordingly.
2141 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2142 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2145 struct ineq_cmp_data v
;
2146 struct isl_hash_table_entry
*entry
;
2152 v
.len
= isl_basic_set_total_dim(hull
);
2154 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2156 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2161 for (j
= 0; j
< i
; ++j
) {
2162 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2163 c_hash
, has_ineq
, &v
, 0);
2170 k
= isl_basic_set_alloc_inequality(hull
);
2171 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2175 for (j
= 0; j
< i
; ++j
) {
2177 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2184 isl_basic_set_free_inequality(hull
, 1);
2188 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2191 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2192 c_hash
, has_ineq
, &v
, 0);
2194 ineq_j
= entry
->data
;
2195 neg
= isl_seq_is_neg(ineq_j
+ 1,
2196 hull
->ineq
[k
] + 1, v
.len
);
2198 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2199 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2200 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2202 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2205 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2212 isl_basic_set_free_inequality(hull
, 1);
2216 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2220 entry
->data
= hull
->ineq
[k
];
2224 isl_basic_set_free(hull
);
2228 /* Check if any inequality from basic set "i" can be relaxed to
2229 * become a bound on the whole set. If so, add the (relaxed) inequality
2232 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2233 struct sh_data
*data
, struct isl_set
*set
, int i
)
2236 unsigned dim
= isl_basic_set_total_dim(bset
);
2238 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2239 for (k
= 0; k
< 2; ++k
) {
2240 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2241 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2244 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2245 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2249 /* Compute a superset of the convex hull of set that is described
2250 * by only translates of the constraints in the constituents of set.
2252 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2254 struct sh_data
*data
= NULL
;
2255 struct isl_basic_set
*hull
= NULL
;
2263 for (i
= 0; i
< set
->n
; ++i
) {
2266 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2269 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
2273 data
= sh_data_alloc(set
, n_ineq
);
2277 for (i
= 0; i
< set
->n
; ++i
)
2278 hull
= add_bounds(hull
, data
, set
, i
);
2286 isl_basic_set_free(hull
);
2291 /* Compute a superset of the convex hull of map that is described
2292 * by only translates of the constraints in the constituents of map.
2294 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2296 struct isl_set
*set
= NULL
;
2297 struct isl_basic_map
*model
= NULL
;
2298 struct isl_basic_map
*hull
;
2299 struct isl_basic_map
*affine_hull
;
2300 struct isl_basic_set
*bset
= NULL
;
2305 hull
= isl_basic_map_empty_like_map(map
);
2310 hull
= isl_basic_map_copy(map
->p
[0]);
2315 map
= isl_map_detect_equalities(map
);
2316 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2317 map
= isl_map_align_divs(map
);
2318 model
= isl_basic_map_copy(map
->p
[0]);
2320 set
= isl_map_underlying_set(map
);
2322 bset
= uset_simple_hull(set
);
2324 hull
= isl_basic_map_overlying_set(bset
, model
);
2326 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2327 hull
= isl_basic_map_remove_redundancies(hull
);
2328 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2329 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2334 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2336 return (struct isl_basic_set
*)
2337 isl_map_simple_hull((struct isl_map
*)set
);
2340 /* Given a set "set", return parametric bounds on the dimension "dim".
2342 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2344 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2345 set
= isl_set_copy(set
);
2346 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2347 set
= isl_set_eliminate_dims(set
, 0, dim
);
2348 return isl_set_convex_hull(set
);
2351 /* Computes a "simple hull" and then check if each dimension in the
2352 * resulting hull is bounded by a symbolic constant. If not, the
2353 * hull is intersected with the corresponding bounds on the whole set.
2355 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2358 struct isl_basic_set
*hull
;
2359 unsigned nparam
, left
;
2360 int removed_divs
= 0;
2362 hull
= isl_set_simple_hull(isl_set_copy(set
));
2366 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2367 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2368 int lower
= 0, upper
= 0;
2369 struct isl_basic_set
*bounds
;
2371 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2372 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2373 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2375 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2382 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2383 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2385 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2387 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2390 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2401 if (!removed_divs
) {
2402 set
= isl_set_remove_divs(set
);
2407 bounds
= set_bounds(set
, i
);
2408 hull
= isl_basic_set_intersect(hull
, bounds
);