update piplib to 1.4.0
[isl.git] / isl_tab.c
blob7aeac66c7ee33276c5db0ca31c51df203b8a741c
1 #include "isl_map_private.h"
2 #include "isl_tab.h"
4 /*
5 * The implementation of tableaus in this file was inspired by Section 8
6 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
7 * prover for program checking".
8 */
10 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
11 unsigned n_row, unsigned n_var)
13 int i;
14 struct isl_tab *tab;
16 tab = isl_calloc_type(ctx, struct isl_tab);
17 if (!tab)
18 return NULL;
19 tab->mat = isl_mat_alloc(ctx, n_row, 2 + n_var);
20 if (!tab->mat)
21 goto error;
22 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
23 if (!tab->var)
24 goto error;
25 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
26 if (!tab->con)
27 goto error;
28 tab->col_var = isl_alloc_array(ctx, int, n_var);
29 if (!tab->col_var)
30 goto error;
31 tab->row_var = isl_alloc_array(ctx, int, n_row);
32 if (!tab->row_var)
33 goto error;
34 for (i = 0; i < n_var; ++i) {
35 tab->var[i].index = i;
36 tab->var[i].is_row = 0;
37 tab->var[i].is_nonneg = 0;
38 tab->var[i].is_zero = 0;
39 tab->var[i].is_redundant = 0;
40 tab->var[i].frozen = 0;
41 tab->col_var[i] = i;
43 tab->n_row = 0;
44 tab->n_con = 0;
45 tab->n_eq = 0;
46 tab->max_con = n_row;
47 tab->n_col = n_var;
48 tab->n_var = n_var;
49 tab->n_dead = 0;
50 tab->n_redundant = 0;
51 tab->need_undo = 0;
52 tab->rational = 0;
53 tab->empty = 0;
54 tab->bottom.type = isl_tab_undo_bottom;
55 tab->bottom.next = NULL;
56 tab->top = &tab->bottom;
57 return tab;
58 error:
59 isl_tab_free(ctx, tab);
60 return NULL;
63 static int extend_cons(struct isl_ctx *ctx, struct isl_tab *tab, unsigned n_new)
65 if (tab->max_con < tab->n_con + n_new) {
66 struct isl_tab_var *con;
68 con = isl_realloc_array(ctx, tab->con,
69 struct isl_tab_var, tab->max_con + n_new);
70 if (!con)
71 return -1;
72 tab->con = con;
73 tab->max_con += n_new;
75 if (tab->mat->n_row < tab->n_row + n_new) {
76 int *row_var;
78 tab->mat = isl_mat_extend(ctx, tab->mat,
79 tab->n_row + n_new, tab->n_col);
80 if (!tab->mat)
81 return -1;
82 row_var = isl_realloc_array(ctx, tab->row_var,
83 int, tab->mat->n_row);
84 if (!row_var)
85 return -1;
86 tab->row_var = row_var;
88 return 0;
91 struct isl_tab *isl_tab_extend(struct isl_ctx *ctx, struct isl_tab *tab,
92 unsigned n_new)
94 if (extend_cons(ctx, tab, n_new) >= 0)
95 return tab;
97 isl_tab_free(ctx, tab);
98 return NULL;
101 static void free_undo(struct isl_ctx *ctx, struct isl_tab *tab)
103 struct isl_tab_undo *undo, *next;
105 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
106 next = undo->next;
107 free(undo);
109 tab->top = undo;
112 void isl_tab_free(struct isl_ctx *ctx, struct isl_tab *tab)
114 if (!tab)
115 return;
116 free_undo(ctx, tab);
117 isl_mat_free(ctx, tab->mat);
118 free(tab->var);
119 free(tab->con);
120 free(tab->row_var);
121 free(tab->col_var);
122 free(tab);
125 static struct isl_tab_var *var_from_index(struct isl_ctx *ctx,
126 struct isl_tab *tab, int i)
128 if (i >= 0)
129 return &tab->var[i];
130 else
131 return &tab->con[~i];
134 static struct isl_tab_var *var_from_row(struct isl_ctx *ctx,
135 struct isl_tab *tab, int i)
137 return var_from_index(ctx, tab, tab->row_var[i]);
140 static struct isl_tab_var *var_from_col(struct isl_ctx *ctx,
141 struct isl_tab *tab, int i)
143 return var_from_index(ctx, tab, tab->col_var[i]);
146 /* Check if there are any upper bounds on column variable "var",
147 * i.e., non-negative rows where var appears with a negative coefficient.
148 * Return 1 if there are no such bounds.
150 static int max_is_manifestly_unbounded(struct isl_ctx *ctx,
151 struct isl_tab *tab, struct isl_tab_var *var)
153 int i;
155 if (var->is_row)
156 return 0;
157 for (i = tab->n_redundant; i < tab->n_row; ++i) {
158 if (!isl_int_is_neg(tab->mat->row[i][2 + var->index]))
159 continue;
160 if (var_from_row(ctx, tab, i)->is_nonneg)
161 return 0;
163 return 1;
166 /* Check if there are any lower bounds on column variable "var",
167 * i.e., non-negative rows where var appears with a positive coefficient.
168 * Return 1 if there are no such bounds.
170 static int min_is_manifestly_unbounded(struct isl_ctx *ctx,
171 struct isl_tab *tab, struct isl_tab_var *var)
173 int i;
175 if (var->is_row)
176 return 0;
177 for (i = tab->n_redundant; i < tab->n_row; ++i) {
178 if (!isl_int_is_pos(tab->mat->row[i][2 + var->index]))
179 continue;
180 if (var_from_row(ctx, tab, i)->is_nonneg)
181 return 0;
183 return 1;
186 /* Given the index of a column "c", return the index of a row
187 * that can be used to pivot the column in, with either an increase
188 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
189 * If "var" is not NULL, then the row returned will be different from
190 * the one associated with "var".
192 * Each row in the tableau is of the form
194 * x_r = a_r0 + \sum_i a_ri x_i
196 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
197 * impose any limit on the increase or decrease in the value of x_c
198 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
199 * for the row with the smallest (most stringent) such bound.
200 * Note that the common denominator of each row drops out of the fraction.
201 * To check if row j has a smaller bound than row r, i.e.,
202 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
203 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
204 * where -sign(a_jc) is equal to "sgn".
206 static int pivot_row(struct isl_ctx *ctx, struct isl_tab *tab,
207 struct isl_tab_var *var, int sgn, int c)
209 int j, r, tsgn;
210 isl_int t;
212 isl_int_init(t);
213 r = -1;
214 for (j = tab->n_redundant; j < tab->n_row; ++j) {
215 if (var && j == var->index)
216 continue;
217 if (!var_from_row(ctx, tab, j)->is_nonneg)
218 continue;
219 if (sgn * isl_int_sgn(tab->mat->row[j][2 + c]) >= 0)
220 continue;
221 if (r < 0) {
222 r = j;
223 continue;
225 isl_int_mul(t, tab->mat->row[r][1], tab->mat->row[j][2 + c]);
226 isl_int_submul(t, tab->mat->row[j][1], tab->mat->row[r][2 + c]);
227 tsgn = sgn * isl_int_sgn(t);
228 if (tsgn < 0 || (tsgn == 0 &&
229 tab->row_var[j] < tab->row_var[r]))
230 r = j;
232 isl_int_clear(t);
233 return r;
236 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
237 * (sgn < 0) the value of row variable var.
