2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_dim_private.h>
22 #include <isl_div_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
29 static unsigned pos(__isl_keep isl_dim
*dim
, enum isl_dim_type type
)
32 case isl_dim_param
: return 0;
33 case isl_dim_in
: return dim
->nparam
;
34 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
39 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
47 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
52 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
54 return (struct isl_upoly_cst
*)up
;
57 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
62 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
64 return (struct isl_upoly_rec
*)up
;
67 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
68 __isl_keep
struct isl_upoly
*up2
)
71 struct isl_upoly_rec
*rec1
, *rec2
;
77 if (up1
->var
!= up2
->var
)
79 if (isl_upoly_is_cst(up1
)) {
80 struct isl_upoly_cst
*cst1
, *cst2
;
81 cst1
= isl_upoly_as_cst(up1
);
82 cst2
= isl_upoly_as_cst(up2
);
85 return isl_int_eq(cst1
->n
, cst2
->n
) &&
86 isl_int_eq(cst1
->d
, cst2
->d
);
89 rec1
= isl_upoly_as_rec(up1
);
90 rec2
= isl_upoly_as_rec(up2
);
94 if (rec1
->n
!= rec2
->n
)
97 for (i
= 0; i
< rec1
->n
; ++i
) {
98 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
106 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
108 struct isl_upoly_cst
*cst
;
112 if (!isl_upoly_is_cst(up
))
115 cst
= isl_upoly_as_cst(up
);
119 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
122 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
124 struct isl_upoly_cst
*cst
;
128 if (!isl_upoly_is_cst(up
))
131 cst
= isl_upoly_as_cst(up
);
135 return isl_int_sgn(cst
->n
);
138 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
140 struct isl_upoly_cst
*cst
;
144 if (!isl_upoly_is_cst(up
))
147 cst
= isl_upoly_as_cst(up
);
151 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
154 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
156 struct isl_upoly_cst
*cst
;
160 if (!isl_upoly_is_cst(up
))
163 cst
= isl_upoly_as_cst(up
);
167 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
170 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
172 struct isl_upoly_cst
*cst
;
176 if (!isl_upoly_is_cst(up
))
179 cst
= isl_upoly_as_cst(up
);
183 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
186 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
188 struct isl_upoly_cst
*cst
;
192 if (!isl_upoly_is_cst(up
))
195 cst
= isl_upoly_as_cst(up
);
199 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
202 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
204 struct isl_upoly_cst
*cst
;
208 if (!isl_upoly_is_cst(up
))
211 cst
= isl_upoly_as_cst(up
);
215 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
218 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
220 struct isl_upoly_cst
*cst
;
222 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
231 isl_int_init(cst
->n
);
232 isl_int_init(cst
->d
);
237 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
239 struct isl_upoly_cst
*cst
;
241 cst
= isl_upoly_cst_alloc(ctx
);
245 isl_int_set_si(cst
->n
, 0);
246 isl_int_set_si(cst
->d
, 1);
251 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
253 struct isl_upoly_cst
*cst
;
255 cst
= isl_upoly_cst_alloc(ctx
);
259 isl_int_set_si(cst
->n
, 1);
260 isl_int_set_si(cst
->d
, 1);
265 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
267 struct isl_upoly_cst
*cst
;
269 cst
= isl_upoly_cst_alloc(ctx
);
273 isl_int_set_si(cst
->n
, 1);
274 isl_int_set_si(cst
->d
, 0);
279 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
281 struct isl_upoly_cst
*cst
;
283 cst
= isl_upoly_cst_alloc(ctx
);
287 isl_int_set_si(cst
->n
, -1);
288 isl_int_set_si(cst
->d
, 0);
293 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
295 struct isl_upoly_cst
*cst
;
297 cst
= isl_upoly_cst_alloc(ctx
);
301 isl_int_set_si(cst
->n
, 0);
302 isl_int_set_si(cst
->d
, 0);
307 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
308 isl_int n
, isl_int d
)
310 struct isl_upoly_cst
*cst
;
312 cst
= isl_upoly_cst_alloc(ctx
);
316 isl_int_set(cst
->n
, n
);
317 isl_int_set(cst
->d
, d
);
322 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
325 struct isl_upoly_rec
*rec
;
327 isl_assert(ctx
, var
>= 0, return NULL
);
328 isl_assert(ctx
, size
>= 0, return NULL
);
329 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
330 sizeof(struct isl_upoly_rec
) +
331 size
* sizeof(struct isl_upoly
*));
346 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_dim(
347 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*dim
)
349 qp
= isl_qpolynomial_cow(qp
);
353 isl_dim_free(qp
->dim
);
358 isl_qpolynomial_free(qp
);
363 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
365 return qp
? qp
->dim
->ctx
: NULL
;
368 __isl_give isl_dim
*isl_qpolynomial_get_dim(__isl_keep isl_qpolynomial
*qp
)
370 return qp
? isl_dim_copy(qp
->dim
) : NULL
;
373 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
374 enum isl_dim_type type
)
376 return qp
? isl_dim_size(qp
->dim
, type
) : 0;
379 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
381 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
384 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
386 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
389 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
391 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
394 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
396 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
399 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
401 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
404 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
406 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
409 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
411 isl_int_clear(cst
->n
);
412 isl_int_clear(cst
->d
);
415 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
419 for (i
= 0; i
< rec
->n
; ++i
)
420 isl_upoly_free(rec
->p
[i
]);
423 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
432 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
434 struct isl_upoly_cst
*cst
;
435 struct isl_upoly_cst
*dup
;
437 cst
= isl_upoly_as_cst(up
);
441 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
444 isl_int_set(dup
->n
, cst
->n
);
445 isl_int_set(dup
->d
, cst
->d
);
450 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
453 struct isl_upoly_rec
*rec
;
454 struct isl_upoly_rec
*dup
;
456 rec
= isl_upoly_as_rec(up
);
460 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
464 for (i
= 0; i
< rec
->n
; ++i
) {
465 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
473 isl_upoly_free(&dup
->up
);
477 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
482 if (isl_upoly_is_cst(up
))
483 return isl_upoly_dup_cst(up
);
485 return isl_upoly_dup_rec(up
);
488 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
496 return isl_upoly_dup(up
);
499 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
508 upoly_free_cst((struct isl_upoly_cst
*)up
);
510 upoly_free_rec((struct isl_upoly_rec
*)up
);
512 isl_ctx_deref(up
->ctx
);
516 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
521 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
522 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
523 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
524 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
529 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
530 __isl_take
struct isl_upoly
*up2
)
532 struct isl_upoly_cst
*cst1
;
533 struct isl_upoly_cst
*cst2
;
535 up1
= isl_upoly_cow(up1
);
539 cst1
= isl_upoly_as_cst(up1
);
540 cst2
= isl_upoly_as_cst(up2
);
542 if (isl_int_eq(cst1
->d
, cst2
->d
))
543 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
545 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
546 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
547 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
550 isl_upoly_cst_reduce(cst1
);
560 static __isl_give
struct isl_upoly
*replace_by_zero(
561 __isl_take
struct isl_upoly
*up
)
569 return isl_upoly_zero(ctx
);
572 static __isl_give
struct isl_upoly
*replace_by_constant_term(
573 __isl_take
struct isl_upoly
*up
)
575 struct isl_upoly_rec
*rec
;
576 struct isl_upoly
*cst
;
581 rec
= isl_upoly_as_rec(up
);
584 cst
= isl_upoly_copy(rec
->p
[0]);
592 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
593 __isl_take
struct isl_upoly
*up2
)
596 struct isl_upoly_rec
*rec1
, *rec2
;
601 if (isl_upoly_is_nan(up1
)) {
606 if (isl_upoly_is_nan(up2
)) {
611 if (isl_upoly_is_zero(up1
)) {
616 if (isl_upoly_is_zero(up2
)) {
621 if (up1
->var
< up2
->var
)
622 return isl_upoly_sum(up2
, up1
);
624 if (up2
->var
< up1
->var
) {
625 struct isl_upoly_rec
*rec
;
626 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
630 up1
= isl_upoly_cow(up1
);
631 rec
= isl_upoly_as_rec(up1
);
634 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
636 up1
= replace_by_constant_term(up1
);
640 if (isl_upoly_is_cst(up1
))
641 return isl_upoly_sum_cst(up1
, up2
);
643 rec1
= isl_upoly_as_rec(up1
);
644 rec2
= isl_upoly_as_rec(up2
);
648 if (rec1
->n
< rec2
->n
)
649 return isl_upoly_sum(up2
, up1
);
651 up1
= isl_upoly_cow(up1
);
652 rec1
= isl_upoly_as_rec(up1
);
656 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
657 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
658 isl_upoly_copy(rec2
->p
[i
]));
661 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
662 isl_upoly_free(rec1
->p
[i
]);
668 up1
= replace_by_zero(up1
);
669 else if (rec1
->n
== 1)
670 up1
= replace_by_constant_term(up1
);
681 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
682 __isl_take
struct isl_upoly
*up
, isl_int v
)
684 struct isl_upoly_cst
*cst
;
686 up
= isl_upoly_cow(up
);
690 cst
= isl_upoly_as_cst(up
);
692 isl_int_addmul(cst
->n
, cst
->d
, v
);
697 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
698 __isl_take
struct isl_upoly
*up
, isl_int v
)
700 struct isl_upoly_rec
*rec
;
705 if (isl_upoly_is_cst(up
))
706 return isl_upoly_cst_add_isl_int(up
, v
);
708 up
= isl_upoly_cow(up
);
709 rec
= isl_upoly_as_rec(up
);
713 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
723 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
724 __isl_take
struct isl_upoly
*up
, isl_int v
)
726 struct isl_upoly_cst
*cst
;
728 if (isl_upoly_is_zero(up
))
731 up
= isl_upoly_cow(up
);
735 cst
= isl_upoly_as_cst(up
);
737 isl_int_mul(cst
->n
, cst
->n
, v
);
742 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
743 __isl_take
struct isl_upoly
*up
, isl_int v
)
746 struct isl_upoly_rec
*rec
;
751 if (isl_upoly_is_cst(up
))
752 return isl_upoly_cst_mul_isl_int(up
, v
);
754 up
= isl_upoly_cow(up
);
755 rec
= isl_upoly_as_rec(up
);
759 for (i
= 0; i
< rec
->n
; ++i
) {
760 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
771 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
772 __isl_take
struct isl_upoly
*up2
)
774 struct isl_upoly_cst
*cst1
;
775 struct isl_upoly_cst
*cst2
;
777 up1
= isl_upoly_cow(up1
);
781 cst1
= isl_upoly_as_cst(up1
);
782 cst2
= isl_upoly_as_cst(up2
);
784 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
785 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
787 isl_upoly_cst_reduce(cst1
);
797 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
798 __isl_take
struct isl_upoly
*up2
)
800 struct isl_upoly_rec
*rec1
;
