2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
23 #include <isl/constraint.h>
24 #include <isl/schedule.h>
25 #include <isl_schedule_constraints.h>
26 #include <isl/schedule_node.h>
27 #include <isl_mat_private.h>
28 #include <isl_vec_private.h>
30 #include <isl_union_set_private.h>
33 #include <isl_dim_map.h>
34 #include <isl/map_to_basic_set.h>
36 #include <isl_options_private.h>
37 #include <isl_tarjan.h>
38 #include <isl_morph.h>
40 #include <isl_val_private.h>
43 * The scheduling algorithm implemented in this file was inspired by
44 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
45 * Parallelization and Locality Optimization in the Polyhedral Model".
49 /* Internal information about a node that is used during the construction
51 * space represents the original space in which the domain lives;
52 * that is, the space is not affected by compression
53 * sched is a matrix representation of the schedule being constructed
54 * for this node; if compressed is set, then this schedule is
55 * defined over the compressed domain space
56 * sched_map is an isl_map representation of the same (partial) schedule
57 * sched_map may be NULL; if compressed is set, then this map
58 * is defined over the uncompressed domain space
59 * rank is the number of linearly independent rows in the linear part
61 * the rows of "vmap" represent a change of basis for the node
62 * variables; the first rank rows span the linear part of
63 * the schedule rows; the remaining rows are linearly independent
64 * the rows of "indep" represent linear combinations of the schedule
65 * coefficients that are non-zero when the schedule coefficients are
66 * linearly independent of previously computed schedule rows.
67 * start is the first variable in the LP problem in the sequences that
68 * represents the schedule coefficients of this node
69 * nvar is the dimension of the domain
70 * nparam is the number of parameters or 0 if we are not constructing
71 * a parametric schedule
73 * If compressed is set, then hull represents the constraints
74 * that were used to derive the compression, while compress and
75 * decompress map the original space to the compressed space and
78 * scc is the index of SCC (or WCC) this node belongs to
80 * "cluster" is only used inside extract_clusters and identifies
81 * the cluster of SCCs that the node belongs to.
83 * coincident contains a boolean for each of the rows of the schedule,
84 * indicating whether the corresponding scheduling dimension satisfies
85 * the coincidence constraints in the sense that the corresponding
86 * dependence distances are zero.
88 * If the schedule_treat_coalescing option is set, then
89 * "sizes" contains the sizes of the (compressed) instance set
90 * in each direction. If there is no fixed size in a given direction,
91 * then the corresponding size value is set to infinity.
92 * If the schedule_treat_coalescing option or the schedule_max_coefficient
93 * option is set, then "max" contains the maximal values for
94 * schedule coefficients of the (compressed) variables. If no bound
95 * needs to be imposed on a particular variable, then the corresponding
97 * If not NULL, then "bounds" contains a non-parametric set
98 * in the compressed space that is bounded by the size in each direction.
100 struct isl_sched_node
{
104 isl_multi_aff
*compress
;
105 isl_multi_aff
*decompress
;
120 isl_multi_val
*sizes
;
121 isl_basic_set
*bounds
;
125 static int node_has_tuples(const void *entry
, const void *val
)
127 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
128 isl_space
*space
= (isl_space
*) val
;
130 return isl_space_has_equal_tuples(node
->space
, space
);
133 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
135 return node
->scc
== scc
;
138 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
140 return node
->scc
<= scc
;
143 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
145 return node
->scc
>= scc
;
148 /* An edge in the dependence graph. An edge may be used to
149 * ensure validity of the generated schedule, to minimize the dependence
152 * map is the dependence relation, with i -> j in the map if j depends on i
153 * tagged_condition and tagged_validity contain the union of all tagged
154 * condition or conditional validity dependence relations that
155 * specialize the dependence relation "map"; that is,
156 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
157 * or "tagged_validity", then i -> j is an element of "map".
158 * If these fields are NULL, then they represent the empty relation.
159 * src is the source node
160 * dst is the sink node
162 * types is a bit vector containing the types of this edge.
163 * validity is set if the edge is used to ensure correctness
164 * coincidence is used to enforce zero dependence distances
165 * proximity is set if the edge is used to minimize dependence distances
166 * condition is set if the edge represents a condition
167 * for a conditional validity schedule constraint
168 * local can only be set for condition edges and indicates that
169 * the dependence distance over the edge should be zero
170 * conditional_validity is set if the edge is used to conditionally
173 * For validity edges, start and end mark the sequence of inequality
174 * constraints in the LP problem that encode the validity constraint
175 * corresponding to this edge.
177 * During clustering, an edge may be marked "no_merge" if it should
178 * not be used to merge clusters.
179 * The weight is also only used during clustering and it is
180 * an indication of how many schedule dimensions on either side
181 * of the schedule constraints can be aligned.
182 * If the weight is negative, then this means that this edge was postponed
183 * by has_bounded_distances or any_no_merge. The original weight can
184 * be retrieved by adding 1 + graph->max_weight, with "graph"
185 * the graph containing this edge.
187 struct isl_sched_edge
{
189 isl_union_map
*tagged_condition
;
190 isl_union_map
*tagged_validity
;
192 struct isl_sched_node
*src
;
193 struct isl_sched_node
*dst
;
204 /* Is "edge" marked as being of type "type"?
206 static int is_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
208 return ISL_FL_ISSET(edge
->types
, 1 << type
);
211 /* Mark "edge" as being of type "type".
213 static void set_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
215 ISL_FL_SET(edge
->types
, 1 << type
);
218 /* No longer mark "edge" as being of type "type"?
220 static void clear_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
222 ISL_FL_CLR(edge
->types
, 1 << type
);
225 /* Is "edge" marked as a validity edge?
227 static int is_validity(struct isl_sched_edge
*edge
)
229 return is_type(edge
, isl_edge_validity
);
232 /* Mark "edge" as a validity edge.
234 static void set_validity(struct isl_sched_edge
*edge
)
236 set_type(edge
, isl_edge_validity
);
239 /* Is "edge" marked as a proximity edge?
241 static int is_proximity(struct isl_sched_edge
*edge
)
243 return is_type(edge
, isl_edge_proximity
);
246 /* Is "edge" marked as a local edge?
248 static int is_local(struct isl_sched_edge
*edge
)
250 return is_type(edge
, isl_edge_local
);
253 /* Mark "edge" as a local edge.
255 static void set_local(struct isl_sched_edge
*edge
)
257 set_type(edge
, isl_edge_local
);
260 /* No longer mark "edge" as a local edge.
262 static void clear_local(struct isl_sched_edge
*edge
)
264 clear_type(edge
, isl_edge_local
);
267 /* Is "edge" marked as a coincidence edge?
269 static int is_coincidence(struct isl_sched_edge
*edge
)
271 return is_type(edge
, isl_edge_coincidence
);
274 /* Is "edge" marked as a condition edge?
276 static int is_condition(struct isl_sched_edge
*edge
)
278 return is_type(edge
, isl_edge_condition
);
281 /* Is "edge" marked as a conditional validity edge?
283 static int is_conditional_validity(struct isl_sched_edge
*edge
)
285 return is_type(edge
, isl_edge_conditional_validity
);
288 /* Is "edge" of a type that can appear multiple times between
289 * the same pair of nodes?
291 * Condition edges and conditional validity edges may have tagged
292 * dependence relations, in which case an edge is added for each
295 static int is_multi_edge_type(struct isl_sched_edge
*edge
)
297 return is_condition(edge
) || is_conditional_validity(edge
);
300 /* Internal information about the dependence graph used during
301 * the construction of the schedule.
303 * intra_hmap is a cache, mapping dependence relations to their dual,
304 * for dependences from a node to itself, possibly without
305 * coefficients for the parameters
306 * intra_hmap_param is a cache, mapping dependence relations to their dual,
307 * for dependences from a node to itself, including coefficients
309 * inter_hmap is a cache, mapping dependence relations to their dual,
310 * for dependences between distinct nodes
311 * if compression is involved then the key for these maps
312 * is the original, uncompressed dependence relation, while
313 * the value is the dual of the compressed dependence relation.
315 * n is the number of nodes
316 * node is the list of nodes
317 * maxvar is the maximal number of variables over all nodes
318 * max_row is the allocated number of rows in the schedule
319 * n_row is the current (maximal) number of linearly independent
320 * rows in the node schedules
321 * n_total_row is the current number of rows in the node schedules
322 * band_start is the starting row in the node schedules of the current band
323 * root is set to the the original dependence graph from which this graph
324 * is derived through splitting. If this graph is not the result of
325 * splitting, then the root field points to the graph itself.
327 * sorted contains a list of node indices sorted according to the
328 * SCC to which a node belongs
330 * n_edge is the number of edges
331 * edge is the list of edges
332 * max_edge contains the maximal number of edges of each type;
333 * in particular, it contains the number of edges in the inital graph.
334 * edge_table contains pointers into the edge array, hashed on the source
335 * and sink spaces; there is one such table for each type;
336 * a given edge may be referenced from more than one table
337 * if the corresponding relation appears in more than one of the
338 * sets of dependences; however, for each type there is only
339 * a single edge between a given pair of source and sink space
340 * in the entire graph
342 * node_table contains pointers into the node array, hashed on the space tuples
344 * region contains a list of variable sequences that should be non-trivial
346 * lp contains the (I)LP problem used to obtain new schedule rows
348 * src_scc and dst_scc are the source and sink SCCs of an edge with
349 * conflicting constraints
351 * scc represents the number of components
352 * weak is set if the components are weakly connected
354 * max_weight is used during clustering and represents the maximal
355 * weight of the relevant proximity edges.
357 struct isl_sched_graph
{
358 isl_map_to_basic_set
*intra_hmap
;
359 isl_map_to_basic_set
*intra_hmap_param
;
360 isl_map_to_basic_set
*inter_hmap
;
362 struct isl_sched_node
*node
;
373 struct isl_sched_graph
*root
;
375 struct isl_sched_edge
*edge
;
377 int max_edge
[isl_edge_last
+ 1];
378 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
380 struct isl_hash_table
*node_table
;
381 struct isl_trivial_region
*region
;
394 /* Initialize node_table based on the list of nodes.
396 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
400 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
401 if (!graph
->node_table
)
404 for (i
= 0; i
< graph
->n
; ++i
) {
405 struct isl_hash_table_entry
*entry
;
408 hash
= isl_space_get_tuple_hash(graph
->node
[i
].space
);
409 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
411 graph
->node
[i
].space
, 1);
414 entry
->data
= &graph
->node
[i
];
420 /* Return a pointer to the node that lives within the given space,
421 * or NULL if there is no such node.
423 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
424 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
426 struct isl_hash_table_entry
*entry
;
429 hash
= isl_space_get_tuple_hash(space
);
430 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
431 &node_has_tuples
, space
, 0);
433 return entry
? entry
->data
: NULL
;
436 /* Is "node" a node in "graph"?
438 static int is_node(struct isl_sched_graph
*graph
,
439 struct isl_sched_node
*node
)
441 return node
&& node
>= &graph
->node
[0] && node
< &graph
->node
[graph
->n
];
444 static int edge_has_src_and_dst(const void *entry
, const void *val
)
446 const struct isl_sched_edge
*edge
= entry
;
447 const struct isl_sched_edge
*temp
= val
;
449 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
452 /* Add the given edge to graph->edge_table[type].
454 static isl_stat
graph_edge_table_add(isl_ctx
*ctx
,
455 struct isl_sched_graph
*graph
, enum isl_edge_type type
,
456 struct isl_sched_edge
*edge
)
458 struct isl_hash_table_entry
*entry
;
461 hash
= isl_hash_init();
462 hash
= isl_hash_builtin(hash
, edge
->src
);
463 hash
= isl_hash_builtin(hash
, edge
->dst
);
464 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
465 &edge_has_src_and_dst
, edge
, 1);
467 return isl_stat_error
;
473 /* Add "edge" to all relevant edge tables.
474 * That is, for every type of the edge, add it to the corresponding table.
476 static isl_stat
graph_edge_tables_add(isl_ctx
*ctx
,
477 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
)
479 enum isl_edge_type t
;
481 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
482 if (!is_type(edge
, t
))
484 if (graph_edge_table_add(ctx
, graph
, t
, edge
) < 0)
485 return isl_stat_error
;
491 /* Allocate the edge_tables based on the maximal number of edges of
494 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
498 for (i
= 0; i
<= isl_edge_last
; ++i
) {
499 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
501 if (!graph
->edge_table
[i
])
508 /* If graph->edge_table[type] contains an edge from the given source
509 * to the given destination, then return the hash table entry of this edge.
510 * Otherwise, return NULL.
512 static struct isl_hash_table_entry
*graph_find_edge_entry(
513 struct isl_sched_graph
*graph
,
514 enum isl_edge_type type
,
515 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
517 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
519 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
521 hash
= isl_hash_init();
522 hash
= isl_hash_builtin(hash
, temp
.src
);
523 hash
= isl_hash_builtin(hash
, temp
.dst
);
524 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
525 &edge_has_src_and_dst
, &temp
, 0);
529 /* If graph->edge_table[type] contains an edge from the given source
530 * to the given destination, then return this edge.
531 * Otherwise, return NULL.
533 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
534 enum isl_edge_type type
,
535 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
537 struct isl_hash_table_entry
*entry
;
539 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
546 /* Check whether the dependence graph has an edge of the given type
547 * between the given two nodes.
549 static isl_bool
graph_has_edge(struct isl_sched_graph
*graph
,
550 enum isl_edge_type type
,
551 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
553 struct isl_sched_edge
*edge
;
556 edge
= graph_find_edge(graph
, type
, src
, dst
);
560 empty
= isl_map_plain_is_empty(edge
->map
);
562 return isl_bool_error
;
567 /* Look for any edge with the same src, dst and map fields as "model".
569 * Return the matching edge if one can be found.
570 * Return "model" if no matching edge is found.
571 * Return NULL on error.
573 static struct isl_sched_edge
*graph_find_matching_edge(
574 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
576 enum isl_edge_type i
;
577 struct isl_sched_edge
*edge
;
579 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
582 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
585 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
595 /* Remove the given edge from all the edge_tables that refer to it.
597 static void graph_remove_edge(struct isl_sched_graph
*graph
,
598 struct isl_sched_edge
*edge
)
600 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
601 enum isl_edge_type i
;
603 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
604 struct isl_hash_table_entry
*entry
;
606 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
609 if (entry
->data
!= edge
)
611 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
615 /* Check whether the dependence graph has any edge
616 * between the given two nodes.
618 static isl_bool
graph_has_any_edge(struct isl_sched_graph
*graph
,
619 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
621 enum isl_edge_type i
;
624 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
625 r
= graph_has_edge(graph
, i
, src
, dst
);
633 /* Check whether the dependence graph has a validity edge
634 * between the given two nodes.
636 * Conditional validity edges are essentially validity edges that
637 * can be ignored if the corresponding condition edges are iteration private.
638 * Here, we are only checking for the presence of validity
639 * edges, so we need to consider the conditional validity edges too.
640 * In particular, this function is used during the detection
641 * of strongly connected components and we cannot ignore
642 * conditional validity edges during this detection.
644 static isl_bool
graph_has_validity_edge(struct isl_sched_graph
*graph
,
645 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
649 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
653 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
656 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
657 int n_node
, int n_edge
)
662 graph
->n_edge
= n_edge
;
663 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
664 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
665 graph
->region
= isl_alloc_array(ctx
,
666 struct isl_trivial_region
, graph
->n
);
667 graph
->edge
= isl_calloc_array(ctx
,
668 struct isl_sched_edge
, graph
->n_edge
);
670 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
671 graph
->intra_hmap_param
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
672 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
674 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
678 for(i
= 0; i
< graph
->n
; ++i
)
679 graph
->sorted
[i
] = i
;
684 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
688 isl_map_to_basic_set_free(graph
->intra_hmap
);
689 isl_map_to_basic_set_free(graph
->intra_hmap_param
);
690 isl_map_to_basic_set_free(graph
->inter_hmap
);
693 for (i
= 0; i
< graph
->n
; ++i
) {
694 isl_space_free(graph
->node
[i
].space
);
695 isl_set_free(graph
->node
[i
].hull
);
696 isl_multi_aff_free(graph
->node
[i
].compress
);
697 isl_multi_aff_free(graph
->node
[i
].decompress
);
698 isl_mat_free(graph
->node
[i
].sched
);
699 isl_map_free(graph
->node
[i
].sched_map
);
700 isl_mat_free(graph
->node
[i
].indep
);
701 isl_mat_free(graph
->node
[i
].vmap
);
702 if (graph
->root
== graph
)
703 free(graph
->node
[i
].coincident
);
704 isl_multi_val_free(graph
->node
[i
].sizes
);
705 isl_basic_set_free(graph
->node
[i
].bounds
);
706 isl_vec_free(graph
->node
[i
].max
);
711 for (i
= 0; i
< graph
->n_edge
; ++i
) {
712 isl_map_free(graph
->edge
[i
].map
);
713 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
714 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
718 for (i
= 0; i
<= isl_edge_last
; ++i
)
719 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
720 isl_hash_table_free(ctx
, graph
->node_table
);
721 isl_basic_set_free(graph
->lp
);
724 /* For each "set" on which this function is called, increment
725 * graph->n by one and update graph->maxvar.
727 static isl_stat
init_n_maxvar(__isl_take isl_set
*set
, void *user
)
729 struct isl_sched_graph
*graph
= user
;
730 int nvar
= isl_set_dim(set
, isl_dim_set
);
733 if (nvar
> graph
->maxvar
)
734 graph
->maxvar
= nvar
;
741 /* Compute the number of rows that should be allocated for the schedule.
742 * In particular, we need one row for each variable or one row
743 * for each basic map in the dependences.
744 * Note that it is practically impossible to exhaust both
745 * the number of dependences and the number of variables.
747 static isl_stat
compute_max_row(struct isl_sched_graph
*graph
,
748 __isl_keep isl_schedule_constraints
*sc
)
752 isl_union_set
*domain
;
756 domain
= isl_schedule_constraints_get_domain(sc
);
757 r
= isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
);
758 isl_union_set_free(domain
);
760 return isl_stat_error
;
761 n_edge
= isl_schedule_constraints_n_basic_map(sc
);
763 return isl_stat_error
;
764 graph
->max_row
= n_edge
+ graph
->maxvar
;
769 /* Does "bset" have any defining equalities for its set variables?
771 static isl_bool
has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
776 return isl_bool_error
;
778 n
= isl_basic_set_dim(bset
, isl_dim_set
);
779 for (i
= 0; i
< n
; ++i
) {
782 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
788 return isl_bool_false
;
791 /* Set the entries of node->max to the value of the schedule_max_coefficient
794 static isl_stat
set_max_coefficient(isl_ctx
*ctx
, struct isl_sched_node
*node
)
798 max
= isl_options_get_schedule_max_coefficient(ctx
);
802 node
->max
= isl_vec_alloc(ctx
, node
->nvar
);
803 node
->max
= isl_vec_set_si(node
->max
, max
);
805 return isl_stat_error
;
810 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
811 * option (if set) and half of the minimum of the sizes in the other
812 * dimensions. Round up when computing the half such that
813 * if the minimum of the sizes is one, half of the size is taken to be one
815 * If the global minimum is unbounded (i.e., if both
816 * the schedule_max_coefficient is not set and the sizes in the other
817 * dimensions are unbounded), then store a negative value.
818 * If the schedule coefficient is close to the size of the instance set
819 * in another dimension, then the schedule may represent a loop
820 * coalescing transformation (especially if the coefficient
821 * in that other dimension is one). Forcing the coefficient to be
822 * smaller than or equal to half the minimal size should avoid this
825 static isl_stat
compute_max_coefficient(isl_ctx
*ctx
,
826 struct isl_sched_node
*node
)
832 max
= isl_options_get_schedule_max_coefficient(ctx
);
833 v
= isl_vec_alloc(ctx
, node
->nvar
);
835 return isl_stat_error
;
837 for (i
= 0; i
< node
->nvar
; ++i
) {
838 isl_int_set_si(v
->el
[i
], max
);
839 isl_int_mul_si(v
->el
[i
], v
->el
[i
], 2);
842 for (i
= 0; i
< node
->nvar
; ++i
) {
845 size
= isl_multi_val_get_val(node
->sizes
, i
);
848 if (!isl_val_is_int(size
)) {
852 for (j
= 0; j
< node
->nvar
; ++j
) {
855 if (isl_int_is_neg(v
->el
[j
]) ||
856 isl_int_gt(v
->el
[j
], size
->n
))
857 isl_int_set(v
->el
[j
], size
->n
);
862 for (i
= 0; i
< node
->nvar
; ++i
)
863 isl_int_cdiv_q_ui(v
->el
[i
], v
->el
[i
], 2);
869 return isl_stat_error
;
872 /* Compute and return the size of "set" in dimension "dim".
873 * The size is taken to be the difference in values for that variable
874 * for fixed values of the other variables.
875 * This assumes that "set" is convex.
876 * In particular, the variable is first isolated from the other variables
877 * in the range of a map
879 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
881 * and then duplicated
883 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
885 * The shared variables are then projected out and the maximal value
886 * of i_dim' - i_dim is computed.
888 static __isl_give isl_val
*compute_size(__isl_take isl_set
*set
, int dim
)
895 map
= isl_set_project_onto_map(set
, isl_dim_set
, dim
, 1);
896 map
= isl_map_project_out(map
, isl_dim_in
, dim
, 1);
897 map
= isl_map_range_product(map
, isl_map_copy(map
));
898 map
= isl_set_unwrap(isl_map_range(map
));
899 set
= isl_map_deltas(map
);
900 ls
= isl_local_space_from_space(isl_set_get_space(set
));
901 obj
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
902 v
= isl_set_max_val(set
, obj
);
909 /* Compute the size of the instance set "set" of "node", after compression,
910 * as well as bounds on the corresponding coefficients, if needed.
912 * The sizes are needed when the schedule_treat_coalescing option is set.
913 * The bounds are needed when the schedule_treat_coalescing option or
914 * the schedule_max_coefficient option is set.
916 * If the schedule_treat_coalescing option is not set, then at most
917 * the bounds need to be set and this is done in set_max_coefficient.
918 * Otherwise, compress the domain if needed, compute the size
919 * in each direction and store the results in node->size.
920 * If the domain is not convex, then the sizes are computed
921 * on a convex superset in order to avoid picking up sizes
922 * that are valid for the individual disjuncts, but not for
923 * the domain as a whole.
924 * Finally, set the bounds on the coefficients based on the sizes
925 * and the schedule_max_coefficient option in compute_max_coefficient.
927 static isl_stat
compute_sizes_and_max(isl_ctx
*ctx
, struct isl_sched_node
*node
,
928 __isl_take isl_set
*set
)
933 if (!isl_options_get_schedule_treat_coalescing(ctx
)) {
935 return set_max_coefficient(ctx
, node
);
938 if (node
->compressed
)
939 set
= isl_set_preimage_multi_aff(set
,
940 isl_multi_aff_copy(node
->decompress
));
941 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
942 mv
= isl_multi_val_zero(isl_set_get_space(set
));
943 n
= isl_set_dim(set
, isl_dim_set
);
944 for (j
= 0; j
< n
; ++j
) {
947 v
= compute_size(isl_set_copy(set
), j
);
948 mv
= isl_multi_val_set_val(mv
, j
, v
);
953 return isl_stat_error
;
954 return compute_max_coefficient(ctx
, node
);
957 /* Add a new node to the graph representing the given instance set.
958 * "nvar" is the (possibly compressed) number of variables and
959 * may be smaller than then number of set variables in "set"
960 * if "compressed" is set.
961 * If "compressed" is set, then "hull" represents the constraints
962 * that were used to derive the compression, while "compress" and
963 * "decompress" map the original space to the compressed space and
965 * If "compressed" is not set, then "hull", "compress" and "decompress"
968 * Compute the size of the instance set and bounds on the coefficients,
971 static isl_stat
add_node(struct isl_sched_graph
*graph
,
972 __isl_take isl_set
*set
, int nvar
, int compressed
,
973 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
974 __isl_take isl_multi_aff
*decompress
)
981 struct isl_sched_node
*node
;
984 return isl_stat_error
;
986 ctx
= isl_set_get_ctx(set
);
987 nparam
= isl_set_dim(set
, isl_dim_param
);
988 if (!ctx
->opt
->schedule_parametric
)
990 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
991 node
= &graph
->node
[graph
->n
];
993 space
= isl_set_get_space(set
);
996 node
->nparam
= nparam
;
998 node
->sched_map
= NULL
;
999 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
1000 node
->coincident
= coincident
;
1001 node
->compressed
= compressed
;
1003 node
->compress
= compress
;
1004 node
->decompress
= decompress
;
1005 if (compute_sizes_and_max(ctx
, node
, set
) < 0)
1006 return isl_stat_error
;
1008 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
1009 return isl_stat_error
;
1010 if (compressed
&& (!hull
|| !compress
|| !decompress
))
1011 return isl_stat_error
;
1016 /* Construct an identifier for node "node", which will represent "set".
1017 * The name of the identifier is either "compressed" or
1018 * "compressed_<name>", with <name> the name of the space of "set".
1019 * The user pointer of the identifier points to "node".
1021 static __isl_give isl_id
*construct_compressed_id(__isl_keep isl_set
*set
,
1022 struct isl_sched_node
*node
)
1031 has_name
= isl_set_has_tuple_name(set
);
1035 ctx
= isl_set_get_ctx(set
);
1037 return isl_id_alloc(ctx
, "compressed", node
);
1039 p
= isl_printer_to_str(ctx
);
1040 name
= isl_set_get_tuple_name(set
);
1041 p
= isl_printer_print_str(p
, "compressed_");
1042 p
= isl_printer_print_str(p
, name
);
1043 id_name
= isl_printer_get_str(p
);
1044 isl_printer_free(p
);
1046 id
= isl_id_alloc(ctx
, id_name
, node
);
1052 /* Add a new node to the graph representing the given set.
1054 * If any of the set variables is defined by an equality, then
1055 * we perform variable compression such that we can perform
1056 * the scheduling on the compressed domain.
1057 * In this case, an identifier is used that references the new node
1058 * such that each compressed space is unique and
1059 * such that the node can be recovered from the compressed space.