238 * As the given row in the tableau is of the form
240 * x_r = a_r0 + \sum_i a_ri x_i
242 * we need to find a column such that the sign of a_ri is equal to "sgn"
243 * (such that an increase in x_i will have the desired effect) or a
244 * column with a variable that may attain negative values.
245 * If a_ri is positive, then we need to move x_i in the same direction
246 * to obtain the desired effect. Otherwise, x_i has to move in the
247 * opposite direction.
249 static void find_pivot(struct isl_ctx *ctx, struct isl_tab *tab,
250 struct isl_tab_var *var, int sgn, int *row, int *col)
252 int j, r, c;
253 isl_int *tr;
255 *row = *col = -1;
257 isl_assert(ctx, var->is_row, return);
258 tr = tab->mat->row[var->index];
260 c = -1;
261 for (j = tab->n_dead; j < tab->n_col; ++j) {
262 if (isl_int_is_zero(tr[2 + j]))
263 continue;
264 if (isl_int_sgn(tr[2 + j]) != sgn &&
265 var_from_col(ctx, tab, j)->is_nonneg)
266 continue;
267 if (c < 0 || tab->col_var[j] < tab->col_var[c])
268 c = j;
270 if (c < 0)
271 return;
273 sgn *= isl_int_sgn(tr[2 + c]);
274 r = pivot_row(ctx, tab, var, sgn, c);
275 *row = r < 0 ? var->index : r;
276 *col = c;
279 /* Return 1 if row "row" represents an obviously redundant inequality.
280 * This means
281 * - it represents an inequality or a variable
282 * - that is the sum of a non-negative sample value and a positive
283 * combination of zero or more non-negative variables.
285 static int is_redundant(struct isl_ctx *ctx, struct isl_tab *tab, int row)
287 int i;
289 if (tab->row_var[row] < 0 && !var_from_row(ctx, tab, row)->is_nonneg)
290 return 0;
292 if (isl_int_is_neg(tab->mat->row[row][1]))
293 return 0;
295 for (i = tab->n_dead; i < tab->n_col; ++i) {
296 if (isl_int_is_zero(tab->mat->row[row][2 + i]))
297 continue;
298 if (isl_int_is_neg(tab->mat->row[row][2 + i]))
299 return 0;
300 if (!var_from_col(ctx, tab, i)->is_nonneg)
301 return 0;
303 return 1;
306 static void swap_rows(struct isl_ctx *ctx,
307 struct isl_tab *tab, int row1, int row2)
309 int t;
310 t = tab->row_var[row1];
311 tab->row_var[row1] = tab->row_var[row2];
312 tab->row_var[row2] = t;
313 var_from_row(ctx, tab, row1)->index = row1;
314 var_from_row(ctx, tab, row2)->index = row2;
315 tab->mat = isl_mat_swap_rows(ctx, tab->mat, row1, row2);
318 static void push(struct isl_ctx *ctx, struct isl_tab *tab,
319 enum isl_tab_undo_type type, struct isl_tab_var *var)
321 struct isl_tab_undo *undo;
323 if (!tab->need_undo)
324 return;
326 undo = isl_alloc_type(ctx, struct isl_tab_undo);
327 if (!undo) {
328 free_undo(ctx, tab);
329 tab->top = NULL;
330 return;
332 undo->type = type;
333 undo->var = var;
334 undo->next = tab->top;
335 tab->top = undo;
338 /* Mark row with index "row" as being redundant.
339 * If we may need to undo the operation or if the row represents
340 * a variable of the original problem, the row is kept,
341 * but no longer considered when looking for a pivot row.
342 * Otherwise, the row is simply removed.
344 * The row may be interchanged with some other row. If it
345 * is interchanged with a later row, return 1. Otherwise return 0.
346 * If the rows are checked in order in the calling function,
347 * then a return value of 1 means that the row with the given
348 * row number may now contain a different row that hasn't been checked yet.
350 static int mark_redundant(struct isl_ctx *ctx,
351 struct isl_tab *tab, int row)
353 struct isl_tab_var *var = var_from_row(ctx, tab, row);
354 var->is_redundant = 1;
355 isl_assert(ctx, row >= tab->n_redundant, return);
356 if (tab->need_undo || tab->row_var[row] >= 0) {
357 if (tab->row_var[row] >= 0) {
358 var->is_nonneg = 1;
359 push(ctx, tab, isl_tab_undo_nonneg, var);
361 if (row != tab->n_redundant)
362 swap_rows(ctx, tab, row, tab->n_redundant);
363 push(ctx, tab, isl_tab_undo_redundant, var);
364 tab->n_redundant++;
365 return 0;
366 } else {
367 if (row != tab->n_row - 1)
368 swap_rows(ctx, tab, row, tab->n_row - 1);
369 var_from_row(ctx, tab, tab->n_row - 1)->index = -1;
370 tab->n_row--;
371 return 1;
375 static void mark_empty(struct isl_ctx *ctx, struct isl_tab *tab)
377 if (!tab->empty && tab->need_undo)
378 push(ctx, tab, isl_tab_undo_empty, NULL);
379 tab->empty = 1;
382 /* Given a row number "row" and a column number "col", pivot the tableau
383 * such that the associated variable are interchanged.
384 * The given row in the tableau expresses
386 * x_r = a_r0 + \sum_i a_ri x_i
388 * or
390 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
392 * Substituting this equality into the other rows
394 * x_j = a_j0 + \sum_i a_ji x_i
396 * with a_jc \ne 0, we obtain
398 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
400 * The tableau
402 * n_rc/d_r n_ri/d_r
403 * n_jc/d_j n_ji/d_j
405 * where i is any other column and j is any other row,
406 * is therefore transformed into
408 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
409 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
411 * The transformation is performed along the following steps
413 * d_r/n_rc n_ri/n_rc
414 * n_jc/d_j n_ji/d_j
416 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
417 * n_jc/d_j n_ji/d_j
419 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
420 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
422 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
423 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
425 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
426 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
428 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
429 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
432 static void pivot(struct isl_ctx *ctx,
433 struct isl_tab *tab, int row, int col)
435 int i, j;
436 int sgn;
437 int t;
438 struct isl_mat *mat = tab->mat;
439 struct isl_tab_var *var;
441 isl_int_swap(mat->row[row][0], mat->row[row][2 + col]);
442 sgn = isl_int_sgn(mat->row[row][0]);
443 if (sgn < 0) {
444 isl_int_neg(mat->row[row][0], mat->row[row][0]);
445 isl_int_neg(mat->row[row][2 + col], mat->row[row][2 + col]);
446 } else
447 for (j = 0; j < 1 + tab->n_col; ++j) {
448 if (j == 1 + col)
449 continue;
450 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
452 if (!isl_int_is_one(mat->row[row][0]))
453 isl_seq_normalize(mat->row[row], 2 + tab->n_col);
454 for (i = 0; i < tab->n_row; ++i) {
455 if (i == row)
456 continue;
457 if (isl_int_is_zero(mat->row[i][2 + col]))
458 continue;
459 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
460 for (j = 0; j < 1 + tab->n_col; ++j) {
461 if (j == 1 + col)
462 continue;
463 isl_int_mul(mat->row[i][1 + j],
464 mat->row[i][1 + j], mat->row[row][0]);
465 isl_int_addmul(mat->row[i][1 + j],
466 mat->row[i][2 + col], mat->row[row][1 + j]);
468 isl_int_mul(mat->row[i][2 + col],
469 mat->row[i][2 + col], mat->row[row][2 + col]);
470 if (!isl_int_is_one(mat->row[row][0]))
471 isl_seq_normalize(mat->row[i], 2 + tab->n_col);
473 t = tab->row_var[row];
474 tab->row_var[row] = tab->col_var[col];
475 tab->col_var[col] = t;
476 var = var_from_row(ctx, tab, row);
477 var->is_row = 1;
478 var->index = row;
479 var = var_from_col(ctx, tab, col);
480 var->is_row = 0;
481 var->index = col;
482 for (i = tab->n_redundant; i < tab->n_row; ++i) {
483 if (isl_int_is_zero(mat->row[i][2 + col]))
484 continue;
485 if (!var_from_row(ctx, tab, i)->frozen &&
486 is_redundant(ctx, tab, i))
487 if (mark_redundant(ctx, tab, i))
488 --i;
492 /* If "var" represents a column variable, then pivot is up (sgn > 0)
493 * or down (sgn < 0) to a row. The variable is assumed not to be
494 * unbounded in the specified direction.