801 struct isl_upoly_rec
*rec2
;
802 struct isl_upoly_rec
*res
= NULL
;
806 rec1
= isl_upoly_as_rec(up1
);
807 rec2
= isl_upoly_as_rec(up2
);
810 size
= rec1
->n
+ rec2
->n
- 1;
811 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
815 for (i
= 0; i
< rec1
->n
; ++i
) {
816 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
817 isl_upoly_copy(rec1
->p
[i
]));
822 for (; i
< size
; ++i
) {
823 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
828 for (i
= 0; i
< rec1
->n
; ++i
) {
829 for (j
= 1; j
< rec2
->n
; ++j
) {
830 struct isl_upoly
*up
;
831 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
832 isl_upoly_copy(rec1
->p
[i
]));
833 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
846 isl_upoly_free(&res
->up
);
850 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
851 __isl_take
struct isl_upoly
*up2
)
856 if (isl_upoly_is_nan(up1
)) {
861 if (isl_upoly_is_nan(up2
)) {
866 if (isl_upoly_is_zero(up1
)) {
871 if (isl_upoly_is_zero(up2
)) {
876 if (isl_upoly_is_one(up1
)) {
881 if (isl_upoly_is_one(up2
)) {
886 if (up1
->var
< up2
->var
)
887 return isl_upoly_mul(up2
, up1
);
889 if (up2
->var
< up1
->var
) {
891 struct isl_upoly_rec
*rec
;
892 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
893 isl_ctx
*ctx
= up1
->ctx
;
896 return isl_upoly_nan(ctx
);
898 up1
= isl_upoly_cow(up1
);
899 rec
= isl_upoly_as_rec(up1
);
903 for (i
= 0; i
< rec
->n
; ++i
) {
904 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
905 isl_upoly_copy(up2
));
913 if (isl_upoly_is_cst(up1
))
914 return isl_upoly_mul_cst(up1
, up2
);
916 return isl_upoly_mul_rec(up1
, up2
);
923 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
926 struct isl_upoly
*res
;
934 res
= isl_upoly_copy(up
);
936 res
= isl_upoly_one(up
->ctx
);
938 while (power
>>= 1) {
939 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
941 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
948 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_dim
*dim
,
949 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
951 struct isl_qpolynomial
*qp
= NULL
;
957 total
= isl_dim_total(dim
);
959 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
964 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
975 isl_qpolynomial_free(qp
);
979 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
988 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
990 struct isl_qpolynomial
*dup
;
995 dup
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
,
996 isl_upoly_copy(qp
->upoly
));
999 isl_mat_free(dup
->div
);
1000 dup
->div
= isl_mat_copy(qp
->div
);
1006 isl_qpolynomial_free(dup
);
1010 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1018 return isl_qpolynomial_dup(qp
);
1021 void isl_qpolynomial_free(__isl_take isl_qpolynomial
*qp
)
1029 isl_dim_free(qp
->dim
);
1030 isl_mat_free(qp
->div
);
1031 isl_upoly_free(qp
->upoly
);
1036 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1039 struct isl_upoly_rec
*rec
;
1040 struct isl_upoly_cst
*cst
;
1042 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1045 for (i
= 0; i
< 1 + power
; ++i
) {
1046 rec
->p
[i
] = isl_upoly_zero(ctx
);
1051 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1052 isl_int_set_si(cst
->n
, 1);
1056 isl_upoly_free(&rec
->up
);
1060 /* r array maps original positions to new positions.
1062 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1066 struct isl_upoly_rec
*rec
;
1067 struct isl_upoly
*base
;
1068 struct isl_upoly
*res
;
1070 if (isl_upoly_is_cst(up
))
1073 rec
= isl_upoly_as_rec(up
);
1077 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1079 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1080 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1082 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1083 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1084 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1087 isl_upoly_free(base
);
1096 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1101 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1102 div1
->n_col
>= div2
->n_col
, return -1);
1104 if (div1
->n_row
== div2
->n_row
)
1105 return isl_mat_is_equal(div1
, div2
);
1107 n_row
= div1
->n_row
;
1108 n_col
= div1
->n_col
;
1109 div1
->n_row
= div2
->n_row
;
1110 div1
->n_col
= div2
->n_col
;
1112 equal
= isl_mat_is_equal(div1
, div2
);
1114 div1
->n_row
= n_row
;
1115 div1
->n_col
= n_col
;
1120 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1124 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1125 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1130 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1133 struct isl_div_sort_info
{
1138 static int div_sort_cmp(const void *p1
, const void *p2
)
1140 const struct isl_div_sort_info
*i1
, *i2
;
1141 i1
= (const struct isl_div_sort_info
*) p1
;
1142 i2
= (const struct isl_div_sort_info
*) p2
;
1144 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1147 /* Sort divs and remove duplicates.
1149 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1154 struct isl_div_sort_info
*array
= NULL
;
1155 int *pos
= NULL
, *at
= NULL
;
1156 int *reordering
= NULL
;
1161 if (qp
->div
->n_row
<= 1)
1164 div_pos
= isl_dim_total(qp
->dim
);
1166 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1168 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1169 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1170 len
= qp
->div
->n_col
- 2;
1171 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1172 if (!array
|| !pos
|| !at
|| !reordering
)
1175 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1176 array
[i
].div
= qp
->div
;
1182 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1185 for (i
= 0; i
< div_pos
; ++i
)
1188 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1189 if (pos
[array
[i
].row
] == i
)
1191 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1192 pos
[at
[i
]] = pos
[array
[i
].row
];
1193 at
[pos
[array
[i
].row
]] = at
[i
];
1194 at
[i
] = array
[i
].row
;
1195 pos
[array
[i
].row
] = i
;
1199 for (i
= 0; i
< len
- div_pos
; ++i
) {
1201 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1202 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1203 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1204 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1205 2 + div_pos
+ i
- skip
);
1206 qp
->div
= isl_mat_drop_cols(qp
->div
,
1207 2 + div_pos
+ i
- skip
, 1);
1210 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1213 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1215 if (!qp
->upoly
|| !qp
->div
)
1229 isl_qpolynomial_free(qp
);
1233 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1234 int *exp
, int first
)
1237 struct isl_upoly_rec
*rec
;
1239 if (isl_upoly_is_cst(up
))
1242 if (up
->var
< first
)
1245 if (exp
[up
->var
- first
] == up
->var
- first
)
1248 up
= isl_upoly_cow(up
);
1252 up
->var
= exp
[up
->var
- first
] + first
;
1254 rec
= isl_upoly_as_rec(up
);
1258 for (i
= 0; i
< rec
->n
; ++i
) {
1259 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1270 static __isl_give isl_qpolynomial
*with_merged_divs(
1271 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1272 __isl_take isl_qpolynomial
*qp2
),
1273 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1277 isl_mat
*div
= NULL
;
1279 qp1
= isl_qpolynomial_cow(qp1
);
1280 qp2
= isl_qpolynomial_cow(qp2
);
1285 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1286 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1288 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, qp1
->div
->n_row
);
1289 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, qp2
->div
->n_row
);
1293 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1297 isl_mat_free(qp1
->div
);
1298 qp1
->div
= isl_mat_copy(div
);
1299 isl_mat_free(qp2
->div
);
1300 qp2
->div
= isl_mat_copy(div
);
1302 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1303 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1305 if (!qp1
->upoly
|| !qp2
->upoly
)
1312 return fn(qp1
, qp2
);
1317 isl_qpolynomial_free(qp1
);
1318 isl_qpolynomial_free(qp2
);
1322 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1323 __isl_take isl_qpolynomial
*qp2
)
1325 qp1
= isl_qpolynomial_cow(qp1
);
1330 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1331 return isl_qpolynomial_add(qp2
, qp1
);
1333 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1334 if (!compatible_divs(qp1
->div
, qp2
->div
))
1335 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1337 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1341 isl_qpolynomial_free(qp2
);
1345 isl_qpolynomial_free(qp1
);
1346 isl_qpolynomial_free(qp2
);
1350 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1351 __isl_keep isl_set
*dom
,
1352 __isl_take isl_qpolynomial
*qp1
,
1353 __isl_take isl_qpolynomial
*qp2
)
1355 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1356 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1360 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1361 __isl_take isl_qpolynomial
*qp2
)
1363 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1366 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1367 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1369 if (isl_int_is_zero(v
))
1372 qp
= isl_qpolynomial_cow(qp
);
1376 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1382 isl_qpolynomial_free(qp
);
1387 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1392 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1395 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1396 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1398 if (isl_int_is_one(v
))
1401 if (qp
&& isl_int_is_zero(v
)) {
1402 isl_qpolynomial
*zero
;
1403 zero
= isl_qpolynomial_zero(isl_dim_copy(qp
->dim
));
1404 isl_qpolynomial_free(qp
);
1408 qp
= isl_qpolynomial_cow(qp
);
1412 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1418 isl_qpolynomial_free(qp
);
1422 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1423 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1425 return isl_qpolynomial_mul_isl_int(qp
, v
);
1428 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1429 __isl_take isl_qpolynomial
*qp2
)
1431 qp1
= isl_qpolynomial_cow(qp1
);
1436 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1437 return isl_qpolynomial_mul(qp2
, qp1
);
1439 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1440 if (!compatible_divs(qp1
->div
, qp2
->div
))
1441 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1443 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1447 isl_qpolynomial_free(qp2
);
1451 isl_qpolynomial_free(qp1
);
1452 isl_qpolynomial_free(qp2
);
1456 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1459 qp
= isl_qpolynomial_cow(qp
);
1464 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1470 isl_qpolynomial_free(qp
);
1474 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1475 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1482 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1486 for (i
= 0; i
< pwqp
->n
; ++i
) {
1487 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1489 return isl_pw_qpolynomial_free(pwqp
);
1495 __isl_give isl_qpolynomial
*isl_qpolynomial_zero(__isl_take isl_dim
*dim
)
1499 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1502 __isl_give isl_qpolynomial
*isl_qpolynomial_one(__isl_take isl_dim
*dim
)
1506 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1509 __isl_give isl_qpolynomial