1061 static isl_stat
extract_node(__isl_take isl_set
*set
, void *user
)
1064 isl_bool has_equality
;
1066 isl_basic_set
*hull
;
1069 isl_multi_aff
*compress
, *decompress
;
1070 struct isl_sched_graph
*graph
= user
;
1072 hull
= isl_set_affine_hull(isl_set_copy(set
));
1073 hull
= isl_basic_set_remove_divs(hull
);
1074 nvar
= isl_set_dim(set
, isl_dim_set
);
1075 has_equality
= has_any_defining_equality(hull
);
1077 if (has_equality
< 0)
1079 if (!has_equality
) {
1080 isl_basic_set_free(hull
);
1081 return add_node(graph
, set
, nvar
, 0, NULL
, NULL
, NULL
);
1084 id
= construct_compressed_id(set
, &graph
->node
[graph
->n
]);
1085 morph
= isl_basic_set_variable_compression_with_id(hull
,
1088 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
1089 compress
= isl_morph_get_var_multi_aff(morph
);
1090 morph
= isl_morph_inverse(morph
);
1091 decompress
= isl_morph_get_var_multi_aff(morph
);
1092 isl_morph_free(morph
);
1094 hull_set
= isl_set_from_basic_set(hull
);
1095 return add_node(graph
, set
, nvar
, 1, hull_set
, compress
, decompress
);
1097 isl_basic_set_free(hull
);
1099 return isl_stat_error
;
1102 struct isl_extract_edge_data
{
1103 enum isl_edge_type type
;
1104 struct isl_sched_graph
*graph
;
1107 /* Merge edge2 into edge1, freeing the contents of edge2.
1108 * Return 0 on success and -1 on failure.
1110 * edge1 and edge2 are assumed to have the same value for the map field.
1112 static int merge_edge(struct isl_sched_edge
*edge1
,
1113 struct isl_sched_edge
*edge2
)
1115 edge1
->types
|= edge2
->types
;
1116 isl_map_free(edge2
->map
);
1118 if (is_condition(edge2
)) {
1119 if (!edge1
->tagged_condition
)
1120 edge1
->tagged_condition
= edge2
->tagged_condition
;
1122 edge1
->tagged_condition
=
1123 isl_union_map_union(edge1
->tagged_condition
,
1124 edge2
->tagged_condition
);
1127 if (is_conditional_validity(edge2
)) {
1128 if (!edge1
->tagged_validity
)
1129 edge1
->tagged_validity
= edge2
->tagged_validity
;
1131 edge1
->tagged_validity
=
1132 isl_union_map_union(edge1
->tagged_validity
,
1133 edge2
->tagged_validity
);
1136 if (is_condition(edge2
) && !edge1
->tagged_condition
)
1138 if (is_conditional_validity(edge2
) && !edge1
->tagged_validity
)
1144 /* Insert dummy tags in domain and range of "map".
1146 * In particular, if "map" is of the form
1152 * [A -> dummy_tag] -> [B -> dummy_tag]
1154 * where the dummy_tags are identical and equal to any dummy tags
1155 * introduced by any other call to this function.
1157 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1163 isl_set
*domain
, *range
;
1165 ctx
= isl_map_get_ctx(map
);
1167 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1168 space
= isl_space_params(isl_map_get_space(map
));
1169 space
= isl_space_set_from_params(space
);
1170 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1171 space
= isl_space_map_from_set(space
);
1173 domain
= isl_map_wrap(map
);
1174 range
= isl_map_wrap(isl_map_universe(space
));
1175 map
= isl_map_from_domain_and_range(domain
, range
);
1176 map
= isl_map_zip(map
);
1181 /* Given that at least one of "src" or "dst" is compressed, return
1182 * a map between the spaces of these nodes restricted to the affine
1183 * hull that was used in the compression.
1185 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1186 struct isl_sched_node
*dst
)
1190 if (src
->compressed
)
1191 dom
= isl_set_copy(src
->hull
);
1193 dom
= isl_set_universe(isl_space_copy(src
->space
));
1194 if (dst
->compressed
)
1195 ran
= isl_set_copy(dst
->hull
);
1197 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1199 return isl_map_from_domain_and_range(dom
, ran
);
1202 /* Intersect the domains of the nested relations in domain and range
1203 * of "tagged" with "map".
1205 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1206 __isl_keep isl_map
*map
)
1210 tagged
= isl_map_zip(tagged
);
1211 set
= isl_map_wrap(isl_map_copy(map
));
1212 tagged
= isl_map_intersect_domain(tagged
, set
);
1213 tagged
= isl_map_zip(tagged
);
1217 /* Return a pointer to the node that lives in the domain space of "map"
1218 * or NULL if there is no such node.
1220 static struct isl_sched_node
*find_domain_node(isl_ctx
*ctx
,
1221 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1223 struct isl_sched_node
*node
;
1226 space
= isl_space_domain(isl_map_get_space(map
));
1227 node
= graph_find_node(ctx
, graph
, space
);
1228 isl_space_free(space
);
1233 /* Return a pointer to the node that lives in the range space of "map"
1234 * or NULL if there is no such node.
1236 static struct isl_sched_node
*find_range_node(isl_ctx
*ctx
,
1237 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1239 struct isl_sched_node
*node
;
1242 space
= isl_space_range(isl_map_get_space(map
));
1243 node
= graph_find_node(ctx
, graph
, space
);
1244 isl_space_free(space
);
1249 /* Refrain from adding a new edge based on "map".
1250 * Instead, just free the map.
1251 * "tagged" is either a copy of "map" with additional tags or NULL.
1253 static isl_stat
skip_edge(__isl_take isl_map
*map
, __isl_take isl_map
*tagged
)
1256 isl_map_free(tagged
);
1261 /* Add a new edge to the graph based on the given map
1262 * and add it to data->graph->edge_table[data->type].
1263 * If a dependence relation of a given type happens to be identical
1264 * to one of the dependence relations of a type that was added before,
1265 * then we don't create a new edge, but instead mark the original edge
1266 * as also representing a dependence of the current type.
1268 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1269 * may be specified as "tagged" dependence relations. That is, "map"
1270 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1271 * the dependence on iterations and a and b are tags.
1272 * edge->map is set to the relation containing the elements i -> j,
1273 * while edge->tagged_condition and edge->tagged_validity contain
1274 * the union of all the "map" relations
1275 * for which extract_edge is called that result in the same edge->map.
1277 * If the source or the destination node is compressed, then
1278 * intersect both "map" and "tagged" with the constraints that
1279 * were used to construct the compression.
1280 * This ensures that there are no schedule constraints defined
1281 * outside of these domains, while the scheduler no longer has
1282 * any control over those outside parts.
1284 static isl_stat
extract_edge(__isl_take isl_map
*map
, void *user
)
1287 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1288 struct isl_extract_edge_data
*data
= user
;
1289 struct isl_sched_graph
*graph
= data
->graph
;
1290 struct isl_sched_node
*src
, *dst
;
1291 struct isl_sched_edge
*edge
;
1292 isl_map
*tagged
= NULL
;
1294 if (data
->type
== isl_edge_condition
||
1295 data
->type
== isl_edge_conditional_validity
) {
1296 if (isl_map_can_zip(map
)) {
1297 tagged
= isl_map_copy(map
);
1298 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1300 tagged
= insert_dummy_tags(isl_map_copy(map
));
1304 src
= find_domain_node(ctx
, graph
, map
);
1305 dst
= find_range_node(ctx
, graph
, map
);
1308 return skip_edge(map
, tagged
);
1310 if (src
->compressed
|| dst
->compressed
) {
1312 hull
= extract_hull(src
, dst
);
1314 tagged
= map_intersect_domains(tagged
, hull
);
1315 map
= isl_map_intersect(map
, hull
);
1318 empty
= isl_map_plain_is_empty(map
);
1322 return skip_edge(map
, tagged
);
1324 graph
->edge
[graph
->n_edge
].src
= src
;
1325 graph
->edge
[graph
->n_edge
].dst
= dst
;
1326 graph
->edge
[graph
->n_edge
].map
= map
;
1327 graph
->edge
[graph
->n_edge
].types
= 0;
1328 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1329 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1330 set_type(&graph
->edge
[graph
->n_edge
], data
->type
);
1331 if (data
->type
== isl_edge_condition
)
1332 graph
->edge
[graph
->n_edge
].tagged_condition
=
1333 isl_union_map_from_map(tagged
);
1334 if (data
->type
== isl_edge_conditional_validity
)
1335 graph
->edge
[graph
->n_edge
].tagged_validity
=
1336 isl_union_map_from_map(tagged
);
1338 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1341 return isl_stat_error
;
1343 if (edge
== &graph
->edge
[graph
->n_edge
])
1344 return graph_edge_table_add(ctx
, graph
, data
->type
,
1345 &graph
->edge
[graph
->n_edge
++]);
1347 if (merge_edge(edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1348 return isl_stat_error
;
1350 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1353 isl_map_free(tagged
);
1354 return isl_stat_error
;
1357 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1359 * The context is included in the domain before the nodes of
1360 * the graphs are extracted in order to be able to exploit
1361 * any possible additional equalities.
1362 * Note that this intersection is only performed locally here.
1364 static isl_stat
graph_init(struct isl_sched_graph
*graph
,
1365 __isl_keep isl_schedule_constraints
*sc
)
1368 isl_union_set
*domain
;
1370 struct isl_extract_edge_data data
;
1371 enum isl_edge_type i
;
1375 return isl_stat_error
;
1377 ctx
= isl_schedule_constraints_get_ctx(sc
);
1379 domain
= isl_schedule_constraints_get_domain(sc
);
1380 graph
->n
= isl_union_set_n_set(domain
);
1381 isl_union_set_free(domain
);
1383 if (graph_alloc(ctx
, graph
, graph
->n
,
1384 isl_schedule_constraints_n_map(sc
)) < 0)
1385 return isl_stat_error
;
1387 if (compute_max_row(graph
, sc
) < 0)
1388 return isl_stat_error
;
1389 graph
->root
= graph
;
1391 domain
= isl_schedule_constraints_get_domain(sc
);
1392 domain
= isl_union_set_intersect_params(domain
,
1393 isl_schedule_constraints_get_context(sc
));
1394 r
= isl_union_set_foreach_set(domain
, &extract_node
, graph
);
1395 isl_union_set_free(domain
);
1397 return isl_stat_error
;
1398 if (graph_init_table(ctx
, graph
) < 0)
1399 return isl_stat_error
;
1400 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1401 c
= isl_schedule_constraints_get(sc
, i
);
1402 graph
->max_edge
[i
] = isl_union_map_n_map(c
);
1403 isl_union_map_free(c
);
1405 return isl_stat_error
;
1407 if (graph_init_edge_tables(ctx
, graph
) < 0)
1408 return isl_stat_error
;
1411 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1415 c
= isl_schedule_constraints_get(sc
, i
);
1416 r
= isl_union_map_foreach_map(c
, &extract_edge
, &data
);
1417 isl_union_map_free(c
);
1419 return isl_stat_error
;
1425 /* Check whether there is any dependence from node[j] to node[i]
1426 * or from node[i] to node[j].
1428 static isl_bool
node_follows_weak(int i
, int j
, void *user
)
1431 struct isl_sched_graph
*graph
= user
;
1433 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1436 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1439 /* Check whether there is a (conditional) validity dependence from node[j]
1440 * to node[i], forcing node[i] to follow node[j].
1442 static isl_bool
node_follows_strong(int i
, int j
, void *user
)
1444 struct isl_sched_graph
*graph
= user
;
1446 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1449 /* Use Tarjan's algorithm for computing the strongly connected components
1450 * in the dependence graph only considering those edges defined by "follows".
1452 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1453 isl_bool (*follows
)(int i
, int j
, void *user
))
1456 struct isl_tarjan_graph
*g
= NULL
;
1458 g
= isl_tarjan_graph_init(ctx
, graph
->n
, follows
, graph
);
1466 while (g
->order
[i
] != -1) {
1467 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1475 isl_tarjan_graph_free(g
);
1480 /* Apply Tarjan's algorithm to detect the strongly connected components
1481 * in the dependence graph.
1482 * Only consider the (conditional) validity dependences and clear "weak".
1484 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1487 return detect_ccs(ctx
, graph
, &node_follows_strong
);
1490 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1491 * in the dependence graph.
1492 * Consider all dependences and set "weak".
1494 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1497 return detect_ccs(ctx
, graph
, &node_follows_weak
);
1500 static int cmp_scc(const void *a
, const void *b
, void *data
)
1502 struct isl_sched_graph
*graph
= data
;
1506 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1509 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1511 static int sort_sccs(struct isl_sched_graph
*graph
)
1513 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1516 /* Return a non-parametric set in the compressed space of "node" that is
1517 * bounded by the size in each direction
1519 * { [x] : -S_i <= x_i <= S_i }
1521 * If S_i is infinity in direction i, then there are no constraints
1522 * in that direction.
1524 * Cache the result in node->bounds.
1526 static __isl_give isl_basic_set
*get_size_bounds(struct isl_sched_node
*node
)
1529 isl_basic_set
*bounds
;
1534 return isl_basic_set_copy(node
->bounds
);
1536 if (node
->compressed
)
1537 space
= isl_multi_aff_get_domain_space(node
->decompress
);
1539 space
= isl_space_copy(node
->space
);
1540 nparam
= isl_space_dim(space
, isl_dim_param
);
1541 space
= isl_space_drop_dims(space
, isl_dim_param
, 0, nparam
);
1542 bounds
= isl_basic_set_universe(space
);
1544 for (i
= 0; i
< node
->nvar
; ++i
) {
1547 size
= isl_multi_val_get_val(node
->sizes
, i
);
1549 return isl_basic_set_free(bounds
);
1550 if (!isl_val_is_int(size
)) {
1554 bounds
= isl_basic_set_upper_bound_val(bounds
, isl_dim_set
, i
,
1555 isl_val_copy(size
));
1556 bounds
= isl_basic_set_lower_bound_val(bounds
, isl_dim_set
, i
,
1560 node
->bounds
= isl_basic_set_copy(bounds
);
1564 /* Drop some constraints from "delta" that could be exploited
1565 * to construct loop coalescing schedules.
1566 * In particular, drop those constraint that bound the difference
1567 * to the size of the domain.
1568 * First project out the parameters to improve the effectiveness.
1570 static __isl_give isl_set
*drop_coalescing_constraints(
1571 __isl_take isl_set
*delta
, struct isl_sched_node
*node
)
1574 isl_basic_set
*bounds
;
1576 bounds
= get_size_bounds(node
);
1578 nparam
= isl_set_dim(delta
, isl_dim_param
);
1579 delta
= isl_set_project_out(delta
, isl_dim_param
, 0, nparam
);
1580 delta
= isl_set_remove_divs(delta
);
1581 delta
= isl_set_plain_gist_basic_set(delta
, bounds
);
1585 /* Given a dependence relation R from "node" to itself,
1586 * construct the set of coefficients of valid constraints for elements
1587 * in that dependence relation.
1588 * In particular, the result contains tuples of coefficients
1589 * c_0, c_n, c_x such that
1591 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1595 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1597 * We choose here to compute the dual of delta R.
1598 * Alternatively, we could have computed the dual of R, resulting
1599 * in a set of tuples c_0, c_n, c_x, c_y, and then
1600 * plugged in (c_0, c_n, c_x, -c_x).
1602 * If "need_param" is set, then the resulting coefficients effectively
1603 * include coefficients for the parameters c_n. Otherwise, they may
1604 * have been projected out already.
1605 * Since the constraints may be different for these two cases,
1606 * they are stored in separate caches.
1607 * In particular, if no parameter coefficients are required and
1608 * the schedule_treat_coalescing option is set, then the parameters
1609 * are projected out and some constraints that could be exploited
1610 * to construct coalescing schedules are removed before the dual
1613 * If "node" has been compressed, then the dependence relation
1614 * is also compressed before the set of coefficients is computed.
1616 static __isl_give isl_basic_set
*intra_coefficients(
1617 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1618 __isl_take isl_map
*map
, int need_param
)
1623 isl_basic_set
*coef
;
1624 isl_maybe_isl_basic_set m
;
1625 isl_map_to_basic_set
**hmap
= &graph
->intra_hmap
;
1631 ctx
= isl_map_get_ctx(map
);
1632 treat
= !need_param
&& isl_options_get_schedule_treat_coalescing(ctx
);
1634 hmap
= &graph
->intra_hmap_param
;
1635 m
= isl_map_to_basic_set_try_get(*hmap
, map
);
1636 if (m
.valid
< 0 || m
.valid
) {
1641 key
= isl_map_copy(map
);
1642 if (node
->compressed
) {
1643 map
= isl_map_preimage_domain_multi_aff(map
,
1644 isl_multi_aff_copy(node
->decompress
));
1645 map
= isl_map_preimage_range_multi_aff(map
,
1646 isl_multi_aff_copy(node
->decompress
));
1648 delta
= isl_map_deltas(map
);
1650 delta
= drop_coalescing_constraints(delta
, node
);
1651 delta
= isl_set_remove_divs(delta
);
1652 coef
= isl_set_coefficients(delta
);
1653 *hmap
= isl_map_to_basic_set_set(*hmap
, key
, isl_basic_set_copy(coef
));
1658 /* Given a dependence relation R, construct the set of coefficients
1659 * of valid constraints for elements in that dependence relation.
1660 * In particular, the result contains tuples of coefficients
1661 * c_0, c_n, c_x, c_y such that
1663 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1665 * If the source or destination nodes of "edge" have been compressed,
1666 * then the dependence relation is also compressed before
1667 * the set of coefficients is computed.
1669 static __isl_give isl_basic_set
*inter_coefficients(
1670 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1671 __isl_take isl_map
*map
)
1675 isl_basic_set
*coef
;
1676 isl_maybe_isl_basic_set m
;
1678 m
= isl_map_to_basic_set_try_get(graph
->inter_hmap
, map
);
1679 if (m
.valid
< 0 || m
.valid
) {
1684 key
= isl_map_copy(map
);
1685 if (edge
->src
->compressed
)
1686 map
= isl_map_preimage_domain_multi_aff(map
,
1687 isl_multi_aff_copy(edge
->src
->decompress
));
1688 if (edge
->dst
->compressed
)
1689 map
= isl_map_preimage_range_multi_aff(map
,
1690 isl_multi_aff_copy(edge
->dst
->decompress
));
1691 set
= isl_map_wrap(isl_map_remove_divs(map
));
1692 coef
= isl_set_coefficients(set
);
1693 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1694 isl_basic_set_copy(coef
));
1699 /* Return the position of the coefficients of the variables in
1700 * the coefficients constraints "coef".
1702 * The space of "coef" is of the form
1704 * { coefficients[[cst, params] -> S] }
1706 * Return the position of S.
1708 static int coef_var_offset(__isl_keep isl_basic_set
*coef
)
1713 space
= isl_space_unwrap(isl_basic_set_get_space(coef
));
1714 offset
= isl_space_dim(space
, isl_dim_in
);
1715 isl_space_free(space
);
1720 /* Return the offset of the coefficient of the constant term of "node"
1723 * Within each node, the coefficients have the following order:
1724 * - positive and negative parts of c_i_x
1725 * - c_i_n (if parametric)
1728 static int node_cst_coef_offset(struct isl_sched_node
*node
)
1730 return node
->start
+ 2 * node
->nvar
+ node
->nparam
;
1733 /* Return the offset of the coefficients of the parameters of "node"
1736 * Within each node, the coefficients have the following order:
1737 * - positive and negative parts of c_i_x
1738 * - c_i_n (if parametric)
1741 static int node_par_coef_offset(struct isl_sched_node
*node
)
1743 return node
->start
+ 2 * node
->nvar
;
1746 /* Return the offset of the coefficients of the variables of "node"
1749 * Within each node, the coefficients have the following order:
1750 * - positive and negative parts of c_i_x
1751 * - c_i_n (if parametric)
1754 static int node_var_coef_offset(struct isl_sched_node
*node
)
1759 /* Return the position of the pair of variables encoding
1760 * coefficient "i" of "node".
1762 * The order of these variable pairs is the opposite of
1763 * that of the coefficients, with 2 variables per coefficient.
1765 static int node_var_coef_pos(struct isl_sched_node
*node
, int i
)
1767 return node_var_coef_offset(node
) + 2 * (node
->nvar
- 1 - i
);
1770 /* Construct an isl_dim_map for mapping constraints on coefficients
1771 * for "node" to the corresponding positions in graph->lp.
1772 * "offset" is the offset of the coefficients for the variables
1773 * in the input constraints.
1774 * "s" is the sign of the mapping.
1776 * The input constraints are given in terms of the coefficients
1777 * (c_0, c_x) or (c_0, c_n, c_x).
1778 * The mapping produced by this function essentially plugs in
1779 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1780 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1781 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1782 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1783 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1784 * Furthermore, the order of these pairs is the opposite of that
1785 * of the corresponding coefficients.
1787 * The caller can extend the mapping to also map the other coefficients
1788 * (and therefore not plug in 0).
1790 static __isl_give isl_dim_map
*intra_dim_map(isl_ctx
*ctx
,
1791 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1796 isl_dim_map
*dim_map
;
1798 if (!node
|| !graph
->lp
)
1801 total
= isl_basic_set_total_dim(graph
->lp
);
1802 pos
= node_var_coef_pos(node
, 0);
1803 dim_map
= isl_dim_map_alloc(ctx
, total
);
1804 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, node
->nvar
, -s
);
1805 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, node
->nvar
, s
);
1810 /* Construct an isl_dim_map for mapping constraints on coefficients
1811 * for "src" (node i) and "dst" (node j) to the corresponding positions
1813 * "offset" is the offset of the coefficients for the variables of "src"
1814 * in the input constraints.
1815 * "s" is the sign of the mapping.
1817 * The input constraints are given in terms of the coefficients
1818 * (c_0, c_n, c_x, c_y).
1819 * The mapping produced by this function essentially plugs in
1820 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1821 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1822 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1823 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1824 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1825 * Furthermore, the order of these pairs is the opposite of that
1826 * of the corresponding coefficients.
1828 * The caller can further extend the mapping.
1830 static __isl_give isl_dim_map
*inter_dim_map(isl_ctx
*ctx
,
1831 struct isl_sched_graph
*graph
, struct isl_sched_node
*src
,
1832 struct isl_sched_node
*dst
, int offset
, int s
)
1836 isl_dim_map
*dim_map
;
1838 if (!src
|| !dst
|| !graph
->lp
)
1841 total
= isl_basic_set_total_dim(graph
->lp
);
1842 dim_map
= isl_dim_map_alloc(ctx
, total
);
1844 pos
= node_cst_coef_offset(dst
);
1845 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, s
);
1846 pos
= node_par_coef_offset(dst
);
1847 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, dst
->nparam
, s
);
1848 pos
= node_var_coef_pos(dst
, 0);
1849 isl_dim_map_range(dim_map
, pos
, -2, offset
+ src
->nvar
, 1,
1851 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
+ src
->nvar
, 1,
1854 pos
= node_cst_coef_offset(src
);
1855 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, -s
);
1856 pos
= node_par_coef_offset(src
);
1857 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, src
->nparam
, -s
);
1858 pos
= node_var_coef_pos(src
, 0);
1859 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, src
->nvar
, s
);
1860 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, src
->nvar
, -s
);
1865 /* Add the constraints from "src" to "dst" using "dim_map",
1866 * after making sure there is enough room in "dst" for the extra constraints.
1868 static __isl_give isl_basic_set
*add_constraints_dim_map(
1869 __isl_take isl_basic_set
*dst
, __isl_take isl_basic_set
*src
,
1870 __isl_take isl_dim_map
*dim_map
)
1874 n_eq
= isl_basic_set_n_equality(src
);
1875 n_ineq
= isl_basic_set_n_inequality(src
);
1876 dst
= isl_basic_set_extend_constraints(dst
, n_eq
, n_ineq
);
1877 dst
= isl_basic_set_add_constraints_dim_map(dst
, src
, dim_map
);
1881 /* Add constraints to graph->lp that force validity for the given
1882 * dependence from a node i to itself.
1883 * That is, add constraints that enforce
1885 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1886 * = c_i_x (y - x) >= 0
1888 * for each (x,y) in R.
1889 * We obtain general constraints on coefficients (c_0, c_x)
1890 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1891 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1892 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1893 * Note that the result of intra_coefficients may also contain
1894 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1896 static isl_stat
add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1897 struct isl_sched_edge
*edge
)
1900 isl_map
*map
= isl_map_copy(edge
->map
);
1901 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1902 isl_dim_map
*dim_map
;
1903 isl_basic_set
*coef
;
1904 struct isl_sched_node
*node
= edge
->src
;
1906 coef
= intra_coefficients(graph
, node
, map
, 0);
1908 offset
= coef_var_offset(coef
);
1911 return isl_stat_error
;
1913 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
1914 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1919 /* Add constraints to graph->lp that force validity for the given
1920 * dependence from node i to node j.
1921 * That is, add constraints that enforce
1923 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1925 * for each (x,y) in R.
1926 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1927 * of valid constraints for R and then plug in
1928 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1929 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1930 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1932 static isl_stat
add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1933 struct isl_sched_edge
*edge
)
1938 isl_dim_map
*dim_map
;
1939 isl_basic_set
*coef
;
1940 struct isl_sched_node
*src
= edge
->src
;
1941 struct isl_sched_node
*dst
= edge
->dst
;
1944 return isl_stat_error
;
1946 map
= isl_map_copy(edge
->map
);
1947 ctx
= isl_map_get_ctx(map
);
1948 coef
= inter_coefficients(graph
, edge
, map
);
1950 offset
= coef_var_offset(coef
);
1953 return isl_stat_error
;
1955 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
1957 edge
->start
= graph
->lp
->n_ineq
;
1958 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1960 return isl_stat_error
;
1961 edge
->end
= graph
->lp
->n_ineq
;
1966 /* Add constraints to graph->lp that bound the dependence distance for the given
1967 * dependence from a node i to itself.
1968 * If s = 1, we add the constraint
1970 * c_i_x (y - x) <= m_0 + m_n n
1974 * -c_i_x (y - x) + m_0 + m_n n >= 0
1976 * for each (x,y) in R.
1977 * If s = -1, we add the constraint
1979 * -c_i_x (y - x) <= m_0 + m_n n
1983 * c_i_x (y - x) + m_0 + m_n n >= 0
1985 * for each (x,y) in R.