496 static void to_row(struct isl_ctx *ctx,
497 struct isl_tab *tab, struct isl_tab_var *var, int sign)
499 int r;
501 if (var->is_row)
502 return;
504 r = pivot_row(ctx, tab, NULL, sign, var->index);
505 isl_assert(ctx, r >= 0, return);
506 pivot(ctx, tab, r, var->index);
509 static void check_table(struct isl_ctx *ctx, struct isl_tab *tab)
511 int i;
513 if (tab->empty)
514 return;
515 for (i = 0; i < tab->n_row; ++i) {
516 if (!var_from_row(ctx, tab, i)->is_nonneg)
517 continue;
518 assert(!isl_int_is_neg(tab->mat->row[i][1]));
522 /* Return the sign of the maximal value of "var".
523 * If the sign is not negative, then on return from this function,
524 * the sample value will also be non-negative.
526 * If "var" is manifestly unbounded wrt positive values, we are done.
527 * Otherwise, we pivot the variable up to a row if needed
528 * Then we continue pivoting down until either
529 * - no more down pivots can be performed
530 * - the sample value is positive
531 * - the variable is pivoted into a manifestly unbounded column
533 static int sign_of_max(struct isl_ctx *ctx,
534 struct isl_tab *tab, struct isl_tab_var *var)
536 int row, col;
538 if (max_is_manifestly_unbounded(ctx, tab, var))
539 return 1;
540 to_row(ctx, tab, var, 1);
541 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
542 find_pivot(ctx, tab, var, 1, &row, &col);
543 if (row == -1)
544 return isl_int_sgn(tab->mat->row[var->index][1]);
545 pivot(ctx, tab, row, col);
546 if (!var->is_row) /* manifestly unbounded */
547 return 1;
549 return 1;
552 /* Perform pivots until the row variable "var" has a non-negative
553 * sample value or until no more upward pivots can be performed.
554 * Return the sign of the sample value after the pivots have been
555 * performed.
557 static int restore_row(struct isl_ctx *ctx,
558 struct isl_tab *tab, struct isl_tab_var *var)
560 int row, col;
562 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
563 find_pivot(ctx, tab, var, 1, &row, &col);
564 if (row == -1)
565 break;
566 pivot(ctx, tab, row, col);
567 if (!var->is_row) /* manifestly unbounded */
568 return 1;
570 return isl_int_sgn(tab->mat->row[var->index][1]);
573 /* Perform pivots until we are sure that the row variable "var"
574 * can attain non-negative values. After return from this
575 * function, "var" is still a row variable, but its sample
576 * value may not be non-negative, even if the function returns 1.
578 static int at_least_zero(struct isl_ctx *ctx,
579 struct isl_tab *tab, struct isl_tab_var *var)
581 int row, col;
583 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
584 find_pivot(ctx, tab, var, 1, &row, &col);
585 if (row == -1)
586 break;
587 if (row == var->index) /* manifestly unbounded */
588 return 1;
589 pivot(ctx, tab, row, col);
591 return !isl_int_is_neg(tab->mat->row[var->index][1]);
594 /* Return a negative value if "var" can attain negative values.
595 * Return a non-negative value otherwise.
597 * If "var" is manifestly unbounded wrt negative values, we are done.
598 * Otherwise, if var is in a column, we can pivot it down to a row.
599 * Then we continue pivoting down until either
600 * - the pivot would result in a manifestly unbounded column
601 * => we don't perform the pivot, but simply return -1
602 * - no more down pivots can be performed
603 * - the sample value is negative
604 * If the sample value becomes negative and the variable is supposed
605 * to be nonnegative, then we undo the last pivot.
606 * However, if the last pivot has made the pivoting variable
607 * obviously redundant, then it may have moved to another row.
608 * In that case we look for upward pivots until we reach a non-negative
609 * value again.
611 static int sign_of_min(struct isl_ctx *ctx,
612 struct isl_tab *tab, struct isl_tab_var *var)
614 int row, col;
615 struct isl_tab_var *pivot_var;
617 if (min_is_manifestly_unbounded(ctx, tab, var))
618 return -1;
619 if (!var->is_row) {
620 col = var->index;
621 row = pivot_row(ctx, tab, NULL, -1, col);
622 pivot_var = var_from_col(ctx, tab, col);
623 pivot(ctx, tab, row, col);
624 if (var->is_redundant)
625 return 0;
626 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
627 if (var->is_nonneg) {
628 if (!pivot_var->is_redundant &&
629 pivot_var->index == row)
630 pivot(ctx, tab, row, col);
631 else
632 restore_row(ctx, tab, var);
634 return -1;
637 if (var->is_redundant)
638 return 0;
639 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
640 find_pivot(ctx, tab, var, -1, &row, &col);
641 if (row == var->index)
642 return -1;
643 if (row == -1)
644 return isl_int_sgn(tab->mat->row[var->index][1]);
645 pivot_var = var_from_col(ctx, tab, col);
646 pivot(ctx, tab, row, col);
647 if (var->is_redundant)
648 return 0;
650 if (var->is_nonneg) {
651 /* pivot back to non-negative value */
652 if (!pivot_var->is_redundant && pivot_var->index == row)
653 pivot(ctx, tab, row, col);
654 else
655 restore_row(ctx, tab, var);
657 return -1;
660 /* Return 1 if "var" can attain values <= -1.
661 * Return 0 otherwise.
663 * The sample value of "var" is assumed to be non-negative when the
664 * the function is called and will be made non-negative again before
665 * the function returns.