*isl_qpolynomial_infty(__isl_take isl_dim
*dim
)
1513 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1516 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty(__isl_take isl_dim
*dim
)
1520 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1523 __isl_give isl_qpolynomial
*isl_qpolynomial_nan(__isl_take isl_dim
*dim
)
1527 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1530 __isl_give isl_qpolynomial
*isl_qpolynomial_cst(__isl_take isl_dim
*dim
,
1533 struct isl_qpolynomial
*qp
;
1534 struct isl_upoly_cst
*cst
;
1539 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1543 cst
= isl_upoly_as_cst(qp
->upoly
);
1544 isl_int_set(cst
->n
, v
);
1549 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1550 isl_int
*n
, isl_int
*d
)
1552 struct isl_upoly_cst
*cst
;
1557 if (!isl_upoly_is_cst(qp
->upoly
))
1560 cst
= isl_upoly_as_cst(qp
->upoly
);
1565 isl_int_set(*n
, cst
->n
);
1567 isl_int_set(*d
, cst
->d
);
1572 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1575 struct isl_upoly_rec
*rec
;
1583 rec
= isl_upoly_as_rec(up
);
1590 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1592 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1598 return isl_upoly_is_affine(rec
->p
[0]);
1601 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1606 if (qp
->div
->n_row
> 0)
1609 return isl_upoly_is_affine(qp
->upoly
);
1612 static void update_coeff(__isl_keep isl_vec
*aff
,
1613 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1618 if (isl_int_is_zero(cst
->n
))
1623 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1624 isl_int_divexact(f
, cst
->d
, gcd
);
1625 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1626 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1627 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1632 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1633 __isl_keep isl_vec
*aff
)
1635 struct isl_upoly_cst
*cst
;
1636 struct isl_upoly_rec
*rec
;
1642 struct isl_upoly_cst
*cst
;
1644 cst
= isl_upoly_as_cst(up
);
1647 update_coeff(aff
, cst
, 0);
1651 rec
= isl_upoly_as_rec(up
);
1654 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1656 cst
= isl_upoly_as_cst(rec
->p
[1]);
1659 update_coeff(aff
, cst
, 1 + up
->var
);
1661 return isl_upoly_update_affine(rec
->p
[0], aff
);
1664 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1665 __isl_keep isl_qpolynomial
*qp
)
1673 d
= isl_dim_total(qp
->dim
);
1674 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1678 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1679 isl_int_set_si(aff
->el
[0], 1);
1681 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1690 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1691 __isl_keep isl_qpolynomial
*qp2
)
1698 equal
= isl_dim_equal(qp1
->dim
, qp2
->dim
);
1699 if (equal
< 0 || !equal
)
1702 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
1703 if (equal
< 0 || !equal
)
1706 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1709 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1712 struct isl_upoly_rec
*rec
;
1714 if (isl_upoly_is_cst(up
)) {
1715 struct isl_upoly_cst
*cst
;
1716 cst
= isl_upoly_as_cst(up
);
1719 isl_int_lcm(*d
, *d
, cst
->d
);
1723 rec
= isl_upoly_as_rec(up
);
1727 for (i
= 0; i
< rec
->n
; ++i
)
1728 upoly_update_den(rec
->p
[i
], d
);
1731 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1733 isl_int_set_si(*d
, 1);
1736 upoly_update_den(qp
->upoly
, d
);
1739 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow(__isl_take isl_dim
*dim
,
1742 struct isl_ctx
*ctx
;
1749 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1752 __isl_give isl_qpolynomial
*isl_qpolynomial_var(__isl_take isl_dim
*dim
,
1753 enum isl_dim_type type
, unsigned pos
)
1758 isl_assert(dim
->ctx
, isl_dim_size(dim
, isl_dim_in
) == 0, goto error
);
1759 isl_assert(dim
->ctx
, pos
< isl_dim_size(dim
, type
), goto error
);
1761 if (type
== isl_dim_set
)
1762 pos
+= isl_dim_size(dim
, isl_dim_param
);
1764 return isl_qpolynomial_var_pow(dim
, pos
, 1);
1770 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1771 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1774 struct isl_upoly_rec
*rec
;
1775 struct isl_upoly
*base
, *res
;
1780 if (isl_upoly_is_cst(up
))
1783 if (up
->var
< first
)
1786 rec
= isl_upoly_as_rec(up
);
1790 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1792 if (up
->var
>= first
+ n
)
1793 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1795 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1797 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1798 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1799 struct isl_upoly
*t
;
1800 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1801 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1802 res
= isl_upoly_sum(res
, t
);
1805 isl_upoly_free(base
);
1814 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1815 isl_int denom
, unsigned len
)
1818 struct isl_upoly
*up
;
1820 isl_assert(ctx
, len
>= 1, return NULL
);
1822 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
1823 for (i
= 0; i
< len
- 1; ++i
) {
1824 struct isl_upoly
*t
;
1825 struct isl_upoly
*c
;
1827 if (isl_int_is_zero(f
[1 + i
]))
1830 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
1831 t
= isl_upoly_var_pow(ctx
, i
, 1);
1832 t
= isl_upoly_mul(c
, t
);
1833 up
= isl_upoly_sum(up
, t
);
1839 /* Remove common factor of non-constant terms and denominator.
1841 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
1843 isl_ctx
*ctx
= qp
->div
->ctx
;
1844 unsigned total
= qp
->div
->n_col
- 2;
1846 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
1847 isl_int_gcd(ctx
->normalize_gcd
,
1848 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
1849 if (isl_int_is_one(ctx
->normalize_gcd
))
1852 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
1853 ctx
->normalize_gcd
, total
);
1854 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
1855 ctx
->normalize_gcd
);
1856 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
1857 ctx
->normalize_gcd
);
1860 /* Replace the integer division identified by "div" by the polynomial "s".
1861 * The integer division is assumed not to appear in the definition
1862 * of any other integer divisions.
1864 static __isl_give isl_qpolynomial
*substitute_div(
1865 __isl_take isl_qpolynomial
*qp
,
1866 int div
, __isl_take
struct isl_upoly
*s
)
1875 qp
= isl_qpolynomial_cow(qp
);
1879 total
= isl_dim_total(qp
->dim
);
1880 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
1884 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
1887 for (i
= 0; i
< total
+ div
; ++i
)
1889 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
1890 reordering
[i
] = i
- 1;
1891 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
1892 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
1893 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1896 if (!qp
->upoly
|| !qp
->div
)
1902 isl_qpolynomial_free(qp
);
1907 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1908 * divisions because d is equal to 1 by their definition, i.e., e.
1910 static __isl_give isl_qpolynomial
*substitute_non_divs(
1911 __isl_take isl_qpolynomial
*qp
)
1915 struct isl_upoly
*s
;
1920 total
= isl_dim_total(qp
->dim
);
1921 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
1922 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
1924 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
1925 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
1927 isl_seq_combine(qp
->div
->row
[j
] + 1,
1928 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
1929 qp
->div
->row
[j
][2 + total
+ i
],
1930 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
1931 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
1932 normalize_div(qp
, j
);
1934 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
1935 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
1936 qp
= substitute_div(qp
, i
, s
);
1943 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1944 * with d the denominator. When replacing the coefficient e of x by
1945 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1946 * inside the division, so we need to add floor(e/d) * x outside.
1947 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1948 * to adjust the coefficient of x in each later div that depends on the
1949 * current div "div" and also in the affine expression "aff"
1950 * (if it too depends on "div").
1952 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1953 __isl_keep isl_vec
*aff
)
1957 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
1960 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
1961 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
1962 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
1964 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1965 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
1966 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1967 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
1968 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
1969 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
1970 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
1972 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
1973 v
, qp
->div
->row
[j
][2 + total
+ div
]);
1979 /* Check if the last non-zero coefficient is bigger that half of the
1980 * denominator. If so, we will invert the div to further reduce the number
1981 * of distinct divs that may appear.
1982 * If the last non-zero coefficient is exactly half the denominator,
1983 * then we continue looking for earlier coefficients that are bigger
1984 * than half the denominator.
1986 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
1991 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
1992 if (isl_int_is_zero(div
->row
[row
][i
]))
1994 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
1995 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
1996 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2006 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2007 * We only invert the coefficients of e (and the coefficient of q in
2008 * later divs and in "aff"). After calling this function, the
2009 * coefficients of e should be reduced again.
2011 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2012 __isl_keep isl_vec
*aff
)
2014 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2016 isl_seq_neg(qp
->div
->row
[div
] + 1,
2017 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2018 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2019 isl_int_add(qp
->div
->row
[div
][1],
2020 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2021 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2022 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2023 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2024 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2027 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2028 * in the interval [0, d-1], with d the denominator and such that the
2029 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2031 * After the reduction, some divs may have become redundant or identical,
2032 * so we call substitute_non_divs and sort_divs. If these functions
2033 * eliminate divs or merge two or more divs into one, the coefficients
2034 * of the enclosing divs may have to be reduced again, so we call
2035 * ourselves recursively if the number of divs decreases.