1986 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1987 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1988 * with each coefficient (except m_0) represented as a pair of non-negative
1992 * If "local" is set, then we add constraints
1994 * c_i_x (y - x) <= 0
1998 * -c_i_x (y - x) <= 0
2000 * instead, forcing the dependence distance to be (less than or) equal to 0.
2001 * That is, we plug in (0, 0, -s * c_i_x),
2002 * intra_coefficients is not required to have c_n in its result when
2003 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2004 * Note that dependences marked local are treated as validity constraints
2005 * by add_all_validity_constraints and therefore also have
2006 * their distances bounded by 0 from below.
2008 static isl_stat
add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
2009 struct isl_sched_edge
*edge
, int s
, int local
)
2013 isl_map
*map
= isl_map_copy(edge
->map
);
2014 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2015 isl_dim_map
*dim_map
;
2016 isl_basic_set
*coef
;
2017 struct isl_sched_node
*node
= edge
->src
;
2019 coef
= intra_coefficients(graph
, node
, map
, !local
);
2021 offset
= coef_var_offset(coef
);
2024 return isl_stat_error
;
2026 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
2027 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, -s
);
2030 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2031 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2032 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2034 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2039 /* Add constraints to graph->lp that bound the dependence distance for the given
2040 * dependence from node i to node j.
2041 * If s = 1, we add the constraint
2043 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2048 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2051 * for each (x,y) in R.
2052 * If s = -1, we add the constraint
2054 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2059 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2062 * for each (x,y) in R.
2063 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2064 * of valid constraints for R and then plug in
2065 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2066 * s*c_i_x, -s*c_j_x)
2067 * with each coefficient (except m_0, c_*_0 and c_*_n)
2068 * represented as a pair of non-negative coefficients.
2071 * If "local" is set (and s = 1), then we add constraints
2073 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2077 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2079 * instead, forcing the dependence distance to be (less than or) equal to 0.
2080 * That is, we plug in
2081 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2082 * Note that dependences marked local are treated as validity constraints
2083 * by add_all_validity_constraints and therefore also have
2084 * their distances bounded by 0 from below.
2086 static isl_stat
add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
2087 struct isl_sched_edge
*edge
, int s
, int local
)
2091 isl_map
*map
= isl_map_copy(edge
->map
);
2092 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2093 isl_dim_map
*dim_map
;
2094 isl_basic_set
*coef
;
2095 struct isl_sched_node
*src
= edge
->src
;
2096 struct isl_sched_node
*dst
= edge
->dst
;
2098 coef
= inter_coefficients(graph
, edge
, map
);
2100 offset
= coef_var_offset(coef
);
2103 return isl_stat_error
;
2105 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
2106 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, -s
);
2109 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2110 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2111 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2114 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2119 /* Should the distance over "edge" be forced to zero?
2120 * That is, is it marked as a local edge?
2121 * If "use_coincidence" is set, then coincidence edges are treated
2124 static int force_zero(struct isl_sched_edge
*edge
, int use_coincidence
)
2126 return is_local(edge
) || (use_coincidence
&& is_coincidence(edge
));
2129 /* Add all validity constraints to graph->lp.
2131 * An edge that is forced to be local needs to have its dependence
2132 * distances equal to zero. We take care of bounding them by 0 from below
2133 * here. add_all_proximity_constraints takes care of bounding them by 0
2136 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2137 * Otherwise, we ignore them.
2139 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
2140 int use_coincidence
)
2144 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2145 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2148 zero
= force_zero(edge
, use_coincidence
);
2149 if (!is_validity(edge
) && !zero
)
2151 if (edge
->src
!= edge
->dst
)
2153 if (add_intra_validity_constraints(graph
, edge
) < 0)
2157 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2158 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2161 zero
= force_zero(edge
, use_coincidence
);
2162 if (!is_validity(edge
) && !zero
)
2164 if (edge
->src
== edge
->dst
)
2166 if (add_inter_validity_constraints(graph
, edge
) < 0)
2173 /* Add constraints to graph->lp that bound the dependence distance
2174 * for all dependence relations.
2175 * If a given proximity dependence is identical to a validity
2176 * dependence, then the dependence distance is already bounded
2177 * from below (by zero), so we only need to bound the distance
2178 * from above. (This includes the case of "local" dependences
2179 * which are treated as validity dependence by add_all_validity_constraints.)
2180 * Otherwise, we need to bound the distance both from above and from below.
2182 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2183 * Otherwise, we ignore them.
2185 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
2186 int use_coincidence
)
2190 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2191 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2194 zero
= force_zero(edge
, use_coincidence
);
2195 if (!is_proximity(edge
) && !zero
)
2197 if (edge
->src
== edge
->dst
&&
2198 add_intra_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2200 if (edge
->src
!= edge
->dst
&&
2201 add_inter_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2203 if (is_validity(edge
) || zero
)
2205 if (edge
->src
== edge
->dst
&&
2206 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
2208 if (edge
->src
!= edge
->dst
&&
2209 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
2216 /* Normalize the rows of "indep" such that all rows are lexicographically
2217 * positive and such that each row contains as many final zeros as possible,
2218 * given the choice for the previous rows.
2219 * Do this by performing elementary row operations.
2221 static __isl_give isl_mat
*normalize_independent(__isl_take isl_mat
*indep
)
2223 indep
= isl_mat_reverse_gauss(indep
);
2224 indep
= isl_mat_lexnonneg_rows(indep
);
2228 /* Compute a basis for the rows in the linear part of the schedule
2229 * and extend this basis to a full basis. The remaining rows
2230 * can then be used to force linear independence from the rows
2233 * In particular, given the schedule rows S, we compute
2238 * with H the Hermite normal form of S. That is, all but the
2239 * first rank columns of H are zero and so each row in S is
2240 * a linear combination of the first rank rows of Q.
2241 * The matrix Q can be used as a variable transformation
2242 * that isolates the directions of S in the first rank rows.
2243 * Transposing S U = H yields
2247 * with all but the first rank rows of H^T zero.
2248 * The last rows of U^T are therefore linear combinations
2249 * of schedule coefficients that are all zero on schedule
2250 * coefficients that are linearly dependent on the rows of S.
2251 * At least one of these combinations is non-zero on
2252 * linearly independent schedule coefficients.
2253 * The rows are normalized to involve as few of the last
2254 * coefficients as possible and to have a positive initial value.
2256 static int node_update_vmap(struct isl_sched_node
*node
)
2259 int n_row
= isl_mat_rows(node
->sched
);
2261 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
2262 1 + node
->nparam
, node
->nvar
);
2264 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
2265 isl_mat_free(node
->indep
);
2266 isl_mat_free(node
->vmap
);
2268 node
->indep
= isl_mat_transpose(U
);
2269 node
->rank
= isl_mat_initial_non_zero_cols(H
);
2270 node
->indep
= isl_mat_drop_rows(node
->indep
, 0, node
->rank
);
2271 node
->indep
= normalize_independent(node
->indep
);
2274 if (!node
->indep
|| !node
->vmap
|| node
->rank
< 0)
2279 /* Is "edge" marked as a validity or a conditional validity edge?
2281 static int is_any_validity(struct isl_sched_edge
*edge
)
2283 return is_validity(edge
) || is_conditional_validity(edge
);
2286 /* How many times should we count the constraints in "edge"?
2288 * We count as follows
2289 * validity -> 1 (>= 0)
2290 * validity+proximity -> 2 (>= 0 and upper bound)
2291 * proximity -> 2 (lower and upper bound)
2292 * local(+any) -> 2 (>= 0 and <= 0)
2294 * If an edge is only marked conditional_validity then it counts
2295 * as zero since it is only checked afterwards.
2297 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2298 * Otherwise, we ignore them.
2300 static int edge_multiplicity(struct isl_sched_edge
*edge
, int use_coincidence
)
2302 if (is_proximity(edge
) || force_zero(edge
, use_coincidence
))
2304 if (is_validity(edge
))
2309 /* How many times should the constraints in "edge" be counted
2310 * as a parametric intra-node constraint?
2312 * Only proximity edges that are not forced zero need
2313 * coefficient constraints that include coefficients for parameters.
2314 * If the edge is also a validity edge, then only
2315 * an upper bound is introduced. Otherwise, both lower and upper bounds
2318 static int parametric_intra_edge_multiplicity(struct isl_sched_edge
*edge
,
2319 int use_coincidence
)
2321 if (edge
->src
!= edge
->dst
)
2323 if (!is_proximity(edge
))
2325 if (force_zero(edge
, use_coincidence
))
2327 if (is_validity(edge
))
2333 /* Add "f" times the number of equality and inequality constraints of "bset"
2334 * to "n_eq" and "n_ineq" and free "bset".
2336 static isl_stat
update_count(__isl_take isl_basic_set
*bset
,
2337 int f
, int *n_eq
, int *n_ineq
)
2340 return isl_stat_error
;
2342 *n_eq
+= isl_basic_set_n_equality(bset
);
2343 *n_ineq
+= isl_basic_set_n_inequality(bset
);
2344 isl_basic_set_free(bset
);
2349 /* Count the number of equality and inequality constraints
2350 * that will be added for the given map.
2352 * The edges that require parameter coefficients are counted separately.
2354 * "use_coincidence" is set if we should take into account coincidence edges.
2356 static isl_stat
count_map_constraints(struct isl_sched_graph
*graph
,
2357 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
2358 int *n_eq
, int *n_ineq
, int use_coincidence
)
2361 isl_basic_set
*coef
;
2362 int f
= edge_multiplicity(edge
, use_coincidence
);
2363 int fp
= parametric_intra_edge_multiplicity(edge
, use_coincidence
);
2370 if (edge
->src
!= edge
->dst
) {
2371 coef
= inter_coefficients(graph
, edge
, map
);
2372 return update_count(coef
, f
, n_eq
, n_ineq
);
2376 copy
= isl_map_copy(map
);
2377 coef
= intra_coefficients(graph
, edge
->src
, copy
, 1);
2378 if (update_count(coef
, fp
, n_eq
, n_ineq
) < 0)
2383 copy
= isl_map_copy(map
);
2384 coef
= intra_coefficients(graph
, edge
->src
, copy
, 0);
2385 if (update_count(coef
, f
- fp
, n_eq
, n_ineq
) < 0)
2393 return isl_stat_error
;
2396 /* Count the number of equality and inequality constraints
2397 * that will be added to the main lp problem.
2398 * We count as follows
2399 * validity -> 1 (>= 0)
2400 * validity+proximity -> 2 (>= 0 and upper bound)
2401 * proximity -> 2 (lower and upper bound)
2402 * local(+any) -> 2 (>= 0 and <= 0)
2404 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2405 * Otherwise, we ignore them.
2407 static int count_constraints(struct isl_sched_graph
*graph
,
2408 int *n_eq
, int *n_ineq
, int use_coincidence
)
2412 *n_eq
= *n_ineq
= 0;
2413 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2414 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2415 isl_map
*map
= isl_map_copy(edge
->map
);
2417 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
2418 use_coincidence
) < 0)
2425 /* Count the number of constraints that will be added by
2426 * add_bound_constant_constraints to bound the values of the constant terms
2427 * and increment *n_eq and *n_ineq accordingly.
2429 * In practice, add_bound_constant_constraints only adds inequalities.
2431 static isl_stat
count_bound_constant_constraints(isl_ctx
*ctx
,
2432 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2434 if (isl_options_get_schedule_max_constant_term(ctx
) == -1)
2437 *n_ineq
+= graph
->n
;
2442 /* Add constraints to bound the values of the constant terms in the schedule,
2443 * if requested by the user.
2445 * The maximal value of the constant terms is defined by the option
2446 * "schedule_max_constant_term".
2448 static isl_stat
add_bound_constant_constraints(isl_ctx
*ctx
,
2449 struct isl_sched_graph
*graph
)
2455 max
= isl_options_get_schedule_max_constant_term(ctx
);
2459 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2461 for (i
= 0; i
< graph
->n
; ++i
) {
2462 struct isl_sched_node
*node
= &graph
->node
[i
];
2465 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2467 return isl_stat_error
;
2468 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2469 pos
= node_cst_coef_offset(node
);
2470 isl_int_set_si(graph
->lp
->ineq
[k
][1 + pos
], -1);
2471 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2477 /* Count the number of constraints that will be added by
2478 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2481 * In practice, add_bound_coefficient_constraints only adds inequalities.
2483 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2484 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2488 if (isl_options_get_schedule_max_coefficient(ctx
) == -1 &&
2489 !isl_options_get_schedule_treat_coalescing(ctx
))
2492 for (i
= 0; i
< graph
->n
; ++i
)
2493 *n_ineq
+= graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2498 /* Add constraints to graph->lp that bound the values of
2499 * the parameter schedule coefficients of "node" to "max" and
2500 * the variable schedule coefficients to the corresponding entry
2502 * In either case, a negative value means that no bound needs to be imposed.
2504 * For parameter coefficients, this amounts to adding a constraint
2512 * The variables coefficients are, however, not represented directly.
2513 * Instead, the variable coefficients c_x are written as differences
2514 * c_x = c_x^+ - c_x^-.
2517 * -max_i <= c_x_i <= max_i
2521 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2525 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2526 * c_x_i^+ - c_x_i^- + max_i >= 0
2528 static isl_stat
node_add_coefficient_constraints(isl_ctx
*ctx
,
2529 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
, int max
)
2535 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2537 for (j
= 0; j
< node
->nparam
; ++j
) {
2543 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2545 return isl_stat_error
;
2546 dim
= 1 + node_par_coef_offset(node
) + j
;
2547 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2548 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2549 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2552 ineq
= isl_vec_alloc(ctx
, 1 + total
);
2553 ineq
= isl_vec_clr(ineq
);
2555 return isl_stat_error
;
2556 for (i
= 0; i
< node
->nvar
; ++i
) {
2557 int pos
= 1 + node_var_coef_pos(node
, i
);
2559 if (isl_int_is_neg(node
->max
->el
[i
]))
2562 isl_int_set_si(ineq
->el
[pos
], 1);
2563 isl_int_set_si(ineq
->el
[pos
+ 1], -1);
2564 isl_int_set(ineq
->el
[0], node
->max
->el
[i
]);
2566 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2569 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2571 isl_seq_neg(ineq
->el
+ pos
, ineq
->el
+ pos
, 2);
2572 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2575 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2577 isl_seq_clr(ineq
->el
+ pos
, 2);
2584 return isl_stat_error
;
2587 /* Add constraints that bound the values of the variable and parameter
2588 * coefficients of the schedule.
2590 * The maximal value of the coefficients is defined by the option
2591 * 'schedule_max_coefficient' and the entries in node->max.
2592 * These latter entries are only set if either the schedule_max_coefficient
2593 * option or the schedule_treat_coalescing option is set.
2595 static isl_stat
add_bound_coefficient_constraints(isl_ctx
*ctx
,
2596 struct isl_sched_graph
*graph
)
2601 max
= isl_options_get_schedule_max_coefficient(ctx
);
2603 if (max
== -1 && !isl_options_get_schedule_treat_coalescing(ctx
))
2606 for (i
= 0; i
< graph
->n
; ++i
) {
2607 struct isl_sched_node
*node
= &graph
->node
[i
];
2609 if (node_add_coefficient_constraints(ctx
, graph
, node
, max
) < 0)
2610 return isl_stat_error
;
2616 /* Add a constraint to graph->lp that equates the value at position
2617 * "sum_pos" to the sum of the "n" values starting at "first".
2619 static isl_stat
add_sum_constraint(struct isl_sched_graph
*graph
,
2620 int sum_pos
, int first
, int n
)
2625 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2627 k
= isl_basic_set_alloc_equality(graph
->lp
);
2629 return isl_stat_error
;
2630 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2631 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2632 for (i
= 0; i
< n
; ++i
)
2633 isl_int_set_si(graph
->lp
->eq
[k
][1 + first
+ i
], 1);
2638 /* Add a constraint to graph->lp that equates the value at position
2639 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2641 static isl_stat
add_param_sum_constraint(struct isl_sched_graph
*graph
,
2647 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2649 k
= isl_basic_set_alloc_equality(graph
->lp
);
2651 return isl_stat_error
;
2652 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2653 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2654 for (i
= 0; i
< graph
->n
; ++i
) {
2655 int pos
= 1 + node_par_coef_offset(&graph
->node
[i
]);
2657 for (j
= 0; j
< graph
->node
[i
].nparam
; ++j
)
2658 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2664 /* Add a constraint to graph->lp that equates the value at position
2665 * "sum_pos" to the sum of the variable coefficients of all nodes.
2667 static isl_stat
add_var_sum_constraint(struct isl_sched_graph
*graph
,
2673 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2675 k
= isl_basic_set_alloc_equality(graph
->lp
);
2677 return isl_stat_error
;
2678 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2679 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2680 for (i
= 0; i
< graph
->n
; ++i
) {
2681 struct isl_sched_node
*node
= &graph
->node
[i
];
2682 int pos
= 1 + node_var_coef_offset(node
);
2684 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2685 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2691 /* Construct an ILP problem for finding schedule coefficients
2692 * that result in non-negative, but small dependence distances
2693 * over all dependences.
2694 * In particular, the dependence distances over proximity edges
2695 * are bounded by m_0 + m_n n and we compute schedule coefficients
2696 * with small values (preferably zero) of m_n and m_0.
2698 * All variables of the ILP are non-negative. The actual coefficients
2699 * may be negative, so each coefficient is represented as the difference
2700 * of two non-negative variables. The negative part always appears
2701 * immediately before the positive part.
2702 * Other than that, the variables have the following order
2704 * - sum of positive and negative parts of m_n coefficients
2706 * - sum of all c_n coefficients
2707 * (unconstrained when computing non-parametric schedules)
2708 * - sum of positive and negative parts of all c_x coefficients
2709 * - positive and negative parts of m_n coefficients
2711 * - positive and negative parts of c_i_x, in opposite order
2712 * - c_i_n (if parametric)
2715 * The constraints are those from the edges plus two or three equalities
2716 * to express the sums.
2718 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2719 * Otherwise, we ignore them.
2721 static isl_stat
setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2722 int use_coincidence
)
2732 parametric
= ctx
->opt
->schedule_parametric
;
2733 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2735 total
= param_pos
+ 2 * nparam
;
2736 for (i
= 0; i
< graph
->n
; ++i
) {
2737 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2738 if (node_update_vmap(node
) < 0)
2739 return isl_stat_error
;
2740 node
->start
= total
;
2741 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
2744 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2745 return isl_stat_error
;
2746 if (count_bound_constant_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2747 return isl_stat_error
;
2748 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2749 return isl_stat_error
;
2751 space
= isl_space_set_alloc(ctx
, 0, total
);
2752 isl_basic_set_free(graph
->lp
);
2753 n_eq
+= 2 + parametric
;
2755 graph
->lp
= isl_basic_set_alloc_space(space
, 0, n_eq
, n_ineq
);
2757 if (add_sum_constraint(graph
, 0, param_pos
, 2 * nparam
) < 0)
2758 return isl_stat_error
;
2759 if (parametric
&& add_param_sum_constraint(graph
, 2) < 0)
2760 return isl_stat_error
;
2761 if (add_var_sum_constraint(graph
, 3) < 0)
2762 return isl_stat_error
;
2763 if (add_bound_constant_constraints(ctx
, graph
) < 0)
2764 return isl_stat_error
;
2765 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2766 return isl_stat_error
;
2767 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2768 return isl_stat_error
;
2769 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2770 return isl_stat_error
;
2775 /* Analyze the conflicting constraint found by
2776 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2777 * constraint of one of the edges between distinct nodes, living, moreover
2778 * in distinct SCCs, then record the source and sink SCC as this may
2779 * be a good place to cut between SCCs.
2781 static int check_conflict(int con
, void *user
)
2784 struct isl_sched_graph
*graph
= user
;
2786 if (graph
->src_scc
>= 0)
2789 con
-= graph
->lp
->n_eq
;
2791 if (con
>= graph
->lp
->n_ineq
)
2794 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2795 if (!is_validity(&graph
->edge
[i
]))
2797 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2799 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2801 if (graph
->edge
[i
].start
> con
)
2803 if (graph
->edge
[i
].end
<= con
)
2805 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2806 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2812 /* Check whether the next schedule row of the given node needs to be
2813 * non-trivial. Lower-dimensional domains may have some trivial rows,
2814 * but as soon as the number of remaining required non-trivial rows
2815 * is as large as the number or remaining rows to be computed,
2816 * all remaining rows need to be non-trivial.
2818 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2820 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2823 /* Construct a non-triviality region with triviality directions
2824 * corresponding to the rows of "indep".
2825 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2826 * while the triviality directions are expressed in terms of
2827 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2828 * before c^+_i. Furthermore,
2829 * the pairs of non-negative variables representing the coefficients
2830 * are stored in the opposite order.
2832 static __isl_give isl_mat
*construct_trivial(__isl_keep isl_mat
*indep
)
2841 ctx
= isl_mat_get_ctx(indep
);
2842 n
= isl_mat_rows(indep
);
2843 n_var
= isl_mat_cols(indep
);
2844 mat
= isl_mat_alloc(ctx
, n
, 2 * n_var
);
2847 for (i
= 0; i
< n
; ++i
) {
2848 for (j
= 0; j
< n_var
; ++j
) {
2849 int nj
= n_var
- 1 - j
;
2850 isl_int_neg(mat
->row
[i
][2 * nj
], indep
->row
[i
][j
]);
2851 isl_int_set(mat
->row
[i
][2 * nj
+ 1], indep
->row
[i
][j
]);
2858 /* Solve the ILP problem constructed in setup_lp.
2859 * For each node such that all the remaining rows of its schedule
2860 * need to be non-trivial, we construct a non-triviality region.
2861 * This region imposes that the next row is independent of previous rows.
2862 * In particular, the non-triviality region enforces that at least
2863 * one of the linear combinations in the rows of node->indep is non-zero.
2865 static __isl_give isl_vec
*solve_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2871 for (i
= 0; i
< graph
->n
; ++i
) {
2872 struct isl_sched_node
*node
= &graph
->node
[i
];
2875 graph
->region
[i
].pos
= node_var_coef_offset(node
);
2876 if (needs_row(graph
, node
))
2877 trivial
= construct_trivial(node
->indep
);
2879 trivial
= isl_mat_zero(ctx
, 0, 0);
2880 graph
->region
[i
].trivial
= trivial
;
2882 lp
= isl_basic_set_copy(graph
->lp
);
2883 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2884 graph
->region
, &check_conflict
, graph
);
2885 for (i
= 0; i
< graph
->n
; ++i
)
2886 isl_mat_free(graph
->region
[i
].trivial
);
2890 /* Extract the coefficients for the variables of "node" from "sol".
2892 * Each schedule coefficient c_i_x is represented as the difference
2893 * between two non-negative variables c_i_x^+ - c_i_x^-.
2894 * The c_i_x^- appear before their c_i_x^+ counterpart.
2895 * Furthermore, the order of these pairs is the opposite of that
2896 * of the corresponding coefficients.
2898 * Return c_i_x = c_i_x^+ - c_i_x^-
2900 static __isl_give isl_vec
*extract_var_coef(struct isl_sched_node
*node
,
2901 __isl_keep isl_vec
*sol
)
2909 csol
= isl_vec_alloc(isl_vec_get_ctx(sol
), node
->nvar
);
2913 pos
= 1 + node_var_coef_offset(node
);
2914 for (i
= 0; i
< node
->nvar
; ++i
)
2915 isl_int_sub(csol
->el
[node
->nvar
- 1 - i
],
2916 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
2921 /* Update the schedules of all nodes based on the given solution
2922 * of the LP problem.
2923 * The new row is added to the current band.
2924 * All possibly negative coefficients are encoded as a difference
2925 * of two non-negative variables, so we need to perform the subtraction
2928 * If coincident is set, then the caller guarantees that the new
2929 * row satisfies the coincidence constraints.
2931 static int update_schedule(struct isl_sched_graph
*graph
,
2932 __isl_take isl_vec
*sol
, int coincident
)
2935 isl_vec
*csol
= NULL
;
2940 isl_die(sol
->ctx
, isl_error_internal
,
2941 "no solution found", goto error
);
2942 if (graph
->n_total_row
>= graph
->max_row
)
2943 isl_die(sol
->ctx
, isl_error_internal
,
2944 "too many schedule rows", goto error
);
2946 for (i
= 0; i
< graph
->n
; ++i
) {
2947 struct isl_sched_node
*node
= &graph
->node
[i
];
2949 int row
= isl_mat_rows(node
->sched
);
2952 csol
= extract_var_coef(node
, sol
);
2956 isl_map_free(node
->sched_map
);
2957 node
->sched_map
= NULL
;
2958 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2961 pos
= node_cst_coef_offset(node
);
2962 node
->sched
= isl_mat_set_element(node
->sched
,
2963 row
, 0, sol
->el
[1 + pos
]);
2964 pos
= node_par_coef_offset(node
);
2965 for (j
= 0; j
< node
->nparam
; ++j
)
2966 node
->sched
= isl_mat_set_element(node
->sched
,
2967 row
, 1 + j
, sol
->el
[1 + pos
+ j
]);
2968 for (j
= 0; j
< node
->nvar
; ++j
)
2969 node
->sched
= isl_mat_set_element(node
->sched
,
2970 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2971 node
->coincident
[graph
->n_total_row
] = coincident
;
2977 graph
->n_total_row
++;
2986 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2987 * and return this isl_aff.
2989 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
2990 struct isl_sched_node
*node
, int row
)
2998 aff
= isl_aff_zero_on_domain(ls
);
2999 if (isl_mat_get_element(node
->sched
, row
, 0, &v
) < 0)
3001 aff
= isl_aff_set_constant(aff
, v
);
3002 for (j
= 0; j
< node
->nparam
; ++j
) {
3003 if (isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
) < 0)
3005 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
3007 for (j
= 0; j
< node
->nvar
; ++j
) {
3008 if (isl_mat_get_element(node
->sched
, row
,
3009 1 + node
->nparam
+ j
, &v
) < 0)
3011 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
3023 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3024 * and return this multi_aff.
3026 * The result is defined over the uncompressed node domain.