667 static int min_at_most_neg_one(struct isl_ctx *ctx,
668 struct isl_tab *tab, struct isl_tab_var *var)
670 int row, col;
671 struct isl_tab_var *pivot_var;
673 if (min_is_manifestly_unbounded(ctx, tab, var))
674 return 1;
675 if (!var->is_row) {
676 col = var->index;
677 row = pivot_row(ctx, tab, NULL, -1, col);
678 pivot_var = var_from_col(ctx, tab, col);
679 pivot(ctx, tab, row, col);
680 if (var->is_redundant)
681 return 0;
682 if (isl_int_is_neg(tab->mat->row[var->index][1]) &&
683 isl_int_abs_ge(tab->mat->row[var->index][1],
684 tab->mat->row[var->index][0])) {
685 if (var->is_nonneg) {
686 if (!pivot_var->is_redundant &&
687 pivot_var->index == row)
688 pivot(ctx, tab, row, col);
689 else
690 restore_row(ctx, tab, var);
692 return 1;
695 if (var->is_redundant)
696 return 0;
697 do {
698 find_pivot(ctx, tab, var, -1, &row, &col);
699 if (row == var->index)
700 return 1;
701 if (row == -1)
702 return 0;
703 pivot_var = var_from_col(ctx, tab, col);
704 pivot(ctx, tab, row, col);
705 if (var->is_redundant)
706 return 0;
707 } while (!isl_int_is_neg(tab->mat->row[var->index][1]) ||
708 isl_int_abs_lt(tab->mat->row[var->index][1],
709 tab->mat->row[var->index][0]));
710 if (var->is_nonneg) {
711 /* pivot back to non-negative value */
712 if (!pivot_var->is_redundant && pivot_var->index == row)
713 pivot(ctx, tab, row, col);
714 restore_row(ctx, tab, var);
716 return 1;
719 /* Return 1 if "var" can attain values >= 1.
720 * Return 0 otherwise.
722 static int at_least_one(struct isl_ctx *ctx,
723 struct isl_tab *tab, struct isl_tab_var *var)
725 int row, col;
726 isl_int *r;
728 if (max_is_manifestly_unbounded(ctx, tab, var))
729 return 1;
730 to_row(ctx, tab, var, 1);
731 r = tab->mat->row[var->index];
732 while (isl_int_lt(r[1], r[0])) {
733 find_pivot(ctx, tab, var, 1, &row, &col);
734 if (row == -1)
735 return isl_int_ge(r[1], r[0]);
736 if (row == var->index) /* manifestly unbounded */
737 return 1;
738 pivot(ctx, tab, row, col);
740 return 1;
743 static void swap_cols(struct isl_ctx *ctx,
744 struct isl_tab *tab, int col1, int col2)
746 int t;
747 t = tab->col_var[col1];
748 tab->col_var[col1] = tab->col_var[col2];
749 tab->col_var[col2] = t;
750 var_from_col(ctx, tab, col1)->index = col1;
751 var_from_col(ctx, tab, col2)->index = col2;
752 tab->mat = isl_mat_swap_cols(ctx, tab->mat, 2 + col1, 2 + col2);
755 /* Mark column with index "col" as representing a zero variable.
756 * If we may need to undo the operation the column is kept,
757 * but no longer considered.
758 * Otherwise, the column is simply removed.
760 * The column may be interchanged with some other column. If it
761 * is interchanged with a later column, return 1. Otherwise return 0.
762 * If the columns are checked in order in the calling function,
763 * then a return value of 1 means that the column with the given
764 * column number may now contain a different column that
765 * hasn't been checked yet.
767 static int kill_col(struct isl_ctx *ctx,
768 struct isl_tab *tab, int col)
770 var_from_col(ctx, tab, col)->is_zero = 1;
771 if (tab->need_undo) {
772 push(ctx, tab, isl_tab_undo_zero, var_from_col(ctx, tab, col));
773 if (col != tab->n_dead)
774 swap_cols(ctx, tab, col, tab->n_dead);
775 tab->n_dead++;
776 return 0;
777 } else {
778 if (col != tab->n_col - 1)
779 swap_cols(ctx, tab, col, tab->n_col - 1);
780 var_from_col(ctx, tab, tab->n_col - 1)->index = -1;
781 tab->n_col--;
782 return 1;
786 /* Row variable "var" is non-negative and cannot attain any values
787 * larger than zero. This means that the coefficients of the unrestricted
788 * column variables are zero and that the coefficients of the non-negative
789 * column variables are zero or negative.
790 * Each of the non-negative variables with a negative coefficient can
791 * then also be written as the negative sum of non-negative variables
792 * and must therefore also be zero.
794 static void close_row(struct isl_ctx *ctx,
795 struct isl_tab *tab, struct isl_tab_var *var)
797 int j;
798 struct isl_mat *mat = tab->mat;
800 isl_assert(ctx, var->is_nonneg, return);
801 var->is_zero = 1;
802 for (j = tab->n_dead; j < tab->n_col; ++j) {
803 if (isl_int_is_zero(mat->row[var->index][2 + j]))
804 continue;
805 isl_assert(ctx, isl_int_is_neg(mat->row[var->index][2 + j]),
806 return);
807 if (kill_col(ctx, tab, j))
808 --j;
810 mark_redundant(ctx, tab, var->index);
813 /* Add a row to the tableau. The row is given as an affine combination
814 * of the original variables and needs to be expressed in terms of the
815 * column variables.
817 * We add each term in turn.
818 * If r = n/d_r is the current sum and we need to add k x, then
819 * if x is a column variable, we increase the numerator of
820 * this column by k d_r
821 * if x = f/d_x is a row variable, then the new representation of r is
823 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
824 * --- + --- = ------------------- = -------------------
825 * d_r d_r d_r d_x/g m
827 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
829 static int add_row(struct isl_ctx *ctx, struct isl_tab *tab, isl_int *line)
831 int i;
832 unsigned r;
833 isl_int *row;
834 isl_int a, b;
836 isl_assert(ctx, tab->n_row < tab->mat->n_row, return -1);
838 isl_int_init(a);
839 isl_int_init(b);
840 r = tab->n_con;
841 tab->con[r].index = tab->n_row;
842 tab->con[r].is_row = 1;
843 tab->con[r].is_nonneg = 0;
844 tab->con[r].is_zero = 0;
845 tab->con[r].is_redundant = 0;
846 tab->con[r].frozen = 0;
847 tab->row_var[tab->n_row] = ~r;
848 row = tab->mat->row[tab->n_row];
849 isl_int_set_si(row[0], 1);
850 isl_int_set(row[1], line[0]);
851 isl_seq_clr(row + 2, tab->n_col);
852 for (i = 0; i < tab->n_var; ++i) {
853 if (tab->var[i].is_zero)
854 continue;
855 if (tab->var[i].is_row) {
856 isl_int_lcm(a,
857 row[0], tab->mat->row[tab->var[i].index][0]);
858 isl_int_swap(a, row[0]);
859 isl_int_divexact(a, row[0], a);
860 isl_int_divexact(b,
861 row[0], tab->mat->row[tab->var[i].index][0]);
862 isl_int_mul(b, b, line[1 + i]);
863 isl_seq_combine(row + 1, a, row + 1,
864 b, tab->mat->row[tab->var[i].index] + 1,
865 1 + tab->n_col);
866 } else
867 isl_int_addmul(row[2 + tab->var[i].index],
868 line[1 + i], row[0]);
870 isl_seq_normalize(row, 2 + tab->n_col);
871 tab->n_row++;
872 tab->n_con++;
873 push(ctx, tab, isl_tab_undo_allocate, &tab->con[r]);
874 isl_int_clear(a);
875 isl_int_clear(b);
877 return r;
880 static int drop_row(struct isl_ctx *ctx, struct isl_tab *tab, int row)
882 isl_assert(ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
883 if (row != tab->n_row - 1)
884 swap_rows(ctx, tab, row, tab->n_row - 1);
885 tab->n_row--;
886 tab->n_con--;
887 return 0;
890 /* Add inequality "ineq" and check if it conflicts with the
891 * previously added constraints or if it is obviously redundant.