2037 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2040 isl_vec
*aff
= NULL
;
2041 struct isl_upoly
*s
;
2047 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2048 aff
= isl_vec_clr(aff
);
2052 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2054 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2055 normalize_div(qp
, i
);
2056 reduce_div(qp
, i
, aff
);
2057 if (needs_invert(qp
->div
, i
)) {
2058 invert_div(qp
, i
, aff
);
2059 reduce_div(qp
, i
, aff
);
2063 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2064 qp
->div
->ctx
->one
, aff
->size
);
2065 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2072 n_div
= qp
->div
->n_row
;
2073 qp
= substitute_non_divs(qp
);
2075 if (qp
&& qp
->div
->n_row
< n_div
)
2076 return reduce_divs(qp
);
2080 isl_qpolynomial_free(qp
);
2085 /* Assumes each div only depends on earlier divs.
2087 __isl_give isl_qpolynomial
*isl_qpolynomial_div_pow(__isl_take isl_div
*div
,
2090 struct isl_qpolynomial
*qp
= NULL
;
2091 struct isl_upoly_rec
*rec
;
2092 struct isl_upoly_cst
*cst
;
2099 d
= div
->line
- div
->bmap
->div
;
2101 pos
= isl_dim_total(div
->bmap
->dim
) + d
;
2102 rec
= isl_upoly_alloc_rec(div
->ctx
, pos
, 1 + power
);
2103 qp
= isl_qpolynomial_alloc(isl_basic_map_get_dim(div
->bmap
),
2104 div
->bmap
->n_div
, &rec
->up
);
2108 for (i
= 0; i
< div
->bmap
->n_div
; ++i
)
2109 isl_seq_cpy(qp
->div
->row
[i
], div
->bmap
->div
[i
], qp
->div
->n_col
);
2111 for (i
= 0; i
< 1 + power
; ++i
) {
2112 rec
->p
[i
] = isl_upoly_zero(div
->ctx
);
2117 cst
= isl_upoly_as_cst(rec
->p
[power
]);
2118 isl_int_set_si(cst
->n
, 1);
2122 qp
= reduce_divs(qp
);
2126 isl_qpolynomial_free(qp
);
2131 __isl_give isl_qpolynomial
*isl_qpolynomial_div(__isl_take isl_div
*div
)
2133 return isl_qpolynomial_div_pow(div
, 1);
2136 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst(__isl_take isl_dim
*dim
,
2137 const isl_int n
, const isl_int d
)
2139 struct isl_qpolynomial
*qp
;
2140 struct isl_upoly_cst
*cst
;
2142 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2146 cst
= isl_upoly_as_cst(qp
->upoly
);
2147 isl_int_set(cst
->n
, n
);
2148 isl_int_set(cst
->d
, d
);
2153 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2155 struct isl_upoly_rec
*rec
;
2161 if (isl_upoly_is_cst(up
))
2165 active
[up
->var
] = 1;
2167 rec
= isl_upoly_as_rec(up
);
2168 for (i
= 0; i
< rec
->n
; ++i
)
2169 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2175 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2178 int d
= isl_dim_total(qp
->dim
);
2183 for (i
= 0; i
< d
; ++i
)
2184 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2185 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2191 return up_set_active(qp
->upoly
, active
, d
);
2194 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2195 enum isl_dim_type type
, unsigned first
, unsigned n
)
2206 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2208 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2209 type
== isl_dim_set
, return -1);
2211 active
= isl_calloc_array(qp
->dim
->ctx
, int, isl_dim_total(qp
->dim
));
2212 if (set_active(qp
, active
) < 0)
2215 if (type
== isl_dim_set
)
2216 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2217 for (i
= 0; i
< n
; ++i
)
2218 if (active
[first
+ i
]) {
2231 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2232 * of the divs that do appear in the quasi-polynomial.
2234 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2235 __isl_take isl_qpolynomial
*qp
)
2242 int *reordering
= NULL
;
2249 if (qp
->div
->n_row
== 0)
2252 d
= isl_dim_total(qp
->dim
);
2253 len
= qp
->div
->n_col
- 2;
2254 ctx
= isl_qpolynomial_get_ctx(qp
);
2255 active
= isl_calloc_array(ctx
, int, len
);
2259 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2262 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2263 if (!active
[d
+ i
]) {
2267 for (j
= 0; j
< i
; ++j
) {
2268 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2280 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2284 for (i
= 0; i
< d
; ++i
)
2288 n_div
= qp
->div
->n_row
;
2289 for (i
= 0; i
< n_div
; ++i
) {
2290 if (!active
[d
+ i
]) {
2291 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2292 qp
->div
= isl_mat_drop_cols(qp
->div
,
2293 2 + d
+ i
- skip
, 1);
2296 reordering
[d
+ i
] = d
+ i
- skip
;
2299 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2301 if (!qp
->upoly
|| !qp
->div
)
2311 isl_qpolynomial_free(qp
);
2315 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2316 unsigned first
, unsigned n
)
2319 struct isl_upoly_rec
*rec
;
2323 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2325 if (up
->var
< first
+ n
) {
2326 up
= replace_by_constant_term(up
);
2327 return isl_upoly_drop(up
, first
, n
);
2329 up
= isl_upoly_cow(up
);
2333 rec
= isl_upoly_as_rec(up
);
2337 for (i
= 0; i
< rec
->n
; ++i
) {
2338 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2349 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2350 __isl_take isl_qpolynomial
*qp
,
2351 enum isl_dim_type type
, unsigned pos
, const char *s
)
2353 qp
= isl_qpolynomial_cow(qp
);
2356 qp
->dim
= isl_dim_set_name(qp
->dim
, type
, pos
, s
);
2361 isl_qpolynomial_free(qp
);
2365 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2366 __isl_take isl_qpolynomial
*qp
,
2367 enum isl_dim_type type
, unsigned first
, unsigned n
)
2371 if (n
== 0 && !isl_dim_is_named_or_nested(qp
->dim
, type
))
2374 qp
= isl_qpolynomial_cow(qp
);
2378 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2380 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2381 type
== isl_dim_set
, goto error
);
2383 qp
->dim
= isl_dim_drop(qp
->dim
, type
, first
, n
);
2387 if (type
== isl_dim_set
)
2388 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2390 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2394 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2400 isl_qpolynomial_free(qp
);
2404 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2405 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2411 struct isl_upoly
*up
;
2415 if (eq
->n_eq
== 0) {
2416 isl_basic_set_free(eq
);
2420 qp
= isl_qpolynomial_cow(qp
);
2423 qp
->div
= isl_mat_cow(qp
->div
);
2427 total
= 1 + isl_dim_total(eq
->dim
);
2429 isl_int_init(denom
);
2430 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2431 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2432 if (j
< 0 || j
== 0 || j
>= total
)
2435 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2436 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2438 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2439 &qp
->div
->row
[k
][0]);
2440 normalize_div(qp
, k
);
2443 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2444 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2445 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2446 isl_int_set_si(eq
->eq
[i
][j
], 0);
2448 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2449 eq
->eq
[i
], denom
, total
);
2450 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2453 isl_int_clear(denom
);
2458 isl_basic_set_free(eq
);
2460 qp
= substitute_non_divs(qp
);
2465 isl_basic_set_free(eq
);
2466 isl_qpolynomial_free(qp
);
2470 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2472 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2473 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2477 if (qp
->div
->n_row
> 0)
2478 eq
= isl_basic_set_add(eq
, isl_dim_set
, qp
->div
->n_row
);
2479 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
2481 isl_basic_set_free(eq
);
2482 isl_qpolynomial_free(qp
);
2486 static __isl_give isl_basic_set
*add_div_constraints(
2487 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2495 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2498 total
= isl_basic_set_total_dim(bset
);
2499 for (i
= 0; i
< div
->n_row
; ++i
)
2500 if (isl_basic_set_add_div_constraints_var(bset
,
2501 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2508 isl_basic_set_free(bset
);
2512 /* Look for equalities among the variables shared by context and qp
2513 * and the integer divisions of qp, if any.
2514 * The equalities are then used to eliminate variables and/or integer
2515 * divisions from qp.