3028 static __isl_give isl_multi_aff
*node_extract_partial_schedule_multi_aff(
3029 struct isl_sched_node
*node
, int first
, int n
)
3033 isl_local_space
*ls
;
3040 nrow
= isl_mat_rows(node
->sched
);
3041 if (node
->compressed
)
3042 space
= isl_multi_aff_get_domain_space(node
->decompress
);
3044 space
= isl_space_copy(node
->space
);
3045 ls
= isl_local_space_from_space(isl_space_copy(space
));
3046 space
= isl_space_from_domain(space
);
3047 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3048 ma
= isl_multi_aff_zero(space
);
3050 for (i
= first
; i
< first
+ n
; ++i
) {
3051 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
3052 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
3055 isl_local_space_free(ls
);
3057 if (node
->compressed
)
3058 ma
= isl_multi_aff_pullback_multi_aff(ma
,
3059 isl_multi_aff_copy(node
->compress
));
3064 /* Convert node->sched into a multi_aff and return this multi_aff.
3066 * The result is defined over the uncompressed node domain.
3068 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
3069 struct isl_sched_node
*node
)
3073 nrow
= isl_mat_rows(node
->sched
);
3074 return node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
3077 /* Convert node->sched into a map and return this map.
3079 * The result is cached in node->sched_map, which needs to be released
3080 * whenever node->sched is updated.
3081 * It is defined over the uncompressed node domain.
3083 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
3085 if (!node
->sched_map
) {
3088 ma
= node_extract_schedule_multi_aff(node
);
3089 node
->sched_map
= isl_map_from_multi_aff(ma
);
3092 return isl_map_copy(node
->sched_map
);
3095 /* Construct a map that can be used to update a dependence relation
3096 * based on the current schedule.
3097 * That is, construct a map expressing that source and sink
3098 * are executed within the same iteration of the current schedule.
3099 * This map can then be intersected with the dependence relation.
3100 * This is not the most efficient way, but this shouldn't be a critical
3103 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
3104 struct isl_sched_node
*dst
)
3106 isl_map
*src_sched
, *dst_sched
;
3108 src_sched
= node_extract_schedule(src
);
3109 dst_sched
= node_extract_schedule(dst
);
3110 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
3113 /* Intersect the domains of the nested relations in domain and range
3114 * of "umap" with "map".
3116 static __isl_give isl_union_map
*intersect_domains(
3117 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
3119 isl_union_set
*uset
;
3121 umap
= isl_union_map_zip(umap
);
3122 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
3123 umap
= isl_union_map_intersect_domain(umap
, uset
);
3124 umap
= isl_union_map_zip(umap
);
3128 /* Update the dependence relation of the given edge based
3129 * on the current schedule.
3130 * If the dependence is carried completely by the current schedule, then
3131 * it is removed from the edge_tables. It is kept in the list of edges
3132 * as otherwise all edge_tables would have to be recomputed.
3134 * If the edge is of a type that can appear multiple times
3135 * between the same pair of nodes, then it is added to
3136 * the edge table (again). This prevents the situation
3137 * where none of these edges is referenced from the edge table
3138 * because the one that was referenced turned out to be empty and
3139 * was therefore removed from the table.
3141 static int update_edge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3142 struct isl_sched_edge
*edge
)
3147 id
= specializer(edge
->src
, edge
->dst
);
3148 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
3152 if (edge
->tagged_condition
) {
3153 edge
->tagged_condition
=
3154 intersect_domains(edge
->tagged_condition
, id
);
3155 if (!edge
->tagged_condition
)
3158 if (edge
->tagged_validity
) {
3159 edge
->tagged_validity
=
3160 intersect_domains(edge
->tagged_validity
, id
);
3161 if (!edge
->tagged_validity
)
3165 empty
= isl_map_plain_is_empty(edge
->map
);
3169 graph_remove_edge(graph
, edge
);
3170 } else if (is_multi_edge_type(edge
)) {
3171 if (graph_edge_tables_add(ctx
, graph
, edge
) < 0)
3182 /* Does the domain of "umap" intersect "uset"?
3184 static int domain_intersects(__isl_keep isl_union_map
*umap
,
3185 __isl_keep isl_union_set
*uset
)
3189 umap
= isl_union_map_copy(umap
);
3190 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
3191 empty
= isl_union_map_is_empty(umap
);
3192 isl_union_map_free(umap
);
3194 return empty
< 0 ? -1 : !empty
;
3197 /* Does the range of "umap" intersect "uset"?
3199 static int range_intersects(__isl_keep isl_union_map
*umap
,
3200 __isl_keep isl_union_set
*uset
)
3204 umap
= isl_union_map_copy(umap
);
3205 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
3206 empty
= isl_union_map_is_empty(umap
);
3207 isl_union_map_free(umap
);
3209 return empty
< 0 ? -1 : !empty
;
3212 /* Are the condition dependences of "edge" local with respect to
3213 * the current schedule?
3215 * That is, are domain and range of the condition dependences mapped
3216 * to the same point?
3218 * In other words, is the condition false?
3220 static int is_condition_false(struct isl_sched_edge
*edge
)
3222 isl_union_map
*umap
;
3223 isl_map
*map
, *sched
, *test
;
3226 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
3227 if (empty
< 0 || empty
)
3230 umap
= isl_union_map_copy(edge
->tagged_condition
);
3231 umap
= isl_union_map_zip(umap
);
3232 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
3233 map
= isl_map_from_union_map(umap
);
3235 sched
= node_extract_schedule(edge
->src
);
3236 map
= isl_map_apply_domain(map
, sched
);
3237 sched
= node_extract_schedule(edge
->dst
);
3238 map
= isl_map_apply_range(map
, sched
);
3240 test
= isl_map_identity(isl_map_get_space(map
));
3241 local
= isl_map_is_subset(map
, test
);
3248 /* For each conditional validity constraint that is adjacent
3249 * to a condition with domain in condition_source or range in condition_sink,
3250 * turn it into an unconditional validity constraint.
3252 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
3253 __isl_take isl_union_set
*condition_source
,
3254 __isl_take isl_union_set
*condition_sink
)
3258 condition_source
= isl_union_set_coalesce(condition_source
);
3259 condition_sink
= isl_union_set_coalesce(condition_sink
);
3261 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3263 isl_union_map
*validity
;
3265 if (!is_conditional_validity(&graph
->edge
[i
]))
3267 if (is_validity(&graph
->edge
[i
]))
3270 validity
= graph
->edge
[i
].tagged_validity
;
3271 adjacent
= domain_intersects(validity
, condition_sink
);
3272 if (adjacent
>= 0 && !adjacent
)
3273 adjacent
= range_intersects(validity
, condition_source
);
3279 set_validity(&graph
->edge
[i
]);
3282 isl_union_set_free(condition_source
);
3283 isl_union_set_free(condition_sink
);
3286 isl_union_set_free(condition_source
);
3287 isl_union_set_free(condition_sink
);
3291 /* Update the dependence relations of all edges based on the current schedule
3292 * and enforce conditional validity constraints that are adjacent
3293 * to satisfied condition constraints.
3295 * First check if any of the condition constraints are satisfied
3296 * (i.e., not local to the outer schedule) and keep track of
3297 * their domain and range.
3298 * Then update all dependence relations (which removes the non-local
3300 * Finally, if any condition constraints turned out to be satisfied,
3301 * then turn all adjacent conditional validity constraints into
3302 * unconditional validity constraints.
3304 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3308 isl_union_set
*source
, *sink
;
3310 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3311 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3312 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3314 isl_union_set
*uset
;
3315 isl_union_map
*umap
;
3317 if (!is_condition(&graph
->edge
[i
]))
3319 if (is_local(&graph
->edge
[i
]))
3321 local
= is_condition_false(&graph
->edge
[i
]);
3329 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3330 uset
= isl_union_map_domain(umap
);
3331 source
= isl_union_set_union(source
, uset
);
3333 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3334 uset
= isl_union_map_range(umap
);
3335 sink
= isl_union_set_union(sink
, uset
);
3338 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3339 if (update_edge(ctx
, graph
, &graph
->edge
[i
]) < 0)
3344 return unconditionalize_adjacent_validity(graph
, source
, sink
);
3346 isl_union_set_free(source
);
3347 isl_union_set_free(sink
);
3350 isl_union_set_free(source
);
3351 isl_union_set_free(sink
);
3355 static void next_band(struct isl_sched_graph
*graph
)
3357 graph
->band_start
= graph
->n_total_row
;
3360 /* Return the union of the universe domains of the nodes in "graph"
3361 * that satisfy "pred".
3363 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
3364 struct isl_sched_graph
*graph
,
3365 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
3371 for (i
= 0; i
< graph
->n
; ++i
)
3372 if (pred(&graph
->node
[i
], data
))
3376 isl_die(ctx
, isl_error_internal
,
3377 "empty component", return NULL
);
3379 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3380 dom
= isl_union_set_from_set(set
);
3382 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
3383 if (!pred(&graph
->node
[i
], data
))
3385 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3386 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
3392 /* Return a list of unions of universe domains, where each element
3393 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3395 static __isl_give isl_union_set_list
*extract_sccs(isl_ctx
*ctx
,
3396 struct isl_sched_graph
*graph
)
3399 isl_union_set_list
*filters
;
3401 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
3402 for (i
= 0; i
< graph
->scc
; ++i
) {
3405 dom
= isl_sched_graph_domain(ctx
, graph
, &node_scc_exactly
, i
);
3406 filters
= isl_union_set_list_add(filters
, dom
);
3412 /* Return a list of two unions of universe domains, one for the SCCs up
3413 * to and including graph->src_scc and another for the other SCCs.
3415 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
3416 struct isl_sched_graph
*graph
)
3419 isl_union_set_list
*filters
;
3421 filters
= isl_union_set_list_alloc(ctx
, 2);
3422 dom
= isl_sched_graph_domain(ctx
, graph
,
3423 &node_scc_at_most
, graph
->src_scc
);
3424 filters
= isl_union_set_list_add(filters
, dom
);
3425 dom
= isl_sched_graph_domain(ctx
, graph
,
3426 &node_scc_at_least
, graph
->src_scc
+ 1);
3427 filters
= isl_union_set_list_add(filters
, dom
);
3432 /* Copy nodes that satisfy node_pred from the src dependence graph
3433 * to the dst dependence graph.
3435 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
3436 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
3441 for (i
= 0; i
< src
->n
; ++i
) {
3444 if (!node_pred(&src
->node
[i
], data
))
3448 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
3449 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
3450 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
3451 dst
->node
[j
].compress
=
3452 isl_multi_aff_copy(src
->node
[i
].compress
);
3453 dst
->node
[j
].decompress
=
3454 isl_multi_aff_copy(src
->node
[i
].decompress
);
3455 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
3456 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
3457 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
3458 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
3459 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
3460 dst
->node
[j
].sizes
= isl_multi_val_copy(src
->node
[i
].sizes
);
3461 dst
->node
[j
].bounds
= isl_basic_set_copy(src
->node
[i
].bounds
);
3462 dst
->node
[j
].max
= isl_vec_copy(src
->node
[i
].max
);
3465 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
3467 if (dst
->node
[j
].compressed
&&
3468 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
3469 !dst
->node
[j
].decompress
))
3476 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3477 * to the dst dependence graph.
3478 * If the source or destination node of the edge is not in the destination
3479 * graph, then it must be a backward proximity edge and it should simply
3482 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
3483 struct isl_sched_graph
*src
,
3484 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
3489 for (i
= 0; i
< src
->n_edge
; ++i
) {
3490 struct isl_sched_edge
*edge
= &src
->edge
[i
];
3492 isl_union_map
*tagged_condition
;
3493 isl_union_map
*tagged_validity
;
3494 struct isl_sched_node
*dst_src
, *dst_dst
;
3496 if (!edge_pred(edge
, data
))
3499 if (isl_map_plain_is_empty(edge
->map
))
3502 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
3503 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
3504 if (!dst_src
|| !dst_dst
) {
3505 if (is_validity(edge
) || is_conditional_validity(edge
))
3506 isl_die(ctx
, isl_error_internal
,
3507 "backward (conditional) validity edge",
3512 map
= isl_map_copy(edge
->map
);
3513 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
3514 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
3516 dst
->edge
[dst
->n_edge
].src
= dst_src
;
3517 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
3518 dst
->edge
[dst
->n_edge
].map
= map
;
3519 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
3520 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
3521 dst
->edge
[dst
->n_edge
].types
= edge
->types
;
3524 if (edge
->tagged_condition
&& !tagged_condition
)
3526 if (edge
->tagged_validity
&& !tagged_validity
)
3529 if (graph_edge_tables_add(ctx
, dst
,
3530 &dst
->edge
[dst
->n_edge
- 1]) < 0)
3537 /* Compute the maximal number of variables over all nodes.
3538 * This is the maximal number of linearly independent schedule
3539 * rows that we need to compute.
3540 * Just in case we end up in a part of the dependence graph
3541 * with only lower-dimensional domains, we make sure we will
3542 * compute the required amount of extra linearly independent rows.
3544 static int compute_maxvar(struct isl_sched_graph
*graph
)
3549 for (i
= 0; i
< graph
->n
; ++i
) {
3550 struct isl_sched_node
*node
= &graph
->node
[i
];
3553 if (node_update_vmap(node
) < 0)
3555 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
3556 if (nvar
> graph
->maxvar
)
3557 graph
->maxvar
= nvar
;
3563 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3564 * "node_pred" and the edges satisfying "edge_pred" and store
3565 * the result in "sub".
3567 static int extract_sub_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3568 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3569 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3570 int data
, struct isl_sched_graph
*sub
)
3572 int i
, n
= 0, n_edge
= 0;
3575 for (i
= 0; i
< graph
->n
; ++i
)
3576 if (node_pred(&graph
->node
[i
], data
))
3578 for (i
= 0; i
< graph
->n_edge
; ++i
)
3579 if (edge_pred(&graph
->edge
[i
], data
))
3581 if (graph_alloc(ctx
, sub
, n
, n_edge
) < 0)
3583 sub
->root
= graph
->root
;
3584 if (copy_nodes(sub
, graph
, node_pred
, data
) < 0)
3586 if (graph_init_table(ctx
, sub
) < 0)
3588 for (t
= 0; t
<= isl_edge_last
; ++t
)
3589 sub
->max_edge
[t
] = graph
->max_edge
[t
];
3590 if (graph_init_edge_tables(ctx
, sub
) < 0)
3592 if (copy_edges(ctx
, sub
, graph
, edge_pred
, data
) < 0)
3594 sub
->n_row
= graph
->n_row
;
3595 sub
->max_row
= graph
->max_row
;
3596 sub
->n_total_row
= graph
->n_total_row
;
3597 sub
->band_start
= graph
->band_start
;
3602 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
3603 struct isl_sched_graph
*graph
);
3604 static __isl_give isl_schedule_node
*compute_schedule_wcc(
3605 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
3607 /* Compute a schedule for a subgraph of "graph". In particular, for
3608 * the graph composed of nodes that satisfy node_pred and edges that
3609 * that satisfy edge_pred.
3610 * If the subgraph is known to consist of a single component, then wcc should
3611 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3612 * Otherwise, we call compute_schedule, which will check whether the subgraph
3615 * The schedule is inserted at "node" and the updated schedule node
3618 static __isl_give isl_schedule_node
*compute_sub_schedule(
3619 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
3620 struct isl_sched_graph
*graph
,
3621 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3622 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3625 struct isl_sched_graph split
= { 0 };
3627 if (extract_sub_graph(ctx
, graph
, node_pred
, edge_pred
, data
,
3632 node
= compute_schedule_wcc(node
, &split
);
3634 node
= compute_schedule(node
, &split
);
3636 graph_free(ctx
, &split
);
3639 graph_free(ctx
, &split
);
3640 return isl_schedule_node_free(node
);
3643 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3645 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3648 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3650 return edge
->dst
->scc
<= scc
;
3653 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3655 return edge
->src
->scc
>= scc
;
3658 /* Reset the current band by dropping all its schedule rows.
3660 static int reset_band(struct isl_sched_graph
*graph
)
3665 drop
= graph
->n_total_row
- graph
->band_start
;
3666 graph
->n_total_row
-= drop
;
3667 graph
->n_row
-= drop
;
3669 for (i
= 0; i
< graph
->n
; ++i
) {
3670 struct isl_sched_node
*node
= &graph
->node
[i
];
3672 isl_map_free(node
->sched_map
);
3673 node
->sched_map
= NULL
;
3675 node
->sched
= isl_mat_drop_rows(node
->sched
,
3676 graph
->band_start
, drop
);
3685 /* Split the current graph into two parts and compute a schedule for each
3686 * part individually. In particular, one part consists of all SCCs up
3687 * to and including graph->src_scc, while the other part contains the other
3688 * SCCs. The split is enforced by a sequence node inserted at position "node"
3689 * in the schedule tree. Return the updated schedule node.
3690 * If either of these two parts consists of a sequence, then it is spliced
3691 * into the sequence containing the two parts.
3693 * The current band is reset. It would be possible to reuse
3694 * the previously computed rows as the first rows in the next
3695 * band, but recomputing them may result in better rows as we are looking
3696 * at a smaller part of the dependence graph.
3698 static __isl_give isl_schedule_node
*compute_split_schedule(
3699 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3703 isl_union_set_list
*filters
;
3708 if (reset_band(graph
) < 0)
3709 return isl_schedule_node_free(node
);
3713 ctx
= isl_schedule_node_get_ctx(node
);
3714 filters
= extract_split(ctx
, graph
);
3715 node
= isl_schedule_node_insert_sequence(node
, filters
);
3716 node
= isl_schedule_node_child(node
, 1);
3717 node
= isl_schedule_node_child(node
, 0);
3719 node
= compute_sub_schedule(node
, ctx
, graph
,
3720 &node_scc_at_least
, &edge_src_scc_at_least
,
3721 graph
->src_scc
+ 1, 0);
3722 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3723 node
= isl_schedule_node_parent(node
);
3724 node
= isl_schedule_node_parent(node
);
3726 node
= isl_schedule_node_sequence_splice_child(node
, 1);
3727 node
= isl_schedule_node_child(node
, 0);
3728 node
= isl_schedule_node_child(node
, 0);
3729 node
= compute_sub_schedule(node
, ctx
, graph
,
3730 &node_scc_at_most
, &edge_dst_scc_at_most
,
3732 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3733 node
= isl_schedule_node_parent(node
);
3734 node
= isl_schedule_node_parent(node
);
3736 node
= isl_schedule_node_sequence_splice_child(node
, 0);
3741 /* Insert a band node at position "node" in the schedule tree corresponding
3742 * to the current band in "graph". Mark the band node permutable
3743 * if "permutable" is set.
3744 * The partial schedules and the coincidence property are extracted
3745 * from the graph nodes.
3746 * Return the updated schedule node.
3748 static __isl_give isl_schedule_node
*insert_current_band(
3749 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3755 isl_multi_pw_aff
*mpa
;
3756 isl_multi_union_pw_aff
*mupa
;
3762 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3763 "graph should have at least one node",
3764 return isl_schedule_node_free(node
));
3766 start
= graph
->band_start
;
3767 end
= graph
->n_total_row
;
3770 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[0], start
, n
);
3771 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3772 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3774 for (i
= 1; i
< graph
->n
; ++i
) {
3775 isl_multi_union_pw_aff
*mupa_i
;
3777 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[i
],
3779 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3780 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3781 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3783 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3785 for (i
= 0; i
< n
; ++i
)
3786 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3787 graph
->node
[0].coincident
[start
+ i
]);
3788 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3793 /* Update the dependence relations based on the current schedule,
3794 * add the current band to "node" and then continue with the computation
3796 * Return the updated schedule node.
3798 static __isl_give isl_schedule_node
*compute_next_band(
3799 __isl_take isl_schedule_node
*node
,
3800 struct isl_sched_graph
*graph
, int permutable
)
3807 ctx
= isl_schedule_node_get_ctx(node
);
3808 if (update_edges(ctx
, graph
) < 0)
3809 return isl_schedule_node_free(node
);
3810 node
= insert_current_band(node
, graph
, permutable
);
3813 node
= isl_schedule_node_child(node
, 0);
3814 node
= compute_schedule(node
, graph
);
3815 node
= isl_schedule_node_parent(node
);
3820 /* Add the constraints "coef" derived from an edge from "node" to itself
3821 * to graph->lp in order to respect the dependences and to try and carry them.
3822 * "pos" is the sequence number of the edge that needs to be carried.
3823 * "coef" represents general constraints on coefficients (c_0, c_x)
3824 * of valid constraints for (y - x) with x and y instances of the node.
3826 * The constraints added to graph->lp need to enforce
3828 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3829 * = c_j_x (y - x) >= e_i
3831 * for each (x,y) in the dependence relation of the edge.
3832 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3833 * taking into account that each coefficient in c_j_x is represented
3834 * as a pair of non-negative coefficients.
3836 static isl_stat
add_intra_constraints(struct isl_sched_graph
*graph
,
3837 struct isl_sched_node
*node
, __isl_take isl_basic_set
*coef
, int pos
)
3841 isl_dim_map
*dim_map
;
3844 return isl_stat_error
;
3846 ctx
= isl_basic_set_get_ctx(coef
);
3847 offset
= coef_var_offset(coef
);
3848 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
3849 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3850 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3855 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3856 * to graph->lp in order to respect the dependences and to try and carry them.
3857 * "pos" is the sequence number of the edge that needs to be carried or
3858 * -1 if no attempt should be made to carry the dependences.
3859 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3860 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3862 * The constraints added to graph->lp need to enforce
3864 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3866 * for each (x,y) in the dependence relation of the edge or
3868 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3872 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3874 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3875 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3876 * taking into account that each coefficient in c_j_x and c_k_x is represented
3877 * as a pair of non-negative coefficients.
3879 static isl_stat
add_inter_constraints(struct isl_sched_graph
*graph
,
3880 struct isl_sched_node
*src
, struct isl_sched_node
*dst
,
3881 __isl_take isl_basic_set
*coef
, int pos
)
3885 isl_dim_map
*dim_map
;
3888 return isl_stat_error
;
3890 ctx
= isl_basic_set_get_ctx(coef
);
3891 offset
= coef_var_offset(coef
);
3892 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
3894 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3895 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3900 /* Data structure for keeping track of the data needed
3901 * to exploit non-trivial lineality spaces.
3903 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3904 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3905 * "equivalent" connects instances to other instances on the same line(s).
3906 * "mask" contains the domain spaces of "equivalent".
3907 * Any instance set not in "mask" does not have a non-trivial lineality space.
3909 struct isl_exploit_lineality_data
{
3910 isl_bool any_non_trivial
;
3911 isl_union_map
*equivalent
;
3912 isl_union_set
*mask
;
3915 /* Data structure collecting information used during the construction
3916 * of an LP for carrying dependences.
3918 * "intra" is a sequence of coefficient constraints for intra-node edges.
3919 * "inter" is a sequence of coefficient constraints for inter-node edges.
3920 * "lineality" contains data used to exploit non-trivial lineality spaces.
3923 isl_basic_set_list
*intra
;
3924 isl_basic_set_list
*inter
;
3925 struct isl_exploit_lineality_data lineality
;
3928 /* Free all the data stored in "carry".
3930 static void isl_carry_clear(struct isl_carry
*carry
)
3932 isl_basic_set_list_free(carry
->intra
);
3933 isl_basic_set_list_free(carry
->inter
);
3934 isl_union_map_free(carry
->lineality
.equivalent
);
3935 isl_union_set_free(carry
->lineality
.mask
);
3938 /* Return a pointer to the node in "graph" that lives in "space".
3939 * If the requested node has been compressed, then "space"
3940 * corresponds to the compressed space.
3942 * First try and see if "space" is the space of an uncompressed node.
3943 * If so, return that node.
3944 * Otherwise, "space" was constructed by construct_compressed_id and
3945 * contains a user pointer pointing to the node in the tuple id.
3946 * However, this node belongs to the original dependence graph.
3947 * If "graph" is a subgraph of this original dependence graph,
3948 * then the node with the same space still needs to be looked up
3949 * in the current graph.
3951 static struct isl_sched_node
*graph_find_compressed_node(isl_ctx
*ctx
,
3952 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
3955 struct isl_sched_node
*node
;
3960 node
= graph_find_node(ctx
, graph
, space
);
3964 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
3965 node
= isl_id_get_user(id
);
3971 if (!is_node(graph
->root
, node
))
3972 isl_die(ctx
, isl_error_internal
,
3973 "space points to invalid node", return NULL
);
3974 if (graph
!= graph
->root
)
3975 node
= graph_find_node(ctx
, graph
, node
->space
);
3980 /* Internal data structure for add_all_constraints.
3982 * "graph" is the schedule constraint graph for which an LP problem
3983 * is being constructed.
3984 * "carry_inter" indicates whether inter-node edges should be carried.
3985 * "pos" is the position of the next edge that needs to be carried.
3987 struct isl_add_all_constraints_data
{
3989 struct isl_sched_graph
*graph
;
3994 /* Add the constraints "coef" derived from an edge from a node to itself
3995 * to data->graph->lp in order to respect the dependences and
3996 * to try and carry them.
3998 * The space of "coef" is of the form
4000 * coefficients[[c_cst] -> S[c_x]]
4002 * with S[c_x] the (compressed) space of the node.
4003 * Extract the node from the space and call add_intra_constraints.
4005 static isl_stat
lp_add_intra(__isl_take isl_basic_set
*coef
, void *user
)
4007 struct isl_add_all_constraints_data
*data
= user
;
4009 struct isl_sched_node
*node
;
4011 space
= isl_basic_set_get_space(coef
);
4012 space
= isl_space_range(isl_space_unwrap(space
));
4013 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4014 isl_space_free(space
);
4015 return add_intra_constraints(data
->graph
, node
, coef
, data
->pos
++);
4018 /* Add the constraints "coef" derived from an edge from a node j
4019 * to a node k to data->graph->lp in order to respect the dependences and
4020 * to try and carry them (provided data->carry_inter is set).
4022 * The space of "coef" is of the form
4024 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4026 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4027 * Extract the nodes from the space and call add_inter_constraints.