893 struct isl_tab *isl_tab_add_ineq(struct isl_ctx *ctx,
894 struct isl_tab *tab, isl_int *ineq)
896 int r;
897 int sgn;
899 if (!tab)
900 return NULL;
901 r = add_row(ctx, tab, ineq);
902 if (r < 0)
903 goto error;
904 tab->con[r].is_nonneg = 1;
905 push(ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
906 if (is_redundant(ctx, tab, tab->con[r].index)) {
907 mark_redundant(ctx, tab, tab->con[r].index);
908 return tab;
911 sgn = restore_row(ctx, tab, &tab->con[r]);
912 if (sgn < 0)
913 mark_empty(ctx, tab);
914 else if (tab->con[r].is_row &&
915 is_redundant(ctx, tab, tab->con[r].index))
916 mark_redundant(ctx, tab, tab->con[r].index);
917 return tab;
918 error:
919 isl_tab_free(ctx, tab);
920 return NULL;
923 /* We assume Gaussian elimination has been performed on the equalities.
924 * The equalities can therefore never conflict.
925 * Adding the equalities is currently only really useful for a later call
926 * to isl_tab_ineq_type.
928 static struct isl_tab *add_eq(struct isl_ctx *ctx,
929 struct isl_tab *tab, isl_int *eq)
931 int i;
932 int r;
934 if (!tab)
935 return NULL;
936 r = add_row(ctx, tab, eq);
937 if (r < 0)
938 goto error;
940 r = tab->con[r].index;
941 for (i = tab->n_dead; i < tab->n_col; ++i) {
942 if (isl_int_is_zero(tab->mat->row[r][2 + i]))
943 continue;
944 pivot(ctx, tab, r, i);
945 kill_col(ctx, tab, i);
946 break;
948 tab->n_eq++;
950 return tab;
951 error:
952 isl_tab_free(ctx, tab);
953 return NULL;
956 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
958 int i;
959 struct isl_tab *tab;
961 if (!bmap)
962 return NULL;
963 tab = isl_tab_alloc(bmap->ctx,
964 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
965 isl_basic_map_total_dim(bmap));
966 if (!tab)
967 return NULL;
968 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
969 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
970 mark_empty(bmap->ctx, tab);
971 return tab;
973 for (i = 0; i < bmap->n_eq; ++i) {
974 tab = add_eq(bmap->ctx, tab, bmap->eq[i]);
975 if (!tab)
976 return tab;
978 for (i = 0; i < bmap->n_ineq; ++i) {
979 tab = isl_tab_add_ineq(bmap->ctx, tab, bmap->ineq[i]);
980 if (!tab || tab->empty)
981 return tab;
983 return tab;
986 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
988 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
991 /* Construct a tableau corresponding to the recession cone of "bmap".
993 struct isl_tab *isl_tab_from_recession_cone(struct isl_basic_map *bmap)
995 isl_int cst;
996 int i;
997 struct isl_tab *tab;
999 if (!bmap)
1000 return NULL;
1001 tab = isl_tab_alloc(bmap->ctx, bmap->n_eq + bmap->n_ineq,
1002 isl_basic_map_total_dim(bmap));
1003 if (!tab)
1004 return NULL;
1005 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1007 isl_int_init(cst);
1008 for (i = 0; i < bmap->n_eq; ++i) {
1009 isl_int_swap(bmap->eq[i][0], cst);
1010 tab = add_eq(bmap->ctx, tab, bmap->eq[i]);
1011 isl_int_swap(bmap->eq[i][0], cst);
1012 if (!tab)
1013 goto done;
1015 for (i = 0; i < bmap->n_ineq; ++i) {
1016 int r;
1017 isl_int_swap(bmap->ineq[i][0], cst);
1018 r = add_row(bmap->ctx, tab, bmap->ineq[i]);
1019 isl_int_swap(bmap->ineq[i][0], cst);
1020 if (r < 0)
1021 goto error;
1022 tab->con[r].is_nonneg = 1;
1023 push(bmap->ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
1025 done:
1026 isl_int_clear(cst);
1027 return tab;
1028 error:
1029 isl_int_clear(cst);
1030 isl_tab_free(bmap->ctx, tab);
1031 return NULL;
1034 /* Assuming "tab" is the tableau of a cone, check if the cone is
1035 * bounded, i.e., if it is empty or only contains the origin.
1037 int isl_tab_cone_is_bounded(struct isl_ctx *ctx, struct isl_tab *tab)
1039 int i;
1041 if (!tab)
1042 return -1;
1043 if (tab->empty)
1044 return 1;
1045 if (tab->n_dead == tab->n_col)
1046 return 1;
1048 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1049 struct isl_tab_var *var;
1050 var = var_from_row(ctx, tab, i);
1051 if (!var->is_nonneg)
1052 continue;
1053 if (sign_of_max(ctx, tab, var) == 0)
1054 close_row(ctx, tab, var);
1055 else
1056 return 0;
1057 if (tab->n_dead == tab->n_col)
1058 return 1;
1060 return 0;
1063 static int sample_is_integer(struct isl_ctx *ctx, struct isl_tab *tab)
1065 int i;
1067 for (i = 0; i < tab->n_var; ++i) {
1068 int row;
1069 if (!tab->var[i].is_row)
1070 continue;
1071 row = tab->var[i].index;
1072 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
1073 tab->mat->row[row][0]))
1074 return 0;
1076 return 1;
1079 static struct isl_vec *extract_integer_sample(struct isl_ctx *ctx,
1080 struct isl_tab *tab)
1082 int i;
1083 struct isl_vec *vec;
1085 vec = isl_vec_alloc(ctx, 1 + tab->n_var);
1086 if (!vec)
1087 return NULL;
1089 isl_int_set_si(vec->block.data[0], 1);
1090 for (i = 0; i < tab->n_var; ++i) {
1091 if (!tab->var[i].is_row)
1092 isl_int_set_si(vec->block.data[1 + i], 0);
1093 else {
1094 int row = tab->var[i].index;
1095 isl_int_divexact(vec->block.data[1 + i],
1096 tab->mat->row[row][1], tab->mat->row[row][0]);
1100 return vec;
1103 /* Update "bmap" based on the results of the tableau "tab".