2517 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2518 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2524 if (qp
->div
->n_row
> 0) {
2525 isl_basic_set
*bset
;
2526 context
= isl_set_add_dims(context
, isl_dim_set
,
2528 bset
= isl_basic_set_universe(isl_set_get_dim(context
));
2529 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2530 context
= isl_set_intersect(context
,
2531 isl_set_from_basic_set(bset
));
2534 aff
= isl_set_affine_hull(context
);
2535 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
2537 isl_qpolynomial_free(qp
);
2538 isl_set_free(context
);
2542 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_qpolynomial(
2543 __isl_take isl_qpolynomial
*qp
)
2549 if (isl_qpolynomial_is_zero(qp
)) {
2550 isl_dim
*dim
= isl_qpolynomial_get_dim(qp
);
2551 isl_qpolynomial_free(qp
);
2552 return isl_pw_qpolynomial_zero(dim
);
2555 dom
= isl_set_universe(isl_qpolynomial_get_dim(qp
));
2556 return isl_pw_qpolynomial_alloc(dom
, qp
);
2560 #define PW isl_pw_qpolynomial
2562 #define EL isl_qpolynomial
2564 #define EL_IS_ZERO is_zero
2568 #define IS_ZERO is_zero
2572 #include <isl_pw_templ.c>
2575 #define UNION isl_union_pw_qpolynomial
2577 #define PART isl_pw_qpolynomial
2579 #define PARTS pw_qpolynomial
2581 #include <isl_union_templ.c>
2583 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2591 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2594 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2597 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2598 __isl_take isl_pw_qpolynomial
*pwqp1
,
2599 __isl_take isl_pw_qpolynomial
*pwqp2
)
2602 struct isl_pw_qpolynomial
*res
;
2604 if (!pwqp1
|| !pwqp2
)
2607 isl_assert(pwqp1
->dim
->ctx
, isl_dim_equal(pwqp1
->dim
, pwqp2
->dim
),
2610 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2611 isl_pw_qpolynomial_free(pwqp2
);
2615 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2616 isl_pw_qpolynomial_free(pwqp1
);
2620 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2621 isl_pw_qpolynomial_free(pwqp1
);
2625 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2626 isl_pw_qpolynomial_free(pwqp2
);
2630 n
= pwqp1
->n
* pwqp2
->n
;
2631 res
= isl_pw_qpolynomial_alloc_(isl_dim_copy(pwqp1
->dim
), n
);
2633 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2634 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2635 struct isl_set
*common
;
2636 struct isl_qpolynomial
*prod
;
2637 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2638 isl_set_copy(pwqp2
->p
[j
].set
));
2639 if (isl_set_plain_is_empty(common
)) {
2640 isl_set_free(common
);
2644 prod
= isl_qpolynomial_mul(
2645 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2646 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2648 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2652 isl_pw_qpolynomial_free(pwqp1
);
2653 isl_pw_qpolynomial_free(pwqp2
);
2657 isl_pw_qpolynomial_free(pwqp1
);
2658 isl_pw_qpolynomial_free(pwqp2
);
2662 __isl_give
struct isl_upoly
*isl_upoly_eval(
2663 __isl_take
struct isl_upoly
*up
, __isl_take isl_vec
*vec
)
2666 struct isl_upoly_rec
*rec
;
2667 struct isl_upoly
*res
;
2668 struct isl_upoly
*base
;
2670 if (isl_upoly_is_cst(up
)) {
2675 rec
= isl_upoly_as_rec(up
);
2679 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2681 base
= isl_upoly_rat_cst(up
->ctx
, vec
->el
[1 + up
->var
], vec
->el
[0]);
2683 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2686 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2687 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2688 res
= isl_upoly_sum(res
,
2689 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2690 isl_vec_copy(vec
)));
2693 isl_upoly_free(base
);
2703 __isl_give isl_qpolynomial
*isl_qpolynomial_eval(
2704 __isl_take isl_qpolynomial
*qp
, __isl_take isl_point
*pnt
)
2707 struct isl_upoly
*up
;
2712 isl_assert(pnt
->dim
->ctx
, isl_dim_equal(pnt
->dim
, qp
->dim
), goto error
);
2714 if (qp
->div
->n_row
== 0)
2715 ext
= isl_vec_copy(pnt
->vec
);
2718 unsigned dim
= isl_dim_total(qp
->dim
);
2719 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2723 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2724 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2725 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2726 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2727 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2728 qp
->div
->row
[i
][0]);
2732 up
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2736 dim
= isl_dim_copy(qp
->dim
);
2737 isl_qpolynomial_free(qp
);
2738 isl_point_free(pnt
);
2740 return isl_qpolynomial_alloc(dim
, 0, up
);
2742 isl_qpolynomial_free(qp
);
2743 isl_point_free(pnt
);
2747 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2748 __isl_keep
struct isl_upoly_cst
*cst2
)
2753 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2754 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2755 cmp
= isl_int_sgn(t
);
2760 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial
*qp1
,
2761 __isl_keep isl_qpolynomial
*qp2
)
2763 struct isl_upoly_cst
*cst1
, *cst2
;
2767 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), return -1);
2768 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), return -1);
2769 if (isl_qpolynomial_is_nan(qp1
))
2771 if (isl_qpolynomial_is_nan(qp2
))
2773 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2774 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2776 return isl_upoly_cmp(cst1
, cst2
) <= 0;
2779 __isl_give isl_qpolynomial
*isl_qpolynomial_min_cst(
2780 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2782 struct isl_upoly_cst
*cst1
, *cst2
;
2787 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2788 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2789 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2790 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2791 cmp
= isl_upoly_cmp(cst1
, cst2
);
2794 isl_qpolynomial_free(qp2
);
2796 isl_qpolynomial_free(qp1
);
2801 isl_qpolynomial_free(qp1
);
2802 isl_qpolynomial_free(qp2
);
2806 __isl_give isl_qpolynomial
*isl_qpolynomial_max_cst(
2807 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2809 struct isl_upoly_cst
*cst1
, *cst2
;
2814 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2815 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2816 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2817 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2818 cmp
= isl_upoly_cmp(cst1
, cst2
);
2821 isl_qpolynomial_free(qp2
);
2823 isl_qpolynomial_free(qp1
);
2828 isl_qpolynomial_free(qp1
);
2829 isl_qpolynomial_free(qp2
);
2833 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2834 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2835 unsigned first
, unsigned n
)
2841 if (n
== 0 && !isl_dim_is_named_or_nested(qp
->dim
, type
))
2844 qp
= isl_qpolynomial_cow(qp
);
2848 isl_assert(qp
->div
->ctx
, first
<= isl_dim_size(qp
->dim
, type
),
2851 g_pos
= pos(qp
->dim
, type
) + first
;
2853 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
2857 total
= qp
->div
->n_col
- 2;
2858 if (total
> g_pos
) {
2860 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
2863 for (i
= 0; i
< total
- g_pos
; ++i
)
2865 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
2871 qp
->dim
= isl_dim_insert(qp
->dim
, type
, first
, n
);
2877 isl_qpolynomial_free(qp
);
2881 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
2882 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
2886 pos
= isl_qpolynomial_dim(qp
, type
);
2888 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
2891 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
2892 __isl_take isl_pw_qpolynomial
*pwqp
,
2893 enum isl_dim_type type
, unsigned n
)
2897 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
2899 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
2902 static int *reordering_move(isl_ctx
*ctx
,
2903 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
2908 reordering
= isl_alloc_array(ctx
, int, len
);
2913 for (i
= 0; i
< dst
; ++i
)
2915 for (i
= 0; i
< n
; ++i
)
2916 reordering
[src
+ i
] = dst
+ i
;
2917 for (i
= 0; i
< src
- dst
; ++i
)
2918 reordering
[dst
+ i
] = dst
+ n
+ i
;
2919 for (i
= 0; i
< len
- src
- n
; ++i
)
2920 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
2922 for (i
= 0; i
< src
; ++i
)
2924 for (i
= 0; i
< n
; ++i
)
2925 reordering
[src
+ i
] = dst
+ i
;
2926 for (i
= 0; i
< dst
- src
; ++i
)
2927 reordering
[src
+ n
+ i
] = src
+ i
;
2928 for (i
= 0; i
< len
- dst
- n
; ++i
)
2929 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
2935 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
2936 __isl_take isl_qpolynomial
*qp
,
2937 enum isl_dim_type dst_type
, unsigned dst_pos
,
2938 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
2944 qp
= isl_qpolynomial_cow(qp
);
2948 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_dim_size(qp
->dim
, src_type
),
2951 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
2952 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
2953 if (dst_type
> src_type
)
2956 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
2963 reordering
= reordering_move(qp
->dim
->ctx
,
2964 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
2968 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2973 qp
->dim
= isl_dim_move(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
2979 isl_qpolynomial_free(qp
);
2983 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_dim
*dim
,
2984 isl_int
*f
, isl_int denom
)
2986 struct isl_upoly
*up
;
2991 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
, 1 + isl_dim_total(dim
));
2993 return isl_qpolynomial_alloc(dim
, 0, up
);
2996 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
2999 struct isl_upoly
*up
;
3000 isl_qpolynomial
*qp
;
3005 ctx
= isl_aff_get_ctx(aff
);
3006 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3009 qp
= isl_qpolynomial_alloc(isl_aff_get_dim(aff
),
3010 aff
->ls
->div
->n_row
, up
);
3014 isl_mat_free(qp
->div
);
3015 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3016 qp
->div
= isl_mat_cow(qp
->div
);
3021 qp
= reduce_divs(qp
);
3022 qp
= remove_redundant_divs(qp
);
3029 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3030 __isl_take isl_pw_aff
*pwaff
)
3033 isl_pw_qpolynomial
*pwqp
;
3038 pwqp
= isl_pw_qpolynomial_alloc_(isl_pw_aff_get_dim(pwaff
), pwaff
->n
);
3040 for (i
= 0; i
< pwaff
->n
; ++i
) {
3042 isl_qpolynomial
*qp
;
3044 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3045 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3046 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3049 isl_pw_aff_free(pwaff
);
3053 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3054 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3058 aff
= isl_constraint_get_bound(c
, type
, pos
);
3059 isl_constraint_free(c
);
3060 return isl_qpolynomial_from_aff(aff
);
3063 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3064 * in "qp" by subs[i].
3066 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3067 __isl_take isl_qpolynomial
*qp
,
3068 enum isl_dim_type type
, unsigned first
, unsigned n
,
3069 __isl_keep isl_qpolynomial
**subs
)
3072 struct isl_upoly
**ups
;
3077 qp
= isl_qpolynomial_cow(qp
);
3080 for (i
= 0; i
< n
; ++i
)
3084 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
3087 for (i
= 0; i
< n
; ++i
)
3088 isl_assert(qp
->dim
->ctx
, isl_dim_equal(qp
->dim
, subs
[i
]->dim
),
3091 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3092 for (i
= 0; i
< n
; ++i
)
3093 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3095 first
+= pos(qp
->dim
, type
);
3097 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3100 for (i
= 0; i
< n
; ++i
)
3101 ups
[i
] = subs
[i
]->upoly
;
3103 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3112 isl_qpolynomial_free(qp
);
3116 /* Extend "bset" with extra set dimensions for each integer division
3117 * in "qp" and then call "fn" with the extended bset and the polynomial
3118 * that results from replacing each of the integer divisions by the
3119 * corresponding extra set dimension.