4029 static isl_stat
lp_add_inter(__isl_take isl_basic_set
*coef
, void *user
)
4031 struct isl_add_all_constraints_data
*data
= user
;
4032 isl_space
*space
, *dom
;
4033 struct isl_sched_node
*src
, *dst
;
4036 space
= isl_basic_set_get_space(coef
);
4037 space
= isl_space_unwrap(isl_space_range(isl_space_unwrap(space
)));
4038 dom
= isl_space_domain(isl_space_copy(space
));
4039 src
= graph_find_compressed_node(data
->ctx
, data
->graph
, dom
);
4040 isl_space_free(dom
);
4041 space
= isl_space_range(space
);
4042 dst
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4043 isl_space_free(space
);
4045 pos
= data
->carry_inter
? data
->pos
++ : -1;
4046 return add_inter_constraints(data
->graph
, src
, dst
, coef
, pos
);
4049 /* Add constraints to graph->lp that force all (conditional) validity
4050 * dependences to be respected and attempt to carry them.
4051 * "intra" is the sequence of coefficient constraints for intra-node edges.
4052 * "inter" is the sequence of coefficient constraints for inter-node edges.
4053 * "carry_inter" indicates whether inter-node edges should be carried or
4056 static isl_stat
add_all_constraints(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4057 __isl_keep isl_basic_set_list
*intra
,
4058 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4060 struct isl_add_all_constraints_data data
= { ctx
, graph
, carry_inter
};
4063 if (isl_basic_set_list_foreach(intra
, &lp_add_intra
, &data
) < 0)
4064 return isl_stat_error
;
4065 if (isl_basic_set_list_foreach(inter
, &lp_add_inter
, &data
) < 0)
4066 return isl_stat_error
;
4070 /* Internal data structure for count_all_constraints
4071 * for keeping track of the number of equality and inequality constraints.
4073 struct isl_sched_count
{
4078 /* Add the number of equality and inequality constraints of "bset"
4079 * to data->n_eq and data->n_ineq.
4081 static isl_stat
bset_update_count(__isl_take isl_basic_set
*bset
, void *user
)
4083 struct isl_sched_count
*data
= user
;
4085 return update_count(bset
, 1, &data
->n_eq
, &data
->n_ineq
);
4088 /* Count the number of equality and inequality constraints
4089 * that will be added to the carry_lp problem.
4090 * We count each edge exactly once.
4091 * "intra" is the sequence of coefficient constraints for intra-node edges.
4092 * "inter" is the sequence of coefficient constraints for inter-node edges.
4094 static isl_stat
count_all_constraints(__isl_keep isl_basic_set_list
*intra
,
4095 __isl_keep isl_basic_set_list
*inter
, int *n_eq
, int *n_ineq
)
4097 struct isl_sched_count data
;
4099 data
.n_eq
= data
.n_ineq
= 0;
4100 if (isl_basic_set_list_foreach(inter
, &bset_update_count
, &data
) < 0)
4101 return isl_stat_error
;
4102 if (isl_basic_set_list_foreach(intra
, &bset_update_count
, &data
) < 0)
4103 return isl_stat_error
;
4106 *n_ineq
= data
.n_ineq
;
4111 /* Construct an LP problem for finding schedule coefficients
4112 * such that the schedule carries as many validity dependences as possible.
4113 * In particular, for each dependence i, we bound the dependence distance
4114 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4115 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4116 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4117 * "intra" is the sequence of coefficient constraints for intra-node edges.
4118 * "inter" is the sequence of coefficient constraints for inter-node edges.
4119 * "n_edge" is the total number of edges.
4120 * "carry_inter" indicates whether inter-node edges should be carried or
4121 * only respected. That is, if "carry_inter" is not set, then
4122 * no e_i variables are introduced for the inter-node edges.
4124 * All variables of the LP are non-negative. The actual coefficients
4125 * may be negative, so each coefficient is represented as the difference
4126 * of two non-negative variables. The negative part always appears
4127 * immediately before the positive part.
4128 * Other than that, the variables have the following order
4130 * - sum of (1 - e_i) over all edges
4131 * - sum of all c_n coefficients
4132 * (unconstrained when computing non-parametric schedules)
4133 * - sum of positive and negative parts of all c_x coefficients
4137 * - positive and negative parts of c_i_x, in opposite order
4138 * - c_i_n (if parametric)
4141 * The constraints are those from the (validity) edges plus three equalities
4142 * to express the sums and n_edge inequalities to express e_i <= 1.
4144 static isl_stat
setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4145 int n_edge
, __isl_keep isl_basic_set_list
*intra
,
4146 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4155 for (i
= 0; i
< graph
->n
; ++i
) {
4156 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
4157 node
->start
= total
;
4158 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
4161 if (count_all_constraints(intra
, inter
, &n_eq
, &n_ineq
) < 0)
4162 return isl_stat_error
;
4164 dim
= isl_space_set_alloc(ctx
, 0, total
);
4165 isl_basic_set_free(graph
->lp
);
4168 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
4169 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
4171 k
= isl_basic_set_alloc_equality(graph
->lp
);
4173 return isl_stat_error
;
4174 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
4175 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
4176 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
4177 for (i
= 0; i
< n_edge
; ++i
)
4178 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
4180 if (add_param_sum_constraint(graph
, 1) < 0)
4181 return isl_stat_error
;
4182 if (add_var_sum_constraint(graph
, 2) < 0)
4183 return isl_stat_error
;
4185 for (i
= 0; i
< n_edge
; ++i
) {
4186 k
= isl_basic_set_alloc_inequality(graph
->lp
);
4188 return isl_stat_error
;
4189 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
4190 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
4191 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
4194 if (add_all_constraints(ctx
, graph
, intra
, inter
, carry_inter
) < 0)
4195 return isl_stat_error
;
4200 static __isl_give isl_schedule_node
*compute_component_schedule(
4201 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4204 /* If the schedule_split_scaled option is set and if the linear
4205 * parts of the scheduling rows for all nodes in the graphs have
4206 * a non-trivial common divisor, then remove this
4207 * common divisor from the linear part.
4208 * Otherwise, insert a band node directly and continue with
4209 * the construction of the schedule.
4211 * If a non-trivial common divisor is found, then
4212 * the linear part is reduced and the remainder is ignored.
4213 * The pieces of the graph that are assigned different remainders
4214 * form (groups of) strongly connected components within
4215 * the scaled down band. If needed, they can therefore
4216 * be ordered along this remainder in a sequence node.
4217 * However, this ordering is not enforced here in order to allow
4218 * the scheduler to combine some of the strongly connected components.
4220 static __isl_give isl_schedule_node
*split_scaled(
4221 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4231 ctx
= isl_schedule_node_get_ctx(node
);
4232 if (!ctx
->opt
->schedule_split_scaled
)
4233 return compute_next_band(node
, graph
, 0);
4235 return compute_next_band(node
, graph
, 0);
4238 isl_int_init(gcd_i
);
4240 isl_int_set_si(gcd
, 0);
4242 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
4244 for (i
= 0; i
< graph
->n
; ++i
) {
4245 struct isl_sched_node
*node
= &graph
->node
[i
];
4246 int cols
= isl_mat_cols(node
->sched
);
4248 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
4249 isl_int_gcd(gcd
, gcd
, gcd_i
);
4252 isl_int_clear(gcd_i
);
4254 if (isl_int_cmp_si(gcd
, 1) <= 0) {
4256 return compute_next_band(node
, graph
, 0);
4259 for (i
= 0; i
< graph
->n
; ++i
) {
4260 struct isl_sched_node
*node
= &graph
->node
[i
];
4262 isl_int_fdiv_q(node
->sched
->row
[row
][0],
4263 node
->sched
->row
[row
][0], gcd
);
4264 isl_int_mul(node
->sched
->row
[row
][0],
4265 node
->sched
->row
[row
][0], gcd
);
4266 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
4273 return compute_next_band(node
, graph
, 0);
4276 return isl_schedule_node_free(node
);
4279 /* Is the schedule row "sol" trivial on node "node"?
4280 * That is, is the solution zero on the dimensions linearly independent of
4281 * the previously found solutions?
4282 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4284 * Each coefficient is represented as the difference between
4285 * two non-negative values in "sol".
4286 * We construct the schedule row s and check if it is linearly
4287 * independent of previously computed schedule rows
4288 * by computing T s, with T the linear combinations that are zero
4289 * on linearly dependent schedule rows.
4290 * If the result consists of all zeros, then the solution is trivial.
4292 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
4299 if (node
->nvar
== node
->rank
)
4302 node_sol
= extract_var_coef(node
, sol
);
4303 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->indep
), node_sol
);
4307 trivial
= isl_seq_first_non_zero(node_sol
->el
,
4308 node
->nvar
- node
->rank
) == -1;
4310 isl_vec_free(node_sol
);
4315 /* Is the schedule row "sol" trivial on any node where it should
4317 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4319 static int is_any_trivial(struct isl_sched_graph
*graph
,
4320 __isl_keep isl_vec
*sol
)
4324 for (i
= 0; i
< graph
->n
; ++i
) {
4325 struct isl_sched_node
*node
= &graph
->node
[i
];
4328 if (!needs_row(graph
, node
))
4330 trivial
= is_trivial(node
, sol
);
4331 if (trivial
< 0 || trivial
)
4338 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4339 * If so, return the position of the coalesced dimension.
4340 * Otherwise, return node->nvar or -1 on error.
4342 * In particular, look for pairs of coefficients c_i and c_j such that
4343 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4344 * If any such pair is found, then return i.
4345 * If size_i is infinity, then no check on c_i needs to be performed.
4347 static int find_node_coalescing(struct isl_sched_node
*node
,
4348 __isl_keep isl_vec
*sol
)
4354 if (node
->nvar
<= 1)
4357 csol
= extract_var_coef(node
, sol
);
4361 for (i
= 0; i
< node
->nvar
; ++i
) {
4364 if (isl_int_is_zero(csol
->el
[i
]))
4366 v
= isl_multi_val_get_val(node
->sizes
, i
);
4369 if (!isl_val_is_int(v
)) {
4373 v
= isl_val_div_ui(v
, 2);
4374 v
= isl_val_ceil(v
);
4377 isl_int_mul(max
, v
->n
, csol
->el
[i
]);
4380 for (j
= 0; j
< node
->nvar
; ++j
) {
4383 if (isl_int_abs_gt(csol
->el
[j
], max
))
4399 /* Force the schedule coefficient at position "pos" of "node" to be zero
4401 * The coefficient is encoded as the difference between two non-negative
4402 * variables. Force these two variables to have the same value.
4404 static __isl_give isl_tab_lexmin
*zero_out_node_coef(
4405 __isl_take isl_tab_lexmin
*tl
, struct isl_sched_node
*node
, int pos
)
4411 ctx
= isl_space_get_ctx(node
->space
);
4412 dim
= isl_tab_lexmin_dim(tl
);
4414 return isl_tab_lexmin_free(tl
);
4415 eq
= isl_vec_alloc(ctx
, 1 + dim
);
4416 eq
= isl_vec_clr(eq
);
4418 return isl_tab_lexmin_free(tl
);
4420 pos
= 1 + node_var_coef_pos(node
, pos
);
4421 isl_int_set_si(eq
->el
[pos
], 1);
4422 isl_int_set_si(eq
->el
[pos
+ 1], -1);
4423 tl
= isl_tab_lexmin_add_eq(tl
, eq
->el
);
4429 /* Return the lexicographically smallest rational point in the basic set
4430 * from which "tl" was constructed, double checking that this input set
4433 static __isl_give isl_vec
*non_empty_solution(__isl_keep isl_tab_lexmin
*tl
)
4437 sol
= isl_tab_lexmin_get_solution(tl
);
4441 isl_die(isl_vec_get_ctx(sol
), isl_error_internal
,
4442 "error in schedule construction",
4443 return isl_vec_free(sol
));
4447 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4448 * carry any of the "n_edge" groups of dependences?
4449 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4450 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4451 * by the edge are carried by the solution.
4452 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4453 * one of those is carried.
4455 * Note that despite the fact that the problem is solved using a rational
4456 * solver, the solution is guaranteed to be integral.
4457 * Specifically, the dependence distance lower bounds e_i (and therefore
4458 * also their sum) are integers. See Lemma 5 of [1].
4460 * Any potential denominator of the sum is cleared by this function.
4461 * The denominator is not relevant for any of the other elements
4464 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4465 * Problem, Part II: Multi-Dimensional Time.
4466 * In Intl. Journal of Parallel Programming, 1992.
4468 static int carries_dependences(__isl_keep isl_vec
*sol
, int n_edge
)
4470 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
4471 isl_int_set_si(sol
->el
[0], 1);
4472 return isl_int_cmp_si(sol
->el
[1], n_edge
) < 0;
4475 /* Return the lexicographically smallest rational point in "lp",
4476 * assuming that all variables are non-negative and performing some
4477 * additional sanity checks.
4478 * If "want_integral" is set, then compute the lexicographically smallest
4479 * integer point instead.
4480 * In particular, "lp" should not be empty by construction.
4481 * Double check that this is the case.
4482 * If dependences are not carried for any of the "n_edge" edges,
4483 * then return an empty vector.
4485 * If the schedule_treat_coalescing option is set and
4486 * if the computed schedule performs loop coalescing on a given node,
4487 * i.e., if it is of the form
4489 * c_i i + c_j j + ...
4491 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4492 * to cut out this solution. Repeat this process until no more loop
4493 * coalescing occurs or until no more dependences can be carried.
4494 * In the latter case, revert to the previously computed solution.
4496 * If the caller requests an integral solution and if coalescing should
4497 * be treated, then perform the coalescing treatment first as
4498 * an integral solution computed before coalescing treatment
4499 * would carry the same number of edges and would therefore probably
4500 * also be coalescing.
4502 * To allow the coalescing treatment to be performed first,
4503 * the initial solution is allowed to be rational and it is only
4504 * cut out (if needed) in the next iteration, if no coalescing measures
4507 static __isl_give isl_vec
*non_neg_lexmin(struct isl_sched_graph
*graph
,
4508 __isl_take isl_basic_set
*lp
, int n_edge
, int want_integral
)
4513 isl_vec
*sol
, *prev
= NULL
;
4514 int treat_coalescing
;
4518 ctx
= isl_basic_set_get_ctx(lp
);
4519 treat_coalescing
= isl_options_get_schedule_treat_coalescing(ctx
);
4520 tl
= isl_tab_lexmin_from_basic_set(lp
);
4527 tl
= isl_tab_lexmin_cut_to_integer(tl
);
4528 sol
= non_empty_solution(tl
);
4532 integral
= isl_int_is_one(sol
->el
[0]);
4533 if (!carries_dependences(sol
, n_edge
)) {
4535 prev
= isl_vec_alloc(ctx
, 0);
4540 prev
= isl_vec_free(prev
);
4541 cut
= want_integral
&& !integral
;
4544 if (!treat_coalescing
)
4546 for (i
= 0; i
< graph
->n
; ++i
) {
4547 struct isl_sched_node
*node
= &graph
->node
[i
];
4549 pos
= find_node_coalescing(node
, sol
);
4552 if (pos
< node
->nvar
)
4557 tl
= zero_out_node_coef(tl
, &graph
->node
[i
], pos
);
4562 isl_tab_lexmin_free(tl
);
4566 isl_tab_lexmin_free(tl
);
4572 /* If "edge" is an edge from a node to itself, then add the corresponding
4573 * dependence relation to "umap".
4574 * If "node" has been compressed, then the dependence relation
4575 * is also compressed first.
4577 static __isl_give isl_union_map
*add_intra(__isl_take isl_union_map
*umap
,
4578 struct isl_sched_edge
*edge
)
4581 struct isl_sched_node
*node
= edge
->src
;
4583 if (edge
->src
!= edge
->dst
)
4586 map
= isl_map_copy(edge
->map
);
4587 if (node
->compressed
) {
4588 map
= isl_map_preimage_domain_multi_aff(map
,
4589 isl_multi_aff_copy(node
->decompress
));
4590 map
= isl_map_preimage_range_multi_aff(map
,
4591 isl_multi_aff_copy(node
->decompress
));
4593 umap
= isl_union_map_add_map(umap
, map
);
4597 /* If "edge" is an edge from a node to another node, then add the corresponding
4598 * dependence relation to "umap".
4599 * If the source or destination nodes of "edge" have been compressed,
4600 * then the dependence relation is also compressed first.
4602 static __isl_give isl_union_map
*add_inter(__isl_take isl_union_map
*umap
,
4603 struct isl_sched_edge
*edge
)
4607 if (edge
->src
== edge
->dst
)
4610 map
= isl_map_copy(edge
->map
);
4611 if (edge
->src
->compressed
)
4612 map
= isl_map_preimage_domain_multi_aff(map
,
4613 isl_multi_aff_copy(edge
->src
->decompress
));
4614 if (edge
->dst
->compressed
)
4615 map
= isl_map_preimage_range_multi_aff(map
,
4616 isl_multi_aff_copy(edge
->dst
->decompress
));
4617 umap
= isl_union_map_add_map(umap
, map
);
4621 /* Internal data structure used by union_drop_coalescing_constraints
4622 * to collect bounds on all relevant statements.
4624 * "graph" is the schedule constraint graph for which an LP problem
4625 * is being constructed.
4626 * "bounds" collects the bounds.
4628 struct isl_collect_bounds_data
{
4630 struct isl_sched_graph
*graph
;
4631 isl_union_set
*bounds
;
4634 /* Add the size bounds for the node with instance deltas in "set"
4637 static isl_stat
collect_bounds(__isl_take isl_set
*set
, void *user
)
4639 struct isl_collect_bounds_data
*data
= user
;
4640 struct isl_sched_node
*node
;
4644 space
= isl_set_get_space(set
);
4647 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4648 isl_space_free(space
);
4650 bounds
= isl_set_from_basic_set(get_size_bounds(node
));
4651 data
->bounds
= isl_union_set_add_set(data
->bounds
, bounds
);
4656 /* Drop some constraints from "delta" that could be exploited
4657 * to construct loop coalescing schedules.
4658 * In particular, drop those constraint that bound the difference
4659 * to the size of the domain.
4660 * Do this for each set/node in "delta" separately.
4661 * The parameters are assumed to have been projected out by the caller.
4663 static __isl_give isl_union_set
*union_drop_coalescing_constraints(isl_ctx
*ctx
,
4664 struct isl_sched_graph
*graph
, __isl_take isl_union_set
*delta
)
4666 struct isl_collect_bounds_data data
= { ctx
, graph
};
4668 data
.bounds
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4669 if (isl_union_set_foreach_set(delta
, &collect_bounds
, &data
) < 0)
4670 data
.bounds
= isl_union_set_free(data
.bounds
);
4671 delta
= isl_union_set_plain_gist(delta
, data
.bounds
);
4676 /* Given a non-trivial lineality space "lineality", add the corresponding
4677 * universe set to data->mask and add a map from elements to
4678 * other elements along the lines in "lineality" to data->equivalent.
4679 * If this is the first time this function gets called
4680 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4681 * initialize data->mask and data->equivalent.
4683 * In particular, if the lineality space is defined by equality constraints
4687 * then construct an affine mapping
4691 * and compute the equivalence relation of having the same image under f:
4693 * { x -> x' : E x = E x' }
4695 static isl_stat
add_non_trivial_lineality(__isl_take isl_basic_set
*lineality
,
4696 struct isl_exploit_lineality_data
*data
)
4702 isl_multi_pw_aff
*mpa
;
4707 return isl_stat_error
;
4708 if (isl_basic_set_dim(lineality
, isl_dim_div
) != 0)
4709 isl_die(isl_basic_set_get_ctx(lineality
), isl_error_internal
,
4710 "local variables not allowed", goto error
);
4712 space
= isl_basic_set_get_space(lineality
);
4713 if (!data
->any_non_trivial
) {
4714 data
->equivalent
= isl_union_map_empty(isl_space_copy(space
));
4715 data
->mask
= isl_union_set_empty(isl_space_copy(space
));
4717 data
->any_non_trivial
= isl_bool_true
;
4719 univ
= isl_set_universe(isl_space_copy(space
));
4720 data
->mask
= isl_union_set_add_set(data
->mask
, univ
);
4722 eq
= isl_basic_set_extract_equalities(lineality
);
4723 n
= isl_mat_rows(eq
);
4724 eq
= isl_mat_insert_zero_rows(eq
, 0, 1);
4725 eq
= isl_mat_set_element_si(eq
, 0, 0, 1);
4726 space
= isl_space_from_domain(space
);
4727 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
4728 ma
= isl_multi_aff_from_aff_mat(space
, eq
);
4729 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
4730 map
= isl_multi_pw_aff_eq_map(mpa
, isl_multi_pw_aff_copy(mpa
));
4731 data
->equivalent
= isl_union_map_add_map(data
->equivalent
, map
);
4733 isl_basic_set_free(lineality
);
4736 isl_basic_set_free(lineality
);
4737 return isl_stat_error
;
4740 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4741 * the origin or, in other words, satisfies a number of equality constraints
4742 * that is smaller than the dimension of the set).
4743 * If so, extend data->mask and data->equivalent accordingly.
4745 * The input should not have any local variables already, but
4746 * isl_set_remove_divs is called to make sure it does not.
4748 static isl_stat
add_lineality(__isl_take isl_set
*set
, void *user
)
4750 struct isl_exploit_lineality_data
*data
= user
;
4751 isl_basic_set
*hull
;
4754 set
= isl_set_remove_divs(set
);
4755 hull
= isl_set_unshifted_simple_hull(set
);
4756 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
4757 n_eq
= isl_basic_set_n_equality(hull
);
4759 return isl_stat_error
;
4761 return add_non_trivial_lineality(hull
, data
);
4762 isl_basic_set_free(hull
);
4766 /* Check if the difference set on intra-node schedule constraints "intra"
4767 * has any non-trivial lineality space.
4768 * If so, then extend the difference set to a difference set
4769 * on equivalent elements. That is, if "intra" is
4771 * { y - x : (x,y) \in V }
4773 * and elements are equivalent if they have the same image under f,
4776 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4778 * or, since f is linear,
4780 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4782 * The results of the search for non-trivial lineality spaces is stored
4785 static __isl_give isl_union_set
*exploit_intra_lineality(
4786 __isl_take isl_union_set
*intra
,
4787 struct isl_exploit_lineality_data
*data
)
4789 isl_union_set
*lineality
;
4790 isl_union_set
*uset
;
4792 data
->any_non_trivial
= isl_bool_false
;
4793 lineality
= isl_union_set_copy(intra
);
4794 lineality
= isl_union_set_combined_lineality_space(lineality
);
4795 if (isl_union_set_foreach_set(lineality
, &add_lineality
, data
) < 0)
4796 data
->any_non_trivial
= isl_bool_error
;
4797 isl_union_set_free(lineality
);
4799 if (data
->any_non_trivial
< 0)
4800 return isl_union_set_free(intra
);
4801 if (!data
->any_non_trivial
)
4804 uset
= isl_union_set_copy(intra
);
4805 intra
= isl_union_set_subtract(intra
, isl_union_set_copy(data
->mask
));
4806 uset
= isl_union_set_apply(uset
, isl_union_map_copy(data
->equivalent
));
4807 intra
= isl_union_set_union(intra
, uset
);
4809 intra
= isl_union_set_remove_divs(intra
);
4814 /* If the difference set on intra-node schedule constraints was found to have
4815 * any non-trivial lineality space by exploit_intra_lineality,
4816 * as recorded in "data", then extend the inter-node
4817 * schedule constraints "inter" to schedule constraints on equivalent elements.
4818 * That is, if "inter" is V and
4819 * elements are equivalent if they have the same image under f, then return
4821 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4823 static __isl_give isl_union_map
*exploit_inter_lineality(
4824 __isl_take isl_union_map
*inter
,
4825 struct isl_exploit_lineality_data
*data
)
4827 isl_union_map
*umap
;
4829 if (data
->any_non_trivial
< 0)
4830 return isl_union_map_free(inter
);
4831 if (!data
->any_non_trivial
)
4834 umap
= isl_union_map_copy(inter
);
4835 inter
= isl_union_map_subtract_range(inter
,
4836 isl_union_set_copy(data
->mask
));
4837 umap
= isl_union_map_apply_range(umap
,
4838 isl_union_map_copy(data
->equivalent
));
4839 inter
= isl_union_map_union(inter
, umap
);
4840 umap
= isl_union_map_copy(inter
);
4841 inter
= isl_union_map_subtract_domain(inter
,
4842 isl_union_set_copy(data
->mask
));
4843 umap
= isl_union_map_apply_range(isl_union_map_copy(data
->equivalent
),
4845 inter
= isl_union_map_union(inter
, umap
);
4847 inter
= isl_union_map_remove_divs(inter
);
4852 /* For each (conditional) validity edge in "graph",
4853 * add the corresponding dependence relation using "add"
4854 * to a collection of dependence relations and return the result.
4855 * If "coincidence" is set, then coincidence edges are considered as well.
4857 static __isl_give isl_union_map
*collect_validity(struct isl_sched_graph
*graph
,
4858 __isl_give isl_union_map
*(*add
)(__isl_take isl_union_map
*umap
,
4859 struct isl_sched_edge
*edge
), int coincidence
)
4863 isl_union_map
*umap
;
4865 space
= isl_space_copy(graph
->node
[0].space
);
4866 umap
= isl_union_map_empty(space
);
4868 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4869 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4871 if (!is_any_validity(edge
) &&
4872 (!coincidence
|| !is_coincidence(edge
)))
4875 umap
= add(umap
, edge
);
4881 /* Project out all parameters from "uset" and return the result.
4883 static __isl_give isl_union_set
*union_set_drop_parameters(
4884 __isl_take isl_union_set
*uset
)
4888 nparam
= isl_union_set_dim(uset
, isl_dim_param
);
4889 return isl_union_set_project_out(uset
, isl_dim_param
, 0, nparam
);
4892 /* For each dependence relation on a (conditional) validity edge
4893 * from a node to itself,
4894 * construct the set of coefficients of valid constraints for elements
4895 * in that dependence relation and collect the results.
4896 * If "coincidence" is set, then coincidence edges are considered as well.
4898 * In particular, for each dependence relation R, constraints
4899 * on coefficients (c_0, c_x) are constructed such that
4901 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4903 * If the schedule_treat_coalescing option is set, then some constraints
4904 * that could be exploited to construct coalescing schedules
4905 * are removed before the dual is computed, but after the parameters
4906 * have been projected out.
4907 * The entire computation is essentially the same as that performed
4908 * by intra_coefficients, except that it operates on multiple
4909 * edges together and that the parameters are always projected out.