1104 * In particular, implicit equalities are made explicit, redundant constraints
1105 * are removed and if the sample value happens to be integer, it is stored
1106 * in "bmap" (unless "bmap" already had an integer sample).
1108 * The tableau is assumed to have been created from "bmap" using
1109 * isl_tab_from_basic_map.
1111 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
1112 struct isl_tab *tab)
1114 int i;
1115 unsigned n_eq;
1117 if (!bmap)
1118 return NULL;
1119 if (!tab)
1120 return bmap;
1122 n_eq = tab->n_eq;
1123 if (tab->empty)
1124 bmap = isl_basic_map_set_to_empty(bmap);
1125 else
1126 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1127 if (isl_tab_is_equality(bmap->ctx, tab, n_eq + i))
1128 isl_basic_map_inequality_to_equality(bmap, i);
1129 else if (isl_tab_is_redundant(bmap->ctx, tab, n_eq + i))
1130 isl_basic_map_drop_inequality(bmap, i);
1132 if (!tab->rational &&
1133 !bmap->sample && sample_is_integer(bmap->ctx, tab))
1134 bmap->sample = extract_integer_sample(bmap->ctx, tab);
1135 return bmap;
1138 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
1139 struct isl_tab *tab)
1141 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
1142 (struct isl_basic_map *)bset, tab);
1145 /* Given a non-negative variable "var", add a new non-negative variable
1146 * that is the opposite of "var", ensuring that var can only attain the
1147 * value zero.
1148 * If var = n/d is a row variable, then the new variable = -n/d.
1149 * If var is a column variables, then the new variable = -var.
1150 * If the new variable cannot attain non-negative values, then
1151 * the resulting tableau is empty.
1152 * Otherwise, we know the value will be zero and we close the row.
1154 static struct isl_tab *cut_to_hyperplane(struct isl_ctx *ctx,
1155 struct isl_tab *tab, struct isl_tab_var *var)
1157 unsigned r;
1158 isl_int *row;
1159 int sgn;
1161 if (extend_cons(ctx, tab, 1) < 0)
1162 goto error;
1164 r = tab->n_con;
1165 tab->con[r].index = tab->n_row;
1166 tab->con[r].is_row = 1;
1167 tab->con[r].is_nonneg = 0;
1168 tab->con[r].is_zero = 0;
1169 tab->con[r].is_redundant = 0;
1170 tab->con[r].frozen = 0;
1171 tab->row_var[tab->n_row] = ~r;
1172 row = tab->mat->row[tab->n_row];
1174 if (var->is_row) {
1175 isl_int_set(row[0], tab->mat->row[var->index][0]);
1176 isl_seq_neg(row + 1,
1177 tab->mat->row[var->index] + 1, 1 + tab->n_col);
1178 } else {
1179 isl_int_set_si(row[0], 1);
1180 isl_seq_clr(row + 1, 1 + tab->n_col);
1181 isl_int_set_si(row[2 + var->index], -1);
1184 tab->n_row++;
1185 tab->n_con++;
1186 push(ctx, tab, isl_tab_undo_allocate, &tab->con[r]);
1188 sgn = sign_of_max(ctx, tab, &tab->con[r]);
1189 if (sgn < 0)
1190 mark_empty(ctx, tab);
1191 else {
1192 tab->con[r].is_nonneg = 1;
1193 push(ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
1194 /* sgn == 0 */
1195 close_row(ctx, tab, &tab->con[r]);
1198 return tab;
1199 error:
1200 isl_tab_free(ctx, tab);
1201 return NULL;
1204 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
1205 * relax the inequality by one. That is, the inequality r >= 0 is replaced
1206 * by r' = r + 1 >= 0.
1207 * If r is a row variable, we simply increase the constant term by one
1208 * (taking into account the denominator).
1209 * If r is a column variable, then we need to modify each row that
1210 * refers to r = r' - 1 by substituting this equality, effectively
1211 * subtracting the coefficient of the column from the constant.
1213 struct isl_tab *isl_tab_relax(struct isl_ctx *ctx,
1214 struct isl_tab *tab, int con)
1216 struct isl_tab_var *var;
1217 if (!tab)
1218 return NULL;
1220 var = &tab->con[con];
1222 if (!var->is_row && !max_is_manifestly_unbounded(ctx, tab, var))
1223 to_row(ctx, tab, var, 1);
1225 if (var->is_row)
1226 isl_int_add(tab->mat->row[var->index][1],
1227 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1228 else {
1229 int i;
1231 for (i = 0; i < tab->n_row; ++i) {
1232 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1233 continue;
1234 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
1235 tab->mat->row[i][2 + var->index]);
1240 push(ctx, tab, isl_tab_undo_relax, var);
1242 return tab;
1245 struct isl_tab *isl_tab_select_facet(struct isl_ctx *ctx,
1246 struct isl_tab *tab, int con)
1248 if (!tab)
1249 return NULL;
1251 return cut_to_hyperplane(ctx, tab, &tab->con[con]);
1254 static int may_be_equality(struct isl_tab *tab, int row)
1256 return (tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
1257 : isl_int_lt(tab->mat->row[row][1],
1258 tab->mat->row[row][0])) &&
1259 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1260 tab->n_col - tab->n_dead) != -1;
1263 /* Check for (near) equalities among the constraints.
1264 * A constraint is an equality if it is non-negative and if
1265 * its maximal value is either
1266 * - zero (in case of rational tableaus), or
1267 * - strictly less than 1 (in case of integer tableaus)
1269 * We first mark all non-redundant and non-dead variables that
1270 * are not frozen and not obviously not an equality.
1271 * Then we iterate over all marked variables if they can attain
1272 * any values larger than zero or at least one.
1273 * If the maximal value is zero, we mark any column variables
1274 * that appear in the row as being zero and mark the row as being redundant.
1275 * Otherwise, if the maximal value is strictly less than one (and the
1276 * tableau is integer), then we restrict the value to being zero
1277 * by adding an opposite non-negative variable.
1279 struct isl_tab *isl_tab_detect_equalities(struct isl_ctx *ctx,
1280 struct isl_tab *tab)
1282 int i;
1283 unsigned n_marked;
1285 if (!tab)
1286 return NULL;
1287 if (tab->empty)
1288 return tab;
1289 if (tab->n_dead == tab->n_col)
1290 return tab;
1292 n_marked = 0;
1293 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1294 struct isl_tab_var *var = var_from_row(ctx, tab, i);
1295 var->marked = !var->frozen && var->is_nonneg &&
1296 may_be_equality(tab, i);
1297 if (var->marked)
1298 n_marked++;
1300 for (i = tab->n_dead; i < tab->n_col; ++i) {
1301 struct isl_tab_var *var = var_from_col(ctx, tab, i);
1302 var->marked = !var->frozen && var->is_nonneg;
1303 if (var->marked)
1304 n_marked++;
1306 while (n_marked) {
1307 struct isl_tab_var *var;
1308 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1309 var = var_from_row(ctx, tab, i);
1310 if (var->marked)
1311 break;
1313 if (i == tab->n_row) {
1314 for (i = tab->n_dead; i < tab->n_col; ++i) {
1315 var = var_from_col(ctx, tab, i);
1316 if (var->marked)
1317 break;
1319 if (i == tab->n_col)
1320 break;
1322 var->marked = 0;
1323 n_marked--;
1324 if (sign_of_max(ctx, tab, var) == 0)
1325 close_row(ctx, tab, var);
1326 else if (!tab->rational && !at_least_one(ctx, tab, var)) {
1327 tab = cut_to_hyperplane(ctx, tab, var);
1328 return isl_tab_detect_equalities(ctx, tab);
1330 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1331 var = var_from_row(ctx, tab, i);
1332 if (!var->marked)
1333 continue;
1334 if (may_be_equality(tab, i))
1335 continue;
1336 var->marked = 0;
1337 n_marked--;
1341 return tab;
1344 /* Check for (near) redundant constraints.