3121 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3122 __isl_keep isl_basic_set
*bset
,
3123 int (*fn
)(__isl_take isl_basic_set
*bset
,
3124 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3128 isl_qpolynomial
*poly
;
3132 if (qp
->div
->n_row
== 0)
3133 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3136 div
= isl_mat_copy(qp
->div
);
3137 dim
= isl_dim_copy(qp
->dim
);
3138 dim
= isl_dim_add(dim
, isl_dim_set
, qp
->div
->n_row
);
3139 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3140 bset
= isl_basic_set_copy(bset
);
3141 bset
= isl_basic_set_add(bset
, isl_dim_set
, qp
->div
->n_row
);
3142 bset
= add_div_constraints(bset
, div
);
3144 return fn(bset
, poly
, user
);
3149 /* Return total degree in variables first (inclusive) up to last (exclusive).
3151 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3155 struct isl_upoly_rec
*rec
;
3159 if (isl_upoly_is_zero(up
))
3161 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3164 rec
= isl_upoly_as_rec(up
);
3168 for (i
= 0; i
< rec
->n
; ++i
) {
3171 if (isl_upoly_is_zero(rec
->p
[i
]))
3173 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3183 /* Return total degree in set variables.
3185 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3193 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3194 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3195 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3198 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3199 unsigned pos
, int deg
)
3202 struct isl_upoly_rec
*rec
;
3207 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3209 return isl_upoly_copy(up
);
3211 return isl_upoly_zero(up
->ctx
);
3214 rec
= isl_upoly_as_rec(up
);
3218 if (up
->var
== pos
) {
3220 return isl_upoly_copy(rec
->p
[deg
]);
3222 return isl_upoly_zero(up
->ctx
);
3225 up
= isl_upoly_copy(up
);
3226 up
= isl_upoly_cow(up
);
3227 rec
= isl_upoly_as_rec(up
);
3231 for (i
= 0; i
< rec
->n
; ++i
) {
3232 struct isl_upoly
*t
;
3233 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3236 isl_upoly_free(rec
->p
[i
]);
3246 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3248 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3249 __isl_keep isl_qpolynomial
*qp
,
3250 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3253 struct isl_upoly
*up
;
3259 isl_assert(qp
->div
->ctx
, t_pos
< isl_dim_size(qp
->dim
, type
),
3262 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3263 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3265 c
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
, up
);
3268 isl_mat_free(c
->div
);
3269 c
->div
= isl_mat_copy(qp
->div
);
3274 isl_qpolynomial_free(c
);
3278 /* Homogenize the polynomial in the variables first (inclusive) up to
3279 * last (exclusive) by inserting powers of variable first.
3280 * Variable first is assumed not to appear in the input.
3282 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3283 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3284 int first
, int last
)
3287 struct isl_upoly_rec
*rec
;
3291 if (isl_upoly_is_zero(up
))
3295 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3296 struct isl_upoly
*hom
;
3298 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3301 rec
= isl_upoly_as_rec(hom
);
3302 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3307 up
= isl_upoly_cow(up
);
3308 rec
= isl_upoly_as_rec(up
);
3312 for (i
= 0; i
< rec
->n
; ++i
) {
3313 if (isl_upoly_is_zero(rec
->p
[i
]))
3315 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3316 up
->var
< last
? deg
+ i
: i
, target
,
3328 /* Homogenize the polynomial in the set variables by introducing
3329 * powers of an extra set variable at position 0.
3331 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3332 __isl_take isl_qpolynomial
*poly
)
3336 int deg
= isl_qpolynomial_degree(poly
);
3341 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_set
, 0, 1);
3342 poly
= isl_qpolynomial_cow(poly
);
3346 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3347 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3348 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3355 isl_qpolynomial_free(poly
);
3359 __isl_give isl_term
*isl_term_alloc(__isl_take isl_dim
*dim
,
3360 __isl_take isl_mat
*div
)
3368 n
= isl_dim_total(dim
) + div
->n_row
;
3370 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3371 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3378 isl_int_init(term
->n
);
3379 isl_int_init(term
->d
);
3388 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3397 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3406 total
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3408 dup
= isl_term_alloc(isl_dim_copy(term
->dim
), isl_mat_copy(term
->div
));
3412 isl_int_set(dup
->n
, term
->n
);
3413 isl_int_set(dup
->d
, term
->d
);
3415 for (i
= 0; i
< total
; ++i
)
3416 dup
->pow
[i
] = term
->pow
[i
];
3421 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3429 return isl_term_dup(term
);
3432 void isl_term_free(__isl_take isl_term
*term
)
3437 if (--term
->ref
> 0)
3440 isl_dim_free(term
->dim
);
3441 isl_mat_free(term
->div
);
3442 isl_int_clear(term
->n
);
3443 isl_int_clear(term
->d
);
3447 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3455 case isl_dim_out
: return isl_dim_size(term
->dim
, type
);
3456 case isl_dim_div
: return term
->div
->n_row
;
3457 case isl_dim_all
: return isl_dim_total(term
->dim
) + term
->div
->n_row
;
3462 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3464 return term
? term
->dim
->ctx
: NULL
;
3467 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3471 isl_int_set(*n
, term
->n
);
3474 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3478 isl_int_set(*d
, term
->d
);
3481 int isl_term_get_exp(__isl_keep isl_term
*term
,
3482 enum isl_dim_type type
, unsigned pos
)
3487 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3489 if (type
>= isl_dim_set
)
3490 pos
+= isl_dim_size(term
->dim
, isl_dim_param
);
3491 if (type
>= isl_dim_div
)
3492 pos
+= isl_dim_size(term
->dim
, isl_dim_set
);
3494 return term
->pow
[pos
];
3497 __isl_give isl_div
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3499 isl_basic_map
*bmap
;
3506 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3509 total
= term
->div
->n_col
- term
->div
->n_row
- 2;
3510 /* No nested divs for now */
3511 isl_assert(term
->dim
->ctx
,
3512 isl_seq_first_non_zero(term
->div
->row
[pos
] + 2 + total
,
3513 term
->div
->n_row
) == -1,
3516 bmap
= isl_basic_map_alloc_dim(isl_dim_copy(term
->dim
), 1, 0, 0);
3517 if ((k
= isl_basic_map_alloc_div(bmap
)) < 0)
3520 isl_seq_cpy(bmap
->div
[k
], term
->div
->row
[pos
], 2 + total
);
3522 return isl_basic_map_div(bmap
, k
);
3524 isl_basic_map_free(bmap
);
3528 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3529 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3530 __isl_take isl_term
*term
, void *user
)
3533 struct isl_upoly_rec
*rec
;
3538 if (isl_upoly_is_zero(up
))
3541 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3542 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3543 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3545 if (isl_upoly_is_cst(up
)) {
3546 struct isl_upoly_cst
*cst
;
3547 cst
= isl_upoly_as_cst(up
);
3550 term
= isl_term_cow(term
);
3553 isl_int_set(term
->n
, cst
->n
);
3554 isl_int_set(term
->d
, cst
->d
);
3555 if (fn(isl_term_copy(term
), user
) < 0)
3560 rec
= isl_upoly_as_rec(up
);
3564 for (i
= 0; i
< rec
->n
; ++i
) {
3565 term
= isl_term_cow(term
);
3568 term
->pow
[up
->var
] = i
;
3569 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3573 term
->pow
[up
->var
] = 0;
3577 isl_term_free(term
);
3581 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3582 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3589 term
= isl_term_alloc(isl_dim_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3593 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3595 isl_term_free(term
);
3597 return term
? 0 : -1;
3600 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3602 struct isl_upoly
*up
;
3603 isl_qpolynomial
*qp
;
3609 n
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3611 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3612 for (i
= 0; i
< n
; ++i
) {
3615 up
= isl_upoly_mul(up
,
3616 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3619 qp
= isl_qpolynomial_alloc(isl_dim_copy(term
->dim
), term
->div
->n_row
, up
);
3622 isl_mat_free(qp
->div
);
3623 qp
->div
= isl_mat_copy(term
->div
);
3627 isl_term_free(term
);
3630 isl_qpolynomial_free(qp
);
3631 isl_term_free(term
);
3635 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3636 __isl_take isl_dim
*dim
)
3645 if (isl_dim_equal(qp
->dim
, dim
)) {
3650 qp
= isl_qpolynomial_cow(qp
);
3654 extra
= isl_dim_size(dim
, isl_dim_set
) -
3655 isl_dim_size(qp
->dim
, isl_dim_set
);
3656 total
= isl_dim_total(qp
->dim
);
3657 if (qp
->div
->n_row
) {
3660 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3663 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3665 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3670 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3673 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3674 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3676 isl_dim_free(qp
->dim
);
3682 isl_qpolynomial_free(qp
);
3686 /* For each parameter or variable that does not appear in qp,
3687 * first eliminate the variable from all constraints and then set it to zero.