4911 * Additionally, exploit any non-trivial lineality space
4912 * in the difference set after removing coalescing constraints and
4913 * store the results of the non-trivial lineality space detection in "data".
4914 * The procedure is currently run unconditionally, but it is unlikely
4915 * to find any non-trivial lineality spaces if no coalescing constraints
4916 * have been removed.
4918 * Note that if a dependence relation is a union of basic maps,
4919 * then each basic map needs to be treated individually as it may only
4920 * be possible to carry the dependences expressed by some of those
4921 * basic maps and not all of them.
4922 * The collected validity constraints are therefore not coalesced and
4923 * it is assumed that they are not coalesced automatically.
4924 * Duplicate basic maps can be removed, however.
4925 * In particular, if the same basic map appears as a disjunct
4926 * in multiple edges, then it only needs to be carried once.
4928 static __isl_give isl_basic_set_list
*collect_intra_validity(isl_ctx
*ctx
,
4929 struct isl_sched_graph
*graph
, int coincidence
,
4930 struct isl_exploit_lineality_data
*data
)
4932 isl_union_map
*intra
;
4933 isl_union_set
*delta
;
4934 isl_basic_set_list
*list
;
4936 intra
= collect_validity(graph
, &add_intra
, coincidence
);
4937 delta
= isl_union_map_deltas(intra
);
4938 delta
= union_set_drop_parameters(delta
);
4939 delta
= isl_union_set_remove_divs(delta
);
4940 if (isl_options_get_schedule_treat_coalescing(ctx
))
4941 delta
= union_drop_coalescing_constraints(ctx
, graph
, delta
);
4942 delta
= exploit_intra_lineality(delta
, data
);
4943 list
= isl_union_set_get_basic_set_list(delta
);
4944 isl_union_set_free(delta
);
4946 return isl_basic_set_list_coefficients(list
);
4949 /* For each dependence relation on a (conditional) validity edge
4950 * from a node to some other node,
4951 * construct the set of coefficients of valid constraints for elements
4952 * in that dependence relation and collect the results.
4953 * If "coincidence" is set, then coincidence edges are considered as well.
4955 * In particular, for each dependence relation R, constraints
4956 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4958 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4960 * This computation is essentially the same as that performed
4961 * by inter_coefficients, except that it operates on multiple
4964 * Additionally, exploit any non-trivial lineality space
4965 * that may have been discovered by collect_intra_validity
4966 * (as stored in "data").
4968 * Note that if a dependence relation is a union of basic maps,
4969 * then each basic map needs to be treated individually as it may only
4970 * be possible to carry the dependences expressed by some of those
4971 * basic maps and not all of them.
4972 * The collected validity constraints are therefore not coalesced and
4973 * it is assumed that they are not coalesced automatically.
4974 * Duplicate basic maps can be removed, however.
4975 * In particular, if the same basic map appears as a disjunct
4976 * in multiple edges, then it only needs to be carried once.
4978 static __isl_give isl_basic_set_list
*collect_inter_validity(
4979 struct isl_sched_graph
*graph
, int coincidence
,
4980 struct isl_exploit_lineality_data
*data
)
4982 isl_union_map
*inter
;
4983 isl_union_set
*wrap
;
4984 isl_basic_set_list
*list
;
4986 inter
= collect_validity(graph
, &add_inter
, coincidence
);
4987 inter
= exploit_inter_lineality(inter
, data
);
4988 inter
= isl_union_map_remove_divs(inter
);
4989 wrap
= isl_union_map_wrap(inter
);
4990 list
= isl_union_set_get_basic_set_list(wrap
);
4991 isl_union_set_free(wrap
);
4992 return isl_basic_set_list_coefficients(list
);
4995 /* Construct an LP problem for finding schedule coefficients
4996 * such that the schedule carries as many of the "n_edge" groups of
4997 * dependences as possible based on the corresponding coefficient
4998 * constraints and return the lexicographically smallest non-trivial solution.
4999 * "intra" is the sequence of coefficient constraints for intra-node edges.
5000 * "inter" is the sequence of coefficient constraints for inter-node edges.
5001 * If "want_integral" is set, then compute an integral solution
5002 * for the coefficients rather than using the numerators
5003 * of a rational solution.
5004 * "carry_inter" indicates whether inter-node edges should be carried or
5007 * If none of the "n_edge" groups can be carried
5008 * then return an empty vector.
5010 static __isl_give isl_vec
*compute_carrying_sol_coef(isl_ctx
*ctx
,
5011 struct isl_sched_graph
*graph
, int n_edge
,
5012 __isl_keep isl_basic_set_list
*intra
,
5013 __isl_keep isl_basic_set_list
*inter
, int want_integral
,
5018 if (setup_carry_lp(ctx
, graph
, n_edge
, intra
, inter
, carry_inter
) < 0)
5021 lp
= isl_basic_set_copy(graph
->lp
);
5022 return non_neg_lexmin(graph
, lp
, n_edge
, want_integral
);
5025 /* Construct an LP problem for finding schedule coefficients
5026 * such that the schedule carries as many of the validity dependences
5028 * return the lexicographically smallest non-trivial solution.
5029 * If "fallback" is set, then the carrying is performed as a fallback
5030 * for the Pluto-like scheduler.
5031 * If "coincidence" is set, then try and carry coincidence edges as well.
5033 * The variable "n_edge" stores the number of groups that should be carried.
5034 * If none of the "n_edge" groups can be carried
5035 * then return an empty vector.
5036 * If, moreover, "n_edge" is zero, then the LP problem does not even
5037 * need to be constructed.
5039 * If a fallback solution is being computed, then compute an integral solution
5040 * for the coefficients rather than using the numerators
5041 * of a rational solution.
5043 * If a fallback solution is being computed, if there are any intra-node
5044 * dependences, and if requested by the user, then first try
5045 * to only carry those intra-node dependences.
5046 * If this fails to carry any dependences, then try again
5047 * with the inter-node dependences included.
5049 static __isl_give isl_vec
*compute_carrying_sol(isl_ctx
*ctx
,
5050 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5052 int n_intra
, n_inter
;
5054 struct isl_carry carry
= { 0 };
5057 carry
.intra
= collect_intra_validity(ctx
, graph
, coincidence
,
5059 carry
.inter
= collect_inter_validity(graph
, coincidence
,
5061 if (!carry
.intra
|| !carry
.inter
)
5063 n_intra
= isl_basic_set_list_n_basic_set(carry
.intra
);
5064 n_inter
= isl_basic_set_list_n_basic_set(carry
.inter
);
5066 if (fallback
&& n_intra
> 0 &&
5067 isl_options_get_schedule_carry_self_first(ctx
)) {
5068 sol
= compute_carrying_sol_coef(ctx
, graph
, n_intra
,
5069 carry
.intra
, carry
.inter
, fallback
, 0);
5070 if (!sol
|| sol
->size
!= 0 || n_inter
== 0) {
5071 isl_carry_clear(&carry
);
5077 n_edge
= n_intra
+ n_inter
;
5079 isl_carry_clear(&carry
);
5080 return isl_vec_alloc(ctx
, 0);
5083 sol
= compute_carrying_sol_coef(ctx
, graph
, n_edge
,
5084 carry
.intra
, carry
.inter
, fallback
, 1);
5085 isl_carry_clear(&carry
);
5088 isl_carry_clear(&carry
);
5092 /* Construct a schedule row for each node such that as many validity dependences
5093 * as possible are carried and then continue with the next band.
5094 * If "fallback" is set, then the carrying is performed as a fallback
5095 * for the Pluto-like scheduler.
5096 * If "coincidence" is set, then try and carry coincidence edges as well.
5098 * If there are no validity dependences, then no dependence can be carried and
5099 * the procedure is guaranteed to fail. If there is more than one component,
5100 * then try computing a schedule on each component separately
5101 * to prevent or at least postpone this failure.
5103 * If a schedule row is computed, then check that dependences are carried
5104 * for at least one of the edges.
5106 * If the computed schedule row turns out to be trivial on one or
5107 * more nodes where it should not be trivial, then we throw it away
5108 * and try again on each component separately.
5110 * If there is only one component, then we accept the schedule row anyway,
5111 * but we do not consider it as a complete row and therefore do not
5112 * increment graph->n_row. Note that the ranks of the nodes that
5113 * do get a non-trivial schedule part will get updated regardless and
5114 * graph->maxvar is computed based on these ranks. The test for
5115 * whether more schedule rows are required in compute_schedule_wcc
5116 * is therefore not affected.
5118 * Insert a band corresponding to the schedule row at position "node"
5119 * of the schedule tree and continue with the construction of the schedule.
5120 * This insertion and the continued construction is performed by split_scaled
5121 * after optionally checking for non-trivial common divisors.
5123 static __isl_give isl_schedule_node
*carry(__isl_take isl_schedule_node
*node
,
5124 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5133 ctx
= isl_schedule_node_get_ctx(node
);
5134 sol
= compute_carrying_sol(ctx
, graph
, fallback
, coincidence
);
5136 return isl_schedule_node_free(node
);
5137 if (sol
->size
== 0) {
5140 return compute_component_schedule(node
, graph
, 1);
5141 isl_die(ctx
, isl_error_unknown
, "unable to carry dependences",
5142 return isl_schedule_node_free(node
));
5145 trivial
= is_any_trivial(graph
, sol
);
5147 sol
= isl_vec_free(sol
);
5148 } else if (trivial
&& graph
->scc
> 1) {
5150 return compute_component_schedule(node
, graph
, 1);
5153 if (update_schedule(graph
, sol
, 0) < 0)
5154 return isl_schedule_node_free(node
);
5158 return split_scaled(node
, graph
);
5161 /* Construct a schedule row for each node such that as many validity dependences
5162 * as possible are carried and then continue with the next band.
5163 * Do so as a fallback for the Pluto-like scheduler.
5164 * If "coincidence" is set, then try and carry coincidence edges as well.
5166 static __isl_give isl_schedule_node
*carry_fallback(
5167 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5170 return carry(node
, graph
, 1, coincidence
);
5173 /* Construct a schedule row for each node such that as many validity dependences
5174 * as possible are carried and then continue with the next band.
5175 * Do so for the case where the Feautrier scheduler was selected
5178 static __isl_give isl_schedule_node
*carry_feautrier(
5179 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5181 return carry(node
, graph
, 0, 0);
5184 /* Construct a schedule row for each node such that as many validity dependences
5185 * as possible are carried and then continue with the next band.
5186 * Do so as a fallback for the Pluto-like scheduler.
5188 static __isl_give isl_schedule_node
*carry_dependences(
5189 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5191 return carry_fallback(node
, graph
, 0);
5194 /* Construct a schedule row for each node such that as many validity or
5195 * coincidence dependences as possible are carried and
5196 * then continue with the next band.
5197 * Do so as a fallback for the Pluto-like scheduler.
5199 static __isl_give isl_schedule_node
*carry_coincidence(
5200 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5202 return carry_fallback(node
, graph
, 1);
5205 /* Topologically sort statements mapped to the same schedule iteration
5206 * and add insert a sequence node in front of "node"
5207 * corresponding to this order.
5208 * If "initialized" is set, then it may be assumed that compute_maxvar
5209 * has been called on the current band. Otherwise, call
5210 * compute_maxvar if and before carry_dependences gets called.
5212 * If it turns out to be impossible to sort the statements apart,
5213 * because different dependences impose different orderings
5214 * on the statements, then we extend the schedule such that
5215 * it carries at least one more dependence.
5217 static __isl_give isl_schedule_node
*sort_statements(
5218 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5222 isl_union_set_list
*filters
;
5227 ctx
= isl_schedule_node_get_ctx(node
);
5229 isl_die(ctx
, isl_error_internal
,
5230 "graph should have at least one node",
5231 return isl_schedule_node_free(node
));
5236 if (update_edges(ctx
, graph
) < 0)
5237 return isl_schedule_node_free(node
);
5239 if (graph
->n_edge
== 0)
5242 if (detect_sccs(ctx
, graph
) < 0)
5243 return isl_schedule_node_free(node
);
5246 if (graph
->scc
< graph
->n
) {
5247 if (!initialized
&& compute_maxvar(graph
) < 0)
5248 return isl_schedule_node_free(node
);
5249 return carry_dependences(node
, graph
);
5252 filters
= extract_sccs(ctx
, graph
);
5253 node
= isl_schedule_node_insert_sequence(node
, filters
);
5258 /* Are there any (non-empty) (conditional) validity edges in the graph?
5260 static int has_validity_edges(struct isl_sched_graph
*graph
)
5264 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5267 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
5272 if (is_any_validity(&graph
->edge
[i
]))
5279 /* Should we apply a Feautrier step?
5280 * That is, did the user request the Feautrier algorithm and are
5281 * there any validity dependences (left)?
5283 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
5285 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
5288 return has_validity_edges(graph
);
5291 /* Compute a schedule for a connected dependence graph using Feautrier's
5292 * multi-dimensional scheduling algorithm and return the updated schedule node.
5294 * The original algorithm is described in [1].
5295 * The main idea is to minimize the number of scheduling dimensions, by
5296 * trying to satisfy as many dependences as possible per scheduling dimension.
5298 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5299 * Problem, Part II: Multi-Dimensional Time.
5300 * In Intl. Journal of Parallel Programming, 1992.
5302 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
5303 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5305 return carry_feautrier(node
, graph
);
5308 /* Turn off the "local" bit on all (condition) edges.
5310 static void clear_local_edges(struct isl_sched_graph
*graph
)
5314 for (i
= 0; i
< graph
->n_edge
; ++i
)
5315 if (is_condition(&graph
->edge
[i
]))
5316 clear_local(&graph
->edge
[i
]);
5319 /* Does "graph" have both condition and conditional validity edges?
5321 static int need_condition_check(struct isl_sched_graph
*graph
)
5324 int any_condition
= 0;
5325 int any_conditional_validity
= 0;
5327 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5328 if (is_condition(&graph
->edge
[i
]))
5330 if (is_conditional_validity(&graph
->edge
[i
]))
5331 any_conditional_validity
= 1;
5334 return any_condition
&& any_conditional_validity
;
5337 /* Does "graph" contain any coincidence edge?
5339 static int has_any_coincidence(struct isl_sched_graph
*graph
)
5343 for (i
= 0; i
< graph
->n_edge
; ++i
)
5344 if (is_coincidence(&graph
->edge
[i
]))
5350 /* Extract the final schedule row as a map with the iteration domain
5351 * of "node" as domain.
5353 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
5358 row
= isl_mat_rows(node
->sched
) - 1;
5359 ma
= node_extract_partial_schedule_multi_aff(node
, row
, 1);
5360 return isl_map_from_multi_aff(ma
);
5363 /* Is the conditional validity dependence in the edge with index "edge_index"
5364 * violated by the latest (i.e., final) row of the schedule?
5365 * That is, is i scheduled after j
5366 * for any conditional validity dependence i -> j?
5368 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
5370 isl_map
*src_sched
, *dst_sched
, *map
;
5371 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
5374 src_sched
= final_row(edge
->src
);
5375 dst_sched
= final_row(edge
->dst
);
5376 map
= isl_map_copy(edge
->map
);
5377 map
= isl_map_apply_domain(map
, src_sched
);
5378 map
= isl_map_apply_range(map
, dst_sched
);
5379 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
5380 empty
= isl_map_is_empty(map
);
5389 /* Does "graph" have any satisfied condition edges that
5390 * are adjacent to the conditional validity constraint with
5391 * domain "conditional_source" and range "conditional_sink"?
5393 * A satisfied condition is one that is not local.
5394 * If a condition was forced to be local already (i.e., marked as local)
5395 * then there is no need to check if it is in fact local.
5397 * Additionally, mark all adjacent condition edges found as local.
5399 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
5400 __isl_keep isl_union_set
*conditional_source
,
5401 __isl_keep isl_union_set
*conditional_sink
)
5406 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5407 int adjacent
, local
;
5408 isl_union_map
*condition
;
5410 if (!is_condition(&graph
->edge
[i
]))
5412 if (is_local(&graph
->edge
[i
]))
5415 condition
= graph
->edge
[i
].tagged_condition
;
5416 adjacent
= domain_intersects(condition
, conditional_sink
);
5417 if (adjacent
>= 0 && !adjacent
)
5418 adjacent
= range_intersects(condition
,
5419 conditional_source
);
5425 set_local(&graph
->edge
[i
]);
5427 local
= is_condition_false(&graph
->edge
[i
]);
5437 /* Are there any violated conditional validity dependences with
5438 * adjacent condition dependences that are not local with respect
5439 * to the current schedule?
5440 * That is, is the conditional validity constraint violated?
5442 * Additionally, mark all those adjacent condition dependences as local.
5443 * We also mark those adjacent condition dependences that were not marked
5444 * as local before, but just happened to be local already. This ensures
5445 * that they remain local if the schedule is recomputed.
5447 * We first collect domain and range of all violated conditional validity
5448 * dependences and then check if there are any adjacent non-local
5449 * condition dependences.
5451 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
5452 struct isl_sched_graph
*graph
)
5456 isl_union_set
*source
, *sink
;
5458 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5459 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5460 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5461 isl_union_set
*uset
;
5462 isl_union_map
*umap
;
5465 if (!is_conditional_validity(&graph
->edge
[i
]))
5468 violated
= is_violated(graph
, i
);
5476 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5477 uset
= isl_union_map_domain(umap
);
5478 source
= isl_union_set_union(source
, uset
);
5479 source
= isl_union_set_coalesce(source
);
5481 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5482 uset
= isl_union_map_range(umap
);
5483 sink
= isl_union_set_union(sink
, uset
);
5484 sink
= isl_union_set_coalesce(sink
);
5488 any
= has_adjacent_true_conditions(graph
, source
, sink
);
5490 isl_union_set_free(source
);
5491 isl_union_set_free(sink
);
5494 isl_union_set_free(source
);
5495 isl_union_set_free(sink
);
5499 /* Examine the current band (the rows between graph->band_start and
5500 * graph->n_total_row), deciding whether to drop it or add it to "node"
5501 * and then continue with the computation of the next band, if any.
5502 * If "initialized" is set, then it may be assumed that compute_maxvar
5503 * has been called on the current band. Otherwise, call
5504 * compute_maxvar if and before carry_dependences gets called.
5506 * The caller keeps looking for a new row as long as
5507 * graph->n_row < graph->maxvar. If the latest attempt to find
5508 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5510 * - split between SCCs and start over (assuming we found an interesting
5511 * pair of SCCs between which to split)
5512 * - continue with the next band (assuming the current band has at least
5514 * - if there is more than one SCC left, then split along all SCCs
5515 * - if outer coincidence needs to be enforced, then try to carry as many
5516 * validity or coincidence dependences as possible and
5517 * continue with the next band
5518 * - try to carry as many validity dependences as possible and
5519 * continue with the next band
5520 * In each case, we first insert a band node in the schedule tree
5521 * if any rows have been computed.
5523 * If the caller managed to complete the schedule, we insert a band node
5524 * (if any schedule rows were computed) and we finish off by topologically
5525 * sorting the statements based on the remaining dependences.
5527 static __isl_give isl_schedule_node
*compute_schedule_finish_band(
5528 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5536 if (graph
->n_row
< graph
->maxvar
) {
5538 int empty
= graph
->n_total_row
== graph
->band_start
;
5540 ctx
= isl_schedule_node_get_ctx(node
);
5541 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
5542 return compute_next_band(node
, graph
, 1);
5543 if (graph
->src_scc
>= 0)
5544 return compute_split_schedule(node
, graph
);
5546 return compute_next_band(node
, graph
, 1);
5548 return compute_component_schedule(node
, graph
, 1);
5549 if (!initialized
&& compute_maxvar(graph
) < 0)
5550 return isl_schedule_node_free(node
);
5551 if (isl_options_get_schedule_outer_coincidence(ctx
))
5552 return carry_coincidence(node
, graph
);
5553 return carry_dependences(node
, graph
);
5556 insert
= graph
->n_total_row
> graph
->band_start
;
5558 node
= insert_current_band(node
, graph
, 1);
5559 node
= isl_schedule_node_child(node
, 0);
5561 node
= sort_statements(node
, graph
, initialized
);
5563 node
= isl_schedule_node_parent(node
);
5568 /* Construct a band of schedule rows for a connected dependence graph.
5569 * The caller is responsible for determining the strongly connected
5570 * components and calling compute_maxvar first.
5572 * We try to find a sequence of as many schedule rows as possible that result
5573 * in non-negative dependence distances (independent of the previous rows
5574 * in the sequence, i.e., such that the sequence is tilable), with as
5575 * many of the initial rows as possible satisfying the coincidence constraints.
5576 * The computation stops if we can't find any more rows or if we have found
5577 * all the rows we wanted to find.
5579 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5580 * outermost dimension to satisfy the coincidence constraints. If this
5581 * turns out to be impossible, we fall back on the general scheme above
5582 * and try to carry as many dependences as possible.
5584 * If "graph" contains both condition and conditional validity dependences,
5585 * then we need to check that that the conditional schedule constraint
5586 * is satisfied, i.e., there are no violated conditional validity dependences
5587 * that are adjacent to any non-local condition dependences.
5588 * If there are, then we mark all those adjacent condition dependences
5589 * as local and recompute the current band. Those dependences that
5590 * are marked local will then be forced to be local.
5591 * The initial computation is performed with no dependences marked as local.
5592 * If we are lucky, then there will be no violated conditional validity
5593 * dependences adjacent to any non-local condition dependences.
5594 * Otherwise, we mark some additional condition dependences as local and
5595 * recompute. We continue this process until there are no violations left or
5596 * until we are no longer able to compute a schedule.
5597 * Since there are only a finite number of dependences,
5598 * there will only be a finite number of iterations.
5600 static isl_stat
compute_schedule_wcc_band(isl_ctx
*ctx
,
5601 struct isl_sched_graph
*graph
)
5603 int has_coincidence
;
5604 int use_coincidence
;
5605 int force_coincidence
= 0;
5606 int check_conditional
;
5608 if (sort_sccs(graph
) < 0)
5609 return isl_stat_error
;
5611 clear_local_edges(graph
);
5612 check_conditional
= need_condition_check(graph
);
5613 has_coincidence
= has_any_coincidence(graph
);
5615 if (ctx
->opt
->schedule_outer_coincidence
)
5616 force_coincidence
= 1;
5618 use_coincidence
= has_coincidence
;
5619 while (graph
->n_row
< graph
->maxvar
) {
5624 graph
->src_scc
= -1;
5625 graph
->dst_scc
= -1;
5627 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
5628 return isl_stat_error
;
5629 sol
= solve_lp(ctx
, graph
);
5631 return isl_stat_error
;
5632 if (sol
->size
== 0) {
5633 int empty
= graph
->n_total_row
== graph
->band_start
;
5636 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
5637 use_coincidence
= 0;
5642 coincident
= !has_coincidence
|| use_coincidence
;
5643 if (update_schedule(graph
, sol
, coincident
) < 0)
5644 return isl_stat_error
;
5646 if (!check_conditional
)
5648 violated
= has_violated_conditional_constraint(ctx
, graph
);
5650 return isl_stat_error
;
5653 if (reset_band(graph
) < 0)
5654 return isl_stat_error
;
5655 use_coincidence
= has_coincidence
;
5661 /* Compute a schedule for a connected dependence graph by considering
5662 * the graph as a whole and return the updated schedule node.
5664 * The actual schedule rows of the current band are computed by
5665 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5666 * care of integrating the band into "node" and continuing
5669 static __isl_give isl_schedule_node
*compute_schedule_wcc_whole(
5670 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5677 ctx
= isl_schedule_node_get_ctx(node
);
5678 if (compute_schedule_wcc_band(ctx
, graph
) < 0)
5679 return isl_schedule_node_free(node
);
5681 return compute_schedule_finish_band(node
, graph
, 1);
5684 /* Clustering information used by compute_schedule_wcc_clustering.
5686 * "n" is the number of SCCs in the original dependence graph
5687 * "scc" is an array of "n" elements, each representing an SCC
5688 * of the original dependence graph. All entries in the same cluster
5689 * have the same number of schedule rows.
5690 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5691 * where each cluster is represented by the index of the first SCC
5692 * in the cluster. Initially, each SCC belongs to a cluster containing
5695 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5696 * track of which SCCs need to be merged.
5698 * "cluster" contains the merged clusters of SCCs after the clustering
5701 * "scc_node" is a temporary data structure used inside copy_partial.
5702 * For each SCC, it keeps track of the number of nodes in the SCC
5703 * that have already been copied.
5705 struct isl_clustering
{
5707 struct isl_sched_graph
*scc
;
5708 struct isl_sched_graph
*cluster
;
5714 /* Initialize the clustering data structure "c" from "graph".
5716 * In particular, allocate memory, extract the SCCs from "graph"
5717 * into c->scc, initialize scc_cluster and construct
5718 * a band of schedule rows for each SCC.
5719 * Within each SCC, there is only one SCC by definition.
5720 * Each SCC initially belongs to a cluster containing only that SCC.
5722 static isl_stat
clustering_init(isl_ctx
*ctx
, struct isl_clustering
*c
,
5723 struct isl_sched_graph
*graph
)
5728 c
->scc
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5729 c
->cluster
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5730 c
->scc_cluster
= isl_calloc_array(ctx
, int, c
->n
);
5731 c
->scc_node
= isl_calloc_array(ctx
, int, c
->n
);
5732 c
->scc_in_merge
= isl_calloc_array(ctx
, int, c
->n
);
5733 if (!c
->scc
|| !c
->cluster
||
5734 !c
->scc_cluster
|| !c
->scc_node
|| !c
->scc_in_merge
)
5735 return isl_stat_error
;
5737 for (i
= 0; i
< c
->n
; ++i
) {
5738 if (extract_sub_graph(ctx
, graph
, &node_scc_exactly
,
5739 &edge_scc_exactly
, i
, &c
->scc
[i
]) < 0)
5740 return isl_stat_error
;
5742 if (compute_maxvar(&c
->scc
[i
]) < 0)
5743 return isl_stat_error
;
5744 if (compute_schedule_wcc_band(ctx
, &c
->scc
[i
]) < 0)
5745 return isl_stat_error
;
5746 c
->scc_cluster
[i
] = i
;
5752 /* Free all memory allocated for "c".