1345 * A constraint is redundant if it is non-negative and if
1346 * its minimal value (temporarily ignoring the non-negativity) is either
1347 * - zero (in case of rational tableaus), or
1348 * - strictly larger than -1 (in case of integer tableaus)
1350 * We first mark all non-redundant and non-dead variables that
1351 * are not frozen and not obviously negatively unbounded.
1352 * Then we iterate over all marked variables if they can attain
1353 * any values smaller than zero or at most negative one.
1354 * If not, we mark the row as being redundant (assuming it hasn't
1355 * been detected as being obviously redundant in the mean time).
1357 struct isl_tab *isl_tab_detect_redundant(struct isl_ctx *ctx,
1358 struct isl_tab *tab)
1360 int i;
1361 unsigned n_marked;
1363 if (!tab)
1364 return NULL;
1365 if (tab->empty)
1366 return tab;
1367 if (tab->n_redundant == tab->n_row)
1368 return tab;
1370 n_marked = 0;
1371 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1372 struct isl_tab_var *var = var_from_row(ctx, tab, i);
1373 var->marked = !var->frozen && var->is_nonneg;
1374 if (var->marked)
1375 n_marked++;
1377 for (i = tab->n_dead; i < tab->n_col; ++i) {
1378 struct isl_tab_var *var = var_from_col(ctx, tab, i);
1379 var->marked = !var->frozen && var->is_nonneg &&
1380 !min_is_manifestly_unbounded(ctx, tab, var);
1381 if (var->marked)
1382 n_marked++;
1384 while (n_marked) {
1385 struct isl_tab_var *var;
1386 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1387 var = var_from_row(ctx, tab, i);
1388 if (var->marked)
1389 break;
1391 if (i == tab->n_row) {
1392 for (i = tab->n_dead; i < tab->n_col; ++i) {
1393 var = var_from_col(ctx, tab, i);
1394 if (var->marked)
1395 break;
1397 if (i == tab->n_col)
1398 break;
1400 var->marked = 0;
1401 n_marked--;
1402 if ((tab->rational ? (sign_of_min(ctx, tab, var) >= 0)
1403 : !min_at_most_neg_one(ctx, tab, var)) &&
1404 !var->is_redundant)
1405 mark_redundant(ctx, tab, var->index);
1406 for (i = tab->n_dead; i < tab->n_col; ++i) {
1407 var = var_from_col(ctx, tab, i);
1408 if (!var->marked)
1409 continue;
1410 if (!min_is_manifestly_unbounded(ctx, tab, var))
1411 continue;
1412 var->marked = 0;
1413 n_marked--;
1417 return tab;
1420 int isl_tab_is_equality(struct isl_ctx *ctx, struct isl_tab *tab, int con)
1422 int row;
1424 if (!tab)
1425 return -1;
1426 if (tab->con[con].is_zero)
1427 return 1;
1428 if (tab->con[con].is_redundant)
1429 return 0;
1430 if (!tab->con[con].is_row)
1431 return tab->con[con].index < tab->n_dead;
1433 row = tab->con[con].index;
1435 return isl_int_is_zero(tab->mat->row[row][1]) &&
1436 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1437 tab->n_col - tab->n_dead) == -1;
1440 /* Return the minimial value of the affine expression "f" with denominator
1441 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
1442 * the expression cannot attain arbitrarily small values.
1443 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
1444 * The return value reflects the nature of the result (empty, unbounded,
1445 * minmimal value returned in *opt).
1447 enum isl_lp_result isl_tab_min(struct isl_ctx *ctx, struct isl_tab *tab,
1448 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom)
1450 int r;
1451 enum isl_lp_result res = isl_lp_ok;
1452 struct isl_tab_var *var;
1454 if (tab->empty)
1455 return isl_lp_empty;
1457 r = add_row(ctx, tab, f);
1458 if (r < 0)
1459 return isl_lp_error;
1460 var = &tab->con[r];
1461 isl_int_mul(tab->mat->row[var->index][0],
1462 tab->mat->row[var->index][0], denom);
1463 for (;;) {
1464 int row, col;
1465 find_pivot(ctx, tab, var, -1, &row, &col);
1466 if (row == var->index) {
1467 res = isl_lp_unbounded;
1468 break;
1470 if (row == -1)
1471 break;
1472 pivot(ctx, tab, row, col);
1474 if (drop_row(ctx, tab, var->index) < 0)
1475 return isl_lp_error;
1476 if (res == isl_lp_ok) {
1477 if (opt_denom) {
1478 isl_int_set(*opt, tab->mat->row[var->index][1]);
1479 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
1480 } else
1481 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
1482 tab->mat->row[var->index][0]);
1484 return res;
1487 int isl_tab_is_redundant(struct isl_ctx *ctx, struct isl_tab *tab, int con)
1489 int row;
1490 unsigned n_col;
1492 if (!tab)
1493 return -1;
1494 if (tab->con[con].is_zero)
1495 return 0;
1496 if (tab->con[con].is_redundant)
1497 return 1;
1498 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
1501 /* Take a snapshot of the tableau that can be restored by s call to
1502 * isl_tab_rollback.
1504 struct isl_tab_undo *isl_tab_snap(struct isl_ctx *ctx, struct isl_tab *tab)
1506 if (!tab)
1507 return NULL;
1508 tab->need_undo = 1;
1509 return tab->top;
1512 /* Undo the operation performed by isl_tab_relax.
1514 static void unrelax(struct isl_ctx *ctx,
1515 struct isl_tab *tab, struct isl_tab_var *var)
1517 if (!var->is_row && !max_is_manifestly_unbounded(ctx, tab, var))
1518 to_row(ctx, tab, var, 1);
1520 if (var->is_row)
1521 isl_int_sub(tab->mat->row[var->index][1],
1522 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1523 else {
1524 int i;
1526 for (i = 0; i < tab->n_row; ++i) {
1527 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1528 continue;
1529 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
1530 tab->mat->row[i][2 + var->index]);
1536 static void perform_undo(struct isl_ctx *ctx, struct isl_tab *tab,
1537 struct isl_tab_undo *undo)
1539 switch(undo->type) {
1540 case isl_tab_undo_empty:
1541 tab->empty = 0;
1542 break;
1543 case isl_tab_undo_nonneg:
1544 undo->var->is_nonneg = 0;
1545 break;
1546 case isl_tab_undo_redundant:
1547 undo->var->is_redundant = 0;
1548 tab->n_redundant--;
1549 break;
1550 case isl_tab_undo_zero:
1551 undo->var->is_zero = 0;
1552 tab->n_dead--;
1553 break;
1554 case isl_tab_undo_allocate:
1555 if (!undo->var->is_row) {
1556 if (max_is_manifestly_unbounded(ctx, tab, undo->var))
1557 to_row(ctx, tab, undo->var, -1);
1558 else
1559 to_row(ctx, tab, undo->var, 1);
1561 drop_row(ctx, tab, undo->var->index);
1562 break;
1563 case isl_tab_undo_relax:
1564 unrelax(ctx, tab, undo->var);
1565 break;
1569 /* Return the tableau to the state it was in when the snapshot "snap"
1570 * was taken.