3689 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3690 __isl_keep isl_qpolynomial
*qp
)
3701 d
= isl_dim_total(set
->dim
);
3702 active
= isl_calloc_array(set
->ctx
, int, d
);
3703 if (set_active(qp
, active
) < 0)
3706 for (i
= 0; i
< d
; ++i
)
3715 nparam
= isl_dim_size(set
->dim
, isl_dim_param
);
3716 nvar
= isl_dim_size(set
->dim
, isl_dim_set
);
3717 for (i
= 0; i
< nparam
; ++i
) {
3720 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3721 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3723 for (i
= 0; i
< nvar
; ++i
) {
3724 if (active
[nparam
+ i
])
3726 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3727 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3739 struct isl_opt_data
{
3740 isl_qpolynomial
*qp
;
3742 isl_qpolynomial
*opt
;
3746 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3748 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3749 isl_qpolynomial
*val
;
3751 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3755 } else if (data
->max
) {
3756 data
->opt
= isl_qpolynomial_max_cst(data
->opt
, val
);
3758 data
->opt
= isl_qpolynomial_min_cst(data
->opt
, val
);
3764 __isl_give isl_qpolynomial
*isl_qpolynomial_opt_on_domain(
3765 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3767 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3772 if (isl_upoly_is_cst(qp
->upoly
)) {
3777 set
= fix_inactive(set
, qp
);
3780 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3784 data
.opt
= isl_qpolynomial_zero(isl_qpolynomial_get_dim(qp
));
3787 isl_qpolynomial_free(qp
);
3791 isl_qpolynomial_free(qp
);
3792 isl_qpolynomial_free(data
.opt
);
3796 __isl_give isl_qpolynomial
*isl_qpolynomial_morph(__isl_take isl_qpolynomial
*qp
,
3797 __isl_take isl_morph
*morph
)
3802 struct isl_upoly
**subs
;
3805 qp
= isl_qpolynomial_cow(qp
);
3810 isl_assert(ctx
, isl_dim_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
3812 n_sub
= morph
->inv
->n_row
- 1;
3813 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3814 n_sub
+= qp
->div
->n_row
;
3815 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
3819 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
3820 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
3821 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
3822 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3823 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3824 subs
[morph
->inv
->n_row
- 1 + i
] =
3825 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
3827 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
3829 for (i
= 0; i
< n_sub
; ++i
)
3830 isl_upoly_free(subs
[i
]);
3833 mat
= isl_mat_diagonal(isl_mat_identity(ctx
, 1), isl_mat_copy(morph
->inv
));
3834 mat
= isl_mat_diagonal(mat
, isl_mat_identity(ctx
, qp
->div
->n_row
));
3835 qp
->div
= isl_mat_product(qp
->div
, mat
);
3836 isl_dim_free(qp
->dim
);
3837 qp
->dim
= isl_dim_copy(morph
->ran
->dim
);
3839 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
3842 isl_morph_free(morph
);
3846 isl_qpolynomial_free(qp
);
3847 isl_morph_free(morph
);
3851 static int neg_entry(void **entry
, void *user
)
3853 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
3855 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
3857 return *pwqp
? 0 : -1;
3860 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
3861 __isl_take isl_union_pw_qpolynomial
*upwqp
)
3863 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
3867 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
3868 &neg_entry
, NULL
) < 0)
3873 isl_union_pw_qpolynomial_free(upwqp
);
3877 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_sub(
3878 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3879 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3881 return isl_union_pw_qpolynomial_add(upwqp1
,
3882 isl_union_pw_qpolynomial_neg(upwqp2
));
3885 static int mul_entry(void **entry
, void *user
)
3887 struct isl_union_pw_qpolynomial_match_bin_data
*data
= user
;
3889 struct isl_hash_table_entry
*entry2
;
3890 isl_pw_qpolynomial
*pwpq
= *entry
;
3893 hash
= isl_dim_get_hash(pwpq
->dim
);
3894 entry2
= isl_hash_table_find(data
->u2
->dim
->ctx
, &data
->u2
->table
,
3895 hash
, &has_dim
, pwpq
->dim
, 0);
3899 pwpq
= isl_pw_qpolynomial_copy(pwpq
);
3900 pwpq
= isl_pw_qpolynomial_mul(pwpq
,
3901 isl_pw_qpolynomial_copy(entry2
->data
));
3903 empty
= isl_pw_qpolynomial_is_zero(pwpq
);
3905 isl_pw_qpolynomial_free(pwpq
);
3909 isl_pw_qpolynomial_free(pwpq
);
3913 data
->res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(data
->res
, pwpq
);
3918 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
3919 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3920 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3922 return match_bin_op(upwqp1
, upwqp2
, &mul_entry
);
3925 /* Reorder the columns of the given div definitions according to the
3928 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
3929 __isl_take isl_reordering
*r
)
3938 extra
= isl_dim_total(r
->dim
) + div
->n_row
- r
->len
;
3939 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
3943 for (i
= 0; i
< div
->n_row
; ++i
) {
3944 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
3945 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
3946 for (j
= 0; j
< r
->len
; ++j
)
3947 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
3948 div
->row
[i
][2 + j
]);
3951 isl_reordering_free(r
);
3955 isl_reordering_free(r
);
3960 /* Reorder the dimension of "qp" according to the given reordering.
3962 __isl_give isl_qpolynomial
*isl_qpolynomial_realign(
3963 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
3965 qp
= isl_qpolynomial_cow(qp
);
3969 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
3973 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
3977 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
3981 qp
= isl_qpolynomial_reset_dim(qp
, isl_dim_copy(r
->dim
));
3983 isl_reordering_free(r
);
3986 isl_qpolynomial_free(qp
);
3987 isl_reordering_free(r
);
3991 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
3992 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*model
)
3997 if (!isl_dim_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
3998 isl_reordering
*exp
;
4000 model
= isl_dim_drop(model
, isl_dim_in
,
4001 0, isl_dim_size(model
, isl_dim_in
));
4002 model
= isl_dim_drop(model
, isl_dim_out
,
4003 0, isl_dim_size(model
, isl_dim_out
));
4004 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
4005 exp
= isl_reordering_extend_dim(exp
,
4006 isl_qpolynomial_get_dim(qp
));
4007 qp
= isl_qpolynomial_realign(qp
, exp
);
4010 isl_dim_free(model
);
4013 isl_dim_free(model
);
4014 isl_qpolynomial_free(qp
);
4018 struct isl_split_periods_data
{
4020 isl_pw_qpolynomial
*res
;
4023 /* Create a slice where the integer division "div" has the fixed value "v".
4024 * In particular, if "div" refers to floor(f/m), then create a slice
4026 * m v <= f <= m v + (m - 1)
4031 * -f + m v + (m - 1) >= 0
4033 static __isl_give isl_set
*set_div_slice(__isl_take isl_dim
*dim
,
4034 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4037 isl_basic_set
*bset
= NULL
;
4043 total
= isl_dim_total(dim
);
4044 bset
= isl_basic_set_alloc_dim(isl_dim_copy(dim
), 0, 0, 2);
4046 k
= isl_basic_set_alloc_inequality(bset
);
4049 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4050 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4052 k
= isl_basic_set_alloc_inequality(bset
);
4055 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4056 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4057 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4058 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4061 return isl_set_from_basic_set(bset
);
4063 isl_basic_set_free(bset
);
4068 static int split_periods(__isl_take isl_set
*set
,
4069 __isl_take isl_qpolynomial
*qp
, void *user
);
4071 /* Create a slice of the domain "set" such that integer division "div"
4072 * has the fixed value "v" and add the results to data->res,
4073 * replacing the integer division by "v" in "qp".
4075 static int set_div(__isl_take isl_set
*set
,
4076 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4077 struct isl_split_periods_data
*data
)
4082 struct isl_upoly
*cst
;
4084 slice
= set_div_slice(isl_set_get_dim(set
), qp
, div
, v
);
4085 set
= isl_set_intersect(set
, slice
);
4090 total
= isl_dim_total(qp
->dim
);
4092 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4093 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4095 isl_int_addmul(qp
->div
->row
[i
][1],
4096 qp
->div
->row
[i
][2 + total
+ div
], v
);
4097 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4100 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4101 qp
= substitute_div(qp
, div
, cst
);
4103 return split_periods(set
, qp
, data
);
4106 isl_qpolynomial_free(qp
);
4110 /* Split the domain "set" such that integer division "div"
4111 * has a fixed value (ranging from "min" to "max") on each slice
4112 * and add the results to data->res.
4114 static int split_div(__isl_take isl_set
*set
,
4115 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4116 struct isl_split_periods_data
*data
)
4118 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4119 isl_set
*set_i
= isl_set_copy(set
);
4120 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4122 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4126 isl_qpolynomial_free(qp
);
4130 isl_qpolynomial_free(qp
);
4134 /* If "qp" refers to any integer division
4135 * that can only attain "max_periods" distinct values on "set"
4136 * then split the domain along those distinct values.
4137 * Add the results (or the original if no splitting occurs)
4140 static int split_periods(__isl_take isl_set
*set
,
4141 __isl_take isl_qpolynomial
*qp
, void *user
)
4144 isl_pw_qpolynomial
*pwqp
;
4145 struct isl_split_periods_data
*data
;
4150 data
= (struct isl_split_periods_data
*)user
;
4155 if (qp
->div
->n_row
== 0) {
4156 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4157 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4163 total
= isl_dim_total(qp
->dim
);
4164 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4165 enum isl_lp_result lp_res
;
4167 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4168 qp
->div
->n_row
) != -1)
4171 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4172 set
->ctx
->one
, &min
, NULL
, NULL
);
4173 if (lp_res
== isl_lp_error
)
4175 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4177 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4179 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4180 set
->ctx
->one
, &max
, NULL
, NULL
);
4181 if (lp_res
== isl_lp_error
)
4183 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4185 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4187 isl_int_sub(max
, max
, min
);
4188 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4189 isl_int_add(max
, max
, min
);
4194 if (i
< qp
->div
->n_row
) {
4195 r
= split_div(set
, qp
, i
, min
, max
, data
);
4197 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4198 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4210 isl_qpolynomial_free(qp
);
4214 /* If any quasi-polynomial in pwqp refers to any integer division
4215 * that can only attain "max_periods" distinct values on its domain
4216 * then split the domain along those distinct values.
4218 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4219 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4221 struct isl_split_periods_data data
;
4223 data
.max_periods
= max_periods
;
4224 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4226 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4229 isl_pw_qpolynomial_free(pwqp
);
4233 isl_pw_qpolynomial_free(data
.res
);
4234 isl_pw_qpolynomial_free(pwqp
);
4238 /* Construct a piecewise quasipolynomial that is constant on the given
4239 * domain. In particular, it is
4242 * infinity if cst == -1
4244 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4245 __isl_take isl_basic_set
*bset
, int cst
)
4248 isl_qpolynomial
*qp
;
4253 bset
= isl_basic_map_domain(isl_basic_map_from_range(bset
));
4254 dim
= isl_basic_set_get_dim(bset
);
4256 qp
= isl_qpolynomial_infty(dim
);
4258 qp
= isl_qpolynomial_zero(dim
);
4260 qp
= isl_qpolynomial_one(dim
);
4261 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4264 /* Factor bset, call fn on each of the factors and return the product.