5754 static void clustering_free(isl_ctx
*ctx
, struct isl_clustering
*c
)
5759 for (i
= 0; i
< c
->n
; ++i
)
5760 graph_free(ctx
, &c
->scc
[i
]);
5763 for (i
= 0; i
< c
->n
; ++i
)
5764 graph_free(ctx
, &c
->cluster
[i
]);
5766 free(c
->scc_cluster
);
5768 free(c
->scc_in_merge
);
5771 /* Should we refrain from merging the cluster in "graph" with
5772 * any other cluster?
5773 * In particular, is its current schedule band empty and incomplete.
5775 static int bad_cluster(struct isl_sched_graph
*graph
)
5777 return graph
->n_row
< graph
->maxvar
&&
5778 graph
->n_total_row
== graph
->band_start
;
5781 /* Is "edge" a proximity edge with a non-empty dependence relation?
5783 static isl_bool
is_non_empty_proximity(struct isl_sched_edge
*edge
)
5785 if (!is_proximity(edge
))
5786 return isl_bool_false
;
5787 return isl_bool_not(isl_map_plain_is_empty(edge
->map
));
5790 /* Return the index of an edge in "graph" that can be used to merge
5791 * two clusters in "c".
5792 * Return graph->n_edge if no such edge can be found.
5793 * Return -1 on error.
5795 * In particular, return a proximity edge between two clusters
5796 * that is not marked "no_merge" and such that neither of the
5797 * two clusters has an incomplete, empty band.
5799 * If there are multiple such edges, then try and find the most
5800 * appropriate edge to use for merging. In particular, pick the edge
5801 * with the greatest weight. If there are multiple of those,
5802 * then pick one with the shortest distance between
5803 * the two cluster representatives.
5805 static int find_proximity(struct isl_sched_graph
*graph
,
5806 struct isl_clustering
*c
)
5808 int i
, best
= graph
->n_edge
, best_dist
, best_weight
;
5810 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5811 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5815 prox
= is_non_empty_proximity(edge
);
5822 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
5823 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
5825 dist
= c
->scc_cluster
[edge
->dst
->scc
] -
5826 c
->scc_cluster
[edge
->src
->scc
];
5829 weight
= edge
->weight
;
5830 if (best
< graph
->n_edge
) {
5831 if (best_weight
> weight
)
5833 if (best_weight
== weight
&& best_dist
<= dist
)
5838 best_weight
= weight
;
5844 /* Internal data structure used in mark_merge_sccs.
5846 * "graph" is the dependence graph in which a strongly connected
5847 * component is constructed.
5848 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5849 * "src" and "dst" are the indices of the nodes that are being merged.
5851 struct isl_mark_merge_sccs_data
{
5852 struct isl_sched_graph
*graph
;
5858 /* Check whether the cluster containing node "i" depends on the cluster
5859 * containing node "j". If "i" and "j" belong to the same cluster,
5860 * then they are taken to depend on each other to ensure that
5861 * the resulting strongly connected component consists of complete
5862 * clusters. Furthermore, if "i" and "j" are the two nodes that
5863 * are being merged, then they are taken to depend on each other as well.
5864 * Otherwise, check if there is a (conditional) validity dependence
5865 * from node[j] to node[i], forcing node[i] to follow node[j].
5867 static isl_bool
cluster_follows(int i
, int j
, void *user
)
5869 struct isl_mark_merge_sccs_data
*data
= user
;
5870 struct isl_sched_graph
*graph
= data
->graph
;
5871 int *scc_cluster
= data
->scc_cluster
;
5873 if (data
->src
== i
&& data
->dst
== j
)
5874 return isl_bool_true
;
5875 if (data
->src
== j
&& data
->dst
== i
)
5876 return isl_bool_true
;
5877 if (scc_cluster
[graph
->node
[i
].scc
] == scc_cluster
[graph
->node
[j
].scc
])
5878 return isl_bool_true
;
5880 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
5883 /* Mark all SCCs that belong to either of the two clusters in "c"
5884 * connected by the edge in "graph" with index "edge", or to any
5885 * of the intermediate clusters.
5886 * The marking is recorded in c->scc_in_merge.
5888 * The given edge has been selected for merging two clusters,
5889 * meaning that there is at least a proximity edge between the two nodes.
5890 * However, there may also be (indirect) validity dependences
5891 * between the two nodes. When merging the two clusters, all clusters
5892 * containing one or more of the intermediate nodes along the
5893 * indirect validity dependences need to be merged in as well.
5895 * First collect all such nodes by computing the strongly connected
5896 * component (SCC) containing the two nodes connected by the edge, where
5897 * the two nodes are considered to depend on each other to make
5898 * sure they end up in the same SCC. Similarly, each node is considered
5899 * to depend on every other node in the same cluster to ensure
5900 * that the SCC consists of complete clusters.
5902 * Then the original SCCs that contain any of these nodes are marked
5903 * in c->scc_in_merge.
5905 static isl_stat
mark_merge_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5906 int edge
, struct isl_clustering
*c
)
5908 struct isl_mark_merge_sccs_data data
;
5909 struct isl_tarjan_graph
*g
;
5912 for (i
= 0; i
< c
->n
; ++i
)
5913 c
->scc_in_merge
[i
] = 0;
5916 data
.scc_cluster
= c
->scc_cluster
;
5917 data
.src
= graph
->edge
[edge
].src
- graph
->node
;
5918 data
.dst
= graph
->edge
[edge
].dst
- graph
->node
;
5920 g
= isl_tarjan_graph_component(ctx
, graph
->n
, data
.dst
,
5921 &cluster_follows
, &data
);
5927 isl_die(ctx
, isl_error_internal
,
5928 "expecting at least two nodes in component",
5930 if (g
->order
[--i
] != -1)
5931 isl_die(ctx
, isl_error_internal
,
5932 "expecting end of component marker", goto error
);
5934 for (--i
; i
>= 0 && g
->order
[i
] != -1; --i
) {
5935 int scc
= graph
->node
[g
->order
[i
]].scc
;
5936 c
->scc_in_merge
[scc
] = 1;
5939 isl_tarjan_graph_free(g
);
5942 isl_tarjan_graph_free(g
);
5943 return isl_stat_error
;
5946 /* Construct the identifier "cluster_i".
5948 static __isl_give isl_id
*cluster_id(isl_ctx
*ctx
, int i
)
5952 snprintf(name
, sizeof(name
), "cluster_%d", i
);
5953 return isl_id_alloc(ctx
, name
, NULL
);
5956 /* Construct the space of the cluster with index "i" containing
5957 * the strongly connected component "scc".
5959 * In particular, construct a space called cluster_i with dimension equal
5960 * to the number of schedule rows in the current band of "scc".
5962 static __isl_give isl_space
*cluster_space(struct isl_sched_graph
*scc
, int i
)
5968 nvar
= scc
->n_total_row
- scc
->band_start
;
5969 space
= isl_space_copy(scc
->node
[0].space
);
5970 space
= isl_space_params(space
);
5971 space
= isl_space_set_from_params(space
);
5972 space
= isl_space_add_dims(space
, isl_dim_set
, nvar
);
5973 id
= cluster_id(isl_space_get_ctx(space
), i
);
5974 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
5979 /* Collect the domain of the graph for merging clusters.
5981 * In particular, for each cluster with first SCC "i", construct
5982 * a set in the space called cluster_i with dimension equal
5983 * to the number of schedule rows in the current band of the cluster.
5985 static __isl_give isl_union_set
*collect_domain(isl_ctx
*ctx
,
5986 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
5990 isl_union_set
*domain
;
5992 space
= isl_space_params_alloc(ctx
, 0);
5993 domain
= isl_union_set_empty(space
);
5995 for (i
= 0; i
< graph
->scc
; ++i
) {
5998 if (!c
->scc_in_merge
[i
])
6000 if (c
->scc_cluster
[i
] != i
)
6002 space
= cluster_space(&c
->scc
[i
], i
);
6003 domain
= isl_union_set_add_set(domain
, isl_set_universe(space
));
6009 /* Construct a map from the original instances to the corresponding
6010 * cluster instance in the current bands of the clusters in "c".
6012 static __isl_give isl_union_map
*collect_cluster_map(isl_ctx
*ctx
,
6013 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6017 isl_union_map
*cluster_map
;
6019 space
= isl_space_params_alloc(ctx
, 0);
6020 cluster_map
= isl_union_map_empty(space
);
6021 for (i
= 0; i
< graph
->scc
; ++i
) {
6025 if (!c
->scc_in_merge
[i
])
6028 id
= cluster_id(ctx
, c
->scc_cluster
[i
]);
6029 start
= c
->scc
[i
].band_start
;
6030 n
= c
->scc
[i
].n_total_row
- start
;
6031 for (j
= 0; j
< c
->scc
[i
].n
; ++j
) {
6034 struct isl_sched_node
*node
= &c
->scc
[i
].node
[j
];
6036 ma
= node_extract_partial_schedule_multi_aff(node
,
6038 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
,
6040 map
= isl_map_from_multi_aff(ma
);
6041 cluster_map
= isl_union_map_add_map(cluster_map
, map
);
6049 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
6050 * that are not isl_edge_condition or isl_edge_conditional_validity.
6052 static __isl_give isl_schedule_constraints
*add_non_conditional_constraints(
6053 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6054 __isl_take isl_schedule_constraints
*sc
)
6056 enum isl_edge_type t
;
6061 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
6062 if (t
== isl_edge_condition
||
6063 t
== isl_edge_conditional_validity
)
6065 if (!is_type(edge
, t
))
6067 sc
= isl_schedule_constraints_add(sc
, t
,
6068 isl_union_map_copy(umap
));
6074 /* Add schedule constraints of types isl_edge_condition and
6075 * isl_edge_conditional_validity to "sc" by applying "umap" to
6076 * the domains of the wrapped relations in domain and range
6077 * of the corresponding tagged constraints of "edge".
6079 static __isl_give isl_schedule_constraints
*add_conditional_constraints(
6080 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6081 __isl_take isl_schedule_constraints
*sc
)
6083 enum isl_edge_type t
;
6084 isl_union_map
*tagged
;
6086 for (t
= isl_edge_condition
; t
<= isl_edge_conditional_validity
; ++t
) {
6087 if (!is_type(edge
, t
))
6089 if (t
== isl_edge_condition
)
6090 tagged
= isl_union_map_copy(edge
->tagged_condition
);
6092 tagged
= isl_union_map_copy(edge
->tagged_validity
);
6093 tagged
= isl_union_map_zip(tagged
);
6094 tagged
= isl_union_map_apply_domain(tagged
,
6095 isl_union_map_copy(umap
));
6096 tagged
= isl_union_map_zip(tagged
);
6097 sc
= isl_schedule_constraints_add(sc
, t
, tagged
);
6105 /* Given a mapping "cluster_map" from the original instances to
6106 * the cluster instances, add schedule constraints on the clusters
6107 * to "sc" corresponding to the original constraints represented by "edge".
6109 * For non-tagged dependence constraints, the cluster constraints
6110 * are obtained by applying "cluster_map" to the edge->map.
6112 * For tagged dependence constraints, "cluster_map" needs to be applied
6113 * to the domains of the wrapped relations in domain and range
6114 * of the tagged dependence constraints. Pick out the mappings
6115 * from these domains from "cluster_map" and construct their product.
6116 * This mapping can then be applied to the pair of domains.
6118 static __isl_give isl_schedule_constraints
*collect_edge_constraints(
6119 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*cluster_map
,
6120 __isl_take isl_schedule_constraints
*sc
)
6122 isl_union_map
*umap
;
6124 isl_union_set
*uset
;
6125 isl_union_map
*umap1
, *umap2
;
6130 umap
= isl_union_map_from_map(isl_map_copy(edge
->map
));
6131 umap
= isl_union_map_apply_domain(umap
,
6132 isl_union_map_copy(cluster_map
));
6133 umap
= isl_union_map_apply_range(umap
,
6134 isl_union_map_copy(cluster_map
));
6135 sc
= add_non_conditional_constraints(edge
, umap
, sc
);
6136 isl_union_map_free(umap
);
6138 if (!sc
|| (!is_condition(edge
) && !is_conditional_validity(edge
)))
6141 space
= isl_space_domain(isl_map_get_space(edge
->map
));
6142 uset
= isl_union_set_from_set(isl_set_universe(space
));
6143 umap1
= isl_union_map_copy(cluster_map
);
6144 umap1
= isl_union_map_intersect_domain(umap1
, uset
);
6145 space
= isl_space_range(isl_map_get_space(edge
->map
));
6146 uset
= isl_union_set_from_set(isl_set_universe(space
));
6147 umap2
= isl_union_map_copy(cluster_map
);
6148 umap2
= isl_union_map_intersect_domain(umap2
, uset
);
6149 umap
= isl_union_map_product(umap1
, umap2
);
6151 sc
= add_conditional_constraints(edge
, umap
, sc
);
6153 isl_union_map_free(umap
);
6157 /* Given a mapping "cluster_map" from the original instances to
6158 * the cluster instances, add schedule constraints on the clusters
6159 * to "sc" corresponding to all edges in "graph" between nodes that
6160 * belong to SCCs that are marked for merging in "scc_in_merge".
6162 static __isl_give isl_schedule_constraints
*collect_constraints(
6163 struct isl_sched_graph
*graph
, int *scc_in_merge
,
6164 __isl_keep isl_union_map
*cluster_map
,
6165 __isl_take isl_schedule_constraints
*sc
)
6169 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6170 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6172 if (!scc_in_merge
[edge
->src
->scc
])
6174 if (!scc_in_merge
[edge
->dst
->scc
])
6176 sc
= collect_edge_constraints(edge
, cluster_map
, sc
);
6182 /* Construct a dependence graph for scheduling clusters with respect
6183 * to each other and store the result in "merge_graph".
6184 * In particular, the nodes of the graph correspond to the schedule
6185 * dimensions of the current bands of those clusters that have been
6186 * marked for merging in "c".
6188 * First construct an isl_schedule_constraints object for this domain
6189 * by transforming the edges in "graph" to the domain.
6190 * Then initialize a dependence graph for scheduling from these
6193 static isl_stat
init_merge_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6194 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6196 isl_union_set
*domain
;
6197 isl_union_map
*cluster_map
;
6198 isl_schedule_constraints
*sc
;
6201 domain
= collect_domain(ctx
, graph
, c
);
6202 sc
= isl_schedule_constraints_on_domain(domain
);
6204 return isl_stat_error
;
6205 cluster_map
= collect_cluster_map(ctx
, graph
, c
);
6206 sc
= collect_constraints(graph
, c
->scc_in_merge
, cluster_map
, sc
);
6207 isl_union_map_free(cluster_map
);
6209 r
= graph_init(merge_graph
, sc
);
6211 isl_schedule_constraints_free(sc
);
6216 /* Compute the maximal number of remaining schedule rows that still need
6217 * to be computed for the nodes that belong to clusters with the maximal
6218 * dimension for the current band (i.e., the band that is to be merged).
6219 * Only clusters that are about to be merged are considered.
6220 * "maxvar" is the maximal dimension for the current band.
6221 * "c" contains information about the clusters.
6223 * Return the maximal number of remaining schedule rows or -1 on error.
6225 static int compute_maxvar_max_slack(int maxvar
, struct isl_clustering
*c
)
6231 for (i
= 0; i
< c
->n
; ++i
) {
6233 struct isl_sched_graph
*scc
;
6235 if (!c
->scc_in_merge
[i
])
6238 nvar
= scc
->n_total_row
- scc
->band_start
;
6241 for (j
= 0; j
< scc
->n
; ++j
) {
6242 struct isl_sched_node
*node
= &scc
->node
[j
];
6245 if (node_update_vmap(node
) < 0)
6247 slack
= node
->nvar
- node
->rank
;
6248 if (slack
> max_slack
)
6256 /* If there are any clusters where the dimension of the current band
6257 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6258 * if there are any nodes in such a cluster where the number
6259 * of remaining schedule rows that still need to be computed
6260 * is greater than "max_slack", then return the smallest current band
6261 * dimension of all these clusters. Otherwise return the original value
6262 * of "maxvar". Return -1 in case of any error.
6263 * Only clusters that are about to be merged are considered.
6264 * "c" contains information about the clusters.
6266 static int limit_maxvar_to_slack(int maxvar
, int max_slack
,
6267 struct isl_clustering
*c
)
6271 for (i
= 0; i
< c
->n
; ++i
) {
6273 struct isl_sched_graph
*scc
;
6275 if (!c
->scc_in_merge
[i
])
6278 nvar
= scc
->n_total_row
- scc
->band_start
;
6281 for (j
= 0; j
< scc
->n
; ++j
) {
6282 struct isl_sched_node
*node
= &scc
->node
[j
];
6285 if (node_update_vmap(node
) < 0)
6287 slack
= node
->nvar
- node
->rank
;
6288 if (slack
> max_slack
) {
6298 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6299 * that still need to be computed. In particular, if there is a node
6300 * in a cluster where the dimension of the current band is smaller
6301 * than merge_graph->maxvar, but the number of remaining schedule rows
6302 * is greater than that of any node in a cluster with the maximal
6303 * dimension for the current band (i.e., merge_graph->maxvar),
6304 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6305 * of those clusters. Without this adjustment, the total number of
6306 * schedule dimensions would be increased, resulting in a skewed view
6307 * of the number of coincident dimensions.
6308 * "c" contains information about the clusters.
6310 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6311 * then there is no point in attempting any merge since it will be rejected
6312 * anyway. Set merge_graph->maxvar to zero in such cases.
6314 static isl_stat
adjust_maxvar_to_slack(isl_ctx
*ctx
,
6315 struct isl_sched_graph
*merge_graph
, struct isl_clustering
*c
)
6317 int max_slack
, maxvar
;
6319 max_slack
= compute_maxvar_max_slack(merge_graph
->maxvar
, c
);
6321 return isl_stat_error
;
6322 maxvar
= limit_maxvar_to_slack(merge_graph
->maxvar
, max_slack
, c
);
6324 return isl_stat_error
;
6326 if (maxvar
< merge_graph
->maxvar
) {
6327 if (isl_options_get_schedule_maximize_band_depth(ctx
))
6328 merge_graph
->maxvar
= 0;
6330 merge_graph
->maxvar
= maxvar
;
6336 /* Return the number of coincident dimensions in the current band of "graph",
6337 * where the nodes of "graph" are assumed to be scheduled by a single band.
6339 static int get_n_coincident(struct isl_sched_graph
*graph
)
6343 for (i
= graph
->band_start
; i
< graph
->n_total_row
; ++i
)
6344 if (!graph
->node
[0].coincident
[i
])
6347 return i
- graph
->band_start
;
6350 /* Should the clusters be merged based on the cluster schedule
6351 * in the current (and only) band of "merge_graph", given that
6352 * coincidence should be maximized?
6354 * If the number of coincident schedule dimensions in the merged band
6355 * would be less than the maximal number of coincident schedule dimensions
6356 * in any of the merged clusters, then the clusters should not be merged.
6358 static isl_bool
ok_to_merge_coincident(struct isl_clustering
*c
,
6359 struct isl_sched_graph
*merge_graph
)
6366 for (i
= 0; i
< c
->n
; ++i
) {
6367 if (!c
->scc_in_merge
[i
])
6369 n_coincident
= get_n_coincident(&c
->scc
[i
]);
6370 if (n_coincident
> max_coincident
)
6371 max_coincident
= n_coincident
;
6374 n_coincident
= get_n_coincident(merge_graph
);
6376 return n_coincident
>= max_coincident
;
6379 /* Return the transformation on "node" expressed by the current (and only)
6380 * band of "merge_graph" applied to the clusters in "c".
6382 * First find the representation of "node" in its SCC in "c" and
6383 * extract the transformation expressed by the current band.
6384 * Then extract the transformation applied by "merge_graph"
6385 * to the cluster to which this SCC belongs.
6386 * Combine the two to obtain the complete transformation on the node.
6388 * Note that the range of the first transformation is an anonymous space,
6389 * while the domain of the second is named "cluster_X". The range
6390 * of the former therefore needs to be adjusted before the two
6393 static __isl_give isl_map
*extract_node_transformation(isl_ctx
*ctx
,
6394 struct isl_sched_node
*node
, struct isl_clustering
*c
,
6395 struct isl_sched_graph
*merge_graph
)
6397 struct isl_sched_node
*scc_node
, *cluster_node
;
6401 isl_multi_aff
*ma
, *ma2
;
6403 scc_node
= graph_find_node(ctx
, &c
->scc
[node
->scc
], node
->space
);
6404 start
= c
->scc
[node
->scc
].band_start
;
6405 n
= c
->scc
[node
->scc
].n_total_row
- start
;
6406 ma
= node_extract_partial_schedule_multi_aff(scc_node
, start
, n
);
6407 space
= cluster_space(&c
->scc
[node
->scc
], c
->scc_cluster
[node
->scc
]);
6408 cluster_node
= graph_find_node(ctx
, merge_graph
, space
);
6409 if (space
&& !cluster_node
)
6410 isl_die(ctx
, isl_error_internal
, "unable to find cluster",
6411 space
= isl_space_free(space
));
6412 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
6413 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, id
);
6414 isl_space_free(space
);
6415 n
= merge_graph
->n_total_row
;
6416 ma2
= node_extract_partial_schedule_multi_aff(cluster_node
, 0, n
);
6417 ma
= isl_multi_aff_pullback_multi_aff(ma2
, ma
);
6419 return isl_map_from_multi_aff(ma
);
6422 /* Give a set of distances "set", are they bounded by a small constant
6423 * in direction "pos"?
6424 * In practice, check if they are bounded by 2 by checking that there
6425 * are no elements with a value greater than or equal to 3 or
6426 * smaller than or equal to -3.
6428 static isl_bool
distance_is_bounded(__isl_keep isl_set
*set
, int pos
)
6434 return isl_bool_error
;
6436 test
= isl_set_copy(set
);
6437 test
= isl_set_lower_bound_si(test
, isl_dim_set
, pos
, 3);
6438 bounded
= isl_set_is_empty(test
);
6441 if (bounded
< 0 || !bounded
)
6444 test
= isl_set_copy(set
);
6445 test
= isl_set_upper_bound_si(test
, isl_dim_set
, pos
, -3);
6446 bounded
= isl_set_is_empty(test
);
6452 /* Does the set "set" have a fixed (but possible parametric) value
6453 * at dimension "pos"?
6455 static isl_bool
has_single_value(__isl_keep isl_set
*set
, int pos
)
6461 return isl_bool_error
;
6462 set
= isl_set_copy(set
);
6463 n
= isl_set_dim(set
, isl_dim_set
);
6464 set
= isl_set_project_out(set
, isl_dim_set
, pos
+ 1, n
- (pos
+ 1));
6465 set
= isl_set_project_out(set
, isl_dim_set
, 0, pos
);
6466 single
= isl_set_is_singleton(set
);
6472 /* Does "map" have a fixed (but possible parametric) value
6473 * at dimension "pos" of either its domain or its range?
6475 static isl_bool
has_singular_src_or_dst(__isl_keep isl_map
*map
, int pos
)
6480 set
= isl_map_domain(isl_map_copy(map
));
6481 single
= has_single_value(set
, pos
);
6484 if (single
< 0 || single
)
6487 set
= isl_map_range(isl_map_copy(map
));
6488 single
= has_single_value(set
, pos
);
6494 /* Does the edge "edge" from "graph" have bounded dependence distances
6495 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6497 * Extract the complete transformations of the source and destination
6498 * nodes of the edge, apply them to the edge constraints and
6499 * compute the differences. Finally, check if these differences are bounded
6500 * in each direction.
6502 * If the dimension of the band is greater than the number of
6503 * dimensions that can be expected to be optimized by the edge
6504 * (based on its weight), then also allow the differences to be unbounded
6505 * in the remaining dimensions, but only if either the source or
6506 * the destination has a fixed value in that direction.
6507 * This allows a statement that produces values that are used by
6508 * several instances of another statement to be merged with that
6510 * However, merging such clusters will introduce an inherently
6511 * large proximity distance inside the merged cluster, meaning
6512 * that proximity distances will no longer be optimized in
6513 * subsequent merges. These merges are therefore only allowed
6514 * after all other possible merges have been tried.
6515 * The first time such a merge is encountered, the weight of the edge
6516 * is replaced by a negative weight. The second time (i.e., after
6517 * all merges over edges with a non-negative weight have been tried),
6518 * the merge is allowed.
6520 static isl_bool
has_bounded_distances(isl_ctx
*ctx
, struct isl_sched_edge
*edge
,
6521 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6522 struct isl_sched_graph
*merge_graph
)
6529 map
= isl_map_copy(edge
->map
);
6530 t
= extract_node_transformation(ctx
, edge
->src
, c
, merge_graph
);
6531 map
= isl_map_apply_domain(map
, t
);
6532 t
= extract_node_transformation(ctx
, edge
->dst
, c
, merge_graph
);
6533 map
= isl_map_apply_range(map
, t
);
6534 dist
= isl_map_deltas(isl_map_copy(map
));
6536 bounded
= isl_bool_true
;
6537 n
= isl_set_dim(dist
, isl_dim_set
);
6538 n_slack
= n
- edge
->weight
;
6539 if (edge
->weight
< 0)
6540 n_slack
-= graph
->max_weight
+ 1;
6541 for (i
= 0; i
< n
; ++i
) {
6542 isl_bool bounded_i
, singular_i
;
6544 bounded_i
= distance_is_bounded(dist
, i
);
6549 if (edge
->weight
>= 0)
6550 bounded
= isl_bool_false
;
6554 singular_i
= has_singular_src_or_dst(map
, i
);
6559 bounded
= isl_bool_false
;
6562 if (!bounded
&& i
>= n
&& edge
->weight
>= 0)
6563 edge
->weight
-= graph
->max_weight
+ 1;
6571 return isl_bool_error
;
6574 /* Should the clusters be merged based on the cluster schedule
6575 * in the current (and only) band of "merge_graph"?
6576 * "graph" is the original dependence graph, while "c" records
6577 * which SCCs are involved in the latest merge.
6579 * In particular, is there at least one proximity constraint
6580 * that is optimized by the merge?
6582 * A proximity constraint is considered to be optimized
6583 * if the dependence distances are small.