1572 int isl_tab_rollback(struct isl_ctx *ctx, struct isl_tab *tab,
1573 struct isl_tab_undo *snap)
1575 struct isl_tab_undo *undo, *next;
1577 if (!tab)
1578 return -1;
1580 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
1581 next = undo->next;
1582 if (undo == snap)
1583 break;
1584 perform_undo(ctx, tab, undo);
1585 free(undo);
1587 tab->top = undo;
1588 if (!undo)
1589 return -1;
1590 return 0;
1593 /* The given row "row" represents an inequality violated by all
1594 * points in the tableau. Check for some special cases of such
1595 * separating constraints.
1596 * In particular, if the row has been reduced to the constant -1,
1597 * then we know the inequality is adjacent (but opposite) to
1598 * an equality in the tableau.
1599 * If the row has been reduced to r = -1 -r', with r' an inequality
1600 * of the tableau, then the inequality is adjacent (but opposite)
1601 * to the inequality r'.
1603 static enum isl_ineq_type separation_type(struct isl_ctx *ctx,
1604 struct isl_tab *tab, unsigned row)
1606 int pos;
1608 if (tab->rational)
1609 return isl_ineq_separate;
1611 if (!isl_int_is_one(tab->mat->row[row][0]))
1612 return isl_ineq_separate;
1613 if (!isl_int_is_negone(tab->mat->row[row][1]))
1614 return isl_ineq_separate;
1616 pos = isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1617 tab->n_col - tab->n_dead);
1618 if (pos == -1)
1619 return isl_ineq_adj_eq;
1621 if (!isl_int_is_negone(tab->mat->row[row][2 + tab->n_dead + pos]))
1622 return isl_ineq_separate;
1624 pos = isl_seq_first_non_zero(
1625 tab->mat->row[row] + 2 + tab->n_dead + pos + 1,
1626 tab->n_col - tab->n_dead - pos - 1);
1628 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
1631 /* Check the effect of inequality "ineq" on the tableau "tab".
1632 * The result may be
1633 * isl_ineq_redundant: satisfied by all points in the tableau
1634 * isl_ineq_separate: satisfied by no point in tha tableau
1635 * isl_ineq_cut: satisfied by some by not all points
1636 * isl_ineq_adj_eq: adjacent to an equality
1637 * isl_ineq_adj_ineq: adjacent to an inequality.
1639 enum isl_ineq_type isl_tab_ineq_type(struct isl_ctx *ctx, struct isl_tab *tab,
1640 isl_int *ineq)
1642 enum isl_ineq_type type = isl_ineq_error;
1643 struct isl_tab_undo *snap = NULL;
1644 int con;
1645 int row;
1647 if (!tab)
1648 return isl_ineq_error;
1650 if (extend_cons(ctx, tab, 1) < 0)
1651 return isl_ineq_error;
1653 snap = isl_tab_snap(ctx, tab);
1655 con = add_row(ctx, tab, ineq);
1656 if (con < 0)
1657 goto error;
1659 row = tab->con[con].index;
1660 if (is_redundant(ctx, tab, row))
1661 type = isl_ineq_redundant;
1662 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
1663 (tab->rational ||
1664 isl_int_abs_ge(tab->mat->row[row][1],
1665 tab->mat->row[row][0]))) {
1666 if (at_least_zero(ctx, tab, &tab->con[con]))
1667 type = isl_ineq_cut;
1668 else
1669 type = separation_type(ctx, tab, row);
1670 } else if (tab->rational ? (sign_of_min(ctx, tab, &tab->con[con]) < 0)
1671 : min_at_most_neg_one(ctx, tab, &tab->con[con]))
1672 type = isl_ineq_cut;
1673 else
1674 type = isl_ineq_redundant;
1676 if (isl_tab_rollback(ctx, tab, snap))
1677 return isl_ineq_error;
1678 return type;
1679 error:
1680 isl_tab_rollback(ctx, tab, snap);
1681 return isl_ineq_error;
1684 void isl_tab_dump(struct isl_ctx *ctx, struct isl_tab *tab,
1685 FILE *out, int indent)
1687 unsigned r, c;
1688 int i;
1690 if (!tab) {
1691 fprintf(out, "%*snull tab\n", indent, "");
1692 return;
1694 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
1695 tab->n_redundant, tab->n_dead);
1696 if (tab->rational)
1697 fprintf(out, ", rational");
1698 if (tab->empty)
1699 fprintf(out, ", empty");
1700 fprintf(out, "\n");
1701 fprintf(out, "%*s[", indent, "");
1702 for (i = 0; i < tab->n_var; ++i) {
1703 if (i)
1704 fprintf(out, ", ");
1705 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
1706 tab->var[i].index,
1707 tab->var[i].is_zero ? " [=0]" :
1708 tab->var[i].is_redundant ? " [R]" : "");
1710 fprintf(out, "]\n");
1711 fprintf(out, "%*s[", indent, "");
1712 for (i = 0; i < tab->n_con; ++i) {
1713 if (i)
1714 fprintf(out, ", ");
1715 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
1716 tab->con[i].index,
1717 tab->con[i].is_zero ? " [=0]" :
1718 tab->con[i].is_redundant ? " [R]" : "");
1720 fprintf(out, "]\n");
1721 fprintf(out, "%*s[", indent, "");
1722 for (i = 0; i < tab->n_row; ++i) {
1723 if (i)
1724 fprintf(out, ", ");
1725 fprintf(out, "r%d: %d%s", i, tab->row_var[i],
1726 var_from_row(ctx, tab, i)->is_nonneg ? " [>=0]" : "");
1728 fprintf(out, "]\n");
1729 fprintf(out, "%*s[", indent, "");
1730 for (i = 0; i < tab->n_col; ++i) {
1731 if (i)
1732 fprintf(out, ", ");
1733 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
1734 var_from_col(ctx, tab, i)->is_nonneg ? " [>=0]" : "");
1736 fprintf(out, "]\n");
1737 r = tab->mat->n_row;
1738 tab->mat->n_row = tab->n_row;
1739 c = tab->mat->n_col;
1740 tab->mat->n_col = 2 + tab->n_col;
1741 isl_mat_dump(ctx, tab->mat, out, indent);
1742 tab->mat->n_row = r;
1743 tab->mat->n_col = c;