4266 * If no factors can be found, simply call fn on the input.
4267 * Otherwise, construct the factors based on the factorizer,
4268 * call fn on each factor and compute the product.
4270 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4271 __isl_take isl_basic_set
*bset
,
4272 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4278 isl_qpolynomial
*qp
;
4279 isl_pw_qpolynomial
*pwqp
;
4283 f
= isl_basic_set_factorizer(bset
);
4286 if (f
->n_group
== 0) {
4287 isl_factorizer_free(f
);
4291 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4292 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4294 dim
= isl_basic_set_get_dim(bset
);
4295 dim
= isl_dim_domain(dim
);
4296 set
= isl_set_universe(isl_dim_copy(dim
));
4297 qp
= isl_qpolynomial_one(dim
);
4298 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4300 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4302 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4303 isl_basic_set
*bset_i
;
4304 isl_pw_qpolynomial
*pwqp_i
;
4306 bset_i
= isl_basic_set_copy(bset
);
4307 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4308 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4309 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4311 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4312 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4313 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4315 pwqp_i
= fn(bset_i
);
4316 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4321 isl_basic_set_free(bset
);
4322 isl_factorizer_free(f
);
4326 isl_basic_set_free(bset
);
4330 /* Factor bset, call fn on each of the factors and return the product.
4331 * The function is assumed to evaluate to zero on empty domains,
4332 * to one on zero-dimensional domains and to infinity on unbounded domains
4333 * and will not be called explicitly on zero-dimensional or unbounded domains.
4335 * We first check for some special cases and remove all equalities.
4336 * Then we hand over control to compressed_multiplicative_call.
4338 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4339 __isl_take isl_basic_set
*bset
,
4340 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4344 isl_pw_qpolynomial
*pwqp
;
4345 unsigned orig_nvar
, final_nvar
;
4350 if (isl_basic_set_plain_is_empty(bset
))
4351 return constant_on_domain(bset
, 0);
4353 orig_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4356 return constant_on_domain(bset
, 1);
4358 bounded
= isl_basic_set_is_bounded(bset
);
4362 return constant_on_domain(bset
, -1);
4364 if (bset
->n_eq
== 0)
4365 return compressed_multiplicative_call(bset
, fn
);
4367 morph
= isl_basic_set_full_compression(bset
);
4368 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4370 final_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4372 pwqp
= compressed_multiplicative_call(bset
, fn
);
4374 morph
= isl_morph_remove_dom_dims(morph
, isl_dim_set
, 0, orig_nvar
);
4375 morph
= isl_morph_remove_ran_dims(morph
, isl_dim_set
, 0, final_nvar
);
4376 morph
= isl_morph_inverse(morph
);
4378 pwqp
= isl_pw_qpolynomial_morph(pwqp
, morph
);
4382 isl_basic_set_free(bset
);
4386 /* Drop all floors in "qp", turning each integer division [a/m] into
4387 * a rational division a/m. If "down" is set, then the integer division
4388 * is replaces by (a-(m-1))/m instead.
4390 static __isl_give isl_qpolynomial
*qp_drop_floors(
4391 __isl_take isl_qpolynomial
*qp
, int down
)
4394 struct isl_upoly
*s
;
4398 if (qp
->div
->n_row
== 0)
4401 qp
= isl_qpolynomial_cow(qp
);
4405 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4407 isl_int_sub(qp
->div
->row
[i
][1],
4408 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4409 isl_int_add_ui(qp
->div
->row
[i
][1],
4410 qp
->div
->row
[i
][1], 1);
4412 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4413 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4414 qp
= substitute_div(qp
, i
, s
);
4422 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4423 * a rational division a/m.
4425 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4426 __isl_take isl_pw_qpolynomial
*pwqp
)
4433 if (isl_pw_qpolynomial_is_zero(pwqp
))
4436 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4440 for (i
= 0; i
< pwqp
->n
; ++i
) {
4441 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4448 isl_pw_qpolynomial_free(pwqp
);
4452 /* Adjust all the integer divisions in "qp" such that they are at least
4453 * one over the given orthant (identified by "signs"). This ensures
4454 * that they will still be non-negative even after subtracting (m-1)/m.
4456 * In particular, f is replaced by f' + v, changing f = [a/m]
4457 * to f' = [(a - m v)/m].
4458 * If the constant term k in a is smaller than m,
4459 * the constant term of v is set to floor(k/m) - 1.
4460 * For any other term, if the coefficient c and the variable x have
4461 * the same sign, then no changes are needed.
4462 * Otherwise, if the variable is positive (and c is negative),
4463 * then the coefficient of x in v is set to floor(c/m).
4464 * If the variable is negative (and c is positive),
4465 * then the coefficient of x in v is set to ceil(c/m).
4467 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4473 struct isl_upoly
*s
;
4475 qp
= isl_qpolynomial_cow(qp
);
4478 qp
->div
= isl_mat_cow(qp
->div
);
4482 total
= isl_dim_total(qp
->dim
);
4483 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4485 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4486 isl_int
*row
= qp
->div
->row
[i
];
4490 if (isl_int_lt(row
[1], row
[0])) {
4491 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4492 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4493 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4495 for (j
= 0; j
< total
; ++j
) {
4496 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4499 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4501 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4502 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4504 for (j
= 0; j
< i
; ++j
) {
4505 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4507 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4508 row
[2 + total
+ j
], row
[0]);
4509 isl_int_submul(row
[2 + total
+ j
],
4510 row
[0], v
->el
[1 + total
+ j
]);
4512 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4513 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4515 isl_seq_combine(qp
->div
->row
[j
] + 1,
4516 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4517 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4519 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4520 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4521 qp
->div
->ctx
->one
, v
->size
);
4522 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4532 isl_qpolynomial_free(qp
);
4536 struct isl_to_poly_data
{
4538 isl_pw_qpolynomial
*res
;
4539 isl_qpolynomial
*qp
;
4542 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4543 * We first make all integer divisions positive and then split the
4544 * quasipolynomials into terms with sign data->sign (the direction
4545 * of the requested approximation) and terms with the opposite sign.
4546 * In the first set of terms, each integer division [a/m] is
4547 * overapproximated by a/m, while in the second it is underapproximated
4550 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4553 struct isl_to_poly_data
*data
= user
;
4554 isl_pw_qpolynomial
*t
;
4555 isl_qpolynomial
*qp
, *up
, *down
;
4557 qp
= isl_qpolynomial_copy(data
->qp
);
4558 qp
= make_divs_pos(qp
, signs
);
4560 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4561 up
= qp_drop_floors(up
, 0);
4562 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4563 down
= qp_drop_floors(down
, 1);
4565 isl_qpolynomial_free(qp
);
4566 qp
= isl_qpolynomial_add(up
, down
);
4568 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4569 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4574 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4575 * the polynomial will be an overapproximation. If "sign" is negative,
4576 * it will be an underapproximation. If "sign" is zero, the approximation
4577 * will lie somewhere in between.
4579 * In particular, is sign == 0, we simply drop the floors, turning
4580 * the integer divisions into rational divisions.
4581 * Otherwise, we split the domains into orthants, make all integer divisions
4582 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4583 * depending on the requested sign and the sign of the term in which
4584 * the integer division appears.
4586 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4587 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4590 struct isl_to_poly_data data
;
4593 return pwqp_drop_floors(pwqp
);
4599 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4601 for (i
= 0; i
< pwqp
->n
; ++i
) {
4602 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4603 isl_pw_qpolynomial
*t
;
4604 t
= isl_pw_qpolynomial_alloc(
4605 isl_set_copy(pwqp
->p
[i
].set
),
4606 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4607 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4610 data
.qp
= pwqp
->p
[i
].qp
;
4611 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4612 &to_polynomial_on_orthant
, &data
) < 0)
4616 isl_pw_qpolynomial_free(pwqp
);
4620 isl_pw_qpolynomial_free(pwqp
);
4621 isl_pw_qpolynomial_free(data
.res
);
4625 static int poly_entry(void **entry
, void *user
)
4628 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4630 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4632 return *pwqp
? 0 : -1;
4635 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4636 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4638 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4642 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4643 &poly_entry
, &sign
) < 0)
4648 isl_union_pw_qpolynomial_free(upwqp
);
4652 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4653 __isl_take isl_qpolynomial
*qp
)
4657 isl_vec
*aff
= NULL
;
4658 isl_basic_map
*bmap
= NULL
;
4664 if (!isl_upoly_is_affine(qp
->upoly
))
4665 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4666 "input quasi-polynomial not affine", goto error
);
4667 aff
= isl_qpolynomial_extract_affine(qp
);
4670 dim
= isl_qpolynomial_get_dim(qp
);
4671 dim
= isl_dim_from_domain(dim
);
4672 pos
= 1 + isl_dim_offset(dim
, isl_dim_out
);
4673 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
4674 n_div
= qp
->div
->n_row
;
4675 bmap
= isl_basic_map_alloc_dim(dim
, n_div
, 1, 2 * n_div
);
4677 for (i
= 0; i
< n_div
; ++i
) {
4678 k
= isl_basic_map_alloc_div(bmap
);
4681 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4682 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4683 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4686 k
= isl_basic_map_alloc_equality(bmap
);
4689 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4690 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4691 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4694 isl_qpolynomial_free(qp
);
4695 bmap
= isl_basic_map_finalize(bmap
);
4699 isl_qpolynomial_free(qp
);
4700 isl_basic_map_free(bmap
);