6585 static isl_bool
ok_to_merge_proximity(isl_ctx
*ctx
,
6586 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6587 struct isl_sched_graph
*merge_graph
)
6591 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6592 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6595 if (!is_proximity(edge
))
6597 if (!c
->scc_in_merge
[edge
->src
->scc
])
6599 if (!c
->scc_in_merge
[edge
->dst
->scc
])
6601 if (c
->scc_cluster
[edge
->dst
->scc
] ==
6602 c
->scc_cluster
[edge
->src
->scc
])
6604 bounded
= has_bounded_distances(ctx
, edge
, graph
, c
,
6606 if (bounded
< 0 || bounded
)
6610 return isl_bool_false
;
6613 /* Should the clusters be merged based on the cluster schedule
6614 * in the current (and only) band of "merge_graph"?
6615 * "graph" is the original dependence graph, while "c" records
6616 * which SCCs are involved in the latest merge.
6618 * If the current band is empty, then the clusters should not be merged.
6620 * If the band depth should be maximized and the merge schedule
6621 * is incomplete (meaning that the dimension of some of the schedule
6622 * bands in the original schedule will be reduced), then the clusters
6623 * should not be merged.
6625 * If the schedule_maximize_coincidence option is set, then check that
6626 * the number of coincident schedule dimensions is not reduced.
6628 * Finally, only allow the merge if at least one proximity
6629 * constraint is optimized.
6631 static isl_bool
ok_to_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6632 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6634 if (merge_graph
->n_total_row
== merge_graph
->band_start
)
6635 return isl_bool_false
;
6637 if (isl_options_get_schedule_maximize_band_depth(ctx
) &&
6638 merge_graph
->n_total_row
< merge_graph
->maxvar
)
6639 return isl_bool_false
;
6641 if (isl_options_get_schedule_maximize_coincidence(ctx
)) {
6644 ok
= ok_to_merge_coincident(c
, merge_graph
);
6649 return ok_to_merge_proximity(ctx
, graph
, c
, merge_graph
);
6652 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6653 * of the schedule in "node" and return the result.
6655 * That is, essentially compute
6657 * T * N(first:first+n-1)
6659 * taking into account the constant term and the parameter coefficients
6662 static __isl_give isl_mat
*node_transformation(isl_ctx
*ctx
,
6663 struct isl_sched_node
*t_node
, struct isl_sched_node
*node
,
6668 int n_row
, n_col
, n_param
, n_var
;
6670 n_param
= node
->nparam
;
6672 n_row
= isl_mat_rows(t_node
->sched
);
6673 n_col
= isl_mat_cols(node
->sched
);
6674 t
= isl_mat_alloc(ctx
, n_row
, n_col
);
6677 for (i
= 0; i
< n_row
; ++i
) {
6678 isl_seq_cpy(t
->row
[i
], t_node
->sched
->row
[i
], 1 + n_param
);
6679 isl_seq_clr(t
->row
[i
] + 1 + n_param
, n_var
);
6680 for (j
= 0; j
< n
; ++j
)
6681 isl_seq_addmul(t
->row
[i
],
6682 t_node
->sched
->row
[i
][1 + n_param
+ j
],
6683 node
->sched
->row
[first
+ j
],
6684 1 + n_param
+ n_var
);
6689 /* Apply the cluster schedule in "t_node" to the current band
6690 * schedule of the nodes in "graph".
6692 * In particular, replace the rows starting at band_start
6693 * by the result of applying the cluster schedule in "t_node"
6694 * to the original rows.
6696 * The coincidence of the schedule is determined by the coincidence
6697 * of the cluster schedule.
6699 static isl_stat
transform(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6700 struct isl_sched_node
*t_node
)
6706 start
= graph
->band_start
;
6707 n
= graph
->n_total_row
- start
;
6709 n_new
= isl_mat_rows(t_node
->sched
);
6710 for (i
= 0; i
< graph
->n
; ++i
) {
6711 struct isl_sched_node
*node
= &graph
->node
[i
];
6714 t
= node_transformation(ctx
, t_node
, node
, start
, n
);
6715 node
->sched
= isl_mat_drop_rows(node
->sched
, start
, n
);
6716 node
->sched
= isl_mat_concat(node
->sched
, t
);
6717 node
->sched_map
= isl_map_free(node
->sched_map
);
6719 return isl_stat_error
;
6720 for (j
= 0; j
< n_new
; ++j
)
6721 node
->coincident
[start
+ j
] = t_node
->coincident
[j
];
6723 graph
->n_total_row
-= n
;
6725 graph
->n_total_row
+= n_new
;
6726 graph
->n_row
+= n_new
;
6731 /* Merge the clusters marked for merging in "c" into a single
6732 * cluster using the cluster schedule in the current band of "merge_graph".
6733 * The representative SCC for the new cluster is the SCC with
6734 * the smallest index.
6736 * The current band schedule of each SCC in the new cluster is obtained
6737 * by applying the schedule of the corresponding original cluster
6738 * to the original band schedule.
6739 * All SCCs in the new cluster have the same number of schedule rows.
6741 static isl_stat
merge(isl_ctx
*ctx
, struct isl_clustering
*c
,
6742 struct isl_sched_graph
*merge_graph
)
6748 for (i
= 0; i
< c
->n
; ++i
) {
6749 struct isl_sched_node
*node
;
6751 if (!c
->scc_in_merge
[i
])
6755 space
= cluster_space(&c
->scc
[i
], c
->scc_cluster
[i
]);
6757 return isl_stat_error
;
6758 node
= graph_find_node(ctx
, merge_graph
, space
);
6759 isl_space_free(space
);
6761 isl_die(ctx
, isl_error_internal
,
6762 "unable to find cluster",
6763 return isl_stat_error
);
6764 if (transform(ctx
, &c
->scc
[i
], node
) < 0)
6765 return isl_stat_error
;
6766 c
->scc_cluster
[i
] = cluster
;
6772 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6773 * by scheduling the current cluster bands with respect to each other.
6775 * Construct a dependence graph with a space for each cluster and
6776 * with the coordinates of each space corresponding to the schedule
6777 * dimensions of the current band of that cluster.
6778 * Construct a cluster schedule in this cluster dependence graph and
6779 * apply it to the current cluster bands if it is applicable
6780 * according to ok_to_merge.
6782 * If the number of remaining schedule dimensions in a cluster
6783 * with a non-maximal current schedule dimension is greater than
6784 * the number of remaining schedule dimensions in clusters
6785 * with a maximal current schedule dimension, then restrict
6786 * the number of rows to be computed in the cluster schedule
6787 * to the minimal such non-maximal current schedule dimension.
6788 * Do this by adjusting merge_graph.maxvar.
6790 * Return isl_bool_true if the clusters have effectively been merged
6791 * into a single cluster.
6793 * Note that since the standard scheduling algorithm minimizes the maximal
6794 * distance over proximity constraints, the proximity constraints between
6795 * the merged clusters may not be optimized any further than what is
6796 * sufficient to bring the distances within the limits of the internal
6797 * proximity constraints inside the individual clusters.
6798 * It may therefore make sense to perform an additional translation step
6799 * to bring the clusters closer to each other, while maintaining
6800 * the linear part of the merging schedule found using the standard
6801 * scheduling algorithm.
6803 static isl_bool
try_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6804 struct isl_clustering
*c
)
6806 struct isl_sched_graph merge_graph
= { 0 };
6809 if (init_merge_graph(ctx
, graph
, c
, &merge_graph
) < 0)
6812 if (compute_maxvar(&merge_graph
) < 0)
6814 if (adjust_maxvar_to_slack(ctx
, &merge_graph
,c
) < 0)
6816 if (compute_schedule_wcc_band(ctx
, &merge_graph
) < 0)
6818 merged
= ok_to_merge(ctx
, graph
, c
, &merge_graph
);
6819 if (merged
&& merge(ctx
, c
, &merge_graph
) < 0)
6822 graph_free(ctx
, &merge_graph
);
6825 graph_free(ctx
, &merge_graph
);
6826 return isl_bool_error
;
6829 /* Is there any edge marked "no_merge" between two SCCs that are
6830 * about to be merged (i.e., that are set in "scc_in_merge")?
6831 * "merge_edge" is the proximity edge along which the clusters of SCCs
6832 * are going to be merged.
6834 * If there is any edge between two SCCs with a negative weight,
6835 * while the weight of "merge_edge" is non-negative, then this
6836 * means that the edge was postponed. "merge_edge" should then
6837 * also be postponed since merging along the edge with negative weight should
6838 * be postponed until all edges with non-negative weight have been tried.
6839 * Replace the weight of "merge_edge" by a negative weight as well and
6840 * tell the caller not to attempt a merge.
6842 static int any_no_merge(struct isl_sched_graph
*graph
, int *scc_in_merge
,
6843 struct isl_sched_edge
*merge_edge
)
6847 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6848 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6850 if (!scc_in_merge
[edge
->src
->scc
])
6852 if (!scc_in_merge
[edge
->dst
->scc
])
6856 if (merge_edge
->weight
>= 0 && edge
->weight
< 0) {
6857 merge_edge
->weight
-= graph
->max_weight
+ 1;
6865 /* Merge the two clusters in "c" connected by the edge in "graph"
6866 * with index "edge" into a single cluster.
6867 * If it turns out to be impossible to merge these two clusters,
6868 * then mark the edge as "no_merge" such that it will not be
6871 * First mark all SCCs that need to be merged. This includes the SCCs
6872 * in the two clusters, but it may also include the SCCs
6873 * of intermediate clusters.
6874 * If there is already a no_merge edge between any pair of such SCCs,
6875 * then simply mark the current edge as no_merge as well.
6876 * Likewise, if any of those edges was postponed by has_bounded_distances,
6877 * then postpone the current edge as well.
6878 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6879 * if the clusters did not end up getting merged, unless the non-merge
6880 * is due to the fact that the edge was postponed. This postponement
6881 * can be recognized by a change in weight (from non-negative to negative).
6883 static isl_stat
merge_clusters_along_edge(isl_ctx
*ctx
,
6884 struct isl_sched_graph
*graph
, int edge
, struct isl_clustering
*c
)
6887 int edge_weight
= graph
->edge
[edge
].weight
;
6889 if (mark_merge_sccs(ctx
, graph
, edge
, c
) < 0)
6890 return isl_stat_error
;
6892 if (any_no_merge(graph
, c
->scc_in_merge
, &graph
->edge
[edge
]))
6893 merged
= isl_bool_false
;
6895 merged
= try_merge(ctx
, graph
, c
);
6897 return isl_stat_error
;
6898 if (!merged
&& edge_weight
== graph
->edge
[edge
].weight
)
6899 graph
->edge
[edge
].no_merge
= 1;
6904 /* Does "node" belong to the cluster identified by "cluster"?
6906 static int node_cluster_exactly(struct isl_sched_node
*node
, int cluster
)
6908 return node
->cluster
== cluster
;
6911 /* Does "edge" connect two nodes belonging to the cluster
6912 * identified by "cluster"?
6914 static int edge_cluster_exactly(struct isl_sched_edge
*edge
, int cluster
)
6916 return edge
->src
->cluster
== cluster
&& edge
->dst
->cluster
== cluster
;
6919 /* Swap the schedule of "node1" and "node2".
6920 * Both nodes have been derived from the same node in a common parent graph.
6921 * Since the "coincident" field is shared with that node
6922 * in the parent graph, there is no need to also swap this field.
6924 static void swap_sched(struct isl_sched_node
*node1
,
6925 struct isl_sched_node
*node2
)
6930 sched
= node1
->sched
;
6931 node1
->sched
= node2
->sched
;
6932 node2
->sched
= sched
;
6934 sched_map
= node1
->sched_map
;
6935 node1
->sched_map
= node2
->sched_map
;
6936 node2
->sched_map
= sched_map
;
6939 /* Copy the current band schedule from the SCCs that form the cluster
6940 * with index "pos" to the actual cluster at position "pos".
6941 * By construction, the index of the first SCC that belongs to the cluster
6944 * The order of the nodes inside both the SCCs and the cluster
6945 * is assumed to be same as the order in the original "graph".
6947 * Since the SCC graphs will no longer be used after this function,
6948 * the schedules are actually swapped rather than copied.
6950 static isl_stat
copy_partial(struct isl_sched_graph
*graph
,
6951 struct isl_clustering
*c
, int pos
)
6955 c
->cluster
[pos
].n_total_row
= c
->scc
[pos
].n_total_row
;
6956 c
->cluster
[pos
].n_row
= c
->scc
[pos
].n_row
;
6957 c
->cluster
[pos
].maxvar
= c
->scc
[pos
].maxvar
;
6959 for (i
= 0; i
< graph
->n
; ++i
) {
6963 if (graph
->node
[i
].cluster
!= pos
)
6965 s
= graph
->node
[i
].scc
;
6966 k
= c
->scc_node
[s
]++;
6967 swap_sched(&c
->cluster
[pos
].node
[j
], &c
->scc
[s
].node
[k
]);
6968 if (c
->scc
[s
].maxvar
> c
->cluster
[pos
].maxvar
)
6969 c
->cluster
[pos
].maxvar
= c
->scc
[s
].maxvar
;
6976 /* Is there a (conditional) validity dependence from node[j] to node[i],
6977 * forcing node[i] to follow node[j] or do the nodes belong to the same
6980 static isl_bool
node_follows_strong_or_same_cluster(int i
, int j
, void *user
)
6982 struct isl_sched_graph
*graph
= user
;
6984 if (graph
->node
[i
].cluster
== graph
->node
[j
].cluster
)
6985 return isl_bool_true
;
6986 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
6989 /* Extract the merged clusters of SCCs in "graph", sort them, and
6990 * store them in c->clusters. Update c->scc_cluster accordingly.
6992 * First keep track of the cluster containing the SCC to which a node
6993 * belongs in the node itself.
6994 * Then extract the clusters into c->clusters, copying the current
6995 * band schedule from the SCCs that belong to the cluster.
6996 * Do this only once per cluster.
6998 * Finally, topologically sort the clusters and update c->scc_cluster
6999 * to match the new scc numbering. While the SCCs were originally
7000 * sorted already, some SCCs that depend on some other SCCs may
7001 * have been merged with SCCs that appear before these other SCCs.
7002 * A reordering may therefore be required.
7004 static isl_stat
extract_clusters(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
7005 struct isl_clustering
*c
)
7009 for (i
= 0; i
< graph
->n
; ++i
)
7010 graph
->node
[i
].cluster
= c
->scc_cluster
[graph
->node
[i
].scc
];
7012 for (i
= 0; i
< graph
->scc
; ++i
) {
7013 if (c
->scc_cluster
[i
] != i
)
7015 if (extract_sub_graph(ctx
, graph
, &node_cluster_exactly
,
7016 &edge_cluster_exactly
, i
, &c
->cluster
[i
]) < 0)
7017 return isl_stat_error
;
7018 c
->cluster
[i
].src_scc
= -1;
7019 c
->cluster
[i
].dst_scc
= -1;
7020 if (copy_partial(graph
, c
, i
) < 0)
7021 return isl_stat_error
;
7024 if (detect_ccs(ctx
, graph
, &node_follows_strong_or_same_cluster
) < 0)
7025 return isl_stat_error
;
7026 for (i
= 0; i
< graph
->n
; ++i
)
7027 c
->scc_cluster
[graph
->node
[i
].scc
] = graph
->node
[i
].cluster
;
7032 /* Compute weights on the proximity edges of "graph" that can
7033 * be used by find_proximity to find the most appropriate
7034 * proximity edge to use to merge two clusters in "c".
7035 * The weights are also used by has_bounded_distances to determine
7036 * whether the merge should be allowed.
7037 * Store the maximum of the computed weights in graph->max_weight.
7039 * The computed weight is a measure for the number of remaining schedule
7040 * dimensions that can still be completely aligned.
7041 * In particular, compute the number of equalities between
7042 * input dimensions and output dimensions in the proximity constraints.
7043 * The directions that are already handled by outer schedule bands
7044 * are projected out prior to determining this number.
7046 * Edges that will never be considered by find_proximity are ignored.
7048 static isl_stat
compute_weights(struct isl_sched_graph
*graph
,
7049 struct isl_clustering
*c
)
7053 graph
->max_weight
= 0;
7055 for (i
= 0; i
< graph
->n_edge
; ++i
) {
7056 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
7057 struct isl_sched_node
*src
= edge
->src
;
7058 struct isl_sched_node
*dst
= edge
->dst
;
7059 isl_basic_map
*hull
;
7063 prox
= is_non_empty_proximity(edge
);
7065 return isl_stat_error
;
7068 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
7069 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
7071 if (c
->scc_cluster
[edge
->dst
->scc
] ==
7072 c
->scc_cluster
[edge
->src
->scc
])
7075 hull
= isl_map_affine_hull(isl_map_copy(edge
->map
));
7076 hull
= isl_basic_map_transform_dims(hull
, isl_dim_in
, 0,
7077 isl_mat_copy(src
->vmap
));
7078 hull
= isl_basic_map_transform_dims(hull
, isl_dim_out
, 0,
7079 isl_mat_copy(dst
->vmap
));
7080 hull
= isl_basic_map_project_out(hull
,
7081 isl_dim_in
, 0, src
->rank
);
7082 hull
= isl_basic_map_project_out(hull
,
7083 isl_dim_out
, 0, dst
->rank
);
7084 hull
= isl_basic_map_remove_divs(hull
);
7085 n_in
= isl_basic_map_dim(hull
, isl_dim_in
);
7086 n_out
= isl_basic_map_dim(hull
, isl_dim_out
);
7087 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7088 isl_dim_in
, 0, n_in
);
7089 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7090 isl_dim_out
, 0, n_out
);
7092 return isl_stat_error
;
7093 edge
->weight
= isl_basic_map_n_equality(hull
);
7094 isl_basic_map_free(hull
);
7096 if (edge
->weight
> graph
->max_weight
)
7097 graph
->max_weight
= edge
->weight
;
7103 /* Call compute_schedule_finish_band on each of the clusters in "c"
7104 * in their topological order. This order is determined by the scc
7105 * fields of the nodes in "graph".
7106 * Combine the results in a sequence expressing the topological order.
7108 * If there is only one cluster left, then there is no need to introduce
7109 * a sequence node. Also, in this case, the cluster necessarily contains
7110 * the SCC at position 0 in the original graph and is therefore also
7111 * stored in the first cluster of "c".
7113 static __isl_give isl_schedule_node
*finish_bands_clustering(
7114 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7115 struct isl_clustering
*c
)
7119 isl_union_set_list
*filters
;
7121 if (graph
->scc
== 1)
7122 return compute_schedule_finish_band(node
, &c
->cluster
[0], 0);
7124 ctx
= isl_schedule_node_get_ctx(node
);
7126 filters
= extract_sccs(ctx
, graph
);
7127 node
= isl_schedule_node_insert_sequence(node
, filters
);
7129 for (i
= 0; i
< graph
->scc
; ++i
) {
7130 int j
= c
->scc_cluster
[i
];
7131 node
= isl_schedule_node_child(node
, i
);
7132 node
= isl_schedule_node_child(node
, 0);
7133 node
= compute_schedule_finish_band(node
, &c
->cluster
[j
], 0);
7134 node
= isl_schedule_node_parent(node
);
7135 node
= isl_schedule_node_parent(node
);
7141 /* Compute a schedule for a connected dependence graph by first considering
7142 * each strongly connected component (SCC) in the graph separately and then
7143 * incrementally combining them into clusters.
7144 * Return the updated schedule node.
7146 * Initially, each cluster consists of a single SCC, each with its
7147 * own band schedule. The algorithm then tries to merge pairs
7148 * of clusters along a proximity edge until no more suitable
7149 * proximity edges can be found. During this merging, the schedule
7150 * is maintained in the individual SCCs.
7151 * After the merging is completed, the full resulting clusters
7152 * are extracted and in finish_bands_clustering,
7153 * compute_schedule_finish_band is called on each of them to integrate
7154 * the band into "node" and to continue the computation.
7156 * compute_weights initializes the weights that are used by find_proximity.
7158 static __isl_give isl_schedule_node
*compute_schedule_wcc_clustering(
7159 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7162 struct isl_clustering c
;
7165 ctx
= isl_schedule_node_get_ctx(node
);
7167 if (clustering_init(ctx
, &c
, graph
) < 0)
7170 if (compute_weights(graph
, &c
) < 0)
7174 i
= find_proximity(graph
, &c
);
7177 if (i
>= graph
->n_edge
)
7179 if (merge_clusters_along_edge(ctx
, graph
, i
, &c
) < 0)
7183 if (extract_clusters(ctx
, graph
, &c
) < 0)
7186 node
= finish_bands_clustering(node
, graph
, &c
);
7188 clustering_free(ctx
, &c
);
7191 clustering_free(ctx
, &c
);
7192 return isl_schedule_node_free(node
);
7195 /* Compute a schedule for a connected dependence graph and return
7196 * the updated schedule node.
7198 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7199 * as many validity dependences as possible. When all validity dependences
7200 * are satisfied we extend the schedule to a full-dimensional schedule.
7202 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7203 * depending on whether the user has selected the option to try and
7204 * compute a schedule for the entire (weakly connected) component first.
7205 * If there is only a single strongly connected component (SCC), then
7206 * there is no point in trying to combine SCCs
7207 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7208 * is called instead.
7210 static __isl_give isl_schedule_node
*compute_schedule_wcc(
7211 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7218 ctx
= isl_schedule_node_get_ctx(node
);
7219 if (detect_sccs(ctx
, graph
) < 0)
7220 return isl_schedule_node_free(node
);
7222 if (compute_maxvar(graph
) < 0)
7223 return isl_schedule_node_free(node
);
7225 if (need_feautrier_step(ctx
, graph
))
7226 return compute_schedule_wcc_feautrier(node
, graph
);
7228 if (graph
->scc
<= 1 || isl_options_get_schedule_whole_component(ctx
))
7229 return compute_schedule_wcc_whole(node
, graph
);
7231 return compute_schedule_wcc_clustering(node
, graph
);
7234 /* Compute a schedule for each group of nodes identified by node->scc
7235 * separately and then combine them in a sequence node (or as set node
7236 * if graph->weak is set) inserted at position "node" of the schedule tree.
7237 * Return the updated schedule node.
7239 * If "wcc" is set then each of the groups belongs to a single
7240 * weakly connected component in the dependence graph so that
7241 * there is no need for compute_sub_schedule to look for weakly
7242 * connected components.
7244 static __isl_give isl_schedule_node
*compute_component_schedule(
7245 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7250 isl_union_set_list
*filters
;
7254 ctx
= isl_schedule_node_get_ctx(node
);
7256 filters
= extract_sccs(ctx
, graph
);
7258 node
= isl_schedule_node_insert_set(node
, filters
);
7260 node
= isl_schedule_node_insert_sequence(node
, filters
);
7262 for (component
= 0; component
< graph
->scc
; ++component
) {
7263 node
= isl_schedule_node_child(node
, component
);
7264 node
= isl_schedule_node_child(node
, 0);
7265 node
= compute_sub_schedule(node
, ctx
, graph
,
7267 &edge_scc_exactly
, component
, wcc
);
7268 node
= isl_schedule_node_parent(node
);
7269 node
= isl_schedule_node_parent(node
);
7275 /* Compute a schedule for the given dependence graph and insert it at "node".
7276 * Return the updated schedule node.
7278 * We first check if the graph is connected (through validity and conditional
7279 * validity dependences) and, if not, compute a schedule
7280 * for each component separately.
7281 * If the schedule_serialize_sccs option is set, then we check for strongly
7282 * connected components instead and compute a separate schedule for
7283 * each such strongly connected component.
7285 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
7286 struct isl_sched_graph
*graph
)
7293 ctx
= isl_schedule_node_get_ctx(node
);
7294 if (isl_options_get_schedule_serialize_sccs(ctx
)) {
7295 if (detect_sccs(ctx
, graph
) < 0)
7296 return isl_schedule_node_free(node
);
7298 if (detect_wccs(ctx
, graph
) < 0)
7299 return isl_schedule_node_free(node
);
7303 return compute_component_schedule(node
, graph
, 1);
7305 return compute_schedule_wcc(node
, graph
);
7308 /* Compute a schedule on sc->domain that respects the given schedule
7311 * In particular, the schedule respects all the validity dependences.
7312 * If the default isl scheduling algorithm is used, it tries to minimize
7313 * the dependence distances over the proximity dependences.
7314 * If Feautrier's scheduling algorithm is used, the proximity dependence
7315 * distances are only minimized during the extension to a full-dimensional
7318 * If there are any condition and conditional validity dependences,
7319 * then the conditional validity dependences may be violated inside
7320 * a tilable band, provided they have no adjacent non-local
7321 * condition dependences.
7323 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
7324 __isl_take isl_schedule_constraints
*sc
)
7326 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
7327 struct isl_sched_graph graph
= { 0 };
7328 isl_schedule
*sched
;
7329 isl_schedule_node
*node
;
7330 isl_union_set
*domain
;
7332 sc
= isl_schedule_constraints_align_params(sc
);
7334 domain
= isl_schedule_constraints_get_domain(sc
);
7335 if (isl_union_set_n_set(domain
) == 0) {
7336 isl_schedule_constraints_free(sc
);
7337 return isl_schedule_from_domain(domain
);
7340 if (graph_init(&graph
, sc
) < 0)
7341 domain
= isl_union_set_free(domain
);
7343 node
= isl_schedule_node_from_domain(domain
);
7344 node
= isl_schedule_node_child(node
, 0);
7346 node
= compute_schedule(node
, &graph
);
7347 sched
= isl_schedule_node_get_schedule(node
);
7348 isl_schedule_node_free(node
);
7350 graph_free(ctx
, &graph
);
7351 isl_schedule_constraints_free(sc
);
7356 /* Compute a schedule for the given union of domains that respects
7357 * all the validity dependences and minimizes
7358 * the dependence distances over the proximity dependences.
7360 * This function is kept for backward compatibility.
7362 __isl_give isl_schedule
*isl_union_set_compute_schedule(
7363 __isl_take isl_union_set
*domain
,
7364 __isl_take isl_union_map
*validity
,
7365 __isl_take isl_union_map
*proximity
)
7367 isl_schedule_constraints
*sc
;
7369 sc
= isl_schedule_constraints_on_domain(domain
);
7370 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
7371 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
7373 return isl_schedule_constraints_compute_schedule(sc
);